
AngularJS

#angularjs

Table of Contents

About 1

Chapter 1: Getting started with AngularJS 2

Remarks 2

Versions 2

Examples 9

Getting Started 9

Showcasing all common Angular constructs 11

The importance of scope 12

The Simplest Possible Angular Hello World. 14

ng-app 14

Directives 14

Minification in Angular 15

AngularJS Getting Started Video Tutorials 16

Chapter 2: $http request 19

Examples 19

Using $http inside a controller 19

Using $http request in a service 20

Timing of an $http request 21

Chapter 3: Angular $scopes 23

Remarks 23

Examples 23

Basic Example of $scope inheritance 23

Avoid inheriting primitive values 23

A function available in the entire app 24

Creating custom $scope events 25

Using $scope functions 25

How can you limit the scope on a directive and why would you do this? 26

Chapter 4: Angular MVC 28

Introduction 28

Examples 28

The Static View with controller 28

mvc demo 28

Controller Function Definition 28

Adding information to the model 28

Chapter 5: Angular Project - Directory Structure 29

Examples 29

Directory Structure 29

Sort By Type (left) 29

Sort By Feature (right) 30

Chapter 6: Angular promises with $q service 32

Examples 32

Using $q.all to handle multiple promises 32

Using the $q constructor to create promises 32

Deferring operations using $q.defer 34

Using angular promises with $q service 34

Using Promises on call 35

Properties 35

Wrap simple value into a promise using $q.when() 37

$q.when and its alias $q.resolve 37

Avoid the $q Deferred Anti-Pattern 37

Avoid this Anti-Pattern 37

Chapter 7: AngularJS bindings options (`=`, `@`, `&` etc.) 39

Remarks 39

Examples 39

@ one-way binding, attribute binding. 39

= two-way binding. 39

& function binding, expression binding. 40

Available binding through a simple sample 40

Bind optional attribute 41

Chapter 8: AngularJS gotchas and traps 42

Examples 42

Two-way data binding stops working 42

Example 42

Things to do when using html5Mode 43

7 Deadly Sins of AngularJS 44

Chapter 9: angularjs with data filter, pagination etc 49

Introduction 49

Examples 49

Angularjs display data with filter, pagination 49

Chapter 10: Built-in directives 50

Examples 50

Angular expressions - Text vs. Number 50

ngRepeat 50

ngShow and ngHide 54

ngOptions 55

ngModel 57

ngClass 58

ngIf 58

JavaScript 58

View 59

DOM If currentUser Is Not Undefined 59

DOM If currentUser Is Undefined 59

Function Promise 59

ngMouseenter and ngMouseleave 60

ngDisabled 60

ngDblclick 61

Built-In Directives Cheat Sheet 61

ngClick 62

ngRequired 63

ng-model-options 64

ngCloak 65

ngInclude 65

ngSrc 65

ngPattern 66

ngValue 66

ngCopy 67

Prevent a user from copying data 67

ngPaste 67

ngHref 67

ngList 68

Chapter 11: Built-in helper Functions 69

Examples 69

angular.equals 69

angular.isString 69

angular.isArray 69

angular.merge 70

angular.isDefined and angular.isUndefined 70

angular.isDate 71

angular.isNumber 71

angular.isFunction 72

angular.toJson 72

angular.fromJson 72

angular.noop 73

angular.isObject 73

angular.isElement 74

angular.copy 74

angular.identity 75

angular.forEach 75

Chapter 12: Components 77

Parameters 77

Remarks 78

Examples 78

Basic Components and LifeCycle Hooks 78

What’s a component? 78

Using External data in Component: 78

Using Controllers in Components 79

Using “require” as an Object 80

Components In angular JS 80

Chapter 13: Constants 82

Remarks 82

Examples 82

Create your first constant 82

Use cases 82

Chapter 14: Controllers 85

Syntax 85

Examples 85

Your First Controller 85

Creating Controllers 87

Creating Controllers, Minification safe 87

The order of injected dependencies is important 87

Using ControllerAs in Angular JS 88

Creating Minification-Safe Angular Controllers 89

Nested Controllers 90

Chapter 15: Controllers with ES6 91

Examples 91

Controller 91

Chapter 16: Custom Directives 92

Introduction 92

Parameters 92

Examples 94

Creating and consuming custom directives 94

Directive Definition Object Template 95

Basic Directive example 96

How to create resuable component using directive 97

Basic directive with template and an isolated scope 99

Building a reusable component 100

Directive decorator 101

Directive inheritance and interoperability 102

Chapter 17: Custom filters 104

Examples 104

Simple filter example 104

example.js 104

example.html 104

Expected output 104

Use a filter in a controller, a service or a filter 104

Create a filter with parameters 105

Chapter 18: Custom filters with ES6 106

Examples 106

FileSize Filter using ES6 106

Chapter 19: Debugging 108

Examples 108

Basic debugging in markup 108

Using ng-inspect chrome extension 109

Getting the Scope of element 112

Chapter 20: Decorators 114

Syntax 114

Remarks 114

Examples 114

Decorate service, factory 114

Decorate directive 115

Decorate filter 116

Chapter 21: Dependency Injection 117

Syntax 117

Remarks 117

Examples 117

Injections 117

Dynamic Injections 118

$inject Property Annotation 118

Dynamically load AngularJS service in vanilla JavaScript 118

Chapter 22: digest loop walkthrough 120

Syntax 120

Examples 120

two way data binding 120

$digest and $watch 120

the $scope tree 121

Chapter 23: Directives using ngModelController 123

Examples 123

A simple control: rating 123

A couple of complex controls: edit a full object 125

Chapter 24: Distinguishing Service vs Factory 129

Examples 129

Factory VS Service once-and-for-all 129

Chapter 25: Events 131

Parameters 131

Examples 131

Using angular event system 131

$scope.$emit 131

$scope.$broadcast 131

Syntax : 132

Clean registered event in AngularJS 132

Uses and significance 133

Always deregister $rootScope.$on listeners on the scope $destory event 135

Chapter 26: Filters 136

Examples 136

Your First Filter 136

Javascript 136

HTML 137

Custom filter to remove values 137

Custom filter to format values 137

Performing filter in a child array 138

Using filters in a controller or service 139

Accessing a filtered list from outside an ng-repeat 140

Chapter 27: Form Validation 141

Examples 141

Basic Form Validation 141

Form and Input States 142

CSS Classes 142

ngMessages 143

Traditional approach 143

Example 143

Custom Form Validation 143

Nested Forms 144

Async validators 145

Chapter 28: Grunt tasks 146

Examples 146

Run application locally 146

Chapter 29: How data binding works 149

Remarks 149

Examples 149

Data Binding Example 149

Chapter 30: HTTP Interceptor 152

Introduction 152

Examples 152

Getting Started 152

Generic httpInterceptor step by step 152

Flash message on response using http interceptor 153

In the view file 153

Script File 154

Common pitfalls 154

Chapter 31: Lazy loading 155

Remarks 155

Examples 155

Preparing your project for lazy loading 155

Usage 155

Usage with router 156

UI-Router: 156

ngRoute: 156

Using dependency injection 156

Using the directive 157

Chapter 32: Migration to Angular 2+ 158

Introduction 158

Examples 158

Converting your AngularJS app into a componend-oriented structure 158

Start breaking your your app into components 158

What about controllers and routes? 160

What's next? 160

Conclusion 160

Introducing Webpack and ES6 modules 161

Chapter 33: Modules 162

Examples 162

Modules 162

Modules 162

Chapter 34: ng-class directive 164

Examples 164

Three types of ng-class expressions 164

1. String 164

2. Object 164

3. Array 165

Chapter 35: ng-repeat 166

Introduction 166

Syntax 166

Parameters 166

Remarks 166

Examples 166

Iterating over object properties 166

Tracking and Duplicates 167

ng-repeat-start + ng-repeat-end 167

Chapter 36: ng-style 169

Introduction 169

Syntax 169

Examples 169

Use of ng-style 169

Chapter 37: ng-view 170

Introduction 170

Examples 170

ng-view 170

Registration navigation 170

Chapter 38: Performance Profiling 172

Examples 172

All About Profiling 172

Chapter 39: Prepare for Production - Grunt 174

Examples 174

View preloading 174

Script optimisation 175

Chapter 40: Print 178

Remarks 178

Examples 178

Print Service 178

Chapter 41: Profiling and Performance 180

Examples 180

7 Simple Performance Improvements 180

1) Use ng-repeat sparingly 180

2) Bind once 180

3) Scope functions and filters take time 181

4) Watchers 182

5) ng-if / ng-show 183

6) Disable debugging 183

7) Use dependency injection to expose your resources 183

Bind Once 184

Scope functions and filters 184

Watchers 185

So, what is watcher? 185

ng-if vs ng-show 187

ng-if 187

ng-show 187

Example 187

Conclusion 188

Debounce Your Model 188

Always deregister listeners registered on other scopes other than the current scope 188

Chapter 42: Providers 190

Syntax 190

Remarks 190

Examples 190

Constant 190

Value 191

Factory 191

Service 192

Provider 192

Chapter 43: Routing using ngRoute 194

Remarks 194

Examples 194

Basic example 194

Route parameters example 195

Defining custom behavior for individual routes 197

Chapter 44: Services 198

Examples 198

How to create a Service 198

How to use a service 198

Creating a service using angular.factory 199

$sce - sanitize and render content and resources in templates 199

How to create a Service with dependencies using 'array syntax' 200

Registering a Service 200

Difference between Service and Factory 201

Chapter 45: Session storage 205

Examples 205

Handling session storage through service using angularjs 205

Session storage service : 205

In controller : 205

Chapter 46: Sharing Data 206

Remarks 206

Examples 206

Using ngStorage to share data 206

Sharing data from one controller to another using service 207

Chapter 47: SignalR with AngularJs 208

Introduction 208

Examples 208

SignalR And AngularJs [ChatProject] 208

Chapter 48: The Self Or This Variable In A Controller 212

Introduction 212

Examples 212

Understanding The Purpose Of The Self Variable 212

Chapter 49: ui-router 214

Remarks 214

Examples 214

Basic Example 214

Multiple Views 215

Using resolve functions to load data 217

Nested Views / States 218

Chapter 50: Unit tests 220

Remarks 220

Examples 220

Unit test a filter 220

Unit test a component (1.5+) 221

Unit test a controller 222

Unit test a service 222

Unit test a directive 223

Chapter 51: Use of in-built directives 225

Examples 225

Hide/Show HTML Elements 225

Chapter 52: Using AngularJS with TypeScript 227

Syntax 227

Examples 227

Angular Controllers in Typescript 227

Using the Controller with ControllerAs Syntax 228

Using Bundling / Minification 229

Why ControllerAs Syntax ? 230

Controller Function 230

Why ControllerAs ? 230

Why $scope ? 231

Credits 232

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: angularjs

It is an unofficial and free AngularJS ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official AngularJS.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/angularjs
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with AngularJS

Remarks

AngularJS is a web application framework designed to simplify rich client-side application
development. This documentation is for Angular 1.x, the predecessor of the more modern Angular
2 or see the Stack Overflow documentation for Angular 2.

Versions

Version Release Date

1.6.5 2017-07-03

1.6.4 2017-03-31

1.6.3 2017-03-08

1.6.2 2017-02-07

1.5.11 2017-01-13

1.6.1 2016-12-23

1.5.10 2016-12-15

1.6.0 2016-12-08

1.6.0-rc.2 2016-11-24

1.5.9 2016-11-24

1.6.0-rc.1 2016-11-21

1.6.0-rc.0 2016-10-26

1.2.32 2016-10-11

1.4.13 2016-10-10

1.2.31 2016-10-10

1.5.8 2016-07-22

1.2.30 2016-07-21

1.5.7 2016-06-15

https://riptutorial.com/ 2

https://angularjs.org/
https://angular.io/
https://angular.io/
http://www.riptutorial.com/topic/789

Version Release Date

1.4.12 2016-06-15

1.5.6 2016-05-27

1.4.11 2016-05-27

1.5.5 2016-04-18

1.5.4 2016-04-14

1.5.3 2016-03-25

1.5.2 2016-03-19

1.4.10 2016-03-16

1.5.1 2016-03-16

1.5.0 2016-02-05

1.5.0-rc.2 2016-01-28

1.4.9 2016-01-21

1.5.0-rc.1 2016-01-16

1.5.0-rc.0 2015-12-09

1.4.8 2015-11-20

1.5.0-beta.2 2015-11-18

1.4.7 2015-09-30

1.3.20 2015-09-30

1.2.29 2015-09-30

1.5.0-beta.1 2015-09-30

1.5.0-beta.0 2015-09-17

1.4.6 2015-09-17

1.3.19 2015-09-17

1.4.5 2015-08-28

1.3.18 2015-08-19

https://riptutorial.com/ 3

Version Release Date

1.4.4 2015-08-13

1.4.3 2015-07-15

1.3.17 2015-07-07

1.4.2 2015-07-07

1.4.1 2015-06-16

1.3.16 2015-06-06

1.4.0 2015-05-27

1.4.0-rc.2 2015-05-12

1.4.0-rc.1 2015-04-24

1.4.0-rc.0 2015-04-10

1.3.15 2015-03-17

1.4.0-beta.6 2015-03-17

1.4.0-beta.5 2015-02-24

1.3.14 2015-02-24

1.4.0-beta.4 2015-02-09

1.3.13 2015-02-09

1.3.12 2015-02-03

1.4.0-beta.3 2015-02-03

1.3.11 2015-01-27

1.4.0-beta.2 2015-01-27

1.4.0-beta.1 2015-01-20

1.3.10 2015-01-20

1.3.9 2015-01-15

1.4.0-beta.0 2015-01-14

1.3.8 2014-12-19

https://riptutorial.com/ 4

Version Release Date

1.2.28 2014-12-16

1.3.7 2014-12-15

1.3.6 2014-12-09

1.3.5 2014-12-02

1.3.4 2014-11-25

1.2.27 2014-11-21

1.3.3 2014-11-18

1.3.2 2014-11-07

1.3.1 2014-10-31

1.3.0 2014-10-14

1.3.0-rc.5 2014-10-09

1.2.26 2014-10-03

1.3.0-rc.4 2014-10-02

1.3.0-rc.3 2014-09-24

1.2.25 2014-09-17

1.3.0-rc.2 2014-09-17

1.2.24 2014-09-10

1.3.0-rc.1 2014-09-10

1.3.0-rc.0 2014-08-30

1.2.23 2014-08-23

1.3.0-beta.19 2014-08-23

1.2.22 2014-08-12

1.3.0-beta.18 2014-08-12

1.2.21 2014-07-25

1.3.0-beta.17 2014-07-25

https://riptutorial.com/ 5

Version Release Date

1.3.0-beta.16 2014-07-18

1.2.20 2014-07-11

1.3.0-beta.15 2014-07-11

1.2.19 2014-07-01

1.3.0-beta.14 2014-07-01

1.3.0-beta.13 2014-06-16

1.3.0-beta.12 2014-06-14

1.2.18 2014-06-14

1.3.0-beta.11 2014-06-06

1.2.17 2014-06-06

1.3.0-beta.10 2014-05-24

1.3.0-beta.9 2014-05-17

1.3.0-beta.8 2014-05-09

1.3.0-beta.7 2014-04-26

1.3.0-beta.6 2014-04-22

1.2.16 2014-04-04

1.3.0-beta.5 2014-04-04

1.3.0-beta.4 2014-03-28

1.2.15 2014-03-22

1.3.0-beta.3 2014-03-21

1.3.0-beta.2 2014-03-15

1.3.0-beta.1 2014-03-08

1.2.14 2014-03-01

1.2.13 2014-02-15

1.2.12 2014-02-08

https://riptutorial.com/ 6

Version Release Date

1.2.11 2014-02-03

1.2.10 2014-01-25

1.2.9 2014-01-15

1.2.8 2014-01-10

1.2.7 2014-01-03

1.2.6 2013-12-20

1.2.5 2013-12-13

1.2.4 2013-12-06

1.2.3 2013-11-27

1.2.2 2013-11-22

1.2.1 2013-11-15

1.2.0 2013-11-08

1.2.0-rc.3 2013-10-14

1.2.0-rc.2 2013-09-04

1.0.8 2013-08-22

1.2.0rc1 2013-08-13

1.0.7 2013-05-22

1.1.5 2013-05-22

1.0.6 2013-04-04

1.1.4 2013-04-04

1.0.5 2013-02-20

1.1.3 2013-02-20

1.0.4 2013-01-23

1.1.2 2013-01-23

1.1.1 2012-11-27

https://riptutorial.com/ 7

Version Release Date

1.0.3 2012-11-27

1.1.0 2012-09-04

1.0.2 2012-09-04

1.0.1 2012-06-25

1.0.0 2012-06-14

v1.0.0rc12 2012-06-12

v1.0.0rc11 2012-06-11

v1.0.0rc10 2012-05-24

v1.0.0rc9 2012-05-15

v1.0.0rc8 2012-05-07

v1.0.0rc7 2012-05-01

v1.0.0rc6 2012-04-21

v1.0.0rc5 2012-04-12

v1.0.0rc4 2012-04-05

v1.0.0rc3 2012-03-30

v1.0.0rc2 2012-03-21

g3-v1.0.0rc1 2012-03-14

g3-v1.0.0-rc2 2012-03-16

1.0.0rc1 2012-03-14

0.10.6 2012-01-17

0.10.5 2011-11-08

0.10.4 2011-10-23

0.10.3 2011-10-14

0.10.2 2011-10-08

0.10.1 2011-09-09

https://riptutorial.com/ 8

Version Release Date

0.10.0 2011-09-02

0.9.19 2011-08-21

0.9.18 2011-07-30

0.9.17 2011-06-30

0.9.16 2011-06-08

0.9.15 2011-04-12

0.9.14 2011-04-01

0.9.13 2011-03-14

0.9.12 2011-03-04

0.9.11 2011-02-09

0.9.10 2011-01-27

0.9.9 2011-01-14

0.9.7 2010-12-11

0.9.6 2010-12-07

0.9.5 2010-11-25

0.9.4 2010-11-19

0.9.3 2010-11-11

0.9.2 2010-11-03

0.9.1 2010-10-27

0.9.0 2010-10-21

Examples

Getting Started

Create a new HTML file and paste the following content:

<!DOCTYPE html>
<html ng-app>

https://riptutorial.com/ 9

<head>
 <title>Hello, Angular</title>
 <script src="https://code.angularjs.org/1.5.8/angular.min.js"></script>
</head>
<body ng-init="name='World'">
 <label>Name</label>
 <input ng-model="name" />
 Hello, {{ name }}!
 <p ng-bind="name"></p>
</body>
</html>

Live demo

When you open the file with a browser, you will see an input field followed by the text Hello,
World!. Editing the value in the input will update the text in real-time, without the need to refresh
the whole page.

Explanation:

Load the Angular framework from a Content Delivery Network.

<script src="https://code.angularjs.org/1.5.8/angular.min.js"></script>

1.

Define the HTML document as an Angular application with the ng-app directive

<html ng-app>

2.

Initialize the name variable using ng-init

<body ng-init=" name = 'World' ">

Note that ng-init should be used for demonstrative and testing purposes only. When building
an actual application, controllers should initialize the data.

3.

Bind data from the model to the view on HTML controls. Bind an <input> to the name property
with ng-model

<input ng-model="name" />

4.

Display content from the model using double braces {{ }}

Hello, {{ name }}

5.

Another way of binding the name property is using ng-bind instead of handlebars"{{ }}"

6.

The last three steps establish the two way data-binding. Changes made to the input update the

https://riptutorial.com/ 10

http://jsfiddle.net/U3pVM/26397/
https://docs.angularjs.org/guide/databinding

model, which is reflected in the view.

There is a difference between using handlebars and ng-bind. If you use handlebars, you might see
the actual Hello, {{name}} as the page loads before the expression is resolved (before the data is
loaded) whereas if you use ng-bind, it will only show the data when the name is resolved. As an
alternative the directive ng-cloak can be used to prevent handlebars to display before it is
compiled.

Showcasing all common Angular constructs

The following example shows common AngularJS constructs in one file:

<!DOCTYPE html>
<html ng-app="myDemoApp">
 <head>
 <style>.started { background: gold; }</style>
 <script src="https://code.angularjs.org/1.5.8/angular.min.js"></script>
 <script>
 function MyDataService() {
 return {
 getWorlds: function getWorlds() {
 return ["this world", "another world"];
 }
 };
 }

 function DemoController(worldsService) {
 var vm = this;
 vm.messages = worldsService.getWorlds().map(function(w) {
 return "Hello, " + w + "!";
 });
 }

 function startup($rootScope, $window) {
 $window.alert("Hello, user! Loading worlds...");
 $rootScope.hasStarted = true;
 }

 angular.module("myDemoApp", [/* module dependencies go here */])
 .service("worldsService", [MyDataService])
 .controller("demoController", ["worldsService", DemoController])
 .config(function() {
 console.log('configuring application');
 })
 .run(["$rootScope", "$window", startup]);
 </script>
 </head>
 <body ng-class="{ 'started': hasStarted }" ng-cloak>
 <div ng-controller="demoController as vm">

 <li ng-repeat="msg in vm.messages">{{ msg }}

 </div>
 </body>
</html>

Every line of the file is explained below:

https://riptutorial.com/ 11

Live Demo

ng-app="myDemoApp", the ngApp directive that bootstraps the application and tells angular that
a DOM element is controlled by a specific angular.module named "myDemoApp";

1.

<script src="angular.min.js"> is the first step in bootstrapping the AngularJS library;2.

Three functions (MyDataService, DemoController, and startup) are declared, which are used (and
explained) below.

angular.module(...) used with an array as the second argument creates a new module. This
array is used to supply a list of module dependencies. In this example we chain calls on the
result of the module(...) function;

3.

.service(...) creates an Angular Service and returns the module for chaining;4.

.controller(...) creates an Angular Controller and returns the module for chaining;5.

.config(...) Use this method to register work which needs to be performed on module
loading.

6.

.run(...) makes sure code is run at startup time and takes an array of items as a parameter.
Use this method to register work which should be performed when the injector is done
loading all modules.

the first item is letting Angular know that the startup function requires the built-in
$rootScope service to be injected as an argument;

•

the second item is letting Angular know that the startup function requires the built-in
$window service to be injected as an argument;

•

the last item in the array, startup, is the actual function to run on startup;•

7.

ng-class is the ngClass directive to set a dynamic class, and in this example utilizes
hasStarted on the $rootScope dynamically

8.

ng-cloak is a directive to prevent the unrendered Angular html template (e.g. "{{ msg }}") to
be briefly shown before Angular has fully loaded the application.

9.

ng-controller is the directive that asks Angular to instantiate a new controller of specific
name to orchestrate that part of the DOM;

10.

ng-repeat is the directive to make Angular iterate over a collection and clone a DOM template
for each item;

11.

{{ msg }} showcases interpolation: on-the-spot rendering of a part of the scope or controller;12.

The importance of scope

As Angular uses HTML to extend a web page and plain Javascript to add logic, it makes it easy to
create a web page using ng-app, ng-controller and some built-in directives such as ng-if, ng-
repeat, etc. With the new controllerAs syntax, newcomers to Angular users can attach functions
and data to their controller instead of using $scope.

https://riptutorial.com/ 12

https://jsfiddle.net/15vspt5t/
https://docs.angularjs.org/api/ng/directive/ngApp
https://docs.angularjs.org/guide/bootstrap#angular-script-tag
https://docs.angularjs.org/api/ng/function/angular.module
https://docs.angularjs.org/guide/services
https://docs.angularjs.org/guide/controller
http://stackoverflow.com/q/19276095/419956
https://docs.angularjs.org/api/ng/service/$rootScope
https://docs.angularjs.org/api/ng/service/$rootScope
https://docs.angularjs.org/api/ng/service/$rootScope
https://docs.angularjs.org/api/ng/service/$window
https://docs.angularjs.org/api/ng/service/$window
https://docs.angularjs.org/api/ng/service/$window
https://docs.angularjs.org/api/ng/directive/ngClass
https://docs.angularjs.org/api/ng/directive/ngCloak
https://docs.angularjs.org/api/ng/directive/ngController
https://docs.angularjs.org/api/ng/directive/ngRepeat
https://docs.angularjs.org/guide/interpolation
https://docs.angularjs.org/api/ng/directive/ngApp
https://docs.angularjs.org/api/ng/directive/ngController
https://docs.angularjs.org/api/ng/directive/ngIf
https://docs.angularjs.org/api/ng/directive/ngRepeat
https://docs.angularjs.org/api/ng/directive/ngRepeat

However, sooner or later, it is important to understand what exactly this $scope thing is. It will keep
showing up in examples so it is important to have some understanding.

The good news is that it is a simple yet powerful concept.

When you create the following:

<div ng-app="myApp">
 <h1>Hello {{ name }}</h1>
</div>

Where does name live?

The answer is that Angular creates a $rootScope object. This is simply a regular Javascript object
and so name is a property on the $rootScope object:

angular.module("myApp", [])
 .run(function($rootScope) {
 $rootScope.name = "World!";
 });

And just as with global scope in Javascript, it's usually not such a good idea to add items to the
global scope or $rootScope.

Of course, most of the time, we create a controller and put our required functionality into that
controller. But when we create a controller, Angular does it's magic and creates a $scope object for
that controller. This is sometimes referred to as the local scope.

So, creating the following controller:

<div ng-app="myApp">
 <div ng-controller="MyController">
 <h1>Hello {{ name }}</h1>
 </div>
</div>

would allow the local scope to be accessible via the $scope parameter.

angular.module("myApp", [])
 .controller("MyController", function($scope) {
 $scope.name = "Mr Local!";
 });

A controller without a $scope parameter may simply not need it for some reason. But it is important
to realize that, even with controllerAs syntax, the local scope exists.

As $scope is a JavaScript object, Angular magically sets it up to prototypically inherit from
$rootScope. And as you can imagine, there can be a chain of scopes. For example, you could
create a model in a parent controller and attach to it to the parent controller's scope as
$scope.model.

https://riptutorial.com/ 13

Then via the prototype chain, a child controller could access that same model locally with
$scope.model.

None of this is initially evident, as it's just Angular doing its magic in the background. But
understanding $scope is an important step in getting to know how Angular works.

The Simplest Possible Angular Hello World.

Angular 1 is at heart a DOM compiler. We can pass it HTML, either as a template or just as a
regular web page, and then have it compile an app.

We can tell Angular to treat a region of the page as an expression using the {{ }} handlebars style
syntax. Anything between the curly braces will be compiled, like so:

{{ 'Hello' + 'World' }}

This will output:

HelloWorld

ng-app

We tell Angular which portion of our DOM to treat as the master template using the ng-app directive
. A directive is a custom attribute or element that the Angular template compiler knows how to deal
with. Let's add an ng-app directive now:

<html>
 <head>
 <script src="/angular.js"></script>
 </head>
 <body ng-app>
 {{ 'Hello' + 'World' }}
 </body>
</html>

I've now told the body element to be the root template. Anything in it will be compiled.

Directives

Directives are compiler directives. They extend the capabilities of the Angular DOM compiler. This
is why Misko, the creator of Angular, describes Angular as:

"What a web browser would have been had it been built for web applications.

We literally create new HTML attributes and elements, and have Angular compile them into an
app. ng-app is a directive that simply turns on the compiler. Other directives include:

ng-click, which adds a click handler,•
ng-hide•

https://riptutorial.com/ 14

, which conditionally hides an element, and
<form>, which adds additional behaviour to a standard HTML form element.•

Angular comes with around 100 built-in directives which allow you to accomplish most common
tasks. We can also write our own, and these will be treated in the same way as the built in
directives.

We build an Angular app out of a series of directives, wired together with HTML.

Minification in Angular

What is Minification ?

It is the process of removing all unnecessary characters from source code without changing its
functionality.

Normal Syntax

If we use normal angular syntax for writing a controller then after minifiying our files it going to
break our functionality.

Controller (Before minification) :

var app = angular.module('mainApp', []);
app.controller('FirstController', function($scope) {
 $scope.name= 'Hello World !';
});

After using minification tool, It will be minified as like below.

var app=angular.module("mainApp",[]);app.controller("FirstController",function(e){e.name=
'Hello World !'})

Here, minification removed unnecessary spaces and the $scope variable from code. So when we
use this minified code then its not going to print anything on view. Because $scope is a crucial part
between controller and view, which is now replaced by the small 'e' variable. So when you run the
application it is going to give Unknown Provider 'e' dependency error.

There are two ways of annotating your code with service name information which are minification
safe:

Inline Annotation Syntax

var app = angular.module('mainApp', []);
app.controller('FirstController', ['$scope', function($scope) {
 $scope.message = 'Hello World !';
}]);

$inject Property Annotation Syntax

https://riptutorial.com/ 15

FirstController.$inject = ['$scope'];
var FirstController = function($scope) {
 $scope.message = 'Hello World !';
}

var app = angular.module('mainApp', []);
app.controller('FirstController', FirstController);

After minification, this code will be

var
app=angular.module("mainApp",[]);app.controller("FirstController",["$scope",function(a){a.message="Hello
World !"}]);

Here, angular will consider variable 'a' to be treated as $scope, and It will display output as 'Hello
World !'.

AngularJS Getting Started Video Tutorials

There are a lot of good video tutorials for the AngularJS framework on egghead.io

https://riptutorial.com/ 16

https://egghead.io

https://egghead.io/courses/angularjs-app-from-scratch-getting-started•https://riptutorial.com/ 17

https://i.stack.imgur.com/JxQ0P.png
https://egghead.io/courses/angularjs-app-from-scratch-getting-started

https://egghead.io/courses/angularjs-application-architecture•
https://egghead.io/courses/angular-material-introduction•
https://egghead.io/courses/building-an-angular-1-x-ionic-application•
https://egghead.io/courses/angular-and-webpack-for-modular-applications•
https://egghead.io/courses/angularjs-authentication-with-jwt•
https://egghead.io/courses/angularjs-data-modeling•
https://egghead.io/courses/angular-automation-with-gulp•
https://egghead.io/courses/learn-protractor-testing-for-angularjs•
https://egghead.io/courses/ionic-quickstart-for-windows•
https://egghead.io/courses/build-angular-1-x-apps-with-redux•
https://egghead.io/courses/using-angular-2-patterns-in-angular-1-x-apps•

Read Getting started with AngularJS online: https://riptutorial.com/angularjs/topic/295/getting-
started-with-angularjs

https://riptutorial.com/ 18

https://egghead.io/courses/angularjs-application-architecture
https://egghead.io/courses/angular-material-introduction
https://egghead.io/courses/building-an-angular-1-x-ionic-application
https://egghead.io/courses/angular-and-webpack-for-modular-applications
https://egghead.io/courses/angularjs-authentication-with-jwt
https://egghead.io/courses/angularjs-data-modeling
https://egghead.io/courses/angular-automation-with-gulp
https://egghead.io/courses/learn-protractor-testing-for-angularjs
https://egghead.io/courses/ionic-quickstart-for-windows
https://egghead.io/courses/build-angular-1-x-apps-with-redux
https://egghead.io/courses/using-angular-2-patterns-in-angular-1-x-apps
https://riptutorial.com/angularjs/topic/295/getting-started-with-angularjs
https://riptutorial.com/angularjs/topic/295/getting-started-with-angularjs

Chapter 2: $http request

Examples

Using $http inside a controller

The $http service is a function which generates an HTTP request and returns a promise.

General Usage

// Simple GET request example:
$http({
 method: 'GET',
 url: '/someUrl'
}).then(function successCallback(response) {
 // this callback will be called asynchronously
 // when the response is available
 }, function errorCallback(response) {
 // called asynchronously if an error occurs
 // or server returns response with an error status.
 });

Usage inside controller

appName.controller('controllerName',
 ['$http', function($http){

 // Simple GET request example:
 $http({
 method: 'GET',
 url: '/someUrl'
 }).then(function successCallback(response) {
 // this callback will be called asynchronously
 // when the response is available
 }, function errorCallback(response) {
 // called asynchronously if an error occurs
 // or server returns response with an error status.
 });
}])

Shortcut Methods

$http service also has shortcut methods. Read about http methods here

Syntax

$http.get('/someUrl', config).then(successCallback, errorCallback);
$http.post('/someUrl', data, config).then(successCallback, errorCallback);

Shortcut Methods

$http.get•

https://riptutorial.com/ 19

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

$http.head•
$http.post•
$http.put•
$http.delete•
$http.jsonp•
$http.patch•

Using $http request in a service

HTTP requests are widely used repeatedly across every web app, so it is wise to write a method
for each common request, and then use it in multiple places throughout the app.

Create a httpRequestsService.js

httpRequestsService.js

appName.service('httpRequestsService', function($q, $http){

 return {
 // function that performs a basic get request
 getName: function(){
 // make sure $http is injected
 return $http.get("/someAPI/names")
 .then(function(response) {
 // return the result as a promise
 return response;
 }, function(response) {
 // defer the promise
 return $q.reject(response.data);
 });
 },

 // add functions for other requests made by your app
 addName: function(){
 // some code...
 }
 }
})

The service above will perform a get request inside the service. This will be available to any
controller where the service has been injected.

Sample usage

appName.controller('controllerName',
 ['httpRequestsService', function(httpRequestsService){

 // we injected httpRequestsService service on this controller
 // that made the getName() function available to use.
 httpRequestsService.getName()
 .then(function(response){
 // success
 }, function(error){
 // do something with the error
 })

https://riptutorial.com/ 20

 }])

Using this approach we can now use httpRequestsService.js anytime and in any controller.

Timing of an $http request

The $http requests require time which varies depending on the server, some may take a few
milliseconds, and some may take up to a few seconds. Often the time required to retrieve the data
from a request is critical. Assuming the response value is an array of names, consider the
following example:

Incorrect

$scope.names = [];

$http({
 method: 'GET',
 url: '/someURL'
}).then(function successCallback(response) {
 $scope.names = response.data;
 },
 function errorCallback(response) {
 alert(response.status);
 });

alert("The first name is: " + $scope.names[0]);

Accessing $scope.names[0] right below the $http request will often throw an error - this line of code
executes before the response is received from the server.

Correct

$scope.names = [];

$scope.$watch('names', function(newVal, oldVal) {
 if(!(newVal.length == 0)) {
 alert("The first name is: " + $scope.names[0]);
 }
});

$http({
 method: 'GET',
 url: '/someURL'
}).then(function successCallback(response) {
 $scope.names = response.data;
 },
 function errorCallback(response) {
 alert(response.status);
 });

Using the $watch service we access the $scope.names array only when the response is received.
During initialization, the function is called even though $scope.names was initialized before,
therefore checking if the newVal.length is different than 0 is necessary. Be aware - any changes
made to $scope.names will trigger the watch function.

https://riptutorial.com/ 21

http://www.riptutorial.com/angularjs/example/10758/-digest-and--watch

Read $http request online: https://riptutorial.com/angularjs/topic/3620/-http-request

https://riptutorial.com/ 22

https://riptutorial.com/angularjs/topic/3620/-http-request

Chapter 3: Angular $scopes

Remarks

Angular uses a tree of scopes to bind the logic (from controllers, directives, etc) to the view and
are the primary mechanism behind change detection in AngularJS. A more detailed reference for
scopes can be found at docs.angularjs.org

The root of the tree is accessible as via inject-able service $rootScope. All child $scopes inherit
the methods and properties of their parent $scope, allowing children access to methods without
the use of Angular Services.

Examples

Basic Example of $scope inheritance

angular.module('app', [])
.controller('myController', ['$scope', function($scope){
 $scope.person = { name: 'John Doe' };
}]);

<div ng-app="app" ng-conroller="myController">
 <input ng-model="person.name" />
 <div ng-repeat="number in [0,1,2,3]">
 {{person.name}} {{number}}
 </div>
</div>

In this example, the ng-repeat directive creates a new scope for each of its newly created children.

These created scopes are children of their parent scope (in this case the scope created by
myController), and therfore, they inherit all of its proporties, such as person.

Avoid inheriting primitive values

In javascript, assigning a non-primitive value (Such as Object, Array, Function, and many more),
keeps a reference (an address in the memory) to the assigned value.

Assigning a primitive value (String, Number, Boolean, or Symbol) to two different variables, and
changing one, won't change both:

var x = 5;
var y = x;
y = 6;
console.log(y === x, x, y); //false, 5, 6

But with a non-primitive value, since both variables are simply keeping references to the same
object, changing one variable will change the other:

https://riptutorial.com/ 23

https://docs.angularjs.org/guide/scope
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference

var x = { name : 'John Doe' };
var y = x;
y.name = 'Jhon';
console.log(x.name === y.name, x.name, y.name); //true, John, John

In angular, when a scope is created, it is assigned all of its parent's properties However, changing
properties afterwards will only affect the parent scope if it is a non-primitive value:

angular.module('app', [])
.controller('myController', ['$scope', function($scope){
 $scope.person = { name: 'John Doe' }; //non-primitive
 $scope.name = 'Jhon Doe'; //primitive
}])
.controller('myController1', ['$scope', function($scope){}]);

<div ng-app="app" ng-controller="myController">
 binding to input works: {{person.name}}

 binding to input does not work: {{name}}

 <div ng-controller="myController1">
 <input ng-model="person.name" />
 <input ng-model="name" />
 </div>
</div>

Remember: in Angular scopes can be created in many ways (such as built-in or custom directives,
or the $scope.$new() function), and keeping track of the scope tree is probably impossible.

Using only non-primitive values as scope properties will keep you on the safe side (unless you
need a property to not inherit, or other cases where you are aware of scope inheritance).

A function available in the entire app

Be careful, this approach might be considered as a bad design for angular apps, since it requires
programmers to remember both where functions are placed in the scope tree, and to be aware of
scope inheritance. In many cases it would be preferred to inject a service (Angular practice - using
scope inheritance vs injection.

This example only show how scope inheritance could be used for our needs, and the how you
could take advantage of it, and not the best practices of designing an entire app.

In some cases, we could take advantage of scope inheritance, and set a function as a property of
the rootScope. This way - all of the scopes in the app (except for isolated scopes) will inherit this
function, and it could be called from anywhere in the app.

angular.module('app', [])
.run(['$rootScope', function($rootScope){
 var messages = []
 $rootScope.addMessage = function(msg){
 messages.push(msg);
 }
}]);

<div ng-app="app">

https://riptutorial.com/ 24

http://stackoverflow.com/questions/23659315/angular-practice-using-scope-inheritance-vs-injection)
http://stackoverflow.com/questions/23659315/angular-practice-using-scope-inheritance-vs-injection)

 <a ng-click="addMessage('hello world!')">it could be accsessed from here
 <div ng-include="inner.html"></div>
</div>

inner.html:

<div>
 <button ng-click="addMessage('page')">and from here to!</button>
</div>

Creating custom $scope events

Like normal HTML elements, it is possible for $scopes to have their own events. $scope events
can be subscribed to using the following manner:

 $scope.$on('my-event', function(event, args) {
 console.log(args); // { custom: 'data' }
});

If you need unregister an event listener, the $on function will return an unbinding function. To
continue with the above example:

var unregisterMyEvent = $scope.$on('my-event', function(event, args) {
 console.log(args); // { custom: 'data' }
 unregisterMyEvent();
});

There are two ways of triggering your own custom $scope event $broadcast and $emit. To notify
the parent(s) of a scope of a specific event, use $emit

$scope.$emit('my-event', { custom: 'data' });

The above example will trigger any event listeners for my-event on the parent scope and will
continue up the scope tree to $rootScope unless a listener calls stopPropagation on the event.
Only events triggered with $emit may call stopPropagation

The reverse of $emit is $broadcast, which will trigger any event listeners on all child scopes in
the scope tree that are children of the scope that called $broadcast.

$scope.$broadcast('my-event', { custom: 'data' });

Events triggered with $broadcast cannot be canceled.

Using $scope functions

While declaring a function in the $rootscope has it's advantages, we can also declare a $scope
function any part of the code that is injected by the $scope service. Controller, for instance.

Controller

https://riptutorial.com/ 25

myApp.controller('myController', ['$scope', function($scope){
 $scope.myFunction = function () {
 alert("You are in myFunction!");
 };
}]);

Now you can call your function from the controller using:

$scope.myfunction();

Or via HTML that is under that specific controller:

<div ng-controller="myController">
 <button ng-click="myFunction()"> Click me! </button>
</div>

Directive

An angular directive is another place you can use your scope:

myApp.directive('triggerFunction', function() {
 return {
 scope: {
 triggerFunction: '&'
 },
 link: function(scope, element) {
 element.bind('mouseover', function() {
 scope.triggerFunction();
 });
 }
 };
});

And in your HTML code under the same controller:

<div ng-controller="myController">
 <button trigger-function="myFunction()"> Hover over me! </button>
</div>

Of course, you can use ngMouseover for the same thing, but what's special about directives is that
you can customize them the way you want. And now you know how to use your $scope functions
inside them, be creative!

How can you limit the scope on a directive and why would you do this?

Scope is used as the "glue" that we use to communicate between the parent controller, the
directive, and the directive template. Whenever the AngularJS application is bootstrapped, a
rootScope object is created. Each scope created by controllers, directives and services are
prototypically inherited from rootScope.

