
Git

#git

Table of Contents

About 1

Chapter 1: Getting started with Git 2

Remarks 2

Versions 2

Examples 4

Create your first repository, then add and commit files 4

Clone a repository 5

Setting up the upstream remote 6

Sharing code 7

Setting your user name and email 7

Learning about a command 8

Set up SSH for Git 9

Git Installation 10

Chapter 2: .mailmap file: Associating contributor and email aliases 12

Syntax 12

Remarks 12

Examples 12

Merge contributers by aliases to show commit count in shortlog. 12

Chapter 3: Aliases 14

Examples 14

Simple aliases 14

List / search existing aliases 14

Searching aliases 14

Advanced Aliases 15

Temporarily ignore tracked files 15

Show pretty log with branch graph 16

Updating code while keeping a linear history 17

See which files are being ignored by your .gitignore configuration 17

Unstage staged files 17

Chapter 4: Analyzing types of workflows 19

Remarks 19

Examples 19

Gitflow Workflow 19

Forking Workflow 21

Centralized Workflow 21

Feature Branch Workflow 22

GitHub Flow 23

Chapter 5: Archive 25

Syntax 25

Parameters 25

Examples 25

Create an archive of git repository with directory prefix 26

Create archive of git repository based on specific branch, revision, tag or directory 26

Create an archive of git repository 26

Chapter 6: Bisecting/Finding faulty commits 28

Syntax 28

Examples 28

Binary search (git bisect) 28

Semi-automatically find a faulty commit 29

Chapter 7: Blaming 31

Syntax 31

Parameters 31

Remarks 31

Examples 32

Show the commit that last modified a line 32

Ignore whitespace-only changes 32

Only show certain lines 32

To find out who changed a file 32

Chapter 8: Branching 34

Syntax 34

Parameters 34

Remarks 34

Examples 35

Listing branches 35

Creating and checking out new branches 35

Delete a branch locally 37

Check out a new branch tracking a remote branch 37

Rename a branch 37

Overwrite single file in current working directory with the same from another branch 38

Delete a remote branch 38

Create an orphan branch (i.e. branch with no parent commit) 39

Push branch to remote 39

Move current branch HEAD to an arbitrary commit 39

Quick switch to the previous branch 40

Searching in branches 40

Chapter 9: Browsing the history 41

Syntax 41

Parameters 41

Remarks 41

Examples 41

"Regular" Git Log 41

Oneline log 42

Prettier log 43

Log with changes inline 43

Log search 44

List all contributions grouped by author name 44

Filter logs 45

Log for a range of lines within a file 46

Colorize Logs 46

One line showing commiter name and time since commit 47

Git Log Between Two Branches 47

Log showing commited files 47

Show the contents of a single commit 48

Searching commit string in git log 48

Chapter 10: Bundles 50

Remarks 50

Examples 50

Creating a git bundle on the local machine and using it on another 50

Chapter 11: Change git repository name 51

Introduction 51

Examples 51

Change local setting 51

Chapter 12: Cherry Picking 52

Introduction 52

Syntax 52

Parameters 52

Examples 52

Copying a commit from one branch to another 52

Copying a range of commits from one branch to another 53

Checking if a cherry-pick is required 53

Find commits yet to be applied to upstream 53

Chapter 13: Cloning Repositories 55

Syntax 55

Examples 55

Shallow Clone 55

Regular Clone 55

Clone a specific branch 56

Clone recursively 56

Clone using a proxy 56

Chapter 14: Committing 57

Introduction 57

Syntax 57

Parameters 57

Examples 58

Committing without opening an editor 58

Amending a commit 58

Committing changes directly 59

Creating an empty commit 59

Stage and commit changes 60

The basics 60

Shortcuts 60

Sensitive data 61

Committing on behalf of someone else 61

Commiting changes in specific files 62

Good commit messages 62

The seven rules of a great git commit message 62

Committing at a specific date 63

Selecting which lines should be staged for committing 63

Amending the time of a commit 64

Amending the author of a commit 64

GPG signing commits 64

Chapter 15: Configuration 66

Syntax 66

Parameters 66

Examples 66

Username and email address 66

Multiple git configurations 66

Setting which editor to use 67

Configuring line endings 68

Description 68

Microsoft Windows 68

Unix Based (Linux/OSX) 68

configuration for one command only 68

Setup a proxy 69

Auto correct typos 69

List and edit the current configuration 69

Multiple usernames and email address 70

Example for Windows: 70

.gitconfig 70

.gitconfig-work.config 70

.gitconfig-opensource.config 70

Example for Linux 70

Chapter 16: diff-tree 72

Introduction 72

Examples 72

See the files changed in a specific commit 72

Usage 72

Common diff options 72

Chapter 17: Display commit history graphically with Gitk 74

Examples 74

Display commit history for one file 74

Display all commits between two commits 74

Display commits since version tag 74

Chapter 18: Empty directories in Git 75

Examples 75

Git doesn't track directories 75

Chapter 19: External merge and difftools 76

Examples 76

Setting up Beyond Compare 76

Setting up KDiff3 as merge tool 76

Setting up KDiff3 as diff tool 76

Setting up an IntelliJ IDE as merge tool (Windows) 76

Setting up an IntelliJ IDE as diff tool (Windows) 77

Chapter 20: Git Branch Name on Bash Ubuntu 78

Introduction 78

Examples 78

Branch Name in terminal 78

Chapter 21: Git Clean 79

Syntax 79

Parameters 79

Examples 79

Clean Ignored Files 79

Clean All Untracked Directories 79

Forcefully remove untracked files 80

Clean Interactively 80

Chapter 22: Git Client-Side Hooks 81

Introduction 81

Examples 81

Installing a Hook 81

Git pre-push hook 81

Chapter 23: Git Diff 83

Syntax 83

Parameters 83

Examples 84

Show differences in working branch 84

Show differences for staged files 84

Show both staged and unstaged changes 84

Show changes between two commits 85

Using meld to see all modifications in the working directory 85

Show differences for a specific file or directory 85

Viewing a word-diff for long lines 86

Viewing a three-way merge including the common ancestor 86

Show differences between current version and last version 87

Diff UTF-16 encoded text and binary plist files 87

Comparing branches 88

Show changes between two branches 88

Produce a patch-compatible diff 88

difference between two commit or branch 88

Chapter 24: Git GUI Clients 90

Examples 90

GitHub Desktop 90

Git Kraken 90

SourceTree 90

gitk and git-gui 90

SmartGit 92

Git Extensions 93

Chapter 25: Git Large File Storage (LFS) 94

Remarks 94

Examples 94

Install LFS 94

Declare certain file types to store externally 94

Set LFS config for all clones 95

Chapter 26: Git Patch 96

Syntax 96

Parameters 96

Examples 97

Creating a patch 97

Applying patches 98

Chapter 27: Git Remote 99

Syntax 99

Parameters 99

Examples 100

Add a Remote Repository 100

Rename a Remote Repository 100

Remove a Remote Repository 100

Display Remote Repositories 100

Change remote url of your Git repository 101

Show more information about remote repository 101

Chapter 28: Git rerere 103

Introduction 103

Examples 103

Enabling rerere 103

Chapter 29: Git revisions syntax 104

Remarks 104

Examples 104

Specifying revision by object name 104

Symbolic ref names: branches, tags, remote-tracking branches 104

The default revision: HEAD 105

Reflog references: @{} 105

Reflog references: @{} 105

Tracked / upstream branch: @{upstream} 106

Commit ancestry chain: ^, ~, etc. 106

Dereferencing branches and tags: ^0, ^{} 107

Youngest matching commit: ^{/}, :/ 107

Chapter 30: git send-email 109

Syntax 109

Remarks 109

Examples 109

Use git send-email with Gmail 109

Composing 109

Sending patches by mail 110

Chapter 31: Git statistics 111

Syntax 111

Parameters 111

Examples 111

Commits per developer 111

Commits per date 112

Total number of commits in a branch 112

Listing each branch and its last revision's date 112

Lines of code per developer 112

List all commits in pretty format 112

Find All Local Git Repositories on Computer 112

Show the total number of commits per author 113

Chapter 32: Git Tagging 114

Introduction 114

Syntax 114

Examples 114

Listing all available tags 114

Create and push tag(s) in GIT 115

Chapter 33: git-svn 116

Remarks 116

Troubleshooting 116

Examples 117

Cloning the SVN repository 117

Getting the latest changes from SVN 117

Pushing local changes to SVN 118

Working locally 118

Handling empty folders 118

Chapter 34: git-tfs 120

Remarks 120

Examples 120

git-tfs clone 120

git-tfs clone from bare git repository 120

git-tfs install via Chocolatey 120

git-tfs Check In 121

git-tfs push 121

Chapter 35: Hooks 122

Syntax 122

Remarks 122

Examples 122

Commit-msg 122

Local hooks 122

Post-checkout 123

Post-commit 123

Post-receive 123

Pre-commit 123

Prepare-commit-msg 124

Pre-rebase 124

Pre-receive 124

Update 125

Pre-push 125

Verify Maven build (or other build system) before committing 126

Automatically forward certain pushes to other repositories 127

Chapter 36: Ignoring Files and Folders 128

Introduction 128

Examples 128

Ignoring files and directories with a .gitignore file 128

Examples 128

Other forms of .gitignore 130

Cleaning up ignored files 130

Exceptions in a .gitignore file 131

A global .gitignore file 131

Ignore files that have already been committed to a Git repository 132

Checking if a file is ignored 133

Ignoring files in subfolders (Multiple gitignore files) 133

Ignoring a file in any directory 134

Ignore files locally without committing ignore rules 134

Prefilled .gitignore Templates 134

Ignoring subsequent changes to a file (without removing it) 135

Ignoring only part of a file [stub] 136

Ignoring changes in tracked files. [stub] 136

Clear already committed files, but included in .gitignore 137

Create an Empty Folder 138

Finding files ignored by .gitignore 138

Chapter 37: Internals 140

Examples 140

Repo 140

Objects 140

HEAD ref 140

Refs 141

Commit Object 141

Tree 141

Parent 142

Tree Object 142

Blob Object 143

Creating new Commits 143

Moving HEAD 143

Moving refs around 143

Creating new Refs 144

Chapter 38: Merging 145

Syntax 145

Parameters 145

Examples 145

Merge one branch into another 145

Automatic Merging 146

Aborting a merge 146

Keep changes from only one side of a merge 146

Merge with a commit 146

Finding all branches with no merged changes 146

Chapter 39: Migrating to Git 147

Examples 147

Migrate from SVN to Git using Atlassian conversion utility 147

SubGit 148

Migrate from SVN to Git using svn2git 148

Migrate from Team Foundation Version Control (TFVC) to Git 149

Migrating Mercurial to Git 150

Chapter 40: Pulling 151

Introduction 151

Syntax 151

Parameters 151

Remarks 151

Examples 151

Updating with local changes 151

Pull code from remote 152

Pull, overwrite local 152

Keeping linear history when pulling 152

Rebasing when pulling 152

Making it the default behavior 152

Check if fast-forwardable 153

Pull, "permission denied" 153

Pulling changes to a local repository 153

Simple pull 153

Pull from a different remote or branch 154

Manual pull 154

Chapter 41: Pushing 155

Introduction 155

Syntax 155

Parameters 155

Remarks 155

Upstream & Downstream 155

Examples 156

Push 156

Specify remote repository 156

Specify Branch 156

Set the remote tracking branch 156

Pushing to a new repository 156

Explanation 157

Force Pushing 157

Important notes 157

Push a specific object to a remote branch 158

General syntax 158

Example 158

Delete remote branch 158

Example 158

Example 158

Push a single commit 158

Example 159

Changing the default push behavior 159

Push tags 159

Chapter 42: Rebasing 161

Syntax 161

Parameters 161

Remarks 161

Examples 162

Local Branch Rebasing 162

Rebase: ours and theirs, local and remote 162

Inversion illustrated 163

On a merge: 163

On a rebase: 163

Interactive Rebase 164

Rewording commit messages 164

Changing the content of a commit 165

Splitting a single commit into multiple 165

Squashing multiple commits into one 165

Aborting an Interactive Rebase 165

Pushing after a rebase 166

Rebase down to the initial commit 166

Rebasing before a code review 166

Summary 166

Assuming: 167

Strategy: 167

Example: 167

Recap 169

Setup git-pull for automatically perform a rebase instead of a merge 169

Testing all commits during rebase 170

Configuring autostash 170

Chapter 43: Recovering 171

Examples 171

Recovering from a lost commit 171

Restore a deleted file after a commit 171

Restore file to a previous version 171

Recover a deleted branch 171

Recovering from a reset 172

With Git, you can (almost) always turn the clock back 172

Recover from git stash 172

Chapter 44: Reflog - Restoring commits not shown in git log 174

Remarks 174

Examples 174

Recovering from a bad rebase 174

Chapter 45: Renaming 175

Syntax 175

Parameters 175

Examples 175

Rename Folders 175

Renaming a local branch 175

rename a local and the remote branch 175

Chapter 46: Resolving merge conflicts 177

Examples 177

Manual Resolution 177

Chapter 47: Rev-List 178

Syntax 178

Parameters 178

Examples 178

List Commits in master but not in origin/master 178

Chapter 48: Rewriting history with filter-branch 179

Examples 179

Changing the author of commits 179

Setting git committer equal to commit author 179

Chapter 49: Show 180

Syntax 180

Remarks 180

Examples 180

Overview 180

For commits: 180

For trees and blobs: 180

For tags: 181

Chapter 50: Squashing 182

Remarks 182

What is squashing? 182

Squashing and Remote Branches 182

Examples 182

Squash Recent Commits Without Rebasing 182

Squashing Commits During a Rebase 182

Autosquash: Committing code you want to squash during a rebase 184

Squashing Commit During Merge 184

Autosquashing and fixups 185

Chapter 51: Staging 186

Remarks 186

Examples 186

Staging A Single File 186

Staging All Changes to Files 186

Stage deleted files 187

Unstage a file that contains changes 187

Interactive add 187

Add changes by hunk 188

Show Staged Changes 189

Chapter 52: Stashing 190

Syntax 190

Parameters 190

Remarks 191

Examples 191

What is Stashing? 191

Create stash 192

List saved stashes 193

Show stash 193

Remove stash 193

Apply and remove stash 194

Apply stash without removing it 194

Recovering earlier changes from stash 194

Partial stash 194

Apply part of a stash with checkout 195

Interactive Stashing 195

Move your work in progress to another branch 195

Recover a dropped stash 196

Chapter 53: Submodules 198

Examples 198

Adding a submodule 198

Cloning a Git repository having submodules 198

Updating a Submodule 198

Setting a submodule to follow a branch 199

Removing a submodule 199

Moving a submodule 200

Chapter 54: Subtrees 202

Syntax 202

Remarks 202

Examples 202

Create, Pull, and Backport Subtree 202

Create Subtree 202

Pull Subtree Updates 202

Backport Subtree Updates 202

Chapter 55: Tidying up your local and remote repository 204

Examples 204

Delete local branches that have been deleted on the remote 204

Chapter 56: TortoiseGit 205

Examples 205

Ignoring Files and Folders 205

Branching 205

Assume unchanged 207

Revert "Assume unchanged" 208

Squash commits 209

The easy way 209

The advanced way 210

Chapter 57: Undoing 212

Examples 212

Undoing merges 212

Using reflog 213

Return to a previous commit 214

Undoing changes 214

Revert some existing commits 215

Undo / Redo a series of commits 216

Chapter 58: Update Object Name in Reference 218

Examples 218

Update Object Name in Reference 218

Use 218

SYNOPSIS 218

General Syntax 218

Chapter 59: Using a .gitattributes file 220

Examples 220

Disable Line Ending Normalization 220

Automatic Line Ending Normalization 220

Identify Binary Files 220

Prefilled .gitattribute Templates 220

Chapter 60: Working with Remotes 221

Syntax 221

Examples 221

Adding a New Remote Repository 221

Updating from Upstream Repository 221

ls-remote 221

Deleting a Remote Branch 222

Removing Local Copies of Deleted Remote Branches 222

Show information about a Specific Remote 222

List Existing Remotes 223

Getting Started 223

Syntax for pushing to a remote branch 223

Example 223

Set Upstream on a New Branch 223

Changing a Remote Repository 224

Changing Git Remote URL 224

Renaming a Remote 224

Set the URL for a Specific Remote 225

Get the URL for a Specific Remote 225

Chapter 61: Worktrees 226

Syntax 226

Parameters 226

Remarks 226

Examples 226

Using a worktree 226

Moving a worktree 227

Credits 229

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: git

It is an unofficial and free Git ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official Git.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/git
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Git

Remarks

Git is a free, distributed version control system which allows programmers to keep track of code
changes, via "snapshots" (commits), in its current state. Utilizing commits allows programmers to
test, debug, and create new features collaboratively. All commits are kept in what is known as a
"Git Repository" that can be hosted on your computer, private servers, or open source websites,
such at Github.

Git also allows for users to create new "branches" of the code, which allows different versions of
the code to live alongside each other. This enables scenarios where one branch contains the most
recent stable version, a different branch contains a set of new features being developed, and a yet
another branch contains a different set of features. Git makes the process of creating these
branches, and then subsequently merging them back together, nearly painless.

Git has 3 different "areas" for your code:

Working directory: The area that you will be doing all of your work in (creating, editing,
deleting, and organizing files)

•

Staging area: The area where you will list the changes that you have made to the working
directory

•

Repository: Where Git permanently stores the changes you have made as different
versions of the project

•

Git was originally created for managing the Linux kernel source. By making them easier, it
encourages small commits, forking of projects and merging between forks, and having lots of
short-lived branches.

The biggest change for people who are used to CVS or Subversion is that every checkout
contains not only the source tree, but also the whole history of the project. Common operations
like diffing of revisions, checking out older revisions, committing (to your local history), creating a
branch, checking out a different branch, merging branches or patch files can all be done locally
without having to communicate with a central server. Thus the biggest source of latency and
unreliability is removed. Communicating with the "upstream" repository is only needed to get the
latest changes, and to publish your local changes to other developers. This turns what was
previously a technical constraint (whoever has the repository owns the project) into an
organisational choice (your "upstream" is whomever you choose to sync with).

Versions

Version Release Date

2.13 2017-05-10

2.12 2017-02-24

https://riptutorial.com/ 2

https://git.kernel.org/pub/scm/git/git.git/plain/Documentation/RelNotes/2.13.0.txt
https://git.kernel.org/pub/scm/git/git.git/plain/Documentation/RelNotes/2.12.0.txt

Version Release Date

2.11.1 2017-02-02

2.11 2016-11-29

2.10.2 2016-10-28

2.10 2016-09-02

2.9 2016-06-13

2.8 2016-03-28

2.7 2015-10-04

2.6 2015-09-28

2.5 2015-07-27

2.4 2015-04-30

2.3 2015-02-05

2.2 2014-11-26

2.1 2014-08-16

2.0 2014-05-28

1.9 2014-02-14

1.8.3 2013-05-24

1.8 2012-10-21

1.7.10 2012-04-06

1.7 2010-02-13

1.6.5 2009-10-10

1.6.3 2009-05-07

1.6 2008-08-17

1.5.3 2007-09-02

1.5 2007-02-14

1.4 2006-06-10

https://riptutorial.com/ 3

https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.11.1.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.11.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.10.2.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.10.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.9.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.8.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.7.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.6.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.5.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.4.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.3.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.2.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.1.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/2.0.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/1.9.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/1.8.3.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/1.8.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/1.7.10.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/1.7.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/1.6.5.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/1.6.3.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/1.6.0.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/1.5.3.txt
https://git.kernel.org/cgit/git/git.git/plain/Documentation/RelNotes/1.5.0.txt
https://github.com/git/git/archive/v1.4.0.tar.gz

Version Release Date

1.3 2006-04-18

1.2 2006-02-12

1.1 2006-01-08

1.0 2005-12-21

0.99 2005-07-11

Examples

Create your first repository, then add and commit files

At the command line, first verify that you have Git installed:

On all operating systems:

git --version

On UNIX-like operating systems:

which git

If nothing is returned, or the command is not recognized, you may have to install Git on your
system by downloading and running the installer. See the Git homepage for exceptionally clear
and easy installation instructions.

After installing Git, configure your username and email address. Do this before making a commit.

Once Git is installed, navigate to the directory you want to place under version control and create
an empty Git repository:

git init

This creates a hidden folder, .git, which contains the plumbing needed for Git to work.

Next, check what files Git will add to your new repository; this step is worth special care:

git status

Review the resulting list of files; you can tell Git which of the files to place into version control
(avoid adding files with confidential information such as passwords, or files that just clutter the
repo):

git add <file/directory name #1> <file/directory name #2> < ... >

https://riptutorial.com/ 4

https://github.com/git/git/archive/v1.3.0.tar.gz
https://github.com/git/git/archive/v1.2.0.tar.gz
https://github.com/git/git/archive/v1.1.0.tar.gz
https://github.com/git/git/archive/v1.0.0.tar.gz
https://github.com/git/git/archive/v0.99.tar.gz
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
http://www.riptutorial.com/git/example/6939/setting-your-user-name-and-email

If all files in the list should be shared with everyone who has access to the repository, a single
command will add everything in your current directory and its subdirectories:

git add .

This will "stage" all files to be added to version control, preparing them to be committed in your
first commit.

For files that you want never under version control, create and populate a file named .gitignore
before running the add command.

Commit all the files that have been added, along with a commit message:

git commit -m "Initial commit"

This creates a new commit with the given message. A commit is like a save or snapshot of your
entire project. You can now push, or upload, it to a remote repository, and later you can jump back
to it if necessary.
If you omit the -m parameter, your default editor will open and you can edit and save the commit
message there.

Adding a remote

To add a new remote, use the git remote add command on the terminal, in the directory your
repository is stored at.

The git remote add command takes two arguments:

A remote name, for example, origin1.
A remote URL, for example, https://<your-git-service-address>/user/repo.git2.

 git remote add origin https://<your-git-service-address>/owner/repository.git

NOTE: Before adding the remote you have to create the required repository in your git service,
You'll be able to push/pull commits after adding your remote.

Clone a repository

The git clone command is used to copy an existing Git repository from a server to the local
machine.

For example, to clone a GitHub project:

cd <path where you'd like the clone to create a directory>
git clone https://github.com/username/projectname.git

To clone a BitBucket project:

https://riptutorial.com/ 5

http://www.riptutorial.com/git/topic/244/staging
http://www.riptutorial.com/git/topic/245/ignoring-files-and-folders
http://www.riptutorial.com/git/topic/245/ignoring-files-and-folders
http://www.riptutorial.com/git/topic/323/committing
http://www.riptutorial.com/git/topic/2600/pushing

cd <path where you'd like the clone to create a directory>
git clone https://yourusername@bitbucket.org/username/projectname.git

This creates a directory called projectname on the local machine, containing all the files in the
remote Git repository. This includes source files for the project, as well as a .git sub-directory
which contains the entire history and configuration for the project.

To specify a different name of the directory, e.g. MyFolder:

git clone https://github.com/username/projectname.git MyFolder

Or to clone in the current directory:

git clone https://github.com/username/projectname.git .

Note:

When cloning to a specified directory, the directory must be empty or non-existent.1.

You can also use the ssh version of the command:

git clone git@github.com:username/projectname.git

2.

The https version and the ssh version are equivalent. However, some hosting services such as
GitHub recommend that you use https rather than ssh.

Setting up the upstream remote

If you have cloned a fork (e.g. an open source project on Github) you may not have push access
to the upstream repository, so you need both your fork but be able to fetch the upstream
repository.

First check the remote names:

$ git remote -v
origin https://github.com/myusername/repo.git (fetch)
origin https://github.com/myusername/repo.git (push)
upstream # this line may or may not be here

If upstream is there already (it is on some Git versions) you need to set the URL (currently it's
empty):

$ git remote set-url upstream https://github.com/projectusername/repo.git

If the upstream is not there, or if you also want to add a friend/colleague's fork (currently they do
not exist):

$ git remote add upstream https://github.com/projectusername/repo.git

https://riptutorial.com/ 6

https://help.github.com/articles/set-up-git/#next-steps-authenticating-with-github-from-git

$ git remote add dave https://github.com/dave/repo.git

Sharing code

To share your code you create a repository on a remote server to which you will copy your local
repository.

To minimize the use of space on the remote server you create a bare repository: one which has
only the .git objects and doesn't create a working copy in the filesystem. As a bonus you set this
remote as an upstream server to easily share updates with other programmers.

On the remote server:

git init --bare /path/to/repo.git

On the local machine:

git remote add origin ssh://username@server:/path/to/repo.git

(Note that ssh: is just one possible way of accessing the remote repository.)

Now copy your local repository to the remote:

git push --set-upstream origin master

Adding --set-upstream (or -u) created an upstream (tracking) reference which is used by argument-
less Git commands, e.g. git pull.

Setting your user name and email

You need to set who you are *before* creating any commit. That will allow commits to have the
right author name and email associated to them.

It has nothing to do with authentication when pushing to a remote repository (e.g. when
pushing to a remote repository using your GitHub, BitBucket, or GitLab account)

To declare that identity for all repositories, use git config --global
This will store the setting in your user's .gitconfig file: e.g. $HOME/.gitconfig or for Windows,
%USERPROFILE%\.gitconfig.

git config --global user.name "Your Name"
git config --global user.email mail@example.com

To declare an identity for a single repository, use git config inside a repo.
This will store the setting inside the individual repository, in the file $GIT_DIR/config. e.g.
/path/to/your/repo/.git/config.

https://riptutorial.com/ 7

http://www.riptutorial.com/git/example/2627/setting-up-the-upstream-remote
http://www.riptutorial.com/git/example/2627/setting-up-the-upstream-remote

cd /path/to/my/repo
git config user.name "Your Login At Work"
git config user.email mail_at_work@example.com

Settings stored in a repository's config file will take precedence over the global config when you
use that repository.

Tips: if you have different identities (one for open-source project, one at work, one for private
repos, ...), and you don't want to forget to set the right one for each different repos you are working
on:

Remove a global identity

git config --global --remove-section user.name
git config --global --remove-section user.email

•

2.8

To force git to look for your identity only within a repository's settings, not in the global config:

 git config --global user.useConfigOnly true

•

That way, if you forget to set your user.name and user.email for a given repository and try to make a
commit, you will see:

no name was given and auto-detection is disabled
no email was given and auto-detection is disabled

Learning about a command

To get more information about any git command – i.e. details about what the command does,
available options and other documentation – use the --help option or the help command.

For example, to get all available information about the git diff command, use:

git diff --help
git help diff

Similarly, to get all available information about the status command, use:

git status --help
git help status

If you only want a quick help showing you the meaning of the most used command line flags, use
-h:

git checkout -h

https://riptutorial.com/ 8

Set up SSH for Git

If you are using Windows open Git Bash. If you are using Mac or Linux open your Terminal.

Before you generate an SSH key, you can check to see if you have any existing SSH keys.

List the contents of your ~/.ssh directory:

$ ls -al ~/.ssh
Lists all the files in your ~/.ssh directory

Check the directory listing to see if you already have a public SSH key. By default the filenames of
the public keys are one of the following:

id_dsa.pub
id_ecdsa.pub
id_ed25519.pub
id_rsa.pub

If you see an existing public and private key pair listed that you would like to use on your
Bitbucket, GitHub (or similar) account you can copy the contents of the id_*.pub file.

If not, you can create a new public and private key pair with the following command:

$ ssh-keygen

Press the Enter or Return key to accept the default location. Enter and re-enter a passphrase
when prompted, or leave it empty.

Ensure your SSH key is added to the ssh-agent. Start the ssh-agent in the background if it's not
already running:

$ eval "$(ssh-agent -s)"

Add you SSH key to the ssh-agent. Notice that you'll need te replace id_rsa in the command with
the name of your private key file:

$ ssh-add ~/.ssh/id_rsa

If you want to change the upstream of an existing repository from HTTPS to SSH you can run the
following command:

$ git remote set-url origin ssh://git@bitbucket.server.com:7999/projects/your_project.git

In order to clone a new repository over SSH you can run the following command:

$ git clone ssh://git@bitbucket.server.com:7999/projects/your_project.git

https://riptutorial.com/ 9

https://git-for-windows.github.io/

Git Installation

Let’s get into using some Git. First things first—you have to install it. You can get it a number of
ways; the two major ones are to install it from source or to install an existing package for your
platform.

Installing from Source

If you can, it’s generally useful to install Git from source, because you’ll get the most recent
version. Each version of Git tends to include useful UI enhancements, so getting the latest version
is often the best route if you feel comfortable compiling software from source. It is also the case
that many Linux distributions contain very old packages; so unless you’re on a very up-to-date
distro or are using backports, installing from source may be the best bet.

To install Git, you need to have the following libraries that Git depends on: curl, zlib, openssl,
expat, and libiconv. For example, if you’re on a system that has yum (such as Fedora) or apt-get
(such as a Debian based system), you can use one of these commands to install all of the
dependencies:

$ yum install curl-devel expat-devel gettext-devel \
 openssl-devel zlib-devel

$ apt-get install libcurl4-gnutls-dev libexpat1-dev gettext \
 libz-dev libssl-dev

When you have all the necessary dependencies, you can go ahead and grab the latest snapshot
from the Git web site:

http://git-scm.com/download Then, compile and install:

$ tar -zxf git-1.7.2.2.tar.gz
$ cd git-1.7.2.2
$ make prefix=/usr/local all
$ sudo make prefix=/usr/local install

After this is done, you can also get Git via Git itself for updates:

$ git clone git://git.kernel.org/pub/scm/git/git.git

Installing on Linux

If you want to install Git on Linux via a binary installer, you can generally do so through the basic
package-management tool that comes with your distribution. If you’re on Fedora, you can use
yum:

$ yum install git

Or if you’re on a Debian-based distribution like Ubuntu, try apt-get:

https://riptutorial.com/ 10

http://git-scm.com/download

$ apt-get install git

Installing on Mac

There are three easy ways to install Git on a Mac. The easiest is to use the graphical Git installer,
which you can download from the SourceForge page.

http://sourceforge.net/projects/git-osx-installer/

Figure 1-7. Git OS X installer. The other major way is to install Git via MacPorts (
http://www.macports.org). If you have MacPorts installed, install Git via

$ sudo port install git +svn +doc +bash_completion +gitweb

You don’t have to add all the extras, but you’ll probably want to include +svn in case you ever
have to use Git with Subversion repositories (see Chapter 8).

Homebrew (http://brew.sh/) is another alternative to install Git. If you have Homebrew installed,
install Git via

$ brew install git

Installing on Windows

Installing Git on Windows is very easy. The msysGit project has one of the easier installation
procedures. Simply download the installer exe file from the GitHub page, and run it:

http://msysgit.github.io

After it’s installed, you have both a command-line version (including an SSH client that will come in
handy later) and the standard GUI.

Note on Windows usage: you should use Git with the provided msysGit shell (Unix style), it allows
to use the complex lines of command given in this book. If you need, for some reason, to use the
native Windows shell / command line console, you have to use double quotes instead of single
quotes (for parameters with spaces in them) and you must quote the parameters ending with the
circumflex accent (^) if they are last on the line, as it is a continuation symbol in Windows.

Read Getting started with Git online: https://riptutorial.com/git/topic/218/getting-started-with-git

https://riptutorial.com/ 11

http://sourceforge.net/projects/git-osx-installer/
http://www.macports.org)
http://brew.sh/)
https://riptutorial.com/git/topic/218/getting-started-with-git

Chapter 2: .mailmap file: Associating
contributor and email aliases

Syntax

Only replace email addresses
<primary@example.org> <alias@example.org>

•

Replace name by email address
Contributor <primary@example.org>

•

Merge multiple aliases under one name and email
Note this will not associate 'Other <alias2@example.org>'.
Contributor <primary@example.org> <alias1@example.org> Contributor
<alias2@example.org>

•

Remarks

A .mailmap file may be created in any text editor and is just a plain text file containing optional
contributor names, primary email addresses, and their aliases. it has to be placed in the project's
root, next to the .git directory.

Keep in mind that this just modifies the visual output of commands like git shortlog or git log --
use-mailmap. This will not rewrite commit history or prevent commits with varying names and/or
email addresses.

To prevent commits based on information such as email addresses, you should use git hooks
instead.

Examples

Merge contributers by aliases to show commit count in shortlog.

When contributors add to a project from different machines or operating systems, it may happen
that they use different email addresses or names for this, which will fragment contributor lists and
statistics.

Running git shortlog -sn to get a list of contributors and the number of commits by them could
result in the following output:

Patrick Rothfuss 871
Elizabeth Moon 762
E. Moon 184
Rothfuss, Patrick 90

This fragmentation/disassociation may be adjusted by providing a plain text file .mailmap,

https://riptutorial.com/ 12

http://www.riptutorial.com/git/topic/1330/hooks

containing email mappings.

All names and email addresses listed in one line will be associated to the first named entity
respectively.

For the example above, a mapping could look like this:

Patrick Rothfuss <fussy@kingkiller.com> Rothfuss, Patrick <fussy@kingkiller.com>
Elizabeth Moon <emoon@marines.mil> E. Moon <emoon@scifi.org>

Once this file exists in the project's root, running git shortlog -sn again will result in a condensed
list:

Patrick Rothfuss 961
Elizabeth Moon 946

Read .mailmap file: Associating contributor and email aliases online:
https://riptutorial.com/git/topic/1270/-mailmap-file--associating-contributor-and-email-aliases

https://riptutorial.com/ 13

https://riptutorial.com/git/topic/1270/-mailmap-file--associating-contributor-and-email-aliases

Chapter 3: Aliases

Examples

Simple aliases

There are two ways of creating aliases in Git:

with the ~/.gitconfig file:•

[alias]
 ci = commit
 st = status
 co = checkout

with the command line:•

 git config --global alias.ci "commit"
 git config --global alias.st "status"
 git config --global alias.co "checkout"

After the alias is created - type:

git ci instead of git commit,•
git st instead of git status,•
git co instead of git checkout.•

As with regular git commands, aliases can be used beside arguments. For example:

 git ci -m "Commit message..."
 git co -b feature-42

List / search existing aliases

You can list existing git aliases using --get-regexp:

$ git config --get-regexp '^alias\.'

Searching aliases

To search aliases, add the following to your .gitconfig under [alias]:

aliases = !git config --list | grep ^alias\\. | cut -c 7- | grep -Ei --color \"$1\" "#"

Then you can:

https://riptutorial.com/ 14

http://stackoverflow.com/q/7066325/23649
http://stackoverflow.com/questions/39466417/how-do-i-search-my-git-aliases/39466418#39466418

git aliases - show ALL aliases•
git aliases commit - only aliases containing "commit"•

Advanced Aliases

Git lets you use non-git commands and full sh shell syntax in your aliases if you prefix them with !.

In your ~/.gitconfig file:

[alias]
 temp = !git add -A && git commit -m "Temp"

The fact that full shell syntax is available in these prefixed aliases also means you can use shell
functions to construct more complex aliases, such as ones which utilize command line arguments:

[alias]
 ignore = "!f() { echo $1 >> .gitignore; }; f"

The above alias defines the f function, then runs it with any arguments you pass to the alias. So
running git ignore .tmp/ would add .tmp/ to your .gitignore file.

In fact, this pattern is so useful that Git defines $1, $2, etc. variables for you, so you don't even
have to define a special function for it. (But keep in mind that Git will also append the arguments
anyway, even if you access it via these variables, so you may want to add a dummy command at
the end.)

Note that aliases prefixed with ! in this way are run from the root directory of your git checkout,
even if your current directory is deeper in the tree. This can be a useful way to run a command
from the root without having to cd there explicitly.

[alias]
 ignore = "! echo $1 >> .gitignore"

Temporarily ignore tracked files

To temporarily mark a file as ignored (pass file as parameter to alias) - type:

unwatch = update-index --assume-unchanged

To start tracking file again - type:

watch = update-index --no-assume-unchanged

To list all files that has been temporarily ignored - type:

unwatched = "!git ls-files -v | grep '^[[:lower:]]'"

To clear the unwatched list - type:

https://riptutorial.com/ 15

https://en.wikipedia.org/wiki/Bourne_shell

watchall = "!git unwatched | xargs -L 1 -I % sh -c 'git watch `echo % | cut -c 2-`'"

Example of using the aliases:

git unwatch my_file.txt
git watch my_file.txt
git unwatched
git watchall

Show pretty log with branch graph

[alias]
 logp=log --pretty=format:'%h %ad | %s%d [%an]' --graph --date=short

 lg = log --graph --date-order --first-parent \
 --pretty=format:'%C(auto)%h%Creset %C(auto)%d%Creset %s %C(green)(%ad) %C(bold
cyan)<%an>%Creset'
 lgb = log --graph --date-order --branches --first-parent \
 --pretty=format:'%C(auto)%h%Creset %C(auto)%d%Creset %s %C(green)(%ad) %C(bold
cyan)<%an>%Creset'
 lga = log --graph --date-order --all \
 --pretty=format:'%C(auto)%h%Creset %C(auto)%d%Creset %s %C(green)(%ad) %C(bold
cyan)<%an>%Creset'

Here an explanation of the options and placeholder used in the --pretty format (exhaustive list are
available with git help log)

--graph - draw the commit tree

--date-order - use commit timestamp order when possible

--first-parent - follow only the first parent on merge node.

--branches - show all local branches (by default, only current branch is shown)

--all - show all local and remotes branches

%h - hash value for commit (abbreviated)

%ad - Date stamp (author)

%an - Author username

%an - Commit username

%C(auto) - to use colors defined in [color] section

%Creset - to reset color

%d - --decorate (branch & tag names)

%s - commit message

https://riptutorial.com/ 16

%ad - author date (will follow --date directive) (and not commiter date)

%an - author name (can be %cn for commiter name)

Updating code while keeping a linear history

Sometimes you need to keep a linear (non-branching) history of your code commits. If you are
working on a branch for a while, this can be tricky if you have to do a regular git pull since that
will record a merge with upstream.

[alias]
 up = pull --rebase

This will update with your upstream source, then reapply any work you have not pushed on top of
whatever you pulled down.

To use:

git up

See which files are being ignored by your .gitignore configuration

[alias]

 ignored = ! git ls-files --others --ignored --exclude-standard --directory \
 && git ls-files --others -i --exclude-standard

Shows one line per file, so you can grep (only directories):

$ git ignored | grep '/$'
.yardoc/
doc/

Or count:

~$ git ignored | wc -l
199811 # oops, my home directory is getting crowded

Unstage staged files

Normally, to remove files that are staged to be committed using the git reset commit, reset has a
lot of functions depending on the arguments provided to it. To completely unstage all files staged,
we can make use of git aliases to create a new alias that uses reset but now we do not need to
remember to provide the correct arguments to reset.

git config --global alias.unstage "reset --"

Now, any time you want to unstage stages files, type git unstage and you are good to go.

https://riptutorial.com/ 17

Read Aliases online: https://riptutorial.com/git/topic/337/aliases

https://riptutorial.com/ 18

https://riptutorial.com/git/topic/337/aliases

Chapter 4: Analyzing types of workflows

Remarks

Using version control software like Git may be a little scary at first, but its intuitive design
specializing with branching helps make a number of different types of workflows possible. Pick one
that is right for your own development team.

Examples

Gitflow Workflow

Originally proposed by Vincent Driessen, Gitflow is a development workflow using git and several
pre-defined branches. This can seen as a special case of the Feature Branch Workflow.

The idea of this one is to have separate branches reserved for specific parts in development:

master branch is always the most recent production code. Experimental code does not
belong here.

•

develop branch contains all of the latest development. These developmental changes can be
pretty much anything, but larger features are reserved for their own branches. Code here is
always worked on and merged into release before release / deployment.

•

hotfix branches are for minor bug fixes, which cannot wait until the next release. hotfix
branches come off of master and are merged back into both master and develop.

•

release branches are used to release new development from develop to master. Any last
minute changes, such as bumping version numbers, are done in the release branch, and
then are merged back into master and develop. When deploying a new version, master should
be tagged with the current version number (e.g. using semantic versioning) for future
reference and easy rollback.

•

feature branches are reserved for bigger features. These are specifically developed in
designated branches and integrated with develop when finished. Dedicated feature branches
help to separate development and to be able to deploy done features independently from
each other.

•

A visual representation of this model:

https://riptutorial.com/ 19

http://nvie.com/posts/a-successful-git-branching-model/
http://www.riptutorial.com/git/example/8329/feature-branch-workflow
http://semver.org/

The original representation of this model:

https://riptutorial.com/ 20

http://i.stack.imgur.com/TBHkD.png

Forking Workflow

This type of workflow is fundamentally different than the other ones mentioned on this topic. Inste

A visual representation of this workflow is as follows:

Centralized Workflow

With this fundamental workflow model, a master

https://riptutorial.com/ 21

http://i.stack.imgur.com/RGIng.png
http://i.stack.imgur.com/FAI5q.png

branch contains all active development. Contributors will need to be especially sure they pull the
latest changes before continuing development, for this branch will be changing rapidly. Everyone
has access to this repo and can commit changes right to the master branch.

Visual representation of this model:

This is the classic version control paradigm, upon which older systems like Subversion and CVS
were built. Softwares that work this way are called Centralized Version Control Systems, or
CVCS's. While Git is capable of working this way, there are notable disadvantages, such as being
required to precede every pull with a merge. It's very possible for a team to work this way, but the
constant merge conflict resolution can end up eating a lot of valuable time.

This is why Linus Torvalds created Git not as a CVCS, but rather as a DVCS, or Distributed
Version Control System, similar to Mercurial. The advantage to this new way of doing things is the
flexibility demonstrated in the other examples on this page.

Feature Branch Workflow

https://riptutorial.com/ 22

https://i.stack.imgur.com/dAYXB.png

The core idea behind the Feature Branch Workflow is that all feature development should take
place in a dedicated branch instead of the master branch. This encapsulation makes it easy for
multiple developers to work on a particular feature without disturbing the main codebase. It also
means the master branch will never contain broken code, which is a huge advantage for
continuous integration environments.

Encapsulating feature development also makes it possible to leverage pull requests, which are a
way to initiate discussions around a branch. They give other developers the opportunity to sign off
on a feature before it gets integrated into the official project. Or, if you get stuck in the middle of a
feature, you can open a pull request asking for suggestions from your colleagues. The point is, pull
requests make it incredibly easy for your team to comment on each other’s work.

based on Atlassian Tutorials.

GitHub Flow

Popular within many open source projects but not only.

Master branch of a specific location (Github, Gitlab, Bitbucket, local server) contains the latest
shippable version. For each new feature/bug fix/architectural change each developer creates a
branch.

Changes happen on that branch and can be discussed in a pull request, code review, etc. Once
accepted they get merged to the master branch.

Full flow by Scott Chacon:

Anything in the master branch is deployable•
To work on something new, create a descriptively named branch off of master (ie: new-
oauth2-scopes)

•

Commit to that branch locally and regularly push your work to the same named branch on
the server

•

When you need feedback or help, or you think the branch is ready for merging, open a pull
request

•

After someone else has reviewed and signed off on the feature, you can merge it into master•
Once it is merged and pushed to ‘master’, you can and should deploy immediately•

Originally presented on Scott Chacon's personal web site.

https://riptutorial.com/ 23

https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
http://scottchacon.com/2011/08/31/github-flow.html

Image courtesy of the GitHub Flow reference

Read Analyzing types of workflows online: https://riptutorial.com/git/topic/1276/analyzing-types-of-
workflows

https://riptutorial.com/ 24

http://i.stack.imgur.com/KoMdO.png
https://guides.github.com/introduction/flow/
https://riptutorial.com/git/topic/1276/analyzing-types-of-workflows
https://riptutorial.com/git/topic/1276/analyzing-types-of-workflows

Chapter 5: Archive

Syntax

git archive [--format=<fmt>] [--list] [--prefix=<prefix>/] [<extra>] [-o <file> | --output=<file>] [--
worktree-attributes] [--remote=<repo> [--exec=<git-upload-archive>]] <tree-ish> [<path>...]

•

Parameters

Parameter Details

--format=<fmt>
Format of the resulting archive: tar or zip. If this options is not given
and the output file is specified, the format is inferred from the filename if
possible. Otherwise, defaults to tar.

-l, --list Show all available formats.

-v, --verbose Report progress to stderr.

--prefix=<prefix>/ Prepend <prefix>/ to each filename in the archive.

-o <file>, --
output=<file>

Write the archive to <file> instead of stdout.

--worktree-
attributes

Look for attributes in .gitattributes files in the working tree.

<extra>
This can be any options that the archiver backend understands. For zip
backend, using -0 will store the files without deflating them, while -1
through -9 can be used to adjust compression speed and ratio.

--remote=<repo>
Retrieve a tar archive from a remote repository <repo> rather than the
local repository.

--exec=<git-
upload-archive>

Used with --remote to specify the path to the <git-upload-archive on the
remote.

<tree-ish> The tree or commit to produce an archive for.

<path>
Without an optional parameter, all files and directories in the current
working directory are included in the archive. If one or more paths are
specified, only these are included.

Examples

https://riptutorial.com/ 25

Create an archive of git repository with directory prefix

It is considered good practice to use a prefix when creating git archives, so that extraction will
place all files inside a directory. To create an archive of HEAD with a directory prefix:

git archive --output=archive-HEAD.zip --prefix=src-directory-name HEAD

When extracted all the files will be extracted inside a directory named src-directory-name in the
current directory.

Create archive of git repository based on specific branch, revision, tag or
directory

It is also possible to create archives of other items than HEAD, such as branches, commits, tags,
and directories.

To create an archive of a local branch dev:

git archive --output=archive-dev.zip --prefix=src-directory-name dev

To create an archive of a remote branch origin/dev:

git archive --output=archive-dev.zip --prefix=src-directory-name origin/dev

To create an archive of a tag v.01:

git archive --output=archive-v.01.zip --prefix=src-directory-name v.01

Create an archive of files inside a specific sub directory (sub-dir) of revision HEAD:

git archive zip --output=archive-sub-dir.zip --prefix=src-directory-name HEAD:sub-dir/

Create an archive of git repository

With git archive it is possible to create compressed archives of a repository, for example for
distributing releases.

Create a tar archive of current HEAD revision:

git archive --format tar HEAD | cat > archive-HEAD.tar

Create a tar archive of current HEAD revision with gzip compression:

git archive --format tar HEAD | gzip > archive-HEAD.tar.gz

This can also be done with (which will use the in-built tar.gz handling):

https://riptutorial.com/ 26

git archive --format tar.gz HEAD > archive-HEAD.tar.gz

Create a zip archive of current HEAD revision:

git archive --format zip HEAD > archive-HEAD.zip

Alternatively it is possible to just specify an output file with valid extension and the format and
compression type will be inferred from it:

git archive --output=archive-HEAD.tar.gz HEAD

Read Archive online: https://riptutorial.com/git/topic/2815/archive

https://riptutorial.com/ 27

https://riptutorial.com/git/topic/2815/archive

Chapter 6: Bisecting/Finding faulty commits

Syntax

git bisect <subcommand> <options>•

git bisect start <bad> [<good>...]•

git bisect reset•

git bisect good•

git bisect bad•

Examples

Binary search (git bisect)

git bisect allows you to find which commit introduced a bug using a binary search.

Start by bisecting a session by providing two commit references: a good commit before the bug,
and a bad commit after the bug. Generally, the bad commit is HEAD.

start the git bisect session
$ git bisect start

give a commit where the bug doesn't exist
$ git bisect good 49c747d

give a commit where the bug exist
$ git bisect bad HEAD

git starts a binary search: It splits the revision in half and switches the repository to the
intermediate revision. Inspect the code to determine if the revision is good or bad:

tell git the revision is good,
which means it doesn't contain the bug
$ git bisect good

if the revision contains the bug,
then tell git it's bad
$ git bisect bad

git will continue to run the binary search on each remaining subset of bad revisions depending on
your instructions. git will present a single revision that, unless your flags were incorrect, will
represent exactly the revision where the bug was introduced.

Afterwards remember to run git bisect reset to end the bisect session and return to HEAD.

$ git bisect reset

https://riptutorial.com/ 28

https://git-scm.com/docs/git-bisect

If you have a script that can check for the bug, you can automate the process with:

$ git bisect run [script] [arguments]

Where [script] is the path to your script and [arguments] is any arguments that should be passed
to your script.

Running this command will automatically run through the binary search, executing git bisect good
or git bisect bad at each step depending on the exit code of your script. Exiting with 0 indicates
good, while exiting with 1-124, 126, or 127 indicates bad. 125 indicates that the script cannot test
that revision (which will trigger a git bisect skip).

Semi-automatically find a faulty commit

Imagine you are on the master branch and something is not working as expected (a regression
was introduced), but you don't know where. All you know is, that is was working in the last release
(which was e.g., tagged or you know the commit hash, lets take old-rel here).

Git has help for you, finding the faulty commit which introduced the regression with a very low
number of steps (binary search).

First of all start bisecting:

git bisect start master old-rel

This will tell git that master is a broken revision (or the first broken version) and old-rel is the last
known version.

Git will now check out a detached head in the middle of both commits. Now, you can do your
testing. Depending on whether it works or not issue

git bisect good

or

git bisect bad

. In case this commit cannot be tested, you can easily git reset and test that one, git willl take
care of this.

After a few steps git will output the faulty commit hash.

In order to abort the bisect process just issue

git bisect reset

and git will restore the previous state.

https://riptutorial.com/ 29

Read Bisecting/Finding faulty commits online: https://riptutorial.com/git/topic/3645/bisecting-
finding-faulty-commits

https://riptutorial.com/ 30

https://riptutorial.com/git/topic/3645/bisecting-finding-faulty-commits
https://riptutorial.com/git/topic/3645/bisecting-finding-faulty-commits

Chapter 7: Blaming

Syntax

git blame [filename]•
git blame [-f][-e][-w] [filename]•
git blame [-L range] [filename]•

Parameters

Parameter Details

filename Name of the file for which details need to be checked

-f Show the file name in the origin commit

-e Show the author email instead of author name

-w
Ignore white spaces while making a comparison between child and parent's
version

-L start,end Show only the given line range Example: git blame -L 1,2 [filename]

--show-stats Shows additional statistics at end of blame output

-l Show long rev (Default: off)

-t Show raw timestamp (Default: off)

-reverse Walk history forward instead of backward

-p, --
porcelain

Output for machine consumption

-M Detect moved or copied lines within a file

-C
In addition to -M, detect lines moved or copied from other files that were
modified in the same commit

-h Show the help message

-c Use the same output mode as git-annotate (Default: off)

-n Show the line number in the original commit (Default: off)

Remarks

https://riptutorial.com/ 31

The git blame command is very useful when it comes to know who has made changes to a file on
a per line base.

Examples

Show the commit that last modified a line

git blame <file>

will show the file with each line annotated with the commit that last modified it.

Ignore whitespace-only changes

Sometimes repos will have commits that only adjust whitespace, for example fixing indentation or
switching between tabs and spaces. This makes it difficult to find the commit where the code was
actually written.

git blame -w

will ignore whitespace-only changes to find where the line really came from.

Only show certain lines

Output can be restricted by specifying line ranges as

git blame -L <start>,<end>

Where <start> and <end> can be:

line number

git blame -L 10,30

•

/regex/

git blame -L /void main/, git blame -L 46,/void foo/

•

+offset, -offset (only for <end>)

git blame -L 108,+30, git blame -L 215,-15

•

Multiple line ranges can be specified, and overlapping ranges are allowed.

git blame -L 10,30 -L 12,80 -L 120,+10 -L ^/void main/,+40

To find out who changed a file

// Shows the author and commit per line of specified file
git blame test.c

// Shows the author email and commit per line of specified
git blame -e test.c file

https://riptutorial.com/ 32

// Limits the selection of lines by specified range
git blame -L 1,10 test.c

Read Blaming online: https://riptutorial.com/git/topic/3663/blaming

https://riptutorial.com/ 33

https://riptutorial.com/git/topic/3663/blaming

Chapter 8: Branching

Syntax

git branch [--set-upstream | --track | --no-track] [-l] [-f] <branchname> [<start-point>]•
git branch (--set-upstream-to=<upstream> | -u <upstream>) [<branchname>]•
git branch --unset-upstream [<branchname>]•
git branch (-m | -M) [<oldbranch>] <newbranch>•
git branch (-d | -D) [-r] <branchname>…•
git branch --edit-description [<branchname>]•
git branch [--color[=<when>] | --no-color] [-r | -a] [--list] [-v [--abbrev=<length> | --
no-abbrev]] [--column[=<options>] | --no-column] [(--merged | --no-merged | --contains)
[<commit>]] [--sort=<key>] [--points-at <object>] [<pattern>…]

•

Parameters

Parameter Details

-d, --delete
Delete a branch. The branch must be fully merged in its upstream branch, or in
HEAD if no upstream was set with --track or --set-upstream

-D Shortcut for --delete --force

-m, --move Move/rename a branch and the corresponding reflog

-M Shortcut for --move --force

-r, --
remotes

List or delete (if used with -d) the remote-tracking branches

-a, --all List both remote-tracking branches and local branches

--list
Activate the list mode. git branch <pattern> would try to create a branch, use
git branch --list <pattern> to list matching branches

--set-
upstream

If specified branch does not exist yet or if --force has been given, acts exactly
like --track. Otherwise sets up configuration like --track would when creating
the branch, except that where branch points to is not changed

Remarks

Every git repository has one or more branches. A branch is a named reference to the HEAD of a
sequence of commits.

A git repo has a current branch (indicated by a * in the list of branch names printed by the git
branch command), Whenever you create a new commit with the git commit command, your new
commit becomes the HEAD of the current branch, and the previous HEAD becomes the parent of

https://riptutorial.com/ 34

the new commit.

A new branch will have the same HEAD as the branch from which it was created until something is
committed to the new branch.

Examples

Listing branches

Git provides multiple commands for listing branches. All commands use the function of git branch,
which will provide a list of a certain branches, depending on which options are put on the
command line. Git will if possible, indicate the currently selected branch with a star next to it.

Goal Command

List local branches git branch

List local branches verbose git branch -v

List remote and local branches git branch -a OR git branch --all

List remote and local branches (verbose) git branch -av

List remote branches git branch -r

List remote branches with latest commit git branch -rv

List merged branches git branch --merged

List unmerged branches git branch --no-merged

List branches containing commit git branch --contains [<commit>]

Notes:

Adding an additional v to -v e.g. $ git branch -avv or $ git branch -vv will print the name of
the upstream branch as well.

•

Branches shown in red color are remote branches•

Creating and checking out new branches

To create a new branch, while staying on the current branch, use:

git branch <name>

Generally, the branch name must not contain spaces and is subject to other specifications listed
here. To switch to an existing branch :

https://riptutorial.com/ 35

http://stackoverflow.com/questions/3651860/which-characters-are-illegal-within-a-branch-name

git checkout <name>

To create a new branch and switch to it:

git checkout -b <name>

To create a branch at a point other than the last commit of the current branch (also known as
HEAD), use either of these commands:

git branch <name> [<start-point>]
git checkout -b <name> [<start-point>]

The <start-point> can be any revision known to git (e.g. another branch name, commit SHA, or a
symbolic reference such as HEAD or a tag name):

git checkout -b <name> some_other_branch
git checkout -b <name> af295
git checkout -b <name> HEAD~5
git checkout -b <name> v1.0.5

To create a branch from a remote branch (the default <remote_name> is origin):

git branch <name> <remote_name>/<branch_name>
git checkout -b <name> <remote_name>/<branch_name>

If a given branch name is only found on one remote, you can simply use

git checkout -b <branch_name>

which is equivalent to

git checkout -b <branch_name> <remote_name>/<branch_name>

Sometimes you may need to move several of your recent commits to a new branch. This can be
achieved by branching and "rolling back", like so:

git branch <new_name>
git reset --hard HEAD~2 # Go back 2 commits, you will lose uncommitted work.
git checkout <new_name>

Here is an illustrative explanation of this technique:

 Initial state After git branch <new_name> After git reset --hard HEAD~2
 newBranch newBranch
 ↓ ↓
A-B-C-D-E (HEAD) A-B-C-D-E (HEAD) A-B-C-D-E (HEAD)
 ↑ ↑ ↑
 master master master

https://riptutorial.com/ 36

https://git-scm.com/docs/revisions
http://www.riptutorial.com/git/topic/243/working-with-remotes

Delete a branch locally

$ git branch -d dev

Deletes the branch named dev if its changes are merged with another branch and will not be lost. If
the dev branch does contain changes that have not yet been merged that would be lost, git branch
-d will fail:

$ git branch -d dev
error: The branch 'dev' is not fully merged.
If you are sure you want to delete it, run 'git branch -D dev'.

Per the warning message, you can force delete the branch (and lose any unmerged changes in
that branch) by using the -D flag:

$ git branch -D dev

Check out a new branch tracking a remote branch

There are three ways of creating a new branch feature which tracks the remote branch
origin/feature:

git checkout --track -b feature origin/feature,•
git checkout -t origin/feature,•
git checkout feature - assuming that there is no local feature branch and there is only one
remote with the feature branch.

•

To set upstream to track the remote branch - type:

git branch --set-upstream-to=<remote>/<branch> <branch>•
git branch -u <remote>/<branch> <branch>•

where:

<remote> can be: origin, develop or the one created by user,•
<branch> is user's branch to track on remote.•

To verify which remote branches your local branches are tracking:

git branch -vv•

Rename a branch

Rename the branch you have checked out:

git branch -m new_branch_name

Rename another branch:

https://riptutorial.com/ 37

git branch -m branch_you_want_to_rename new_branch_name

Overwrite single file in current working directory with the same from another
branch

The checked out file will overwrite not yet commited changes you did in this file.

This command will check out the file file.example (which is located in the directory path/to/) and
overwrite any changes you might have made to this file.

git checkout some-branch path/to/file

some-branch can be anything tree-ish known to git (see Revision Selection and gitrevisions for
more details)

You have to add -- before the path if your file could be mistaken for a file (optional otherwise). No
more options can be supplied after the --.

git checkout some-branch -- some-file

The second some-file is a file in this example.

Delete a remote branch

To delete a branch on the origin remote repository, you can use for Git version 1.5.0 and newer

git push origin :<branchName>

and as of Git version 1.7.0, you can delete a remote branch using

git push origin --delete <branchName>

To delete a local remote-tracking branch:

git branch --delete --remotes <remote>/<branch>
git branch -dr <remote>/<branch> # Shorter

git fetch <remote> --prune # Delete multiple obsolete tracking branches
git fetch <remote> -p # Shorter

To delete a branch locally. Note that this will not delete the branch if it has any unmerged
changes:

git branch -d <branchName>

To delete a branch, even if it has unmerged changes:

https://riptutorial.com/ 38

https://git-scm.com/book/en/v2/Git-Tools-Revision-Selection
https://git-scm.com/docs/gitrevisions

git branch -D <branchName>

Create an orphan branch (i.e. branch with no parent commit)

git checkout --orphan new-orphan-branch

The first commit made on this new branch will have no parents and it will be the root of
a new history totally disconnected from all the other branches and commits.

source

Push branch to remote

Use to push commits made on your local branch to a remote repository.

The git push command takes two arguments:

A remote name, for example, origin•
A branch name, for example, master•

For example:

git push <REMOTENAME> <BRANCHNAME>

As an example, you usually run git push origin master to push your local changes to your online
repository.

Using -u (short for --set-upstream) will set up the tracking information during the push.

git push -u <REMOTENAME> <BRANCHNAME>

By default, git pushes the local branch to a remote branch with the same name. For example, if
you have a local called new-feature, if you push the local branch it will create a remote branch new-
feature as well. If you want to use a different name for the remote branch, append the remote
name after the local branch name, separated by ::

git push <REMOTENAME> <LOCALBRANCHNAME>:<REMOTEBRANCHNAME>

Move current branch HEAD to an arbitrary commit

A branch is just a pointer to a commit, so you can freely move it around. To make it so that the
branch is referring to the commit aabbcc, issue the command

git reset --hard aabbcc

Please note that this will overwrite your branch's current commit, and as so, its entire history. You
might loose some work by issuing this command. If that's the case, you can use the reflog to

https://riptutorial.com/ 39

https://git-scm.com/docs/git-checkout
http://www.riptutorial.com/git/topic/5149/reflog---restoring-commits-not-shown-in-git-log

recover the lost commits. It can be advised to perform this command on a new branch instead of
your current one.

However, this command can be particularly useful when rebasing or doing such other large history
modifications.

Quick switch to the previous branch

You can quickly switch to the previous branch using

git checkout -

Searching in branches

To list local branches that contain a specific commit or tag

git branch --contains <commit>

To list local and remote branches that contain a specific commit or tag

git branch -a --contains <commit>

Read Branching online: https://riptutorial.com/git/topic/415/branching

https://riptutorial.com/ 40

https://riptutorial.com/git/topic/415/branching

Chapter 9: Browsing the history

Syntax

git log [options] [revision range] [[--] path...]•

Parameters

Parameter Explanation

-q, --quiet Quiet, suppresses diff output

--source Shows source of commit

--use-mailmap Use mail map file (changes user info for committing user)

--decorate[=...] Decorate options

--L <n,m:file>
Show log for specific range of lines in a file, counting from 1. Starts
from line n, goes to line m. Also shows diff.

--show-signature Display signatures of signed commits

-i, --regexp-ignore-
case

Match the regular expression limiting patterns without regard to letter
case

Remarks

References and up-to-date documentation : git-log official documentation

Examples

"Regular" Git Log

git log

will display all your commits with the author and hash. This will be shown over multiple lines per
commit. (If you wish to show a single line per commit, look at onelineing). Use the q key to exit the
log.

By default, with no arguments, git log lists the commits made in that repository in
reverse chronological order – that is, the most recent commits show up first. As you
can see, this command lists each commit with its SHA-1 checksum, the author’s name
and email, the date written, and the commit message. - source

https://riptutorial.com/ 41

https://git-scm.com/docs/git-log
http://www.riptutorial.com/git/example/871/oneline-log
https://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History

Example (from Free Code Camp repository):

commit 87ef97f59e2a2f4dc425982f76f14a57d0900bcf
Merge: e50ff0d eb8b729
Author: Brian <sludge256@users.noreply.github.com>
Date: Thu Mar 24 15:52:07 2016 -0700

 Merge pull request #7724 from BKinahan/fix/where-art-thou

 Fix 'its' typo in Where Art Thou description

commit eb8b7298d516ea20a4aadb9797c7b6fd5af27ea5
Author: BKinahan <b.kinahan@gmail.com>
Date: Thu Mar 24 21:11:36 2016 +0000

 Fix 'its' typo in Where Art Thou description

commit e50ff0d249705f41f55cd435f317dcfd02590ee7
Merge: 6b01875 2652d04
Author: Mrugesh Mohapatra <raisedadead@users.noreply.github.com>
Date: Thu Mar 24 14:26:04 2016 +0530

 Merge pull request #7718 from deathsythe47/fix/unnecessary-comma

 Remove unnecessary comma from CONTRIBUTING.md

If you wish to limit your command to last n commits log you can simply pass a parameter. For
example, if you wish to list last 2 commits logs

git log -2

Oneline log

git log --oneline

will show all of your commits with only the first part of the hash and the commit message. Each
commit will be in a single line, as the oneline flag suggests.