Yes, we can limit the scope on a directive . We can do so by creating an isolated scope for

https://riptutorial.com/ 26

http://www.riptutorial.com/angularjs/example/6349/directive-definition-object-template

directive.

There are 3 types of directive scopes:

Scope : False (Directive uses its parent scope)1.
Scope : True (Directive gets a new scope)2.
Scope : { } (Directive gets a new isolated scope)3.

Directives with the new isolated scope: When we create a new isolated scope then it will not be
inherited from the parent scope. This new scope is called Isolated scope because it is completely
detached from its parent scope. Why? should we use isolated scope: We should use isolated
scope when we want to create a custom directive because it will make sure that our directive is
generic, and placed anywhere inside the application. Parent scope is not going to interfere with the
directive scope.

Example of isolated scope:

var app = angular.module("test",[]);

app.controller("Ctrl1",function($scope){
 $scope.name = "Prateek";
 $scope.reverseName = function(){
 $scope.name = $scope.name.split('').reverse().join('');
 };
});
app.directive("myDirective", function(){
 return {
 restrict: "EA",
 scope: {},
 template: "<div>Your name is : {{name}}</div>"+
 "Change your name : <input type='text' ng-model='name'/>"
 };
});

There’re 3 types of prefixes AngularJS provides for isolated scope these are :

"@" (Text binding / one-way binding)1.
"=" (Direct model binding / two-way binding)2.
"&" (Behaviour binding / Method binding)3.

All these prefixes receives data from the attributes of the directive element like :

<div my-directive
 class="directive"
 name="{{name}}"
 reverse="reverseName()"
 color="color" >
</div>

Read Angular $scopes online: https://riptutorial.com/angularjs/topic/3157/angular--scopes

https://riptutorial.com/ 27

https://riptutorial.com/angularjs/topic/3157/angular--scopes

Chapter 4: Angular MVC

Introduction

In AngularJS the MVC pattern is implemented in JavaScript and HTML. The view is defined in
HTML, while the model and controller are implemented in JavaScript. There are several ways that
these components can be put together in AngularJS but the simplest form starts with the view.

Examples

The Static View with controller

mvc demo

Hello World

Controller Function Definition

var indexController = myApp.controller("indexController", function ($scope) {
 // Application logic goes here
});

Adding information to the model

var indexController = myApp.controller("indexController", function ($scope) {
 // controller logic goes here
 $scope.message = "Hello Hacking World"
});

Read Angular MVC online: https://riptutorial.com/angularjs/topic/8667/angular-mvc

https://riptutorial.com/ 28

https://riptutorial.com/angularjs/topic/8667/angular-mvc

Chapter 5: Angular Project - Directory
Structure

Examples

Directory Structure

A common question among new Angular programmers - "What should be the structure of the
project?". A good structure helps toward a scalable application development. When we start a
project we have two choices, Sort By Type (left) and Sort By Feature (right). The second is
better, especially in large applications, the project becomes a lot easier to manage.

Sort By Type (left)

https://riptutorial.com/ 29

http://i.stack.imgur.com/TTloJ.jpg

The application is organized by the files' type.

Advantage - Good for small apps, for programmers only starting to use Angular, and is easy
to convert to the second method.

•

Disadvantage - Even for small apps it starts to get more difficult to find a specific file. For
instance, a view and it's controller are in two seperate folders.

•

Sort By Feature (right)

The suggested organizing method where the filed are sorted by features' type.

All of the layout views and controllers go in the layout folder, the admin content goes in the admin
folder, and so on.

Advantage - When looking for a section of code determining a certain feature it's all located
in one folder.

•

Disadvantage - Services are a bit different as they “service” many features.•

You can read more about it on Angular Structure: Refactoring for Growth

The suggested file structure combining both of the aforementioned methods:

https://riptutorial.com/ 30

https://johnpapa.net/angular-growth-structure/

Credit to: Angular Style Guide

Read Angular Project - Directory Structure online:
https://riptutorial.com/angularjs/topic/6148/angular-project---directory-structure

https://riptutorial.com/ 31

http://i.stack.imgur.com/nxXRu.png
https://github.com/mgechev/angularjs-style-guide#directory-structure
https://riptutorial.com/angularjs/topic/6148/angular-project---directory-structure

Chapter 6: Angular promises with $q service

Examples

Using $q.all to handle multiple promises

You can use the $q.all function to call a .then method after an array of promises has been
successfully resolved and fetch the data they resolved with.

Example:

JS:

 $scope.data = []

 $q.all([
 $http.get("data.json"),
 $http.get("more-data.json"),
]).then(function(responses) {
 $scope.data = responses.map((resp) => resp.data);
 });

The above code runs $http.get 2 times for data in local json files, when both get method complete
they resolve their associated promises, when all the promises in the array are resolved, the .then
method starts with both promises data inside the responses array argument.

The data is then mapped so it could be shown on the template, we can then show

HTML:

 <li ng-repeat="d in data">

 <li ng-repeat="item in d">{{item.name}}: {{item.occupation}}

JSON:

[{
 "name": "alice",
 "occupation": "manager"
}, {
 "name": "bob",
 "occupation": "developer"
}]

Using the $q constructor to create promises

https://riptutorial.com/ 32

The $q constructor function is used to create promises from asynchronous APIs that use callbacks
to return results.

$q(function(resolve, reject) {...})

The constructor function receives a function that is invoked with two arguments, resolve and reject
that are functions which are used to either resolve or reject the promise.

Example 1:

function $timeout(fn, delay) {
 return = $q(function(resolve, reject) {
 setTimeout(function() {
 try {
 let r = fn();
 resolve(r);
 }
 catch (e) {
 reject(e);
 }
 }, delay);
 };
}

The above example creates a promise from the WindowTimers.setTimeout API. The AngularJS
framework provides a more elaborate version of this function. For usage, see the AngularJS
$timeout Service API Reference.

Example 2:

$scope.divide = function(a, b) {
 return $q(function(resolve, reject) {
 if (b===0) {
 return reject("Cannot devide by 0")
 } else {
 return resolve(a/b);
 }
 });
}

The above code showing a promisified division function, it will return a promise with the result or
reject with a reason if the calculation is impossible.

You can then call and use .then

$scope.divide(7, 2).then(function(result) {
 // will return 3.5
}, function(err) {
 // will not run
})

$scope.divide(2, 0).then(function(result) {
 // will not run as the calculation will fail on a divide by 0
}, function(err) {

https://riptutorial.com/ 33

https://developer.mozilla.org/en-US/docs/Web/API/WindowTimers/setTimeout
https://docs.angularjs.org/api/ng/service/$timeout
https://docs.angularjs.org/api/ng/service/$timeout

 // will return the error string.
})

Deferring operations using $q.defer

We can use $q to defer operations to the future while having a pending promise object at the
present, by using $q.defer we create a promise that will either resolve or reject in the future.

This method is not equivalent of using the $q constructor, as we use $q.defer to promisify an
existing routine that may or may not return (or had ever returned) a promise at all.

Example:

var runAnimation = function(animation, duration) {
 var deferred = $q.defer();
 try {
 ...
 // run some animation for a given duration
 deferred.resolve("done");
 } catch (err) {
 // in case of error we would want to run the error hander of .then
 deferred.reject(err);
 }
 return deferred.promise;
}

// and then
runAnimation.then(function(status) {}, function(error) {})

Be sure you always return a the deferred.promise object or risk an error when invoking .then1.

Make sure you always resolve or reject your deferred object or .then may not run and you
risk a memory leak

2.

Using angular promises with $q service

$q is a built-in service which helps in executing asynchronous functions and using their return
values(or exception) when they are finished with processing.

$q is integrated with the $rootScope.Scope model observation mechanism, which means faster
propagation of resolution or rejection into your models and avoiding unnecessary browser
repaints, which would result in flickering UI.

In our example, we call our factory getMyData, which return a promise object. If the object is
resolved, it returns a random number. If it is rejected, it return a rejection with an error message
after 2 seconds.

In Angular factory

function getMyData($timeout, $q) {
 return function() {

https://riptutorial.com/ 34

 // simulated async function
 var promise = $timeout(function() {
 if(Math.round(Math.random())) {
 return 'data received!'
 } else {
 return $q.reject('oh no an error! try again')
 }
 }, 2000);
 return promise;
 }
}

Using Promises on call

angular.module('app', [])
.factory('getMyData', getMyData)
.run(function(getData) {
 var promise = getData()
 .then(function(string) {
 console.log(string)
 }, function(error) {
 console.error(error)
 })
 .finally(function() {
 console.log('Finished at:', new Date())
 })
})

To use promises, inject $q as dependency. Here we injected $q in getMyData factory.

var defer = $q.defer();

A new instance of deferred is constructed by calling $q.defer()

A deferred object is simply an object that exposes a promise as well as the associated methods
for resolving that promise. It is constructed using the $q.deferred() function and exposes three
main methods: resolve(), reject(), and notify().

resolve(value) – resolves the derived promise with the value.•
reject(reason) – rejects the derived promise with the reason.•
notify(value) - provides updates on the status of the promise's execution. This may be
called multiple times before the promise is either resolved or rejected.

•

Properties

The associated promise object is accessed via the promise property. promise – {Promise} –
promise object associated with this deferred.

A new promise instance is created when a deferred instance is created and can be retrieved by
calling deferred.promise.

https://riptutorial.com/ 35

The purpose of the promise object is to allow for interested parties to get access to the result of the
deferred task when it completes.

Promise Methods -

then(successCallback, [errorCallback], [notifyCallback]) – Regardless of when the promise
was or will be resolved or rejected, then calls one of the success or error callbacks
asynchronously as soon as the result is available. The callbacks are called with a single
argument: the result or rejection reason. Additionally, the notify callback may be called zero
or more times to provide a progress indication, before the promise is resolved or rejected.

•

catch(errorCallback) – shorthand for promise.then(null, errorCallback)•

finally(callback, notifyCallback) – allows you to observe either the fulfillment or rejection of
a promise, but to do so without modifying the final value.

•

One of the most powerful features of promises is the ability to chain them together. This allows the
data to flow through the chain and be manipulated and mutated at each step. This is demonstrated
with the following example:

Example 1:

// Creates a promise that when resolved, returns 4.
function getNumbers() {

 var promise = $timeout(function() {
 return 4;
 }, 1000);

 return promise;
}

// Resolve getNumbers() and chain subsequent then() calls to decrement
// initial number from 4 to 0 and then output a string.
getNumbers()
 .then(function(num) {
 // 4
 console.log(num);
 return --num;
 })
 .then(function (num) {
 // 3
 console.log(num);
 return --num;
 })
 .then(function (num) {
 // 2
 console.log(num);
 return --num;
 })
 .then(function (num) {
 // 1
 console.log(num);
 return --num;
 })
 .then(function (num) {

https://riptutorial.com/ 36

 // 0
 console.log(num);
 return 'And we are done!';
 })
 .then(function (text) {
 // "And we are done!"
 console.log(text);
 });

Wrap simple value into a promise using $q.when()

If all you need is to wrap the value into a promise, you don't need to use the long syntax like here:

//OVERLY VERBOSE
var defer;
defer = $q.defer();
defer.resolve(['one', 'two']);
return defer.promise;

In this case you can just write:

//BETTER
return $q.when(['one', 'two']);

$q.when and its alias $q.resolve

Wraps an object that might be a value or a (3rd party) then-able promise into a $q
promise. This is useful when you are dealing with an object that might or might not be a
promise, or if the promise comes from a source that can't be trusted.

— AngularJS $q Service API Reference - $q.when

With the release of AngularJS v1.4.1

You can also use an ES6-consistent alias resolve

//ABSOLUTELY THE SAME AS when
return $q.resolve(['one', 'two'])

Avoid the $q Deferred Anti-Pattern

Avoid this Anti-Pattern

var myDeferred = $q.defer();

$http(config).then(function(res) {
 myDeferred.resolve(res);
}, function(error) {
 myDeferred.reject(error);

https://riptutorial.com/ 37

https://docs.angularjs.org/api/ng/service/$q#when

});

return myDeferred.promise;

There is no need to manufacture a promise with $q.defer as the $http service already returns a
promise.

//INSTEAD
return $http(config);

Simply return the promise created by the $http service.

Read Angular promises with $q service online: https://riptutorial.com/angularjs/topic/4379/angular-
promises-with--q-service

https://riptutorial.com/ 38

https://riptutorial.com/angularjs/topic/4379/angular-promises-with--q-service
https://riptutorial.com/angularjs/topic/4379/angular-promises-with--q-service

Chapter 7: AngularJS bindings options (`=`,
`@`, `&` etc.)

Remarks

Use this plunker to play with examples.

Examples

@ one-way binding, attribute binding.

Pass in a literal value (not an object), such as a string or number.

Child scope gets his own value, if it updates the value, parent scope has his own old value (child
scope can't modify the parens scope value). When parent scope value is changed, child scope
value will be changed as well. All interpolations appears every time on digest call, not only on
directive creation.

<one-way text="Simple text." <!-- 'Simple text.' -->
 simple-value="123" <!-- '123' Note, is actually a string object. -->
 interpolated-value="{{parentScopeValue}}" <!-- Some value from parent scope. You
can't change parent scope value, only child scope value. Note, is actually a string object. --
>
 interpolated-function-value="{{parentScopeFunction()}}" <!-- Executes parent scope
function and takes a value. -->

 <!-- Unexpected usage. -->
 object-item="{{objectItem}}" <!-- Converts object|date to string. Result might be:
'{"a":5,"b":"text"}'. -->
 function-item="{{parentScopeFunction}}"> <!-- Will be an empty string. -->
</one-way>

= two-way binding.

Passing in a value by reference, you want to share the value between both scopes and manipulate
them from both scopes. You should not use {{...}} for interpolation.

<two-way text="'Simple text.'" <!-- 'Simple text.' -->
 simple-value="123" <!-- 123 Note, is actually a number now. -->
 interpolated-value="parentScopeValue" <!-- Some value from parent scope. You may
change it in one scope and have updated value in another. -->
 object-item="objectItem" <!-- Some object from parent scope. You may change object
properties in one scope and have updated properties in another. -->

 <!-- Unexpected usage. -->
 interpolated-function-value="parentScopeFunction()" <!-- Will raise an error. -->
 function-item="incrementInterpolated"> <!-- Pass the function by reference and you
may use it in child scope. -->
</two-way>

https://riptutorial.com/ 39

http://plnkr.co/edit/mvOzMPaElILDmYDGaLiZ?p=preview

Passing function by reference is a bad idea: to allow scope to change the definition of a function,
and two unnecessary watcher will be created, you need to minimize watchers count.

& function binding, expression binding.

Pass a method into a directive. It provides a way to execute an expression in the context of the
parent scope. Method will be executed in the scope of the parent, you may pass some parameters
from the child scope there. You should not use {{...}} for interpolation. When you use & in a
directive, it generates a function that returns the value of the expression evaluated against the
parent scope (not the same as = where you just pass a reference).

<expression-binding interpolated-function-value="incrementInterpolated(param)" <!--
interpolatedFunctionValue({param: 'Hey'}) will call passed function with an argument. -->
 function-item="incrementInterpolated" <!-- functionItem({param: 'Hey'})()
will call passed function, but with no possibility set up a parameter. -->
 text="'Simple text.'" <!-- text() == 'Simple text.'-->
 simple-value="123" <!-- simpleValue() == 123 -->
 interpolated-value="parentScopeValue" <!-- interpolatedValue() == Some
value from parent scope. -->
 object-item="objectItem"> <!-- objectItem() == Object item from parent
scope. -->
</expression-binding>

All parameters will be wrapped into functions.

Available binding through a simple sample

angular.component("SampleComponent", {
 bindings: {
 title: '@',
 movies: '<',
 reservation: "=",
 processReservation: "&"
 }
});

Here we have all binding elements.

@ indicates that we need a very basic binding, from the parent scope to the children scope,
without any watcher, in any way. Every update in the parent scope would stay in the parent scope,
and any update on the child scope would not be communicated to the parent scope.

< indicates a one way binding. Updates in the parent scope would be propagated to the children
scope, but any update in the children scope would not be applied to the parent scope.

= is already known as a two-way binding. Every update on the parent scope would be applied on
the children ones, and every child update would be applied to the parent scope.

& is now used for an output binding. According to the component documentation, it should be
used to reference the parent scope method. Instead of manipulating the children scope, just call
the parent method with the updated data!

https://riptutorial.com/ 40

Bind optional attribute

bindings: {
 mandatory: '='
 optional: '=?',
 foo: '=?bar'
}

Optional attributes should be marked with question mark: =? or =?bar. It is protection for
($compile:nonassign) exception.

Read AngularJS bindings options (`=`, `@`, `&` etc.) online:
https://riptutorial.com/angularjs/topic/6149/angularjs-bindings-options----------------etc--

https://riptutorial.com/ 41

https://riptutorial.com/angularjs/topic/6149/angularjs-bindings-options----------------etc--

Chapter 8: AngularJS gotchas and traps

Examples

Two-way data binding stops working

One should have in mind that:

Angular's data binding relies on JavaScript’s prototypal inheritance, thus it's subject to
variable shadowing.

1.

A child scope normally prototypically inherits from its parent scope. One exception to this rule is a

directive which has an isolated scope as it doesn't prototypically inherit.
2.

There are some directives which create a new child scope: ng-repeat, ng-switch, ng-view, ng-
if, ng-controller, ng-include, etc.

3.

This means that when you try to two-way bind some data to a primitive which is inside of a child
scope (or vice-versa), things may not work as expected. Here's an example of how easily is to
"break" AngularJS.

This issue can easily be avoided following these steps:

Have a "." inside your HTML template whenever you bind some data1.
Use controllerAs syntax as it promotes the use of binding to a "dotted" object2.
$parent can be used to access parent scope variables rather than child scope. like inside ng-
if we can use ng-model="$parent.foo"..

3.

An alternative for the above is to bind ngModel to a getter/setter function that will update the cached
version of the model when called with arguments, or return it when called without arguments. In
order to use a getter/setter function, you need to add ng-model-options="{ getterSetter: true }" to
the element with the ngModal attribute, and to call the getter function if you want to display its value
in expression (Working example).

Example

View:

<div ng-app="myApp" ng-controller="MainCtrl">
 <input type="text" ng-model="foo" ng-model-options="{ getterSetter: true }">
 <div ng-if="truthyValue">
 <!-- I'm a child scope (inside ng-if), but i'm synced with changes from the outside
scope -->
 <input type="text" ng-model="foo">
 </div>
 <div>$scope.foo: {{ foo() }}</div>
</div>

Controller:

https://riptutorial.com/ 42

https://en.wikipedia.org/wiki/Variable_shadowing
https://jsfiddle.net/4bpbhmtL/
https://jsfiddle.net/4bpbhmtL/5/

angular.module('myApp', []).controller('MainCtrl', ['$scope', function($scope) {
 $scope.truthyValue = true;

 var _foo = 'hello'; // this will be used to cache/represent the value of the 'foo' model

 $scope.foo = function(val) {
 // the function return the the internal '_foo' varibale when called with zero
arguments,
 // and update the internal `_foo` when called with an argument
 return arguments.length ? (_foo = val) : _foo;
 };
}]);

Best Practice: It's best to keep getters fast because Angular is likely to call them more frequently
than other parts of your code (reference).

Things to do when using html5Mode

When using html5Mode([mode]) it is necessary that:

You specify the base URL for the application with a <base href=""> in the head of your
index.html.

1.

It is important that the base tag comes before any tags with url requests. Otherwise, this
might result in this error - "Resource interpreted as stylesheet but transferred with MIME type
text/html". For example:

<head>
 <meta charset="utf-8">
 <title>Job Seeker</title>

 <base href="/">

 <link rel="stylesheet" href="bower_components/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="/styles/main.css">
</head>

2.

If you do no want to specify a base tag, configure $locationProvider to not require a base tag
by passing a definition object with requireBase:false to $locationProvider.html5Mode() like
this:

$locationProvider.html5Mode({
 enabled: true,
 requireBase: false
});

3.

In order to support direct loading of HTML5 URLs, you need to enabler server-side URL
rewriting. From AngularJS / Developer Guide / Using $location

Using this mode requires URL rewriting on server side, basically you have to
rewrite all your links to entry point of your application (e.g. index.html). Requiring
a <base> tag is also important for this case, as it allows Angular to differentiate

4.

https://riptutorial.com/ 43

https://docs.angularjs.org/api/ng/directive/ngModel
https://docs.angularjs.org/guide/$location#server-side

between the part of the url that is the application base and the path that should
be handled by the application.

An excellent resource for request rewriting examples for various HTTP server
implementations can be found in the ui-router FAQ - How to: Configure your server to work
with html5Mode. For example, Apache

 RewriteEngine on

 # Don't rewrite files or directories
 RewriteCond %{REQUEST_FILENAME} -f [OR]
 RewriteCond %{REQUEST_FILENAME} -d
 RewriteRule ^ - [L]

 # Rewrite everything else to index.html to allow html5 state links
 RewriteRule ^ index.html [L]

nginx

 server {
 server_name my-app;

 root /path/to/app;

 location / {
 try_files $uri $uri/ /index.html;
 }
 }

Express

 var express = require('express');
 var app = express();

 app.use('/js', express.static(__dirname + '/js'));
 app.use('/dist', express.static(__dirname + '/../dist'));
 app.use('/css', express.static(__dirname + '/css'));
 app.use('/partials', express.static(__dirname + '/partials'));

 app.all('/*', function(req, res, next) {
 // Just send the index.html for other files to support HTML5Mode
 res.sendFile('index.html', { root: __dirname });
 });

 app.listen(3006); //the port you want to use

7 Deadly Sins of AngularJS

Below is the list of some mistakes that developers often make during the use of AngularJS
functionalities, some learned lessons and solutions to them.

1. Manipulating DOM through the controller

It's legal, but must be avoided. Controllers are the places where you define your dependencies,

https://riptutorial.com/ 44

https://github.com/angular-ui/ui-router/wiki/Frequently-Asked-Questions#how-to-configure-your-server-to-work-with-html5mode
https://github.com/angular-ui/ui-router/wiki/Frequently-Asked-Questions#how-to-configure-your-server-to-work-with-html5mode

bind your data to the view and make further business logic. You can technically manipulate the
DOM in a controller, but whenever you need same or similar manipulation in another part of your
app, another controller will be needed. So the best practice of this approach is creating a directive
that includes all manipulations and use the directive throughout your app. Hence, the controller
leaves the view intact and does it's job. In a directive, linking function is the best place to
manipulate the DOM. It has full access to the scope and element, so using a directive, you can
also take the advantage of reusability.

link: function($scope, element, attrs) {
 //The best place to manipulate DOM
}

You can access DOM elements in linking function through several ways, such as the element
parameter, angular.element() method, or pure Javascript.

2. Data binding in transclusion

AngularJS is famous with its two-way data binding. However you may encounter sometimes that
your data is only one-way bound inside directives. Stop there, AngularJS is not wrong but probably
you. Directives are a little dangerous places since child scopes and isolated scopes are involved.
Assume you have the following directive with one transclusion

<my-dir>
 <my-transclusion>
 </my-transclusion>
</my-dir>

And inside my-transclusion, you have some elements which are bound to the data in the outer
scope.

<my-dir>
 <my-transclusion>
 <input ng-model="name">
 </my-transclusion>
</my-dir>

The above code will not work correctly. Here, transclusion creates a child scope and you can get
the name variable, right, but whatever change you make to this variable will stay there. So, you
can truly acces this variable as $parent.name. However, this use might not be the best practice. A
better approach would be wrapping the variables inside an object. For example, in the controller
you can create:

$scope.data = {
 name: 'someName'
}

Then in the transclusion, you can access this variable via 'data' object and see that two-way
binding works perfectly!

https://riptutorial.com/ 45

<input ng-model="data.name">

Not only in transclusions, but throughout the app, it's a good idea to use the dotted notation.

3. Multiple directives together

It is actually legal to use two directives together within the same element, as long as you obey by
the rule: two isolated scopes cannot exist on the same element. Generally speaking, when
creating a new custom directive, you allocate an isolated scope for easy parameter passing.
Assuming that the directives myDirA and myDirB have isoleted scopes and myDirC has not,
following element will be valid:

<input my-dir-a my-dirc>

whereas the following element will cause console error:

<input my-dir-a my-dir-b>

Therefore, directives must be used wisely, taking the scopes into consideration.

4. Misuse of $emit

$emit, $broadcast and $on, these work in a sender-receiver principle. In others words, they are a
means of communication between controllers. For example, the following line emits the
'someEvent' from controller A, to be catched by the concerned controller B.

$scope.$emit('someEvent', args);

And the following line catches the 'someEvent'

$scope.$on('someEvent', function(){});

So far everything seems perfect. But remember that, if the controller B is not invoked yet, the
event will not be caught, which means both emitter and receiver controllers have to be invoked to
get this working. So again, if you are not sure that you definitely have to use $emit, building a
service seems a better way.

5. Misuse of $scope.$watch

$scope.$watch is used for watching a variable change. Whenever a variable has changed, this
method is invoked. However, one common mistake done is changing the variable inside
$scope.$watch. This will cause inconsistency and infinite $digest loop at some point.

$scope.$watch('myCtrl.myVariable', function(newVal) {
 this.myVariable++;
});

So in the above function, make sure you have no operations on myVariable and newVal.

https://riptutorial.com/ 46

6. Binding methods to views

This is one of the deadlisest sins. AngularJS has two-way binding, and whenever something
changes, the views are updated many many times. So, if you bind a method to an attribute of a
view, that method might potentially be called a hundred times, which also drives you crazy during
debugging. However, there are only some attributes that are built for method binding, such as ng-
click, ng-blur, ng-on-change, etc, that expect methods as paremeter. For instance, assume you
have the following view in your markup:

<input ng-disabled="myCtrl.isDisabled()" ng-model="myCtrl.name">

Here you check the disabled status of the view via the method isDisabled. In the controller myCtrl,
you have:

vm.isDisabled = function(){
 if(someCondition)
 return true;
 else
 return false;
}

In theory, it may seem correct but technically this will cause an overload, since the method will run
countless times. In order to resolve this, you should bind a variable. In your controller, the
following variable must exist:

vm.isDisabled

You can initiate this variable again in the activation of the controller

if(someCondition)
 vm.isDisabled = true
else
 vm.isDisabled = false

If the condition is not stable, you may bind this to another event. Then you should bind this
variable to the view:

<input ng-disabled="myCtrl.isDisabled" ng-model="myCtrl.name">

Now, all the attributes of the view have what they expect and the methods will run only whenever
needed.

7. Not using Angular's functionalities

AngularJS provides great convenience with some of its functionalities, not only simplifying your
code but also making it more efficient. Some of these features are listed below:

angular.forEach for the loops (Caution, you can't "break;" it, you can only prevent getting
into the body, so consider performance here.)

1.

https://riptutorial.com/ 47

angular.element for DOM selectors2.
angular.copy: Use this when you should not modify the main object3.
Form validations are already awesome. Use dirty, pristine, touched, valid, required and so
on.

4.

Besides Chrome debugger, use remote debugging for mobile development too.5.
And make sure you use Batarang. It's a free Chrome extension where you can easily
inspect scopes

6.

.

Read AngularJS gotchas and traps online: https://riptutorial.com/angularjs/topic/3208/angularjs-
gotchas-and-traps

https://riptutorial.com/ 48

https://riptutorial.com/angularjs/topic/3208/angularjs-gotchas-and-traps
https://riptutorial.com/angularjs/topic/3208/angularjs-gotchas-and-traps

Chapter 9: angularjs with data filter,
pagination etc

Introduction

Provider example and query about display data with filter, pagination etc in Angularjs.

Examples

Angularjs display data with filter, pagination

<div ng-app="MainApp" ng-controller="SampleController">
 <input ng-model="dishName" id="search" class="form-control" placeholder="Filter text">

 <li dir-paginate="dish in dishes | filter : dishName | itemsPerPage: pageSize"
pagination-id="flights">{{dish}}

 <dir-pagination-controls boundary-links="true" on-page-
change="changeHandler(newPageNumber)" pagination-id="flights"></dir-pagination-controls>
</div>
<script type="text/javascript" src="angular.min.js"></script>
<script type="text/javascript" src="pagination.js"></script>
<script type="text/javascript">

var MainApp = angular.module('MainApp', ['angularUtils.directives.dirPagination'])
MainApp.controller('SampleController', ['$scope', '$filter', function ($scope, $filter) {

 $scope.pageSize = 5;

 $scope.dishes = [
 'noodles',
 'sausage',
 'beans on toast',
 'cheeseburger',
 'battered mars bar',
 'crisp butty',
 'yorkshire pudding',
 'wiener schnitzel',
 'sauerkraut mit ei',
 'salad',
 'onion soup',
 'bak choi',
 'avacado maki'
];

 $scope.changeHandler = function (newPage) { };
}]);
</script>

Read angularjs with data filter, pagination etc online:
https://riptutorial.com/angularjs/topic/10821/angularjs-with-data-filter--pagination-etc

https://riptutorial.com/ 49

https://riptutorial.com/angularjs/topic/10821/angularjs-with-data-filter--pagination-etc

Chapter 10: Built-in directives

Examples

Angular expressions - Text vs. Number

This example demonstrates how Angular expressions are evaluated when using type="text" and
type="number" for the input element. Consider the following controller and view:

Controller

 var app = angular.module('app', []);

 app.controller('ctrl', function($scope) {
 $scope.textInput = {
 value: '5'
 };
 $scope.numberInput = {
 value: 5
 };
 });

View

<div ng-app="app" ng-controller="ctrl">
 <input type="text" ng-model="textInput.value">
 {{ textInput.value + 5 }}
 <input type="number" ng-model="numberInput.value">
 {{ numberInput.value + 5 }}
</div>

When using + in an expression bound to text input, the operator will concatenate the strings
(first example), displaying 55 on the screen*.

•

When using + in an expression bound to number input, the operator return the sum of the
numbers (second example), displaying 10 on the screen*.

•

* - That is until the user changes the value in the input field, afterward the display will change
accordingly.

Working Example

ngRepeat

ng-repeat is a built in directive in Angular which lets you iterate an array or an object and gives you
the ability to repeat an element once for each item in the collection.

ng-repeat an array

https://riptutorial.com/ 50

https://jsfiddle.net/fkfd9tar/

 <li ng-repeat="item in itemCollection">
 {{item.Name}}

Where:
item = individual item in the collection
itemCollection = The array you are iterating

ng-repeat an object

 <li ng-repeat="(key, value) in myObject">
 {{key}} : {{value}}

Where:
key = the property name
value = the value of the property
myObject = the object you are iterating

filter your ng-repeat by user input

<input type="text" ng-model="searchText">

 <li ng-repeat="string in stringArray | filter:searchText">
 {{string}}

Where:
searchText = the text that the user wants to filter the list by
stringArray = an array of strings, e.g. ['string', 'array']

You can also display or reference the filtered items elsewhere by assigning the filter output an
alias with as aliasName, like so:

<input type="text" ng-model="searchText">

 <li ng-repeat="string in stringArray | filter:searchText as filteredStrings">
 {{string}}

<p>There are {{filteredStrings.length}} matching results</p>

https://riptutorial.com/ 51

ng-repeat-start and ng-repeat-end

To repeat multiple DOM elements by defining a start and an end point you can use the ng-repeat-
start and ng-repeat-end directives.

 <li ng-repeat-start="item in [{a: 1, b: 2}, {a: 3, b:4}]">
 {{item.a}}

 <li ng-repeat-end>
 {{item.b}}

Output:

1•
2•
3•
4•

It is important to always close ng-repeat-start with ng-repeat-end.

Variables

ng-repeat also exposes these variables inside the expression

Variable Type Details

$index Number
Equals to the index of the current iteration ($index===0 will evaluate to
true at the first iterated element; see $first)

$first Boolean Evaluates to true at the first iterated element

$last Boolean Evaluates to true at the last iterated element

$middle Boolean Evaluates to true if the element is between the $first and $last

$even Boolean
Evaluates to true at an even numbered iteration (equivalent to
$index%2===0)

$odd Boolean
Evaluates to true at an odd numbered iteration (equivalent to
$index%2===1)

Performance considerations

Rendering ngRepeat can become slow, especially when using large collections.

If the objects in the collection have an identifier property, you should always track by the identifier
instead of the whole object, which is the default functionality. If no identifier is present, you can
always use the built-in $index.

https://riptutorial.com/ 52

<div ng-repeat="item in itemCollection track by item.id">
<div ng-repeat="item in itemCollection track by $index">

Scope of ngRepeat

ngRepeat will always create an isolated child scope so care must be taken if the parent scope
needs to be accessed inside the repeat.

Here is a simple example showing how you can set a value in your parent scope from a click event
inside of ngRepeat.

scope val: {{val}}

ctrlAs val: {{ctrl.val}}

 <li ng-repeat="item in itemCollection">

 {{item.label}} {{item.value}}

$scope.val = 0;
this.val = 0;

$scope.itemCollection = [{
 id: 0,
 value: 4.99,
 label: 'Football'
},
{
 id: 1,
 value: 6.99,
 label: 'Baseball'
},
{
 id: 2,
 value: 9.99,
 label: 'Basketball'
}];

If there was only val = item.value at ng-click it won't update the val in the parent scope because
of the isolated scope. That's why the parent scope is accessed with $parent reference or with the
controllerAs syntax (e.g. ng-controller="mainController as ctrl").

Nested ng-repeat

You can also use nested ng-repeat.

<div ng-repeat="values in test">
 <div ng-repeat="i in values">
 [{{$parent.$index}},{{$index}}] {{i}}
 </div>
</div>

var app = angular.module("myApp", []);
app.controller("ctrl", function($scope) {

https://riptutorial.com/ 53

 $scope.test = [
 ['a', 'b', 'c'],
 ['d', 'e', 'f']
];
});

Here to access the index of parent ng-repeat inside child ng-repeat, you can use $parent.$index.

ngShow and ngHide

The ng-show directive shows or hides the HTML element based on if the expression passed to it is
true or false. If the value of the expression is falsy then it will hide. If it is truthy then it will show.

The ng-hide directive is similar. However, if the value is falsy it will show the HTML element. When
the expression is truthy it will hide it.

Working JSBin Example

Controller:

var app = angular.module('app', []);

angular.module('app')
 .controller('ExampleController', ExampleController);

function ExampleController() {

 var vm = this;

 //Binding the username to HTML element
 vm.username = '';

 //A taken username
 vm.taken_username = 'StackOverflow';

}

View

<section ng-controller="ExampleController as main">

 <p>Enter Password</p>
 <input ng-model="main.username" type="text">

 <hr>

 <!-- Will always show as long as StackOverflow is not typed in -->
 <!-- The expression is always true when it is not StackOverflow -->
 <div style="color:green;" ng-show="main.username != main.taken_username">
 Your username is free to use!
 </div>

 <!-- Will only show when StackOverflow is typed in -->
 <!-- The expression value becomes falsy -->
 <div style="color:red;" ng-hide="main.username != main.taken_username">
 Your username is taken!

https://riptutorial.com/ 54

http://jsbin.com/zegulizita/edit?html,js,output

 </div>

 <p>Enter 'StackOverflow' in username field to show ngHide directive.</p>

 </section>

ngOptions

ngOptions is a directive that simplifies the creation of a html dropdown box for the selection of an
item from an array that will be stored in a model. The ngOptions attribute is used to dynamically
generate a list of <option> elements for the <select> element using the array or object obtained by
evaluating the ngOptions comprehension expression.

With ng-options the markup can be reduced to just a select tag and the directive will create the
same select:

<select ng-model="selectedFruitNgOptions"
 ng-options="curFruit as curFruit.label for curFruit in fruit">
</select>

There is anther way of creating select options using ng-repeat, but it is not recommended to use
ng-repeat as it is mostly used for general purpose like, the forEach just to loop. Whereas ng-options
is specifically for creating select tag options.

Above example using ng-repeat would be

<select ng-model="selectedFruit">
 <option ng-repeat="curFruit in fruit" value="{{curFruit}}">
 {{curFruit.label}}
 </option>
</select>

FULL EXAMPLE

Lets see the above example in detail also with some variations in it.

Data model for the example:

$scope.fruit = [
 { label: "Apples", value: 4, id: 2 },
 { label: "Oranges", value: 2, id: 1 },
 { label: "Limes", value: 4, id: 4 },
 { label: "Lemons", value: 5, id: 3 }
];

<!-- label for value in array -->
<select ng-options="f.label for f in fruit" ng-model="selectedFruit"></select>

Option tag generated on selection:

https://riptutorial.com/ 55

https://jsfiddle.net/awolf2904/qb9kyr5h/

 <option value="{ label: "Apples", value: 4, id: 2 }"> Apples </option>

Effects:

f.label will be the label of the <option> and the value will contain the entire object.

FULL EXAMPLE

<!-- select as label for value in array -->
<select ng-options="f.value as f.label for f in fruit" ng-model="selectedFruit"></select>

Option tag generated on selection:

 <option value="4"> Apples </option>

Effects:

f.value (4) will be the value in this case while the label is still the same.

FULL EXAMPLE

<!-- label group by group for value in array -->
<select ng-options="f.label group by f.value for f in fruit" ng-
model="selectedFruit"></select>

Option tag generated on selection:

<option value="{ label: "Apples", value: 4, id: 2 }"> Apples </option>

Effects:

Options will be grouped based on there value. Options with same value will fall under one category

FULL EXAMPLE

<!-- label disable when disable for value in array -->
<select ng-options="f.label disable when f.value == 4 for f in fruit" ng-
model="selectedFruit"></select>

Option tag generated on selection:

<option disabled="" value="{ label: "Apples", value: 4, id: 2 }"> Apples </option>

Effects:

"Apples" and "Limes" will be disabled (unable to select) because of the condition disable when
f.value==4. All options with value=4 shall be disabled

https://riptutorial.com/ 56

https://jsfiddle.net/Kunalh/qb9kyr5h/1/
https://jsfiddle.net/Kunalh/qb9kyr5h/2/
https://jsfiddle.net/Kunalh/qb9kyr5h/3/

FULL EXAMPLE

<!-- label group by group for value in array track by trackexpr -->
<select ng-options="f.value as f.label group by f.value for f in fruit track by f.id" ng-
model="selectedFruit"></select>

Option tag generated on selection:

<option value="4"> Apples </option>

Effects:

There is not visual change when using trackBy, but Angular will detect changes by the id instead
of by reference which is most always a better solution.

FULL EXAMPLE

<!-- label for value in array | orderBy:orderexpr track by trackexpr -->
<select ng-options="f.label for f in fruit | orderBy:'id' track by f.id" ng-
model="selectedFruit"></select>

Option tag generated on selection:

<option disabled="" value="{ label: "Apples", value: 4, id: 2 }"> Apples </option>

Effects:

orderBy is a AngularJS standard filter which arranges options in ascending order(by default) so
"Oranges" in this will appear 1st since its id = 1.

FULL EXAMPLE

All <select> with ng-options must have ng-model attached.

ngModel

With ng-model you can bind a variable to any type of input field. You can display the variable using
double curly braces, eg {{myAge}}.

<input type="text" ng-model="myName">
<p>{{myName}}</p>

As you type in the input field or change it in any way you will see the value in the paragraph
update instantly.

The ng-model variable, in this instance, will be available in your controller as $scope.myName. If you
are using the controllerAs syntax:

https://riptutorial.com/ 57

https://jsfiddle.net/Kunalh/qb9kyr5h/4/
https://jsfiddle.net/Kunalh/qb9kyr5h/5/
https://jsfiddle.net/Kunalh/qb9kyr5h/6/

<div ng-controller="myCtrl as mc">
 <input type="text" ng-model="mc.myName">
 <p>{{mc.myName}}</p>
</div>

You will need to refer to the controller's scope by pre-pending the controller's alias defined in the
ng-controller attribute to the ng-model variable. This way you won't need to inject $scope into your
controller to reference your ng-model variable, the variable will be available as this.myName inside
your controller's function.

ngClass

Let's assume that you need to show the status of a user and you have several possible CSS
classes that could be used. Angular makes it very easy to choose from a list of several possible
classes which allow you to specify an object list that include conditionals. Angular is able to use
the correct class based on the truthiness of the conditionals.

Your object should contain key/value pairs. The key is a class name that will be applied when the
value (conditional) evaluates to true.

<style>
 .active { background-color: green; color: white; }
 .inactive { background-color: gray; color: white; }
 .adminUser { font-weight: bold; color: yellow; }
 .regularUser { color: white; }
</style>

<span ng-class="{
 active: user.active,
 inactive: !user.active,
 adminUser: user.level === 1,
 regularUser: user.level === 2
}">John Smith

Angular will check the $scope.user object to see the active status and the level number.
Depending on the values in those variables, Angular will apply the matching style to the .

ngIf

ng-if is a directive similar to ng-show but inserts or removes the element from the DOM instead of
simply hiding it. Angular 1.1.5 introduced ng-If directive. You can Use ng-if directive above 1.1.5
versions. This is useful because Angular will not process digests for elements inside a removed
ng-if reducing the workload of Angular especially for complex data bindings.

Unlike ng-show, the ng-if directive creates a child scope which uses prototypal inheritance. This
means that setting a primitive value on the child scope will not apply to the parent. To set a
primitive on the parent scope the $parent property on the child scope will have to be used.