The oneline option prints each commit on a single line, which is useful if you’re looking
at a lot of commits. - source

Example (from Free Code Camp repository, with the same section of code from the other
example):

87ef97f Merge pull request #7724 from BKinahan/fix/where-art-thou
eb8b729 Fix 'its' typo in Where Art Thou description
e50ff0d Merge pull request #7718 from deathsythe47/fix/unnecessary-comma
2652d04 Remove unnecessary comma from CONTRIBUTING.md
6b01875 Merge pull request #7667 from zerkms/patch-1
766f088 Fixed assignment operator terminology
d1e2468 Merge pull request #7690 from BKinahan/fix/unsubscribe-crash
bed9de2 Merge pull request #7657 from Rafase282/fix/

If you wish to limit you command to last n commits log you can simply pass a parameter. For

https://riptutorial.com/ 42

https://github.com/FreeCodeCamp/FreeCodeCamp
https://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
https://github.com/FreeCodeCamp/FreeCodeCamp

example, if you wish to list last 2 commits logs

git log -2 --oneline

Prettier log

To see the log in a prettier graph-like structure use:

git log --decorate --oneline --graph

sample output :

* e0c1cea (HEAD -> maint, tag: v2.9.3, origin/maint) Git 2.9.3
* 9b601ea Merge branch 'jk/difftool-in-subdir' into maint
|\
| * 32b8c58 difftool: use Git::* functions instead of passing around state
| * 98f917e difftool: avoid $GIT_DIR and $GIT_WORK_TREE
| * 9ec26e7 difftool: fix argument handling in subdirs
* | f4fd627 Merge branch 'jk/reset-ident-time-per-commit' into maint
...

Since it's a pretty big command, you can assign an alias:

git config --global alias.lol "log --decorate --oneline --graph"

To use the alias version:

history of current branch :
git lol

combined history of active branch (HEAD), develop and origin/master branches :
git lol HEAD develop origin/master

combined history of everything in your repo :
git lol --all

Log with changes inline

To see the log with changes inline, use the -p or --patch options.

git log --patch

Example (from Trello Scientist repository)

ommit 8ea1452aca481a837d9504f1b2c77ad013367d25
Author: Raymond Chou <info@raychou.io>
Date: Wed Mar 2 10:35:25 2016 -0800

 fix readme error link

diff --git a/README.md b/README.md

https://riptutorial.com/ 43

https://github.com/trello/scientist

index 1120a00..9bef0ce 100644
--- a/README.md
+++ b/README.md
@@ -134,7 +134,7 @@ the control function threw, but *after* testing the other functions and
readying
 the logging. The criteria for matching errors is based on the constructor and
 message.

-You can find this full example at [examples/errors.js](examples/error.js).
+You can find this full example at examples/errors.js.

 ## Asynchronous behaviors

commit d3178a22716cc35b6a2bdd679a7ec24bc8c63ffa
:

Log search

git log -S"#define SAMPLES"

Searches for addition or removal of specific string or the string matching provided REGEXP. In
this case we're looking for addition/removal of the string #define SAMPLES. For example:

+#define SAMPLES 100000

or

-#define SAMPLES 100000

git log -G"#define SAMPLES"

Searches for changes in lines containing specific string or the string matching provided
REGEXP. For example:

-#define SAMPLES 100000
+#define SAMPLES 100000000

List all contributions grouped by author name

git shortlog summarizes git log and groups by author

If no parameters are given, a list of all commits made per committer will be shown in chronological
order.

$ git shortlog
Committer 1 (<number_of_commits>):
 Commit Message 1
 Commit Message 2
 ...

https://riptutorial.com/ 44

Committer 2 (<number_of_commits>):
 Commit Message 1
 Commit Message 2
 ...

To simply see the number of commits and suppress the commit description, pass in the summary
option:

-s

--summary

$ git shortlog -s
<number_of_commits> Committer 1
<number_of_commits> Committer 2

To sort the output by number of commits instead of alphabetically by committer name, pass in the
numbered option:

-n

--numbered

To add the email of a committer, add the email option:

-e

--email

A custom format option can also be provided if you want to display information other than the
commit subject:

--format

This can be any string accepted by the --format option of git log.

See Colorizing Logs above for more information on this.

Filter logs

git log --after '3 days ago'

Specific dates work too:

git log --after 2016-05-01

As with other commands and flags that accept a date parameter, the allowed date format is as
supported by GNU date (highly flexible).

https://riptutorial.com/ 45

http://www.riptutorial.com/git/example/13880/colorize-logs

An alias to --after is --since.

Flags exist for the converse too: --before and --until.

You can also filter logs by author. e.g.

git log --author=author

Log for a range of lines within a file

$ git log -L 1,20:index.html
commit 6a57fde739de66293231f6204cbd8b2feca3a869
Author: John Doe <john@doe.com>
Date: Tue Mar 22 16:33:42 2016 -0500

 commit message

diff --git a/index.html b/index.html
--- a/index.html
+++ b/index.html
@@ -1,17 +1,20 @@
 <!DOCTYPE HTML>
 <html>
- <head>
- <meta charset="utf-8">
+
+<head>
+ <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">

Colorize Logs

git log --graph --pretty=format:'%C(red)%h%Creset -%C(yellow)%d%Creset %s %C(green)(%cr)
%C(yellow)<%an>%Creset'

The format option allows you to specify your own log output format:

Parameter Details

%C(color_name) option colors the output that comes after it

%h or %H abbreviates commit hash (use %H for complete hash)

%Creset resets color to default terminal color

%d ref names

%s subject [commit message]

%cr committer date, relative to current date

https://riptutorial.com/ 46

Parameter Details

%an author name

One line showing commiter name and time since commit

tree = log --oneline --decorate --source --pretty=format:'"%Cblue %h %Cgreen %ar %Cblue %an
%C(yellow) %d %Creset %s"' --all --graph

example

* 40554ac 3 months ago Alexander Zolotov Merge pull request #95 from
gmandnepr/external_plugins
|\
| * e509f61 3 months ago Ievgen Degtiarenko Documenting new property
| * 46d4cb6 3 months ago Ievgen Degtiarenko Running idea with external plugins
| * 6253da4 3 months ago Ievgen Degtiarenko Resolve external plugin classes
| * 9fdb4e7 3 months ago Ievgen Degtiarenko Keep original artifact name as this may be
important for intellij
| * 22e82e4 3 months ago Ievgen Degtiarenko Declaring external plugin in intellij
section
|/
* bc3d2cb 3 months ago Alexander Zolotov Ignore DTD in plugin.xml

Git Log Between Two Branches

git log master..foo will show the commits that are on foo and not on master. Helpful for seeing
what commits you've added since branching!

Log showing commited files

git log --stat

Example:

commit 4ded994d7fc501451fa6e233361887a2365b91d1
Author: Manassés Souza <manasses.inatel@gmail.com>
Date: Mon Jun 6 21:32:30 2016 -0300

 MercadoLibre java-sdk dependency

 mltracking-poc/.gitignore | 1 +
 mltracking-poc/pom.xml | 14 ++++++++++++--
 2 files changed, 13 insertions(+), 2 deletions(-)

commit 506fff56190f75bc051248770fb0bcd976e3f9a5
Author: Manassés Souza <manasses.inatel@gmail.com>
Date: Sat Jun 4 12:35:16 2016 -0300

 [manasses] generated by SpringBoot initializr

 .gitignore | 42
++++++++++++

https://riptutorial.com/ 47

 mltracking-poc/mvnw | 233
+++
 mltracking-poc/mvnw.cmd | 145
+++++++++++++++++++++++++++++++++++++++
 mltracking-poc/pom.xml | 74
++++++++++++++++++++
 mltracking-poc/src/main/java/br/com/mls/mltracking/MltrackingPocApplication.java | 12
++++
 mltracking-poc/src/main/resources/application.properties | 0
 mltracking-poc/src/test/java/br/com/mls/mltracking/MltrackingPocApplicationTests.java | 18
+++++
 7 files changed, 524 insertions(+)

Show the contents of a single commit

Using git show we can view a single commit

git show 48c83b3
git show 48c83b3690dfc7b0e622fd220f8f37c26a77c934

Example

commit 48c83b3690dfc7b0e622fd220f8f37c26a77c934
Author: Matt Clark <mrclark32493@gmail.com>
Date: Wed May 4 18:26:40 2016 -0400

 The commit message will be shown here.

diff --git a/src/main/java/org/jdm/api/jenkins/BuildStatus.java
b/src/main/java/org/jdm/api/jenkins/BuildStatus.java
index 0b57e4a..fa8e6a5 100755
--- a/src/main/java/org/jdm/api/jenkins/BuildStatus.java
+++ b/src/main/java/org/jdm/api/jenkins/BuildStatus.java
@@ -50,7 +50,7 @@ public enum BuildStatus {

 colorMap.put(BuildStatus.UNSTABLE, Color.decode("#FFFF55"));
- colorMap.put(BuildStatus.SUCCESS, Color.decode("#55FF55"));
+ colorMap.put(BuildStatus.SUCCESS, Color.decode("#33CC33"));
 colorMap.put(BuildStatus.BUILDING, Color.decode("#5555FF"));

Searching commit string in git log

Searching git log using some string in log:

git log [options] --grep "search_string"

Example:

git log --all --grep "removed file"

Will search for removed file string in all logs in all branches.

https://riptutorial.com/ 48

https://git-scm.com/docs/git-show

Starting from git 2.4+, the search can be inverted using the --invert-grep option.

Example:

git log --grep="add file" --invert-grep

Will show all commits that do not contain add file.

Read Browsing the history online: https://riptutorial.com/git/topic/240/browsing-the-history

https://riptutorial.com/ 49

https://riptutorial.com/git/topic/240/browsing-the-history

Chapter 10: Bundles

Remarks

The key to making this work is to begin by cloning a bundle that starts from the beginning of the
repo history:

 git bundle create initial.bundle master
 git tag -f some_previous_tag master # so the whole repo does not have to go each time

getting that initial bundle to the remote machine; and

 git clone -b master initial.bundle remote_repo_name

Examples

Creating a git bundle on the local machine and using it on another

Sometimes you may want maintain versions of a git repository on machines that have no network
connection. Bundles allow you to package git objects and references in a repository on one
machine and import those into a repository on another.

git tag 2016_07_24
git bundle create changes_between_tags.bundle [some_previous_tag]..2016_07_24

Somehow transfer the changes_between_tags.bundle file to the remote machine; e.g., via
thumb drive. Once you have it there:

git bundle verify changes_between_tags.bundle # make sure bundle arrived intact
git checkout [some branch] # in the repo on the remote machine
git bundle list-heads changes_between_tags.bundle # list the references in the bundle
git pull changes_between_tags.bundle [reference from the bundle, e.g. last field from the
previous output]

The reverse is also possible. Once you've made changes on the remote repository you can bundle
up the deltas; put the changes on, e.g., a thumb drive, and merge them back into the local
repository so the two can stay in sync without requiring direct git, ssh, rsync, or http protocol
access between the machines.

Read Bundles online: https://riptutorial.com/git/topic/3612/bundles

https://riptutorial.com/ 50

https://riptutorial.com/git/topic/3612/bundles

Chapter 11: Change git repository name

Introduction

If you change repository name on the remote side, such as your github or bitbucket, when you
push your exisiting code, you will see error: Fatal error, repository not found**.

Examples

Change local setting

Go to terminal,

cd projectFolder
git remote -v (it will show previous git url)
git remote set-url origin https://username@bitbucket.org/username/newName.git
git remote -v (double check, it will show new git url)
git push (do whatever you want.)

Read Change git repository name online: https://riptutorial.com/git/topic/9291/change-git-
repository-name

https://riptutorial.com/ 51

https://riptutorial.com/git/topic/9291/change-git-repository-name
https://riptutorial.com/git/topic/9291/change-git-repository-name

Chapter 12: Cherry Picking

Introduction

A cherry-pick takes the patch that was introduced in a commit and tries to reapply it on the branch
you’re currently on.

Source: Git SCM Book

Syntax

git cherry-pick [--edit] [-n] [-m parent-number] [-s] [-x] [--ff] [-S[key-id]] commit...•
git cherry-pick --continue•
git cherry-pick --quit•
git cherry-pick --abort•

Parameters

Parameters Details

-e, --edit
With this option, git cherry-pick will let you edit the commit message prior to
committing.

-x

When recording the commit, append a line that says "(cherry picked from
commit …)" to the original commit message in order to indicate which commit
this change was cherry-picked from. This is done only for cherry picks without
conflicts.

--ff
If the current HEAD is the same as the parent of the cherry-pick’ed commit,
then a fast forward to this commit will be performed.

--continue
Continue the operation in progress using the information in .git/sequencer. Can
be used to continue after resolving conflicts in a failed cherry-pick or revert.

--quit
Forget about the current operation in progress. Can be used to clear the
sequencer state after a failed cherry-pick or revert.

--abort Cancel the operation and return to the pre-sequence state.

Examples

Copying a commit from one branch to another

git cherry-pick <commit-hash> will apply the changes made in an existing commit to another

https://riptutorial.com/ 52

https://git-scm.com/book/en/v2/Distributed-Git-Maintaining-a-Project

branch, while recording a new commit. Essentially, you can copy commits from branch to branch.

Given the following tree (Source)

dd2e86 - 946992 - 9143a9 - a6fd86 - 5a6057 [master]
 \
 76cada - 62ecb3 - b886a0 [feature]

Let's say we want to copy b886a0 to master (on top of 5a6057).

We can run

git checkout master
git cherry-pick b886a0

Now our tree will look something like:

dd2e86 - 946992 - 9143a9 - a6fd86 - 5a6057 - a66b23 [master]
 \
 76cada - 62ecb3 - b886a0 [feature]

Where the new commit a66b23 has the same content (source diff, commit message) as b886a0 (but
a different parent). Note that cherry-picking will only pick up changes on that commit(b886a0 in this
case) not all the changes in feature branch (for this you will have to either use rebasing or
merging).

Copying a range of commits from one branch to another

git cherry-pick <commit-A>..<commit-B> will place every commit after A and up to and including B
on top of the currently checked-out branch.

git cherry-pick <commit-A>^..<commit-B> will place commit A and every commit up to and including
B on top of the currently checked-out branch.

Checking if a cherry-pick is required

Before you start the cherry-pick process, you can check if the commit you want to cherry-pick
already exists in the target branch, in which case you don't have to do anything.

git branch --contains <commit> lists local branches that contain the specified commit.

git branch -r --contains <commit> also includes remote tracking branches in the list.

Find commits yet to be applied to upstream

Command git cherry shows the changes which haven't yet been cherry-picked.

Example:

https://riptutorial.com/ 53

https://ariejan.net/2010/06/10/cherry-picking-specific-commits-from-another-branch/

git checkout master
git cherry development

... and see output a bit like this:

+ 492508acab7b454eee8b805f8ba906056eede0ff
- 5ceb5a9077ddb9e78b1e8f24bfc70e674c627949
+ b4459544c000f4d51d1ec23f279d9cdb19c1d32b
+ b6ce3b78e938644a293b2dd2a15b2fecb1b54cd9

The commits that being with + will be the ones that haven't yet cherry-picked into development.

Syntax:

git cherry [-v] [<upstream> [<head> [<limit>]]]

Options:

-v Show the commit subjects next to the SHA1s.

< upstream > Upstream branch to search for equivalent commits. Defaults to the upstream
branch of HEAD.

< head > Working branch; defaults to HEAD.

< limit > Do not report commits up to (and including) limit.

Check git-cherry documentation for more info.

Read Cherry Picking online: https://riptutorial.com/git/topic/672/cherry-picking

https://riptutorial.com/ 54

https://git-scm.com/docs/git-cherry
https://riptutorial.com/git/topic/672/cherry-picking

Chapter 13: Cloning Repositories

Syntax

git clone [<options>] [--] <repo> [<dir>]•
git clone [--template=<template_directory>] [-l] [-s] [--no-hardlinks] [-q] [-n] [--bare] [--mirror] [-
o <name>] [-b <name>] [-u <upload-pack>] [--reference <repository>] [--dissociate] [--
separate-git-dir <git dir>] [--depth <depth>] [--[no-]single-branch] [--recursive | --recurse-
submodules] [--[no-]shallow-submodules] [--jobs <n>] [--] <repository> [<directory>]

•

Examples

Shallow Clone

Cloning a huge repository (like a project with multiple years of history) might take a long time, or
fail because of the amount of data to be transferred. In cases where you don't need to have the full
history available, you can do a shallow clone:

git clone [repo_url] --depth 1

The above command will fetch just the last commit from the remote repository.

Be aware that you may not be able to resolve merges in a shallow repository. It's often a good
idea to take at least as many commits are you are going to need to backtrack to resolve merges.
For example, to instead get the last 50 commits:

git clone [repo_url] --depth 50

Later, if required, you can the fetch the rest of the repository:

1.8.3

git fetch --unshallow # equivalent of git fetch -–depth=2147483647
 # fetches the rest of the repository

1.8.3

git fetch --depth=1000 # fetch the last 1000 commits

Regular Clone

To download the entire repository including the full history and all branches, type:

git clone <url>

https://riptutorial.com/ 55

The example above will place it in a directory with the same name as the repository name.

To download the repository and save it in a specific directory, type:

git clone <url> [directory]

For more details, visit Clone a repository.

Clone a specific branch

To clone a specific branch of a repository, type --branch <branch name> before the repository url:

git clone --branch <branch name> <url> [directory]

To use the shorthand option for --branch, type -b. This command downloads entire repository and
checks out <branch name>.

To save disk space you can clone history leading only to single branch with:

git clone --branch <branch_name> --single-branch <url> [directory]

If --single-branch is not added to the command, history of all branches will be cloned into
[directory]. This can be issue with big repositories.

To later undo --single-branch flag and fetch the rest of repository use command:

git config remote.origin.fetch "+refs/heads/*:refs/remotes/origin/*"
git fetch origin

Clone recursively

1.6.5

git clone <url> --recursive

Clones the repository and also clones all submodules. If the submodules themselves contain
additional submodules, Git will also clone those.

Clone using a proxy

If you need to download files with git under a proxy, setting proxy server system-wide couldn't be
enough. You could also try the following:

git config --global http.proxy http://<proxy-server>:<port>/

Read Cloning Repositories online: https://riptutorial.com/git/topic/1405/cloning-repositories

https://riptutorial.com/ 56

http://www.riptutorial.com/git/example/818/clone-a-repository
https://riptutorial.com/git/topic/1405/cloning-repositories

Chapter 14: Committing

Introduction

Commits with Git provide accountability by attributing authors with changes to code. Git offers
multiple features for the specificity and security of commits. This topic explains and demonstrates
proper practices and procedures in committing with Git.

Syntax

git commit [flags]•

Parameters

Parameter Details

--message, -m
Message to include in the commit. Specifying this parameter
bypasses Git's normal behavior of opening an editor.

--amend
Specify that the changes currently staged should be added
(amended) to the previous commit. Be careful, this can rewrite
history!

--no-edit
Use the selected commit message without launching an
editor. For example, git commit --amend --no-edit amends a
commit without changing its commit message.

--all, -a Commit all changes, including changes that aren't yet staged.

--date Manually set the date that will be associated with the commit.

--only
Commit only the paths specified. This will not commit what
you currently have staged unless told to do so.

--patch, -p
Use the interactive patch selection interface to chose which
changes to commit.

--help Displays the man page for git commit

-S[keyid], -S --gpg-
sign[=keyid], -S --no-gpg-
sign

Sign commit, GPG-sign commit, countermand commit.gpgSign
configuration variable

-n, --no-verify
This option bypasses the pre-commit and commit-msg hooks.
See also Hooks

https://riptutorial.com/ 57

http://www.riptutorial.com/git/topic/1330/hooks

Examples

Committing without opening an editor

Git will usually open an editor (like vim or emacs) when you run git commit. Pass the -m option to
specify a message from the command line:

git commit -m "Commit message here"

Your commit message can go over multiple lines:

git commit -m "Commit 'subject line' message here

More detailed description follows here (after a blank line)."

Alternatively, you can pass in multiple -m arguments:

git commit -m "Commit summary" -m "More detailed description follows here"

See How to Write a Git Commit Message.

Udacity Git Commit Message Style Guide

Amending a commit

If your latest commit is not published yet (not pushed to an upstream repository) then you can
amend your commit.

git commit --amend

This will put the currently staged changes onto the previous commit.

Note: This can also be used to edit an incorrect commit message. It will bring up the default editor
(usually vi / vim / emacs) and allow you to change the prior message.

To specify the commit message inline:

git commit --amend -m "New commit message"

Or to use the previous commit message without changing it:

git commit --amend --no-edit

Amending updates the commit date but leaves the author date untouched. You can tell git to
refresh the information.

git commit --amend --reset-author

https://riptutorial.com/ 58

http://chris.beams.io/posts/git-commit/
https://udacity.github.io/git-styleguide/

You can also change the author of the commit with:

git commit --amend --author "New Author <email@address.com>"

Note: Be aware that amending the most recent commit replaces it entirely and the previous
commit is removed from the branch's history. This should be kept in mind when working with
public repositories and on branches with other collaborators.

This means that if the earlier commit had already been pushed, after amending it you will have to
push --force.

Committing changes directly

Usually, you have to use git add or git rm to add changes to the index before you can git commit
them. Pass the -a or --all option to automatically add every change (to tracked files) to the index,
including removals:

git commit -a

If you would like to also add a commit message you would do:

git commit -a -m "your commit message goes here"

Also, you can join two flags:

git commit -am "your commit message goes here"

You don't necessarily need to commit all files at once. Omit the -a or --all flag and specify which
file you want to commit directly:

git commit path/to/a/file -m "your commit message goes here"

For directly committing more than one specific file, you can specify one or multiple files, directories
and patterns as well:

git commit path/to/a/file path/to/a/folder/* path/to/b/file -m "your commit message goes here"

Creating an empty commit

Generally speaking, empty commits (or commits with state that is identical to the parent) is an
error.

However, when testing build hooks, CI systems, and other systems that trigger off a commit, it's
handy to be able to easily create commits without having to edit/touch a dummy file.

The --allow-empty commit will bypass the check.

https://riptutorial.com/ 59

git commit -m "This is a blank commit" --allow-empty

Stage and commit changes

The basics

After making changes to your source code, you should stage those changes with Git before you
can commit them.

For example, if you change README.md and program.py:

git add README.md program.py

This tells git that you want to add the files to the next commit you do.

Then, commit your changes with

git commit

Note that this will open a text editor, which is often vim. If you are not familiar with vim, you might
want to know that you can press i to go into insert mode, write your commit message, then press
Esc and :wq to save and quit. To avoid opening the text editor, simply include the -m flag with your
message

git commit -m "Commit message here"

Commit messages often follow some specific formatting rules, see Good commit messages for
more information.

Shortcuts

If you have changed a lot of files in the directory, rather than listing each one of them, you could
use:

git add --all # equivalent to "git add -a"

Or to add all changes, not including files that have been deleted, from the top-level directory and
subdirectories:

git add .

Or to only add files which are currently tracked ("update"):

git add -u

https://riptutorial.com/ 60

http://www.riptutorial.com/git/example/2234/setting-which-editor-to-use
http://www.riptutorial.com/topic/879
http://www.riptutorial.com/git/example/4729/good-commit-messages

If desired, review the staged changes:

git status # display a list of changed files
git diff --cached # shows staged changes inside staged files

Finally, commit the changes:

git commit -m "Commit message here"

Alternately, if you have only modified existing files or deleted files, and have not created any new
ones, you can combine the actions of git add and git commit in a single command:

git commit -am "Commit message here"

Note that this will stage all modified files in the same way as git add --all.

Sensitive data

You should never commit any sensitive data, such as passwords or even private keys. If this case
happens and the changes are already pushed to a central server, consider any sensitive data as
compromised. Otherwise, it is possible to remove such data afterwards. A fast and easy solution is
the usage of the "BFG Repo-Cleaner": https://rtyley.github.io/bfg-repo-cleaner/.

The command bfg --replace-text passwords.txt my-repo.git reads passwords out of the
passwords.txt file and replaces these with ***REMOVED***. This operation considers all previous
commits of the entire repository.

Committing on behalf of someone else

If someone else wrote the code you are committing, you can give them credit with the --author
option:

git commit -m "msg" --author "John Smith <johnsmith@example.com>"

You can also provide a pattern, which Git will use to search for previous authors:

git commit -m "msg" --author "John"

In this case, the author information from the most recent commit with an author containing "John"
will be used.

On GitHub, commits made in either of the above ways will show a large author's thumbnail, with
the committer's smaller and in front:

https://riptutorial.com/ 61

https://rtyley.github.io/bfg-repo-cleaner/

Commiting changes in specific files

You can commit changes made to specific files and skip staging them using git add:

git commit file1.c file2.h

Or you can first stage the files:

git add file1.c file2.h

and commit them later:

git commit

Good commit messages

It is important for someone traversing through the git log to easily understand what each commit
was all about. Good commit messages usually include a number of a task or an issue in a tracker
and a concise description of what has been done and why, and sometimes also how it has been
done.

Better messages may look like:

TASK-123: Implement login through OAuth
TASK-124: Add auto minification of JS/CSS files
TASK-125: Fix minifier error when name > 200 chars

Whereas the following messages would not be quite as useful:

fix // What has been fixed?
just a bit of a change // What has changed?
TASK-371 // No description at all, reader will need to look at the tracker
themselves for an explanation
Implemented IFoo in IBar // Why it was needed?

A way to test if a commit message is written in the correct mood is to replace the blank with the
message and see if it makes sense:

If I add this commit, I will ___ to my repository.

The seven rules of a great git commit

https://riptutorial.com/ 62

http://i.stack.imgur.com/iy2My.png

message

Separate the subject line from body with a blank line1.
Limit the subject line to 50 characters2.
Capitalize the subject line3.
Do not end the subject line with a period4.
Use the imperative mood in the subject line5.
Manually wrap each line of the body at 72 characters6.
Use the body to explain what and why instead of how7.

7 rules from Chris Beam's blog.

Committing at a specific date

git commit -m 'Fix UI bug' --date 2016-07-01

The --date parameter sets the author date. This date will appear in the standard output of git log,
for example.

To force the commit date too:

GIT_COMMITTER_DATE=2016-07-01 git commit -m 'Fix UI bug' --date 2016-07-01

The date parameter accepts the flexible formats as supported by GNU date, for example:

git commit -m 'Fix UI bug' --date yesterday
git commit -m 'Fix UI bug' --date '3 days ago'
git commit -m 'Fix UI bug' --date '3 hours ago'

When the date doesn't specify time, the current time will be used and only the date will be
overridden.

Selecting which lines should be staged for committing

Suppose you have many changes in one or more files but from each file you only want to commit
some of the changes, you can select the desired changes using:

git add -p

or

git add -p [file]

Each of your changes will be displayed individually, and for each change you will be prompted to
choose one of he following options:

https://riptutorial.com/ 63

https://en.wikipedia.org/wiki/Imperative_mood
http://chris.beams.io/posts/git-commit/#seven-rules

y - Yes, add this hunk

n - No, don’t add this hunk

d - No, don’t add this hunk, or any other remaining hunks for this file.
 Useful if you’ve already added what you want to, and want to skip over the rest.

s - Split the hunk into smaller hunks, if possible

e - Manually edit the hunk. This is probably the most powerful option.
 It will open the hunk in a text editor and you can edit it as needed.

This will stage the parts of the files you choose. Then you can commit all the staged changes like
this:

git commit -m 'Commit Message'

The changes that were not staged or committed will still appear in your working files, and can be
committed later if required. Or if the remaining changes are unwanted, they can be discarded with:

git reset --hard

Apart from breaking up a big change into smaller commits, this approach is also useful for
reviewing what you are about to commit. By individually confirming each change, you have an
opportunity to check what you wrote, and can avoid accidentally staging unwanted code such as
println/logging statements.

Amending the time of a commit

You cam amend the time of a commit using

git commit --amend --date="Thu Jul 28 11:30 2016 -0400"

or even

git commit --amend --date="now"

Amending the author of a commit

If you make a commit as the wrong author, you can change it, and then amend

git config user.name "Full Name"
git config user.email "email@example.com"

git commit --amend --reset-author

GPG signing commits

Determine your key ID1.

https://riptutorial.com/ 64

gpg --list-secret-keys --keyid-format LONG

/Users/davidcondrey/.gnupg/secring.gpg

sec 2048R/YOUR-16-DIGIT-KEY-ID YYYY-MM-DD [expires: YYYY-MM-DD]

Your ID is a alphanumeric 16-digit code following the first forward-slash.

Define your key ID in your git config

git config --global user.signingkey YOUR-16-DIGIT-KEY-ID

2.

As of version 1.7.9, git commit accepts the -S option to attach a signature to your commits.
Using this option will prompt for your GPG passphrase and will add your signature to the
commit log.

git commit -S -m "Your commit message"

3.

Read Committing online: https://riptutorial.com/git/topic/323/committing

https://riptutorial.com/ 65

https://riptutorial.com/git/topic/323/committing

Chapter 15: Configuration

Syntax

git config [<file-option>] name [value] # one of the more common use cases of git config•

Parameters

Parameter Details

--system
Edits the system-wide configuration file, which is used for every user (on Linux,
this file is located at $(prefix)/etc/gitconfig)

--global
Edits the global configuration file, which is used for every repository you work on
(on Linux, this file is located at ~/.gitconfig

--local
Edits the respository-specific configuration file, which is located at .git/config in
your repository; this is the default setting

Examples

Username and email address

Right after you install Git, the first thing you should do is set your username and email address.
From a shell, type:

git config --global user.name "Mr. Bean"
git config --global user.email mrbean@example.com

git config is the command to get or set options•
--global means that the configuration file specific to your user account will be edited•
user.name and user.email are the keys for the configuration variables; user is the section of
the configuration file. name and email are the names of the variables.

•

"Mr. Bean" and mrbean@example.com are the values that you're storing in the two variables. Note
the quotes around "Mr. Bean", which are required because the value you are storing contains
a space.

•

Multiple git configurations

You have up to 5 sources for git configuration:

6 files:
%ALLUSERSPROFILE%\Git\Config (Windows only)○

(system) <git>/etc/gitconfig, with <git> being the git installation path.○

•

https://riptutorial.com/ 66

(on Windows, it is <git>\mingw64\etc\gitconfig)
(system) $XDG_CONFIG_HOME/git/config (Linux/Mac only)○

(global) ~/.gitconfig (Windows: %USERPROFILE%\.gitconfig)○

(local) .git/config (within a git repo $GIT_DIR)○

a dedicated file (with git config -f), used for instance to modify the config of
submodules: git config -f .gitmodules ...

○

the command line with git -c: git -c core.autocrlf=false fetch would override any other
core.autocrlf to false, just for that fetch command.

•

The order is important: any config set in one source can be overridden by a source listed below it.

git config --system/global/local is the command to list 3 of those sources, but only git config -l
would list all resolved configs.
"resolved" means it lists only the final overridden config value.

Since git 2.8, if you want to see which config comes from which file, you type:

git config --list --show-origin

Setting which editor to use

There are several ways to set which editor to use for committing, rebasing, etc.

Change the core.editor configuration setting.

$ git config --global core.editor nano

•

Set the GIT_EDITOR environment variable.

For one command:

$ GIT_EDITOR=nano git commit

Or for all commands run in a terminal. Note: This only applies until you close the terminal.

$ export GIT_EDITOR=nano

•

To change the editor for all terminal programs, not just Git, set the VISUAL or EDITOR
environment variable. (See VISUAL vs EDITOR.)

$ export EDITOR=nano

Note: As above, this only applies to the current terminal; your shell will usually have a
configuration file to allow you to set it permanently. (On bash, for example, add the above line
to your ~/.bashrc or ~/.bash_profile.)

•

Some text editors (mostly GUI ones) will only run one instance at a time, and generally quit if you
already have an instance of them open. If this is the case for your text editor, Git will print the

https://riptutorial.com/ 67

https://unix.stackexchange.com/questions/4859/visual-vs-editor-whats-the-difference
https://unix.stackexchange.com/questions/4859/visual-vs-editor-whats-the-difference
https://unix.stackexchange.com/questions/4859/visual-vs-editor-whats-the-difference

message Aborting commit due to empty commit message. without allowing you to edit the commit
message first. If this happens to you, consult your text editor's documentation to see if it has a --
wait flag (or similar) that will make it pause until the document is closed.

Configuring line endings

Description

When working with a team who uses different operating systems (OS) across the project,
sometimes you may run into trouble when dealing with line endings.

Microsoft Windows

When working on Microsoft Windows operating system (OS), the line endings are normally of form
- carriage return + line feed (CR+LF). Opening a file which has been edited using Unix machine
such as Linux or OSX may cause trouble, making it seem that text has no line endings at all. This
is due to the fact that Unix systems apply different line-endings of form line feeds (LF) only.

In order to fix this you can run following instruction

git config --global core.autocrlf=true

On checkout, This instruction will ensure line-endings are configured in accordance with Microsoft
Windows OS (LF -> CR+LF)

Unix Based (Linux/OSX)

Similarly, there might be issues when the user on Unix based OS tries to read files which have
been edited on Microsoft Windows OS. In order to prevent any unexpected issues run

git config --global core.autocrlf=input

On commit, this will change line-endings from CR+LF -> +LF

configuration for one command only

you can use -c <name>=<value> to add a configuration only for one command.

To commit as an other user without having to change your settings in .gitconfig :

git -c user.email = mail@example commit -m "some message"

Note: for that example you don't need to precise both user.name and user.email, git will complete
the missing information from the previous commits.

https://riptutorial.com/ 68

Setup a proxy

If you are behind a proxy, you have to tell git about it:

git config --global http.proxy http://my.proxy.com:portnumber

If you are no more behind a proxy:

git config --global --unset http.proxy

Auto correct typos

git config --global help.autocorrect 17

This enables autocorrect in git and will forgive you for your minor mistakes (e.g. git stats instead
of git status). The parameter you supply to help.autocorrect determines how long the system
should wait, in tenths of a second, before automatically applying the autocorrected command. In
the command above, 17 means that git should wait 1.7 seconds before applying the autocorrected
command.

However, bigger mistakes will be considered as missing commands, so typing something like git
testingit would result in testingit is not a git command.

List and edit the current configuration

Git config allows you to customize how git works. It is commonly used to set your name and email
or favorite editor or how merges should be done.

To see the current configuration.

$ git config --list
...
core.editor=vim
credential.helper=osxkeychain
...

To edit the config:

$ git config <key> <value>
$ git config core.ignorecase true

If you intend the change to be true for all your repositories, use --global

$ git config --global user.name "Your Name"
$ git config --global user.email "Your Email"
$ git config --global core.editor vi

You can list again to see your changes.

https://riptutorial.com/ 69

Multiple usernames and email address

Since Git 2.13, multiple usernames and email addresses could be configured by using a folder
filter.

Example for Windows:

.gitconfig

Edit: git config --global -e

Add:

[includeIf "gitdir:D:/work"]
 path = .gitconfig-work.config

[includeIf "gitdir:D:/opensource/"]
 path = .gitconfig-opensource.config

Notes

The order is depended, the last one who matches "wins".•
the / at the end is needed - e.g. "gitdir:D:/work" won't work.•
the gitdir: prefix is required.•

.gitconfig-work.config

File in the same directory as .gitconfig

[user]
 name = Money
 email = work@somewhere.com

.gitconfig-opensource.config

File in the same directory as .gitconfig

[user]
 name = Nice
 email = cool@opensource.stuff

Example for Linux

[includeIf "gitdir:~/work/"]
 path = .gitconfig-work
[includeIf "gitdir:~/opensource/"]
 path = .gitconfig-opensource

https://riptutorial.com/ 70

The file content and notes under section Windows.

Read Configuration online: https://riptutorial.com/git/topic/397/configuration

https://riptutorial.com/ 71

https://riptutorial.com/git/topic/397/configuration

Chapter 16: diff-tree

Introduction

Compares the content and mode of blobs found via two tree objects.

Examples

See the files changed in a specific commit

git diff-tree --no-commit-id --name-only -r COMMIT_ID

Usage

git diff-tree [--stdin] [-m] [-c] [--cc] [-s] [-v] [--pretty] [-t] [-r] [--root] [<common-
diff-options>] <tree-ish> [<tree-ish>] [<path>...]

Option Explanation

-r diff recursively

--root include the initial commit as diff against /dev/null

Common diff options

Option Explanation

-z output diff-raw with lines terminated with NUL.

-p output patch format.

-u synonym for -p.

--patch-with-raw output both a patch and the diff-raw format.

--stat show diffstat instead of patch.

--numstat show numeric diffstat instead of patch.

--patch-with-stat output a patch and prepend its diffstat.

--name-only show only names of changed files.

--name-status show names and status of changed files.

https://riptutorial.com/ 72

Option Explanation

--full-index show full object name on index lines.

--abbrev=<n> abbreviate object names in diff-tree header and diff-raw.

-R swap input file pairs.

-B detect complete rewrites.

-M detect renames.

-C detect copies.

--find-copies-harder try unchanged files as candidate for copy detection.

-l<n> limit rename attempts up to paths.

-O reorder diffs according to the .

-S find filepair whose only one side contains the string.

--pickaxe-all show all files diff when -S is used and hit is found.

-a --text treat all files as text.

Read diff-tree online: https://riptutorial.com/git/topic/10937/diff-tree

https://riptutorial.com/ 73

https://riptutorial.com/git/topic/10937/diff-tree

Chapter 17: Display commit history
graphically with Gitk

Examples

Display commit history for one file

gitk path/to/myfile

Display all commits between two commits

Let's say you have two commits d9e1db9 and 5651067 and want to see what happened between
them. d9e1db9 is the oldest ancestor and 5651067 is the final descendant in the chain of commits.

gitk --ancestry-path d9e1db9 5651067

Display commits since version tag

If you have the version tag v2.3 you can display all commits since that tag.

gitk v2.3..

Read Display commit history graphically with Gitk online:
https://riptutorial.com/git/topic/3637/display-commit-history-graphically-with-gitk

https://riptutorial.com/ 74

https://riptutorial.com/git/topic/3637/display-commit-history-graphically-with-gitk

Chapter 18: Empty directories in Git

Examples

Git doesn't track directories

Assume you've initialized a project with the following directory structure:

/build
app.js

Then you add everything so you've created so far and commit:

git init
git add .
git commit -m "Initial commit"

Git will only track the file app.js.

Assume you added a build step to your application and rely on the "build" directory to be there as
the output directory (and you don't want to make it a setup instruction every developer has to
follow), a convention is to include a ".gitkeep" file inside the directory and let Git track that file.

/build
 .gitkeep
app.js

Then add this new file:

git add build/.gitkeep
git commit -m "Keep the build directory around"

Git will now track the file build/.gitkeep file and therefore the build folder will be made available on
checkout.

Again, this is just a convention and not a Git feature.

Read Empty directories in Git online: https://riptutorial.com/git/topic/2680/empty-directories-in-git

https://riptutorial.com/ 75

https://riptutorial.com/git/topic/2680/empty-directories-in-git

Chapter 19: External merge and difftools

Examples

Setting up Beyond Compare

You can set the path to bcomp.exe

git config --global difftool.bc3.path 'c:\Program Files (x86)\Beyond Compare 3\bcomp.exe'

and configure bc3 as default

git config --global diff.tool bc3

Setting up KDiff3 as merge tool

The following should be added to your global .gitconfig file

[merge]
 tool = kdiff3
[mergetool "kdiff3"]
 path = D:/Program Files (x86)/KDiff3/kdiff3.exe
 keepBackup = false
 keepbackup = false
 trustExitCode = false

Remember to set the path property to point to the directory where you have installed KDiff3

Setting up KDiff3 as diff tool

[diff]
 tool = kdiff3
 guitool = kdiff3
[difftool "kdiff3"]
 path = D:/Program Files (x86)/KDiff3/kdiff3.exe
 cmd = \"D:/Program Files (x86)/KDiff3/kdiff3.exe\" \"$LOCAL\" \"$REMOTE\"

Setting up an IntelliJ IDE as merge tool (Windows)

[merge]
 tool = intellij
[mergetool "intellij"]
 cmd = cmd \"/C D:\\workspace\\tools\\symlink\\idea\\bin\\idea.bat merge $(cd $(dirname
"$LOCAL") && pwd)/$(basename "$LOCAL") $(cd $(dirname "$REMOTE") && pwd)/$(basename "$REMOTE")
$(cd $(dirname "$BASE") && pwd)/$(basename "$BASE") $(cd $(dirname "$MERGED") &&
pwd)/$(basename "$MERGED")\"
 keepBackup = false
 keepbackup = false
 trustExitCode = true

https://riptutorial.com/ 76

The one gotcha here is that this cmd property does not accept any weird characters in the path. If
your IDE's install location has weird characters in it (e.g. it's installed in Program Files (x86), you'll
have to create a symlink

Setting up an IntelliJ IDE as diff tool (Windows)

[diff]
 tool = intellij
 guitool = intellij
[difftool "intellij"]
 path = D:/Program Files (x86)/JetBrains/IntelliJ IDEA 2016.2/bin/idea.bat
 cmd = cmd \"/C D:\\workspace\\tools\\symlink\\idea\\bin\\idea.bat diff $(cd $(dirname
"$LOCAL") && pwd)/$(basename "$LOCAL") $(cd $(dirname "$REMOTE") && pwd)/$(basename
"$REMOTE")\"

The one gotcha here is that this cmd property does not accept any weird characters in the path. If
your IDE's install location has weird characters in it (e.g. it's installed in Program Files (x86), you'll
have to create a symlink

Read External merge and difftools online: https://riptutorial.com/git/topic/5972/external-merge-and-
difftools

https://riptutorial.com/ 77

https://riptutorial.com/git/topic/5972/external-merge-and-difftools
https://riptutorial.com/git/topic/5972/external-merge-and-difftools

Chapter 20: Git Branch Name on Bash
Ubuntu

Introduction

This documentation deals with the branch name of the git on the bash terminal. We developers
need to find the git branch name very frequently. We can add the branch name along with the path
to the current directory.

Examples

Branch Name in terminal

What is PS1

PS1 denotes Prompt String 1. It is the one of the prompt available in Linux/UNIX shell. When you
open your terminal, it will display the content defined in PS1 variable in your bash prompt. In order
to add branch name to bash prompt we have to edit the PS1 variable(set value of PS1 in
~/.bash_profile).

Display git branch name

Add following lines to your ~/.bash_profile

git_branch() {
 git branch 2> /dev/null | sed -e '/^[^*]/d' -e 's/* \(.*\)/ (\1)/'
}
export PS1="\u@\h \[\033[32m\]\w\[\033[33m\]\$(git_branch)\[\033[00m\] $ "

This git_branch function will find the branch name we are on. Once we are done with this changes
we can nevigate to the git repo on the terminal and will be able to see the branch name.

Read Git Branch Name on Bash Ubuntu online: https://riptutorial.com/git/topic/8320/git-branch-
name-on-bash-ubuntu

https://riptutorial.com/ 78

https://riptutorial.com/git/topic/8320/git-branch-name-on-bash-ubuntu
https://riptutorial.com/git/topic/8320/git-branch-name-on-bash-ubuntu

Chapter 21: Git Clean

Syntax

git clean [-d] [-f] [-i] [-n] [-q] [-e <pattern>] [-x | -X] [--] <path>•

Parameters

Parameter Details

-d
Remove untracked directories in addition to untracked files. If an untracked
directory is managed by a different Git repository, it is not removed by default.
Use -f option twice if you really want to remove such a directory.

-f, --force
If the Git configuration variable clean. requireForce is not set to false, git clean
will refuse to delete files or directories unless given -f, -n or -i. Git will refuse to
delete directories with .git sub directory or file unless a second -f is given.

-i, --
interactive

Interactively prompts the removal of each file.

-n, --dry-run Only displays a list of files to be removed, without actually removing them.

-q,--quiet Only display errors, not the list of successfully removed files.

Examples

Clean Ignored Files

git clean -fX

Will remove all ignored files from the current directory and all subdirectories.

git clean -Xn

Will preview all files that will be cleaned.

Clean All Untracked Directories

git clean -fd

Will remove all untracked directories and the files within them. It will start at the current working
directory and will iterate through all subdirectories.

https://riptutorial.com/ 79

http://www.riptutorial.com/git/topic/245/ignoring-files-and-folders

git clean -dn

Will preview all directories that will be cleaned.

Forcefully remove untracked files

git clean -f

Will remove all untracked files.

Clean Interactively

git clean -i

Will print out items to be removed and ask for a confirmation via commands like the follow:

Would remove the following items:
 folder/file1.py
 folder/file2.py
*** Commands ***
 1: clean 2: filter by pattern 3: select by numbers 4: ask each
 5: quit 6: help
What now>

Interactive option i can be added along with other options like X, d, etc.

Read Git Clean online: https://riptutorial.com/git/topic/1254/git-clean

https://riptutorial.com/ 80

https://riptutorial.com/git/topic/1254/git-clean

Chapter 22: Git Client-Side Hooks

Introduction

Like many other Version Control Systems, Git has a way to fire off custom scripts when certain
important actions occur. There are two groups of these hooks: client-side and server-side. Client-
side hooks are triggered by operations such as committing and merging, while server-side hooks
run on network operations such as receiving pushed commits. You can use these hooks for all
sorts of reasons.

Examples

Installing a Hook

The hooks are all stored in the hooks sub directory of the Git directory. In most projects, that’s
.git/hooks.

To enable a hook script, put a file in the hooks subdirectory of your .git directory that is named
appropriately (without any extension) and is executable.

Git pre-push hook

pre-push script is called by git push after it has checked the remote status, but before anything
has been pushed. If this script exits with a non-zero status nothing will be pushed.

This hook is called with the following parameters:

 $1 -- Name of the remote to which the push is being done (Ex: origin)
 $2 -- URL to which the push is being done (Ex:
https://<host>:<port>/<username>/<project_name>.git)

Information about the commits which are being pushed is supplied as lines to the standard input in
the form:

<local_ref> <local_sha1> <remote_ref> <remote_sha1>

Sample values:

local_ref = refs/heads/master
local_sha1 = 68a07ee4f6af8271dc40caae6cc23f283122ed11
remote_ref = refs/heads/master
remote_sha1 = efd4d512f34b11e3cf5c12433bbedd4b1532716f

Below example pre-push script was taken from default pre-push.sample which was automatically
created when a new repository is initialized with git init

https://riptutorial.com/ 81

This sample shows how to prevent push of commits where the log message starts
with "WIP" (work in progress).

remote="$1"
url="$2"

z40=00

while read local_ref local_sha remote_ref remote_sha
do
 if ["$local_sha" = $z40]
 then
 # Handle delete
 :
 else
 if ["$remote_sha" = $z40]
 then
 # New branch, examine all commits
 range="$local_sha"
 else
 # Update to existing branch, examine new commits
 range="$remote_sha..$local_sha"
 fi

 # Check for WIP commit
 commit=`git rev-list -n 1 --grep '^WIP' "$range"`
 if [-n "$commit"]
 then
 echo >&2 "Found WIP commit in $local_ref, not pushing"
 exit 1
 fi
 fi
done

exit 0

Read Git Client-Side Hooks online: https://riptutorial.com/git/topic/8654/git-client-side-hooks

https://riptutorial.com/ 82

https://riptutorial.com/git/topic/8654/git-client-side-hooks

Chapter 23: Git Diff

Syntax

git diff [options] [<commit>] [--] [<path>…]•
git diff [options] --cached [<commit>] [--] [<path>…]•
git diff [options] <commit> <commit> [--] [<path>…]•
git diff [options] <blob> <blob>•
git diff [options] [--no-index] [--] <path> <path>•

Parameters

Parameter Details

-p, -u, --
patch

Generate patch

-s, --no-
patch

Suppress diff output. Useful for commands like git show that show the patch by
default, or to cancel the effect of --patch

--raw Generate the diff in raw format

--diff-
algorithm=

Choose a diff algorithm. The variants are as follows: myers, minimal, patience,
histogram

--summary
Output a condensed summary of extended header information such as
creations, renames and mode changes

--name-
only

Show only names of changed files

--name-
status

Show names and statuses of changed files The most common statuses are M
(Modified), A (Added), and D (Deleted)

--check

Warn if changes introduce conflict markers or whitespace errors. What are
considered whitespace errors is controlled by core.whitespace configuration. By
default, trailing whitespaces (including lines that solely consist of whitespaces)
and a space character that is immediately followed by a tab character inside
the initial indent of the line are considered whitespace errors. Exits with non-
zero status if problems are found. Not compatible with --exit-code

--full-index
Instead of the first handful of characters, show the full pre- and post-image blob
object names on the "index" line when generating patch format output

--binary In addition to --full-index, output a binary diff that can be applied with git
apply

https://riptutorial.com/ 83

Parameter Details

-a, --text Treat all files as text.

--color
Set the color mode; i.e. use --color=always if you would like to pipe a diff to less
and keep git's coloring

Examples

Show differences in working branch

git diff

This will show the unstaged changes on the current branch from the commit before it. It will only
show changes relative to the index, meaning it shows what you could add to the next commit, but
haven't. To add (stage) these changes, you can use git add.

If a file is staged, but was modified after it was staged, git diff will show the differences between
the current file and the staged version.

Show differences for staged files

git diff --staged

This will show the changes between the previous commit and the currently staged files.

NOTE: You can also use the following commands to accomplish the same thing:

git diff --cached

Which is just a synonym for --staged or

git status -v

Which will trigger the verbose settings of the status command.

Show both staged and unstaged changes

To show all staged and unstaged changes, use:

git diff HEAD

NOTE: You can also use the following command:

git status -vv

https://riptutorial.com/ 84

http://www.riptutorial.com/git/topic/244/staging

The difference being that the output of the latter will actually tell you which changes are staged for
commit and which are not.

Show changes between two commits

git diff 1234abc..6789def # old new

E.g.: Show the changes made in the last 3 commits:

git diff @~3..@ # HEAD -3 HEAD

Note: the two dots (..) is optional, but adds clarity.

This will show the textual difference between the commits, regardless of where they are in the
tree.

Using meld to see all modifications in the working directory

git difftool -t meld --dir-diff

will show the working directory changes. Alternatively,

git difftool -t meld --dir-diff [COMMIT_A] [COMMIT_B]

will show the differences between 2 specific commits.

Show differences for a specific file or directory

git diff myfile.txt

Shows the changes between the previous commit of the specified file (myfile.txt) and the locally-
modified version that has not yet been staged.

This also works for directories:

git diff documentation

The above shows the changes between the previous commit of all files in the specified directory (
documentation/) and the locally-modified versions of these files, that have not yet been staged.

To show the difference between some version of a file in a given commit and the local HEAD version
you can specify the commit you want to compare against:

git diff 27fa75e myfile.txt

Or if you want to see the version between two separate commits:

https://riptutorial.com/ 85

git diff 27fa75e ada9b57 myfile.txt

To show the difference between the version specified by the hash ada9b57 and the latest commit
on the branch my_branchname for only the relative directory called my_changed_directory/ you can do
this:

git diff ada9b57 my_branchname my_changed_directory/

Viewing a word-diff for long lines

git diff [HEAD|--staged...] --word-diff

Rather than displaying lines changed, this will display differences within lines. For example, rather
than:

-Hello world
+Hello world!

Where the whole line is marked as changed, word-diff alters the output to:

Hello [-world-]{+world!+}

You can omit the markers [-, -], {+, +} by specifying --word-diff=color or --color-words. This will
only use color coding to mark the difference:

Viewing a three-way merge including the common ancestor

git config --global merge.conflictstyle diff3

Sets the diff3 style as default: instead of the usual format in conflicted sections, showing the two
files:

<<<<<<< HEAD
left
=======
right
>>>>>>> master

it will include an additional section containing the original text (coming form the common ancestor):

<<<<<<< HEAD
first
second
|||||||
first
=======

https://riptutorial.com/ 86

http://i.stack.imgur.com/1vsUP.png

last
>>>>>>> master

This format makes it easier to understand merge-conflict, ie. in this case locally second has been
added, while remote changed first to last, resolving to:

last
second

The same resolution would have been much harder using the default:

<<<<<<< HEAD
first
second
=======
last
>>>>>>> master

Show differences between current version and last version

git diff HEAD^ HEAD

This will show the changes between the previous commit and the current commit.

Diff UTF-16 encoded text and binary plist files

You can diff UTF-16 encoded files (localization strings file os iOS and macOS are examples) by
specifying how git should diff these files.

Add the following to your ~/.gitconfig file.

[diff "utf16"]
textconv = "iconv -f utf-16 -t utf-8"

iconv is a program to convert different encodings.

Then edit or create a .gitattributes file in the root of the repository where you want to use it. Or
just edit ~/.gitattributes.

*.strings diff=utf16

This will convert all files ending in .strings before git diffs.

You can do similar things for other files, that can be converted to text.

For binary plist files you edit .gitconfig

[diff "plist"]
textconv = plutil -convert xml1 -o -

https://riptutorial.com/ 87

http://linux.die.net/man/1/iconv

and .gitattributes

*.plist diff=plist

Comparing branches

Show the changes between the tip of new and the tip of original:

git diff original new # equivalent to original..new

Show all changes on new since it branched from original:

git diff original...new # equivalent to $(git merge-base original new)..new

Using only one parameter such as

git diff original

is equivalent to

git diff original..HEAD

Show changes between two branches

git diff branch1..branch2

Produce a patch-compatible diff

Sometimes you just need a diff to apply using patch. The regular git --diff does not work. Try
this instead:

git diff --no-prefix > some_file.patch

Then somewhere else you can reverse it:

patch -p0 < some_file.patch

difference between two commit or branch

To view difference between two branch

git diff <branch1>..<branch2>

To view difference between two branch

git diff <commitId1>..<commitId2>

https://riptutorial.com/ 88

To view diff with current branch

git diff <branch/commitId>

To view summary of changes

git diff --stat <branch/commitId>

To view files that changed after a certain commit

git diff --name-only <commitId>

To view files that are different than a branch

git diff --name-only <branchName>

To view files that changed in a folder after a certain commit

git diff --name-only <commitId> <folder_path>

Read Git Diff online: https://riptutorial.com/git/topic/273/git-diff

https://riptutorial.com/ 89

https://riptutorial.com/git/topic/273/git-diff

Chapter 24: Git GUI Clients

Examples

GitHub Desktop

Website: https://desktop.github.com
Price: free
Platforms: OS X and Windows
Developed by: GitHub

Git Kraken

Website:https://www.gitkraken.com
Price: $60/years (free for For open source, education, non‑profit, startups or personal use)
Platforms: Linux, OS X, Windows
Developed by: Axosoft

SourceTree

Website: https://www.sourcetreeapp.com
Price: free (account is necessary)
Platforms: OS X and Windows
Developer: Atlassian

gitk and git-gui

When you install Git, you also get its visual tools, gitk and git-gui.

gitk is a graphical history viewer. Think of it like a powerful GUI shell over git log and
git grep. This is the tool to use when you’re trying to find something that happened in
the past, or visualize your project’s history.

Gitk is easiest to invoke from the command-line. Just cd into a Git repository, and type:

$ gitk [git log options]

Gitk accepts many command-line options, most of which are passed through to the
underlying git log action. Probably one of the most useful is the --all flag, which tells
gitk to show commits reachable from any ref, not just HEAD. Gitk’s interface looks like
this:

https://riptutorial.com/ 90

https://desktop.github.com
https://github.com
https://www.gitkraken.com
https://www.axosoft.com/lp-gitkraken
https://www.sourcetreeapp.com
https://www.atlassian.com/

Figure 1-1. The gitk history viewer.

On the top is something that looks a bit like the output of git log --graph; each dot
represents a commit, the lines represent parent relationships, and refs are shown as
colored boxes. The yellow dot represents HEAD, and the red dot represents changes
that are yet to become a commit. At the bottom is a view of the selected commit; the
comments and patch on the left, and a summary view on the right. In between is a
collection of controls used for searching history.

You can access many git related functions via right-click on a branch name or a
commit message. For example checking out a different branch or cherry pick a commit
is easily done with one click.

git-gui, on the other hand, is primarily a tool for crafting commits. It, too, is easiest to
invoke from the command line:

$ git gui

And it looks something like this:

The git-gui commit tool.

https://riptutorial.com/ 91

http://i.stack.imgur.com/Q6oU3.png

Figure 1-2. The git-gui commit tool.

On the left is the index; unstaged changes are on top, staged changes on the bottom.
You can move entire files between the two states by clicking on their icons, or you can
select a file for viewing by clicking on its name.

At top right is the diff view, which shows the changes for the currently-selected file. You
can stage individual hunks (or individual lines) by right-clicking in this area.

At the bottom right is the message and action area. Type your message into the text
box and click “Commit” to do something similar to git commit. You can also choose to
amend the last commit by choosing the “Amend” radio button, which will update the
“Staged Changes” area with the contents of the last commit. Then you can simply
stage or unstage some changes, alter the commit message, and click “Commit” again
to replace the old commit with a new one.

gitk and git-gui are examples of task-oriented tools. Each of them is tailored for a
specific purpose (viewing history and creating commits, respectively), and omit the
features not necessary for that task.

Source: https://git-scm.com/book/en/v2/Git-in-Other-Environments-Graphical-Interfaces

SmartGit

Website: http://www.syntevo.com/smartgit/

https://riptutorial.com/ 92

http://i.stack.imgur.com/P0SPX.png
https://git-scm.com/book/en/v2/Git-in-Other-Environments-Graphical-Interfaces
http://www.syntevo.com/smartgit/

Price: Free for non-commercial use only. A perpetual license costs 99 USD
Platforms: Linux, OS X, Windows
Developed by: syntevo

Git Extensions

Website: https://gitextensions.github.io
Price: free
Platform: Windows

Read Git GUI Clients online: https://riptutorial.com/git/topic/5148/git-gui-clients

https://riptutorial.com/ 93

http://www.syntevo.com/
https://gitextensions.github.io
https://riptutorial.com/git/topic/5148/git-gui-clients

Chapter 25: Git Large File Storage (LFS)

Remarks

Git Large File Storage (LFS) aims to avoid a limitation of the Git version control system, that it
performs poorly when versioning large files, especially binaries. LFS solves this problem by storing
the contents of such files on an external server, then instead committing just a text pointer to the
path of those assets in the git object database.

Common file types that are stored via LFS tend to be compiled source; graphical assets, like
PSDs and JPEGs; or 3D assets. This way resources used by projects can be managed in the
same repository, rather than having to maintain a separate management system externally.

LFS was originally developed by GitHub (https://github.com/blog/1986-announcing-git-large-file-
storage-lfs); however, Atlasssian had been working on a similar project at nearly the exact same
time, called git-lob. Soon these efforts were merged to avoid fragmentation in the industry.

Examples

Install LFS

Download and install, either via Homebrew, or from website.

For Brew,
brew install git-lfs
git lfs install

Often you will also need to do some setup on the service that hosts your remote to allow it to work
with lfs. This will be different for each host, but will likely just be checking a box saying you want to
use git lfs.

Declare certain file types to store externally

A common workflow for using Git LFS is to declare which files are intercepted through a rules-
based system, just like .gitignore files.

Much of time, wildcards are used to pick certain file-types to blanket track.

e.g. git lfs track "*.psd"

When a file matching the above pattern is added them committed, when it is then pushed to the
remote, it will be uploaded separately, with a pointer replacing the file in the remote repository.

After a file has been tracked with lfs, your .gitattributes file will be updated accordingly. Github
recommends committing your local .gitattributes file, rather than working with a global
.gitattributes file, to help ensure you don't have any issues when working with different projects.

https://riptutorial.com/ 94

https://git-lfs.github.com
https://github.com/blog/1986-announcing-git-large-file-storage-lfs)
https://github.com/blog/1986-announcing-git-large-file-storage-lfs)
https://github.com/atlassian/git-lob
https://git-lfs.github.com

Set LFS config for all clones

To set LFS options that apply to all clones, create and commit a file named .lfsconfig at the
repository root. This file can specify LFS options the same way as allowed in .git/config.

For example, to exclude a certain file from LFS fetches be default, create and commit .lfsconfig
with the following contents:

[lfs]
 fetchexclude = ReallyBigFile.wav

Read Git Large File Storage (LFS) online: https://riptutorial.com/git/topic/4136/git-large-file-
storage--lfs-

https://riptutorial.com/ 95

https://riptutorial.com/git/topic/4136/git-large-file-storage--lfs-
https://riptutorial.com/git/topic/4136/git-large-file-storage--lfs-

Chapter 26: Git Patch

Syntax

git am [--signoff] [--keep] [--[no-]keep-cr] [--[no-]utf8] [--3way] [--interactive] [--committer-date-
is-author-date] [--ignore-date] [--ignore-space-change | --ignore-whitespace] [--
whitespace=<option>] [-C<n>] [-p<n>] [--directory=<dir>] [--exclude=<path>] [--
include=<path>] [--reject] [-q | --quiet] [--[no-]scissors] [-S[<keyid>]] [--patch-
format=<format>] [(<mbox> | <Maildir>)...]

•

git am (--continue | --skip | --abort)•

Parameters

Parameter Details

(<mbox>|<Maildir>)...

The list of mailbox files to read patches from. If you
do not supply this argument, the command reads
from the standard input. If you supply directories,
they will be treated as Maildirs.

-s, --signoff
Add a Signed-off-by: line to the commit message,
using the committer identity of yourself.

-q, --quiet Be quiet. Only print error messages.

-u, --utf8

Pass -u flag to git mailinfo. The proposed commit
log message taken from the e-mail is re-coded into
UTF-8 encoding (configuration variable
i18n.commitencoding can be used to specify project’s
preferred encoding if it is not UTF-8). You can use
--no-utf8 to override this.

--no-utf8 Pass -n flag to git mailinfo.

-3, --3way

When the patch does not apply cleanly, fall back on
3-way merge if the patch records the identity of
blobs it is supposed to apply to and we have those
blobs available locally.

--ignore-date, --ignore-space-change, -
-ignore-whitespace, --
whitespace=<option>, -C<n>, -p<n>, --
directory=<dir>, --exclude=<path>, --
include=<path>, --reject

These flags are passed to the git apply program
that applies the patch.

By default the command will try to detect the patch --patch-format

https://riptutorial.com/ 96

Parameter Details

format automatically. This option allows the user to
bypass the automatic detection and specify the
patch format that the patch(es) should be
interpreted as. Valid formats are mbox, stgit, stgit-
series, and hg.

-i, --interactive Run interactively.

--committer-date-is-author-date

By default the command records the date from the
e-mail message as the commit author date, and
uses the time of commit creation as the committer
date. This allows the user to lie about the committer
date by using the same value as the author date.

--ignore-date

By default the command records the date from the
e-mail message as the commit author date, and
uses the time of commit creation as the committer
date. This allows the user to lie about the author
date by using the same value as the committer
date.

--skip
Skip the current patch. This is only meaningful
when restarting an aborted patch.

-S[<keyid>], --gpg-sign[=<keyid>] GPG-sign commits.

--continue, -r, --resolved

After a patch failure (e.g. attempting to apply
conflicting patch), the user has applied it by hand
and the index file stores the result of the
application. Make a commit using the authorship
and commit log extracted from the e-mail message
and the current index file, and continue.

--resolvemsg=<msg>

When a patch failure occurs, <msg> will be printed to
the screen before exiting. This overrides the
standard message informing you to use --continue
or --skip to handle the failure. This is solely for
internal use between git rebase and git am.

--abort
Restore the original branch and abort the patching
operation.

Examples

Creating a patch

https://riptutorial.com/ 97

To create a patch, there are two steps.

Make your changes and commit them.1.
Run git format-patch <commit-reference> to convert all commits since the commit <commit-
reference> (not including it) into patch files.

2.

For example, if patches should be generated from the latest two commits:

git format-patch HEAD~~

This will create 2 files, one for each commit since HEAD~~, like this:

0001-hello_world.patch
0002-beginning.patch

Applying patches

We can use git apply some.patch to have the changes from the .patch file applied to your current
working directory. They will be unstaged and need to be committed.

To apply a patch as a commit (with its commit message), use

git am some.patch

To apply all patch files to the tree:

git am *.patch

Read Git Patch online: https://riptutorial.com/git/topic/4603/git-patch

https://riptutorial.com/ 98

https://riptutorial.com/git/topic/4603/git-patch

Chapter 27: Git Remote

Syntax

git remote [-v | --verbose]•
git remote add [-t <branch>] [-m <master>] [-f] [--[no-]tags] [--mirror=<fetch|push>]<name>
<url>

•

git remote rename <old> <new>•
git remote remove <name>•
git remote set-head <name> (-a | --auto | -d | --delete | <branch>)•
git remote set-branches [--add] <name> <branch>...•
git remote set-url [--push] <name> <newurl> [<oldurl>]•
git remote set-url --add [--push] <name> <newurl>•
git remote set-url --delete [--push] <name> <url>•
git remote [-v | --verbose] show [-n] <name>...•
git remote prune [-n | --dry-run] <name>...•
git remote [-v | --verbose] update [-p | --prune] [(<group> | <remote>)...]•
git remote show <name>•

Parameters

Parameter Details

-v, --verbose Run verbosely.