JavaScript

https://riptutorial.com/ 58

https://docs.angularjs.org/api/ng/directive/ngIf
https://docs.angularjs.org/api/ng/directive/ngShow

angular.module('MyApp', []);

angular.module('MyApp').controller('myController', ['$scope', '$window', function
myController($scope, $window) {
 $scope.currentUser= $window.localStorage.getItem('userName');
}]);

View

<div ng-controller="myController">
 <div ng-if="currentUser">
 Hello, {{currentUser}}
 </div>
 <div ng-if="!currentUser">
 Log In
 Register
 </div>
</div>

DOM If currentUser Is Not Undefined

<div ng-controller="myController">
 <div ng-if="currentUser">
 Hello, {{currentUser}}
 </div>
 <!-- ng-if: !currentUser -->
</div>

DOM If currentUser Is Undefined

<div ng-controller="myController">
 <!-- ng-if: currentUser -->
 <div ng-if="!currentUser">
 Log In
 Register
 </div>
</div>

Working Example

Function Promise

The ngIf directive accepts functions as well, which logically require to return true or false.

<div ng-if="myFunction()">
 Span text
</div>

https://riptutorial.com/ 59

https://jsfiddle.net/beekalam/4wwq1a3w/

The span text will only appear if the function returns true.

$scope.myFunction = function() {
 var result = false;
 // Code to determine the boolean value of result
 return result;
};

As any Angular expression the function accepts any kind of variables.

ngMouseenter and ngMouseleave

The ng-mouseenter and ng-mouseleave directives are useful to run events and apply CSS styling
when you hover into or out of your DOM elements.

The ng-mouseenter directive runs an expression one a mouse enter event (when the user enters his
mouse pointer over the DOM element this directive resides in)

HTML

<div ng-mouseenter="applyStyle = true" ng-class="{'active': applyStyle}">

At the above example, when the user points his mouse over the div, applyStyle turns to true,
which in turn applies the .active CSS class at the ng-class.

The ng-mouseleave directive runs an expression one a mouse exit event (when the user takes his
mouse cursor away from the DOM element this directive resides in)

HTML

<div ng-mouseenter="applyStyle = true" ng-mouseleaver="applyStyle = false" ng-
class="{'active': applyStyle}">

Reusing the first example, now when the user takes him mouse pointer away from the div, the
.active class is removed.

ngDisabled

This directive is useful to limit input events based on certain existing conditions.

The ng-disabled directive accepts and expression that should evaluate to either a truthy or a falsy
values.

ng-disabled is used to conditionally apply the disabled attribute on an input element.

HTML

<input type="text" ng-model="vm.name">

<button ng-disabled="vm.name.length===0" ng-click="vm.submitMe">Submit</button>

https://riptutorial.com/ 60

vm.name.length===0 is evaluated to true if the input's length is 0, which is turn disables the button,
disallowing the user to fire the click event of ng-click

ngDblclick

The ng-dblclick directive is useful when you want to bind a double-click event into your DOM
elements.

This directive accepts an expression

HTML

<input type="number" ng-model="num = num + 1" ng-init="num=0">

<button ng-dblclick="num++">Double click me</button>

In the above example, the value held at the input will be incremented when the button is double
clicked.

Built-In Directives Cheat Sheet

ng-app Sets the AngularJS section.

ng-init Sets a default variable value.

ng-bind Alternative to {{ }} template.

ng-bind-template Binds multiple expressions to the view.

ng-non-bindable States that the data isn't bindable.

ng-bind-html Binds inner HTML property of an HTML element.

ng-change Evaluates specified expression when the user changes the input.

ng-checked Sets the checkbox.

ng-class Sets the css class dynamically.

ng-cloak Prevents displaying the content until AngularJS has taken control.

ng-click Executes a method or expression when element is clicked.

ng-controller Attaches a controller class to the view.

ng-disabled Controls the form element's disabled property

ng-form Sets a form

ng-href Dynamically bind AngularJS variables to the href attribute.

https://riptutorial.com/ 61

ng-include Used to fetch, compile and include an external HTML fragment to your page.

ng-if Remove or recreates an element in the DOM depending on an expression

ng-switch Conditionally switch control based on matching expression.

ng-model Binds an input,select, textarea etc elements with model property.

ng-readonly Used to set readonly attribute to an element.

ng-repeat Used to loop through each item in a collection to create a new template.

ng-selected Used to set selected option in element.

ng-show/ng-hide Show/Hide elements based on an expression.

ng-src Dynamically bind AngularJS variables to the src attribute.

ng-submit Bind angular expressions to onsubmit events.

ng-value Bind angular expressions to the value of .

ng-required Bind angular expressions to onsubmit events.

ng-style Sets CSS style on an HTML element.

ng-pattern Adds the pattern validator to ngModel.

ng-maxlength Adds the maxlength validator to ngModel.

ng-minlength Adds the minlength validator to ngModel.

ng-classeven Works in conjunction with ngRepeat and take effect only on odd (even) rows.

ng-classodd Works in conjunction with ngRepeat and take effect only on odd (even) rows.

ng-cut Used to specify custom behavior on cut event.

ng-copy Used to specify custom behavior on copy event.

ng-paste Used to specify custom behavior on paste event.

ng-options Used to dynamically generate a list of elements for the element.

ng-list Used to convert string into list based on specified delimiter.

ng-open Used to set the open attribute on the element, if the expression inside ngOpen is truthy.

Source (edited a bit)

ngClick

https://riptutorial.com/ 62

http://www.techstrikers.com/AngularJS/angularjs-built-in-directives.php

The ng-click directive attaches a click event to a DOM element.

The ng-click directive allows you to specify custom behavior when an element of DOM is clicked.

It is useful when you want to attach click events on buttons and handle them at your controller.

This directive accepts an expression with the events object available as $event

HTML

<input ng-click="onClick($event)">Click me</input>

Controller

.controller("ctrl", function($scope) {
 $scope.onClick = function(evt) {
 console.debug("Hello click event: %o ",evt);
 }
})

HTML

<button ng-click="count = count + 1" ng-init="count=0">
 Increment
</button>

 count: {{count}}

HTML

<button ng-click="count()" ng-init="count=0">
 Increment
</button>

 count: {{count}}

Controller

...

$scope.count = function(){
 $scope.count = $scope.count + 1;
}
...

When the button is clicked, an invocation of the onClick function will print "Hello click event"
followed by the event object.

ngRequired

https://riptutorial.com/ 63

The ng-required adds or removes the required validation attribute on an element, which in turn will
enable and disable the require validation key for the input.

It is used to optionally define if an input element is required to have a non-empty value. The
directive is helpful when designing validation on complex HTML forms.

HTML

<input type="checkbox" ng-model="someBooleanValue">
<input type="text" ng-model="username" ng-required="someBooleanValue">

ng-model-options

ng-model-options allows to change the default behavior of ng-model, this directive allows to register
events that will fire when the ng-model is updated and to attach a debounce effect.

This directive accepts an expression that will evaluate to a definition object or a reference to a
scope value.

Example:

<input type="text" ng-model="myValue" ng-model-options="{'debounce': 500}">

The above example will attach a debounce effect of 500 milliseconds on myValue, which will cause
the model to update 500 ms after the user finished typing over the input (that is, when the myValue
finished updating).

Available object properties

updateOn: specifies which event should be bound to the input

ng-model-options="{ updateOn: 'blur'}" // will update on blur

1.

debounce: specifies a delay of some millisecond towards the model update

ng-model-options="{'debounce': 500}" // will update the model after 1/2 second

2.

allowInvalid: a boolean flag allowing for an invalid value to the model, circumventing default
form validation, by default these values would be treated as undefined.

3.

getterSetter: a boolean flag indicating if to treat the ng-model as a getter/setter function
instead of a plain model value. The function will then run and return the model value.

Example:

<input type="text" ng-model="myFunc" ng-model-options="{'getterSetter': true}">

$scope.myFunc = function() {return "value";}

4.

https://riptutorial.com/ 64

timezone: defines the timezone for the model if the input is of the date or time. types5.

ngCloak

The ngCloak directive is used to prevent the Angular html template from being briefly
displayed by the browser in its raw (uncompiled) form while your application is loading.
- View source

HTML

<div ng-cloak>
 <h1>Hello {{ name }}</h1>
</div>

ngCloak can be applied to the body element, but the preferred usage is to apply multiple ngCloak
directives to small portions of the page to permit progressive rendering of the browser view.

The ngCloak directive has no parameters.

See also: Preventing flickering

ngInclude

ng-include allows you to delegate the control of one part of the page to a specific controller. You
may want to do this because the complexity of that component is becoming such that you want to
encapsulate all the logic in a dedicated controller.

An example is:

 <div ng-include
 src="'/gridview'"
 ng-controller='gridController as gc'>
 </div>

Note that the /gridview will need to be served by the web server as a distinct and legitimate url.

Also, note that the src-attribute accepts an Angular expression. This could be a variable or a
function call for example or, like in this example, a string constant. In this case you need to make
sure to wrap the source URL in single quotes, so it will be evaluated as a string constant. This
is a common source of confusion.

Within the /gridview html, you can refer to the gridController as if it were wrapped around the
page, eg:

<div class="row">
 <button type="button" class="btn btn-default" ng-click="gc.doSomething()"></button>
</div>

ngSrc

https://riptutorial.com/ 65

https://docs.angularjs.org/api/ng/directive/ngCloak
http://www.ng-newsletter.com/25-days-of-angular/day-3

Using Angular markup like {{hash}} in a src attribute doesn't work right. The browser will fetch from
the URL with the literal text {{hash}} until Angular replaces the expression inside {{hash}}. ng-src
directive overrides the original src attribute for the image tag element and solves the problem

<div ng-init="pic = 'pic_angular.jpg'">
 <h1>Angular</h1>

</div>

ngPattern

The ng-pattern directive accepts an expression that evaluates to a regular expression pattern and
uses that pattern to validate a textual input.

Example:

Lets say we want an <input> element to become valid when it's value (ng-model) is a valid IP
address.

Template:

<input type="text" ng-model="ipAddr" ng-pattern="ipRegex" name="ip" required>

Controller:

$scope.ipRegex = /\b(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-
9]|[01]?[0-9][0-9]?)\b/;

ngValue

Mostly used under ng-repeat ngValue is useful when dynamically generating lists of radio buttons
using ngRepeat

<script>
 angular.module('valueExample', [])
 .controller('ExampleController', ['$scope', function($scope) {
 $scope.names = ['pizza', 'unicorns', 'robots'];
 $scope.my = { favorite: 'unicorns' };
 }]);
</script>
 <form ng-controller="ExampleController">
 <h2>Which is your favorite?</h2>
 <label ng-repeat="name in names" for="{{name}}">
 {{name}}
 <input type="radio"
 ng-model="my.favorite"
 ng-value="name"
 id="{{name}}"
 name="favorite">
 </label>
 <div>You chose {{my.favorite}}</div>
 </form>

https://riptutorial.com/ 66

Working plnkr

ngCopy

The ngCopy directive specifies behavior to be run on a copy event.

Prevent a user from copying data

<p ng-copy="blockCopy($event)">This paragraph cannot be copied</p>

In the controller

$scope.blockCopy = function(event) {
 event.preventDefault();
 console.log("Copying won't work");
}

ngPaste

The ngPaste directive specifies custom behavior to run when a user pastes content

<input ng-paste="paste=true" ng-init="paste=false" placeholder='paste here'>
pasted: {{paste}}

ngHref

ngHref is used instead of href attribute, if we have a angular expressions inside href value. The
ngHref directive overrides the original href attribute of an html tag using href attribute such as tag,
tag etc.

The ngHref directive makes sure the link is not broken even if the user clicks the link before
AngularJS has evaluated the code.

Example 1

<div ng-init="linkValue = 'http://stackoverflow.com'">
 <p>Go to <a ng-href="{{linkValue}}">{{linkValue}}!</p>
</div>

Example 2 This example dynamically gets the href value from input box and load it as href value.

<input ng-model="value" />
link

Example 3

<script>
angular.module('angularDoc', [])

https://riptutorial.com/ 67

https://plnkr.co/edit/QUTaDmcUlbrVX6urUGlB?p=preview

.controller('myController', function($scope) {
 // Set some scope value.
 // Here we set bootstrap version.
 $scope.bootstrap_version = '3.3.7';

 // Set the default layout value
 $scope.layout = 'normal';
});
</script>
<!-- Insert it into Angular Code -->
<link rel="stylesheet" ng-href="//maxcdn.bootstrapcdn.com/bootstrap/{{ bootstrap_version
}}/css/bootstrap.min.css">
<link rel="stylesheet" ng-href="layout-{{ layout }}.css">

ngList

The ng-list directive is used to convert a delimited string from a text input to an array of strings or
vice versa.

The ng-list directive uses a default delimiter of ", " (comma space).

You can set the delimiter manually by assigning ng-list a delimeter like this ng-list="; ".

In this case the delimiter is set to a semi colon followed by a space.

By default ng-list has an attribute ng-trim which is set to true. ng-trim when false, will respect
white space in your delimiter. By default, ng-list does not take white space into account unless
you set ng-trim="false".

Example:

angular.module('test', [])
 .controller('ngListExample', ['$scope', function($scope) {
 $scope.list = ['angular', 'is', 'cool!'];
}]);

A customer delimiter is set to be ;. And the model of the input box is set to the array that was
created on the scope.

 <body ng-app="test" ng-controller="ngListExample">
 <input ng-model="list" ng-list="; " ng-trim="false">
 </body>

The input box will display with the content: angular; is; cool!

Read Built-in directives online: https://riptutorial.com/angularjs/topic/706/built-in-directives

https://riptutorial.com/ 68

https://riptutorial.com/angularjs/topic/706/built-in-directives

Chapter 11: Built-in helper Functions

Examples

angular.equals

The angular.equals function compares and determines if 2 objects or values are equal,
angular.equals performs a deep comparison and returns true if and only if at least 1 of the following
conditions is met.

angular.equals(value1, value2)

If the objects or values pass the === comparison1.
If both objects or values are of the same type, and all of their properties are also equal by
using angular.equals

2.

Both values are equal to NaN3.
Both values represent the same regular expression's result.4.

This function is helpful when you need to deep compare objects or arrays by their values or results
rather than just references.

Examples

angular.equals(1, 1) // true
angular.equals(1, 2) // false
angular.equals({}, {}) // true, note that {}==={} is false
angular.equals({a: 1}, {a: 1}) // true
angular.equals({a: 1}, {a: 2}) // false
angular.equals(NaN, NaN) // true

angular.isString

The function angular.isString returns true if the object or value given to it is of the type string

angular.isString(value1)

Examples

angular.isString("hello") // true
angular.isString([1, 2]) // false
angular.isString(42) // false

This is the equivalent of performing

typeof someValue === "string"

angular.isArray

https://riptutorial.com/ 69

The angular.isArray function returns true if and only if the object or value passed to it is of the type
Array.

angular.isArray(value)

Examples

angular.isArray([]) // true
angular.isArray([2, 3]) // true
angular.isArray({}) // false
angular.isArray(17) // false

It is the equivalent of

Array.isArray(someValue)

angular.merge

The function angular.merge takes all the enumerable properties from the source object to deeply
extend the destination object.

The function returns a reference to the now extended destination object

angular.merge(destination, source)

Examples

angular.merge({}, {}) // {}
angular.merge({name: "king roland"}, {password: "12345"})
// {name: "king roland", password: "12345"}
angular.merge({a: 1}, [4, 5, 6]) // {0: 4, 1: 5, 2: 6, a: 1}
angular.merge({a: 1}, {b: {c: {d: 2}}}) // {"a":1,"b":{"c":{"d":2}}}

angular.isDefined and angular.isUndefined

The function angular.isDefined tests a value if it is defined

angular.isDefined(someValue)

This is the equivalent of performing

value !== undefined; // will evaluate to true is value is defined

Examples

angular.isDefined(42) // true
angular.isDefined([1, 2]) // true
angular.isDefined(undefined) // false
angular.isDefined(null) // true

https://riptutorial.com/ 70

The function angular.isUndefined tests if a value is undefined (it is effectively the opposite of
angular.isDefined)

angular.isUndefined(someValue)

This is the equivalent of performing

value === undefined; // will evaluate to true is value is undefined

Or just

!angular.isDefined(value)

Examples

angular.isUndefined(42) // false
angular.isUndefined(undefined) // true

angular.isDate

The angular.isDate function returns true if and only if the object passed to it is of the type Date.

angular.isDate(value)

Examples

angular.isDate("lone star") // false
angular.isDate(new Date()) // true

angular.isNumber

The angular.isNumber function returns true if and only if the object or value passed to it is of the
type Number, this includes +Infinity, -Infinity and NaN

angular.isNumber(value)

This function will not cause a type coercion such as

"23" == 23 // true

Examples

angular.isNumber("23") // false
angular.isNumber(23) // true
angular.isNumber(NaN) // true
angular.isNumber(Infinity) // true

This function will not cause a type coercion such as

https://riptutorial.com/ 71

"23" == 23 // true

angular.isFunction

The function angular.isFunction determines and returns true if and only if the value passed to is a
reference to a function.

The function returns a reference to the now extended destination object

angular.isFunction(fn)

Examples

var onClick = function(e) {return e};
angular.isFunction(onClick); // true

var someArray = ["pizza", "the", "hut"];
angular.isFunction(someArray); // false

angular.toJson

The function angular.toJson will take an object and serialize it into a JSON formatted string.

Unlike the native function JSON.stringify, This function will remove all properties beginning with $$
(as angular usually prefixes internal properties with $$)

angular.toJson(object)

As data needs to be serialized before passing through a network, this function is useful to turn any
data you wish to transmit into JSON.

This function is also useful for debugging as it works similarly to a .toString method would act.

Examples:

angular.toJson({name: "barf", occupation: "mog", $$somebizzareproperty: 42})
// "{"name":"barf","occupation":"mog"}"
angular.toJson(42)
// "42"
angular.toJson([1, "2", 3, "4"])
// "[1,"2",3,"4"]"
var fn = function(value) {return value}
angular.toJson(fn)
// undefined, functions have no representation in JSON

angular.fromJson

The function angular.fromJson will deserialize a valid JSON string and return an Object or an Array.

angular.fromJson(string|object)

https://riptutorial.com/ 72

Note that this function is not limited to only strings, it will output a representation of any object
passed to it.

Examples:

angular.fromJson("{\"yogurt\": \"strawberries\"}")
// Object {yogurt: "strawberries"}
angular.fromJson('{jam: "raspberries"}')
// will throw an exception as the string is not a valid JSON
angular.fromJson(this)
// Window {external: Object, chrome: Object, _gaq: Y, angular: Object, ng339: 3…}
angular.fromJson([1, 2])
// [1, 2]
typeof angular.fromJson(new Date())
// "object"

angular.noop

The angular.noop is a function that performs no operations, you pass angular.noop when you need
to provide a function argument that will do nothing.

angular.noop()

A common use for angular.noop can be to provide an empty callback to a function that will
otherwise throw an error when something else than a function is passed to it.

Example:

$scope.onSomeChange = function(model, callback) {
 updateTheModel(model);
 if (angular.isFunction(callback)) {
 callback();
 } else {
 throw new Error("error: callback is not a function!");
 }
};

$scope.onSomeChange(42, function() {console.log("hello callback")});
// will update the model and print 'hello callback'
$scope.onSomeChange(42, angular.noop);
// will update the model

Additional examples:

angular.noop() // undefined
angular.isFunction(angular.noop) // true

angular.isObject

The angular.isObject return true if and only if the argument passed to it is an object, this function
will also return true for an Array and will return false for null even though typeof null is object .

angular.isObject(value)

https://riptutorial.com/ 73

This function is useful for type checking when you need a defined object to process.

Examples:

angular.isObject({name: "skroob", job: "president"})
// true
angular.isObject(null)
// false
angular.isObject([null])
// true
angular.isObject(new Date())
// true
angular.isObject(undefined)
// false

angular.isElement

The angular.isElement returns true if the argument passed to it is a DOM Element or a jQuery
wrapped Element.

angular.isElement(elem)

This function is useful to type check if a passed argument is an element before being processed
as such.

Examples:

angular.isElement(document.querySelector("body"))
// true
angular.isElement(document.querySelector("#some_id"))
// false if "some_id" is not using as an id inside the selected DOM
angular.isElement("<div></div>")
// false

angular.copy

The angular.copy function takes an object, array or a value and creates a deep copy of it.

angular.copy()

Example:

Objects:

let obj = {name: "vespa", occupation: "princess"};
let cpy = angular.copy(obj);
cpy.name = "yogurt"
// obj = {name: "vespa", occupation: "princess"}
// cpy = {name: "yogurt", occupation: "princess"}

Arrays:

https://riptutorial.com/ 74

var w = [a, [b, [c, [d]]]];
var q = angular.copy(w);
// q = [a, [b, [c, [d]]]]

At the above example angular.equals(w, q) will evaluate to true because .equals tests equality by
value. however w === q will evaluate to false because strict comparison between objects and
arrays is done by reference.

angular.identity

The angular.identity function returns the first argument passed to it.

angular.identity(argument)

This function is useful for functional programming, you can provide this function as a default in
case an expected function was not passed.

Examples:

angular.identity(42) // 42

var mutate = function(fn, num) {
 return angular.isFunction(fn) ? fn(num) : angular.identity(num)
}

mutate(function(value) {return value-7}, 42) // 35
mutate(null, 42) // 42
mutate("mount. rushmore", 42) // 42

angular.forEach

The angular.forEach accepts an object and an iterator function. It then runs the iterator function
over each enumerable property/value of the object. This function also works on arrays.

Like the JS version of Array.prototype.forEach The function does not iterate over inherited
properties (prototype properties), however the function will not attempt to process a null or an
undefined value and will just return it.

angular.forEach(object, function(value, key) { // function});

Examples:

angular.forEach({"a": 12, "b": 34}, (value, key) => console.log("key: " + key + ", value: " +
value))
// key: a, value: 12
// key: b, value: 34
angular.forEach([2, 4, 6, 8, 10], (value, key) => console.log(key))
// will print the array indices: 1, 2, 3, 4, 5
angular.forEach([2, 4, 6, 8, 10], (value, key) => console.log(value))
// will print the array values: 2, 4, 6, 7, 10
angular.forEach(undefined, (value, key) => console.log("key: " + key + ", value: " + value))
// undefined

https://riptutorial.com/ 75

Read Built-in helper Functions online: https://riptutorial.com/angularjs/topic/3032/built-in-helper-
functions

https://riptutorial.com/ 76

https://riptutorial.com/angularjs/topic/3032/built-in-helper-functions
https://riptutorial.com/angularjs/topic/3032/built-in-helper-functions

Chapter 12: Components

Parameters

Parameter Details

=
For using two-way data binding. This means that if you update
that variable in your component scope, the change will be
reflected on the parent scope.

<
One-way bindings when we just want to read a value from a
parent scope and not update it.

@ String parameters.

&
For callbacks in case your component needs to output
something to its parent scope.

- -

LifeCycle Hooks Details (requires angular.version >= 1.5.3)

$onInit()
Called on each controller after all the controllers on an element
have been constructed and had their bindings initialized. This
is a good place to put initialization code for your controller.

$onChanges(changesObj)

Called whenever one-way bindings are updated. The
changesObj is a hash whose keys are the names of the bound
properties that have changed, and the values are an object of
the form { currentValue, previousValue, isFirstChange() } .

$onDestroy()
Called on a controller when its containing scope is destroyed.
Use this hook for releasing external resources, watches and
event handlers.

$postLink()
Called after this controller’s element and its children have been
linked. This hook can be considered analogous to the
ngAfterViewInit and ngAfterContentInit hooks in Angular 2.

$doCheck()

Called on each turn of the digest cycle. Provides an
opportunity to detect and act on changes. Any actions that you
wish to take in response to the changes that you detect must
be invoked from this hook; implementing this has no effect on
when $onChanges is called.

https://riptutorial.com/ 77

Remarks

Component is a special kind of directive that uses a simpler configuration which is suitable for a
component-based application structure. Components were introduced in Angular 1.5, the
examples in this section will not work with older AngularJS versions.

A complete developer guide about Components is avalable on
https://docs.angularjs.org/guide/component

Examples

Basic Components and LifeCycle Hooks

What’s a component?

A component is basically a directive that uses a simpler configuration and that is suitable for
a component-based architecture, which is what Angular 2 is all about. Think of a component
as a widget: A piece of HTML code that you can reuse in several different places in your web
application.

•

Component

angular.module('myApp', [])
 .component('helloWorld', {
 template: 'Hello World!'
 });

Markup

<div ng-app="myApp">
 <hello-world> </hello-world>
</div>

Live Demo

Using External data in Component:

We could add a parameter to pass a name to our component, which would be used as follows:

angular.module("myApp", [])
 .component("helloWorld",{
 template: 'Hello {{$ctrl.name}}!',
 bindings: { name: '@' }
 });

https://riptutorial.com/ 78

https://docs.angularjs.org/guide/component
https://plnkr.co/edit/vXdChl?p=preview

Markup

<div ng-app="myApp">
 <hello-world name="'John'" > </hello-world>
</div>

Live Demo

Using Controllers in Components

Let’s take a look at how to add a controller to it.

angular.module("myApp", [])
 .component("helloWorld",{
 template: "Hello {{$ctrl.name}}, I'm {{$ctrl.myName}}!",
 bindings: { name: '@' },
 controller: function(){
 this.myName = 'Alain';
 }
 });

Markup

<div ng-app="myApp">
 <hello-world name="John"> </hello-world>
</div>

CodePen Demo

Parameters passed to the component are available in the controller's scope just before its $onInit
function gets called by Angular. Consider this example:

angular.module("myApp", [])
 .component("helloWorld",{
 template: "Hello {{$ctrl.name}}, I'm {{$ctrl.myName}}!",
 bindings: { name: '@' },
 controller: function(){
 this.$onInit = function() {
 this.myName = "Mac" + this.name;
 }
 }
 });

In the template from above, this would render "Hello John, I'm MacJohn!".

Note that $ctrl is the Angular default value for controllerAs if one is not specified.

Live Demo

https://riptutorial.com/ 79

https://plnkr.co/edit/ERw1vDRjikp10QDim805?p=preview
http://codepen.io/mjunaidsalaat/pen/NAYXyP
https://plnkr.co/edit/bxB3PG?p=preview

Using “require” as an Object

In some instances you may need to access data from a parent component inside your component.

This can be achieved by specifying that our component requires that parent component, the
require will give us reference to the required component controller, which can then be used in our
controller as shown in the example below:

Notice that required controllers are guaranteed to be ready only after the $onInit hook.

angular.module("myApp", [])
 .component("helloWorld",{
 template: "Hello {{$ctrl.name}}, I'm {{$ctrl.myName}}!",
 bindings: { name: '@' },
 require: {
 parent: '^parentComponent'
 },
 controller: function () {
 // here this.parent might not be initiated yet

 this.$onInit = function() {
 // after $onInit, use this.parent to access required controller
 this.parent.foo();
 }

 }
 });

Keep in mind, though, that this creates a tight coupling between the child and the parent.

Components In angular JS

The components in angularJS can be visualised as a custom directive (< html > this in an HTML
directive, and something like this will be a custom directive < ANYTHING >). A component
contains a view and a controller. Controller contains the business logic which is binded with an
view , which the user sees. The component differs from a angular directive because it contains
less configuration. An angular component can be defined like this.

angular.module("myApp",[]).component("customer", {})

Components are defined on the angular modules. They contains two arguments, One is the name
of the component and second one is a object which contains key value pair, which defines which
view and which controller it is going to use like this .

angular.module("myApp",[]).component("customer", {
 templateUrl : "customer.html", // your view here
 controller: customerController, //your controller here
 controllerAs: "cust" //alternate name for your controller
})

"myApp" is the name of the app we are building and customer is the name of our component. Now

https://riptutorial.com/ 80

https://en.wikipedia.org/wiki/Coupling_%28computer_programming%29

for calling it in main html file we will just put it like this

<customer></customer>

Now this directive will be replaced by the view you have specified and the business logic you have
written in your controller.

NOTE : Remember component take a object as second argument while directive take a factory
function as argument.

Read Components online: https://riptutorial.com/angularjs/topic/892/components

https://riptutorial.com/ 81

https://riptutorial.com/angularjs/topic/892/components

Chapter 13: Constants

Remarks

UPPERCASE your constant: Writing constant in capital is a common best practice used in many
languages. It's also useful to clearly identify the nature of injected elements:

When you see .controller('MyController', function($scope, Profile, EVENT)), you instantly know
that:

$scope is an angular element•
Profile is a custom Service or Factory•
EVENT is an angular constant•

Examples

Create your first constant

angular
 .module('MyApp', [])
 .constant('VERSION', 1.0);

Your constant is now declared and can be injected in a controller, a service, a factory, a provider,
and even in a config method:

angular
 .module('MyApp')
 .controller('FooterController', function(VERSION) {
 this.version = VERSION;
 });

<footer ng-controller="FooterController as Footer">{{ Footer.version }}</footer>

Use cases

There is no revolution here, but angular constant can be useful specially when your application
and/or team starts to grow ... or if you simply love writing beautiful code!

Refactor code. Example with event's names. If you use a lot of events in your application,
you have event's names a little every where. A when a new developper join your team, he
names his events with a different syntax, ... You can easily prevent this by grouping your
event's names in a constant:

angular
 .module('MyApp')

•

https://riptutorial.com/ 82

 .constant('EVENTS', {
 LOGIN_VALIDATE_FORM: 'login::click-validate',
 LOGIN_FORGOT_PASSWORD: 'login::click-forgot',
 LOGIN_ERROR: 'login::notify-error',
 ...
 });

angular
 .module('MyApp')
 .controller('LoginController', function($scope, EVENT) {
 $scope.$on(EVENT.LOGIN_VALIDATE_FORM, function() {
 ...
 });
 })

... and now, your event's names can take benefits from autocompletion !

Define configuration. Locate all your configuration in a same place:

angular
 .module('MyApp')
 .constant('CONFIG', {
 BASE_URL: {
 APP: 'http://localhost:3000',
 API: 'http://localhost:3001'
 },
 STORAGE: 'S3',
 ...
 });

•

Isolate parts. Sometimes, there are some things you are not very proud of ... like hardcoded
value for example. Instead of let them in your main code, you can create an angular constant

angular
 .module('MyApp')
 .constant('HARDCODED', {
 KEY: 'KEY',
 RELATION: 'has_many',
 VAT: 19.6
 });

•

... and refactor something like

$scope.settings = {
 username: Profile.username,
 relation: 'has_many',
 vat: 19.6
}

to

$scope.settings = {

https://riptutorial.com/ 83

 username: Profile.username,
 relation: HARDCODED.RELATION,
 vat: HARDCODED.VAT
}

Read Constants online: https://riptutorial.com/angularjs/topic/3967/constants

https://riptutorial.com/ 84

https://riptutorial.com/angularjs/topic/3967/constants

Chapter 14: Controllers

Syntax

<htmlElement ng-controller="controllerName"> ... </htmlElement>•
<script> app.controller('controllerName', controllerFunction); </script>•

Examples

Your First Controller

A controller is a basic structure used in Angular to preserve scope and handle certain actions
within a page. Each controller is coupled with an HTML view.

Below is a basic boilerplate for an Angular app:

<!DOCTYPE html>

<html lang="en" ng-app='MyFirstApp'>
 <head>
 <title>My First App</title>

 <!-- angular source -->
 <script src="https://code.angularjs.org/1.5.3/angular.min.js"></script>

 <!-- Your custom controller code -->
 <script src="js/controllers.js"></script>
 </head>
 <body>
 <div ng-controller="MyController as mc">
 <h1>{{ mc.title }}</h1>
 <p>{{ mc.description }}</p>
 <button ng-click="mc.clicked()">
 Click Me!
 </button>
 </div>
 </body>
</html>

There are a few things to note here:

<html ng-app='MyFirstApp'>

Setting the app name with ng-app lets you access the application in an external Javascript file,
which will be covered below.

<script src="js/controllers.js"></script>

We'll need a Javascript file where you define your controllers and their actions/data.

https://riptutorial.com/ 85

<div ng-controller="MyController as mc">

The ng-controller attribute sets the controller for that DOM element and all elements that are
children (recursively) below it.

You can have multiple of the same controller (in this case, MyController) by saying ... as mc, we're
giving this instance of the controller an alias.

<h1>{{ mc.title }}</h1>

The {{ ... }} notation is an Angular expression. In this case, this will set the inner text of that <h1>
element to whatever the value of mc.title is.

Note: Angular employs dual-way data binding, meaning that regardless of how you update the
mc.title value, it will be reflected in both the controller and the page.

Also note that Angular expressions do not have to reference a controller. An Angular expression
can be as simple as {{ 1 + 2 }} or {{ "Hello " + "World" }}.

<button ng-click="mc.clicked()">

ng-click is an Angular directive, in this case binding the click event for the button to trigger the
clicked() function of the MyController instance.

With those things in mind, let's write an implementation of the MyController controller. With the
example above, you would write this code in js/controller.js.

First, you'll need to instantiate the Angular app in your Javascript.

var app = angular.module("MyFirstApp", []);

Note that the name we pass here is the same as the name you set in your HTML with the ng-app
directive.

Now that we have the app object, we can use that to create controllers.

app.controller('MyController', function(){
 var ctrl = this;

 ctrl.title = "My First Angular App";
 ctrl.description = "This is my first Angular app!";

 ctrl.clicked = function(){
 alert("MyController.clicked()");
 };
});

Note: For anything that we want to be a part of the controller instance, we use the this keyword.

https://riptutorial.com/ 86

This is all that is required to build a simple controller.

Creating Controllers

angular
 .module('app')
 .controller('SampleController', SampleController)

SampleController.$inject = ['$log', '$scope'];
function SampleController($log, $scope){
 $log.debug('*****SampleController******');

 /* Your code below */
}

Note: The .$inject will make sure your dependencies doesn't get scrambled after minification.
Also, make sure it's in order with the named function.

Creating Controllers, Minification safe

There are a couple different ways to protect your controller creation from minification.

The first is called inline array annotation. It looks like the following:

var app = angular.module('app');
app.controller('sampleController', ['$scope', '$http', function(a, b){
 //logic here
}]);

The second parameter of the controller method can accept an array of dependencies. As you can
see I've defined $scope and $http which should correspond to the parameters of the controller
function in which a will be the $scope, and b would be $http. Take note that the last item in the array
should be your controller function.

The second option is using the $inject property. It looks like the following:

var app = angular.module('app');
app.controller('sampleController', sampleController);
sampleController.$inject = ['$scope', '$http'];
function sampleController(a, b) {
 //logic here
}

This does the same thing as inline array annotation but provides a different styling for those that
prefer one option over the other.

The order of injected dependencies is important

When injecting dependencies using the array form, be sure that the list of the dependencies match
its corresponding list of arguments passed to the controller function.

https://riptutorial.com/ 87

Note that in the following example, $scope and $http are reversed. This will cause a problem in the
code.

// Intentional Bug: injected dependencies are reversed which will cause a problem
app.controller('sampleController', ['$scope', '$http',function($http, $scope) {
 $http.get('sample.json');
}]);

Using ControllerAs in Angular JS

In Angular $scope is the glue between the Controller and the View that helps with all of our data
binding needs. Controller As is another way of binding controller and view and is mostly
recommended to use. Basically these are the two controller constructs in Angular (i.e $scope and
Controller As).

Different ways of using Controller As are -

controllerAs View Syntax

<div ng-controller="CustomerController as customer">
 {{ customer.name }}
</div>

controllerAs Controller Syntax

function CustomerController() {
 this.name = {};
 this.sendMessage = function() { };
}

controllerAs with vm

function CustomerController() {
 /*jshint validthis: true */
 var vm = this;
 vm.name = {};
 vm.sendMessage = function() { };
}

controllerAs is syntactic sugar over $scope. You can still bind to the View and still access $scope
methods. Using controllerAs, is one of the best practices suggested by the angular core team.
There are many reason for this, few of them are -

$scope is exposing the members from the controller to the view via an intermediary object. By
setting this.*, we can expose just what we want to expose from the controller to the view. It
also follow the standard JavaScript way of using this.

•

using controllerAs syntax, we have more readable code and the parent property can be
accessed using the alias name of the parent controller instead of using the $parent syntax.

•

It promotes the use of binding to a "dotted" object in the View (e.g. customer.name instead of •

https://riptutorial.com/ 88

name), which is more contextual, easier to read, and avoids any reference issues that may
occur without "dotting".

Helps avoid using $parent calls in Views with nested controllers.•

Use a capture variable for this when using the controllerAs syntax. Choose a consistent
variable name such as vm, which stands for ViewModel. Because, this keyword is contextual
and when used within a function inside a controller may change its context. Capturing the
context of this avoids encountering this problem.

•

NOTE: using controllerAs syntax add to current scope reference to current controller, so it
available as field

<div ng-controller="Controller as vm>...</div>

vm is available as $scope.vm.

Creating Minification-Safe Angular Controllers

To create minification-safe angular controllers, you will change the controller function parameters.

The second argument in the module.controller function should be passed an array, where the last
parameter is the controller function, and every parameter before that is the name of each
injected value.

This is different from the normal paradigm; that takes the controller function with the injected
arguments.

Given:

var app = angular.module('myApp');

The controller should look like this:

app.controller('ctrlInject',
 [
 /* Injected Parameters */
 '$Injectable1',
 '$Injectable2',
 /* Controller Function */
 function($injectable1Instance, $injectable2Instance) {
 /* Controller Content */
 }
]
);

Note: The names of injected parameters are not required to match, but they will be bound in order.

This will minify to something similar to this:

https://riptutorial.com/ 89

var
a=angular.module('myApp');a.controller('ctrlInject',['$Injectable1','$Injectable2',function(b,c){/*
Controller Content */}]);

The minification process will replace every instance of app with a, every instance of
$Injectable1Instance with b, and every instance of $Injectable2Instance with c.

Nested Controllers

Nesting controllers chains the $scope as well. Changing a $scope variable in the nested controller
changes the same $scope variable in the parent controller.

.controller('parentController', function ($scope) {
 $scope.parentVariable = "I'm the parent";
});

.controller('childController', function ($scope) {
 $scope.childVariable = "I'm the child";

 $scope.childFunction = function () {
 $scope.parentVariable = "I'm overriding you";
 };
});

Now let's try to handle both of them, nested.

<body ng-controller="parentController">
 What controller am I? {{parentVariable}}
 <div ng-controller="childController">
 What controller am I? {{childVariable}}
 <button ng-click="childFunction()"> Click me to override! </button>
 </div>
</body>

Nesting controllers may have it's benefits, but one thing must be kept in mind when doing so.
Calling the ngController directive creates a new instance of the controller - which can often create
confusion and unexpected results.

Read Controllers online: https://riptutorial.com/angularjs/topic/601/controllers

https://riptutorial.com/ 90

https://riptutorial.com/angularjs/topic/601/controllers

Chapter 15: Controllers with ES6

Examples

Controller

it is very easy to write an angularJS controller with ES6 if your are familiarized with the Object
Oriented Programming :

 class exampleContoller{

 constructor(service1,service2,...serviceN){
 let ctrl=this;
 ctrl.service1=service1;
 ctrl.service2=service2;
 .
 .
 .
 ctrl.service1=service1;
 ctrl.controllerName = 'Example Controller';
 ctrl.method1(controllerName)

 }

 method1(param){
 let ctrl=this;
 ctrl.service1.serviceFunction();
 .
 .
 ctrl.scopeName=param;
 }
 .
 .
 .
 methodN(param){
 let ctrl=this;
 ctrl.service1.serviceFunction();
 .
 .
 }

 }
 exampleContoller.$inject = ['service1','service2',...,'serviceN'];
 export default exampleContoller;

Read Controllers with ES6 online: https://riptutorial.com/angularjs/topic/9419/controllers-with-es6

https://riptutorial.com/ 91

https://riptutorial.com/angularjs/topic/9419/controllers-with-es6

Chapter 16: Custom Directives

Introduction

Here you will learn about the Directives feature of AngularJS. Below you will find information on
what Directives are, as well as Basic and Advanced examples of how to use them.

Parameters

Parameter Details

scope
Property to set the scope of the directive. It can be set as false, true or
as an isolate scope: { @, =, <, & }.

scope: falsy Directive uses parent scope. No scope created for directive.

scope: true
Directive inherits parent scope prototypically as a new child scope. If
there are multiple directives on the same element requesting a new
scope, then they will share one new scope.

scope: { @ }
One way binding of a directive scope property to a DOM attribute value.
As the attribute value bound in the parent, it will change in the directive
scope.

scope: { = }
Bi-directional attribute binding that changes the attribute in the parent if
the directive attribute changes and vice-versa.

scope: { < }

One way binding of a directive scope property and a DOM attribute
expression. The expression is evaluated in the parent. This watches
the identity of the parent value so changes to an object property in the
parent won't be reflected in the directive. Changes to an object property
in a directive will be reflected in the parent, since both reference the
same object

scope: { & }
Allows the directive to pass data to an expression to be evaluated in
the parent.

compile: function

This function is used to perform DOM transformation on the directive
template before the link function runs. It accepts tElement (the directive
template) and tAttr (list of attributes declared on the directive). It
does not have access to the scope. It may return a function that will be
registered as a post-link function or it may return an object with pre and
post properties with will be registered as the pre-link and post-link
functions.