-m <master> Sets head to remote's <master> branch

--
mirror=fetch

Refs will not be stored in refs/remotes namespace, but instead will be
mirrored in the local repo

--
mirror=push

git push will behave as if --mirror was passed

--no-tags git fetch <name> does not import tags from the remote repo

-t <branch> Specifies the remote to track only <branch>

-f git fetch <name> is run immediately after remote is set up

--tags git fetch <name> imports every tag from the remote repo

-a, --auto The symbolic-ref's HEAD is set to the same branch as the remote's HEAD

-d, --delete All listed refs are deleted from the remote repository

--add Adds <name> to list of currently tracked branches (set-branches)

--add Instead of changing some URL, new URL is added (set-url)

https://riptutorial.com/ 99

Parameter Details

--all Push all branches.

--delete All urls matching <url> are deleted. (set-url)

--push Push URLS are manipulated instead of fetch URLS

-n
The remote heads are not queried first with git ls-remote <name>, cached
information is used instead

--dry-run report what branches will be pruned, but do not actually prune them

--prune Remove remote branches that don't have a local counterpart

Examples

Add a Remote Repository

To add a remote, use git remote add in the root of your local repository.

For adding a remote Git repository <url> as an easy short name <name> use

git remote add <name> <url>

The command git fetch <name> can then be used to create and update remote-tracking branches
<name>/<branch>.

Rename a Remote Repository

Rename the remote named <old> to <new>. All remote-tracking branches and configuration settings
for the remote are updated.

To rename a remote branch name dev to dev1 :

git remote rename dev dev1

Remove a Remote Repository

Remove the remote named <name>. All remote-tracking branches and configuration settings for the
remote are removed.

To remove a remote repository dev:

git remote rm dev

Display Remote Repositories

https://riptutorial.com/ 100

To list all configured remote repositories, use git remote.

It shows the short name (aliases) of each remote handle that you have configured.

$ git remote
premium
premiumPro
origin

To show more detailed information, the --verbose or -v flag can be used. The output will include
the URL and the type of the remote (push or pull):

$ git remote -v
premiumPro https://github.com/user/CatClickerPro.git (fetch)
premiumPro https://github.com/user/CatClickerPro.git (push)
premium https://github.com/user/CatClicker.git (fetch)
premium https://github.com/user/CatClicker.git (push)
origin https://github.com/ud/starter.git (fetch)
origin https://github.com/ud/starter.git (push)

Change remote url of your Git repository

You may want to do this if the remote repository is migrated. The command for changing the
remote url is:

git remote set-url

It takes 2 arguments: an existing remote name (origin, upstream) and the url.

Check your current remote url:

git remote -v
origin https://bitbucket.com/develop/myrepo.git (fetch)
origin https://bitbucket.com/develop/myrepo.git (push)

Change your remote url:

git remote set-url origin https://localserver/develop/myrepo.git

Check again your remote url:

git remote -v
origin https://localserver/develop/myrepo.git (fetch)
origin https://localserver/develop/myrepo.git (push)

Show more information about remote repository

You can view more information about a remote repository by git remote show <remote repository
alias>

https://riptutorial.com/ 101

git remote show origin

result:

remote origin
Fetch URL: https://localserver/develop/myrepo.git
Push URL: https://localserver/develop/myrepo.git
HEAD branch: master
Remote branches:
 master tracked
Local branches configured for 'git pull':
 master merges with remote master
Local refs configured for 'git push':
 master pushes to master (up to date)

Read Git Remote online: https://riptutorial.com/git/topic/4071/git-remote

https://riptutorial.com/ 102

https://riptutorial.com/git/topic/4071/git-remote

Chapter 28: Git rerere

Introduction

rerere (reuse recorded resolution) allows you to tell git to remember how you resolved a hunk
conflict. This allows it to be automatically resolved the next time that git encounters the same
conflict.

Examples

Enabling rerere

To enable rerere run the following command:

$ git config --global rerere.enabled true

This can be done in a specific repository as well as globally.

Read Git rerere online: https://riptutorial.com/git/topic/9156/git-rerere

https://riptutorial.com/ 103

https://riptutorial.com/git/topic/9156/git-rerere

Chapter 29: Git revisions syntax

Remarks

Many Git commands take revision parameters as arguments. Depending on the command, they
denote a specific commit or, for commands which walk the revision graph (such as git-log(1)), all
commits which can be reached from that commit. They are usually denoted as <commit>, or <rev>,
or <revision> in the syntax description.

The reference documentation for Git revisions syntax is the gitrevisions(7) manpage.

Still missing from this page:

[_] Output from git describe, e.g. v1.7.4.2-679-g3bee7fb•
[_] @ alone as a shortcut for HEAD•
[_] @{-<n>}, e.g. @{-1}, and - meaning @{-1}•
[_] <branchname>@{push}•
[_] <rev>^@, for all parents of <rev>•

Needs separate documentation:

[_] Referring to blobs and trees in the repository and in the index: <rev>:<path> and
:<n>:<path> syntax

•

[_] Revision ranges like A..B, A...B, B ^A, A^1, and revision limiting like -<n>, --since•

Examples

Specifying revision by object name

$ git show dae86e1950b1277e545cee180551750029cfe735
$ git show dae86e19

You can specify revision (or in truth any object: tag, tree i.e. directory contents, blob i.e. file
contents) using SHA-1 object name, either full 40-byte hexadecimal string, or a substring that is
unique to the repository.

Symbolic ref names: branches, tags, remote-tracking branches

$ git log master # specify branch
$ git show v1.0 # specify tag
$ git show HEAD # specify current branch
$ git show origin # specify default remote-tracking branch for remote 'origin'

You can specify revision using a symbolic ref name, which includes branches (for example
'master', 'next', 'maint'), tags (for example 'v1.0', 'v0.6.3-rc2'), remote-tracking branches (for
example 'origin', 'origin/master'), and special refs such as 'HEAD' for current branch.

https://riptutorial.com/ 104

https://www.kernel.org/pub/software/scm/git/docs/git-log.html
https://www.kernel.org/pub/software/scm/git/docs/gitrevisions.html

If the symbolic ref name is ambiguous, for example if you have both branch and tag named 'fix'
(having branch and tag with the same name is not recommended), you need to specify the kind of
ref you want to use:

$ git show heads/fix # or 'refs/heads/fix', to specify branch
$ git show tags/fix # or 'refs/tags/fix', to specify tag

The default revision: HEAD

$ git show # equivalent to 'git show HEAD'

'HEAD' names the commit on which you based the changes in the working tree, and is usually the
symbolic name for the current branch. Many (but not all) commands that take revision parameter
defaults to 'HEAD' if it is missing.

Reflog references: @{}

$ git show @{1} # uses reflog for current branch
$ git show master@{1} # uses reflog for branch 'master'
$ git show HEAD@{1} # uses 'HEAD' reflog

A ref, usually a branch or HEAD, followed by the suffix @ with an ordinal specification enclosed in a
brace pair (e.g. {1}, {15}) specifies the n-th prior value of that ref in your local repository. You can
check recent reflog entries with git reflog command, or --walk-reflogs / -g option to git log.

$ git reflog
08bb350 HEAD@{0}: reset: moving to HEAD^
4ebf58d HEAD@{1}: commit: gitweb(1): Document query parameters
08bb350 HEAD@{2}: pull: Fast-forward
f34be46 HEAD@{3}: checkout: moving from af40944bda352190f05d22b7cb8fe88beb17f3a7 to master
af40944 HEAD@{4}: checkout: moving from master to v2.6.3

$ git reflog gitweb-docs
4ebf58d gitweb-docs@{0}: branch: Created from master

Note: using reflogs practically replaced older mechanism of utilizing ORIG_HEAD ref (roughly
equivalent to HEAD@{1}).

Reflog references: @{}

$ git show master@{yesterday}
$ git show HEAD@{5 minutes ago} # or HEAD@{5.minutes.ago}

A ref followed by the suffix @ with a date specification enclosed in a brace pair (e.g. {yesterday}, {1
month 2 weeks 3 days 1 hour 1 second ago} or {1979-02-26 18:30:00}) specifies the value of the ref at
a prior point in time (or closest point to it). Note that this looks up the state of your local ref at a
given time; e.g., what was in your local 'master' branch last week.

You can use git reflog with a date specifier to look up exact time where you did something to

https://riptutorial.com/ 105

https://www.kernel.org/pub/software/scm/git/docs/git-reflog.html
https://www.kernel.org/pub/software/scm/git/docs/git-reflog.html

given ref in the local repository.

$ git reflog HEAD@{now}
08bb350 HEAD@{Sat Jul 23 19:48:13 2016 +0200}: reset: moving to HEAD^
4ebf58d HEAD@{Sat Jul 23 19:39:20 2016 +0200}: commit: gitweb(1): Document query parameters
08bb350 HEAD@{Sat Jul 23 19:26:43 2016 +0200}: pull: Fast-forward

Tracked / upstream branch: @{upstream}

$ git log @{upstream}.. # what was done locally and not yet published, current branch
$ git show master@{upstream} # show upstream of branch 'master'

The suffix @{upstream} appended to a branchname (short form <branchname>@{u}) refers to the
branch that the branch specified by branchname is set to build on top of (configured with
branch.<name>.remote and branch.<name>.merge, or with git branch --set-upstream-to=<branch>). A
missing branchname defaults to the current one.

Together with syntax for revision ranges it is very useful to see the commits your branch is ahead
of upstream (commits in your local repository not yet present upstream), and what commits you
are behind (commits in upstream not merged into local branch), or both:

$ git log --oneline @{u}..
$ git log --oneline ..@{u}
$ git log --oneline --left-right @{u}... # same as ...@{u}

Commit ancestry chain: ^, ~, etc.

$ git reset --hard HEAD^ # discard last commit
$ git rebase --interactive HEAD~5 # rebase last 4 commits

A suffix ^ to a revision parameter means the first parent of that commit object. ^<n> means the
<n>-th parent (i.e. <rev>^ is equivalent to <rev>^1).

A suffix ~<n> to a revision parameter means the commit object that is the <n>-th generation
ancestor of the named commit object, following only the first parents. This means that for example
<rev>~3 is equivalent to <rev>^^^. As a shortcut, <rev>~ means <rev>~1, and is equivalent to <rev>^1,
or <rev>^ in short.

This syntax is composable.

To find such symbolic names you can use the git name-rev command:

$ git name-rev 33db5f4d9027a10e477ccf054b2c1ab94f74c85a
33db5f4d9027a10e477ccf054b2c1ab94f74c85a tags/v0.99~940

Note that --pretty=oneline and not --oneline must be used in the following example

https://riptutorial.com/ 106

https://www.kernel.org/pub/software/scm/git/docs/git-name-rev.html

$ git log --pretty=oneline | git name-rev --stdin --name-only
master Sixth batch of topics for 2.10
master~1 Merge branch 'ls/p4-tmp-refs'
master~2 Merge branch 'js/am-call-theirs-theirs-in-fallback-3way'
[...]
master~14^2 sideband.c: small optimization of strbuf usage
master~16^2 connect: read $GIT_SSH_COMMAND from config file
[...]
master~22^2~1 t7810-grep.sh: fix a whitespace inconsistency
master~22^2~2 t7810-grep.sh: fix duplicated test name

Dereferencing branches and tags: ^0, ^{}

In some cases the behavior of a command depends on whether it is given branch name, tag
name, or an arbitrary revision. You can use "de-referencing" syntax if you need the latter.

A suffix ^ followed by an object type name (tag, commit, tree, blob) enclosed in brace pair (for
example v0.99.8^{commit}) means dereference the object at <rev> recursively until an object of type
<type> is found or the object cannot be dereferenced anymore. <rev>^0 is a short-hand for
<rev>^{commit}.

$ git checkout HEAD^0 # equivalent to 'git checkout --detach' in modern Git

A suffix ^ followed by an empty brace pair (for example v0.99.8^{}) means to dereference the tag
recursively until a non-tag object is found.

Compare

$ git show v1.0
$ git cat-file -p v1.0
$ git replace --edit v1.0

with

$ git show v1.0^{}
$ git cat-file -p v1.0^{}
$ git replace --edit v1.0^{}

Youngest matching commit: ^{/}, :/

$ git show HEAD^{/fix nasty bug} # find starting from HEAD
$ git show ':/fix nasty bug' # find starting from any branch

A colon (':'), followed by a slash ('/'), followed by a text, names a commit whose commit message
matches the specified regular expression. This name returns the youngest matching commit which
is reachable from any ref. The regular expression can match any part of the commit message. To
match messages starting with a string, one can use e.g. :/^foo. The special sequence :/! is
reserved for modifiers to what is matched. :/!-foo performs a negative match, while :/!!foo
matches a literal ! character, followed by foo.

https://riptutorial.com/ 107

A suffix ^ to a revision parameter, followed by a brace pair that contains a text led by a slash, is
the same as the :/<text> syntax below that it returns the youngest matching commit which is
reachable from the <rev> before ^.

Read Git revisions syntax online: https://riptutorial.com/git/topic/3735/git-revisions-syntax

https://riptutorial.com/ 108

https://riptutorial.com/git/topic/3735/git-revisions-syntax

Chapter 30: git send-email

Syntax

git send-email [options] <file|directory|rev-list options>…•
git send-email --dump-aliases•

Remarks

https://git-scm.com/docs/git-send-email

Examples

Use git send-email with Gmail

Background: if you work on a project like the Linux kernel, rather than make a pull request you will
need to submit your commits to a listserv for review. This entry details how to use git-send email
with Gmail.

Add the following to your .gitconfig file:

[sendemail]
 smtpserver = smtp.googlemail.com
 smtpencryption = tls
 smtpserverport = 587
 smtpuser = name@gmail.com

Then on the web: Go to Google -> My Account -> Connected Apps & Sites -> Allow less secure
apps -> Switch ON

To create a patch set:

git format-patch HEAD~~~~ --subject-prefix="PATCH <project-name>"

Then send the patches to a listserv:

git send-email --annotate --to project-developers-list@listserve.example.com 00*.patch

To create and send updated version (version 2 in this example) of the patch:

git format-patch -v 2 HEAD~~~~
git send-email --to project-developers-list@listserve.example.com v2-00*.patch

Composing

https://riptutorial.com/ 109

https://git-scm.com/docs/git-send-email

--from * Email From: --[no-]to * Email To: --[no-]cc * Email Cc: --[no-]bcc * Email Bcc: --subject *
Email "Subject:" --in-reply-to * Email "In-Reply-To:" --[no-]xmailer * Add "X-Mailer:" header
(default). --[no-]annotate * Review each patch that will be sent in an editor. --compose * Open an
editor for introduction. --compose-encoding * Encoding to assume for introduction. --8bit-encoding
* Encoding to assume 8bit mails if undeclared --transfer-encoding * Transfer encoding to use
(quoted-printable, 8bit, base64)

Sending patches by mail

Suppose you’ve got a lot of commit against a project (here ulogd2, official branch is git-svn) and
that you wan to send your patchset to the Mailling list devel@netfilter.org. To do so, just open a
shell at the root of the git directory and use:

git format-patch --stat -p --raw --signoff --subject-prefix="ULOGD PATCH" -o /tmp/ulogd2/ -n
git-svn
git send-email --compose --no-chain-reply-to --to devel@netfilter.org /tmp/ulogd2/

First command will create a serie of mail from patches in /tmp/ulogd2/ with statistic report and
second will start your editor to compose an introduction mail to the patchset. To avoid awful
threaded mail series, one can use :

git config sendemail.chainreplyto false

source

Read git send-email online: https://riptutorial.com/git/topic/4821/git-send-email

https://riptutorial.com/ 110

https://home.regit.org/technical-articles/git-for-the-newbie/
https://riptutorial.com/git/topic/4821/git-send-email

Chapter 31: Git statistics

Syntax

git log [<options>] [<revision range>] [[--] <path>]•
git log --pretty=short | git shortlog [<options>]•
git shortlog [<options>] [<revision range>] [[--] <path>]•

Parameters

Parameter Details

-n, --numbered
Sort output according to the number of commits per
author instead of alphabetic order

-s, --summary Only provide a commit count summary

-e, --email Show the email address of each author

--format[=<format>]
Instead of the commit subject, use some other
information to describe each commit. <format> can be
any string accepted by the --format option of git log.

-w

[<width>[,<indent1>[,<indent2>]]]

Linewrap the output by wrapping each line at width. The
first line of each entry is indented by indent1 number of
spaces, and subsequent lines are indented by indent2
spaces.

<revision range>
Show only commits in the specified revision range.
Default to the whole history until the current commit.

[--] <path>
Show only commits that explain how the files matching
path came to be. Paths may need to be prefixed with "-- "
to separate them from options or the revision range.

Examples

Commits per developer

Git shortlog is used to summarize the git log outputs and group the commits by author.

By default, all commit messages are shown but argument --summary or -s skips the messages and
gives a list of authors with their total number of commits.

--numbered or -n changes the ordering from alphabetical (by author ascending) to number of

https://riptutorial.com/ 111

commits descending.

git shortlog -sn #Names and Number of commits

git shortlog -sne #Names along with their email ids and the Number of commits

or

git log --pretty=format:%ae \
| gawk -- '{ ++c[$0]; } END { for(cc in c) printf "%5d %s\n",c[cc],cc; }'

Note: Commits by the same person may not be grouped together where their name and/or email
address has been spelled differently. For example John Doe and Johnny Doe will appear separately
in the list. To resolve this, refer to the .mailmap feature.

Commits per date

git log --pretty=format:"%ai" | awk '{print " : "$1}' | sort -r | uniq -c

Total number of commits in a branch

git log --pretty=oneline |wc -l

Listing each branch and its last revision's date

for k in `git branch -a | sed s/^..//`; do echo -e `git log -1 --pretty=format:"%Cgreen%ci
%Cblue%cr%Creset" $k --`\\t"$k";done | sort

Lines of code per developer

git ls-tree -r HEAD | sed -Ee 's/^.{53}//' | \
while read filename; do file "$filename"; done | \
grep -E ': .*text' | sed -E -e 's/: .*//' | \
while read filename; do git blame --line-porcelain "$filename"; done | \
sed -n 's/^author //p' | \
sort | uniq -c | sort -rn

List all commits in pretty format

git log --pretty=format:"%Cgreen%ci %Cblue%cn %Cgreen%cr%Creset %s"

This will give a nice overview of all commits (1 per line) with date, user and commit message.

The --pretty option has many placeholders, each starting with %. All options can be found here

Find All Local Git Repositories on Computer

https://riptutorial.com/ 112

https://git-scm.com/docs/pretty-formats

To list all the git repository locations on your you can run the following

find $HOME -type d -name ".git"

Assuming you have locate, this should be much faster:

locate .git |grep git$

If you have gnu locate or mlocate, this will select only the git dirs:

locate -ber \\.git$

Show the total number of commits per author

In order to get the total number of commits that each developer or contributor has made on a
repository, you can simply use the git shortlog:

git shortlog -s

which provides the author names and number of commits by each one.

Additionally, if you want to have the results calculated on all branches, add --all flag to the
command:

git shortlog -s --all

Read Git statistics online: https://riptutorial.com/git/topic/4609/git-statistics

https://riptutorial.com/ 113

https://riptutorial.com/git/topic/4609/git-statistics

Chapter 32: Git Tagging

Introduction

Like most Version Control Systems (VCSs), Git has the ability to tag specific points in history as
being important. Typically people use this functionality to mark release points (v1.0, and so on).

Syntax

git tag [-a | -s | -u < keyid >] [-f] [-m < msg > | -F < file >] < tagname > [< commit > | < object
>]

•

git tag -d < tagname >•

git tag [-n[< num >]] -l [--contains < commit >] [--contains < commit >] [--points-at < object >]
[--column[=< options >] | --no-column] [--create-reflog] [--sort=< key >] [--format=< format >]
[--[no-]merged [< commit >]] [< pattern >…]

•

git tag -v [--format=< format >] < tagname >…•

Examples

Listing all available tags

Using the command git tag lists out all available tags:

$ git tag
<output follows>
v0.1
v1.3

Note: the tags are output in an alphabetical order.

One may also search for available tags:

$ git tag -l "v1.8.5*"
<output follows>
v1.8.5
v1.8.5-rc0
v1.8.5-rc1
v1.8.5-rc2
v1.8.5-rc3
v1.8.5.1
v1.8.5.2
v1.8.5.3
v1.8.5.4
v1.8.5.5

https://riptutorial.com/ 114

Create and push tag(s) in GIT

Create a tag:

To create a tag on your current branch:

git tag < tagname >

This will create a local tag with the current state of the branch you are on.

•

To create a tag with some commit:

git tag tag-name commit-identifier

This will create a local tag with the commit-identifier of the branch you are on.

•

Push a commit in GIT:

Push an individual tag:

git push origin tag-name

•

Push all the tags at once

git push origin --tags

•

Read Git Tagging online: https://riptutorial.com/git/topic/10098/git-tagging

https://riptutorial.com/ 115

https://riptutorial.com/git/topic/10098/git-tagging

Chapter 33: git-svn

Remarks

Cloning really big SVN repositories

If you SVN repo history is really really big this operation could take hours, as git-svn needs to
rebuild the complete history of the SVN repo. Fortunately you only need to clone the SVN repo
once; as with any other git repository you can just copy the repo folder to other collaborators.
Copying the folder to multiple computers will be quicker that just cloning big SVN repos from
scratch.

About commits and SHA1

Your local git commits will be rewritten when using the command git svn dcommit. This command
will add a text to the git commit's message referencing the SVN revision created in the SVN
server, which is very useful. However, adding a new text requires modifying an existing commit's
message which can't actually be done: git commits are inmutable. The solution is create a new
commit with the same contents and the new message, but it is technically a new commit anyway
(i.e. the git commit's SHA1 will change)

As git commits created for git-svn are local, the SHA1 ids for git commits are different between
each git repository! This means that you can't use a SHA1 to reference a commit from another
person because the same commit will have a diferent SHA1 in each local git repository. You need
to rely in svn revision number appended to the commit message when you push to the SVN server
if you want to reference a commit between different copies of the repository.

You can use the SHA1 for local operations though (show/diff an specific commit, cherry-picks and
resets, etc)

Troubleshooting

git svn rebase command issues a checksum mismatch error

The command git svn rebase throws an error similar to this:

 Checksum mismatch: <path_to_file> <some_kind_of_sha1>
 expected: <checksum_number_1>
 got: <checksum_number_2>

The solution to this problem is reset svn to the revision when the troubled file got modified for the
last time, and do a git svn fetch so the SVN history is restored. The commands to perform the SVN
reset are:

git log -1 -- <path_to_file> (copy the SVN revision number that appear in the commit
message)

•

https://riptutorial.com/ 116

git svn reset <revision_number>•
git svn fetch•

You should be able to push/pull data from SVN again

File was not found in commit When you try to fetch or pull from SVN you get an error similar to
this

<file_path> was not found in commit <hash>

This means that a revision in SVN is trying to modify a file that for some reason doesn't exists in
your local copy. The best way to get rid of this error is force a fetch ignoring the path of that file
and it will updated to its status in the latest SVN revision:

git svn fetch --ignore-paths <file_path>•

Examples

Cloning the SVN repository

You need to create a new local copy of the repository with the command

git svn clone SVN_REPO_ROOT_URL [DEST_FOLDER_PATH] -T TRUNK_REPO_PATH -t TAGS_REPO_PATH -b
BRANCHES_REPO_PATH

If your SVN repository follows the standard layout (trunk, branches, tags folders) you can save
some typing:

git svn clone -s SVN_REPO_ROOT_URL [DEST_FOLDER_PATH]

git svn clone checks out each SVN revision, one by one, and makes a git commit in your local
repository in order to recreate the history. If the SVN repository has a lot of commits this will take a
while.

When the command is finished you will have a full fledged git repository with a local branch called
master that tracks the trunk branch in the SVN repository.

Getting the latest changes from SVN

The equivalent to git pull is the command

git svn rebase

This retrieves all the changes from the SVN repository and applies them on top of your local
commits in your current branch.

You can also use the command

git svn fetch

https://riptutorial.com/ 117

to retrieve the changes from the SVN repository and bring them to your local machine but without
applying them to your local branch.

Pushing local changes to SVN

The command

git svn dcommit

will create a SVN revision for each of your local git commits. As with SVN, your local git history
must be in sync with the latest changes in the SVN repository, so if the command fails, try
performing a git svn rebase first.

Working locally

Just use your local git repository as a normal git repo, with the normal git commands:

git add FILE and git checkout -- FILE To stage/unstage a file•
git commit To save your changes. Those commits will be local and will not be "pushed" to the
SVN repo, just like in a normal git repository

•

git stash and git stash pop Allows using stashes•
git reset HEAD --hard Revert all your local changes•
git log Access all the history in the repository•
git rebase -i so you can rewrite your local history freely•
git branch and git checkout to create local branches•

As the git-svn documentation states "Subversion is a system that is far less sophisticated than Git"
so you can't use all the full power of git without messing up the history in the Subversion server.
Fortunately the rules are very simple: Keep the history linear

This means you can make almost any git operation: creating branches,
removing/reordering/squashing commits, move the history around, delete commits, etc. Anything
but merges. If you need to reintegrate the history of local branches use git rebase instead.

When you perform a merge, a merge commit is created. The particular thing about merge commits
is that they have two parents, and that makes the history non-linear. Non-linear history will confuse
SVN in the case you "push" a merge commit to the repository.

However do not worry: you won't break anything if you "push" a git merge commit to SVN. If
you do so, when the git merge commit is sent to the svn server it will contain all the changes of all
commits for that merge, so you will lose the history of those commits, but not the changes in your
code.

Handling empty folders

git does not recognice the concept of folders, it just works with files and their filepaths. This means
git does not track empty folders. SVN, however, does. Using git-svn means that, by default, any
change you do involving empty folders with git will not be propagated to SVN.

https://riptutorial.com/ 118

Using the --rmdir flag when issuing a comment corrects this issue, and removes an empty folder
in SVN if you locally delete the last file inside it:

git svn dcommit --rmdir

Unfortunately it does not removes existing empty folders: you need to do it manually.

To avoid adding the flag each time you do a dcommit, or to play it safe if you are using a git GUI
tool (like SourceTree) you can set this behaviour as default with the command:

git config --global svn.rmdir true

This changes your .gitconfig file and adds these lines:

[svn]
rmdir = true

To remove all untracked files and folders that should be kept empty for SVN use the git command:

git clean -fd

Please note: the previous command will remove all untracked files and empty folders, even the
ones that should be tracked by SVN! If you need to generate againg the empty folders tracked by
SVN use the command

git svn mkdirs

In practices this means that if you want to cleanup your workspace from untracked files and
folders you should always use both commands to recreate the empty folders tracked by SVN:

git clean -fd && git svn mkdirs

Read git-svn online: https://riptutorial.com/git/topic/2766/git-svn

https://riptutorial.com/ 119

https://riptutorial.com/git/topic/2766/git-svn

Chapter 34: git-tfs

Remarks

Git-tfs is a third party tool to connect a Git repository to a Team Foundation Server (“TFS”)
repository.

Most remote TFVS instances will request your credentials on every interaction and installing Git-
Credential-Manager-for-Windows may not help. It can be overcome by adding your name and
password to your .git/config

[tfs-remote "default"]
 url = http://tfs.mycompany.co.uk:8080/tfs/DefaultCollection/
 repository = $/My.Project.Name/
 username = me.name
 password = My733TPwd

Examples

git-tfs clone

This will create a folder with the same name as the project, i.e. /My.Project.Name

$ git tfs clone http://tfs:8080/tfs/DefaultCollection/ $/My.Project.Name

git-tfs clone from bare git repository

Cloning from a git repository is ten times faster than cloning directly from TFVS and works well in a
team environment. At least one team member will have to create the bare git repository by doing
the regular git-tfs clone first. Then the new repository can be bootstrapped to work with TFVS.

$ git clone x:/fileshare/git/My.Project.Name.git
$ cd My.Project.Name
$ git tfs bootstrap
$ git tfs pull

git-tfs install via Chocolatey

The following assumes you will use kdiff3 for file diffing and although not essential it is a good
idea.

C:\> choco install kdiff3

Git can be installed first so you can state any parameters you wish. Here all the Unix tools are also
installed and 'NoAutoCrlf' means checkout as is, commit as is.

https://riptutorial.com/ 120

http://git-tfs.com/

C:\> choco install git -params '"/GitAndUnixToolsOnPath /NoAutoCrlf"'

This is all you really need to be able to install git-tfs via chocolatey.

C:\> choco install git-tfs

git-tfs Check In

Launch the Check In dialog for TFVS.

$ git tfs checkintool

This will take all of your local commits and create a single check-in.

git-tfs push

Push all local commits to the TFVS remote.

$ git tfs rcheckin

Note: this will fail if Check-in Notes are required. These can be bypassed by adding git-tfs-force:
rcheckin to the commit message.

Read git-tfs online: https://riptutorial.com/git/topic/2660/git-tfs

https://riptutorial.com/ 121

https://riptutorial.com/git/topic/2660/git-tfs

Chapter 35: Hooks

Syntax

.git/hooks/applypatch-msg•

.git/hooks/commit-msg•

.git/hooks/post-update•

.git/hooks/pre-applypatch•

.git/hooks/pre-commit•

.git/hooks/prepare-commit-msg•

.git/hooks/pre-push•

.git/hooks/pre-rebase•

.git/hooks/update•

Remarks

--no-verify or -n to skip all local hooks on the given git command.
Eg: git commit -n

Information on this page was gathered from the official Git docs and Atlassian.

Examples

Commit-msg

This hook is similar to the prepare-commit-msg hook, but it's called after the user enters a commit
message rather than before. This is usually used to warn developers if their commit message is in
an incorrect format.

The only argument passed to this hook is the name of the file that contains the message. If you
don't like the message that the user has entered, you can either alter this file in-place (same as
prepare-commit-msg) or you can abort the commit entirely by exiting with a non-zero status.

The following example is used to check if the word ticket followed by a number is present on the
commit message

word="ticket [0-9]"
isPresent=$(grep -Eoh "$word" $1)

if [[-z $isPresent]]
 then echo "Commit message KO, $word is missing"; exit 1;
 else echo "Commit message OK"; exit 0;
fi

Local hooks

https://riptutorial.com/ 122

https://git-scm.com/doc
https://www.atlassian.com/git/tutorials/git-hooks

Local hooks affect only the local repositories in which they reside. Each developer can alter their
own local hooks, so they can't be used reliably as a way to enforce a commit policy. They are
designed to make it easier for developers to adhere to certain guidelines and avoid potential
problems down the road.

There are six types of local hooks: pre-commit, prepare-commit-msg, commit-msg, post-commit,
post-checkout, and pre-rebase.

The first four hooks relate to commits and allow you to have some control over each part in a
commit's life cycle. The final two let you perform some extra actions or safety checks for the git
checkout and git rebase commands.

All of the "pre-" hooks let you alter the action that’s about to take place, while the "post-" hooks are
used primarily for notifications.

Post-checkout

This hook works similarly to the post-commit hook, but it's called whenever you successfully check
out a reference with git checkout. This could be a useful tool for clearing out your working directory
of auto-generated files that would otherwise cause confusion.

This hook accepts three parameters:

the ref of the previous HEAD,1.
the ref of the new HEAD, and2.
a flag indicating if it was a branch checkout or a file checkout (1 or 0, respectively).3.

Its exit status has no affect on the git checkout command.

Post-commit

This hook is called immediately after the commit-msg hook. It cannot alter the outcome of the git
commit operation, therefore it's used primarily for notification purposes.