The link property can be configured as a function or object. It can link: function/object

https://riptutorial.com/ 92

Parameter Details

receive the following arguments: scope(directive scope), iElement(
DOM element where directive is applied), iAttrs(collection of DOM
element attributes), controller(array of controllers required by directive
), transcludeFn. It is mainly used to for setting up DOM listeners,
watching model properties for changes, and updating the DOM. It
executes after the template is cloned. It is configured independently if
there is no compile function.

pre-link function

Link function that executes before any child link functions. By default,
child directive link functions execute before parent directive link
functions and the pre-link function enables the parent to link first. One
use case is if the child requires data from the parent.

post-link function

Link function that executives after child elements are linked to parent. It
is commonly used for attaching event handlers and accessing child
directives, but data required by the child directive should not be set
here because the child directive will have already been linked.

restrict: string

Defines how to call the directive from within the DOM. Possible values
(Assuming our directive name is demoDirective): E - Element name (
<demo-directive></demo-directive>), A - Attribute (<div demo-
directive></div>), C - Matching class (<div class="demo-
directive"></div>), M - By comment (<!-- directive: demo-directive -->
). The restrict property can also support multiple options, for example -
restrict: "AC" will restrict the directive to Attribute OR Class. If omitted,
the default value is "EA" (Element or Attribute).

require:
'demoDirective'

Locate demoDirective's controller on the current element and inject its
controller as the fourth argument to the linking function. Throw an error
if not found.

require:
'?demoDirective'

Attempt to locate the demoDirective's controller or pass null to the link
fn if not found.

require:
'^demoDirective'

Locate the demoDirective's controller by searching the element and its
parents. Throw an error if not found.

require:
'^^demoDirective'

Locate the demoDirective's controller by searching the element's
parents. Throw an error if not found.

require:
'?^demoDirective'

Attempt to locate the demoDirective's controller by searching the
element and its parents or pass null to the link fn if not found.

require:
'?^^demoDirective'

Attempt to locate the demoDirective's controller by searching the
element's parents, or pass null to the link fn if not found.

https://riptutorial.com/ 93

Examples

Creating and consuming custom directives

Directives are one of the most powerful features of angularjs. Custom angularjs directives are
used to extend functionality of html by creating new html elements or custom attributes to provide
certain behavior to an html tag.

directive.js

// Create the App module if you haven't created it yet
var demoApp= angular.module("demoApp", []);

// If you already have the app module created, comment the above line and create a reference
of the app module
var demoApp = angular.module("demoApp");

// Create a directive using the below syntax
// Directives are used to extend the capabilities of html element
// You can either create it as an Element/Attribute/class
// We are creating a directive named demoDirective. Notice it is in CamelCase when we are
defining the directive just like ngModel
// This directive will be activated as soon as any this element is encountered in html

demoApp.directive('demoDirective', function () {

 // This returns a directive definition object
 // A directive definition object is a simple JavaScript object used for configuring the
directive’s behaviour,template..etc
 return {
 // restrict: 'AE', signifies that directive is Element/Attribute directive,
 // "E" is for element, "A" is for attribute, "C" is for class, and "M" is for comment.
 // Attributes are going to be the main ones as far as adding behaviors that get used the
most.
 // If you don't specify the restrict property it will default to "A"
 restrict :'AE',

 // The values of scope property decides how the actual scope is created and used inside a
directive. These values can be either “false”, “true” or “{}”. This creates an isolate scope
for the directive.
 // '@' binding is for passing strings. These strings support {{}} expressions for
interpolated values.
 // '=' binding is for two-way model binding. The model in parent scope is linked to the
model in the directive's isolated scope.
 // '&' binding is for passing a method into your directive's scope so that it can be
called within your directive.
 // The method is pre-bound to the directive's parent scope, and supports arguments.
 scope: {
 name: "@", // Always use small casing here even if it's a mix of 2-3 words
 },

 // template replaces the complete element with its text.
 template: "<div>Hello {{name}}!</div>",

 // compile is called during application initialization. AngularJS calls it once when html
page is loaded.

https://riptutorial.com/ 94

 compile: function(element, attributes) {
 element.css("border", "1px solid #cccccc");

 // linkFunction is linked with each element with scope to get the element specific data.
 var linkFunction = function($scope, element, attributes) {
 element.html("Name: "+$scope.name +"");
 element.css("background-color", "#ff00ff");
 };
 return linkFunction;
 }
 };
});

This directive can then be used in App as :

<html>

 <head>
 <title>Angular JS Directives</title>
 </head>
 <body>
 <script src =
"http://ajax.googleapis.com/ajax/libs/angularjs/1.3.14/angular.min.js"></script>
 <script src="directive.js"></script>
 <div ng-app = "demoApp">
 <!-- Notice we are using Spinal Casing here -->
 <demo-directive name="World"></demo-directive>

 </div>
 </body>
</html>

Directive Definition Object Template

demoApp.directive('demoDirective', function () {
 var directiveDefinitionObject = {
 multiElement:
 priority:
 terminal:
 scope: {},
 bindToController: {},
 controller:
 controllerAs:
 require:
 restrict:
 templateNamespace:
 template:
 templateUrl:
 transclude:
 compile:
 link: function(){}
 };
 return directiveDefinitionObject;
});

multiElement - set to true and any DOM nodes between the start and end of the directive
name will be collected and grouped together as directive elements

1.

https://riptutorial.com/ 95

priority - allows specification of the order to apply directives when multiple directives are
defined on a single DOM element. Directives with higher numbers are compiled first.

2.

terminal - set to true and the current priority will be the last set of directives to execute3.
scope - sets scope of the directive4.
bind to controller - binds scope properties directly to directive controller5.
controller - controller constructor function6.
require - require another directive and inject its controller as the fourth argument to the
linking function

7.

controllerAs - name reference to the controller in the directive scope to allow the controller to
be referenced from the directive template.

8.

restrict - restrict directive to Element, Attribute, Class, or Comment9.
templateNameSpace - sets document type used by directive template: html, svg, or math. html is
the default

10.

template - html markup that defaults to replacing the content of the directive's element, or
wraps the contents of the directive element if transclude is true

11.

templateUrl - url provided asynchronously for the template12.
transclude - Extract the contents of the element where the directive appears and make it
available to the directive. The contents are compiled and provided to the directive as a
transclusion function.

13.

compile - function to transform the template DOM14.
link - only used if the compile property is not defined. The link function is responsible for
registering DOM listeners as well as updating the DOM. It is executed after the template has
been cloned.

15.

Basic Directive example

superman-directive.js

angular.module('myApp', [])
 .directive('superman', function() {
 return {
 // restricts how the directive can be used
 restrict: 'E',
 templateUrl: 'superman-template.html',
 controller: function() {
 this.message = "I'm superman!"
 },
 controllerAs: 'supermanCtrl',
 // Executed after Angular's initialization. Use commonly
 // for adding event handlers and DOM manipulation
 link: function(scope, element, attributes) {
 element.on('click', function() {
 alert('I am superman!')
 });
 }
 }
 });

superman-template.html

<h2>{{supermanCtrl.message}}</h2>

https://riptutorial.com/ 96

index.html

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Document</title>
 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.5.0/angular.js"></script>
 <script src="superman-directive.js"><script/>
</head>
<body>
<div ng-app="myApp">
 <superman></superman>
</div>
</body>
</html>

You can check out more about directive's restrict and link functions on AngularJS's official
documentation on Directives

How to create resuable component using directive

AngularJS directives are what controls the rendering of the HTML inside an AngularJS application.
They can be an Html element, attribute, class or a comment. Directives are used to manipulate the
DOM, attaching new behavior to HTML elements, data binding and many more. Some of
examples of directives which angular provides are ng-model, ng-hide, ng-if.

Similarly one can create his own custom directive and make them resuable. For creating Custom
directives Reference. The sense behind creating reusable directives is to make a set of
directives/components written by you just like angularjs provides us using angular.js . These
reusable directives can be particularly very helpful when you have suite of applications/application
which requires a consistent behavior, look and feel. An example of such reusable component can
be a simple toolbar which you may want to use across your application or different applications but
you want them to behave the same or look the same.

Firstly , Make a folder named resuableComponents in your app Folder and make
reusableModuleApp.js

reusableModuleApp.js:

(function(){

 var reusableModuleApp = angular.module('resuableModuleApp', ['ngSanitize']);

 //Remember whatever dependencies you have in here should be injected in the app module where
it is intended to be used or it's scripts should be included in your main app
 //We will be injecting ng-sanitize

 resubaleModuleApp.directive('toolbar', toolbar)

 toolbar.$inject=['$sce'];

 function toolbar($sce){

https://riptutorial.com/ 97

https://docs.angularjs.org/guide/directive
https://docs.angularjs.org/guide/directive
http://www.riptutorial.com/angularjs/example/3151/creating-and-consuming-custom-directives

 return{
 restrict :'AE',
 //Defining below isolate scope actually provides window for the directive to take data
from app that will be using this.
 scope : {
 value1: '=',
 value2: '=',
 },

 }
 template : ' <a ng-click="Add()" href="">{{value1}} <a ng-
click="Edit()" href="#">{{value2}} ',
 link : function(scope, element, attrs){

 //Handle's Add function
 scope.Add = function(){

 };

 //Handle's Edit function
 scope.Edit = function(){

 };
 }
 }

});

mainApp.js:

(function(){
 var mainApp = angular.module('mainApp', ['reusableModuleApp']); //Inject resuableModuleApp
in your application where you want to use toolbar component

 mainApp.controller('mainAppController', function($scope){
 $scope.value1 = "Add";
 $scope.value2 = "Edit";

 });

 });

index.html:

 <!doctype html>
 <html ng-app="mainApp">
 <head>
 <title> Demo Making a reusable component
 <head>
 <body ng-controller="mainAppController">

 <!-- We are providing data to toolbar directive using mainApp'controller -->
 <toolbar value1="value1" value2="value2"></toolbar>

 <!-- We need to add the dependent js files on both apps here -->
 <script src="js/angular.js"></script>
 <script src="js/angular-sanitize.js"></script>

https://riptutorial.com/ 98

 <!-- your mainApp.js should be added afterwards --->
 <script src="mainApp.js"></script>

 <!-- Add your reusable component js files here -->
 <script src="resuableComponents/reusableModuleApp.js"></script>

 </body>
 </html>

Directive are reusable components by default. When you make directives in separate angular
module, It actually makes it exportable and reusable across different angularJs applications. New
directives can simply be added inside reusableModuleApp.js and reusableModuleApp can have
it's own controller, services, DDO object inside directive to define the behavior.

Basic directive with template and an isolated scope

Creating a custom directive with isolated scope will separate the scope inside the directive from
the outside scope, in order to prevent our directive from accidentally change the data in the
parent scope and restricting it from reading private data from the parent scope.

To create an isolated scope and still allow our custom directive to communicate with the outside
scope, we can use the scope option that describe how to map the bindings of the directive's inner
scope with the outside scope.

The actual bindings are made with extra attributes attached to the directive. The binding settings
are defined with the scope option and an object with key-value pairs:

A key, which is corresponded to our directive's isolated scope property•

A value, which tells Angular how do bind the directive inner scope to a matching attribute•

Simple example of a directive with an isolated scope:

var ProgressBar = function() {
 return {
 scope: { // This is how we define an isolated scope
 current: '=', // Create a REQUIRED bidirectional binding by using the 'current'
attribute
 full: '=?maxValue' // Create an OPTIONAL (Note the '?'): bidirectional binding using
'max-value' attribute to the `full` property in our directive isolated scope
 }
 template: '<div class="progress-back">' +
 ' <div class="progress-bar"' +
 ' ng-style="{width: getProgress()}">' +
 ' </div>' +
 '</div>',
 link: function(scope, el, attrs) {
 if (scope.full === undefined) {
 scope.full = 100;
 }
 scope.getProgress = function() {
 return (scope.current / scope.size * 100) + '%';
 }

https://riptutorial.com/ 99

 }
 }
}

ProgressBar.$inject = [];
angular.module('app').directive('progressBar', ProgressBar);

Example how to use this directive and bind data from the controller's scope to the directive's inner
scope:

Controller:

angular.module('app').controller('myCtrl', function($scope) {
 $scope.currentProgressValue = 39;
 $scope.maxProgressBarValue = 50;
});

View:

<div ng-controller="myCtrl">
 <progress-bar current="currentProgressValue"></progress-bar>
 <progress-bar current="currentProgressValue" max-value="maxProgressBarValue"></progress-
bar>
</div>

Building a reusable component

Directives can be used to build reusable components. Here is an example of a "user box"
component:

userBox.js

angular.module('simpleDirective', []).directive('userBox', function() {
 return {
 scope: {
 username: '=username',
 reputation: '=reputation'
 },
 templateUrl: '/path/to/app/directives/user-box.html'
 };
});

Controller.js

var myApp = angular.module('myApp', ['simpleDirective']);

myApp.controller('Controller', function($scope) {

 $scope.user = "John Doe";
 $scope.rep = 1250;

 $scope.user2 = "Andrew";
 $scope.rep2 = 2850;

https://riptutorial.com/ 100

});

myPage.js

<html lang="en" ng-app="myApp">
 <head>
 <script src="/path/to/app/angular.min.js"></script>
 <script src="/path/to/app/js/controllers/Controller.js"></script>
 <script src="/path/to/app/js/directives/userBox.js"></script>
 </head>

 <body>

 <div ng-controller="Controller">
 <user-box username="user" reputation="rep"></user-box>
 <user-box username="user2" reputation="rep2"></user-box>
 </div>

 </body>
</html>

user-box.html

<div>{{username}}</div>
<div>{{reputation}} reputation</div>

The result will be:

John Doe
1250 reputation
Andrew
2850 reputation

Directive decorator

Sometimes you may need additional features from a directive. Instead of rewriting (copy) the
directive, you can modify how the directive behaves.

The decorator will be executed during $inject phase.

To do so, provde a .config to your module. The directive is called myDirective, so you have to
config myDirectiveDirective. (this in an angular convention [read about providers]).

This example will change the templateUrl of the directive:

angular.module('myApp').config(function($provide){
 $provide.decorator('myDirectiveDirective', function($delegate){
 var directive = $delegate[0]; // this is the actual delegated, your directive
 directive.templateUrl = 'newTemplate.html'; // you change the directive template
 return $delegate;
 })
});

https://riptutorial.com/ 101

This example add an onClick event to the directive element when clicked, this happens during
compile phase.

angular.module('myApp').config(function ($provide) {
 $provide.decorator('myDirectiveTwoDirective', function ($delegate) {
 var directive = $delegate[0];
 var link = directive.link; // this is directive link phase
 directive.compile = function () { // change the compile of that directive
 return function (scope, element, attrs) {
 link.apply(this, arguments); // apply this at the link phase
 element.on('click', function(){ // when add an onclick that log hello when
the directive is clicked.
 console.log('hello!');
 });
 };
 };
 return $delegate;
 });

 });

Similar approach can be used for both Providers and Services.

Directive inheritance and interoperability

Angular js directives can be nested or be made interoperable.

In this example, directive Adir exposes to directive Bdir it's controller $scope, since Bdir requires
Adir.

angular.module('myApp',[]).directive('Adir', function () {
 return {
 restrict: 'AE',
 controller: ['$scope', function ($scope) {
 $scope.logFn = function (val) {
 console.log(val);
 }
 }]
 }
 })

Make sure to set require: '^Adir' (look at the angular documentation, some versions doesn't require
^ character).

.directive('Bdir', function () {
 return {
 restrict: 'AE',
 require: '^Adir', // Bdir require Adir
 link: function (scope, elem, attr, Parent) {
 // Parent is Adir but can be an array of required directives.
 elem.on('click', function ($event) {
 Parent.logFn("Hello!"); // will log "Hello! at parent dir scope
 scope.$apply(); // apply to parent scope.
 });
 }

https://riptutorial.com/ 102

 }
 }]);

You can nest your directive in this way:

<div a-dir></div>
<a-dir><b-dir></b-dir> </a-dir>

Is not required that directives are nested in your HTML.

Read Custom Directives online: https://riptutorial.com/angularjs/topic/965/custom-directives

https://riptutorial.com/ 103

https://riptutorial.com/angularjs/topic/965/custom-directives

Chapter 17: Custom filters

Examples

Simple filter example

Filters format the value of an expression for display to the user. They can be used in view
templates, controllers or services. This example creates a filter (addZ) then uses it in a view. All this
filter does is add a capital 'Z' to the end of the string.

example.js

angular.module('main', [])
 .filter('addZ', function() {
 return function(value) {
 return value + "Z";
 }
 })
 .controller('MyController', ['$scope', function($scope) {
 $scope.sample = "hello";
 }])

example.html

Inside the view, the filter is applied with the following syntax: { variable | filter}. In this case, the
variable we defined in the controller, sample, is being filtered by the filter we created, addZ.

<div ng-controller="MyController">
 {{sample | addZ}}
</div>

Expected output

helloZ

Use a filter in a controller, a service or a filter

You will have to inject $filter:

angular
 .module('filters', [])
 .filter('percentage', function($filter) {
 return function (input) {
 return $filter('number')(input * 100) + ' %';
 };
 });

https://riptutorial.com/ 104

Create a filter with parameters

By default, a filter has a single parameter: the variable it is applied on. But you can pass more
parameter to the function:

angular
 .module('app', [])
 .controller('MyController', function($scope) {
 $scope.example = 0.098152;
 })
 .filter('percentage', function($filter) {
 return function (input, decimals) {
 return $filter('number')(input * 100, decimals) + ' %';
 };
 });

Now, you can give a precision to the percentage filter:

{{ example | percentage: 2 }}
=> "9.81 %"

... but other parameters are optional, you can still use the default filter:

{{ example | percentage }}
=> "9.8152 %"

Read Custom filters online: https://riptutorial.com/angularjs/topic/2552/custom-filters

https://riptutorial.com/ 105

https://riptutorial.com/angularjs/topic/2552/custom-filters

Chapter 18: Custom filters with ES6

Examples

FileSize Filter using ES6

We have here a file Size filter to describe how to add costum filter to an existing module :

let fileSize=function (size,unit,fixedDigit) {
return size.toFixed(fixedDigit) + ' '+unit;
};

 let fileSizeFilter=function () {
 return function (size) {
 if (isNaN(size))
 size = 0;

 if (size < 1024)
 return size + ' octets';

 size /= 1024;

 if (size < 1024)
 return fileSize(size,'Ko',2);

 size /= 1024;

 if (size < 1024)
 return fileSize(size,'Mo',2);

 size /= 1024;

 if (size < 1024)
 return fileSize(size,'Go',2);

 size /= 1024;
 return fileSize(size,'To',2);
 };
 };
export default fileSizeFilter;

The filter call into the module :

import fileSizeFilter from 'path...';
let myMainModule =
 angular.module('mainApp', [])
 .filter('fileSize', fileSizeFilter);

The html code where we call the filter :

<div ng-app="mainApp">

 <div>
 <input type="text" ng-model="size" />

https://riptutorial.com/ 106

 </div>
 <div>
 <h3>Output:</h3>
 <p>{{size| Filesize}}</p>
 </div>
</div>

Read Custom filters with ES6 online: https://riptutorial.com/angularjs/topic/9421/custom-filters-
with-es6

https://riptutorial.com/ 107

https://riptutorial.com/angularjs/topic/9421/custom-filters-with-es6
https://riptutorial.com/angularjs/topic/9421/custom-filters-with-es6

Chapter 19: Debugging

Examples

Basic debugging in markup

Scope testing & output of model

<div ng-app="demoApp" ng-controller="mainController as ctrl">
 {{$id}}

 <li ng-repeat="item in ctrl.items">
 {{$id}}

 {{item.text}}

 {{$id}}
 <pre>
 {{ctrl.items | json : 2}}
 </pre>
</div>

angular.module('demoApp', [])
.controller('mainController', MainController);

function MainController() {
 var vm = this;
 vm.items = [{
 id: 0,
 text: 'first'
 },
 {
 id: 1,
 text: 'second'
 },
 {
 id: 2,
 text: 'third'
 }];
}

Sometimes it can help to see if there is a new scope to fix scoping issues. $scope.$id can be used
in an expression everywhere in your markup to see if there is a new $scope.

In the example you can see that outside of the ul-tag is the same scope ($id=2) and inside the ng-
repeat there are new child scopes for each iteration.

An output of the model in a pre-tag is useful to see the current data of your model. The json filter
creates a nice looking formatted output. The pre-tag is used because inside that tag any new-line
character \n will be correctly displayed.

demo

https://riptutorial.com/ 108

https://jsfiddle.net/awolf2904/jc27f3c4/

Using ng-inspect chrome extension

ng-inspect is a light weight Chrome extension for debugging AngularJS applications.

When a node is selected from the elements panel, the scope related info is displayed in the ng-
inspect panel.

Exposes few global variables for quick access of scope/isolateScope.

$s -- scope of the selected node
$is -- isolateScope of the selected node
$el -- jQuery element reference of the selected node (requiers jQuery)
$events -- events present on the selected node (requires jQuery)

https://riptutorial.com/ 109

https://chrome.google.com/webstore/detail/ng-inspect-for-angularjs/cidepfmbgngpdapgncfhpecbdhmnnemf
https://i.stack.imgur.com/BQ1xj.jpg

Provides easy access to Services/Factories.

Use $get() to retrieve the instance of a service/factory by name.

https://riptutorial.com/ 110

https://i.stack.imgur.com/jn3Zo.jpg

Performance of the application can be monitored by counting the no.of scopes,isolateScopes,
watchers and listeners on the application.

Use $count() to get the count of scopes, isolateScopes, watchers and listeners.

https://riptutorial.com/ 111

https://i.stack.imgur.com/8sRj5.jpg

Note: This extension will work only when the debugInfo is enabled.

Download ng-inspect here

Getting the Scope of element

In an angular app everything goes around scope, if we could get an elements scope then it is easy
to debug the angular app. How to access the scope of element:

angular.element(myDomElement).scope();
e.g.
angular.element(document.getElementById('yourElementId')).scope() //accessing by ID

Getting the scope of the controller:-

https://riptutorial.com/ 112

https://i.stack.imgur.com/Du8Za.jpg
https://chrome.google.com/webstore/detail/ng-inspect-for-angularjs/cidepfmbgngpdapgncfhpecbdhmnnemf

 angular.element('[ng-controller=ctrl]').scope()

Another easy way to access a DOM element from the console (as jm mentioned) is to click on it in
the 'elements' tab, and it automatically gets stored as $0.

angular.element($0).scope();

Read Debugging online: https://riptutorial.com/angularjs/topic/4761/debugging

https://riptutorial.com/ 113

https://riptutorial.com/angularjs/topic/4761/debugging

Chapter 20: Decorators

Syntax

decorator(name, decorator);•

Remarks

Decorator is function that allow a service, factory, directive or filter to be modified prior
to its usage. Decorator is used to override or modify the behavior of the service. The
return value of the decorator function may be the original service, or a new service that
replaces, or wraps and delegates to, the original service.

Any decorating must be done in angular application's config phase by injecting $provide and using
it's $provide.decorator function.

The decorator function has a $delegate object injected to provide access to the service
that matches the selector in the decorator. This $delegate will be the service you are
decorating. The return value of the function provided to the decorator will take place of
the service, directive, or filter being decorated.

One should consider using decorator only if any other approach is not appropriate or proves to be
too tedious. If large application is using same service, and one part is changing service behavior,
it's easy to create confusion and/or bugs in the process.

Typical use case would be when you have a 3rd party dependency which you can't upgrade but
need it to work little differently or extend it.

Examples

Decorate service, factory

Below is example of service decorator, overriding null date returned by service.

angular.module('app', [])
 .config(function($provide) {
 $provide.decorator('myService', function($delegate) {
 $delegate.getDate = function() { // override with actual date object
 return new Date();
 };
 return $delegate;
 });
 })
 .service('myService', function() {
 this.getDate = function() {
 return null; // w/o decoration we'll be returning null

https://riptutorial.com/ 114

http://www.riptutorial.com/angularjs/example/18267/service
http://www.riptutorial.com/angularjs/example/18266/factory
http://www.riptutorial.com/angularjs/topic/965/custom-directives
http://www.riptutorial.com/angularjs/topic/1401/filters

 };
 })
 .controller('myController', function(myService) {
 var vm = this;
 vm.date = myService.getDate();
 });

<body ng-controller="myController as vm">
 <div ng-bind="vm.date | date:'fullDate'"></div>
</body>

Decorate directive

Directives can be decorated just like services and we can modify or replace any of it's
functionality. Note that directive itself is accessed at position 0 in $delegate array and name
parameter in decorator must include Directive suffix (case sensitive).

So, if directive is called myDate, it can be accessed using myDateDirective using $delegate[0].

Below is simple example where directive shows current time. We'll decorate it to update current
time in one second intervals. Without decoration it will always show same time.

<body>
 <my-date></my-date>
</body>

angular.module('app', [])
 .config(function($provide) {
 $provide.decorator('myDateDirective', function($delegate, $interval) {
 var directive = $delegate[0]; // access directive

 directive.compile = function() { // modify compile fn
 return function(scope) {
 directive.link.apply(this, arguments);
 $interval(function() {
 scope.date = new Date(); // update date every second
 }, 1000);
 };
 };

 return $delegate;
 });
 })
 .directive('myDate', function() {
 return {
 restrict: 'E',
 template: 'Current time is {{ date | date:\'MM:ss\' }}',
 link: function(scope) {
 scope.date = new Date(); // get current date
 }

https://riptutorial.com/ 115

http://i.stack.imgur.com/qTaOZ.png

 };
 });

Decorate filter

When decorating filters, name parameter must include Filter suffix (case sensitive). If filter is
called repeat, decorator parameter is repeatFilter. Below we'll decorate custom filter that repeats
any given string n times so that result is reversed. You can also decorate angular's build-in filters
the same way, although not recommended as it can affect the functionality of the framework.

<body>
 <div ng-bind="'i can haz cheeseburger ' | repeat:2"></div>
</body>

angular.module('app', [])
 .config(function($provide) {
 $provide.decorator('repeatFilter', function($delegate) {
 return function reverse(input, count) {
 // reverse repeated string
 return ($delegate(input, count)).split('').reverse().join('');
 };
 });
 })
 .filter('repeat', function() {
 return function(input, count) {
 // repeat string n times
 return (input || '').repeat(count || 1);
 };
 });

Read Decorators online: https://riptutorial.com/angularjs/topic/5255/decorators

https://riptutorial.com/ 116

http://i.stack.imgur.com/25CHL.png
http://i.stack.imgur.com/KrpoR.png
http://i.stack.imgur.com/qFZoL.png
https://riptutorial.com/angularjs/topic/5255/decorators

Chapter 21: Dependency Injection

Syntax

myApp.controller('MyController', function($scope) { ... }); // non-minified code•

myApp.controller('MyController', ['$scope', function($scope) { ... }]); //support minification•

function MyController(){}

MyController.$inject = ['$scope'];

myApp.controller('MyController', MyController); //$inject annotation

•

$injector.get('injectable'); //dynamic/runtime injection•

Remarks

Providers cannot be injected into run blocks.

Services or Values cannot be injected into config blocks.

Make sure to annotate your injections so your code will not break on minification.

Examples

Injections

The simplest example of an injection in an Angular app - injecting $scope to an Angular Controller:

angular.module('myModule', [])
.controller('myController', ['$scope', function($scope) {
 $scope.members = ['Alice', 'Bob'];
 ...
}])

The above illustrates an injection of a $scope into a controller, but it is the same whether you inject
any module into any other. The process is the same.

Angular's system is in charge of resolving dependencies for you. If you create a service for
instance, you can list it like in the example above and it will be available for you.

You can use DI - Dependency Injection - wherever you are defining a component.

Note that in the above example we use what is called "Inline Array Annotation". Meaning, we
explicitly write as strings the names of our dependencies. We do it to prevent the application from
breaking when the code is minified for Production. Code minification changes the names of the

https://riptutorial.com/ 117

variables (but not strings), which breaks the injection. By using strings, Angular knows which
dependencies we want.

Very important - the order of string names must be the same as the parameters in the
function.

There are tools that automate this process and take care of this for you.

Dynamic Injections

There is also an option to dynamically request components. You can do it using the $injector
service:

myModule.controller('myController', ['$injector', function($injector) {
 var myService = $injector.get('myService');
}]);

Note: while this method could be used to prevent the circular dependency issue that might break
your app, it is not considered best practice to bypass the problem by using it. Circular dependency
usually indicates there is a flaw in your application's architecture, and you should address that
instead.

$inject Property Annotation

Equivalently, we can use the $inject property annotation to achieve the same as above:

var MyController = function($scope) {
 // ...
}
MyController.$inject = ['$scope'];
myModule.controller('MyController', MyController);

Dynamically load AngularJS service in vanilla JavaScript

You can load AngularJS services in vanilla JavaScript using AngularJS injector() method. Every
jqLite element retrieved calling angular.element() has a method injector() that can be used to
retrieve the injector.

var service;
var serviceName = 'myService';

var ngAppElement = angular.element(document.querySelector('[ng-app],[data-ng-app]') ||
document);
var injector = ngAppElement.injector();

if(injector && injector.has(serviceNameToInject)) {
 service = injector.get(serviceNameToInject);
}

In the above example we try to retrieve the jqLite element containing the root of the AngularJS

https://riptutorial.com/ 118

application (ngAppElement). To do that, we use angular.element() method, searching for a DOM
element containing ng-app or data-ng-app attribute or, if it does not exists, we fall back to document
element. We use ngAppElement to retrieve injector instance (with ngAppElement.injector()). The
injector instance is used to check if the service to inject exists (with injector.has()) and then to
load the service (with injector.get()) inside service variable.

Read Dependency Injection online: https://riptutorial.com/angularjs/topic/1582/dependency-
injection

https://riptutorial.com/ 119

https://riptutorial.com/angularjs/topic/1582/dependency-injection
https://riptutorial.com/angularjs/topic/1582/dependency-injection

Chapter 22: digest loop walkthrough

Syntax

$scope.$watch(watchExpression, callback, [deep compare])•
$scope.$digest()•
$scope.$apply([exp])•

Examples

two way data binding

Angular has some magic under its hood. it enables binding DOM to real js variables.

Angular uses a loop, named the "digest loop", which is called after any change of a variable -
calling callbacks which update the DOM.

For example, the ng-model directive attaches a keyup eventListener to this input:

<input ng-model="variable" />

Every time the keyup event fires, the digest loop starts.

At some point, the digest loop iterates over a callback which updates the contents of this span:

{{variable}}

The basic life-cycle of this example, summarizes (very Schematically) how angular works::

Angular scans html
ng-model directive creates a keyup listener on input•
expression inside span adds a callback to digest cycle•

1.

User interacts with input
keyup listener starts digest cycle•
digest cycle calles the callback•
Callback updates span's contents•

2.

$digest and $watch

Implementing two-way-data-binding, to achieve the result from the previous example, could be
done with two core functions:

$digest is called after a user interaction (binding DOM=>variable)•
$watch sets a callback to be called after variable changes (binding variable=>DOM)•

note: this is example is a demonstration, not the actual angular code

https://riptutorial.com/ 120

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/Events

<input id="input"/>

The two functions we need:

var $watches = [];
function $digest(){
 $watches.forEach(function($w){
 var val = $w.val();
 if($w.prevVal !== val){
 $w.callback(val, $w.prevVal);
 $w.prevVal = val;
 }
 })
}
function $watch(val, callback){
 $watches.push({val:val, callback:callback, prevVal: val() })
}

Now we could now use these functions to hook up a variable to the DOM (angular comes with
built-in directives which will do this for you):

var realVar;
//this is usually done by ng-model directive
input1.addEventListener('keyup',function(e){
 realVar=e.target.value;
 $digest()
}, true);

//this is usually done with {{expressions}} or ng-bind directive
$watch(function(){return realVar},function(val){
 span1.innerHTML = val;
});

Off-course, the real implementations are more complex, and support parameters such as which
element to bind to, and what variable to use

A running example could be found here: https://jsfiddle.net/azofxd4j/

the $scope tree

The previous example is good enough when we need to bind a single html element, to a single
variable.

In reality - we need to bind many elements to many variables:

{{number}}

This ng-repeat binds 5 elements to 5 variables called number, with a different value for each of
them!

The way angular achieves this behavior is using a separate context for each element which needs

https://riptutorial.com/ 121

https://jsfiddle.net/azofxd4j/

separate variables. This context is called a scope.

Each scope contains properties, which are the variables bound to the DOM, and the $digest and
$watch functions are implemented as methods of the scope.

The DOM is a tree, and variables need to be used in different levels of the tree:

<div>
 <input ng-model="person.name" />
 {{number}} {{person.name}}
</div>

But as we saw, the context(or scope) of variables inside ng-repeat is different to the context above
it. To solve this - angular implements scopes as a tree.

Each scope has an array of children, and calling its $digest method will run all of its children's
$digest method.

This way - after changing the input - $digest is called for the div's scope, which then runs the
$digest for its 5 children - which will update its content.

A simple implementation for a scope, could look like this:

function $scope(){
 this.$children = [];
 this.$watches = [];
}

$scope.prototype.$digest = function(){
 this.$watches.forEach(function($w){
 var val = $w.val();
 if($w.prevVal !== val){
 $w.callback(val, $w.prevVal);
 $w.prevVal = val;
 }
 });
 this.$children.forEach(function(c){
 c.$digest();
 });
}

$scope.prototype.$watch = function(val, callback){
 this.$watches.push({val:val, callback:callback, prevVal: val() })
}

note: this is example is a demonstration, not the actual angular code

Read digest loop walkthrough online: https://riptutorial.com/angularjs/topic/3156/digest-loop-
walkthrough

https://riptutorial.com/ 122

https://riptutorial.com/angularjs/topic/3156/digest-loop-walkthrough
https://riptutorial.com/angularjs/topic/3156/digest-loop-walkthrough

Chapter 23: Directives using
ngModelController

Examples

A simple control: rating

Let us build a simple control, a rating widget, intended to be used as:

<rating min="0" max="5" nullifier="true" ng-model="data.rating"></rating>

No fancy CSS for now; this would render as:

0 1 2 3 4 5 x

Clicking on a number selects that rating; and clicking the "x" sets the rating to null.

app.directive('rating', function() {

 function RatingController() {
 this._ngModel = null;
 this.rating = null;
 this.options = null;
 this.min = typeof this.min === 'number' ? this.min : 1;
 this.max = typeof this.max === 'number' ? this.max : 5;
 }

 RatingController.prototype.setNgModel = function(ngModel) {
 this._ngModel = ngModel;

 if(ngModel) {
 // KEY POINT 1
 ngModel.$render = this._render.bind(this);
 }
 };

 RatingController.prototype._render = function() {
 this.rating = this._ngModel.$viewValue != null ? this._ngModel.$viewValue : -
Number.MAX_VALUE;
 };

 RatingController.prototype._calculateOptions = function() {
 if(this.min == null || this.max == null) {
 this.options = [];
 }
 else {
 this.options = new Array(this.max - this.min + 1);
 for(var i=0; i < this.options.length; i++) {
 this.options[i] = this.min + i;
 }
 }
 };

https://riptutorial.com/ 123

 RatingController.prototype.setValue = function(val) {
 this.rating = val;
 // KEY POINT 2
 this._ngModel.$setViewValue(val);
 };

 // KEY POINT 3
 Object.defineProperty(RatingController.prototype, 'min', {
 get: function() {
 return this._min;
 },
 set: function(val) {
 this._min = val;
 this._calculateOptions();
 }
 });

 Object.defineProperty(RatingController.prototype, 'max', {
 get: function() {
 return this._max;
 },
 set: function(val) {
 this._max = val;
 this._calculateOptions();
 }
 });

 return {
 restrict: 'E',
 scope: {
 // KEY POINT 3
 min: '<?',
 max: '<?',
 nullifier: '<?'
 },
 bindToController: true,
 controllerAs: 'ctrl',
 controller: RatingController,
 require: ['rating', 'ngModel'],
 link: function(scope, elem, attrs, ctrls) {
 ctrls[0].setNgModel(ctrls[1]);
 },
 template:
 '<span ng-repeat="o in ctrl.options" href="#" class="rating-option" ng-
class="{\'rating-option-active\': o <= ctrl.rating}" ng-click="ctrl.setValue(o)">{{ o
}}' +
 '<span ng-if="ctrl.nullifier" ng-click="ctrl.setValue(null)" class="rating-
nullifier">✖'
 };
});

Key points:

Implement ngModel.$render to transfer the model's view value to your view.1.
Call ngModel.$setViewValue() whenever you feel the view value should be updated.2.
The control can of course be parameterized; use '<' scope bindings for parameters, if in
Angular >= 1.5 to clearly indicate input - one way binding. If you have to take action
whenever a parameter changes, you can use a JavaScript property (see

3.

https://riptutorial.com/ 124

Object.defineProperty()) to save a few watches.

Note 1: In order not to overcomplicate the implementation, the rating values are inserted in an
array - the ctrl.options. This is not needed; a more efficient, but also more complex,
implementation could use DOM manipulation to insert/remove ratings when min/max change.

Note 2: With the exception of the '<' scope bindings, this example can be used in Angular < 1.5. If
you are on Angular >= 1.5, it would be a good idea to tranform this to a component and use the
$onInit() lifecycle hook to initialize min and max, instead of doing so in the controller's constructor.

And a necessary fiddle: https://jsfiddle.net/h81mgxma/

A couple of complex controls: edit a full object

A custom control does not have to limit itself to trivial things like primitives; it can edit more
interesting things. Here we present two types of custom controls, one for editing persons and one
for editing addresses. The address control is used to edit the person's address. An example of
usage would be:

<input-person ng-model="data.thePerson"></input-person>
<input-address ng-model="data.thePerson.address"></input-address>

The model for this example is deliberately simplistic:

function Person(data) {
 data = data || {};
 this.name = data.name;
 this.address = data.address ? new Address(data.address) : null;
}

function Address(data) {
 data = data || {};
 this.street = data.street;
 this.number = data.number;
}

The address editor:

app.directive('inputAddress', function() {

 InputAddressController.$inject = ['$scope'];
 function InputAddressController($scope) {
 this.$scope = $scope;
 this._ngModel = null;
 this.value = null;
 this._unwatch = angular.noop;
 }

 InputAddressController.prototype.setNgModel = function(ngModel) {
 this._ngModel = ngModel;

 if(ngModel) {
 // KEY POINT 3

https://riptutorial.com/ 125

https://jsfiddle.net/h81mgxma/

 ngModel.$render = this._render.bind(this);
 }
 };

 InputAddressController.prototype._makeWatch = function() {
 // KEY POINT 1
 this._unwatch = this.$scope.$watchCollection(
 (function() {
 return this.value;
 }).bind(this),
 (function(newval, oldval) {
 if(newval !== oldval) { // skip the initial trigger
 this._ngModel.$setViewValue(newval !== null ? new Address(newval) : null);
 }
 }).bind(this)
);
 };

 InputAddressController.prototype._render = function() {
 // KEY POINT 2
 this._unwatch();
 this.value = this._ngModel.$viewValue ? new Address(this._ngModel.$viewValue) : null;
 this._makeWatch();
 };

 return {
 restrict: 'E',
 scope: {},
 bindToController: true,
 controllerAs: 'ctrl',
 controller: InputAddressController,
 require: ['inputAddress', 'ngModel'],
 link: function(scope, elem, attrs, ctrls) {
 ctrls[0].setNgModel(ctrls[1]);
 },
 template:
 '<div>' +
 '<label>Street:<input type="text" ng-model="ctrl.value.street"
/></label>' +
 '<label>Number:<input type="text" ng-model="ctrl.value.number"
/></label>' +
 '</div>'
 };
});

Key points:

We are editing an object; we do not want to change directly the object given to us from our
parent (we want our model to be compatible with the immutability principle). So we create a
shallow watch on the object being edited and update the model with $setViewValue()
whenever a property changes. We pass a copy to our parent.

1.

Whenever the model changes from the outside, we copy it and save the copy to our scope.
Immutability principles again, though the internal copy is not immutable, the external could
very well be. Additionally we rebuild the watch (this_unwatch();this._makeWatch();), to avoid
triggering the watcher for changes pushed to us by the model. (We only want the watch to
trigger for changes made in the UI.)

2.

Other that the points above, we implement ngModel.$render() and call ngModel.$setViewValue() 3.

https://riptutorial.com/ 126

as we would for a simple control (see the rating example).