The script takes no parameters, and its exit status does not affect the commit in any way.

Post-receive

This hook is called after a successful push operation. It is typically used for notification purposes.

The script takes no parameters, but is sent the same information as pre-receive via standard input:

<old-value> <new-value> <ref-name>

Pre-commit

This hook is executed every time you run git commit, to verify what is about to be committed. You
can use this hook to inspect the snapshot that is about to be committed.

https://riptutorial.com/ 123

This type of hook is useful for running automated tests to make sure the incoming commit doesn't
break existing functionality of your project. This type of hook may also check for whitespace or
EOL errors.

No arguments are passed to the pre-commit script, and exiting with a non-zero status aborts the
entire commit.

Prepare-commit-msg

This hook is called after the pre-commit hook to populate the text editor with a commit message.
This is typically used to alter the automatically generated commit messages for squashed or
merged commits.

One to three arguments are passed to this hook:

The name of a temporary file that contains the message.•
The type of commit, either

message (-m or -F option),○

template (-t option),○

merge (if it's a merge commit), or○

squash (if it's squashing other commits).○

•

The SHA1 hash of the relevant commit. This is only given if -c, -C, or --amend option was
given.

•

Similar to pre-commit, exiting with a non-zero status aborts the commit.

Pre-rebase

This hook is called before git rebase begins to alter code structure. This hook is typically used for
making sure a rebase operation is appropriate.

This hook takes 2 parameters:

the upstream branch that the series was forked from, and1.
the branch being rebased (empty when rebasing the current branch).2.

You can abort the rebase operation by exiting with a non-zero status.

Pre-receive

This hook is executed every time somebody uses git push to push commits to the repository. It
always resides in the remote repository that is the destination of the push and not in the originating
(local) repository.

The hook runs before any references are updated. It is typically used to enforce any kind of
development policy.

The script takes no parameters, but each ref that is being pushed is passed to the script on a
separate line on standard input in the following format:

https://riptutorial.com/ 124

<old-value> <new-value> <ref-name>

Update

This hook is called after pre-receive, and it works the same way. It's called before anything is
actually updated, but is called separately for each ref that was pushed rather than all of the refs at
once.

This hook accepts the following 3 arguments:

name of the ref being updated,•
old object name stored in the ref, and•
new object name stored in the ref.•

This is the same information passed to pre-receive, but since update is invoked separately for each
ref, you can reject some refs while allowing others.

Pre-push

Available in Git 1.8.2 and above.

1.8

Pre-push hooks can be used to prevent a push from going though. Reasons this is helpful include:
blocking accidental manual pushes to specific branches, or blocking pushes if an established
check fails (unit tests, syntax).

A pre-push hook is created by simply creating a file named pre-push under .git/hooks/, and (
gotcha alert), making sure the file is executable: chmod +x ./git/hooks/pre-push.

Here's an example from Hannah Wolfe that blocks a push to master:

#!/bin/bash

protected_branch='master'
current_branch=$(git symbolic-ref HEAD | sed -e 's,.*/\(.*\),\1,')

if [$protected_branch = $current_branch]
then
 read -p "You're about to push master, is that what you intended? [y|n] " -n 1 -r <
/dev/tty
 echo
 if echo $REPLY | grep -E '^[Yy]$' > /dev/null
 then
 exit 0 # push will execute
 fi
 exit 1 # push will not execute
else
 exit 0 # push will execute
fi

Here's an example from Volkan Unsal which makes sure RSpec tests pass before allowing the

https://riptutorial.com/ 125

https://github.com/git/git/blob/master/Documentation/RelNotes/1.8.2.txt
https://dev.ghost.org/prevent-master-push/
https://coderwall.com/p/k1hbyw/how-to-run-rspec-tests-before-pushing-with-a-git-pre-push-hook

push:

#!/usr/bin/env ruby
require 'pty'
html_path = "rspec_results.html"
begin
 PTY.spawn("rspec spec --format h > rspec_results.html") do |stdin, stdout, pid|
 begin
 stdin.each { |line| print line }
 rescue Errno::EIO
 end
end
rescue PTY::ChildExited
 puts "Child process exit!"
end

find out if there were any errors
html = open(html_path).read
examples = html.match(/(\d+) examples/)[0].to_i rescue 0
errors = html.match(/(\d+) errors/)[0].to_i rescue 0
if errors == 0 then
 errors = html.match(/(\d+) failure/)[0].to_i rescue 0
end
pending = html.match(/(\d+) pending/)[0].to_i rescue 0

if errors.zero?
 puts "0 failed! #{examples} run, #{pending} pending"
 # HTML Output when tests ran successfully:
 # puts "View spec results at #{File.expand_path(html_path)}"
 sleep 1
 exit 0
else
 puts "\aCOMMIT FAILED!!"
 puts "View your rspec results at #{File.expand_path(html_path)}"
 puts
 puts "#{errors} failed! #{examples} run, #{pending} pending"
 # Open HTML Ooutput when tests failed
 # `open #{html_path}`
 exit 1
end

As you can see, there are lots of possibilities, but the core piece is to exit 0 if good things
happened, and exit 1 if bad things happened. Anytime you exit 1 the push will be prevented and
your code will be in the state it was before running git push....

When using client side hooks, keep in mind that users can skip all client side hooks by using the
option "--no-verify" on a push. If you're relying on the hook to enforce process, you can get
burned.

Documentation: https://git-scm.com/docs/githooks#_pre_push
Official Sample:
https://github.com/git/git/blob/87c86dd14abe8db7d00b0df5661ef8cf147a72a3/templates/hooks--
pre-push.sample

Verify Maven build (or other build system) before committing

https://riptutorial.com/ 126

https://git-scm.com/docs/githooks#_pre_push
https://github.com/git/git/blob/87c86dd14abe8db7d00b0df5661ef8cf147a72a3/templates/hooks--pre-push.sample
https://github.com/git/git/blob/87c86dd14abe8db7d00b0df5661ef8cf147a72a3/templates/hooks--pre-push.sample

.git/hooks/pre-commit

#!/bin/sh
if [-s pom.xml]; then
 echo "Running mvn verify"
 mvn clean verify
 if [$? -ne 0]; then
 echo "Maven build failed"
 exit 1
 fi
fi

Automatically forward certain pushes to other repositories

post-receive hooks can be used to automatically forward incoming pushes to another repository.

$ cat .git/hooks/post-receive

#!/bin/bash

IFS=' '
while read local_ref local_sha remote_ref remote_sha
do

 echo "$remote_ref" | egrep '^refs\/heads\/[A-Z]+-[0-9]+$' >/dev/null && {
 ref=`echo $remote_ref | sed -e 's/^refs\/heads\///'`
 echo Forwarding feature branch to other repository: $ref
 git push -q --force other_repos $ref
 }

done

In this example, the egrep regexp looks for a specific branch format (here: JIRA-12345 as used to
name Jira issues). You can leave this part off if you want to forward all branches, of course.

Read Hooks online: https://riptutorial.com/git/topic/1330/hooks

https://riptutorial.com/ 127

https://riptutorial.com/git/topic/1330/hooks

Chapter 36: Ignoring Files and Folders

Introduction

This topic illustrates how to avoid adding unwanted files (or file changes) in a Git repo. There are
several ways (global or local .gitignore, .git/exclude, git update-index --assume-unchanged, and git
update-index --skip-tree), but keep in mind Git is managing content, which means: ignoring
actually ignores a folder content (i.e. files). An empty folder would be ignored by default, since it
cannot be added anyway.

Examples

Ignoring files and directories with a .gitignore file

You can make Git ignore certain files and directories — that is, exclude them from being tracked
by Git — by creating one or more .gitignore files in your repository.

In software projects, .gitignore typically contains a listing of files and/or directories that are
generated during the build process or at runtime. Entries in the .gitignore file may include names
or paths pointing to:

temporary resources e.g. caches, log files, compiled code, etc.1.
local configuration files that should not be shared with other developers2.
files containing secret information, such as login passwords, keys and credentials3.

When created in the top level directory, the rules will apply recursively to all files and sub-
directories throughout the entire repository. When created in a sub-directory, the rules will apply to
that specific directory and its sub-directories.

When a file or directory is ignored, it will not be:

tracked by Git1.
reported by commands such as git status or git diff2.
staged with commands such as git add -A3.

In the unusual case that you need to ignore tracked files, special care should be taken. See:
Ignore files that have already been committed to a Git repository.

Examples

Here are some generic examples of rules in a .gitignore file, based on glob file patterns:

Lines starting with `#` are comments.

https://riptutorial.com/ 128

https://git-scm.com/docs/gitignore
http://www.riptutorial.com/git/example/1777/ignore-files-that-have-already-been-committed-to-a-git-repository
https://en.wikipedia.org/wiki/Glob_(programming)

Ignore files called 'file.ext'
file.ext

Comments can't be on the same line as rules!
The following line ignores files called 'file.ext # not a comment'
file.ext # not a comment

Ignoring files with full path.
This matches files in the root directory and subdirectories too.
i.e. otherfile.ext will be ignored anywhere on the tree.
dir/otherdir/file.ext
otherfile.ext

Ignoring directories
Both the directory itself and its contents will be ignored.
bin/
gen/

Glob pattern can also be used here to ignore paths with certain characters.
For example, the below rule will match both build/ and Build/
[bB]uild/

Without the trailing slash, the rule will match a file and/or
a directory, so the following would ignore both a file named `gen`
and a directory named `gen`, as well as any contents of that directory
bin
gen

Ignoring files by extension
All files with these extensions will be ignored in
this directory and all its sub-directories.
*.apk
*.class

It's possible to combine both forms to ignore files with certain
extensions in certain directories. The following rules would be
redundant with generic rules defined above.
java/*.apk
gen/*.class

To ignore files only at the top level directory, but not in its
subdirectories, prefix the rule with a `/`
/*.apk
/*.class

To ignore any directories named DirectoryA
in any depth use ** before DirectoryA
Do not forget the last /,
Otherwise it will ignore all files named DirectoryA, rather than directories
**/DirectoryA/
This would ignore
DirectoryA/
DirectoryB/DirectoryA/
DirectoryC/DirectoryB/DirectoryA/
It would not ignore a file named DirectoryA, at any level

To ignore any directory named DirectoryB within a
directory named DirectoryA with any number of
directories in between, use ** between the directories
DirectoryA/**/DirectoryB/
This would ignore

https://riptutorial.com/ 129

DirectoryA/DirectoryB/
DirectoryA/DirectoryQ/DirectoryB/
DirectoryA/DirectoryQ/DirectoryW/DirectoryB/

To ignore a set of files, wildcards can be used, as can be seen above.
A sole '*' will ignore everything in your folder, including your .gitignore file.
To exclude specific files when using wildcards, negate them.
So they are excluded from the ignore list:
!.gitignore

Use the backslash as escape character to ignore files with a hash (#)
(supported since 1.6.2.1)
\#*#

Most .gitignore files are standard across various languages, so to get started, here is set of
sample .gitignore files listed by language from which to clone or copy/modify into your project.
Alternatively, for a fresh project you may consider auto-generating a starter file using an online tool
.

Other forms of .gitignore

.gitignore files are intended to be committed as part of the repository. If you want to ignore certain
files without committing the ignore rules, here are some options:

Edit the .git/info/exclude file (using the same syntax as .gitignore). The rules will be global
in the scope of the repository;

•

Set up a global gitignore file that will apply ignore rules to all your local repositories:•

Furthermore, you can ignore local changes to tracked files without changing the global git
configuration with:

git update-index --skip-worktree [<file>...]: for minor local modifications•
git update-index --assume-unchanged [<file>...]: for production ready, non-changing files
upstream

•

See more details on differences between the latter flags and the git update-index documentation
for further options.

Cleaning up ignored files

You can use git clean -X to cleanup ignored files:

git clean -Xn #display a list of ignored files
git clean -Xf #remove the previously displayed files

Note: -X (caps) cleans up only ignored files. Use -x (no caps) to also remove untracked files.

https://riptutorial.com/ 130

https://github.com/github/gitignore
https://github.com/github/gitignore
https://github.com/github/gitignore
https://www.gitignore.io/
http://www.riptutorial.com/git/example/1222/a-global--gitignore-file
http://stackoverflow.com/a/13631525/4531270
https://git-scm.com/docs/git-update-index
https://git-scm.com/docs/git-update-index

See the git clean documentation for more details.

See the Git manual for more details.

Exceptions in a .gitignore file

If you ignore files by using a pattern but have exceptions, prefix an exclamation mark(!) to the
exception. For example:

*.txt
!important.txt

The above example instructs Git to ignore all files with the .txt extension except for files named
important.txt.

If the file is in an ignored folder, you can NOT re-include it so easily:

folder/
!folder/*.txt

In this example all .txt files in the folder would remain ignored.

The right way is re-include the folder itself on a separate line, then ignore all files in folder by *,
finally re-include the *.txt in folder, as the following:

!folder/
folder/*
!folder/*.txt

Note: For file names beginning with an exclamation mark, add two exclamation marks or escape
with the \ character:

!!includethis
\!excludethis

A global .gitignore file

To have Git ignore certain files across all repositories you can create a global .gitignore with the
following command in your terminal or command prompt:

$ git config --global core.excludesfile <Path_To_Global_gitignore_file>

Git will now use this in addition to each repository's own .gitignore file. Rules for this are:

If the local .gitignore file explicitly includes a file while the global .gitignore ignores it, the
local .gitignore takes priority (the file will be included)

•

If the repository is cloned on multiple machines, then the global .gigignore must be loaded
on all machines or at least include it, as the ignored files will be pushed up to the repo while

•

https://riptutorial.com/ 131

http://www.riptutorial.com/git/topic/1254/git-clean
http://www.riptutorial.com/git/topic/1254/git-clean
http://www.riptutorial.com/git/topic/1254/git-clean
https://git-scm.com/docs/gitignore
https://help.github.com/articles/ignoring-files/#create-a-global-gitignore
https://git-scm.com/docs/gitignore

the PC with the global .gitignore wouldn't update it. This is why a repo specific .gitignore is
a better idea than a global one if the project is worked on by a team

This file is a good place to keep platform, machine or user specific ignores, e.g. OSX .DS_Store,
Windows Thumbs.db or Vim *.ext~ and *.ext.swp ignores if you don't want to keep those in the
repository. So one team member working on OS X can add all .DS_STORE and _MACOSX (which is
actually useless), while another team member on Windows can ignore all thumbs.bd

Ignore files that have already been committed to a Git repository

If you have already added a file to your Git repository and now want to stop tracking it (so that it
won't be present in future commits), you can remove it from the index:

git rm --cached <file>

This will remove the file from the repository and prevent further changes from being tracked by Git.
The --cached option will make sure that the file is not physically deleted.

Note that previously added contents of the file will still be visible via the Git history.

Keep in mind that if anyone else pulls from the repository after you removed the file from the
index, their copy will be physically deleted.

You can make Git pretend that the working directory version of the file is up to date and read the
index version instead (thus ignoring changes in it) with "skip worktree" bit:

git update-index --skip-worktree <file>

Writing is not affected by this bit, content safety is still first priority. You will never lose your
precious ignored changes; on the other hand this bit conflicts with stashing: to remove this bit, use

git update-index --no-skip-worktree <file>

It is sometimes wrongly recommended to lie to Git and have it assume that file is unchanged
without examining it. It looks at first glance as ignoring any further changes to the file, without
removing it from its index:

git update-index --assume-unchanged <file>

This will force git to ignore any change made in the file (keep in mind that if you pull any changes
to this file, or you stash it, your ignored changes will be lost)

If you want git to "care" about this file again, run the following command:

git update-index --no-assume-unchanged <file>

https://riptutorial.com/ 132

https://www.kernel.org/pub/software/scm/git/docs/git-update-index.html#_skip_worktree_bit

Checking if a file is ignored

The git check-ignore command reports on files ignored by Git.

You can pass filenames on the command line, and git check-ignore will list the filenames that are
ignored. For example:

$ cat .gitignore
*.o
$ git check-ignore example.o Readme.md
example.o

Here, only *.o files are defined in .gitignore, so Readme.md is not listed in the output of git check-
ignore.

If you want to see line of which .gitignore is responsible for ignoring a file, add -v to the git check-
ignore command:

$ git check-ignore -v example.o Readme.md
.gitignore:1:*.o example.o

From Git 1.7.6 onwards you can also use git status --ignored in order to see ignored files. You
can find more info on this in the official documentation or in Finding files ignored by .gitignore.

Ignoring files in subfolders (Multiple gitignore files)

Suppose you have a repository structure like this:

examples/
 output.log
src/
 <files not shown>
 output.log
README.md

output.log in the examples directory is valid and required for the project to gather an
understanding while the one beneath src/ is created while debugging and should not be in the
history or part of the repository.

There are two ways to ignore this file. You can place an absolute path into the .gitignore file at the
root of the working directory:

/.gitignore
src/output.log

Alternatively, you can create a .gitignore file in the src/ directory and ignore the file that is relative
to this .gitignore:

/src/.gitignore

https://riptutorial.com/ 133

https://git-scm.com/docs/git-check-ignore
https://git-scm.com/docs/git-status
http://www.riptutorial.com/git/example/19445/finding-files-ignored-by--gitignore

output.log

Ignoring a file in any directory

To ignore a file foo.txt in any directory you should just write its name:

foo.txt # matches all files 'foo.txt' in any directory

If you want to ignore the file only in part of the tree, you can specify the subdirectories of a specific
directory with ** pattern:

bar/**/foo.txt # matches all files 'foo.txt' in 'bar' and all subdirectories

Or you can create a .gitignore file in the bar/ directory. Equivalent to the previous example would
be creating file bar/.gitignore with these contents:

foo.txt # matches all files 'foo.txt' in any directory under bar/

Ignore files locally without committing ignore rules

.gitignore ignores files locally, but it is intended to be committed to the repository and shared with
other contributors and users. You can set a global .gitignore, but then all your repositories would
share those settings.

If you want to ignore certain files in a repository locally and not make the file part of any repository,
edit .git/info/exclude inside your repository.

For example:

these files are only ignored on this repo
these rules are not shared with anyone
as they are personal
gtk_tests.py
gui/gtk/tests/*
localhost
pushReports.py
server/

Prefilled .gitignore Templates

If you are unsure which rules to list in your .gitignore file, or you just want to add generally
accepted exceptions to your project, you can choose or generate a .gitignore file:

https://www.gitignore.io/•
https://github.com/github/gitignore•

Many hosting services such as GitHub and BitBucket offer the ability to generate .gitignore files
based upon the programming languages and IDEs you may be using:

https://riptutorial.com/ 134

https://www.gitignore.io/
https://github.com/github/gitignore

Ignoring subsequent changes to a file (without removing it)

Sometimes you want to have a file held in Git but ignore subsequent changes.

Tell Git to ignore changes to a file or directory using update-index:

git update-index --assume-unchanged my-file.txt

The above command instructs Git to assume my-file.txt hasn't been changed, and not to check
or report changes. The file is still present in the repository.

This can be useful for providing defaults and allowing local environment overrides, e.g.:

create a file with some values in
cat <<EOF
MYSQL_USER=app
MYSQL_PASSWORD=FIXME_SECRET_PASSWORD
EOF > .env

commit to Git
git add .env
git commit -m "Adding .env template"

https://riptutorial.com/ 135

http://i.stack.imgur.com/WfT5z.png

ignore future changes to .env
git update-index --assume-unchanged .env

update your password
vi .env

no changes!
git status

Ignoring only part of a file [stub]

Sometimes you may want to have local changes in a file you don't want to commit or publish.
Ideally local settings should be concentrated in a separate file that can be placed into .gitignore,
but sometimes as a short-term solution it can be helpful to have something local in a checked-in
file.

You can make Git "unsee" those lines using clean filter. They won't even show up in diffs.

Suppose here is snippet from file file1.c:

struct settings s;
s.host = "localhost";
s.port = 5653;
s.auth = 1;
s.port = 15653; // NOCOMMIT
s.debug = 1; // NOCOMMIT
s.auth = 0; // NOCOMMIT

You don't want to publish NOCOMMIT lines anywhere.

Create "nocommit" filter by adding this to Git config file like .git/config:

[filter "nocommit"]
 clean=grep -v NOCOMMIT

Add (or create) this to .git/info/attributes or .gitmodules:

file1.c filter=nocommit

And your NOCOMMIT lines are hidden from Git.

Caveats:

Using clean filter slows down processing of files, especially on Windows.•
The ignored line may disappear from file when Git updates it. It can be counteracted with a
smudge filter, but it is trickier.

•

Not tested on Windows•

Ignoring changes in tracked files. [stub]

.gitignore and .git/info/exclude work only for untracked files.

https://riptutorial.com/ 136

https://git-scm.com/docs/gitignore

To set ignore flag on a tracked file, use the command update-index:

git update-index --skip-worktree myfile.c

To revert this, use:

git update-index --no-skip-worktree myfile.c

You can add this snippet to your global git config to have more convenient git hide, git unhide
and git hidden commands:

[alias]
 hide = update-index --skip-worktree
 unhide = update-index --no-skip-worktree
 hidden = "!git ls-files -v | grep ^[hsS] | cut -c 3-"

You can also use the option --assume-unchanged with the update-index function

git update-index --assume-unchanged <file>

If you want to watch this file again for the changes, use

git update-index --no-assume-unchanged <file>

When --assume-unchanged flag is specified, the user promises not to change the file and allows
Git to assume that the working tree file matches what is recorded in the index.Git will fail in case it
needs to modify this file in the index e.g. when merging in a commit; thus, in case the assumed-
untracked file is changed upstream, you will need to handle the situation manually.The focus lies
on performance in this case.

While --skip-worktree flag is useful when you instruct git not to touch a specific file ever because
the file is going to be changed locally and you don't want to accidentally commit the changes (i.e
configuration/properties file configured for a particular environment). Skip-worktree takes
precedence over assume-unchanged when both are set.

Clear already committed files, but included in .gitignore

Sometimes it happens that a file was being tracked by git, but in a later point in time was added to
.gitignore, in order to stop tracking it. It's a very common scenario to forget to clean up such files
before its addition to .gitignore. In this case, the old file will still be hanging around in the
repository.

To fix this problem, one could perform a "dry-run" removal of everything in the repository, followed
by re-adding all the files back. As long as you don't have pending changes and the --cached
parameter is passed, this command is fairly safe to run:

Remove everything from the index (the files will stay in the file system)
$ git rm -r --cached .

https://riptutorial.com/ 137

https://git-scm.com/docs/git-update-index
https://git-scm.com/docs/git-config

Re-add everything (they'll be added in the current state, changes included)
$ git add .

Commit, if anything changed. You should see only deletions
$ git commit -m 'Remove all files that are in the .gitignore'

Update the remote
$ git push origin master

Create an Empty Folder

It is not possible to add and commit an empty folder in Git due to the fact that Git manages files
and attaches their directory to them, which slims down commits and improves speed. To get
around this, there are two methods:

Method one: .gitkeep

One hack to get around this is to use a .gitkeep file to register the folder for Git. To do this, just
create the required directory and add a .gitkeep file to the folder. This file is blank and doesn't
serve any purpose other than to just register the folder. To do this in Windows (which has
awkward file naming conventions) just open git bash in the directory and run the command:

$ touch .gitkeep

This command just makes a blank .gitkeep file in the current directory

Method two: dummy.txt

Another hack for this is very similar to the above and the same steps can be followed, but instead
of a .gitkeep, just use a dummy.txt instead. This has the added bonus of being able to easily create
it in Windows using the context menu. And you get to leave funny messages in them too.You can
also use .gitkeep file to track the empty directory. .gitkeep normally is an empty file that is added
to track the empty directoy.

Finding files ignored by .gitignore

You can list all files ignored by git in current directory with command:

git status --ignored

So if we have repository structure like this:

.git

.gitignore

./example_1

./dir/example_2

./example_2

...and .gitignore file containing:

https://riptutorial.com/ 138

example_2

...than result of the command will be:

$ git status --ignored

On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

.gitignore
.example_1

Ignored files:
 (use "git add -f <file>..." to include in what will be committed)

dir/
example_2

If you want to list recursively ignored files in directories, you have to use additional parameter - --
untracked-files=all

Result will look like this:

$ git status --ignored --untracked-files=all
On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

.gitignore
example_1

Ignored files:
 (use "git add -f <file>..." to include in what will be committed)

dir/example_2
example_2

Read Ignoring Files and Folders online: https://riptutorial.com/git/topic/245/ignoring-files-and-
folders

https://riptutorial.com/ 139

https://riptutorial.com/git/topic/245/ignoring-files-and-folders
https://riptutorial.com/git/topic/245/ignoring-files-and-folders

Chapter 37: Internals

Examples

Repo

A git repository is an on-disk data structure which stores metadata for a set of files and
directories.

It lives in your project's .git/ folder. Every time you commit data to git, it gets stored here.
Inversely, .git/ contains every single commit.

It's basic structure is like this:

.git/
 objects/
 refs/

Objects

git is fundamentally a key-value store. When you add data to git, it builds an object and uses the
SHA-1 hash of the object's contents as a key.

Therefore, any content in git can be looked up by it's hash:

git cat-file -p 4bb6f98

There are 4 types of Object:

blob•
tree•
commit•
tag•

HEAD ref

HEAD is a special ref. It always points to the current object.

You can see where it's currently pointing by checking the .git/HEAD file.

Normally, HEAD points to another ref:

$cat .git/HEAD
ref: refs/heads/mainline

But it can also point directly to an object:

$ cat .git/HEAD

https://riptutorial.com/ 140

4bb6f98a223abc9345a0cef9200562333

This is what's known as a "detached head" - because HEAD is not attached to (pointing at) any ref,
but rather points directly to an object.

Refs

A ref is essentially a pointer. It's a name that points to an object. For example,

"master" --> 1a410e...

They are stored in `.git/refs/heads/ in plain text files.

$ cat .git/refs/heads/mainline
4bb6f98a223abc9345a0cef9200562333

This is commonly what are called branches. However, you'll note that in git there is no such thing
as a branch - only a ref.

Now, it's possible to navigate git purely by jumping around to different objects directly by their
hashes. But this would be terribly inconvenient. A ref gives you a convenient name to refer to
objects by. It's much easier to ask git to go to a specific place by name rather than by hash.

Commit Object

A commit is probably the object type most familiar to git users, as it's what they are used to
creating with the git commit commands.

However, the commit does not directly contain any changed files or data. Rather, it contains mostly
metadata and pointers to other objects which contain the actual contents of the commit.

A commit contains a few things:

hash of a tree•
hash of a parent commit•
author name/email, commiter name/email•
commit message•

You can see the contents of any commit like this:

$ git cat-file commit 5bac93
tree 04d1daef...
parent b7850ef5...
author Geddy Lee <glee@rush.com>
commiter Neil Peart <npeart@rush.com>

First commit!

https://riptutorial.com/ 141

Tree

A very important note is that the tree objects stores EVERY file in your project, and it stores whole
files not diffs. This means that each commit contains a snapshot of the entire project*.

*Technically, only changed files are stored. But this is more an implementation detail for efficiency.
From a design perspective, a commit should be considered as containing a complete copy of the
project.

Parent

The parent line contains a hash of another commit object, and can be thought of as a "parent
pointer" that points to the "previous commit". This implicitly forms a graph of commits known as the
commit graph. Specifically, it's a directed acyclic graph (or DAG).

Tree Object

A tree basically represents a folder in a traditional filesystem: nested containers for files or other
folders.

A tree contains:

0 or more blob objects•
0 or more tree objects•

Just as you can use ls or dir to list the contents of a folder, you can list the contents of a tree
object.

$ git cat-file -p 07b1a631
100644 blob b91bba1b .gitignore
100644 blob cc0956f1 Makefile
040000 tree 92e1ca7e src
...

You can look up the files in a commit by first finding the hash of the tree in the commit, and then
looking at that tree:

$ git cat-file commit 4bb6f93a
tree 07b1a631
parent ...
author ...
commiter ...

$ git cat-file -p 07b1a631
100644 blob b91bba1b .gitignore
100644 blob cc0956f1 Makefile
040000 tree 92e1ca7e src
...

https://riptutorial.com/ 142

https://en.wikipedia.org/wiki/Directed_acyclic_graph

Blob Object

A blob contains arbitrary binary file contents. Commonly, it will be raw text such as source code or
a blog article. But it could just as easily be the bytes of a PNG file or anything else.

If you have the hash of a blob, you can look at it's contents.

$ git cat-file -p d429810
package com.example.project

class Foo {
 ...
}
...

For example, you can browse a tree as above, and then look at one of the blobs in it.

$ git cat-file -p 07b1a631
100644 blob b91bba1b .gitignore
100644 blob cc0956f1 Makefile
040000 tree 92e1ca7e src
100644 blob cae391ff Readme.txt

$ git cat-file -p cae391ff
Welcome to my project! This is the readmefile
...

Creating new Commits

The git commit command does a few things:

Create blobs and trees to represent your project directory - stored in .git/objects1.
Creates a new commit object with your author information, commit message, and the root tree
from step 1 - also stored in .git/objects

2.

Updates the HEAD ref in .git/HEAD to the hash of the newly-created commit3.

This results in a new snapshot of your project being added to git that is connected to the previous
state.

Moving HEAD

When you run git checkout on a commit (specified by hash or ref) you're telling git to make your
working directory look like how it did when the snapshot was taken.

Update the files in the working directory to match the tree inside the commit1.
Update HEAD to point to the specified hash or ref2.

Moving refs around

Running git reset --hard moves refs to the specified hash/ref.

https://riptutorial.com/ 143

Moving MyBranch to b8dc53:

$ git checkout MyBranch # moves HEAD to MyBranch
$ git reset --hard b8dc53 # makes MyBranch point to b8dc53

Creating new Refs

Running git checkout -b <refname> will create a new ref that points to the current commit.

$ cat .git/head
1f324a

$ git checkout -b TestBranch

$ cat .git/refs/heads/TestBranch
1f324a

Read Internals online: https://riptutorial.com/git/topic/2637/internals

https://riptutorial.com/ 144

https://riptutorial.com/git/topic/2637/internals

Chapter 38: Merging

Syntax

git merge another_branch [options]•
git merge --abort•

Parameters

Parameter Details

-m Message to be included in the merge commit

-v Show verbose output

--abort Attempt to revert all files back to their state

--ff-only Aborts instantly when a merge-commit would be required

--no-ff Forces creation of a merge-commit, even if it wasn't mandatory

--no-commit Pretends the merge failed to allow inspection and tweaking of the result

--stat Show a diffstat after merge completion

-n/--no-stat Don't show the diffstat

--squash Allows for a single commit on the current branch with the merged changes

Examples

Merge one branch into another

git merge incomingBranch

This merges the branch incomingBranch into the branch you are currently in. For example, if you are
currently in master, then incomingBranch will be merged into master.

Merging can create conflicts in some cases. If this happens, you will see the message Automatic
merge failed; fix conflicts and then commit the result. You will need to manually edit the
conflicted files, or to undo your merge attempt, run:

git merge --abort

https://riptutorial.com/ 145

Automatic Merging

When the commits on two branches don't conflict, Git can automatically merge them:

~/Stack Overflow(branch:master) » git merge another_branch
Auto-merging file_a
Merge made by the 'recursive' strategy.
 file_a | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

Aborting a merge

After starting a merge, you might want to stop the merge and return everything to its pre-merge
state. Use --abort:

git merge --abort

Keep changes from only one side of a merge

During a merge, you can pass --ours or --theirs to git checkout to take all changes for a file from
one side or the other of a merge.