The code for the person custom control is almost identical. The template is using the <input-
address>. In a more advanced implementation we could extract the controllers in a reusable
module.

app.directive('inputPerson', function() {

 InputPersonController.$inject = ['$scope'];
 function InputPersonController($scope) {
 this.$scope = $scope;
 this._ngModel = null;
 this.value = null;
 this._unwatch = angular.noop;
 }

 InputPersonController.prototype.setNgModel = function(ngModel) {
 this._ngModel = ngModel;

 if(ngModel) {
 ngModel.$render = this._render.bind(this);
 }
 };

 InputPersonController.prototype._makeWatch = function() {
 this._unwatch = this.$scope.$watchCollection(
 (function() {
 return this.value;
 }).bind(this),
 (function(newval, oldval) {
 if(newval !== oldval) { // skip the initial trigger
 this._ngModel.$setViewValue(newval !== null ? new Person(newval) : null);
 }
 }).bind(this)
);
 };

 InputPersonController.prototype._render = function() {
 this._unwatch();
 this.value = this._ngModel.$viewValue ? new Person(this._ngModel.$viewValue) : null;
 this._makeWatch();
 };

 return {
 restrict: 'E',
 scope: {},
 bindToController: true,
 controllerAs: 'ctrl',
 controller: InputPersonController,
 require: ['inputPerson', 'ngModel'],
 link: function(scope, elem, attrs, ctrls) {
 ctrls[0].setNgModel(ctrls[1]);
 },
 template:
 '<div>' +
 '<label>Name:<input type="text" ng-model="ctrl.value.name"
/></label>' +
 '<input-address ng-model="ctrl.value.address"></input-address>' +
 '</div>'
 };

https://riptutorial.com/ 127

});

Note: Here the objects are typed, i.e. they have proper constructors. This is not obligatory; the
model can be plain JSON objects. In this case just use angular.copy() instead of the constructors.
An added advantage is that the controller becomes identical for the two controls and can easily be
extracted into some common module.

The fiddle: https://jsfiddle.net/3tzyqfko/2/

Two versions of the fiddle having extracted the common code of the controllers:
https://jsfiddle.net/agj4cp0e/ and https://jsfiddle.net/ugb6Lw8b/

Read Directives using ngModelController online:
https://riptutorial.com/angularjs/topic/2438/directives-using-ngmodelcontroller

https://riptutorial.com/ 128

https://jsfiddle.net/3tzyqfko/2/
https://jsfiddle.net/agj4cp0e/
https://jsfiddle.net/ugb6Lw8b/
https://riptutorial.com/angularjs/topic/2438/directives-using-ngmodelcontroller

Chapter 24: Distinguishing Service vs
Factory

Examples

Factory VS Service once-and-for-all

By definition:

Services are basically constructor functions. They use ‘this’ keyword.

Factories are simple functions hence return an object.

Under the hood:

Factories internally calls provider function.

Services internally calls Factory function.

Debate:

Factories can run code before we return our object literal.

But at the same time, Services can also be written to return an object literal and to run code before
returning. Though that is contra productive as services are designed to act as constructor function.

In fact, constructor functions in JavaScript can return whatever they want.

So which one is better?

The constructor syntax of services is more close to class syntax of ES6. So migration will be easy.

Summary

So in summary, provider, factory, and service are all providers.

A factory is a special case of a provider when all you need in your provider is a $get() function. It
allows you to write it with less code.

A service is a special case of a factory when you want to return an instance of a new object, with
the same benefit of writing less code.

https://riptutorial.com/ 129

Read Distinguishing Service vs Factory online:
https://riptutorial.com/angularjs/topic/7099/distinguishing-service-vs-factory

https://riptutorial.com/ 130

http://i.stack.imgur.com/vQy9B.png
https://riptutorial.com/angularjs/topic/7099/distinguishing-service-vs-factory

Chapter 25: Events

Parameters

Parameters Values types

event
Object {name: "eventName", targetScope: Scope, defaultPrevented: false,
currentScope: ChildScope}

args data that has been passed along with event execution

Examples

Using angular event system

$scope.$emit

Using $scope.$emit will fire an event name upwards through the scope hierarchy and notify to the
$scope.The event life cycle starts at the scope on which $emit was called.

Working wireframe :

https://riptutorial.com/ 131

http://i.stack.imgur.com/Xa0aM.png

$scope.$broadcast

Using $scope.$broadcast will fire an event down the $scope. We can listen of these events using
$scope.$on

Working wireframe :

Syntax :

// firing an event upwards
$scope.$emit('myCustomEvent', 'Data to send');

// firing an event downwards
$scope.$broadcast('myCustomEvent', {
 someProp: 'some value'
});

// listen for the event in the relevant $scope
$scope.$on('myCustomEvent', function (event, data) {
 console.log(data); // 'Data from the event'
});

Instead of $scope you can use $rootScope, in that case your event will be available in all the
controllers regardless of that controllers scope

Clean registered event in AngularJS

https://riptutorial.com/ 132

http://i.stack.imgur.com/Yd6vf.png

The reason to clean the registered events because even the controller has been destroyed the
handling of registered event are still alive. So the code will run as unexpected for sure.

// firing an event upwards
$rootScope.$emit('myEvent', 'Data to send');

// listening an event
var listenerEventHandler = $rootScope.$on('myEvent', function(){
 //handle code
});

$scope.$on('$destroy', function() {
 listenerEventHandler();
});

Uses and significance

These events can be used to communicate between 2 or more controllers.

$emit dispatches an event upwards through the scope hierarchy, while $broadcast dispatches an
event downwards to all child scopes.This has been beautifully explained here.

There can be basically two types of scenario while communicating among controllers:

When controllers have Parent-Child relationship. (we can mostly use $scope in such
scenarios)

1.

When controllers are not independent to each other and are needed to be informed about
each others activity. (we can use $rootScope in such scenarios)

2.

eg: For any ecommerce website, suppose we have ProductListController(which controls the
product listing page when any product brand is clicked) and CartController (to manage cart items)
. Now, when we click on Add to Cart button , it has to be informed to CartController as well, so
that it can reflect new cart item count/details in the navigation bar of the website. This can be
achieved using $rootScope.

With $scope.$emit

<html>
 <head>
 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.4/angular.js"></script>
 <script>
 var app = angular.module('app', []);

 app.controller("FirstController", function ($scope) {
 $scope.$on('eventName', function (event, args) {
 $scope.message = args.message;
 });
 });

https://riptutorial.com/ 133

http://stackoverflow.com/questions/26752030/rootscope-broadcast-vs-scope-emit/#answer-28156845

 app.controller("SecondController", function ($scope) {
 $scope.handleClick = function (msg) {
 $scope.$emit('eventName', {message: msg});
 };
 });

 </script>
 </head>
 <body ng-app="app">
 <div ng-controller="FirstController" style="border:2px ;padding:5px;">
 <h1>Parent Controller</h1>
 <p>Emit Message : {{message}}</p>

 <div ng-controller="SecondController" style="border:2px;padding:5px;">
 <h1>Child Controller</h1>
 <input ng-model="msg">
 <button ng-click="handleClick(msg);">Emit</button>
 </div>
 </div>
 </body>
</html>

With $scope.$broadcast:

<html>
 <head>
 <title>Broadcasting</title>
 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.4/angular.js"></script>
 <script>
 var app = angular.module('app', []);

 app.controller("FirstController", function ($scope) {
 $scope.handleClick = function (msg) {
 $scope.$broadcast('eventName', {message: msg});
 };

 });

 app.controller("SecondController", function ($scope) {
 $scope.$on('eventName', function (event, args) {
 $scope.message = args.message;
 });
 });

 </script>
 </head>
 <body ng-app="app">
 <div ng-controller="FirstController" style="border:2px solid ; padding:5px;">
 <h1>Parent Controller</h1>
 <input ng-model="msg">
 <button ng-click="handleClick(msg);">Broadcast</button>

 <div ng-controller="SecondController" style="border:2px solid ;padding:5px;">
 <h1>Child Controller</h1>
 <p>Broadcast Message : {{message}}</p>
 </div>
 </div>
 </body>
</html>

https://riptutorial.com/ 134

Always deregister $rootScope.$on listeners on the scope $destory event

$rootScope.$on listeners will remain in memory if you navigate to another controller. This will
create a memory leak if the controller falls out of scope.

Don't

angular.module('app').controller('badExampleController', badExample);

badExample.$inject = ['$scope', '$rootScope'];
function badExample($scope, $rootScope) {

 $rootScope.$on('post:created', function postCreated(event, data) {});

}

Do

angular.module('app').controller('goodExampleController', goodExample);

goodExample.$inject = ['$scope', '$rootScope'];
function goodExample($scope, $rootScope) {

 var deregister = $rootScope.$on('post:created', function postCreated(event, data) {});

 $scope.$on('$destroy', function destroyScope() {
 deregister();
 });

}

Read Events online: https://riptutorial.com/angularjs/topic/1922/events

https://riptutorial.com/ 135

https://riptutorial.com/angularjs/topic/1922/events

Chapter 26: Filters

Examples

Your First Filter

Filters are a special type of function that can modify how something is printed out to the page, or
can be used to filter an array, or a ng-repeat action. You can create a filter by calling the
app.filter() method, passing it a name and a function. See the examples below for details on
syntax.

For example, let's create a filter that will change a string to be all uppercase (essentially a wrapper
of the .toUpperCase() javascript function):

var app = angular.module("MyApp", []);

// just like making a controller, you must give the
// filter a unique name, in this case "toUppercase"
app.filter('toUppercase', function(){
 // all the filter does is return a function,
 // which acts as the "filtering" function
 return function(rawString){
 // The filter function takes in the value,
 // which we modify in some way, then return
 // back.
 return rawString.toUpperCase();
 };
});

Let's take a closer look at what's happening above.

First, we're creating a filter called "toUppercase", which is just like a controller; app.filter(...).
Then, that filter's function returns the actual filter function. That function takes a single object,
which is the object to be filtered, and should return the filtered version of the object.

Note: In this situation, we're assuming the object being passed into the filter is a string, and
therefore know to always use the filter only on strings. That being said, a further improvement to
the filter could be made that loops through the object (if it's an array) and then makes every
element that is a string uppercase.

Now let's use our new filter in action. Our filter can be used in two ways, either in an angular
template or as a javascript function (as an injected Angular reference).

Javascript

Simply inject the angular $filter object to your controller, then use that to retrieve the filter
function using its name.

https://riptutorial.com/ 136

app.controller("MyController", function($scope, $filter){
 this.rawString = "Foo";
 this.capsString = $filter("toUppercase")(this.rawString);
});

HTML

For an angular directive, use the pipe (|) symbol followed by the filter name in the directive after
the actual string. For example, let's say we have a controller called MyController that has a string
called rawString as a element of it.

<div ng-controller="MyController as ctrl">
 Capital rawString: {{ ctrl.rawString | toUppercase }}
</div>

Editor's Note: Angular has a number of built in filters, including "uppercase", and the
"toUppercase" filter is intended only as a demo to easily show off how filters work, but you do not
need to built your own uppercase function.

Custom filter to remove values

A typical use case for a filter is to remove values from an array. In this example we pass in an
array and remove any nulls found in it, returning the array.

function removeNulls() {
 return function(list) {
 for (var i = list.length - 1; i >= 0; i--) {
 if (typeof list[i] === 'undefined' ||
 list[i] === null) {
 list.splice(i, 1);
 }
 }
 return list;
 };
}

That would be used in the HTML like

{{listOfItems | removeNulls}}

or in a controller like

listOfItems = removeNullsFilter(listOfItems);

Custom filter to format values

Another use case for filters is to format a single value. In this example, we pass in a value and we
are returned an appropriate true boolean value.

https://riptutorial.com/ 137

function convertToBooleanValue() {
 return function(input) {
 if (typeof input !== 'undefined' &&
 input !== null &&
 (input === true || input === 1 || input === '1' || input
 .toString().toLowerCase() === 'true')) {
 return true;
 }
 return false;
 };
}

Which in the HTML would be used like this:

{{isAvailable | convertToBooleanValue}}

Or in a controller like:

var available = convertToBooleanValueFilter(isAvailable);

Performing filter in a child array

This example was done in order to demonstrate how you can perform a deep filter in a child array
without the necessity of a custom filter.

Controller:

(function() {
 "use strict";
 angular
 .module('app', [])
 .controller('mainCtrl', mainCtrl);

 function mainCtrl() {
 var vm = this;

 vm.classifications = ["Saloons", "Sedans", "Commercial vehicle", "Sport car"];
 vm.cars = [
 {
 "name":"car1",
 "classifications":[
 {
 "name":"Saloons"
 },
 {
 "name":"Sedans"
 }
]
 },
 {
 "name":"car2",
 "classifications":[
 {
 "name":"Saloons"
 },
 {

https://riptutorial.com/ 138

 "name":"Commercial vehicle"
 }
]
 },
 {
 "name":"car3",
 "classifications":[
 {
 "name":"Sport car"
 },
 {
 "name":"Sedans"
 }
]
 }
];
 }
})();

View:

<body ng-app="app" ng-controller="mainCtrl as main">
 Filter car by classification:
 <select ng-model="classificationName"
 ng-options="classification for classification in main.classifications"></select>

 <li ng-repeat="car in main.cars |
 filter: { classifications: { name: classificationName } } track by $index"
 ng-bind-template="{{car.name}} - {{car.classifications | json}}">

</body>

Check the complete DEMO.

Using filters in a controller or service

By injecting $filter, any defined filter in your Angular module may be used in controllers, services,
directives or even other filters.

angular.module("app")
 .service("users", usersService)
 .controller("UsersController", UsersController);

function usersService () {
 this.getAll = function () {
 return [{
 id: 1,
 username: "john"
 }, {
 id: 2,
 username: "will"
 }, {
 id: 3,
 username: "jack"
 }];

https://riptutorial.com/ 139

http://plnkr.co/edit/cJ9Mu7pEFufQCW6eWtbI?p=preview

 };
}

function UsersController ($filter, users) {
 var orderByFilter = $filter("orderBy");

 this.users = orderByFilter(users.getAll(), "username");
 // Now the users are ordered by their usernames: jack, john, will

 this.users = orderByFilter(users.getAll(), "username", true);
 // Now the users are ordered by their usernames, in reverse order: will, john, jack
}

Accessing a filtered list from outside an ng-repeat

Occasionally you will want to access the result of your filters from outside the ng-repeat, perhaps to
indicate the number of items that have been filtered out. You can do this using as [variablename]
syntax on the ng-repeat.

 <li ng-repeat="item in vm.listItems | filter:vm.myFilter as filtered">
 {{item.name}}

Showing {{filtered.length}} of {{vm.listItems.length}}

Read Filters online: https://riptutorial.com/angularjs/topic/1401/filters

https://riptutorial.com/ 140

https://riptutorial.com/angularjs/topic/1401/filters

Chapter 27: Form Validation

Examples

Basic Form Validation

One of Angular's strength's is client-side form validation.

Dealing with traditional form inputs and having to use interrogative jQuery-style processing can be
time-consuming and finicky. Angular allows you to produce professional interactive forms relatively
easily.

The ng-model directive provides two-way binding with input fields and usually the novalidate
attribute is also placed on the form element to prevent the browser from doing native validation.

Thus, a simple form would look like:

<form name="form" novalidate>
 <label name="email"> Your email </label>
 <input type="email" name="email" ng-model="email" />
</form>

For Angular to validate inputs, use exactly the same syntax as a regular input element, except for
the addition of the ng-model attribute to specify which variable to bind to on the scope. Email is
shown in the prior example. To validate a number, the syntax would be:

<input type="number" name="postalcode" ng-model="zipcode" />

The final steps to basic form validation are connecting to a form submit function on the controller
using ng-submit, rather than allowing the default form submit to occur. This is not mandatory but
it is usually used, as the input variables are already available on the scope and so available to
your submit function. It is also usually good practice to give the form a name. These changes
would result in the following syntax:

<form name="signup_form" ng-submit="submitFunc()" novalidate>
 <label name="email"> Your email </label>
 <input type="email" name="email" ng-model="email" />
 <button type="submit">Signup</button>
</form>

This above code is functional but there is other functionality that Angular provides.

The next step is to understand that Angular attaches class attributes using ng-pristine, ng-dirty,
ng-valid and ng-invalid for form processing. Using these classes in your css will allow you to
style valid/invalid and pristine/dirty input fields and so alter the presentation as the user is
entering data into the form.

https://riptutorial.com/ 141

Form and Input States

Angular Forms and Inputs have various states that are useful when validating content

Input States

State Description

$touched Field has been touched

$untouched Field has not been touched

$pristine Field has not been modified

$dirty Field has been modified

$valid Field content is valid

$invalid Field content is invalid

All of the above states are boolean properties and can be either true or false.

With these, it is very easy to display messages to a user.

<form name="myForm" novalidate>
 <input name="myName" ng-model="myName" required>
 This name is
invalid
</form>

Here, we are using the ng-show directive to display a message to a user if they've modified a form
but it's invalid.

CSS Classes

Angular also provides some CSS classes for forms and inputs depending on their state

Class Description

ng-touched Field has been touched

ng-untouched Field has not been touched

ng-pristine Field has not been modified

ng-dirty Field has been modified

ng-valid Field is valid

ng-invalid Field is invalid

https://riptutorial.com/ 142

You can use these classes to add styles to your forms

input.ng-invalid {
 background-color: crimson;
}
input.ng-valid {
 background-color: green;
}

ngMessages

ngMessages is used to enhanced the style for displaying validation messages in the view.

Traditional approach

Before ngMessages, we normally display the validation messages using Angular pre-defined
directives ng-class.This approach was litter and a repetitive task.

Now, by using ngMessages we can create our own custom messages.

Example

Html :

<form name="ngMessagesDemo">
 <input name="firstname" type="text" ng-model="firstname" required>
 <div ng-messages="ngMessagesDemo.firstname.$error">
 <div ng-message="required">Firstname is required.</div>
 </div>
</form>
<script
src="https://cdnjs.cloudflare.com/ajax/libs/angular.js/1.3.16/angular.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/angular.js/1.3.16/angular-
messages.min.js"></script>

JS :

var app = angular.module('app', ['ngMessages']);

app.controller('mainCtrl', function ($scope) {
 $scope.firstname = "Rohit";
});

Custom Form Validation

In some cases basic validation is not enough. Angular support custom validation adding validator
functions to the $validators object on the ngModelController:

https://riptutorial.com/ 143

angular.module('app', [])
 .directive('myValidator', function() {
 return {
 // element must have ng-model attribute
 // or $validators does not work
 require: 'ngModel',
 link: function(scope, elm, attrs, ctrl) {
 ctrl.$validators.myValidator = function(modelValue, viewValue) {
 // validate viewValue with your custom logic
 var valid = (viewValue && viewValue.length > 0) || false;
 return valid;
 };
 }
 };

The validator is defined as a directive that require ngModel, so to apply the validator just add the
custom directive to the input form control.

<form name="form">
 <input type="text"
 ng-model="model"
 name="model"
 my-validator>
 <pre ng-bind="'my-validator returned: ' + form.model.$valid"></pre>
</form>

And my-validator doesn't have to be applied on native form control. It can be any elements, as
long as it as ng-model in its attributes. This is useful when you have some custom build ui
component.

Nested Forms

Sometimes it is desirable to nest forms for the purpose of grouping controls and inputs logically on
the page. However, HTML5 forms should not be nested. Angular supplies ng-form instead.

<form name="myForm" noValidate>
 <!-- nested form can be referenced via 'myForm.myNestedForm' -->
 <ng-form name="myNestedForm" noValidate>
 <input name="myInput1" ng-minlength="1" ng-model="input1" required />
 <input name="myInput2" ng-minlength="1" ng-model="input2" required />
 </ng-form>

 <!-- show errors for the nested subform here -->
 <div ng-messages="myForm.myNestedForm.$error">
 <!-- note that this will show if either input does not meet the minimum -->
 <div ng-message="minlength">Length is not at least 1</div>
 </div>
</form>

<!-- status of the form -->

https://riptutorial.com/ 144

http://i.stack.imgur.com/md9zB.png

<p>Has any field on my form been edited? {{myForm.$dirty}}</p>
<p>Is my nested form valid? {{myForm.myNestedForm.$valid}}</p>
<p>Is myInput1 valid? {{myForm.myNestedForm.myInput1.$valid}}</p>

Each part of the form contributes to the overall form's state. Therefore, if one of the inputs myInput1
has been edited and is $dirty, its containing form will also be $dirty. This cascades to each
containing form, so both myNestedForm and myForm will be $dirty.

Async validators

Asynchronous validators allows you to validate form information against your backend (using
$http).

These kind of validators are needed when you need to access server stored information you can't
have on your client for various reasons, such as the users table and other database information.

To use async validators, you access the ng-model of your input and define callback functions for
the $asyncValidators property.

Example:

The following example checks if a provided name already exists, the backend will return a status
that will reject the promise if the name already exists or if it wasn't provided. If the name doesn't
exist it will return a resolved promise.

ngModel.$asyncValidators.usernameValidate = function (name) {
 if (name) {
 return AuthenticationService.checkIfNameExists(name); // returns a promise
 } else {
 return $q.reject("This username is already taken!"); // rejected promise
 }
};

Now everytime the ng-model of the input is changed, this function will run and return a promise with
the result.

Read Form Validation online: https://riptutorial.com/angularjs/topic/3979/form-validation

https://riptutorial.com/ 145

https://riptutorial.com/angularjs/topic/3979/form-validation

Chapter 28: Grunt tasks

Examples

Run application locally

Following example requires that node.js is installed and npm is available.
Full working code can be forked from GitHub @
https://github.com/mikkoviitala/angular-grunt-run-local

Usually one of the first things you want to do when developing new web application is to make it
run locally.

Below you'll find complete example achieving just that, using grunt (javascript task runner), npm
(node package manager) and bower (yet another package manager).

Beside your actual application files you'll need to install few 3rd party dependencies using tools
mentioned above. In your project directory, preferably root, you'll need three (3) files.

package.json (dependencies managed by npm)•
bower.json (dependencies managed by bower)•
gruntfile.js (grunt tasks)•

So your project directory looks like so:

package.json

We'll be installing grunt itself, matchdep to make our life easier allowing us to filter dependencies
by name, grunt-express used to start express web server via grunt and grunt-open to open
urls/files from a grunt task.

So these packages are all about "infrastructure" and helpers we'll be building our application on.

{
 "name": "app",
 "version": "1.0.0",
 "dependencies": {},
 "devDependencies": {
 "grunt": "~0.4.1",
 "matchdep": "~0.1.2",
 "grunt-express": "~1.0.0-beta2",
 "grunt-open": "~0.2.1"

https://riptutorial.com/ 146

https://nodejs.org
https://www.npmjs.com
https://github.com/mikkoviitala/angular-grunt-run-local
http://gruntjs.com/
https://www.npmjs.com
https://bower.io
http://i.stack.imgur.com/GlnAc.png

 },
 "scripts": {
 "postinstall": "bower install"
 }
}

bower.json

Bower is (or at least should be) all about front-end and we'll be using it to install angular.

{
 "name": "app",
 "version": "1.0.0",
 "dependencies": {
 "angular": "~1.3.x"
 },
 "devDependencies": {}
}

gruntfile.js

Inside gruntfile.js we'll have the actual "running application locally" magic, which opens our
application in new browser window, running on http://localhost:9000/

'use strict';

// see http://rhumaric.com/2013/07/renewing-the-grunt-livereload-magic/

module.exports = function(grunt) {
 require('matchdep').filterDev('grunt-*').forEach(grunt.loadNpmTasks);

 grunt.initConfig({
 express: {
 all: {
 options: {
 port: 9000,
 hostname: 'localhost',
 bases: [__dirname]
 }
 }
 },

 open: {
 all: {
 path: 'http://localhost:<%= express.all.options.port%>'
 }
 }
 });

 grunt.registerTask('app', [
 'express',
 'open',
 'express-keepalive'
]);
};

Usage

https://riptutorial.com/ 147

http://localhost:9000/

To get your application up & running from scratch, save above files to your project's root directory
(any empty folder will do). Then fire up console/command line and type in the following to install all
required dependencies.

npm install -g grunt-cli bower
npm install

And then run your application using

grunt app

Note that yes, you'll be needing your actual application files, too.
For almost-minimal example browse GitHub repository mentioned in beginning of this example.

There structure ain't that different. There's just index.html template, angular code in app.js and few
styles in app.css. Other files are for Git and editor configuration and some generic stuff. Give it a
try!

Read Grunt tasks online: https://riptutorial.com/angularjs/topic/6077/grunt-tasks

https://riptutorial.com/ 148

https://github.com/mikkoviitala/angular-grunt-run-local
http://i.stack.imgur.com/58e4t.png
http://i.stack.imgur.com/M1649.png
https://riptutorial.com/angularjs/topic/6077/grunt-tasks

Chapter 29: How data binding works

Remarks

So while this Data Binding concept on a whole is easy on the developer, it is quite heavy on the
Browser since Angular listens to every event change and runs the Digest Cycle. Because of this,
whenever we attach some model to the view, make sure that Scope is as optimized as possible

Examples

Data Binding Example

<p ng-bind="message"></p>

This 'message' has to be attached to the current elements controller's scope.

$scope.message = "Hello World";

At a later point of time , even if the message model is updated , that updated value is reflected in
the HTML element. When angular compiles the template "Hello World" will be attached to the
innerHTML of the current world. Angular maintains a Watching mechanism of all the directives
atttached to the view. It has a Digest Cycle mechanism where it iterates through the Watchers
array, it will update the DOM element if there is a change in the previous value of the model.

There is no periodic checking of Scope whether there is any change in the Objects attached to it.
Not all the objects attached to scope are watched . Scope prototypically maintains a
$$WatchersArray . Scope only iterates through this WatchersArray when $digest is called .

Angular adds a watcher to the WatchersArray for each of these

{{expression}} — In your templates (and anywhere else where there’s an
expression) or when we define ng-model.

1.

$scope.$watch(‘expression/function’) — In your JavaScript we can just attach a
scope object for angular to watch.

2.

$watch function takes in three parameters:

First one is a watcher function which just returns the object or we can just add an
expression.

1.

Second one is a listener function which will be called when there is a change in
the object. All the things like DOM changes will be implemented in this function.

2.

The third being an optional parameter which takes in a boolean . If its true ,
angular deep watches the object & if its false Angular just does a reference
watching on the object. Rough Implementation of $watch looks like this

3.

https://riptutorial.com/ 149

Scope.prototype.$watch = function(watchFn, listenerFn) {
 var watcher = {
 watchFn: watchFn,
 listenerFn: listenerFn || function() { },
 last: initWatchVal // initWatchVal is typically undefined
 };
 this.$$watchers.push(watcher); // pushing the Watcher Object to Watchers
};

There is an interesting thing in Angular called Digest Cycle. The $digest cycle starts as a result of
a call to $scope.$digest(). Assume that you change a $scope model in a handler function through
the ng-click directive. In that case AngularJS automatically triggers a $digest cycle by calling
$digest().In addition to ng-click, there are several other built-in directives/services that let you
change models (e.g. ng-model, $timeout, etc) and automatically trigger a $digest cycle. The rough
implementation of $digest looks like this.

Scope.prototype.$digest = function() {
 var dirty;
 do {
 dirty = this.$$digestOnce();
 } while (dirty);
}
Scope.prototype.$$digestOnce = function() {
 var self = this;
 var newValue, oldValue, dirty;
 _.forEach(this.$$watchers, function(watcher) {
 newValue = watcher.watchFn(self);
 oldValue = watcher.last; // It just remembers the last value for dirty checking
 if (newValue !== oldValue) { //Dirty checking of References
 // For Deep checking the object , code of Value
 // based checking of Object should be implemented here
 watcher.last = newValue;
 watcher.listenerFn(newValue,
 (oldValue === initWatchVal ? newValue : oldValue),
 self);
 dirty = true;
 }
 });
 return dirty;
 };

If we use JavaScript’s setTimeout() function to update a scope model, Angular has no way of
knowing what you might change. In this case it’s our responsibility to call $apply() manually, which
triggers a $digest cycle. Similarly, if you have a directive that sets up a DOM event listener and
changes some models inside the handler function, you need to call $apply() to ensure the changes
take effect. The big idea of $apply is that we can execute some code that isn't aware of Angular,
that code may still change things on the scope. If we wrap that code in $apply , it will take care of
calling $digest(). Rough implementation of $apply().

Scope.prototype.$apply = function(expr) {
 try {
 return this.$eval(expr); //Evaluating code in the context of Scope
 } finally {
 this.$digest();
 }

https://riptutorial.com/ 150

};

Read How data binding works online: https://riptutorial.com/angularjs/topic/2342/how-data-binding-
works

https://riptutorial.com/ 151

https://riptutorial.com/angularjs/topic/2342/how-data-binding-works
https://riptutorial.com/angularjs/topic/2342/how-data-binding-works

Chapter 30: HTTP Interceptor

Introduction

The $http service of AngularJS allows us to communicate with a backend and make HTTP
requests. There are cases where we want to capture every request and manipulate it before
sending it to the server. Other times we would like to capture the response and process it before
completing the call. Global http error handling can be also a good example of such need.
Interceptors are created exactly for such cases.

Examples

Getting Started

Angular's builtin $http service allows us to send HTTP requests. Oftentime, the need arise to do
things before or after a request, for example adding to each request an authentication token or
creating a generic error handling logic.

Generic httpInterceptor step by step

Create an HTML file with the following content:

<!DOCTYPE html>
<html>
<head>
 <title>Angular Interceptor Sample</title>
 <script src="https://code.angularjs.org/1.5.8/angular.min.js"></script>
 <script src="app.js"></script>
 <script src="appController.js"></script>
 <script src="genericInterceptor.js"></script>
</head>
<body ng-app="interceptorApp">
 <div ng-controller="appController as vm">
 <button ng-click="vm.sendRequest()">Send a request</button>
 </div>
</body>
</html>

Add a JavaScript file called 'app.js':

var interceptorApp = angular.module('interceptorApp', []);

interceptorApp.config(function($httpProvider) {
 $httpProvider.interceptors.push('genericInterceptor');
});

Add another one called 'appController.js':

(function() {

https://riptutorial.com/ 152

https://docs.angularjs.org/api/ng/service/$http
https://docs.angularjs.org/api/ng/service/$http

 'use strict';

 function appController($http) {
 var vm = this;

 vm.sendRequest = function(){
 $http.get('http://google.com').then(function(response){
 console.log(response);
 });
 };
 }

 angular.module('interceptorApp').controller('appController',['$http', appController]);
})();

And finally the file containing the interceptor itself 'genericInterceptor.js':

(function() {
 "use strict";

 function genericInterceptor($q) {
 this.responseError = function (response) {
 return $q.reject(response);
 };

 this.requestError = function(request){
 if (canRecover(rejection)) {
 return responseOrNewPromise
 }
 return $q.reject(rejection);
 };

 this.response = function(response){
 return response;
 };

 this.request = function(config){
 return config;
 }
 }

 angular.module('interceptorApp').service('genericInterceptor', genericInterceptor);
})();

The 'genericInterceptor' cover the possible functions which we can override adding extra behavior
to our application.

Flash message on response using http interceptor

In the view file

In the base html (index.html) where we usually include the angular scripts or the html that is
shared across the app, leave an empty div element, the flash messages will be appearing inside
this div element

https://riptutorial.com/ 153

<div class="flashmessage" ng-if="isVisible">
 {{flashMessage}}
</div>

Script File

In the config method of angular module, inject the httpProvider, the httpProvider has an interceptor
array property, push the custom interceptor, In the current example the custom interceptor
intercepts only the response and calls a method attached to rootScope.

var interceptorTest = angular.module('interceptorTest', []);

 interceptorTest.config(['$httpProvider',function ($httpProvider) {

 $httpProvider.interceptors.push(["$rootScope",function ($rootScope) {
 return { //intercept only the response
 'response': function (response)
 {

$rootScope.showFeedBack(response.status,response.data.message);

 return response;
 }
 };
 }]);

 }])

Since only providers can be injected into the config method of an angular module (that is
httpProvider and not the rootscope), declare the method attached to rootscope inside the run
method of angular module.

Also display the message inside $timeout so that the message will have the flash property, that is
disappearing after a threshold time. In our example its 3000 ms.

interceptorTest.run(["$rootScope","$timeout",function($rootScope,$timeout){
 $rootScope.showFeedBack = function(status,message){

 $rootScope.isVisible = true;
 $rootScope.flashMessage = message;
 $timeout(function(){$rootScope.isVisible = false },3000)
 }
}]);

Common pitfalls

Trying to inject $rootScope or any other services inside config method of angular module, the
lifecycle of angular app doesnt allow that and unknown provider error will be thrown. Only
providers can be injected in config method of the angular module

Read HTTP Interceptor online: https://riptutorial.com/angularjs/topic/6484/http-interceptor

https://riptutorial.com/ 154

https://riptutorial.com/angularjs/topic/6484/http-interceptor

Chapter 31: Lazy loading

Remarks

If your lazy loaded dependencies require other lazy loaded dependencies make sure you
load them in the right order!

1.

angular.module('lazy', [
 'alreadyLoadedDependency1',
 'alreadyLoadedDependency2',
 ...
 {
 files: [
 'path/to/lazily/loaded/dependency1.js',
 'path/to/lazily/loaded/dependency2.js', //<--- requires lazily loaded dependency1
 'path/to/lazily/loaded/dependency.css'
],
 serie: true //Sequential load instead of parallel
 }
]);

Examples

Preparing your project for lazy loading

After including oclazyload.js in your index file, declare ocLazyLoad as a dependency in app.js

//Make sure you put the correct dependency! it is spelled different than the service!
angular.module('app', [
 'oc.lazyLoad',
 'ui-router'
])

Usage

In order to lazily load files inject the $ocLazyLoad service into a controller or another service

.controller('someCtrl', function($ocLazyLoad) {
 $ocLazyLoad.load('path/to/file.js').then(...);
});

Angular modules will be automatically loaded into angular.

Other variation:

$ocLazyLoad.load([
 'bower_components/bootstrap/dist/js/bootstrap.js',
 'bower_components/bootstrap/dist/css/bootstrap.css',
 'partials/template1.html'

https://riptutorial.com/ 155

]);

For a complete list of variations visit the official documentation

Usage with router

UI-Router:

.state('profile', {
 url: '/profile',
 controller: 'profileCtrl as vm'
 resolve: {
 module: function($ocLazyLoad) {
 return $ocLazyLoad.load([
 'path/to/profile/module.js',
 'path/to/profile/style.css'
]);
 }
 }
});

ngRoute:

.when('/profile', {
 controller: 'profileCtrl as vm'
 resolve: {
 module: function($ocLazyLoad) {
 return $ocLazyLoad.load([
 'path/to/profile/module.js',
 'path/to/profile/style.css'
]);
 }
 }
 });

Using dependency injection

The following syntax allows you to specify dependencies in your module.js instead of explicit
specification when using the service

//lazy_module.js
angular.module('lazy', [
 'alreadyLoadedDependency1',
 'alreadyLoadedDependency2',
 ...
 [
 'path/to/lazily/loaded/dependency.js',
 'path/to/lazily/loaded/dependency.css'
]
]);

Note: this syntax will only work for lazily loaded modules!

https://riptutorial.com/ 156

https://oclazyload.readme.io/docs/oclazyload-service

Using the directive

<div oc-lazy-load="['path/to/lazy/loaded/directive.js',
'path/to/lazy/loaded/directive.html']">

<!-- myDirective available here -->
<my-directive></my-directive>

</div>

Read Lazy loading online: https://riptutorial.com/angularjs/topic/6400/lazy-loading

https://riptutorial.com/ 157

https://riptutorial.com/angularjs/topic/6400/lazy-loading

Chapter 32: Migration to Angular 2+

Introduction

AngularJS has been totally rewritten using the TypeScript language and renamed to just Angular.

There is a lot that can be done to an AngularJS app to ease the migration process. As the official
upgrade guide says, several "preparation steps" can be performed to refactor your app, making it
better and closer to the new Angular style.

Examples

Converting your AngularJS app into a componend-oriented structure

In the new Angular framework, Components are the main building blocks that compose the user
interface. So one of the first steps that helps an AngularJS app to be migrated to the new Angular
is to refactor it into a more component-oriented structure.

Components were also introduced in the old AngularJS starting from version 1.5+. Using
Components in an AngularJS app will not only make its structure closer to the new Angular 2+, but
it will also make it more modular and easier to maintain.

Before going further I recommend to look at the official AngularJS documentation page about
Components, where their advantages and usage are well explained.

I would rather mention some tips about how to convert the old ng-controller oriented code to the
new component oriented style.

Start breaking your your app into
components

All the component-oriented apps have typically one or few components that include other sub-
components. So why not creating the first component which simply will contain your app (or a big
piece of it).

Assume that we have a piece of code assigned to a controller, named UserListController, and we
want to make a component of it, which we'll name UserListComponent.

current HTML:

<div ng-controller="UserListController as listctrl">

 <li ng-repeat="user in myUserList">

https://riptutorial.com/ 158

http://angularjs.blogspot.nl/2016/12/ok-let-me-explain-its-going-to-be.html
https://angular.io/docs/ts/latest/guide/upgrade.html
https://angular.io/docs/ts/latest/guide/upgrade.html
https://docs.angularjs.org/guide/component
https://docs.angularjs.org/guide/component

 {{ user }}

</div>

current JavaScript:

app.controller("UserListController", function($scope, SomeService) {

 $scope.myUserList = ['Shin', 'Helias', 'Kalhac'];

 this.someFunction = function() {
 // ...
 }

 // ...
}

new HTML:

<user-list></user-list>

new JavaScript:

app.component("UserList", {
 templateUrl: 'user-list.html',
 controller: UserListController
});

function UserListController(SomeService) {

 this.myUserList = ['Shin', 'Helias', 'Kalhac'];

 this.someFunction = function() {
 // ...
 }

 // ...
}

Note how we are no longer injecting $scope into the controller function and we are now declaring
this.myUserList instead of $scope.myUserList;

new template file user-list.component.html:

 <li ng-repeat="user in $ctrl.myUserList">
 {{ user }}

Note how we are now referring to the variable myUserList, which belongs to the controller, using
$ctrl.myUserList from the html instead of $scope.myUserList.

https://riptutorial.com/ 159

That is because, as you probably figured out after reading the documentation, $ctrl in the
template now refers to the controller function.

What about controllers and routes?

In case your controller was bound to the template using the routing system instead of ng-
controller, so if you have something like this:

$stateProvider
 .state('users', {
 url: '/users',
 templateUrl: 'user-list.html',
 controller: 'UserListController'
 })
 // ..

you can just change your state declaration to:

$stateProvider
 .state('users', {
 url: '/',
 template: '<user-list></user-list>'
 })
 // ..

What's next?

Now that you have a component containing your app (whether it contains the entire application or
a part of it, like a view), you should now start to break your component into multiple nested
components, by wrapping parts of it into new sub-components, and so on.

You should start using the Component features like

Inputs and Outputs bindings•

lifecycle hooks such as $onInit(), $onChanges(), etc...•

After reading the Component documentation you should already know how to use all those
component features, but if you need a concrete example of a real simple app, you can check this.

Also, if inside your component's controller you have some functions that hold a lot of logic code, a
good idea can be considering to move that logic into services.

Conclusion

Adopting a component-based approach pushes your AngularJS one step closer to migrate it to the

https://riptutorial.com/ 160

https://docs.angularjs.org/guide/component
https://github.com/ShinDarth/Othello/wiki/Refactoring-steps#break-the-application-into-angularjs-components
https://docs.angularjs.org/guide/services

new Angular framework, but it also makes it better and much more modular.

Of course there are a lot of other steps you can do to go further into the new Angular 2+ direction,
which I will list in the following examples.

Introducing Webpack and ES6 modules

By using a module loader like Webpack we can benefit the built-in module system available in
ES6 (as well as in TypeScript). We can then use the import and export features that allow us to
specify what pieces of code can we are going to share between different parts of the application.

When we then take our applications into production, module loaders also make it easier to
package them all up into production bundles with batteries included.

Read Migration to Angular 2+ online: https://riptutorial.com/angularjs/topic/9942/migration-to-
angular-2plus

https://riptutorial.com/ 161

https://github.com/webpack/webpack
https://en.wikipedia.org/wiki/ECMAScript#6th_Edition_-_ECMAScript_2015
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en/docs/web/javascript/reference/statements/export
https://riptutorial.com/angularjs/topic/9942/migration-to-angular-2plus
https://riptutorial.com/angularjs/topic/9942/migration-to-angular-2plus

Chapter 33: Modules

Examples

Modules

Module serves as a container of different parts of your app such as controllers, services, filters,
directives, etc. Modules can be referenced by other modules through Angular's dependency
injection mechanism.

Creating a module:

angular
 .module('app', []);

Array [] passed in above example is the list of modules app depends on, if there are no
dependencies then we pass Empty Array i.e. [].

Injecting a module as a dependency of another module:

angular.module('app', [
 'app.auth',
 'app.dashboard'
]);

Referencing a module:

angular
 .module('app');

Modules

Module is a container for various parts of your applications - controller, services, filters, directive,
etc.

Why to use Modules
Most applications have a main method that instantiates and wires together the different parts of
the application.
Angular apps don't have main method.
But in AngularJs the declarative process is easy to understand and one can package code as
reusable modules.
Modules can be loaded in any order because modules delay execution.

declare a module

var app = angular.module('myApp', []);
// Empty array is list of modules myApp is depends on.

https://riptutorial.com/ 162

// if there are any required dependancies,
// then you can add in module, Like ['ngAnimate']

app.controller('myController', function() {

 // write your business logic here
});

Module Loading and Dependencies

Configuration Blocks:- get executed during provider and configurtation phase.

angular.module('myModule', []).
config(function(injectables) {
 // here you can only inject providers in to config blocks.
});

1.

Run Blocks:- get executed after the injector is created and are used to start the application.

angular.module('myModule', []).
run(function(injectables) {
 // here you can only inject instances in to config blocks.
});

2.

Read Modules online: https://riptutorial.com/angularjs/topic/844/modules

https://riptutorial.com/ 163

https://riptutorial.com/angularjs/topic/844/modules

Chapter 34: ng-class directive

Examples

Three types of ng-class expressions

Angular supports three types of expressions in the ng-class directive.

1. String

Sample Text

Specifying an expression that evaluates to a string tells Angular to treat it as a $scope variable.
Angular will check the $scope and look for a variable called "MyClass". Whatever text is contained
in "MyClass" will become the actual class name that is applied to this . You can specify
multiple classes by separating each class with a space.

In your controller, you may have a definition that looks like this:

$scope.MyClass = "bold-red deleted error";

Angular will evaluate the expression MyClass and find the $scope definition. It will apply the three
classes "bold-red", "deleted", and "error" to the element.

Specifying classes this way lets you easily change the class definitions in your controller. For
example, you may need to change the class based on other user interactions or new data that is
loaded from the server. Also, if you have a lot of expressions to evaluate, you can do so in a
function that defines the final list of classes in a $scope variable. This can be easier than trying to
squeeze many evaluations into the ng-class attribute in your HTML template.

2. Object

This is the most commonly-used way of defining classes using ng-class because it easily lets you
specify evaluations that determine which class to use.

Specify an object containing key-value pairs. The key is the class name that will be applied if the
value (a conditional) evaluates as true.

<style>
 .red { color: red; font-weight: bold; }
 .blue { color: blue; }
 .green { color: green; }
 .highlighted { background-color: yellow; color: black; }

https://riptutorial.com/ 164

</style>

<span ng-class="{ red: ShowRed, blue: ShowBlue, green: ShowGreen, highlighted: IsHighlighted
}">Sample Text

<div>Red: <input type="checkbox" ng-model="ShowRed"></div>
<div>Green: <input type="checkbox" ng-model="ShowGreen"></div>
<div>Blue: <input type="checkbox" ng-model="ShowBlue"></div>
<div>Highlight: <input type="checkbox" ng-model="IsHighlighted"></div>

3. Array

An expression that evaluates to an array lets you use a combination of strings (see #1 above)
and conditional objects (#2 above).

<style>
 .bold { font-weight: bold; }
 .strike { text-decoration: line-through; }
 .orange { color: orange; }
</style>

<p ng-class="[UserStyle, {orange: warning}]">Array of Both Expression Types</p>
<input ng-model="UserStyle" placeholder="Type 'bold' and/or 'strike'">

<label><input type="checkbox" ng-model="warning"> warning (apply "orange" class)</label>

This creates a text input field bound to the scope variable UserStyle which lets the user type in any
class name(s). These will be dynamically applied to the <p> element as the user types. Also, the
user can click on the checkbox that is data-bound to the warning scope variable. This will also be
dynamically applied to the <p> element.

Read ng-class directive online: https://riptutorial.com/angularjs/topic/2395/ng-class-directive

https://riptutorial.com/ 165

https://riptutorial.com/angularjs/topic/2395/ng-class-directive

Chapter 35: ng-repeat

Introduction

The ngRepeat directive instantiates a template once per item from a collection. The collection must
be an array or an object. Each template instance gets its own scope, where the given loop variable
is set to the current collection item, and $index is set to the item index or key.

Syntax

<element ng-repeat="expression"></element>•
<div ng-repeat="(key, value) in myObj">...</div>•
<div ng-repeat="variable in expression">...</div>•

Parameters

Variable Details

$index number iterator offset of the repeated element (0..length-1)

$first boolean true if the repeated element is first in the iterator.

$middle boolean true if the repeated element is between the first and last in the iterator.

$last boolean true if the repeated element is last in the iterator.

$even boolean true if the iterator position $index is even (otherwise false).

$odd boolean true if the iterator position $index is odd (otherwise false).

Remarks

AngularJS provides these parameters as special variables that are available in the ng-repeat
expression and anywhere inside of the HTML tag on which the ng-repeat lives.

Examples

Iterating over object properties

<div ng-repeat="(key, value) in myObj"> ... </div>

For example

<div ng-repeat="n in [42, 42, 43, 43]">

https://riptutorial.com/ 166

 {{n}}
</div>

Tracking and Duplicates

ngRepeat uses $watchCollection to detect changes in the collection. When a change happens,
ngRepeat then makes the corresponding changes to the DOM:

When an item is added, a new instance of the template is added to the DOM.•
When an item is removed, its template instance is removed from the DOM.•
When items are reordered, their respective templates are reordered in the DOM.•

Duplicates

track by for any list that may include duplicate values.•
track by also speeds up list changes significantly.•
If you don't use track by in this case, you get the error: [ngRepeat:dupes]•

$scope.numbers = ['1','1','2','3','4'];

 <li ng-repeat="n in numbers track by $index">
 {{n}}

ng-repeat-start + ng-repeat-end

AngularJS 1.2 ng-repeat handle multiple elements with ng-repeat-start and ng-repeat-end:

// table items
$scope.tableItems = [
 {
 row1: 'Item 1: Row 1',
 row2: 'Item 1: Row 2'
 },
 {
 row1: 'Item 2: Row 1',
 row2: 'Item 2: Row 2'
 }
];

// template
<table>
 <th>
 <td>Items</td>
 </th>
 <tr ng-repeat-start="item in tableItems">
 <td ng-bind="item.row1"></td>
 </tr>
 <tr ng-repeat-end>
 <td ng-bind="item.row2"></td>
 </tr>
</table>

https://riptutorial.com/ 167

https://docs.angularjs.org/api/ng/type/$rootScope.Scope#$watchCollection

Output:

Items

Item 1: Row 1

Item 1: Row 2

Item 2: Row 1

Item 2: Row 2

Read ng-repeat online: https://riptutorial.com/angularjs/topic/8118/ng-repeat

https://riptutorial.com/ 168

https://riptutorial.com/angularjs/topic/8118/ng-repeat

Chapter 36: ng-style

Introduction

The 'ngStyle' directive allows you to set CSS style on an HTML element conditionally. Much like
how we could use style attribute on HTML element in non-AngularJS projects, we can use ng-
style in angularjs do apply styles based on some boolean condition.

Syntax

<ANY ng-style="expression"></ANY >•

<ANY class="ng-style: expression;"> ... </ANY>•

Examples

Use of ng-style

Below example changes the opacity of the image based on the "status" parameter.

 <img class="img-responsive" ng-src="{{imagesrc}}"
 ng-style="{'opacity' : (status == 2) ? 1 : 0.5}">

Read ng-style online: https://riptutorial.com/angularjs/topic/8773/ng-style

https://riptutorial.com/ 169

https://riptutorial.com/angularjs/topic/8773/ng-style

Chapter 37: ng-view

Introduction

ng-view is one of in-build directive that angular uses as a container to switch between views. {info}
ngRoute is no longer a part of the base angular.js file, so you'll need to include the angular-route.js
file after your the base angular javascript file. We can configure a route by using the “when”
function of the $routeProvider. We need to first specify the route, then in a second parameter
provide an object with a templateUrl property and a controller property.

Examples

ng-view

ng-view is a directive used with $route to render a partial view in the main page layout. Here in this
example, Index.html is our main file and when user lands on "/" route the templateURL home.html
will be rendered in Index.html where ng-view is mentioned.

angular.module('ngApp', ['ngRoute'])

.config(function($routeProvider){
 $routeProvider.when("/",
 {
 templateUrl: "home.html",
 controller: "homeCtrl"
 }
);
});

angular.module('ngApp').controller('homeCtrl',['$scope', function($scope) {
 $scope.welcome= "Welcome to stackoverflow!";
}]);

//Index.html
<body ng-app="ngApp">
 <div ng-view></div>
</body>

//Home Template URL or home.html
<div><h2>{{welcome}}</h2></div>

Registration navigation

We injecting the module in the application1.

 var Registration=angular.module("myApp",["ngRoute"]);

now we use $routeProvider from "ngRoute"2.

https://riptutorial.com/ 170

 Registration.config(function($routeProvider) {

});

finally we integrating the route, we define "/add" routing to the application in case application
get "/add" it divert to regi.htm

3.

 Registration.config(function($routeProvider) {
 $routeProvider
 .when("/add", {
 templateUrl : "regi.htm"
 })
});

Read ng-view online: https://riptutorial.com/angularjs/topic/8833/ng-view

https://riptutorial.com/ 171

https://riptutorial.com/angularjs/topic/8833/ng-view

Chapter 38: Performance Profiling

Examples

All About Profiling

What is Profiling?

By definition Profiling is a form of dynamic program analysis that measures, for example, the
space (memory) or time complexity of a program, the usage of particular instructions, or the
frequency and duration of function calls.

Why is it necessary?

Profiling is important because you can’t optimise effectively until you know what your program is
spending most of its time doing. Without measuring your program execution time (profiling), you
won’t know if you’ve actually improved it.

Tools and Techniques :

Chrome's in-built dev tools

This includes a comprehensive set of tools to be used for profiling.You can go deep to find
out bottlenecks in your javascript file, css files, animations, cpu consumption, memory leaks,
network, security etc.

Make a Timeline recording and look for suspiciously long Evaluate Script events. If you find
any, you can enable the JS Profiler and re-do your recording to get more detailed information
about exactly which JS functions were called and how long each took. Read more...

1.

FireBug (use with Firefox)2.

Dynatrace (use with IE)3.

Batarang (use with Chrome)

It's an outdated add-on for chrome browser though it's stable and can be used to monitor
models, performance, dependencies for an angular application. It works fine for small scale
application and can give you an insight of what does scope variable holds at various levels. It
tells you about active watchers, watch expressions, watch collections in the app.

4.

Watcher (use with Chrome)

Nice and simplistic UI to count the number of watchers in a Angular app.

5.

Use the following code to manually find out the number of watchers in your angular app
(credit to @Words Like Jared Number of watchers)

6.

https://riptutorial.com/ 172

https://en.wikipedia.org/wiki/Profiling_(computer_programming)
https://developers.google.com/web/tools/chrome-devtools/profile/evaluate-performance/timeline-tool#make-a-recording
https://developers.google.com/web/tools/chrome-devtools/profile/evaluate-performance/timeline-tool#profile-js
https://developers.google.com/web/tools/chrome-devtools/?hl=en
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://help.dynatrace.com/get-started/
https://chrome.google.com/webstore/detail/unofficial-angularjs-bata/niopocochgahfkiccpjmmpchncjoapek/reviews
https://chrome.google.com/webstore/detail/angular-watchers/nlmjblobloedpmkmmckeehnbfalnjnjk?utm_source=chrome-ntp-icon
http://stackoverflow.com/questions/18499909/how-to-count-total-number-of-watches-on-a-page

(function() {
 var root = angular.element(document.getElementsByTagName('body')),
 watchers = [],
 f = function(element) {
 angular.forEach(['$scope', '$isolateScope'], function(scopeProperty) {
 if(element.data() && element.data().hasOwnProperty(scopeProperty)) {
 angular.forEach(element.data()[scopeProperty].$$watchers, function(watcher) {
 watchers.push(watcher);
 });
 }
 });

 angular.forEach(element.children(), function(childElement) {
 f(angular.element(childElement));
 });
 };

 f(root);

 // Remove duplicate watchers
 var watchersWithoutDuplicates = [];
 angular.forEach(watchers, function(item) {
 if(watchersWithoutDuplicates.indexOf(item) < 0) {
 watchersWithoutDuplicates.push(item);
 }
 });
 console.log(watchersWithoutDuplicates.length);
})();

There are several online tools/websites available which facilitates wide range of
functionalities to create a profile of your application.

One such site is : https://www.webpagetest.org/

With this you can run a free website speed test from multiple locations around the globe
using real browsers (IE and Chrome) and at real consumer connection speeds. You can run
simple tests or perform advanced testing including multi-step transactions, video capture,
content blocking and much more.

7.

Next Steps:

Done with Profiling. It only brings you half way down the road. The very next task is to actually turn
your findings into action items to optimise your application. See this documentation on how you
can improve the performance of your angular app with simple tricks.

Happy Coding :)

Read Performance Profiling online: https://riptutorial.com/angularjs/topic/7033/performance-
profiling

https://riptutorial.com/ 173

https://www.webpagetest.org/
http://www.riptutorial.com/angularjs/topic/1921/profiling-and-performance
https://riptutorial.com/angularjs/topic/7033/performance-profiling
https://riptutorial.com/angularjs/topic/7033/performance-profiling

Chapter 39: Prepare for Production - Grunt

Examples

View preloading

When the first time view is requested, normally Angular makes XHR request to get that view. For
mid-size projects, the view count can be significant and it can slow down the application
responsiveness.

The good practice is to pre-load all the views at once for small and mid size projects. For larger
projects it is good to aggregate them in some meaningful bulks as well, but some other methods
can be handy to split the load. To automate this task it is handy to use Grunt or Gulp tasks.

To pre-load the views, we can use $templateCache object. That is an object, where angular stores
every received view from the server.

It is possible to use html2js module, that will convert all our views to one module - js file. Then we
will need to inject that module into our application and that's it.

To create concatenated file of all the views we can use this task

module.exports = function (grunt) {
 //set up the location of your views here
 var viewLocation = ['app/views/**.html'];

 grunt.initConfig({
 pkg: require('./package.json'),
 //section that sets up the settings for concatenation of the html files into one
file
 html2js: {
 options: {
 base: '',
 module: 'app.templates', //new module name
 singleModule: true,
 useStrict: true,
 htmlmin: {
 collapseBooleanAttributes: true,
 collapseWhitespace: true
 }
 },
 main: {
 src: viewLocation,
 dest: 'build/app.templates.js'
 }
 },
 //this section is watching for changes in view files, and if there was a change,
it will regenerate the production file. This task can be handy during development.
 watch: {
 views:{
 files: viewLocation,
 tasks: ['buildHTML']
 },

https://riptutorial.com/ 174

 }
 });

 //to automatically generate one view file
 grunt.loadNpmTasks('grunt-html2js');

 //to watch for changes and if the file has been changed, regenerate the file
 grunt.loadNpmTasks('grunt-contrib-watch');

 //just a task with friendly name to reference in watch
 grunt.registerTask('buildHTML', ['html2js']);
};

To use this way of concatination, you need to make 2 changes: In your index.html file you need to
reference the concatenated view file

<script src="build/app.templates.js"></script>

In the file, where you are declaring your app, you need to inject the dependency

angular.module('app', ['app.templates'])

If you are using popular routers like ui-router, there are no changes in the way, how you are
referencing templates

 .state('home', {
 url: '/home',
 views: {
 "@": {
 controller: 'homeController',
 //this will be picked up from $templateCache
 templateUrl: 'app/views/home.html'
 },
 }

 })

Script optimisation

It is good practice to combine JS files together and minify them. For larger project there could
be hundreds of JS files and it adds unnecessary latency to load each file separately from the
server.

For angular minification it is required to to have all functions annotated. That in necessary for
Angular dependency injection proper minificaiton. (During minification, function names and
variables will be renamed and it will break dependency injection if no extra actions will be taken.)

During minificaiton $scope and myService variables will be replaced by some other values. Angular
dependency injection works based on the name, as a result, these names shouldn't change

.controller('myController', function($scope, myService){
})

https://riptutorial.com/ 175

Angular will understand the array notation, because minification won't replace string literals.

.controller('myController', ['$scope','myService', function($scope, myService){
}])

Firstly we will concatinate all files end to end.•
Secondly we will use ng-annotate module, that will prepare code for minification•
Finally we will apply uglify module.•

module.exports = function (grunt) { //set up the location of your scripts here for reusing it in code
var scriptLocation = ['app/scripts/*.js'];

 grunt.initConfig({
 pkg: require('./package.json'),
 //add necessary annotations for safe minification
 ngAnnotate: {
 angular: {
 src: ['staging/concatenated.js'],
 dest: 'staging/anotated.js'
 }
 },
 //combines all the files into one file
 concat: {
 js: {
 src: scriptLocation,
 dest: 'staging/concatenated.js'
 }
 },
 //final uglifying
 uglify: {
 options: {
 report: 'min',
 mangle: false,
 sourceMap:true
 },
 my_target: {
 files: {
 'build/app.min.js': ['staging/anotated.js']
 }
 }
 },

 //this section is watching for changes in JS files, and if there was a change, it will
regenerate the production file. You can choose not to do it, but I like to keep concatenated
version up to date
 watch: {
 scripts: {
 files: scriptLocation,
 tasks: ['buildJS']
 }
 }

});

 //module to make files less readable
 grunt.loadNpmTasks('grunt-contrib-uglify');

 //mdule to concatenate files together

https://riptutorial.com/ 176

 grunt.loadNpmTasks('grunt-contrib-concat');

 //module to make angularJS files ready for minification
 grunt.loadNpmTasks('grunt-ng-annotate');

 //to watch for changes and if the file has been changed, regenerate the file
 grunt.loadNpmTasks('grunt-contrib-watch');

 //task that sequentially executes all steps to prepare JS file for production
 //concatinate all JS files
 //annotate JS file (prepare for minification
 //uglify file
 grunt.registerTask('buildJS', ['concat:js', 'ngAnnotate', 'uglify']);
};

Read Prepare for Production - Grunt online: https://riptutorial.com/angularjs/topic/4434/prepare-
for-production---grunt

https://riptutorial.com/ 177

https://riptutorial.com/angularjs/topic/4434/prepare-for-production---grunt
https://riptutorial.com/angularjs/topic/4434/prepare-for-production---grunt

Chapter 40: Print

Remarks

Create an ng-hide class in css file. ng-show/hide will not work without the class.

More details

Examples

Print Service

Service:

angular.module('core').factory('print_service', ['$rootScope', '$compile', '$http',
'$timeout','$q',
 function($rootScope, $compile, $http, $timeout,$q) {

 var printHtml = function (html) {
 var deferred = $q.defer();
 var hiddenFrame = $('<iframe style="display:
none"></iframe>').appendTo('body')[0];

 hiddenFrame.contentWindow.printAndRemove = function() {
 hiddenFrame.contentWindow.print();
 $(hiddenFrame).remove();
 deferred.resolve();
 };

 var htmlContent = "<!doctype html>"+
 "<html>"+
 '<head><link rel="stylesheet" type="text/css"
href="/style/css/print.css"/></head>'+
 '<body onload="printAndRemove();">' +
 html +
 '</body>'+
 "</html>";

 var doc = hiddenFrame.contentWindow.document.open("text/html", "replace");
 doc.write(htmlContent);
 doc.close();
 return deferred.promise;
 };

 var openNewWindow = function (html) {
 var newWindow = window.open("debugPrint.html");
 newWindow.addEventListener('load', function(){
 $(newWindow.document.body).html(html);
 }, false);
 };

 var print = function (templateUrl, data) {

 $rootScope.isBeingPrinted = true;

https://riptutorial.com/ 178

http://tech.endeepak.com/blog/2014/05/03/printing-external-html-templates-using-angularjs/

 $http.get(templateUrl).success(function(template){
 var printScope = $rootScope.$new()
 angular.extend(printScope, data);
 var element = $compile($('<div>' + template + '</div>'))(printScope);
 var waitForRenderAndPrint = function() {
 if(printScope.$$phase || $http.pendingRequests.length) {
 $timeout(waitForRenderAndPrint, 1000);
 } else {
 // Replace printHtml with openNewWindow for debugging
 printHtml(element.html());
 printScope.$destroy();
 }
 };
 waitForRenderAndPrint();
 });
 };

 var printFromScope = function (templateUrl, scope, afterPrint) {
 $rootScope.isBeingPrinted = true;
 $http.get(templateUrl).then(function(response){
 var template = response.data;
 var printScope = scope;
 var element = $compile($('<div>' + template + '</div>'))(printScope);
 var waitForRenderAndPrint = function() {
 if (printScope.$$phase || $http.pendingRequests.length) {
 $timeout(waitForRenderAndPrint);
 } else {
 // Replace printHtml with openNewWindow for debugging
 printHtml(element.html()).then(function() {
 $rootScope.isBeingPrinted = false;
 if (afterPrint) {
 afterPrint();
 }
 });
 }
 };
 waitForRenderAndPrint();
 });
 };

 return {
 print : print,
 printFromScope : printFromScope
 }
 }
]);

Controller :

var template_url = '/views/print.client.view.html';
print_service.printFromScope(template_url,$scope,function(){
 // Print Completed
});

Read Print online: https://riptutorial.com/angularjs/topic/6750/print

https://riptutorial.com/ 179

https://riptutorial.com/angularjs/topic/6750/print

Chapter 41: Profiling and Performance

Examples

7 Simple Performance Improvements

1) Use ng-repeat sparingly

Using ng-repeat in views generally results in poor performance, particularly when there are nested
ng-repeat's.

This is super slow!

<div ng-repeat="user in userCollection">
 <div ng-repeat="details in user">
 {{details}}
 </div>
</div>

Try to avoid nested repeats as much as possible. One way to improve the performance of ng-
repeat is to use track by $index (or some other id field). By default, ng-repeat tracks the whole
object. With track by, Angular watches the object only by the $index or object id.

<div ng-repeat="user in userCollection track by $index">
 {{user.data}}
</div>

Use other approaches like pagination, virtual scrolls, infinite scrolls or limitTo: begin whenever
possible to avoid iterating over large collections.

2) Bind once

Angular has bidirectional data binding. It comes with a cost of being slow if used too much.

Slower Performance

<!-- Default data binding has a performance cost -->
<div>{{ my.data }}</div>

Faster Performance (AngularJS >= 1.3)

<!-- Bind once is much faster -->
<div>{{ ::my.data }}</div>

<div ng-bind="::my.data"></div>

https://riptutorial.com/ 180

https://docs.angularjs.org/api/ng/directive/ngRepeat
http://stackoverflow.com/questions/11581209/pagination-on-a-list-using-ng-repeat
http://stackoverflow.com/questions/33259241/how-can-i-make-an-virtual-scroll-with-angularjs
http://stackoverflow.com/questions/21674266/angularjs-infinite-scroll-in-a-container
http://stackoverflow.com/a/38686531/3612903

<!-- Use single binding notation in ng-repeat where only list display is needed -->
<div ng-repeat="user in ::userCollection">
 {{::user.data}}
</div>

Using the "bind once" notation tells Angular to wait for the value to stabilize after the first series of
digest cycles. Angular will use that value in the DOM, then remove all watchers so that it becomes
a static value and is no longer bound to the model.

The {{}} is much slower.

This ng-bind is a directive and will place a watcher on the passed variable. So the ng-bind will only
apply, when the passed value does actually change.

The brackets on the other hand will be dirty checked and refreshed in every $digest, even if it's not
necessary.

3) Scope functions and filters take time

AngularJS has a digest loop. All your functions are in a view and filters are executed every time
the digest cycle runs. The digest loop will be executed whenever the model is updated and it can
slow down your app (filter can be hit multiple times before the page is loaded).

Avoid this:

<div ng-controller="bigCalulations as calc">
 <p>{{calc.calculateMe()}}</p>
 <p>{{calc.data | heavyFilter}}</p>
</div>

Better approach

<div ng-controller="bigCalulations as calc">
 <p>{{calc.preCalculatedValue}}</p>
 <p>{{calc.data | lightFilter}}</p>
</div>

Where the controller can be:

app.controller('bigCalulations', function(valueService) {
 // bad, because this is called in every digest loop
 this.calculateMe = function() {
 var t = 0;
 for(i = 0; i < 1000; i++) {
 t += i;
 }
 return t;
 }
 // good, because this is executed just once and logic is separated in service to keep
the controller light
 this.preCalulatedValue = valueService.valueCalculation(); // returns 499500

https://riptutorial.com/ 181

});

4) Watchers

Watchers tremendously drop performance. With more watchers, the digest loop will take longer
and the UI will slow down. If the watcher detects change, it will kick off the digest loop and re-
render the view.

There are three ways to do manual watching for variable changes in Angular.

$watch() - watches for value changes

$watchCollection() - watches for changes in collection (watches more than regular $watch)

$watch(..., true) - Avoid this as much as possible, it will perform "deep watch" and will decline
the performance (watches more than watchCollection)

Note that if you are binding variables in the view you are creating new watches - use
{{::variable}} to prevent creating a watch, especially in loops.

As a result you need to track how many watchers you are using. You can count the watchers with
this script (credit to @Words Like Jared Number of watchers)

(function() {
 var root = angular.element(document.getElementsByTagName('body')),
 watchers = [],
 f = function(element) {
 angular.forEach(['$scope', '$isolateScope'], function(scopeProperty) {
 if(element.data() && element.data().hasOwnProperty(scopeProperty)) {
 angular.forEach(element.data()[scopeProperty].$$watchers, function(watcher) {
 watchers.push(watcher);
 });
 }
 });

 angular.forEach(element.children(), function(childElement) {
 f(angular.element(childElement));
 });
 };

 f(root);

 // Remove duplicate watchers
 var watchersWithoutDuplicates = [];
 angular.forEach(watchers, function(item) {
 if(watchersWithoutDuplicates.indexOf(item) < 0) {
 watchersWithoutDuplicates.push(item);
 }
 });
 console.log(watchersWithoutDuplicates.length);
})();

https://riptutorial.com/ 182

http://stackoverflow.com/users/569302
http://stackoverflow.com/questions/18499909/how-to-count-total-number-of-watches-on-a-page

5) ng-if / ng-show

These functions are very similar in behavior. ng-if removes elements from the DOM while ng-show
only hides the elements but keeps all handlers. If you have parts of the code you do not want to
show, use ng-if.

It depends on the type of usage, but often one is more suitable than the other.

If the element is not needed, use ng-if•

To quickly toggle on/off, use ng-show/ng-hide

<div ng-repeat="user in userCollection">
 <p ng-if="user.hasTreeLegs">I am special<!-- some complicated DOM --></p>
 <p ng-show="user.hasSubscribed">I am awesome<!-- switch this setting on and off --></p>
</div>

•

If in doubt - use ng-if and test!

6) Disable debugging

By default, bind directives and scopes leave extra classes and markup in the code to assist with
various debugging tools. Disabling this option means that you no longer render these various
elements during the digest cycle.

angular.module('exampleApp', []).config(['$compileProvider', function ($compileProvider) {
 $compileProvider.debugInfoEnabled(false);
}]);

7) Use dependency injection to expose your resources

Dependency Injection is a software design pattern in which an object is given its dependencies,
rather than the object creating them itself. It is about removing the hard-coded dependencies and
making it possible to change them whenever needed.

You might wonder about the performance cost associated with such string parsing of all injectable
functions. Angular takes care of this by caching the $inject property after the first time. So this
doesn’t happen everytime a function needs to be invoked.

PRO TIP: If you are looking for the approach with the best performance, go with the $inject
property annotation approach. This approach entirely avoids the function definition parsing
because this logic is wrapped within the following check in the annotate function: if (!($inject =
fn.$inject)). If $inject is already available, no parsing required!

var app = angular.module('DemoApp', []);

https://riptutorial.com/ 183

https://docs.angularjs.org/api/ng/directive/ngIf
https://docs.angularjs.org/api/ng/directive/ngShow

var DemoController = function (s, h) {
 h.get('https://api.github.com/users/angular/repos').success(function (repos) {
 s.repos = repos;
 });
}
// $inject property annotation
DemoController['$inject'] = ['$scope', '$http'];

app.controller('DemoController', DemoController);

PRO TIP 2: You can add an ng-strict-di directive on the same element as ng-app to opt into strict
DI mode which will throw an error whenever a service tries to use implicit annotations. Example:

<html ng-app="DemoApp" ng-strict-di>

Or if you use manual bootstrapping:

angular.bootstrap(document, ['DemoApp'], {
 strictDi: true
});

Bind Once

Angular has reputation for having awesome bidirectional data binding. By default, Angular
continuously synchronizes values bound between model and view components any time data
changes in either the model or view component.

This comes with a cost of being a bit slow if used too much. This will have a larger performance
hit:

Bad performance: {{my.data}}

Add two colons :: before the variable name to use one-time binding. In this case, the value only
gets updated once my.data is defined. You are explicitly pointing not to watch for data changes.
Angular won't perform any value checks, resulting with fewer expressions being evaluated on
each digest cycle.

Good performance examples using one-time binding

{{::my.data}}

{{item}}
</div>

Note: This however removes the bi-directional data binding for my.data, so whenever this field
changes in your application, the same won't be reflected in the view automatically. So use it only
for values that won't change throughout the lifespan of your application.

Scope functions and filters

https://riptutorial.com/ 184

AngularJS has digest loop and all your functions in a view and filters are executed every time the
digest cycle is run. The digest loop will be executed whenever the model is updated and it can
slow down your app (filter can be hit multiple times, before the page is loaded).

You should avoid this:

<div ng-controller="bigCalulations as calc">
 <p>{{calc.calculateMe()}}</p>
 <p>{{calc.data | heavyFilter}}</p>
</div>

Better approach

<div ng-controller="bigCalulations as calc">
 <p>{{calc.preCalculatedValue}}</p>
 <p>{{calc.data | lightFilter}}</p>
</div>

Where controller sample is:

.controller("bigCalulations", function(valueService) {
 // bad, because this is called in every digest loop
 this.calculateMe = function() {
 var t = 0;
 for(i = 0; i < 1000; i++) {
 t = t + i;
 }
 return t;
 }
 //good, because it is executed just once and logic is separated in service to keep the
controller light
 this.preCalulatedValue = valueService.caluclateSumm(); // returns 499500
});

Watchers

Watchers needed for watch some value and detect that this value is changed.

After call $watch() or $watchCollection new watcher add to internal watcher collection in current
scope.

So, what is watcher?

Watcher is a simple function, which is called on every digest cycle, and returns some value.
Angular checks the returned value, if it is not the same as it was on the previous call - a callback
that was passed in second parameter to function $watch() or $watchCollection will be executed.

(function() {
 angular.module("app", []).controller("ctrl", function($scope) {
 $scope.value = 10;
 $scope.$watch(
 function() { return $scope.value; },

https://riptutorial.com/ 185

 function() { console.log("value changed"); }
);
 }
})();

Watchers are performance killers. The more watchers you have, the longer they take to make a
digest loop, the slower UI. If a watcher detects changes, it will kick off the digest loop
(recalculation on all screen)

There are three ways to do manual watch for variable changes in Angular.

$watch() - just watches for value changes

$watchCollection() - watches for changes in collection (watches more than regular $watch)

$watch(..., true) - Avoid this as much as possible, it will perform "deep watch" and will kill the
performance (watches more than watchCollection)

Note that if you are binding variables in the view, you are creating new watchers - use
{{::variable}} not to create watcher, especially in loops

As a result you need to track how many watchers are you using. You can count the watchers with
this script (credit to @Words Like Jared - How to count total number of watches on a page?

(function() {
 var root = angular.element(document.getElementsByTagName("body")),
 watchers = [];

 var f = function(element) {

 angular.forEach(["$scope", "$isolateScope"], function(scopeProperty) {
 if(element.data() && element.data().hasOwnProperty(scopeProperty)) {
 angular.forEach(element.data()[scopeProperty].$$watchers, function(watcher) {
 watchers.push(watcher);
 });
 }
 });

 angular.forEach(element.children(), function(childElement) {
 f(angular.element(childElement));
 });

 };

 f(root);

 // Remove duplicate watchers
 var watchersWithoutDuplicates = [];
 angular.forEach(watchers, function(item) {
 if(watchersWithoutDuplicates.indexOf(item) < 0) {
 watchersWithoutDuplicates.push(item);
 }
 });

 console.log(watchersWithoutDuplicates.length);

https://riptutorial.com/ 186

http://stackoverflow.com/users/569302
http://stackoverflow.com/questions/18499909/)

})();

If you don't want to create your own script, there is an open source utility called ng-stats that uses
a real-time chart embedded into the page to give you insight into the number of watches Angular is
managing, as well as the frequency and duration of digest cycles over time. The utility exposes a
global function named showAngularStats that you can call to configure how you want the chart to
work.

showAngularStats({
 "position": "topleft",
 "digestTimeThreshold": 16,
 "autoload": true,
 "logDigest": true,
 "logWatches": true
});

The example code above displays the following chart on the page automatically (interactive demo
).

ng-if vs ng-show

These functions are very similar in behaviour. The difference is that ng-if removes elements from
the DOM. If there are large parts of the code that will not be shown, then ng-if is the way to go.
ng-show will only hide the elements but will keep all the handlers.

ng-if

The ngIf directive removes or recreates a portion of the DOM tree based on an expression. If the
expression assigned to ngIf evaluates to a false value then the element is removed from the DOM,
otherwise a clone of the element is reinserted into the DOM.

ng-show

The ngShow directive shows or hides the given HTML element based on the expression provided
to the ngShow attribute. The element is shown or hidden by removing or adding the ng-hide CSS
class onto the element.

Example

https://riptutorial.com/ 187

https://github.com/kentcdodds/ng-stats
http://kentcdodds.com/ng-stats/
http://i.stack.imgur.com/x5e1A.png

<div ng-repeat="user in userCollection">
 <p ng-if="user.hasTreeLegs">I am special
 <!-- some complicated DOM -->
 </p>
 <p ng-show="user.hasSubscribed">I am aweosme
 <!-- switch this setting on and off -->
 </p>
</div>

Conclusion

It depends from the type of usage, but often one is more suitable than the other (e.g., if 95% of the
time the element is not needed, use ng-if; if you need to toggle the DOM element's visibility, use
ng-show).

When in doubt, use ng-if and test!

Note: ng-if creates a new isolated scope, whereas ng-show and ng-hide don't. Use $parent.property
if parent scope property is not directly accessible in it.

Debounce Your Model

<div ng-controller="ExampleController">
 <form name="userForm">
 Name:
 <input type="text" name="userName"
 ng-model="user.name"
 ng-model-options="{ debounce: 1000 }" />
 <button ng-click="userForm.userName.$rollbackViewValue();
user.name=''">Clear</button>

 </form>
 <pre>user.name = </pre>
</div>

The above example we are setting a debounce value of 1000 milliseconds which is 1 second. This
is a considerable delay, but will prevent the input from repeatedly thrashing ng-model with many
$digest cycles.

By using debounce on your input fields and anywhere else where an instant update is not
required, you can increase the performance of your Angular apps quite substantially. Not only can
you delay by time, but you can also delay when the action gets triggered. If you don’t want to
update your ng-model on every keystroke, you can also update on blur as well.

Always deregister listeners registered on other scopes other than the current
scope

You must always unregister scopes other then your current scope as shown below:

//always deregister these
$rootScope.$on(...);

https://riptutorial.com/ 188

$scope.$parent.$on(...);

You don't have to deregister listners on current scope as angular would take care of it:

//no need to deregister this
$scope.$on(...);

$rootScope.$on listeners will remain in memory if you navigate to another controller. This will create
a memory leak if the controller falls out of scope.

Don't

angular.module('app').controller('badExampleController', badExample);
badExample.$inject = ['$scope', '$rootScope'];

function badExample($scope, $rootScope) {
 $rootScope.$on('post:created', function postCreated(event, data) {});
}

Do

angular.module('app').controller('goodExampleController', goodExample);
goodExample.$inject = ['$scope', '$rootScope'];

function goodExample($scope, $rootScope) {
 var deregister = $rootScope.$on('post:created', function postCreated(event, data) {});

 $scope.$on('$destroy', function destroyScope() {
 deregister();
 });
}

Read Profiling and Performance online: https://riptutorial.com/angularjs/topic/1921/profiling-and-
performance

https://riptutorial.com/ 189

https://riptutorial.com/angularjs/topic/1921/profiling-and-performance
https://riptutorial.com/angularjs/topic/1921/profiling-and-performance

Chapter 42: Providers

Syntax

constant(name, value);•
value(name, value);•
factory(name, $getFn);•
service(name, constructor);•
provider(name, provider);•

Remarks

Providers are singleton objects that can be injected, for example, into other services, controllers
and directives. All providers are registered using different "recipes", where Provider is the most
flexible one. All possible recipes are:

Constant•
Value•
Factory•
Service•
Provider•

Services, Factories and Providers are all lazy initialized, component is initialized only if application
depends on it.

Decorators are closely related to Providers. Decorators are used to intercept service or factory
creation in order to change it's behavior or override (parts of) it.

Examples

Constant

Constant is available both in configuration and run phases.

angular.module('app',[])
 .constant('endpoint', 'http://some.rest.endpoint') // define
 .config(function(endpoint) {
 // do something with endpoint
 // available in both config- and run phases
 })
 .controller('MainCtrl', function(endpoint) { // inject
 var vm = this;
 vm.endpoint = endpoint; // usage
 });

<body ng-controller="MainCtrl as vm">

https://riptutorial.com/ 190

http://www.riptutorial.com/angularjs/topic/5255/decorators

 <div>endpoint = {{ ::vm.endpoint }}</div>
</body>

endpoint = http://some.rest.endpoint

Value

Value is available both in configuration and run phases.

angular.module('app',[])
 .value('endpoint', 'http://some.rest.endpoint') // define
 .run(function(endpoint) {
 // do something with endpoint
 // only available in run phase
 })
 .controller('MainCtrl', function(endpoint) { // inject
 var vm = this;
 vm.endpoint = endpoint; // usage
 });

<body ng-controller="MainCtrl as vm">
 <div>endpoint = {{ ::vm.endpoint }}</div>
</body>

endpoint = http://some.rest.endpoint

Factory

Factory is available in run phase.

The Factory recipe constructs a new service using a function with zero or more
arguments (these are dependencies on other services). The return value of this
function is the service instance created by this recipe.

Factory can create a service of any type, whether it be a primitive, object literal,
function, or even an instance of a custom type.

angular.module('app',[])
 .factory('endpointFactory', function() {
 return {
 get: function() {
 return 'http://some.rest.endpoint';
 }
 };
 })
 .controller('MainCtrl', function(endpointFactory) {
 var vm = this;
 vm.endpoint = endpointFactory.get();
 });

https://riptutorial.com/ 191

http://some.rest.endpoint
http://some.rest.endpoint

<body ng-controller="MainCtrl as vm">
 <div>endpoint = {{::vm.endpoint }}</div>
</body>

endpoint = http://some.rest.endpoint

Service

Service is available in run phase.

The Service recipe produces a service just like the Value or Factory recipes, but it does
so by invoking a constructor with the new operator. The constructor can take zero or
more arguments, which represent dependencies needed by the instance of this type.

angular.module('app',[])
 .service('endpointService', function() {
 this.get = function() {
 return 'http://some.rest.endpoint';
 };
 })
 .controller('MainCtrl', function(endpointService) {
 var vm = this;
 vm.endpoint = endpointService.get();
 });

<body ng-controller="MainCtrl as vm">
 <div>endpoint = {{::vm.endpoint }}</div>
</body>

endpoint = http://some.rest.endpoint

Provider

Provider is available both in configuration and run phases.

The Provider recipe is syntactically defined as a custom type that implements a $get
method.

You should use the Provider recipe only when you want to expose an API for
application-wide configuration that must be made before the application starts. This is
usually interesting only for reusable services whose behavior might need to vary
slightly between applications.

angular.module('app',[])
 .provider('endpointProvider', function() {
 var uri = 'n/a';

 this.set = function(value) {
 uri = value;
 };

https://riptutorial.com/ 192

http://some.rest.endpoint
http://some.rest.endpoint

 this.$get = function() {
 return {
 get: function() {
 return uri;
 }
 };
 };
 })
 .config(function(endpointProviderProvider) {
 endpointProviderProvider.set('http://some.rest.endpoint');
 })
 .controller('MainCtrl', function(endpointProvider) {
 var vm = this;
 vm.endpoint = endpointProvider.get();
 });

<body ng-controller="MainCtrl as vm">
 <div>endpoint = {{::vm.endpoint }}</div>
</body>

endpoint = http://some.rest.endpoint

Without config phase result would be

endpoint = n/a

Read Providers online: https://riptutorial.com/angularjs/topic/5169/providers

https://riptutorial.com/ 193

http://some.rest.endpoint
https://riptutorial.com/angularjs/topic/5169/providers

Chapter 43: Routing using ngRoute

Remarks

The ngRoute is a build-in module provides routing and deeplinking services and directives for
angular apps.

Full documentation about ngRoute is avalable on https://docs.angularjs.org/api/ngRoute

Examples

Basic example

This example shows setting up a small application with 3 routes, each with it's own view and
controller, using the controllerAs syntax.