$ git checkout --ours -- file1.txt # Use our version of file1, delete all their changes
$ git checkout --theirs -- file2.txt # Use their version of file2, delete all our changes

Merge with a commit

Default behaviour is when the merge resolves as a fast-forward, only update the branch pointer,
without creating a merge commit. Use --no-ff to resolve.

git merge <branch_name> --no-ff -m "<commit message>"

Finding all branches with no merged changes

Sometimes you might have branches lying around that have already had their changes merged
into master. This finds all branches that are not master that have no unique commits as compared
to master. This is very useful for finding branches that were not deleted after the PR was merged
into master.

 for branch in $(git branch -r) ; do
 ["${branch}" != "origin/master"] && [$(git diff master...${branch} | wc -l) -eq 0] &&
echo -e `git show --pretty=format:"%ci %cr" $branch | head -n 1`\\t$branch
 done | sort -r

Read Merging online: https://riptutorial.com/git/topic/291/merging

https://riptutorial.com/ 146

https://riptutorial.com/git/topic/291/merging

Chapter 39: Migrating to Git

Examples

Migrate from SVN to Git using Atlassian conversion utility

Download the Atlassian conversion utility here. This utility requires Java, so please ensure that
you have the Java Runtime Environment JRE installed on the machine you plan to do the
conversion.

Use the command java -jar svn-migration-scripts.jar verify to check if your machine is missing
any of the programs necessary to complete the conversion. Specifically, this command checks for
the Git, subversion, and git-svn utilities. It also verifies that you are performing the migration on a
case-sensitive file system. Migration to Git should be done on a case-sensitive file system to avoid
corrupting the repository.

Next, you need to generate an authors file. Subversion tracks changes by the committer's
username only. Git, however, uses two pieces of information to distinguish a user: a real name
and an email address. The following command will generate a text file mapping the subversion
usernames to their Git equivalents:

java -jar svn-migration-scripts.jar authors <svn-repo> authors.txt

where <svn-repo> is the URL of the subversion repository you wish to convert. After running this
command, the contributors' identification information will be mapped in authors.txt. The email
addresses will be of the form <username>@mycompany.com. In the authors file, you will need to
manually change each person's default name (which by default has become their username) to
their actual names. Make sure to also check all of the email addresses for correctness before
proceeding.

The following command will clone an svn repo as a Git one:

git svn clone --stdlayout --authors-file=authors.txt <svn-repo> <git-repo-name>

where <svn-repo> is the same repository URL used above and <git-repo-name> is the folder name in
the current directory to clone the repository into. There are a few considerations before using this
command:

The --stdlayout flag from above tells Git that you're using a standard layout with trunk,
branches, and tags folders. Subversion repositories with non-standard layouts require you to
specify the locations of the trunk folder, any/all branch folders, and the tags folder. This can
be done by following this example: git svn clone --trunk=/trunk --branches=/branches --
branches=/bugfixes --tags=/tags --authors-file=authors.txt <svn-repo> <git-repo-name>.

•

This command could take many hours to complete depending on the size of your repo.•
To cut down the conversion time for large repositories, the conversion can be run directly on •

https://riptutorial.com/ 147

https://bitbucket.org/atlassian/svn-migration-scripts/downloads/svn-migration-scripts.jar
https://www.java.com/en/download/installed.jsp

the server hosting the subversion repository in order to eliminate network overhead.

git svn clone imports the subversion branches (and trunk) as remote branches including
subversion tags (remote branches prefixed with tags/). To convert these to actual branches and
tags, run the following commands on a Linux machine in the order they are provided. After running
them, git branch -a should show the correct branch names, and git tag -l should show the
repository tags.

git for-each-ref refs/remotes/origin/tags | cut -d / -f 5- | grep -v @ | while read tagname;
do git tag $tagname origin/tags/$tagname; git branch -r -d origin/tags/$tagname; done
git for-each-ref refs/remotes | cut -d / -f 4- | grep -v @ | while read branchname; do git
branch "$branchname" "refs/remotes/origin/$branchname"; git branch -r -d "origin/$branchname";
done

The conversion from svn to Git is now complete! Simply push your local repo to a server and you
can continue to contribute using Git as well as having a completely preserved version history from
svn.

SubGit

SubGit may be used to perform a one-time import of an SVN repository to git.

$ subgit import --non-interactive --svn-url http://svn.my.co/repos/myproject myproject.git

Migrate from SVN to Git using svn2git

svn2git is a Ruby wrapper around git's native SVN support through git-svn, helping you with
migrating projects from Subversion to Git, keeping history (incl. trunk, tags and branches history).

Examples

To migrate a svn repository with the standard layout (ie. branches, tags and trunk at the root level
of the repository):

$ svn2git http://svn.example.com/path/to/repo

To migrate a svn repository which is not in standard layout:

$ svn2git http://svn.example.com/path/to/repo --trunk trunk-dir --tags tags-dir --branches
branches-dir

In case you do not want to migrate (or do not have) branches, tags or trunk you can use options --
notrunk, --nobranches, and --notags.

For example, $ svn2git http://svn.example.com/path/to/repo --trunk trunk-dir --notags --
nobranches will migrate only trunk history.

To reduce the space required by your new repository you may want to exclude any directories or
files you once added while you should not have (eg. build directory or archives):

https://riptutorial.com/ 148

http://www.subgit.com/remote-book.html#7
https://github.com/nirvdrum/svn2git
https://git-scm.com/docs/git-svn

$ svn2git http://svn.example.com/path/to/repo --exclude build --exclude '.*\.zip$'

Post-migration optimization

If you already have a few thousand of commits (or more) in your newly created git repository, you
may want to reduce space used before pushing your repository on a remote. This can be done
using the following command:

$ git gc --aggressive

Note: The previous command can take up to several hours on large repositories (tens of thousand
of commits and/or hundreds of megabytes of history).

Migrate from Team Foundation Version Control (TFVC) to Git

You could migrate from team foundation version control to git by using an open source tool called
Git-TF. Migration will also transfer your existing history by converting tfs checkins to git commits.

To put your solution into Git by using Git-TF follow these steps:

Download Git-TF

You can download (and install) Git-TF from Codeplex: Git-TF @ Codeplex

Clone your TFVC solution

Launch powershell (win) and type the command

git-tf clone http://my.tfs.server.address:port/tfs/mycollection
'$/myproject/mybranch/mysolution' --deep

The --deep switch is the keeyword to note as this tells Git-Tf to copy your checkin-history. You
now have a local git repository in the folder from which you called your cloe command from.

Cleanup

Add a .gitignore file. If you are using Visual Studio the editor can do this for you, otherwise
you could do this manually by downloading a complete file from github/gitignore.

•

RemoveTFS source control bindings from solution (remove all *.vssscc files). You could also
modify your solution file by removing the
GlobalSection(TeamFoundationVersionControl)......EndClobalSection

•

Commit & Push

Complete your conversion by committing and pushing your local repository to your remote.

git add .
git commit -a -m "Coverted solution source control from TFVC to Git"

git remote add origin https://my.remote/project/repo.git

https://riptutorial.com/ 149

https://gittf.codeplex.com/
https://github.com/github/gitignore

git push origin master

Migrating Mercurial to Git

One can use the following methods in order to import a Mercurial Repo into Git:

Using fast export:1.

cd
git clone git://repo.or.cz/fast-export.git
git init git_repo
cd git_repo
~/fast-export/hg-fast-export.sh -r /path/to/old/mercurial_repo
git checkout HEAD

Using Hg-Git: A very detailed answer here: https://stackoverflow.com/a/31827990/52832132.

Using GitHub's Importer: Follow the (detailed) instructions at GitHub.3.

Read Migrating to Git online: https://riptutorial.com/git/topic/3026/migrating-to-git

https://riptutorial.com/ 150

https://github.com/frej/fast-export
http://hg-git.github.io/
https://stackoverflow.com/a/31827990/5283213
https://help.github.com/articles/about-github-importer/
https://github.com/new/import
https://riptutorial.com/git/topic/3026/migrating-to-git

Chapter 40: Pulling

Introduction

Unlike pushing with Git where your local changes are sent to the central repository's server,
pulling with Git takes the current code on the server and 'pulls' it down from the repository's server
to your local machine. This topic explains the process of pulling code from a repository using Git
as well as the situations one might encounter while pulling different code into the local copy.

Syntax

git pull [options [<repository> [<refspec>...]]•

Parameters

Parameters Details

--quiet No text output

-q shorthand for --quiet

--verbose
verbose text output. Passed to fetch and merge/rebase
commands respectively.

-v shorthand for --verbose

--[no-]recurse-submodules[=yes|
on-demand|no]

Fetch new commits for submodules? (Not that this is not
a pull/checkout)

Remarks

git pull runs git fetch with the given parameters and calls git merge to merge the retrieved
branch heads into the current branch.

Examples

Updating with local changes

When local changes are present, the git pull command aborts reporting :

error: Your local changes to the following files would be overwritten by merge

In order to update (like svn update did with subversion), you can run :

https://riptutorial.com/ 151

git stash
git pull --rebase
git stash pop

A convenient way could be to define an alias using :

2.9

git config --global alias.up '!git stash && git pull --rebase && git stash pop'

2.9

git config --global alias.up 'pull --rebase --autostash'

Next you can simply use :

git up

Pull code from remote

git pull

Pull, overwrite local

git fetch
git reset --hard origin/master

Beware: While commits discarded using reset --hard can be recovered using reflog and reset,
uncommitted changes are deleted forever.

Change origin and master to the remote and branch you want to forcibly pull to, respectively, if
they are named differently.

Keeping linear history when pulling

Rebasing when pulling

If you are pulling in fresh commits from the remote repository and you have local changes on the
current branch then git will automatically merge the remote version and your version. If you would
like to reduce the number of merges on your branch you can tell git to rebase your commits on the
remote version of the branch.

git pull --rebase

https://riptutorial.com/ 152

http://www.riptutorial.com/git/topic/355/rebasing

Making it the default behavior

To make this the default behavior for newly created branches, type the following command:

git config branch.autosetuprebase always

To change the behavior of an existing branch, use this:

git config branch.BRANCH_NAME.rebase true

And

git pull --no-rebase

To perform a normal merging pull.

Check if fast-forwardable

To only allow fast forwarding the local branch, you can use:

git pull --ff-only

This will display an error when the local branch is not fast-forwardable, and needs to be either
rebased or merged with upstream.

Pull, "permission denied"

Some problems can occur if the .git folder has wrong permission. Fixing this problem by setting
the owner of the complete .git folder. Sometimes it happen that another user pull and change the
rights of the .git folder or files.

To fix the problem:

chown -R youruser:yourgroup .git/

Pulling changes to a local repository

Simple pull

When you are working on a remote repository (say, GitHub) with someone else, you will at some
point want to share your changes with them. Once they have pushed their changes to a remote
repository, you can retrieve those changes by pulling from this repository.

https://riptutorial.com/ 153

http://www.riptutorial.com/git/topic/2600/pushing

git pull

Will do it, in the majority of cases.

Pull from a different remote or branch

You can pull changes from a different remote or branch by specifying their names

git pull origin feature-A

Will pull the branch feature-A form origin into your local branch. Note that you can directly supply
an URL instead of a remote name, and an object name such as a commit SHA instead of a branch
name.

Manual pull

To imitate the behavior of a git pull, you can use git fetch then git merge

git fetch origin # retrieve objects and update refs from origin
git merge origin/feature-A # actually perform the merge

This can give you more control, and allows you to inspect the remote branch before merging it.
Indeed, after fetching, you can see the remote branches with git branch -a, and check them out
with

git checkout -b local-branch-name origin/feature-A # checkout the remote branch
inspect the branch, make commits, squash, ammend or whatever
git checkout merging-branches # moving to the destination branch
git merge local-branch-name # performing the merge

This can be very handy when processing pull requests.

Read Pulling online: https://riptutorial.com/git/topic/1308/pulling

https://riptutorial.com/ 154

https://riptutorial.com/git/topic/1308/pulling

Chapter 41: Pushing

Introduction

After changing, staging, and committing code with Git, pushing is required to make your changes
available to others and transfers your local changes to the repository server. This topic will cover
how to properly push code using Git.

Syntax

git push [-f | --force] [-v | --verbose] [<remote> [<refspec>...]]•

Parameters

Parameter Details

--force
Overwrites the remote ref to match your local ref. Can cause the remote
repository to lose commits, so use with care.

--verbose Run verbosely.

<remote> The remote repository that is destination of the push operation.

<refspec>... Specify what remote ref to update with what local ref or object.

Remarks

Upstream & Downstream

In terms of source control, you're "downstream" when you copy (clone, checkout, etc)
from a repository. Information flowed "downstream" to you.

When you make changes, you usually want to send them back "upstream" so they
make it into that repository so that everyone pulling from the same source is working
with all the same changes. This is mostly a social issue of how everyone can
coordinate their work rather than a technical requirement of source control. You want to
get your changes into the main project so you're not tracking divergent lines of
development.

Sometimes you'll read about package or release managers (the people, not the tool)
talking about submitting changes to "upstream". That usually means they had to adjust
the original sources so they could create a package for their system. They don't want
to keep making those changes, so if they send them "upstream" to the original source,

https://riptutorial.com/ 155

they shouldn't have to deal with the same issue in the next release.

(Source)

Examples

Push

git push

will push your code to your existing upstream. Depending on the push configuration, it will either
push code from you current branch (default in Git 2.x) or from all branches (default in Git 1.x).

Specify remote repository

When working with git, it can be handy to have multiple remote repositories. To specify a remote
repository to push to, just append its name to the command.

git push origin

Specify Branch

To push to a specific branch, say feature_x:

git push origin feature_x

Set the remote tracking branch

Unless the branch you are working on originally comes from a remote repository, simply using git
push won't work the first time. You must perform the following command to tell git to push the
current branch to a specific remote/branch combination

git push --set-upstream origin master

Here, master is the branch name on the remote origin. You can use -u as a shorthand for --set-
upstream.

Pushing to a new repository

https://riptutorial.com/ 156

http://stackoverflow.com/a/2739476/163024

To push to a repository that you haven't made yet, or is empty:

Create the repository on GitHub (if applicable)1.
Copy the url given to you, in the form https://github.com/USERNAME/REPO_NAME.git2.
Go to your local repository, and execute git remote add origin URL

To verify it was added, run git remote -v•
3.

Run git push origin master4.

Your code should now be on GitHub

For more information view Adding a remote repository

Explanation

Push code means that git will analyze the differences of your local commits and remote and send
them to be written on the upstream. When push succeeds, your local repository and remote
repository are synchronized and other users can see your commits.

For more details on the concepts of "upstream" and "downstream", see Remarks.

Force Pushing

Sometimes, when you have local changes incompatible with remote changes (ie, when you cannot
fast-forward the remote branch, or the remote branch is not a direct ancestor of your local branch),
the only way to push your changes is a force push.

git push -f

or

git push --force

Important notes

This will overwrite any remote changes and your remote will match your local.

Attention: Using this command may cause the remote repository to lose commits. Moreover, it is
strongly advised against doing a force push if you are sharing this remote repository with others,
since their history will retain every overwritten commit, thus rending their work out of sync with the
remote repository.

As a rule of thumb, only force push when:

Nobody except you pulled the changes you are trying to overwrite•

https://riptutorial.com/ 157

http://www.riptutorial.com/git/example/16208/add-a-remote-repository
http://www.riptutorial.com/git/topic/2600/pushing

You can force everyone to clone a fresh copy after the forced push and make everyone
apply their changes to it (people may hate you for this).

•

Push a specific object to a remote branch

General syntax

git push <remotename> <object>:<remotebranchname>

Example

git push origin master:wip-yourname

Will push your master branch to the wip-yourname branch of origin (most of the time, the repository
you cloned from).

Delete remote branch

Deleting the remote branch is the equivalent of pushing an empty object to it.

git push <remotename> :<remotebranchname>

Example

git push origin :wip-yourname

Will delete the remote branch wip-yourname

Instead of using the colon, you can also use the --delete flag, which is better readable in some
cases.

Example

git push origin --delete wip-yourname

Push a single commit

If you have a single commit in your branch that you want to push to a remote without pushing
anything else, you can use the following

https://riptutorial.com/ 158

git push <remotename> <commit SHA>:<remotebranchname>

Example

Assuming a git history like this

eeb32bc Commit 1 - already pushed
347d700 Commit 2 - want to push
e539af8 Commit 3 - only local
5d339db Commit 4 - only local

to push only commit 347d700 to remote master use the following command

git push origin 347d700:master

Changing the default push behavior

Current updates the branch on the remote repository that shares a name with the current working
branch.

git config push.default current

Simple pushes to the upstream branch, but will not work if the upstream branch is called
something else.

git config push.default simple

Upstream pushes to the upstream branch, no matter what it is called.

git config push.default upstream

Matching pushes all branches that match on the local and the remote git config push.default
upstream

After you've set the preferred style, use

git push

to update the remote repository.

Push tags

git push --tags

Pushes all of the git tags in the local repository that are not in the remote one.

https://riptutorial.com/ 159

Read Pushing online: https://riptutorial.com/git/topic/2600/pushing

https://riptutorial.com/ 160

https://riptutorial.com/git/topic/2600/pushing

Chapter 42: Rebasing

Syntax

git rebase [-i | --interactive] [options] [--exec <cmd>] [--onto <newbase>] [<upstream>]
[<branch>]

•

git rebase [-i | --interactive] [options] [--exec <cmd>] [--onto <newbase>] --root
[<branch>]

•

git rebase --continue | --skip | --abort | --edit-todo•

Parameters

Parameter Details

--continue Restart the rebasing process after having resolved a merge conflict.

--abort

Abort the rebase operation and reset HEAD to the original branch. If branch
was provided when the rebase operation was started, then HEAD will be reset
to branch. Otherwise HEAD will be reset to where it was when the rebase
operation was started.

--keep-
empty

Keep the commits that do not change anything from its parents in the result.

--skip Restart the rebasing process by skipping the current patch.

-m, --merge

Use merging strategies to rebase. When the recursive (default) merge strategy
is used, this allows rebase to be aware of renames on the upstream side. Note
that a rebase merge works by replaying each commit from the working branch
on top of the upstream branch. Because of this, when a merge conflict
happens, the side reported as ours is the so-far rebased series, starting with
upstream, and theirs is the working branch. In other words, the sides are
swapped.

--stat
Show a diffstat of what changed upstream since the last rebase. The diffstat is
also controlled by the configuration option rebase.stat.

-x, --exec
command

Perform interactive rebase, stopping between each commit and executing
command

Remarks

Please keep in mind that rebase effectively rewrites the repository history.

Rebasing commits that exists in the remote repository could rewrite repository nodes used by
other developers as base node for their developments. Unless you really know what you are

https://riptutorial.com/ 161

doing, it is a best practice to rebase before pushing your changes.

Examples

Local Branch Rebasing

Rebasing reapplies a series of commits on top of another commit.

To rebase a branch, checkout the branch and then rebase it on top of another branch.

git checkout topic
git rebase master # rebase current branch onto master branch

This would cause:

 A---B---C topic
 /
D---E---F---G master

To turn into:

 A'--B'--C' topic
 /
D---E---F---G master

These operations can be combined into a single command that checks out the branch and
immediately rebases it:

git rebase master topic # rebase topic branch onto master branch

Important: After the rebase, the applied commits will have a different hash. You should not
rebase commits you have already pushed to a remote host. A consequence may be an inability to
git push your local rebased branch to a remote host, leaving your only option to git push --force.

Rebase: ours and theirs, local and remote

A rebase switches the meaning of "ours" and "theirs":

git checkout topic
git rebase master # rebase topic branch on top of master branch

Whatever HEAD's pointing to is "ours"

The first thing a rebase does is resetting the HEAD to master; before cherry-picking commits from the
old branch topic to a new one (every commit in the former topic branch will be rewritten and will
be identified by a different hash).

With respect to terminologies used by merge tools (not to be confused with local ref or remote ref)

https://riptutorial.com/ 162

https://git-scm.com/docs/git-rebase
https://git-scm.com/docs/gitglossary#gitglossary-aiddefrefspecarefspec

=> local is master ("ours"),
=> remote is topic ("theirs")

That means a merge/diff tool will present the upstream branch as local (master: the branch on top
of which you are rebasing), and the working branch as remote (topic: the branch being rebased)

+---+
| LOCAL:master | BASE | REMOTE:topic |
+---+
| MERGED |
+---+

Inversion illustrated

On a merge:

c--c--x--x--x(*) <- current branch topic ('*'=HEAD)
 \
 \
 \--y--y--y <- other branch to merge

We don't change the current branch topic, so what we have is still what we were working on (and
we merge from another branch)

c--c--x--x--x---------o(*) MERGE, still on branch topic
 \ ^ /
 \ ours /
 \ /
 --y--y--y--/
 ^
 theirs

On a rebase:

But on a rebase we switch sides because the first thing a rebase does is to checkout the
upstream branch to replay the current commits on top of it!

c--c--x--x--x(*) <- current branch topic ('*'=HEAD)
 \
 \
 \--y--y--y <- upstream branch

A git rebase upstream will first set HEAD to the upstream branch, hence the switch of 'ours' and
'theirs' compared to the previous "current" working branch.

c--c--x--x--x <- former "current" branch, new "theirs"
 \
 \

https://riptutorial.com/ 163

 \--y--y--y(*) <- set HEAD to this commit, to replay x's on it
 ^ this will be the new "ours"
 |
 upstream

The rebase will then replay 'their' commits on the new 'our' topic branch:

c--c..x..x..x <- old "theirs" commits, now "ghosts", available through "reflogs"
 \
 \
 \--y--y--y--x'--x'--x'(*) <- topic once all x's are replayed,
 ^ point branch topic to this commit
 |
 upstream branch

Interactive Rebase

This example aims to describe how one can utilize git rebase in interactive mode. It is expected
that one has a basic understanding of what git rebase is and what it does.

Interactive rebase is initiated using following command:

git rebase -i

The -i option refers to interactive mode. Using interactive rebase, the user can change commit
messages, as well as reorder, split, and/or squash (combine to one) commits.

Say you want to rearrange your last three commits. To do this you can run:

git rebase -i HEAD~3

After executing the above instruction, a file will be opened in your text editor where you will be able
to select how your commits will be rebased. For the purpose of this example, just change the order
of your commits, save the file, and close the editor. This will initiate a rebase with the order you've
applied. If you check git log you will see your commits in the new order you specified.

Rewording commit messages

Now, you've decided that one of the commit messages is vague and you want it to be more
descriptive. Let's examine the last three commits using the same command.

git rebase -i HEAD~3

Instead of rearranging the order the commits will be rebased, this time we will change pick, the
default, to reword on a commit where you would like to change the message.

When you close the editor, the rebase will initiate and it will stop at the specific commit message
that you wanted to reword. This will let you change the commit message to whichever you desire.

https://riptutorial.com/ 164

After you've changed the message, simply close the editor to proceed.

Changing the content of a commit

Besides changing the commit message you can also adapt the changes done by the commit. To
do so just change pick to edit for one commit. Git will stop when it arrives at that commit and
provide the original changes of the commit in the staging area. You can now adapt those changes
by unstaging them or adding new changes.

As soon as the staging area contains all changes you want in that commit, commit the changes.
The old commit message will be shown and can be adapted to reflect the new commit.

Splitting a single commit into multiple

Say you've made a commit but decided at a later point this commit could be split into two or more
commits instead. Using the same command as before, replace pick with edit instead and hit enter.

Now, git will stop at the commit you have marked for editing and place all of its content into the
staging area. From that point you can run git reset HEAD^ to place the commit into your working
directory. Then, you can add and commit your files in a different sequence - ultimately splitting a
single commit into n commits instead.

Squashing multiple commits into one

Say you have done some work and have multiple commits which you think could be a single
commit instead. For that you can carry out git rebase -i HEAD~3, replacing 3 with an appropriate
amount of commits.

This time replace pick with squash instead. During the rebase, the commit which you've instructed
to be squashed will be squashed on top of the previous commit; turning them into a single commit
instead.

Aborting an Interactive Rebase

You have started an interactive rebase. In the editor where you pick your commits, you decide that
something is going wrong (for example a commit is missing, or you chose the wrong rebase
destination), and you want to abort the rebase.

To do this, simply delete all commits and actions (i.e. all lines not starting with the # sign) and the
rebase will be aborted!

The help text in the editor actually provides this hint:

Rebase 36d15de..612f2f7 onto 36d15de (3 command(s))

https://riptutorial.com/ 165

Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the line) using shell

These lines can be re-ordered; they are executed from top to bottom.

If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.
^^
Note that empty commits are commented out

Pushing after a rebase

Sometimes you need rewrite history with a rebase, but git push complains about doing so
because you rewrote history.

This can be solved with a git push --force, but consider git push --force-with-lease, indicating
that you want the push to fail if the local remote-tracking branch differs from the branch on the
remote, e.g., someone else pushed to the remote after the last fetch. This avoids inadvertently
overwriting someone else's recent push.

Note: git push --force - and even --force-with-lease for that matter - can be a dangerous
command because it rewrites the history of the branch. If another person had pulled the branch
before the forced push, his/her git pull or git fetch will have errors because the local history and
the remote history are diverged. This may cause the person to have unexpected errors. With
enough looking at the reflogs the other user's work can be recovered, but it can lead to a lot of
wasted time. If you must do a forced push to a branch with other contributors, try to coordinate
with them so that they do not have to deal with errors.

Rebase down to the initial commit

Since Git 1.7.12 it is possible to rebase down to the root commit. The root commit is the first
commit ever made in a repository, and normally cannot be edited. Use the following command:

git rebase -i --root

Rebasing before a code review

Summary

This goal is to reorganize all of your scattered commits into more meaningful commits for easier
code reviews. If there are too many layers of changes across too many files at once, it is harder to
do a code review. If you can reorganize your chronologically created commits into topical commits,
then the code review process is easier (and possibly less bugs slip through the code review

https://riptutorial.com/ 166

https://github.com/git/git/blob/1d1bdafd64266e5ee3bd46c6965228f32e4022ea/Documentation/RelNotes/1.7.12.txt#L59-L60

process).

This overly-simplified example is not the only strategy for using git to do better code reviews. It is
the way I do it, and it's something to inspire others to consider how to make code reviews and git
history easier/better.

This also pedagogically demonstrates the power of rebase in general.

This example assumes you know about interactive rebasing.

Assuming:

you're working on a feature branch off of master•
your feature has three main layers: front-end, back-end, DB•
you have made a lot of commits while working on a feature branch. Each commit touches
multiple layers at once

•

you want (in the end) only three commits in your branch
one containing all front end changes○

one containing all back end changes○

one containing all DB changes○

•

Strategy:

we are going to change our chronological commits into "topical" commits.•
first, split all commits into multiple, smaller commits -- each containing only one topic at a
time (in our example, the topics are front end, back end, DB changes)

•

Then reorder our topical commits together and 'squash' them into single topical commits•

Example:

$ git log --oneline master..
975430b db adding works: db.sql logic.rb
3702650 trying to allow adding todo items: page.html logic.rb
43b075a first draft: page.html and db.sql
$ git rebase -i master

This will be shown in text editor:

pick 43b075a first draft: page.html and db.sql
pick 3702650 trying to allow adding todo items: page.html logic.rb
pick 975430b db adding works: db.sql logic.rb

Change it to this:

https://riptutorial.com/ 167

e 43b075a first draft: page.html and db.sql
e 3702650 trying to allow adding todo items: page.html logic.rb
e 975430b db adding works: db.sql logic.rb

Then git will apply one commit at a time. After each commit, it will show a prompt, and then you
can do the following:

Stopped at 43b075a92a952faf999e76c4e4d7fa0f44576579... first draft: page.html and db.sql
You can amend the commit now, with

 git commit --amend

Once you are satisfied with your changes, run

 git rebase --continue

$ git status
rebase in progress; onto 4975ae9
You are currently editing a commit while rebasing branch 'feature' on '4975ae9'.
 (use "git commit --amend" to amend the current commit)
 (use "git rebase --continue" once you are satisfied with your changes)

nothing to commit, working directory clean
$ git reset HEAD^ #This 'uncommits' all the changes in this commit.
$ git status -s
 M db.sql
 M page.html
$ git add db.sql #now we will create the smaller topical commits
$ git commit -m "first draft: db.sql"
$ git add page.html
$ git commit -m "first draft: page.html"
$ git rebase --continue

Then you will repeat those steps for every commit. In the end, you have this:

$ git log --oneline
0309336 db adding works: logic.rb
06f81c9 db adding works: db.sql
3264de2 adding todo items: page.html
675a02b adding todo items: logic.rb
272c674 first draft: page.html
08c275d first draft: db.sql

Now we run rebase one more time to reorder and squash:

$ git rebase -i master

This will be shown in text editor:

pick 08c275d first draft: db.sql
pick 272c674 first draft: page.html
pick 675a02b adding todo items: logic.rb
pick 3264de2 adding todo items: page.html
pick 06f81c9 db adding works: db.sql
pick 0309336 db adding works: logic.rb

https://riptutorial.com/ 168

Change it to this:

pick 08c275d first draft: db.sql
s 06f81c9 db adding works: db.sql
pick 675a02b adding todo items: logic.rb
s 0309336 db adding works: logic.rb
pick 272c674 first draft: page.html
s 3264de2 adding todo items: page.html

NOTICE: make sure that you tell git rebase to apply/squash the smaller topical commits in the
order they were chronologically commited. Otherwise you might have false, needless merge
conflicts to deal with.

When that interactive rebase is all said and done, you get this:

$ git log --oneline master..
74bdd5f adding todos: GUI layer
e8d8f7e adding todos: business logic layer
121c578 adding todos: DB layer

Recap

You have now rebased your chronological commits into topical commits. In real life, you may not
need to do this every single time, but when you do want or need to do this, now you can. Plus,
hopefully you learned more about git rebase.

Setup git-pull for automatically perform a rebase instead of a merge

If your team is following a rebase-based workflow, it may be a advantageous to setup git so that
each newly created branch will perform a rebase operation, instead of a merge operation, during a
git pull.

To setup every new branch to automatically rebase, add the following to your .gitconfig or
.git/config:

[branch]
autosetuprebase = always

Command line: git config [--global] branch.autosetuprebase always

Alternatively, you can setup the git pull command to always behave as if the option --rebase was
passed:

[pull]
rebase = true

Command line: git config [--global] pull.rebase true

https://riptutorial.com/ 169

Testing all commits during rebase

Before making a pull request, it is useful to make sure that compile is successful and tests are
passing for each commit in the branch. We can do that automatically using -x parameter.

For example:

git rebase -i -x make

will perform the interactive rebase and stop after each commit to execute make. In case make fails,
git will stop to give you an opportunity to fix the issues and amend the commit before proceeding
with picking the next one.

Configuring autostash

Autostash is a very useful configuration option when using rebase for local changes. Oftentimes,
you may need to bring in commits from the upstream branch, but are not ready to commit just yet.

However, Git does not allow a rebase to start if the working directory is not clean. Autostash to the
rescue:

git config --global rebase.autostash # one time configuration
git rebase @{u} # example rebase on upstream branch

The autostash will be applied whenever the rebase is finished. It does not matter whether the
rebase finishes successfully, or if it is aborted. Either way, the autostash will be applied. If the
rebase was successful, and the base commit therefore changed, then there may be a conflict
between the autostash and the new commits. In this case, you will have to resolve the conflicts
before committing. This is no different than if you would have manually stashed, and then applied,
so there is no downside to doing it automatically.

Read Rebasing online: https://riptutorial.com/git/topic/355/rebasing

https://riptutorial.com/ 170

https://riptutorial.com/git/topic/355/rebasing

Chapter 43: Recovering

Examples

Recovering from a lost commit

In case you have reverted back to a past commit and lost a newer commit you can recover the lost
commit by running

git reflog

Then find your lost commit, and reset back to it by doing

git reset HEAD --hard <sha1-of-commit>

Restore a deleted file after a commit

In case you have accidentally commited a delete on a file and later realized that you need it back.

First find the commit id of the commit that deleted your file.

git log --diff-filter=D --summary

Will give you a sorted summary of commits which deleted files.