We configure our router at the angular .config function

We inject $routeProvider into .config1.
We define our route names at the .when method with a route definition object.2.
We supply the .when method with an object specifying our template or templateUrl, controller
and controllerAs

3.

app.js

angular.module('myApp', ['ngRoute'])
 .controller('controllerOne', function() {
 this.message = 'Hello world from Controller One!';
 })
 .controller('controllerTwo', function() {
 this.message = 'Hello world from Controller Two!';
 })
 .controller('controllerThree', function() {
 this.message = 'Hello world from Controller Three!';
 })
 .config(function($routeProvider) {
 $routeProvider
 .when('/one', {
 templateUrl: 'view-one.html',
 controller: 'controllerOne',
 controllerAs: 'ctrlOne'
 })
 .when('/two', {
 templateUrl: 'view-two.html',
 controller: 'controllerTwo',
 controllerAs: 'ctrlTwo'
 })
 .when('/three', {
 templateUrl: 'view-three.html',
 controller: 'controllerThree',
 controllerAs: 'ctrlThree'

https://riptutorial.com/ 194

https://docs.angularjs.org/api/ngRoute

 })
 // redirect to here if no other routes match
 .otherwise({
 redirectTo: '/one'
 });
 });

Then in our HTML we define our navigation using <a> elements with href, for a route name of
helloRoute we will route as My route

We also provide our view with a container and the directive ng-view to inject our routes.

index.html

<div ng-app="myApp">
 <nav>
 <!-- links to switch routes -->
 View One
 View Two
 View Three
 </nav>
 <!-- views will be injected here -->
 <div ng-view></div>
 <!-- templates can live in normal html files -->
 <script type="text/ng-template" id="view-one.html">
 <h1>{{ctrlOne.message}}</h1>
 </script>

 <script type="text/ng-template" id="view-two.html">
 <h1>{{ctrlTwo.message}}</h1>
 </script>

 <script type="text/ng-template" id="view-three.html">
 <h1>{{ctrlThree.message}}</h1>
 </script>
</div>

Route parameters example

This example extends the basic example passing parameters in the route in order to use them in
the controller

To do so we need to:

Configure the parameter position and name in the route name1.
Inject $routeParams service in our Controller2.

app.js

angular.module('myApp', ['ngRoute'])
 .controller('controllerOne', function() {
 this.message = 'Hello world from Controller One!';
 })
 .controller('controllerTwo', function() {
 this.message = 'Hello world from Controller Two!';

https://riptutorial.com/ 195

 })
 .controller('controllerThree', ['$routeParams', function($routeParams) {
 var routeParam = $routeParams.paramName

 if ($routeParams.message) {
 // If a param called 'message' exists, we show it's value as the message
 this.message = $routeParams.message;
 } else {
 // If it doesn't exist, we show a default message
 this.message = 'Hello world from Controller Three!';
 }
 }])
 .config(function($routeProvider) {
 $routeProvider
 .when('/one', {
 templateUrl: 'view-one.html',
 controller: 'controllerOne',
 controllerAs: 'ctrlOne'
 })
 .when('/two', {
 templateUrl: 'view-two.html',
 controller: 'controllerTwo',
 controllerAs: 'ctrlTwo'
 })
 .when('/three', {
 templateUrl: 'view-three.html',
 controller: 'controllerThree',
 controllerAs: 'ctrlThree'
 })
 .when('/three/:message', { // We will pass a param called 'message' with this route
 templateUrl: 'view-three.html',
 controller: 'controllerThree',
 controllerAs: 'ctrlThree'
 })
 // redirect to here if no other routes match
 .otherwise({
 redirectTo: '/one'
 });
 });

Then, withoud making any changes in our templates, only adding a new link with custom
message, we can see the new custom message in our view.

index.html

<div ng-app="myApp">
 <nav>
 <!-- links to switch routes -->
 View One
 View Two
 View Three
 <!-- New link with custom message -->
 View Three with "This-is-a-message" custom message
 </nav>
 <!-- views will be injected here -->
 <div ng-view></div>
 <!-- templates can live in normal html files -->
 <script type="text/ng-template" id="view-one.html">
 <h1>{{ctrlOne.message}}</h1>

https://riptutorial.com/ 196

 </script>

 <script type="text/ng-template" id="view-two.html">
 <h1>{{ctrlTwo.message}}</h1>
 </script>

 <script type="text/ng-template" id="view-three.html">
 <h1>{{ctrlThree.message}}</h1>
 </script>
</div>

Defining custom behavior for individual routes

The simplest manner of defining custom behavior for individual routes would be fairly easy.

In this example we use it to authenticate a user :

1) routes.js: create a new property (like requireAuth) for any desired route

angular.module('yourApp').config(['$routeProvider', function($routeProvider) {
 $routeProvider
 .when('/home', {
 templateUrl: 'templates/home.html',
 requireAuth: true
 })
 .when('/login', {
 templateUrl: 'templates/login.html',
 })
 .otherwise({
 redirectTo: '/home'
 });
}])

2) In a top-tier controller that isn't bound to an element inside the ng-view (to avoid conflict
with angular $routeProvider), check if the newUrl has the requireAuth property and act
accordingly

angular.module('YourApp').controller('YourController', ['$scope', 'session', '$location',
 function($scope, session, $location) {

 $scope.$on('$routeChangeStart', function(angularEvent, newUrl) {

 if (newUrl.requireAuth && !session.user) {
 // User isn’t authenticated
 $location.path("/login");
 }

 });
 }
]);

Read Routing using ngRoute online: https://riptutorial.com/angularjs/topic/2391/routing-using-
ngroute

https://riptutorial.com/ 197

https://riptutorial.com/angularjs/topic/2391/routing-using-ngroute
https://riptutorial.com/angularjs/topic/2391/routing-using-ngroute

Chapter 44: Services

Examples

How to create a Service

angular.module("app")
 .service("counterService", function(){

 var service = {
 number: 0
 };

 return service;
 });

How to use a service

 angular.module("app")

 // Custom services are injected just like Angular's built-in services
 .controller("step1Controller", ['counterService', '$scope', function(counterService,
$scope) {
 counterService.number++;
 // bind to object (by reference), not to value, for automatic sync
 $scope.counter = counterService;
 })

In the template using this controller you'd then write:

// editable
<input ng-model="counter.number" />

or

// read-only

Of course, in real code you would interact with the service using methods on the controller, which
in turn delegate to the service. The example above simply increments the counter value each time
the controller is used in a template.

Services in Angularjs are singletons:

Services are singleton objects that are instantiated only once per app (by the $injector) and lazy
loaded (created only when necessary).

A singleton is a class which only allows one instance of itself to be created - and gives

https://riptutorial.com/ 198

simple, easy access to said instance. As stated here

Creating a service using angular.factory

First define the service (in this case it uses the factory pattern):

.factory('dataService', function() {
 var dataObject = {};
 var service = {
 // define the getter method
 get data() {
 return dataObject;
 },
 // define the setter method
 set data(value) {
 dataObject = value || {};
 }
 };
 // return the "service" object to expose the getter/setter
 return service;
})

Now you can use the service to share data between controllers:

.controller('controllerOne', function(dataService) {
 // create a local reference to the dataService
 this.dataService = dataService;
 // create an object to store
 var someObject = {
 name: 'SomeObject',
 value: 1
 };
 // store the object
 this.dataService.data = someObject;
})

.controller('controllerTwo', function(dataService) {
 // create a local reference to the dataService
 this.dataService = dataService;
 // this will automatically update with any changes to the shared data object
 this.objectFromControllerOne = this.dataService.data;
})

$sce - sanitize and render content and resources in templates

$sce ("Strict Contextual Escaping") is a built-in angular service that automatically
sanitize content and internal sources in templates.

injecting external sources and raw HTML into the template requires manual wrapping of$sce.

In this example we'll create a simple $sce sanitation filter :`.

Demo

.filter('sanitizer', ['$sce', [function($sce) {

https://riptutorial.com/ 199

http://stackoverflow.com/questions/2155688/what-is-a-singleton-in-c
https://docs.angularjs.org/api/ng/service/$sce
http://plnkr.co/edit/9tpXY7RF3QWN4eIXPdEU?p=preview

 return function(content) {
 return $sce.trustAsResourceUrl(content);
 };
}]);

Usage in template

<div ng-repeat="item in items">

 // Sanitize external sources
 <ifrmae ng-src="{{item.youtube_url | sanitizer}}">

 // Sanitaize and render HTML
 <div ng-bind-html="{{item.raw_html_content| sanitizer}}"></div>

</div>

How to create a Service with dependencies using 'array syntax'

angular.module("app")
 .service("counterService", ["fooService", "barService", function(anotherService,
barService){

 var service = {
 number: 0,
 foo: function () {
 return fooService.bazMethod(); // Use of 'fooService'
 },
 bar: function () {
 return barService.bazMethod(); // Use of 'barService'
 }
 };

 return service;
 }]);

Registering a Service

The most common and flexible way to create a service uses the angular.module API factory:

angular.module('myApp.services', []).factory('githubService', function() {
 var serviceInstance = {};
 // Our first service
 return serviceInstance;
});

The service factory function can be either a function or an array, just like the way we create
controllers:

// Creating the factory through using the
// bracket notation
angular.module('myApp.services', [])
.factory('githubService', [function($http) {
}]);

https://riptutorial.com/ 200

To expose a method on our service, we can place it as an attribute on the service object.

angular.module('myApp.services', [])
 .factory('githubService', function($http) {
 var githubUrl = 'https://api.github.com';
 var runUserRequest = function(username, path) {
 // Return the promise from the $http service
 // that calls the Github API using JSONP
 return $http({
 method: 'JSONP',
 url: githubUrl + '/users/' +
 username + '/' +
 path + '?callback=JSON_CALLBACK'
 });
 }
// Return the service object with a single function
// events
return {
 events: function(username) {
 return runUserRequest(username, 'events');
 }
};

Difference between Service and Factory

1) Services

A service is a constructor function that is invoked once at runtime with new, just like what we would
do with plain javascript with only difference that AngularJs is calling the new behind the scenes.

There is one thumb rule to remember in case of services

Services are constructors which are called with new1.

Lets see a simple example where we would register a service which uses $http service to fetch
student details, and use it in the controller

function StudentDetailsService($http) {
 this.getStudentDetails = function getStudentDetails() {
 return $http.get('/details');
 };
}

angular.module('myapp').service('StudentDetailsService', StudentDetailsService);

We just inject this service into the controller

function StudentController(StudentDetailsService) {
 StudentDetailsService.getStudentDetails().then(function (response) {
 // handle response
 });
}
angular.module('app').controller('StudentController', StudentController);

When to use?

https://riptutorial.com/ 201

Use .service() wherever you want to use a constructor. It is usually used to create public API's
just like getStudentDetails(). But if you don't want to use a constructor and wish to use a simple
API pattern instead, then there isn't much flexibility in .service().

2) Factory

Even though we can achieve all the things using .factory() which we would, using .services(), it
doesn't make .factory() "same as" .service(). It is much more powerful and flexible than
.service()

A .factory() is a design pattern which is used to return a value.

There are two thumb rules to remember in case of factories

Factories return values1.
Factories (can) create objects (Any object)2.

Lets see some examples on what we can do using .factory()

Returning Objects Literals

Lets see an example where factory is used to return an object using a basic Revealing module
pattern

function StudentDetailsService($http) {
 function getStudentDetails() {
 return $http.get('/details');
 }
 return {
 getStudentDetails: getStudentDetails
 };
}

angular.module('myapp').factory('StudentDetailsService', StudentDetailsService);

Usage inside a controller

function StudentController(StudentDetailsService) {
 StudentDetailsService.getStudentDetails().then(function (response) {
 // handle response
 });
}
angular.module('app').controller('StudentController', StudentController);

Returning Closures

What is a closure?

Closures are functions that refer to variables that are used locally, BUT defined in an enclosing
scope.

Following is an example of a closure

https://riptutorial.com/ 202

function closureFunction(name) {
 function innerClosureFunction(age) { // innerClosureFunction() is the inner function, a
closure
 // Here you can manipulate 'age' AND 'name' variables both
 };
};

The "wonderful" part is that it can access the name which is in the parent scope.

Lets use the above closure example inside .factory()

function StudentDetailsService($http) {
 function closureFunction(name) {
 function innerClosureFunction(age) {
 // Here you can manipulate 'age' AND 'name' variables
 };
 };
};

angular.module('myapp').factory('StudentDetailsService', StudentDetailsService);

Usage inside a controller

function StudentController(StudentDetailsService) {
 var myClosure = StudentDetailsService('Student Name'); // This now HAS the
innerClosureFunction()
 var callMyClosure = myClosure(24); // This calls the innerClosureFunction()
};

angular.module('app').controller('StudentController', StudentController);

Creating Constructors/instances

.service() creates constructors with a call to new as seen above. .factory() can also create
constructors with a call to new

Lets see an example on how to achieve this

function StudentDetailsService($http) {
 function Student() {
 this.age = function () {
 return 'This is my age';
 };
 }
 Student.prototype.address = function () {
 return 'This is my address';
 };
 return Student;
};

angular.module('myapp').factory('StudentDetailsService', StudentDetailsService);

Usage inside a controller

function StudentController(StudentDetailsService) {

https://riptutorial.com/ 203

 var newStudent = new StudentDetailsService();

 //Now the instance has been created. Its properties can be accessed.

 newStudent.age();
 newStudent.address();

};

angular.module('app').controller('StudentController', StudentController);

Read Services online: https://riptutorial.com/angularjs/topic/1486/services

https://riptutorial.com/ 204

https://riptutorial.com/angularjs/topic/1486/services

Chapter 45: Session storage

Examples

Handling session storage through service using angularjs

Session storage service :

Common factory service that will save and return the saved session data based on the key.

 'use strict';

/**
 * @ngdoc factory
 * @name app.factory:storageService
 * @description This function will communicate with HTML5 sessionStorage via Factory Service.
 */

app.factory('storageService', ['$rootScope', function($rootScope) {

 return {
 get: function(key) {
 return sessionStorage.getItem(key);
 },
 save: function(key, data) {
 sessionStorage.setItem(key, data);
 }
 };
}]);

In controller :

Inject the storageService dependency in the controller to set and get the data from the session
storage.

app.controller('myCtrl',['storageService',function(storageService) {

 // Save session data to storageService
 storageService.save('key', 'value');

 // Get saved session data from storageService
 var sessionData = storageService.get('key');

});

Read Session storage online: https://riptutorial.com/angularjs/topic/8201/session-storage

https://riptutorial.com/ 205

https://riptutorial.com/angularjs/topic/8201/session-storage

Chapter 46: Sharing Data

Remarks

A very common question when working with Angular is how to share data between controllers.
Using a service is the most frequent response and this is a simple example demonstrating a
factory pattern to share any type of data object between two or more controllers. Because it is a
shared object reference, an update in one controller will be immediately available in all other
controllers using the service. Note that both service and factory and both providers.

Examples

Using ngStorage to share data

Firstly, include the ngStorage source in your index.html.

An example injecting ngStorage src would be:

<head>
 <title>Angular JS ngStorage</title>
 <script src =
"http://ajax.googleapis.com/ajax/libs/angularjs/1.3.14/angular.min.js"></script>
 <script src="https://rawgithub.com/gsklee/ngStorage/master/ngStorage.js"></script>
</head>

ngStorage gives you 2 storage namely: $localStorage and $sessionStorage. You need to require
ngStorage and Inject the services.

Suppose if ng-app="myApp", then you would be injecting ngStorage as following:

var app = angular.module('myApp', ['ngStorage']);
 app.controller('controllerOne', function($localStorage,$sessionStorage) {
 // an object to share
 var sampleObject = {
 name: 'angularjs',
 value: 1
 };
 $localStorage.valueToShare = sampleObject;
 $sessionStorage.valueToShare = sampleObject;
 })
.controller('controllerTwo', function($localStorage,$sessionStorage) {
 console.log('localStorage: '+ $localStorage +'sessionStorage: '+$sessionStorage);
})

$localStorage and $sessionStorage is globally accessible through any controllers as long as you
inject those services in the controllers.

You can also use the localStorage and sessionStorage of HTML5. However, using HTML5 localStorage
would require you to serialize and deserialize your objects before using or saving them.

https://riptutorial.com/ 206

http://www.riptutorial.com/angularjs/example/18267/service
http://www.riptutorial.com/angularjs/example/18266/factory
http://www.riptutorial.com/angularjs/topic/5169/providers
https://github.com/gsklee/ngStorage

For example:

var myObj = {
 firstname: "Nic",
 lastname: "Raboy",
 website: "https://www.google.com"
}
//if you wanted to save into localStorage, serialize it
window.localStorage.set("saved", JSON.stringify(myObj));

//unserialize to get object
var myObj = JSON.parse(window.localStorage.get("saved"));

Sharing data from one controller to another using service

We can create a service to set and get the data between the controllers and then inject that
service in the controller function where we want to use it.

Service :

app.service('setGetData', function() {
 var data = '';
 getData: function() { return data; },
 setData: function(requestData) { data = requestData; }
});

Controllers :

app.controller('myCtrl1', ['setGetData',function(setGetData) {

 // To set the data from the one controller
 var data = 'Hello World !!';
 setGetData.setData(data);

}]);

app.controller('myCtrl2', ['setGetData',function(setGetData) {

 // To get the data from the another controller
 var res = setGetData.getData();
 console.log(res); // Hello World !!

}]);

Here, we can see that myCtrl1 is used for setting the data and myCtrl2 is used for getting the data.
So, we can share the data from one controller to another contrller like this.

Read Sharing Data online: https://riptutorial.com/angularjs/topic/1923/sharing-data

https://riptutorial.com/ 207

https://riptutorial.com/angularjs/topic/1923/sharing-data

Chapter 47: SignalR with AngularJs

Introduction

In this Article we focus on "How to create a simple project using AngularJs And SignalR", in this
training you need to know about "how create app with angularjs", "how to create/use service on
angular" And basic knowledge about SignalR" for this we recommend
https://www.codeproject.com/Tips/590660/Introduction-to-SignalR).

Examples

SignalR And AngularJs [ChatProject]

step 1: Create Project

- Application
 - app.js
 - Controllers
 - appController.js
 - Factories
 - SignalR-factory.js
- index.html
- Scripts
 - angular.js
 - jquery.js
 - jquery.signalR.min.js
- Hubs

SignalR version use: signalR-2.2.1

Step 2: Startup.cs And ChatHub.cs

Go to your "/Hubs" directory and Add 2 files [Startup.cs, ChatHub.cs]

Startup.cs

using Microsoft.Owin;
using Owin;
[assembly: OwinStartup(typeof(SignalR.Hubs.Startup))]

namespace SignalR.Hubs
{
 public class Startup
 {
 public void Configuration(IAppBuilder app)
 {
 app.MapSignalR();
 }
 }
}

https://riptutorial.com/ 208

https://www.codeproject.com/Tips/590660/Introduction-to-SignalR)

ChatHub.cs

using Microsoft.AspNet.SignalR;

namespace SignalR.Hubs
{
 public class ChatHub : Hub
 {
 public void Send(string name, string message, string time)
 {
 Clients.All.broadcastMessage(name, message, time);
 }
 }
}

step 3: create angular app

Go to your "/Application" directory and Add [app.js] file

app.js

var app = angular.module("app", []);

step 4: create SignalR Factory

Go to your "/Application/Factories" directory and Add [SignalR-factory.js] file

SignalR-factory.js

app.factory("signalR", function () {
 var factory = {};

 factory.url = function (url) {
 $.connection.hub.url = url;
 }

 factory.setHubName = function (hubName) {
 factory.hub = hubName;
 }

 factory.connectToHub = function () {
 return $.connection[factory.hub];
 }

 factory.client = function () {
 var hub = factory.connectToHub();
 return hub.client;
 }

 factory.server = function () {
 var hub = factory.connectToHub();
 return hub.server;
 }

 factory.start = function (fn) {
 return $.connection.hub.start().done(fn);
 }

https://riptutorial.com/ 209

 return factory;
});

step 5: update app.js

var app = angular.module("app", []);

app.run(function(signalR) {
 signalR.url("http://localhost:21991/signalr");
});

localhost:21991/signalr | this is your SignalR Hubs Urls

step 6: add controller

Go to your "/Application/Controllers" directory and Add [appController.js] file

app.controller("ctrl", function ($scope, signalR) {
 $scope.messages = [];
 $scope.user = {};

 signalR.setHubName("chatHub");

 signalR.client().broadcastMessage = function (name, message, time) {
 var newChat = { name: name, message: message, time: time };

 $scope.$apply(function() {
 $scope.messages.push(newChat);
 });
 };

 signalR.start(function () {
 $scope.send = function () {
 var dt = new Date();
 var time = dt.getHours() + ":" + dt.getMinutes() + ":" + dt.getSeconds();

 signalR.server().send($scope.user.name, $scope.user.message, time);
 }
 });
});

signalR.setHubName("chatHub") | [ChatHub] (public class) > ChatHub.cs

Note: do not insert HubName with upper Case, first letter is lower Case.

signalR.client() | this method try to connect to your hubs and get all functions in the
Hubs, in this sample we have "chatHub", to get "broadcastMessage()" function;

step 7: add index.html in route of directory

index.html

<!DOCTYPE html>
<html ng-app="app" ng-controller="ctrl">

https://riptutorial.com/ 210

<head>
 <meta charset="utf-8" />
 <title>SignalR Simple Chat</title>
</head>
<body>
 <form>
 <input type="text" placeholder="name" ng-model="user.name" />
 <input type="text" placeholder="message" ng-model="user.message" />
 <button ng-click="send()">send</button>

 <li ng-repeat="item in messages">
 <b ng-bind="item.name"> <small ng-bind="item.time"></small> :
{{item.message}}

 </form>

 <script src="Scripts/angular.min.js"></script>
 <script src="Scripts/jquery-1.6.4.min.js"></script>
 <script src="Scripts/jquery.signalR-2.2.1.min.js"></script>
 <script src="signalr/hubs"></script>
 <script src="app.js"></script>
 <script src="SignalR-factory.js"></script>
</body>
</html

Result with Image

User 1 (send and receive)

User 2 (send and receive)

Read SignalR with AngularJs online: https://riptutorial.com/angularjs/topic/9964/signalr-with-
angularjs

https://riptutorial.com/ 211

https://i.stack.imgur.com/slA02.jpg
https://i.stack.imgur.com/zwvIf.jpg
https://riptutorial.com/angularjs/topic/9964/signalr-with-angularjs
https://riptutorial.com/angularjs/topic/9964/signalr-with-angularjs

Chapter 48: The Self Or This Variable In A
Controller

Introduction

This is an explanation of a common pattern and generally considered best practice that you may
see in AngularJS code.

Examples

Understanding The Purpose Of The Self Variable

When using "controller as syntax" you would give your controller an alias in the html when using
the ng-controller directive.

<div ng-controller="MainCtrl as main">
</div>

You can then access properties and methods from the main variable that represents our controller
instance. For example, let's access the greeting property of our controller and display it on the
screen:

<div ng-controller="MainCtrl as main">
 {{ main.greeting }}
</div>

Now, in our controller, we need to set a value to the greeting property of our controller instance (as
opposed to $scope or something else):

angular
.module('ngNjOrg')
.controller('ForgotPasswordController',function ($log) {
 var self = this;

 self.greeting = "Hello World";
})

In order to have the HTML display correctly we needed to set the greeting property on this inside
of our controller body. I am creating an intermediate variable named self that holds a reference to
this. Why? Consider this code:

angular
.module('ngNjOrg')
.controller('ForgotPasswordController',function ($log) {
 var self = this;

https://riptutorial.com/ 212

 self.greeting = "Hello World";

 function itsLate () {
 this.greeting = "Goodnight";
 }

})

In this above code you may expect the text on the screen to update when the method itsLate is
called, but in fact it does not. JavaScript uses function level scoping rules so the "this" inside of
itsLate refers to something different that "this" outside of the method body. However, we can get
the desired result if we use the self variable:

 angular
.module('ngNjOrg')
.controller('ForgotPasswordController',function ($log) {
 var self = this;

 self.greeting = "Hello World";

 function itsLate () {
 self.greeting = "Goodnight";
 }

})

This is the beauty of using a "self" variable in your controllers- you can access this anywhere in
your controller and can always be sure that it is referencing your controller instance.

Read The Self Or This Variable In A Controller online:
https://riptutorial.com/angularjs/topic/8867/the-self-or-this-variable-in-a-controller

https://riptutorial.com/ 213

https://riptutorial.com/angularjs/topic/8867/the-self-or-this-variable-in-a-controller

Chapter 49: ui-router

Remarks

What is ui-router?

Angular UI-Router is a client-side Single Page Application routing framework for
AngularJS.

Routing frameworks for SPAs update the browser's URL as the user navigates through
the app. Conversely, this allows changes to the browser's URL to drive navigation
through the app, thus allowing the user to create a bookmark to a location deep within
the SPA.

UI-Router applications are modeled as a hierarchical tree of states. UI-Router provides
a state machine to manage the transitions between those application states in a
transaction-like manner.

Useful links

You can find the official API Documentation here. For questions about ui-router VS ng-router, you
can find a reasonably detailed answer here. Keep in mind ng-router has already released a new
ng-router update called ngNewRouter (compatible with Angular 1.5+/2.0) which supports states just
like ui-router. You can read more about ngNewRouter here.

Examples

Basic Example

app.js

angular.module('myApp', ['ui.router'])
 .controller('controllerOne', function() {
 this.message = 'Hello world from Controller One!';
 })
 .controller('controllerTwo', function() {
 this.message = 'Hello world from Controller Two!';
 })
 .controller('controllerThree', function() {
 this.message = 'Hello world from Controller Three!';
 })
 .config(function($stateProvider, $urlRouterProvider) {
 $stateProvider
 .state('one', {
 url: "/one",
 templateUrl: "view-one.html",
 controller: 'controllerOne',
 controllerAs: 'ctrlOne'
 })
 .state('two', {

https://riptutorial.com/ 214

http://angular-ui.github.io/ui-router/site/#/api/ui.router
http://stackoverflow.com/questions/21023763/angularjs-difference-between-angular-route-and-angular-ui-router
https://medium.com/angularjs-meetup-south-london/angular-just-another-introduction-to-ngnewrouter-vs-ui-router-72bfcb228017#.gisqk1lx8

 url: "/two",
 templateUrl: "view-two.html",
 controller: 'controllerTwo',
 controllerAs: 'ctrlTwo'
 })
 .state('three', {
 url: "/three",
 templateUrl: "view-three.html",
 controller: 'controllerThree',
 controllerAs: 'ctrlThree'
 });

 $urlRouterProvider.otherwise('/one');
 });

index.html

<div ng-app="myApp">
 <nav>
 <!-- links to switch routes -->
 <a ui-sref="one">View One
 <a ui-sref="two">View Two
 <a ui-sref="three">View Three
 </nav>
 <!-- views will be injected here -->
 <div ui-view></div>
 <!-- templates can live in normal html files -->
 <script type="text/ng-template" id="view-one.html">
 <h1>{{ctrlOne.message}}</h1>
 </script>

 <script type="text/ng-template" id="view-two.html">
 <h1>{{ctrlTwo.message}}</h1>
 </script>

 <script type="text/ng-template" id="view-three.html">
 <h1>{{ctrlThree.message}}</h1>
 </script>
</div>

Multiple Views

app.js

angular.module('myApp', ['ui.router'])
 .controller('controllerOne', function() {
 this.message = 'Hello world from Controller One!';
 })
 .controller('controllerTwo', function() {
 this.message = 'Hello world from Controller Two!';
 })
 .controller('controllerThree', function() {
 this.message = 'Hello world from Controller Three!';
 })
 .controller('controllerFour', function() {
 this.message = 'Hello world from Controller Four!';
 })
 .config(function($stateProvider, $urlRouterProvider) {

https://riptutorial.com/ 215

 $stateProvider
 .state('one', {
 url: "/one",
 views: {
 "viewA": {
 templateUrl: "view-one.html",
 controller: 'controllerOne',
 controllerAs: 'ctrlOne'
 },
 "viewB": {
 templateUrl: "view-two.html",
 controller: 'controllerTwo',
 controllerAs: 'ctrlTwo'
 }
 }
 })
 .state('two', {
 url: "/two",
 views: {
 "viewA": {
 templateUrl: "view-three.html",
 controller: 'controllerThree',
 controllerAs: 'ctrlThree'
 },
 "viewB": {
 templateUrl: "view-four.html",
 controller: 'controllerFour',
 controllerAs: 'ctrlFour'
 }
 }
 });

 $urlRouterProvider.otherwise('/one');
 });

index.html

<div ng-app="myApp">
 <nav>
 <!-- links to switch routes -->
 <a ui-sref="one">Route One
 <a ui-sref="two">Route Two
 </nav>
 <!-- views will be injected here -->
 <div ui-view="viewA"></div>
 <div ui-view="viewB"></div>
 <!-- templates can live in normal html files -->
 <script type="text/ng-template" id="view-one.html">
 <h1>{{ctrlOne.message}}</h1>
 </script>

 <script type="text/ng-template" id="view-two.html">
 <h1>{{ctrlTwo.message}}</h1>
 </script>

 <script type="text/ng-template" id="view-three.html">
 <h1>{{ctrlThree.message}}</h1>
 </script>

 <script type="text/ng-template" id="view-four.html">

https://riptutorial.com/ 216

 <h1>{{ctrlFour.message}}</h1>
 </script>
</div>

Using resolve functions to load data

app.js

angular.module('myApp', ['ui.router'])
 .service('User', ['$http', function User ($http) {
 this.getProfile = function (id) {
 return $http.get(...) // method to load data from API
 };
 }])
 .controller('profileCtrl', ['profile', function profileCtrl (profile) {
 // inject resolved data under the name of the resolve function
 // data will already be returned and processed
 this.profile = profile;
 }])
 .config(['$stateProvider', '$urlRouterProvider', function ($stateProvider,
$urlRouterProvider) {
 $stateProvider
 .state('profile', {
 url: "/profile/:userId",
 templateUrl: "profile.html",
 controller: 'profileCtrl',
 controllerAs: 'vm',
 resolve: {
 profile: ['$stateParams', 'User', function ($stateParams, User) {
 // $stateParams will contain any parameter defined in your url
 return User.getProfile($stateParams.userId)
 // .then is only necessary if you need to process returned data
 .then(function (data) {
 return doSomeProcessing(data);
 });
 }]
 }
 }]);

 $urlRouterProvider.otherwise('/');
 });

profile.html

 Name: {{vm.profile.name}}
 Age: {{vm.profile.age}}
 Sex: {{vm.profile.sex}}

View UI-Router Wiki entry on resolves here.

Resolve functions must be resolved before the $stateChangeSuccess event is fired, which means
that the UI will not load until all resolve functions on the state have finished. This is a great way to
ensure that data will be available to your controller and UI. However, you can see that a resolve
function should be fast in order to avoid hanging the UI.

https://riptutorial.com/ 217

https://github.com/angular-ui/ui-router/wiki#resolve

Nested Views / States

app.js

var app = angular.module('myApp',['ui.router']);

app.config(function($stateProvider,$urlRouterProvider) {

 $stateProvider

 .state('home', {
 url: '/home',
 templateUrl: 'home.html',
 controller: function($scope){
 $scope.text = 'This is the Home'
 }
 })

 .state('home.nested1',{
 url: '/nested1',
 templateUrl:'nested1.html',
 controller: function($scope){
 $scope.text1 = 'This is the nested view 1'
 }
 })

 .state('home.nested2',{
 url: '/nested2',
 templateUrl:'nested2.html',
 controller: function($scope){
 $scope.fruits = ['apple','mango','oranges'];
 }
 });

 $urlRouterProvider.otherwise('/home');

});

index.html

 <div ui-view></div>
 <script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.5.8/angular.min.js"></script>
 <script src="angular-ui-router.min.js"></script>
 <script src="app.js"></script>

home.html

<div>
<h1> {{text}} </h1>

 <a ui-sref="home.nested1">Show nested1

 <a ui-sref="home.nested2">Show nested2

 <div ui-view></div>

https://riptutorial.com/ 218

</div>

nested1.html

<div>
<h1> {{text1}} </h1>
</div>

nested2.html

<div>

 <li ng-repeat="fruit in fruits">{{ fruit }}

</div>

Read ui-router online: https://riptutorial.com/angularjs/topic/2545/ui-router

https://riptutorial.com/ 219

https://riptutorial.com/angularjs/topic/2545/ui-router

Chapter 50: Unit tests

Remarks

This topic provides examples for unit testing the various constructs in AngularJS. Unit tests are
often written using using Jasmine, a popular behavior driven testing framework. When unit testing
angular constructs, you will need to include ngMock as a dependency when running the unit tests.

Examples

Unit test a filter

Filter code:

angular.module('myModule', []).filter('multiplier', function() {
 return function(number, multiplier) {
 if (!angular.isNumber(number)) {
 throw new Error(number + " is not a number!");
 }
 if (!multiplier) {
 multiplier = 2;
 }
 return number * multiplier;
 }
});

The test:

describe('multiplierFilter', function() {
 var filter;

 beforeEach(function() {
 module('myModule');
 inject(function(multiplierFilter) {
 filter = multiplierFilter;
 });
 });

 it('multiply by 2 by default', function() {
 expect(filter(2)).toBe(4);
 expect(filter(3)).toBe(6);
 });

 it('allow to specify custom multiplier', function() {
 expect(filter(2, 4)).toBe(8);
 });

 it('throws error on invalid input', function() {
 expect(function() {
 filter(null);
 }).toThrow();
 });

https://riptutorial.com/ 220

http://jasmine.github.io/
https://docs.angularjs.org/api/ngMock

});

Run!

Remark: In the inject call in the test, your filter needs to be specified by its name + Filter. The
cause for this is that whenever you register a filter for your module, Angular register it with a Filter
appended to its name.

Unit test a component (1.5+)

Component code:

angular.module('myModule', []).component('myComponent', {
 bindings: {
 myValue: '<'
 },
 controller: function(MyService) {
 this.service = MyService;
 this.componentMethod = function() {
 return 2;
 };
 }
});

The test:

describe('myComponent', function() {
 var component;

 var MyServiceFake = jasmine.createSpyObj(['serviceMethod']);

 beforeEach(function() {
 module('myModule');
 inject(function($componentController) {
 // 1st - component name, 2nd - controller injections, 3rd - bindings
 component = $componentController('myComponent', {
 MyService: MyServiceFake
 }, {
 myValue: 3
 });
 });
 });

 /** Here you test the injector. Useless. */

 it('injects the binding', function() {
 expect(component.myValue).toBe(3);
 });

 it('has some cool behavior', function() {
 expect(component.componentMethod()).toBe(2);
 });
});

Run!

https://riptutorial.com/ 221

http://jsfiddle.net/fracz/g2vLqcvx/
http://jsfiddle.net/fracz/3ua8o22a/

Unit test a controller

Controller code:

angular.module('myModule', [])
 .controller('myController', function($scope) {
 $scope.num = 2;
 $scope.doSomething = function() {
 $scope.num += 2;
 }
 });

The test:

describe('myController', function() {
 var $scope;
 beforeEach(function() {
 module('myModule');
 inject(function($controller, $rootScope) {
 $scope = $rootScope.$new();
 $controller('myController', {
 '$scope': $scope
 })
 });
 });
 it('should increment `num` by 2', function() {
 expect($scope.num).toEqual(2);
 $scope.doSomething();
 expect($scope.num).toEqual(4);
 });
});

Run!

Unit test a service

Service Code

angular.module('myModule', [])
 .service('myService', function() {
 this.doSomething = function(someNumber) {
 return someNumber + 2;
 }
 });

The test

describe('myService', function() {
 var myService;
 beforeEach(function() {
 module('myModule');
 inject(function(_myService_) {
 myService = _myService_;
 });
 });

https://riptutorial.com/ 222

http://jsfiddle.net/fracz/xp7fdd8j/

 it('should increment `num` by 2', function() {
 var result = myService.doSomething(4);
 expect(result).toEqual(6);
 });
});

Run!

Unit test a directive

Directive code

angular.module('myModule', [])
 .directive('myDirective', function() {
 return {
 template: '<div>{{greeting}} {{name}}!</div>',
 scope: {
 name: '=',
 greeting: '@'
 }
 };
 });

The test

describe('myDirective', function() {
 var element, scope;
 beforeEach(function() {
 module('myModule');
 inject(function($compile, $rootScope) {
 scope = $rootScope.$new();
 element = angular.element("<my-directive name='name' greeting='Hello'></my-directive>");
 $compile(element)(scope);
 /* PLEASE NEVER USE scope.$digest(). scope.$apply use a protection to avoid to run a
digest loop when there is already one, so, use scope.$apply() instead. */
 scope.$apply();
 })
 });

 it('has the text attribute injected', function() {
 expect(element.html()).toContain('Hello');
 });

 it('should have proper message after scope change', function() {
 scope.name = 'John';
 scope.$apply();
 expect(element.html()).toContain("John");
 scope.name = 'Alice';
 expect(element.html()).toContain("John");
 scope.$apply();
 expect(element.html()).toContain("Alice");
 });
});

Run!

https://riptutorial.com/ 223

http://jsfiddle.net/fracz/4kmrqap6/
http://jsfiddle.net/fracz/kc06yrra

Read Unit tests online: https://riptutorial.com/angularjs/topic/1689/unit-tests

https://riptutorial.com/ 224

https://riptutorial.com/angularjs/topic/1689/unit-tests

Chapter 51: Use of in-built directives

Examples

Hide/Show HTML Elements

This example hide show html elements.

<!DOCTYPE html>
<html ng-app="myDemoApp">
 <head>
 <script src="https://code.angularjs.org/1.5.8/angular.min.js"></script>
 <script>

 function HideShowController() {
 var vm = this;
 vm.show=false;
 vm.toggle= function() {
 vm.show=!vm.show;
 }
 }

 angular.module("myDemoApp", [/* module dependencies go here */])
 .controller("hideShowController", [HideShowController]);
 </script>
 </head>
 <body ng-cloak>
 <div ng-controller="hideShowController as vm">
 Show Me!
 Hide Me!
 </div>
 </body>
</html>

Live Demo

Step by step explanation:

ng-app="myDemoApp", the ngApp directive tells angular that a DOM element is controlled by a
specific angular.module named "myDemoApp".

1.

<script src="[//angular include]"> include angular js.2.
HideShowController function is defined containing another function named toggle which help
to hide show the element.

3.

angular.module(...) creates a new module.4.
.controller(...) Angular Controller and returns the module for chaining;5.
ng-controller directive is key aspect of how angular supports the principles behind the
Model-View-Controller design pattern.

6.

ng-show directive shows the given HTML element if expression provided is true.7.
ng-hide directive hides the given HTML element if expression provided is true.8.
ng-click directive fires a toggle function inside controller9.

https://riptutorial.com/ 225

https://plnkr.co/edit/wbSmMu96Xz3svv0qilwh?p=preview
https://docs.angularjs.org/api/ng/directive/ngApp
https://docs.angularjs.org/api/ng/function/angular.module
https://docs.angularjs.org/api/ng/directive/ngController
https://docs.angularjs.org/api/ng/directive/ngController
https://docs.angularjs.org/api/ng/directive/ngShow
https://docs.angularjs.org/api/ng/directive/ngHide
https://docs.angularjs.org/api/ng/directive/ngClick

Read Use of in-built directives online: https://riptutorial.com/angularjs/topic/7644/use-of-in-built-
directives

https://riptutorial.com/ 226

https://riptutorial.com/angularjs/topic/7644/use-of-in-built-directives
https://riptutorial.com/angularjs/topic/7644/use-of-in-built-directives

Chapter 52: Using AngularJS with TypeScript

Syntax

$scope : ng.IScope - this is way in typescript to define type for a particular variable.•

Examples

Angular Controllers in Typescript

As defined in the AngularJS Documentation

When a Controller is attached to the DOM via the ng-controller directive, Angular will
instantiate a new Controller object, using the specified Controller's constructor function.
A new child scope will be created and made available as an injectable parameter to the
Controller's constructor function as $scope.

Controllers can be very easily made using the typescript classes.

module App.Controllers {
 class Address {
 line1: string;
 line2: string;
 city: string;
 state: string;
 }
 export class SampleController {
 firstName: string;
 lastName: string;
 age: number;
 address: Address;
 setUpWatches($scope: ng.IScope): void {
 $scope.$watch(() => this.firstName, (n, o) => {
 //n is string and so is o
 });
 };
 constructor($scope: ng.IScope) {
 this.setUpWatches($scope);
 }
 }
}

The Resulting Javascript is

var App;
(function (App) {
 var Controllers;
 (function (Controllers) {
 var Address = (function () {
 function Address() {
 }

https://riptutorial.com/ 227

http://definitelytyped/angularjs/angular.d.ts
https://docs.angularjs.org/guide/controller

 return Address;
 }());
 var SampleController = (function () {
 function SampleController($scope) {
 this.setUpWatches($scope);
 }
 SampleController.prototype.setUpWatches = function ($scope) {
 var _this = this;
 $scope.$watch(function () { return _this.firstName; }, function (n, o) {
 //n is string and so is o
 });
 };
 ;
 return SampleController;
 }());
 Controllers.SampleController = SampleController;
 })(Controllers = App.Controllers || (App.Controllers = {}));
})(App || (App = {}));
//# sourceMappingURL=ExampleController.js.map

After making the controller class let the angular js module about the controller can be done simple
by using the class

app
 .module('app')
 .controller('exampleController', App.Controller.SampleController)

Using the Controller with ControllerAs Syntax

The Controller we have made can be instantiated and used using controller as Syntax. That's
because we have put variable directly on the controller class and not on the $scope.

Using controller as someName is to seperate the controller from $scope itself.So, there is no need of
injecting $scope as the dependency in the controller.

Traditional way :

// we are using $scope object.
app.controller('MyCtrl', function ($scope) {
 $scope.name = 'John';
});

<div ng-controller="MyCtrl">
 {{name}}
</div>

Now, with controller as Syntax :

// we are using the "this" Object instead of "$scope"
app.controller('MyCtrl', function() {
 this.name = 'John';
});

<div ng-controller="MyCtrl as info">
 {{info.name}}

https://riptutorial.com/ 228

</div>

If you instantiate a "class" in JavaScript, you might do this :

var jsClass = function () {
 this.name = 'John';
}
var jsObj = new jsClass();

So, now we can use jsObj instance to access any method or property of jsClass.

In angular, we do same type of thing.we use controller as syntax for instantiation.

Using Bundling / Minification

The way the $scope is injected in the controller's constructor functions is a way to demonstrate
and use the basic option of angular dependency injection but is not production ready as it cannot
be minified. Thats because the minification system changes the variable names and anguar's
dependency injection uses the parameter names to know what has to be injected. So for an
example the ExampleController's constructor function is minified to the following code.

function n(n){this.setUpWatches(n)

and $scope is changed to n!
to overcome this we can add an $inject array(string[]). So that angular's DI knows what to inject
at what position is the controllers constructor function.
So the above typescript changes to

module App.Controllers {
 class Address {
 line1: string;
 line2: string;
 city: string;
 state: string;
 }
 export class SampleController {
 firstName: string;
 lastName: string;
 age: number;
 address: Address;
 setUpWatches($scope: ng.IScope): void {
 $scope.$watch(() => this.firstName, (n, o) => {
 //n is string and so is o
 });
 };
 static $inject : string[] = ['$scope'];
 constructor($scope: ng.IScope) {
 this.setUpWatches($scope);
 }
 }
}

https://riptutorial.com/ 229

https://docs.angularjs.org/guide/di

Why ControllerAs Syntax ?

Controller Function

Controller function is nothing but just a JavaScript constructor function. Hence, when a view loads
the function context(this) is set to the controller object.

Case 1 :

this.constFunction = function() { ... }

It is created in the controller object, not on $scope. views can not access the functions defined on
controller object.

Example :

 // It will not work

Case 2 :

$scope.scopeFunction = function() { ... }

It is created in the $scope object, not on controller object. views can only access the functions
defined on $scope object.

Example :

 // It will work

Why ControllerAs ?

ControllerAs syntax makes it much clearer where objects are being manipulated.Having
oneCtrl.name and anotherCtrl.name makes it much easier to identify that you have an name
assigned by multiple different controllers for different purposes but if both used same
$scope.name and having two different HTML elements on a page which both are bound to
{{name}} then it is difficult to identify which one is from which controller.

•

Hiding the $scope and exposing the members from the controller to the view via an
intermediary object. By setting this.*, we can expose just what we want to expose from the
controller to the view.

 <div ng-controller="FirstCtrl">
 {{ name }}
 <div ng-controller="SecondCtrl">
 {{ name }}

•

https://riptutorial.com/ 230

 <div ng-controller="ThirdCtrl">
 {{ name }}
 </div>
 </div>
 </div>

Here, in above case {{ name }} will be very confusing to use and We also don't know which one
related to which controller.

<div ng-controller="FirstCtrl as first">
 {{ first.name }}
 <div ng-controller="SecondCtrl as second">
 {{ second.name }}
 <div ng-controller="ThirdCtrl as third">
 {{ third.name }}
 </div>
 </div>
</div>

Why $scope ?

Use $scope when you need to access one or more methods of $scope such as $watch,
$digest, $emit, $http etc.

•

limit which properties and/or methods are exposed to $scope, then explicitly passing them to
$scope as needed.

•

Read Using AngularJS with TypeScript online: https://riptutorial.com/angularjs/topic/3477/using-
angularjs-with-typescript

https://riptutorial.com/ 231

https://riptutorial.com/angularjs/topic/3477/using-angularjs-with-typescript
https://riptutorial.com/angularjs/topic/3477/using-angularjs-with-typescript

Credits

S.
No

Chapters Contributors

1
Getting started with
AngularJS

Abhishek Pandey, After Class, Andrés Encarnación,
AnonymousNotReally, badzilla, Charlie H, Chirag Bhatia -
chirag64, Community, daniellmb, David G., Devid Farinelli,
Eugene, fracz, Franck Dernoncourt, Gabriel Pires, Gourav Garg
, H. Pauwelyn, Igor Raush, jengeb, Jeroen, John F., Léo Martin,
Lotus91, LucyMarieJ, M. Junaid Salaat, Maaz.Musa, Matt,
Mikko Viitala, Mistalis, Nemanja Trifunovic, Nhan, Nico,
pathe.kiran, Patrick, Pushpendra, Richard Hamilton, Stepan
Suvorov, Stephen Leppik, Sunil Lama, superluminary, Syed
Priom, timbo, Ven, vincentvanjoe, Yasin Patel, Ze Rubeus,

Артем Комаров

2 $http request CENT1PEDE, jaredsk, Liron Ilayev

3 Angular $scopes
Abhishek Maurya, elliot-j, Eugene, jaredsk, Liron Ilayev, MoLow,
Prateek Gupta, RamenChef, ryansstack, Tony

4 Angular MVC Ashok choudhary, Gavishiddappa Gadagi, Jim

5
Angular Project -
Directory Structure

jitender, Liron Ilayev

6
Angular promises
with $q service

Alon Eitan, caiocpricci2, ganqqwerty, georgeawg, John F., Muli
Yulzary, Praveen Poonia, Richard Hamilton, Rohit Jindal,
svarog

7
AngularJS bindings
options (`=`, `@`, `&`
etc.)

Alon Eitan, Lucas L, Makarov Sergey, Nico, zucker

8
AngularJS gotchas
and traps

Alon Eitan, Cosmin Ababei, doctorsherlock, Faruk Yazıcı,
ngLover, Phil

9
angularjs with data
filter, pagination etc

Paresh Maghodiya

Adam Harrison, Alon Eitan, Aron, AWolf, Ayan, Bon
Macalindong, CENT1PEDE, Devid Farinelli, DillonChanis, Divya
Jain, Dr. Cool, Eric Siebeneich, George Kagan, Grinn,
gustavohenke, IncrediApp, kelvinelove, Krupesh Kotecha, Liron
Ilayev, m.e.conroy, Maciej Gurban, Mansouri, Mikko Viitala,
Mistalis, Mitul, MoLow, Naga2Raja, ngLover, Nishant123, Piet,

10 Built-in directives

https://riptutorial.com/ 232

https://riptutorial.com/contributor/6670723/abhishek-pandey
https://riptutorial.com/contributor/7040397/after-class
https://riptutorial.com/contributor/5339201/andres-encarnacion
https://riptutorial.com/contributor/7782725/anonymousnotreally
https://riptutorial.com/contributor/4451931/badzilla
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/976897/chirag-bhatia---chirag64
https://riptutorial.com/contributor/976897/chirag-bhatia---chirag64
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/131944/daniellmb
https://riptutorial.com/contributor/3838549/david-g-
https://riptutorial.com/contributor/4695325/devid-farinelli
https://riptutorial.com/contributor/318306/eugene
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/2483389/gabriel-pires
https://riptutorial.com/contributor/5429428/gourav-garg
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/4419582/jengeb
https://riptutorial.com/contributor/419956/jeroen
https://riptutorial.com/contributor/464064/john-f-
https://riptutorial.com/contributor/5677183/leo-martin
https://riptutorial.com/contributor/1939668/lotus91
https://riptutorial.com/contributor/5074732/lucymariej
https://riptutorial.com/contributor/4727212/m--junaid-salaat
https://riptutorial.com/contributor/6451898/maaz-musa
https://riptutorial.com/contributor/2641576/matt
https://riptutorial.com/contributor/1061668/mikko-viitala
https://riptutorial.com/contributor/4927984/mistalis
https://riptutorial.com/contributor/4004007/nemanja-trifunovic
https://riptutorial.com/contributor/2571493/nhan
https://riptutorial.com/contributor/3492853/nico
https://riptutorial.com/contributor/2530951/pathe-kiran
https://riptutorial.com/contributor/1455709/patrick
https://riptutorial.com/contributor/3872578/pushpendra
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/274500/stepan-suvorov
https://riptutorial.com/contributor/274500/stepan-suvorov
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/5523066/sunil-lama
https://riptutorial.com/contributor/687677/superluminary
https://riptutorial.com/contributor/668297/syed-priom
https://riptutorial.com/contributor/668297/syed-priom
https://riptutorial.com/contributor/127660/timbo
https://riptutorial.com/contributor/1737909/ven
https://riptutorial.com/contributor/466023/vincentvanjoe
https://riptutorial.com/contributor/6246818/yasin-patel
https://riptutorial.com/contributor/4232386/ze-rubeus
https://riptutorial.com/contributor/6625253/-------------
https://riptutorial.com/contributor/2889614/cent1pede
https://riptutorial.com/contributor/2378918/jaredsk
https://riptutorial.com/contributor/5012055/liron-ilayev
https://riptutorial.com/contributor/5788955/abhishek-maurya
https://riptutorial.com/contributor/1384945/elliot-j
https://riptutorial.com/contributor/318306/eugene
https://riptutorial.com/contributor/2378918/jaredsk
https://riptutorial.com/contributor/5012055/liron-ilayev
https://riptutorial.com/contributor/4001782/molow
https://riptutorial.com/contributor/7864424/prateek-gupta
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/107205/ryansstack
https://riptutorial.com/contributor/3156617/tony
https://riptutorial.com/contributor/7315036/ashok-choudhary
https://riptutorial.com/contributor/5950377/gavishiddappa-gadagi
https://riptutorial.com/contributor/1910355/jim
https://riptutorial.com/contributor/5621827/jitender
https://riptutorial.com/contributor/5012055/liron-ilayev
https://riptutorial.com/contributor/754119/alon-eitan
https://riptutorial.com/contributor/779341/caiocpricci2
https://riptutorial.com/contributor/420034/ganqqwerty
https://riptutorial.com/contributor/5535245/georgeawg
https://riptutorial.com/contributor/464064/john-f-
https://riptutorial.com/contributor/2652883/muli-yulzary
https://riptutorial.com/contributor/2652883/muli-yulzary
https://riptutorial.com/contributor/1957498/praveen-poonia
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/4116300/rohit-jindal
https://riptutorial.com/contributor/1410465/svarog
https://riptutorial.com/contributor/754119/alon-eitan
https://riptutorial.com/contributor/5638411/lucas-l
https://riptutorial.com/contributor/4652486/makarov-sergey
https://riptutorial.com/contributor/3492853/nico
https://riptutorial.com/contributor/3812410/zucker
https://riptutorial.com/contributor/754119/alon-eitan
https://riptutorial.com/contributor/5968600/cosmin-ababei
https://riptutorial.com/contributor/5128879/doctorsherlock
https://riptutorial.com/contributor/3755569/faruk-yazici
https://riptutorial.com/contributor/3755569/faruk-yazici
https://riptutorial.com/contributor/3062346/nglover
https://riptutorial.com/contributor/283366/phil
https://riptutorial.com/contributor/2705693/paresh-maghodiya
https://riptutorial.com/contributor/4182162/adam-harrison
https://riptutorial.com/contributor/754119/alon-eitan
https://riptutorial.com/contributor/3229534/aron
https://riptutorial.com/contributor/1483981/awolf
https://riptutorial.com/contributor/5102631/ayan
https://riptutorial.com/contributor/1504480/bon-macalindong
https://riptutorial.com/contributor/1504480/bon-macalindong
https://riptutorial.com/contributor/2889614/cent1pede
https://riptutorial.com/contributor/4695325/devid-farinelli
https://riptutorial.com/contributor/6549272/dillonchanis
https://riptutorial.com/contributor/4741246/divya-jain
https://riptutorial.com/contributor/4741246/divya-jain
https://riptutorial.com/contributor/1739408/dr--cool
https://riptutorial.com/contributor/988291/eric-siebeneich
https://riptutorial.com/contributor/178163/george-kagan
https://riptutorial.com/contributor/152648/grinn
https://riptutorial.com/contributor/2083599/gustavohenke
https://riptutorial.com/contributor/829407/incrediapp
https://riptutorial.com/contributor/5829711/kelvinelove
https://riptutorial.com/contributor/4944490/krupesh-kotecha
https://riptutorial.com/contributor/5012055/liron-ilayev
https://riptutorial.com/contributor/5012055/liron-ilayev
https://riptutorial.com/contributor/2263531/m-e-conroy
https://riptutorial.com/contributor/2066118/maciej-gurban
https://riptutorial.com/contributor/3676537/mansouri
https://riptutorial.com/contributor/1061668/mikko-viitala
https://riptutorial.com/contributor/4927984/mistalis
https://riptutorial.com/contributor/2497387/mitul
https://riptutorial.com/contributor/4001782/molow
https://riptutorial.com/contributor/2404424/naga2raja
https://riptutorial.com/contributor/3062346/nglover
https://riptutorial.com/contributor/4331291/nishant123
https://riptutorial.com/contributor/3757053/piet

redunderthebed, Richard Hamilton, svarog, tanmay,
theblindprophet, timbo, Tomislav Stankovic, vincentvanjoe,
Vishal Singh

11
Built-in helper
Functions

MoLow, Pranav C Balan, svarog

12 Components
Alon Eitan, Artem K., badzilla, BarakD, Hubert Grzeskowiak,
John F., Juri, M. Junaid Salaat, Mansouri, Pankaj Parkar, Ravi
Singh, sgarcia.dev, Syed Priom, Yogesh Mangaj

13 Constants Sylvain

14 Controllers

Adam Harrison, Aeolingamenfel, Alon Eitan, badzilla, Bon
Macalindong, Braiam, chatuur, DerekMT12, Dr. Cool, Florian,
George Kagan, Grundy, Jared Hooper, Liron Ilayev, M. Junaid
Salaat, Mark Cidade, Matthew Green, Mike, Nad Flores,
Praveen Poonia, RamenChef, Sébastien Deprez, sgarcia.dev,
thegreenpizza, timbo, Und3rTow, WMios

15 Controllers with ES6 Bouraoui KACEM

16 Custom Directives

Alon Eitan, br3w5, casraf, Cody Stott, Daniel, Everettss, Filipe
Amaral, Gaara, Gavishiddappa Gadagi, Jinw, jkris, mnoronha,
Pushpendra, Rahul Bhooteshwar, Sajal, sgarcia.dev, Stephan,
theblindprophet, TheChetan, Yuri Blanc

17 Custom filters doodhwala, Pat, Sylvain

18
Custom filters with
ES6

Bouraoui KACEM

19 Debugging Aman, AWolf, Vinay K

20 Decorators Mikko Viitala

21
Dependency
Injection

Andrea, badzilla, Gavishiddappa Gadagi, George Kagan,
MoLow, Omri Aharon

22
digest loop
walkthrough

Alon Eitan, chris, MoLow, prit4fun

23
Directives using
ngModelController

Nikos Paraskevopoulos

24
Distinguishing
Service vs Factory

Deepak Bansal

25 Events
CodeWarrior, Nguyen Tran, Rohit Jindal, RyanDawkins,
sgarcia.dev, shaN, Shashank Vivek

https://riptutorial.com/ 233

https://riptutorial.com/contributor/6428140/redunderthebed
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/1410465/svarog
https://riptutorial.com/contributor/4315380/tanmay
https://riptutorial.com/contributor/4221083/theblindprophet
https://riptutorial.com/contributor/127660/timbo
https://riptutorial.com/contributor/5059916/tomislav-stankovic
https://riptutorial.com/contributor/466023/vincentvanjoe
https://riptutorial.com/contributor/5366388/vishal-singh
https://riptutorial.com/contributor/4001782/molow
https://riptutorial.com/contributor/3037257/pranav-c-balan
https://riptutorial.com/contributor/1410465/svarog
https://riptutorial.com/contributor/754119/alon-eitan
https://riptutorial.com/contributor/3288341/artem-k-
https://riptutorial.com/contributor/4451931/badzilla
https://riptutorial.com/contributor/5196561/barakd
https://riptutorial.com/contributor/2445864/hubert-grzeskowiak
https://riptutorial.com/contributor/464064/john-f-
https://riptutorial.com/contributor/50109/juri
https://riptutorial.com/contributor/4727212/m--junaid-salaat
https://riptutorial.com/contributor/3676537/mansouri
https://riptutorial.com/contributor/2435473/pankaj-parkar
https://riptutorial.com/contributor/2247910/ravi-singh
https://riptutorial.com/contributor/2247910/ravi-singh
https://riptutorial.com/contributor/2942765/sgarcia-dev
https://riptutorial.com/contributor/668297/syed-priom
https://riptutorial.com/contributor/457447/yogesh-mangaj
https://riptutorial.com/contributor/1230946/sylvain
https://riptutorial.com/contributor/4182162/adam-harrison
https://riptutorial.com/contributor/3681236/aeolingamenfel
https://riptutorial.com/contributor/754119/alon-eitan
https://riptutorial.com/contributor/4451931/badzilla
https://riptutorial.com/contributor/1504480/bon-macalindong
https://riptutorial.com/contributor/1504480/bon-macalindong
https://riptutorial.com/contributor/792066/braiam
https://riptutorial.com/contributor/3573203/chatuur
https://riptutorial.com/contributor/1636157/derekmt12
https://riptutorial.com/contributor/1739408/dr--cool
https://riptutorial.com/contributor/4276383/florian
https://riptutorial.com/contributor/178163/george-kagan
https://riptutorial.com/contributor/2881286/grundy
https://riptutorial.com/contributor/3872894/jared-hooper
https://riptutorial.com/contributor/5012055/liron-ilayev
https://riptutorial.com/contributor/4727212/m--junaid-salaat
https://riptutorial.com/contributor/4727212/m--junaid-salaat
https://riptutorial.com/contributor/1659/mark-cidade
https://riptutorial.com/contributor/1078110/matthew-green
https://riptutorial.com/contributor/2305624/mike
https://riptutorial.com/contributor/6621741/nad-flores
https://riptutorial.com/contributor/1957498/praveen-poonia
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3652183/sebastien-deprez
https://riptutorial.com/contributor/2942765/sgarcia-dev
https://riptutorial.com/contributor/2619654/thegreenpizza
https://riptutorial.com/contributor/127660/timbo
https://riptutorial.com/contributor/3055401/und3rtow
https://riptutorial.com/contributor/3830876/wmios
https://riptutorial.com/contributor/3414349/bouraoui-kacem
https://riptutorial.com/contributor/754119/alon-eitan
https://riptutorial.com/contributor/1230663/br3w5
https://riptutorial.com/contributor/280143/casraf
https://riptutorial.com/contributor/4015799/cody-stott
https://riptutorial.com/contributor/2444386/daniel
https://riptutorial.com/contributor/3708596/everettss
https://riptutorial.com/contributor/4338325/filipe-amaral
https://riptutorial.com/contributor/4338325/filipe-amaral
https://riptutorial.com/contributor/1391256/gaara
https://riptutorial.com/contributor/5950377/gavishiddappa-gadagi
https://riptutorial.com/contributor/4794828/jinw
https://riptutorial.com/contributor/3404644/jkris
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/3872578/pushpendra
https://riptutorial.com/contributor/4517595/rahul-bhooteshwar
https://riptutorial.com/contributor/3884734/sajal
https://riptutorial.com/contributor/2942765/sgarcia-dev
https://riptutorial.com/contributor/1528104/stephan
https://riptutorial.com/contributor/4221083/theblindprophet
https://riptutorial.com/contributor/4110233/thechetan
https://riptutorial.com/contributor/4895860/yuri-blanc
https://riptutorial.com/contributor/6649050/doodhwala
https://riptutorial.com/contributor/234179/pat
https://riptutorial.com/contributor/1230946/sylvain
https://riptutorial.com/contributor/3414349/bouraoui-kacem
https://riptutorial.com/contributor/2765985/aman
https://riptutorial.com/contributor/1483981/awolf
https://riptutorial.com/contributor/4578788/vinay-k
https://riptutorial.com/contributor/1061668/mikko-viitala
https://riptutorial.com/contributor/2009013/andrea
https://riptutorial.com/contributor/4451931/badzilla
https://riptutorial.com/contributor/5950377/gavishiddappa-gadagi
https://riptutorial.com/contributor/178163/george-kagan
https://riptutorial.com/contributor/4001782/molow
https://riptutorial.com/contributor/2204722/omri-aharon
https://riptutorial.com/contributor/754119/alon-eitan
https://riptutorial.com/contributor/2509908/chris
https://riptutorial.com/contributor/4001782/molow
https://riptutorial.com/contributor/1501631/prit4fun
https://riptutorial.com/contributor/2764255/nikos-paraskevopoulos
https://riptutorial.com/contributor/6794259/deepak-bansal
https://riptutorial.com/contributor/4888735/codewarrior
https://riptutorial.com/contributor/1888929/nguyen-tran
https://riptutorial.com/contributor/4116300/rohit-jindal
https://riptutorial.com/contributor/1747401/ryandawkins
https://riptutorial.com/contributor/2942765/sgarcia-dev
https://riptutorial.com/contributor/4221558/shan
https://riptutorial.com/contributor/3092377/shashank-vivek

26 Filters
Aeolingamenfel, developer033, Ed Hinchliffe, fracz,
gustavohenke, Matthew Green, Nico

27 Form Validation
Alon Eitan, fantarama, garyx, Mikko Viitala, Richard Hamilton,
Rohit Jindal, shane, svarog, timbo

28 Grunt tasks Mikko Viitala

29
How data binding
works

Lucas L, Sasank Sunkavalli, theblindprophet

30 HTTP Interceptor G Akshay, Istvan Reiter, MeanMan, Mistalis, mnoronha

31 Lazy loading Muli Yulzary

32
Migration to Angular
2+

ShinDarth

33 Modules
Alon Eitan, Ankit, badzilla, Bon Macalindong, Matthew Green,
Nad Flores, ojus kulkarni, sgarcia.dev, thegreenpizza

34 ng-class directive Dr. Cool

35 ng-repeat Divya Jain, Jim, Sender, zucker

36 ng-style Divya Jain, Jim

37 ng-view Aayushi Jain, Manikandan Velayutham, Umesh Shende

38
Performance
Profiling

Deepak Bansal

39
Prepare for
Production - Grunt

JanisP

40 Print ziaulain

41
Profiling and
Performance

Ajeet Lakhani, Alon Eitan, Andrew Piliser, Anfelipe, Anirudha,
Ashwin Ramaswami, atul mishra, Braiam, bwoebi, chris, Dania,
Daniel Molin, daniellmb, Deepak Bansal, Divya Jain, DotBot, Dr.
Cool, Durgpal Singh, fracz, Gabriel Pires, George Kagan,
Grundy, JanisP, Jared Hooper, jhampton, John Slegers, jusopi,
M22an, Matthew Green, Mistalis, Mudassir Ali, Nhan, Psaniko,
Richard Hamilton, RyanDawkins, sgarcia.dev, theblindprophet,
user3632710, vincentvanjoe, Yasin Patel, Ze Rubeus

42 Providers Mikko Viitala

43
Routing using
ngRoute

Alon Eitan, Alvaro Vazquez, camabeh, DotBot, sgarcia.dev,
svarog

https://riptutorial.com/ 234

https://riptutorial.com/contributor/3681236/aeolingamenfel
https://riptutorial.com/contributor/4911842/developer033
https://riptutorial.com/contributor/1398581/ed-hinchliffe
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/2083599/gustavohenke
https://riptutorial.com/contributor/1078110/matthew-green
https://riptutorial.com/contributor/3492853/nico
https://riptutorial.com/contributor/754119/alon-eitan
https://riptutorial.com/contributor/4391003/fantarama
https://riptutorial.com/contributor/4539217/garyx
https://riptutorial.com/contributor/1061668/mikko-viitala
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/4116300/rohit-jindal
https://riptutorial.com/contributor/2877566/shane
https://riptutorial.com/contributor/1410465/svarog
https://riptutorial.com/contributor/127660/timbo
https://riptutorial.com/contributor/1061668/mikko-viitala
https://riptutorial.com/contributor/5638411/lucas-l
https://riptutorial.com/contributor/5173119/sasank-sunkavalli
https://riptutorial.com/contributor/4221083/theblindprophet
https://riptutorial.com/contributor/2520254/g-akshay
https://riptutorial.com/contributor/842271/istvan-reiter
https://riptutorial.com/contributor/2118591/meanman
https://riptutorial.com/contributor/4927984/mistalis
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/2652883/muli-yulzary
https://riptutorial.com/contributor/3497671/shindarth
https://riptutorial.com/contributor/754119/alon-eitan
https://riptutorial.com/contributor/1150183/ankit
https://riptutorial.com/contributor/4451931/badzilla
https://riptutorial.com/contributor/1504480/bon-macalindong
https://riptutorial.com/contributor/1078110/matthew-green
https://riptutorial.com/contributor/6621741/nad-flores
https://riptutorial.com/contributor/4286411/ojus-kulkarni
https://riptutorial.com/contributor/2942765/sgarcia-dev
https://riptutorial.com/contributor/2619654/thegreenpizza
https://riptutorial.com/contributor/1739408/dr--cool
https://riptutorial.com/contributor/4741246/divya-jain
https://riptutorial.com/contributor/1910355/jim
https://riptutorial.com/contributor/1074944/sender
https://riptutorial.com/contributor/3812410/zucker
https://riptutorial.com/contributor/4741246/divya-jain
https://riptutorial.com/contributor/1910355/jim
https://riptutorial.com/contributor/550927/aayushi-jain
https://riptutorial.com/contributor/4527411/manikandan-velayutham
https://riptutorial.com/contributor/4182558/umesh-shende
https://riptutorial.com/contributor/6794259/deepak-bansal
https://riptutorial.com/contributor/5131537/janisp
https://riptutorial.com/contributor/3913993/ziaulain
https://riptutorial.com/contributor/3079969/ajeet-lakhani
https://riptutorial.com/contributor/754119/alon-eitan
https://riptutorial.com/contributor/879997/andrew-piliser
https://riptutorial.com/contributor/2303447/anfelipe
https://riptutorial.com/contributor/598420/anirudha
https://riptutorial.com/contributor/1950269/ashwin-ramaswami
https://riptutorial.com/contributor/4795151/atul-mishra
https://riptutorial.com/contributor/792066/braiam
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/2509908/chris
https://riptutorial.com/contributor/1463823/dania
https://riptutorial.com/contributor/5293089/daniel-molin
https://riptutorial.com/contributor/131944/daniellmb
https://riptutorial.com/contributor/6794259/deepak-bansal
https://riptutorial.com/contributor/4741246/divya-jain
https://riptutorial.com/contributor/3612903/dotbot
https://riptutorial.com/contributor/1739408/dr--cool
https://riptutorial.com/contributor/1739408/dr--cool
https://riptutorial.com/contributor/1759015/durgpal-singh
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/2483389/gabriel-pires
https://riptutorial.com/contributor/178163/george-kagan
https://riptutorial.com/contributor/2881286/grundy
https://riptutorial.com/contributor/5131537/janisp
https://riptutorial.com/contributor/3872894/jared-hooper
https://riptutorial.com/contributor/4585393/jhampton
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1121919/jusopi
https://riptutorial.com/contributor/3131696/m22an
https://riptutorial.com/contributor/1078110/matthew-green
https://riptutorial.com/contributor/4927984/mistalis
https://riptutorial.com/contributor/1482899/mudassir-ali
https://riptutorial.com/contributor/2571493/nhan
https://riptutorial.com/contributor/243555/psaniko
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/1747401/ryandawkins
https://riptutorial.com/contributor/2942765/sgarcia-dev
https://riptutorial.com/contributor/4221083/theblindprophet
https://riptutorial.com/contributor/3632710/user3632710
https://riptutorial.com/contributor/466023/vincentvanjoe
https://riptutorial.com/contributor/6246818/yasin-patel
https://riptutorial.com/contributor/4232386/ze-rubeus
https://riptutorial.com/contributor/1061668/mikko-viitala
https://riptutorial.com/contributor/754119/alon-eitan
https://riptutorial.com/contributor/2401184/alvaro-vazquez
https://riptutorial.com/contributor/2414102/camabeh
https://riptutorial.com/contributor/3612903/dotbot
https://riptutorial.com/contributor/2942765/sgarcia-dev
https://riptutorial.com/contributor/1410465/svarog

44 Services
Abdellah Alaoui, Alvaro Vazquez, AnonDCX, DotBot, elliot-j,
Flash, Gavishiddappa Gadagi, Hubert Grzeskowiak, Lex,
Nishant123

45 Session storage Rohit Jindal

46 Sharing Data
elliot-j, Grundy, Lex, Mikko Viitala, Mistalis, Nix, prit4fun, Rohit
Jindal, sgarcia.dev, Sunil Lama

47
SignalR with
AngularJs

Maher

48
The Self Or This
Variable In A
Controller

It-Z, Jim

49 ui-router
George Kagan, H.T, Michael P. Bazos, Ryan Hamley,
sgarcia.dev

50 Unit tests daniellmb, elliot-j, fracz, Gabriel Pires, Nico, ronapelbaum

51
Use of in-built
directives

Gourav Garg

52
Using AngularJS
with TypeScript

Parv Sharma, Rohit Jindal

https://riptutorial.com/ 235

https://riptutorial.com/contributor/2678755/abdellah-alaoui
https://riptutorial.com/contributor/2401184/alvaro-vazquez
https://riptutorial.com/contributor/5256388/anondcx
https://riptutorial.com/contributor/3612903/dotbot
https://riptutorial.com/contributor/1384945/elliot-j
https://riptutorial.com/contributor/4810042/flash
https://riptutorial.com/contributor/5950377/gavishiddappa-gadagi
https://riptutorial.com/contributor/2445864/hubert-grzeskowiak
https://riptutorial.com/contributor/548997/lex
https://riptutorial.com/contributor/4331291/nishant123
https://riptutorial.com/contributor/4116300/rohit-jindal
https://riptutorial.com/contributor/1384945/elliot-j
https://riptutorial.com/contributor/2881286/grundy
https://riptutorial.com/contributor/548997/lex
https://riptutorial.com/contributor/1061668/mikko-viitala
https://riptutorial.com/contributor/4927984/mistalis
https://riptutorial.com/contributor/256793/nix
https://riptutorial.com/contributor/1501631/prit4fun
https://riptutorial.com/contributor/4116300/rohit-jindal
https://riptutorial.com/contributor/4116300/rohit-jindal
https://riptutorial.com/contributor/2942765/sgarcia-dev
https://riptutorial.com/contributor/5523066/sunil-lama
https://riptutorial.com/contributor/1575598/maher
https://riptutorial.com/contributor/3992622/it-z
https://riptutorial.com/contributor/1910355/jim
https://riptutorial.com/contributor/178163/george-kagan
https://riptutorial.com/contributor/2258891/h-t
https://riptutorial.com/contributor/3120193/michael-p--bazos
https://riptutorial.com/contributor/2748013/ryan-hamley
https://riptutorial.com/contributor/2942765/sgarcia-dev
https://riptutorial.com/contributor/131944/daniellmb
https://riptutorial.com/contributor/1384945/elliot-j
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/2483389/gabriel-pires
https://riptutorial.com/contributor/3492853/nico
https://riptutorial.com/contributor/775948/ronapelbaum
https://riptutorial.com/contributor/5429428/gourav-garg
https://riptutorial.com/contributor/794226/parv-sharma
https://riptutorial.com/contributor/4116300/rohit-jindal

	About
	Chapter 1: Getting started with AngularJS
	Remarks
	Versions
	Examples
	Getting Started
	Showcasing all common Angular constructs
	The importance of scope
	The Simplest Possible Angular Hello World.

	ng-app
	Directives
	Minification in Angular
	AngularJS Getting Started Video Tutorials

	Chapter 2: $http request
	Examples
	Using $http inside a controller
	Using $http request in a service
	Timing of an $http request

	Chapter 3: Angular $scopes
	Remarks
	Examples
	Basic Example of $scope inheritance
	Avoid inheriting primitive values
	A function available in the entire app
	Creating custom $scope events
	Using $scope functions
	How can you limit the scope on a directive and why would you do this?

	Chapter 4: Angular MVC
	Introduction
	Examples
	The Static View with controller

	mvc demo
	Controller Function Definition
	Adding information to the model

	Chapter 5: Angular Project - Directory Structure
	Examples
	Directory Structure

	Sort By Type (left)
	Sort By Feature (right)

	Chapter 6: Angular promises with $q service
	Examples
	Using $q.all to handle multiple promises
	Using the $q constructor to create promises
	Deferring operations using $q.defer
	Using angular promises with $q service

	Using Promises on call
	Properties
	Wrap simple value into a promise using $q.when()

	$q.when and its alias $q.resolve
	Avoid the $q Deferred Anti-Pattern

	Avoid this Anti-Pattern

	Chapter 7: AngularJS bindings options (`=`, `@`, `&` etc.)
	Remarks
	Examples
	@ one-way binding, attribute binding.
	= two-way binding.
	& function binding, expression binding.
	Available binding through a simple sample
	Bind optional attribute

	Chapter 8: AngularJS gotchas and traps
	Examples
	Two-way data binding stops working

	Example
	Things to do when using html5Mode
	7 Deadly Sins of AngularJS

	Chapter 9: angularjs with data filter, pagination etc
	Introduction
	Examples
	Angularjs display data with filter, pagination

	Chapter 10: Built-in directives
	Examples
	Angular expressions - Text vs. Number
	ngRepeat
	ngShow and ngHide
	ngOptions
	ngModel
	ngClass
	ngIf

	JavaScript
	View
	DOM If currentUser Is Not Undefined
	DOM If currentUser Is Undefined
	Function Promise
	ngMouseenter and ngMouseleave
	ngDisabled
	ngDblclick
	Built-In Directives Cheat Sheet
	ngClick
	ngRequired
	ng-model-options
	ngCloak
	ngInclude
	ngSrc
	ngPattern
	ngValue
	ngCopy
	Prevent a user from copying data
	ngPaste
	ngHref
	ngList

	Chapter 11: Built-in helper Functions
	Examples
	angular.equals
	angular.isString
	angular.isArray
	angular.merge
	angular.isDefined and angular.isUndefined
	angular.isDate
	angular.isNumber
	angular.isFunction
	angular.toJson
	angular.fromJson
	angular.noop
	angular.isObject
	angular.isElement
	angular.copy
	angular.identity
	angular.forEach

	Chapter 12: Components
	Parameters
	Remarks
	Examples
	Basic Components and LifeCycle Hooks

	What’s a component?
	Using External data in Component:
	Using Controllers in Components
	Using “require” as an Object
	Components In angular JS

	Chapter 13: Constants
	Remarks
	Examples
	Create your first constant
	Use cases

	Chapter 14: Controllers
	Syntax
	Examples
	Your First Controller
	Creating Controllers
	Creating Controllers, Minification safe

	The order of injected dependencies is important
	Using ControllerAs in Angular JS
	Creating Minification-Safe Angular Controllers
	Nested Controllers

	Chapter 15: Controllers with ES6
	Examples
	Controller

	Chapter 16: Custom Directives
	Introduction
	Parameters
	Examples
	Creating and consuming custom directives
	Directive Definition Object Template
	Basic Directive example
	How to create resuable component using directive
	Basic directive with template and an isolated scope
	Building a reusable component
	Directive decorator
	Directive inheritance and interoperability

	Chapter 17: Custom filters
	Examples
	Simple filter example

	example.js
	example.html
	Expected output
	Use a filter in a controller, a service or a filter
	Create a filter with parameters

	Chapter 18: Custom filters with ES6
	Examples
	FileSize Filter using ES6

	Chapter 19: Debugging
	Examples
	Basic debugging in markup
	Using ng-inspect chrome extension
	Getting the Scope of element

	Chapter 20: Decorators
	Syntax
	Remarks
	Examples
	Decorate service, factory
	Decorate directive
	Decorate filter

	Chapter 21: Dependency Injection
	Syntax
	Remarks
	Examples
	Injections
	Dynamic Injections
	$inject Property Annotation
	Dynamically load AngularJS service in vanilla JavaScript

	Chapter 22: digest loop walkthrough
	Syntax
	Examples
	two way data binding
	$digest and $watch
	the $scope tree

	Chapter 23: Directives using ngModelController
	Examples
	A simple control: rating
	A couple of complex controls: edit a full object

	Chapter 24: Distinguishing Service vs Factory
	Examples
	Factory VS Service once-and-for-all

	Chapter 25: Events
	Parameters
	Examples
	Using angular event system

	$scope.$emit
	$scope.$broadcast
	Syntax :
	Clean registered event in AngularJS
	Uses and significance
	Always deregister $rootScope.$on listeners on the scope $destory event

	Chapter 26: Filters
	Examples
	Your First Filter

	Javascript
	HTML
	Custom filter to remove values
	Custom filter to format values
	Performing filter in a child array
	Using filters in a controller or service
	Accessing a filtered list from outside an ng-repeat

	Chapter 27: Form Validation
	Examples
	Basic Form Validation
	Form and Input States
	CSS Classes
	ngMessages

	Traditional approach
	Example
	Custom Form Validation
	Nested Forms
	Async validators

	Chapter 28: Grunt tasks
	Examples
	Run application locally

	Chapter 29: How data binding works
	Remarks
	Examples
	Data Binding Example

	Chapter 30: HTTP Interceptor
	Introduction
	Examples
	Getting Started
	Generic httpInterceptor step by step
	Flash message on response using http interceptor

	In the view file
	Script File
	Common pitfalls

	Chapter 31: Lazy loading
	Remarks
	Examples
	Preparing your project for lazy loading
	Usage
	Usage with router

	UI-Router:
	ngRoute:
	Using dependency injection
	Using the directive

	Chapter 32: Migration to Angular 2+
	Introduction
	Examples
	Converting your AngularJS app into a componend-oriented structure

	Start breaking your your app into components
	What about controllers and routes?
	What's next?
	Conclusion
	Introducing Webpack and ES6 modules

	Chapter 33: Modules
	Examples
	Modules
	Modules

	Chapter 34: ng-class directive
	Examples
	Three types of ng-class expressions

	1. String
	2. Object
	3. Array
	Chapter 35: ng-repeat
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Iterating over object properties
	Tracking and Duplicates
	ng-repeat-start + ng-repeat-end

	Chapter 36: ng-style
	Introduction
	Syntax
	Examples
	Use of ng-style

	Chapter 37: ng-view
	Introduction
	Examples
	ng-view
	Registration navigation

	Chapter 38: Performance Profiling
	Examples
	All About Profiling

	Chapter 39: Prepare for Production - Grunt
	Examples
	View preloading
	Script optimisation

	Chapter 40: Print
	Remarks
	Examples
	Print Service

	Chapter 41: Profiling and Performance
	Examples
	7 Simple Performance Improvements

	1) Use ng-repeat sparingly
	2) Bind once
	3) Scope functions and filters take time
	4) Watchers
	5) ng-if / ng-show
	6) Disable debugging
	7) Use dependency injection to expose your resources
	Bind Once
	Scope functions and filters
	Watchers
	So, what is watcher?
	ng-if vs ng-show

	ng-if
	ng-show
	Example
	Conclusion
	Debounce Your Model
	Always deregister listeners registered on other scopes other than the current scope

	Chapter 42: Providers
	Syntax
	Remarks
	Examples
	Constant
	Value
	Factory
	Service
	Provider

	Chapter 43: Routing using ngRoute
	Remarks
	Examples
	Basic example
	Route parameters example
	Defining custom behavior for individual routes

	Chapter 44: Services
	Examples
	How to create a Service
	How to use a service
	Creating a service using angular.factory
	$sce - sanitize and render content and resources in templates
	How to create a Service with dependencies using 'array syntax'
	Registering a Service
	Difference between Service and Factory

	Chapter 45: Session storage
	Examples
	Handling session storage through service using angularjs

	Session storage service :
	In controller :
	Chapter 46: Sharing Data
	Remarks
	Examples
	Using ngStorage to share data
	Sharing data from one controller to another using service

	Chapter 47: SignalR with AngularJs
	Introduction
	Examples
	SignalR And AngularJs [ChatProject]

	Chapter 48: The Self Or This Variable In A Controller
	Introduction
	Examples
	Understanding The Purpose Of The Self Variable

	Chapter 49: ui-router
	Remarks
	Examples
	Basic Example
	Multiple Views
	Using resolve functions to load data
	Nested Views / States

	Chapter 50: Unit tests
	Remarks
	Examples
	Unit test a filter
	Unit test a component (1.5+)
	Unit test a controller
	Unit test a service
	Unit test a directive

	Chapter 51: Use of in-built directives
	Examples
	Hide/Show HTML Elements

	Chapter 52: Using AngularJS with TypeScript
	Syntax
	Examples
	Angular Controllers in Typescript
	Using the Controller with ControllerAs Syntax
	Using Bundling / Minification
	Why ControllerAs Syntax ?

	Controller Function
	Why ControllerAs ?
	Why $scope ?
	Credits