Then proceed to restore the file by

git checkout 81eeccf~1 <your-lost-file-name>

(Replace 81eeccf with your own commit id)

Restore file to a previous version

To restore a file to a previous version you can use reset.

git reset <sha1-of-commit> <file-name>

If you have already made local changes to the file (that you do not require!) you can also use the -
-hard option

Recover a deleted branch

To recover a deleted branch you need to find the commit which was the head of your deleted
branch by running

https://riptutorial.com/ 171

git reflog

You can then recreate the branch by running

git checkout -b <branch-name> <sha1-of-commit>

You will not be able to recover deleted branches if git's garbage collector deleted dangling
commits - those without refs. Always have a backup of your repository, especially when you work
in a small team / proprietary project

Recovering from a reset

With Git, you can (almost) always turn the clock back

Don't be afraid to experiment with commands that rewrite history*. Git doesn't delete your commits
for 90 days by default, and during that time you can easily recover them from the reflog:

$ git reset @~3 # go back 3 commits
$ git reflog
c4f708b HEAD@{0}: reset: moving to @~3
2c52489 HEAD@{1}: commit: more changes
4a5246d HEAD@{2}: commit: make important changes
e8571e4 HEAD@{3}: commit: make some changes
... earlier commits ...
$ git reset 2c52489
... and you're back where you started

* Watch out for options like --hard and --force though — they can discard data.
* Also, avoid rewriting history on any branches you're collaborating on.

Recover from git stash

To get your most recent stash after running git stash, use

git stash apply

To see a list of your stashes, use

git stash list

You will get a list that looks something like this

stash@{0}: WIP on master: 67a4e01 Merge tests into develop
stash@{1}: WIP on master: 70f0d95 Add user role to localStorage on user login

Choose a different git stash to restore with the number that shows up for the stash you want

git stash apply stash@{2}

https://riptutorial.com/ 172

https://git-scm.com/docs/git-gc

You can also choose 'git stash pop', it works same as 'git stash apply' like..

 git stash pop

or

 git stash pop stash@{2}

Difference in git stash apply and git stash pop...

git stash pop:- stash data will be remove from stack of stash list.

Ex:-

git stash list

You will get a list that looks something like this

stash@{0}: WIP on master: 67a4e01 Merge tests into develop
stash@{1}: WIP on master: 70f0d95 Add user role to localStorage on user login

Now pop stash data using command

git stash pop

Again Check for stash list

git stash list

You will get a list that looks something like this

 stash@{0}: WIP on master: 70f0d95 Add user role to localStorage on user login

You can see one stash data is removed (popped) from stash list and stash@{1} became
stash@{0}.

Read Recovering online: https://riptutorial.com/git/topic/725/recovering

https://riptutorial.com/ 173

https://riptutorial.com/git/topic/725/recovering

Chapter 44: Reflog - Restoring commits not
shown in git log

Remarks

Git's reflog records the position of HEAD (the ref for the current state of the repository) every time
that it is changed. Generally, every operation that might be destructive involves moving the HEAD
pointer (since if anything is changed, including in the past, the tip commit's hash will change), so it
is always possible to revert back to an older state, before a dangerous operation, by finding the
right line in the reflog.

Objects that are not referenced by any ref are usually garbage collected in ~30 days, however, so
the reflog may not always be able to help.

Examples

Recovering from a bad rebase

Suppose that you had started an interactive rebase:

git rebase --interactive HEAD~20

and by mistake, you squashed or dropped some commits that you didn't want to lose, but then
completed the rebase. To recover, do git reflog, and you might see some output like this:

aaaaaaa HEAD@{0} rebase -i (finish): returning to refs/head/master
bbbbbbb HEAD@{1} rebase -i (squash): Fix parse error
...
ccccccc HEAD@{n} rebase -i (start): checkout HEAD~20
ddddddd HEAD@{n+1} ...
...

In this case, the last commit, ddddddd (or HEAD@{n+1}) is the tip of your pre-rebase branch. Thus, to
recover that commit (and all parent commits, including those accidentally squashed or dropped),
do:

$ git checkout HEAD@{n+1}

You can then create a new branch at that commit with git checkout -b [branch]. See Branching for
more information.

Read Reflog - Restoring commits not shown in git log online:
https://riptutorial.com/git/topic/5149/reflog---restoring-commits-not-shown-in-git-log

https://riptutorial.com/ 174

http://www.riptutorial.com/git/example/1633/creating-and-checking-out-new-branches
https://riptutorial.com/git/topic/5149/reflog---restoring-commits-not-shown-in-git-log

Chapter 45: Renaming

Syntax

git mv <source> <destination>•
git mv -f <source> <destination>•

Parameters

Parameter Details

-f or --force Force renaming or moving of a file even if the target exists

Examples

Rename Folders

To rename a folder from oldName to newName

git mv directoryToFolder/oldName directoryToFolder/newName

Followed by git commit and/or git push

If this error occurs:

fatal: renaming 'directoryToFolder/oldName' failed: Invalid argument

Use the following command:

git mv directoryToFolder/oldName temp && git mv temp directoryToFolder/newName

Renaming a local branch

You can rename branch in local repository using this command:

git branch -m old_name new_name

rename a local and the remote branch

the easiest way is to have the local branch checked out:

git checkout old_branch

then rename the local branch, delete the old remote and set the new renamed branch as

https://riptutorial.com/ 175

upstream:

git branch -m new_branch
git push origin :old_branch
git push --set-upstream origin new_branch

Read Renaming online: https://riptutorial.com/git/topic/1814/renaming

https://riptutorial.com/ 176

https://riptutorial.com/git/topic/1814/renaming

Chapter 46: Resolving merge conflicts

Examples

Manual Resolution

While performing a git merge you may find that git reports a "merge conflict" error. It will report to
you which files have conflicts, and you will need to resolve the conflicts.

A git status at any point will help you see what still needs editing with a helpful message like

On branch master
You have unmerged paths.
 (fix conflicts and run "git commit")

Unmerged paths:
 (use "git add <file>..." to mark resolution)

 both modified: index.html

no changes added to commit (use "git add" and/or "git commit -a")

Git leaves markers in the files to tell you where the conflict arose:

<<<<<<<<< HEAD: index.html #indicates the state of your current branch
<div id="footer">contact : email@somedomain.com</div>
========= #indicates break between conflicts
<div id="footer">
please contact us at email@somedomain.com
</div>
>>>>>>>>> iss2: index.html #indicates the state of the other branch (iss2)

In order to resolve the conflicts, you must edit the area between the <<<<<< and >>>>>>>
markers appropriately, remove the status lines (the <<<<<<<, >>>>>>>, and ======== lines)
completely. Then git add index.html to mark it resolved and git commit to finish the merge.

Read Resolving merge conflicts online: https://riptutorial.com/git/topic/3233/resolving-merge-
conflicts

https://riptutorial.com/ 177

https://riptutorial.com/git/topic/3233/resolving-merge-conflicts
https://riptutorial.com/git/topic/3233/resolving-merge-conflicts

Chapter 47: Rev-List

Syntax

git rev-list [options] <commit> ...•

Parameters

Parameter Details

--oneline Display commits as a single line with their title.

Examples

List Commits in master but not in origin/master

git rev-list --oneline master ^origin/master

Git rev-list will list commits in one branch that are not in another branch. It is a great tool when
you're trying to figure out if code has been merged into a branch or not.

Using the --oneline option will display the title of each commit.•
The ^ operator excludes commits in the specified branch from the list.•
You can pass more than two branches if you want. For example, git rev-list foo bar ^baz
lists commits in foo and bar, but not baz.

•

Read Rev-List online: https://riptutorial.com/git/topic/431/rev-list

https://riptutorial.com/ 178

https://riptutorial.com/git/topic/431/rev-list

Chapter 48: Rewriting history with filter-
branch

Examples

Changing the author of commits

You can use an environment filter to change the author of commits. Just modify and export
$GIT_AUTHOR_NAME in the script to change who authored the commit.

Create a file filter.sh with contents like so:

if ["$GIT_AUTHOR_NAME" = "Author to Change From"]
then
 export GIT_AUTHOR_NAME="Author to Change To"
 export GIT_AUTHOR_EMAIL="email.to.change.to@example.com"
fi

Then run filter-branch from the command line:

chmod +x ./filter.sh
git filter-branch --env-filter ./filter.sh

Setting git committer equal to commit author

This command, given a commit range commit1..commit2, rewrites history so that git commit author
becomes also git committer:

git filter-branch -f --commit-filter \
 'export GIT_COMMITTER_NAME=\"$GIT_AUTHOR_NAME\";
 export GIT_COMMITTER_EMAIL=\"$GIT_AUTHOR_EMAIL\";
 export GIT_COMMITTER_DATE=\"$GIT_AUTHOR_DATE\";
 git commit-tree $@' \
 -- commit1..commit2

Read Rewriting history with filter-branch online: https://riptutorial.com/git/topic/2825/rewriting-
history-with-filter-branch

https://riptutorial.com/ 179

https://riptutorial.com/git/topic/2825/rewriting-history-with-filter-branch
https://riptutorial.com/git/topic/2825/rewriting-history-with-filter-branch

Chapter 49: Show

Syntax

git show [options] <object>...•

Remarks

Shows various Git objects.

For commits, shows the commit message and diff•
For tags, shows the tag message and referenced object•

Examples

Overview

git show shows various Git objects.

For commits:

Shows the commit message and a diff of the changes introduced.

Command Description

git show shows the previous commit

git show @~3 shows the 3rd-from-last commit

For trees and blobs:

Shows the tree or blob.

Command Description

git show @~3:
shows the project root directory as it was 3 commits ago (a
tree)

git show
@~3:src/program.js shows src/program.js as it was 3 commits ago (a blob)

git show @:a.txt @:b.txt shows a.txt concatenated with b.txt from current commit

https://riptutorial.com/ 180

For tags:

Shows the tag message and the referenced object.

Read Show online: https://riptutorial.com/git/topic/3030/show

https://riptutorial.com/ 181

https://riptutorial.com/git/topic/3030/show

Chapter 50: Squashing

Remarks

What is squashing?

Squashing is the process of taking multiple commits and combining them into a single commit
encapsulating all the changes from the initial commits.

Squashing and Remote Branches

Pay special attention when squashing commits on a branch that is tracking a remote branch; if you
squash a commit that has already been pushed to a remote branch, the two branches will be
diverged, and you will have to use git push -f to force those changes onto the remote branch. Be
aware that this can cause issues for others tracking that remote branch, so caution should
be used when force-pushing squashed commits onto public or shared repositories.

If the project is hosted on GitHub, you can enable "force push protection" on some branches, like
master, by adding it to Settings - Branches - Protected Branches.

Examples

Squash Recent Commits Without Rebasing

If you want to squash the previous x commits into a single one, you can use the following
commands:

git reset --soft HEAD~x
git commit

Replacing x with the number of previous commits you want to be included in the squashed
commit.

Mind that this will create a new commit, essentially forgetting information about the previous x
commits including their author, message and date. You probably want to first copy-paste an
existing commit message.

Squashing Commits During a Rebase

Commits can be squashed during a git rebase. It is recommended that you understand rebasing
before attempting to squash commits in this fashion.

Determine which commit you would like to rebase from, and note its commit hash.1.

Run git rebase -i [commit hash].2.

https://riptutorial.com/ 182

http://www.riptutorial.com/git/topic/355/rebasing

Alternatively, you can type HEAD~4 instead of a commit hash, to view the latest commit and 4
more commits before the latest one.

In the editor that opens when running this command, determine which commits you want to
squash. Replace pick at the beginning of those lines with squash to squash them into the
previous commit.

3.

After selecting which commits you would like to squash, you will be prompted to write a
commit message.

4.

Logging Commits to determine where to rebase

> git log --oneline
612f2f7 This commit should not be squashed
d84b05d This commit should be squashed
ac60234 Yet another commit
36d15de Rebase from here
17692d1 Did some more stuff
e647334 Another Commit
2e30df6 Initial commit

> git rebase -i 36d15de

At this point your editor of choice pops up where you can describe what you want to do with the
commits. Git provides help in the comments. If you leave it as is then nothing will happen because
every commit will be kept and their order will be the same as they were before the rebase. In this
example we apply the following commands:

pick ac60234 Yet another commit
squash d84b05d This commit should be squashed
pick 612f2f7 This commit should not be squashed

Rebase 36d15de..612f2f7 onto 36d15de (3 command(s))

Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the line) using shell

These lines can be re-ordered; they are executed from top to bottom.

If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

Note that empty commits are commented out

Git log after writing commit message

> git log --oneline
77393eb This commit should not be squashed
e090a8c Yet another commit

https://riptutorial.com/ 183

36d15de Rebase from here
17692d1 Did some more stuff
e647334 Another Commit
2e30df6 Initial commit

Autosquash: Committing code you want to squash during a rebase

Given the following history, imagine you make a change that you want to squash into the commit
bbb2222 A second commit:

$ git log --oneline --decorate
ccc3333 (HEAD -> master) A third commit
bbb2222 A second commit
aaa1111 A first commit
9999999 Initial commit

Once you've made your changes, you can add them to the index as usual, then commit them
using the --fixup argument with a reference to the commit you want to squash into:

$ git add .
$ git commit --fixup bbb2222
[my-feature-branch ddd4444] fixup! A second commit

This will create a new commit with a commit message that Git can recognize during an interactive
rebase:

$ git log --oneline --decorate
ddd4444 (HEAD -> master) fixup! A second commit
ccc3333 A third commit
bbb2222 A second commit
aaa1111 A first commit
9999999 Initial commit

Next, do an interactive rebase with the --autosquash argument:

$ git rebase --autosquash --interactive HEAD~4

Git will propose you to squash the commit you made with the commit --fixup into the correct
position:

pick aaa1111 A first commit
pick bbb2222 A second commit
fixup ddd4444 fixup! A second commit
pick ccc3333 A third commit

To avoid having to type --autosquash on every rebase, you can enable this option by default:

$ git config --global rebase.autosquash true

Squashing Commit During Merge

https://riptutorial.com/ 184

You can use git merge --squash to squash changes introduced by a branch into a single commit.
No actual commit will be created.

git merge --squash <branch>
git commit

This is more or less equivalent to using git reset, but is more convenient when changes being
incorporated have a symbolic name. Compare:

git checkout <branch>
git reset --soft $(git merge-base master <branch>)
git commit

Autosquashing and fixups

When committing changes it is possible to specify that the commit will in future be squashed to
another commit and this can be done like so,

git commit --squash=[commit hash of commit to which this commit will be squashed to]

One might also use, --fixup=[commit hash] alternatively to fixup.

It is also possible to use words from the commit message instead of the commit hash, like so,

git commit --squash :/things

where the most recent commit with the word 'things' would be used.

These commits' message would begin with 'fixup!' or 'squash!' followed by the rest of the commit
message to which these commits will be squashed to.

When rebasing --autosquash flag should be used to use the autosquash/fixup feature.

Read Squashing online: https://riptutorial.com/git/topic/598/squashing

https://riptutorial.com/ 185

https://riptutorial.com/git/topic/598/squashing

Chapter 51: Staging

Remarks

It's worth noting that staging has little to do with 'files' themselves and everything to do with the
changes within each given file. We stage files that contain changes, and git tracks the changes as
commits (even when the changes in a commit are made across several files).

The distinction between files and commits may seem minor, but understanding this difference is
fundamental to understanding essential functions like cherry-pick and diff. (See the frustration in
comments regarding the complexity of an accepted answer that proposes cherry-pick as a file
management tool.)

What's a good place for explaining concepts? Is it in remarks?

Key concepts:

A files is the more common metaphor of the two in information technology. Best practice dictates
that a filename not change as its contents change (with a few recognized exceptions).

A commit is a metaphor that is unique to source code management. Commits are changes related
to a specific effort, like a bug fix. Commits often involve several files. A single, minor bug fix may
involve tweaks to templates and css in unique files. As the change is described, developed,
documented, reviewed and deployed, the changes across the separate files can be annotated and
handled as a single unit. The single unit in this case is the commit. Equally important, focusing just
on the commit during a review allows the unchanged lines of code in the various affected files to
be ignored safely.

Examples

Staging A Single File

To stage a file for committing, run

git add <filename>

Staging All Changes to Files

git add -A

2.0

git add .

In version 2.x, git add . will stage all changes to files in the current directory and all its

https://riptutorial.com/ 186

http://stackoverflow.com/questions/449541/how-do-you-merge-selective-files-with-git-merge
http://stackoverflow.com/questions/449541/how-do-you-merge-selective-files-with-git-merge

subdirectories. However, in 1.x it will only stage new and modified files, not deleted files.

Use git add -A, or its equivalent command git add --all, to stage all changes to files in any
version of git.

Stage deleted files

git rm filename

To delete the file from git without removing it from disk, use the --cached flag

git rm --cached filename

Unstage a file that contains changes

git reset <filePath>

Interactive add

git add -i (or --interactive) will give you an interactive interface where you can edit the index, to
prepare what you want to have in the next commit. You can add and remove changes to whole
files, add untracked files and remove files from being tracked, but also select subsection of
changes to put in the index, by selecting chunks of changes to be added, splitting those chunks, or
even editing the diff. Many graphical commit tools for Git (like e.g. git gui) include such feature;
this might be easier to use than the command line version.

It is very useful (1) if you have entangled changes in the working directory that you want to put in
separate commits, and not all in one single commit (2) if you are in the middle of an interactive
rebase and want to split too large commit.

$ git add -i
 staged unstaged path
 1: unchanged +4/-4 index.js
 2: +1/-0 nothing package.json

*** Commands ***
 1: status 2: update 3: revert 4: add untracked
 5: patch 6: diff 7: quit 8: help
What now>

The top half of this output shows the current state of the index broken up into staged and unstaged
columns:

index.js has had 4 lines added and 4 lines removed. It is currently not staged, as the current
status reports "unchanged." When this file becomes staged, the +4/-4 bit will be transferred
to the staged column and the unstaged column will read "nothing."

1.

package.json has had one line added and has been staged. There are no further changes
since it has been staged as indicated by the "nothing" line under the unstaged column.

2.

https://riptutorial.com/ 187

http://stackoverflow.com/a/26039014/3345375

The bottom half shows what you can do. Either enter a number (1-8) or a letter (s, u, r, a, p, d, q, h).

status shows output identical to the top part of the output above.

update allows you to make further changes to the staged commits with additional syntax.

revert will revert the staged commit information back to HEAD.

add untracked allows you to add filepaths previously untracked by version control.

patch allows for one path to be selected out of an output similar to status for further analysis.

diff displays what will be committed.

quit exits the command.

help presents further help on using this command.

Add changes by hunk

You can see what "hunks" of work would be staged for commit using the patch flag:

git add -p

or

git add --patch

This opens an interactive prompt that allows you to look at the diffs and let you decide whether
you want to include them or not.

Stage this hunk [y,n,q,a,d,/,s,e,?]?

y stage this hunk for the next commit•
n do not stage this hunk for the next commit•
q quit; do not stage this hunk or any of the remaining hunks•
a stage this hunk and all later hunks in the file•
d do not stage this hunk or any of the later hunks in the file•
g select a hunk to go to•
/ search for a hunk matching the given regex•
j leave this hunk undecided, see next undecided hunk•
J leave this hunk undecided, see next hunk•
k leave this hunk undecided, see previous undecided hunk•
K leave this hunk undecided, see previous hunk•
s split the current hunk into smaller hunks•
e manually edit the current hunk•
? print hunk help•

This makes it easy to catch changes which you do not want to commit.

https://riptutorial.com/ 188

You can also open this via git add --interactive and selecting p.

Show Staged Changes

To display the hunks that are staged for commit:

git diff --cached

Read Staging online: https://riptutorial.com/git/topic/244/staging

https://riptutorial.com/ 189

https://riptutorial.com/git/topic/244/staging

Chapter 52: Stashing

Syntax

git stash list [<options>]•
git stash show [<stash>]•
git stash drop [-q|--quiet] [<stash>]•
git stash (pop | apply) [--index] [-q|--quiet] [<stash>]•
git stash branch <branchname> [<stash>]•
git stash [save [-p|--patch] [-k|--[no-]keep-index] [-q|--quiet] [-u|--include-untracked]
[-a|--all] [<message>]]

•

git stash clear•
git stash create [<message>]•
git stash store [-m|--message <message>] [-q|--quiet] <commit>•

Parameters

Parameter Details

show
Show the changes recorded in the stash as a diff between the stashed state
and its original parent. When no <stash> is given, shows the latest one.

list

List the stashes that you currently have. Each stash is listed with its name (e.g.
stash@{0} is the latest stash, stash@{1} is the one before, etc.), the name of
the branch that was current when the stash was made, and a short description
of the commit the stash was based on.

pop
Remove a single stashed state from the stash list and apply it on top of the
current working tree state.

apply Like pop, but do not remove the state from the stash list.

clear
Remove all the stashed states. Note that those states will then be subject to
pruning, and may be impossible to recover.

drop
Remove a single stashed state from the stash list. When no <stash> is given, it
removes the latest one. i.e. stash@{0}, otherwise <stash> must be a valid stash
log reference of the form stash@{<revision>}.

create
Create a stash (which is a regular commit object) and return its object name,
without storing it anywhere in the ref namespace. This is intended to be useful
for scripts. It is probably not the command you want to use; see "save" above.

store
Store a given stash created via git stash create (which is a dangling merge
commit) in the stash ref, updating the stash reflog. This is intended to be useful
for scripts. It is probably not the command you want to use; see "save" above.

https://riptutorial.com/ 190

Remarks

Stashing allows us to have a clean working directory without losing any information. Then, it's
possible to start working on something different and/or to switch branches.

Examples

What is Stashing?

When working on a project, you might be half-way through a feature branch change when a bug is
raised against master. You're not ready to commit your code, but you also don't want to lose your
changes. This is where git stash comes in handy.

Run git status on a branch to show your uncommitted changes:

(master) $ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: business/com/test/core/actions/Photo.c

no changes added to commit (use "git add" and/or "git commit -a")

Then run git stash to save these changes to a stack:

(master) $ git stash
Saved working directory and index state WIP on master:
2f2a6e1 Merge pull request #1 from test/test-branch
HEAD is now at 2f2a6e1 Merge pull request #1 from test/test-branch

If you have added files to your working directory these can be stashed as well. You just need to
stage them first.

(master) $ git stash
Saved working directory and index state WIP on master:
(master) $ git status
On branch master
Untracked files:
 (use "git add <file>..." to include in what will be committed)

 NewPhoto.c

nothing added to commit but untracked files present (use "git add" to track)
(master) $ git stage NewPhoto.c
(master) $ git stash
Saved working directory and index state WIP on master:
(master) $ git status
On branch master
nothing to commit, working tree clean

https://riptutorial.com/ 191

(master) $

Your working directory is now clean of any changes you made. You can see this by re-running git
status:

(master) $ git status
On branch master
Your branch is up-to-date with 'origin/master'.
nothing to commit, working directory clean

To apply the very last stash, run git stash apply (additionally, you can apply and remove the last
stashed changed with git stash pop):

(master) $ git stash apply
On branch master
Your branch is up-to-date with 'origin/master'.
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: business/com/test/core/actions/Photo.c

no changes added to commit (use "git add" and/or "git commit -a")

Note, however, that stashing does not remember the branch you were working on. In the above
examples, the user was stashing on master. If they switch to the dev branch, dev, and run git
stash apply the last stash is put on the dev branch.

(master) $ git checkout -b dev
Switched to a new branch 'dev'
(dev) $ git stash apply
On branch dev
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: business/com/test/core/actions/Photo.c

no changes added to commit (use "git add" and/or "git commit -a")

Create stash

Save the current state of working directory and the index (also known as the staging area) in a
stack of stashes.

git stash

To include all untracked files in the stash use the --include-untracked or -u flags.

git stash --include-untracked

https://riptutorial.com/ 192

To include a message with your stash to make it more easily identifiable later

git stash save "<whatever message>"

To leave the staging area in current state after stash use the --keep-index or -k flags.

git stash --keep-index

List saved stashes

git stash list

This will list all stashes in the stack in reverse chronological order.
You will get a list that looks something like this:

stash@{0}: WIP on master: 67a4e01 Merge tests into develop
stash@{1}: WIP on master: 70f0d95 Add user role to localStorage on user login

You can refer to specific stash by its name, for example stash@{1}.

Show stash

Shows the changes saved in the last stash

git stash show

Or a specific stash

git stash show stash@{n}

To show content of the changes saved for the specific stash

git stash show -p stash@{n}

Remove stash

Remove all stash

git stash clear

Removes the last stash

git stash drop

Or a specific stash

https://riptutorial.com/ 193

git stash drop stash@{n}

Apply and remove stash

To apply the last stash and remove it from the stack - type:

git stash pop

To apply specific stash and remove it from the stack - type:

git stash pop stash@{n}

Apply stash without removing it

Applies the last stash without removing it from the stack

git stash apply

Or a specific stash

git stash apply stash@{n}

Recovering earlier changes from stash

To get your most recent stash after running git stash, use

 git stash apply

To see a list of your stashes, use

 git stash list

You will get a list that looks something like this

stash@{0}: WIP on master: 67a4e01 Merge tests into develop
stash@{1}: WIP on master: 70f0d95 Add user role to localStorage on user login

Choose a different git stash to restore with the number that shows up for the stash you want

git stash apply stash@{2}

Partial stash

If you would like to stash only some diffs in your working set, you can use a partial stash.

git stash -p

https://riptutorial.com/ 194

And then interactively select which hunks to stash.

As of version 2.13.0 you can also avoid the interactive mode and create a partial stash with a
pathspec using the new push keyword.

git stash push -m "My partial stash" -- app.config

Apply part of a stash with checkout

You've made a stash and wish to checkout only some of the files in that stash.

git checkout stash@{0} -- myfile.txt

Interactive Stashing

Stashing takes the dirty state of your working directory – that is, your modified tracked files and
staged changes – and saves it on a stack of unfinished changes that you can reapply at any time.

Stashing only modified files:

Suppose you don't want to stash the staged files and only stash the modified files so you can use:

git stash --keep-index

Which will stash only the modified files.

Stashing untracked files:

Stash never saves the untracked files it only stashes the modified and staged files. So suppose if
you need to stash the untracked files too then you can use this:

git stash -u

this will track the untracked, staged and modified files.

Stash some particular changes only:

Suppose you need to stash only some part of code from the file or only some files only from all the
modified and stashed files then you can do it like this:

git stash --patch

Git will not stash everything that is modified but will instead prompt you interactively which of the
changes you would like to stash and which you would like to keep in your working directory.

Move your work in progress to another branch

If while working you realize you're on wrong branch and you haven't created any commits yet, you

https://riptutorial.com/ 195

can easily move your work to correct branch using stashing:

git stash
git checkout correct-branch
git stash pop

Remember git stash pop will apply the last stash and delete it from the stash list. To keep the
stash in the list and only apply to some branch you can use:

git stash apply

Recover a dropped stash

If you have only just popped it and the terminal is still open, you will still have the hash value
printed by git stash pop on screen:

$ git stash pop
[...]
Dropped refs/stash@{0} (2ca03e22256be97f9e40f08e6d6773c7d41dbfd1)

(Note that git stash drop also produces the same line.)

Otherwise, you can find it using this:

git fsck --no-reflog | awk '/dangling commit/ {print $3}'

This will show you all the commits at the tips of your commit graph which are no longer referenced
from any branch or tag – every lost commit, including every stash commit you’ve ever created, will
be somewhere in that graph.

The easiest way to find the stash commit you want is probably to pass that list to gitk:

gitk --all $(git fsck --no-reflog | awk '/dangling commit/ {print $3}')

This will launch a repository browser showing you every single commit in the repository ever,
regardless of whether it is reachable or not.

You can replace gitk there with something like git log --graph --oneline --decorate if you prefer a
nice graph on the console over a separate GUI app.

To spot stash commits, look for commit messages of this form:

 WIP on somebranch: commithash Some old commit message

Once you know the hash of the commit you want, you can apply it as a stash:

git stash apply $stash_hash

Or you can use the context menu in gitk to create branches for any unreachable commits you are

https://riptutorial.com/ 196

interested in. After that, you can do whatever you want with them with all the normal tools. When
you’re done, just blow those branches away again.

Read Stashing online: https://riptutorial.com/git/topic/1440/stashing

https://riptutorial.com/ 197

https://riptutorial.com/git/topic/1440/stashing

Chapter 53: Submodules

Examples

Adding a submodule

You can include another Git repository as a folder within your project, tracked by Git:

$ git submodule add https://github.com/jquery/jquery.git

You should add and commit the new .gitmodules file; this tells Git what submodules should be
cloned when git submodule update is run.

Cloning a Git repository having submodules

When you clone a repository that uses submodules, you'll need to initialize and update them.

$ git clone --recursive https://github.com/username/repo.git

This will clone the referenced submodules and place them in the appropriate folders (including
submodules within submodules). This is equivalent to running git submodule update --init --
recursive immediately after the clone is finished.

Updating a Submodule

A submodule references a specific commit in another repository. To check out the exact state that
is referenced for all submodules, run

git submodule update --recursive

Sometimes instead of using the state that is referenced you want to update to your local checkout
to the latest state of that submodule on a remote. To check out all submodules to the latest state
on the remote with a single command, you can use

git submodule foreach git pull <remote> <branch>

or use the default git pull arguments

git submodule foreach git pull

Note that this will just update your local working copy. Running git status will list the submodule
directory as dirty if it changed because of this command. To update your repository to reference
the new state instead, you have to commit the changes:

git add <submodule_directory>

https://riptutorial.com/ 198

git commit

There might be some changes you have that can have merge conflict if you use git pull so you
can use git pull --rebase to rewind your changes to top, most of the time it decreases the
chances of conflict. Also it pulls all the branches to local.

git submodule foreach git pull --rebase

To checkout the latest state of a specific submodule, you can use :

git submodule update --remote <submodule_directory>

Setting a submodule to follow a branch

A submodule is always checked out at a specific commit SHA1 (the "gitlink", special entry in the
index of the parent repo)

But one can request to update that submodule to the latest commit of a branch of the submodule
remote repo.

Rather than going in each submodule, doing a git checkout abranch --track origin/abranch, git
pull, you can simply do (from the parent repo) a:

git submodule update --remote --recursive

Since the SHA1 of the submodule would change, you would still need to follow that with:

git add .
git commit -m "update submodules"

That supposes the submodules were:

either added with a branch to follow:

 git submodule -b abranch -- /url/of/submodule/repo

•

or configured (for an existing submodule) to follow a branch:

 cd /path/to/parent/repo
 git config -f .gitmodules submodule.asubmodule.branch abranch

•

Removing a submodule

1.8

You can remove a submodule (e.g. the_submodule) by calling:

https://riptutorial.com/ 199

$ git submodule deinit the_submodule
$ git rm the_submodule

git submodule deinit the_submodule deletes the_submodules' entry from .git/config. This
excludes the_submodule from git submodule update, git submodule sync and git submodule
foreach calls and deletes its local content (source). Also, this will not be shown as change in
your parent repository. git submodule init and git submodule update will restore the
submodule, again without commitable changes in your parent repository.

•

git rm the_submodule will remove the submodule from the work tree. The files will be gone as
well as the submodules' entry in the .gitmodules file (source). If only git rm the_submodule
(without prior git submodule deinit the_submodule is run, however, the submodules' entry in
your .git/config file will remain.

•

1.8

Taken from here:

Delete the relevant section from the .gitmodules file.1.
Stage the .gitmodules changes git add .gitmodules2.
Delete the relevant section from .git/config.3.
Run git rm --cached path_to_submodule (no trailing slash).4.
Run rm -rf .git/modules/path_to_submodule5.
Commit git commit -m "Removed submodule <name>"6.
Delete the now untracked submodule files7.
rm -rf path_to_submodule8.

Moving a submodule

1.8

Run:

$ git mv old/path/to/module new/path/to/module

1.8

Edit .gitmodules and change the path of the submodule appropriately, and put it in the index
with git add .gitmodules.

1.

If needed, create the parent directory of the new location of the submodule (mkdir -p
new/path/to).

2.

Move all content from the old to the new directory (mv -vi old/path/to/module
new/path/to/submodule).

3.

Make sure Git tracks this directory (git add new/path/to).4.

Remove the old directory with git rm --cached old/path/to/module.5.

https://riptutorial.com/ 200

https://git-scm.com/docs/git-submodule#git-submodule-deinit
https://git-scm.com/docs/git-rm#_submodules
http://stackoverflow.com/a/1260982/7598462

Move the directory .git/modules/old/path/to/module with all its content to .git/modules/
new/path/to/module.

6.

Edit the .git/modules/new/path/to/config file, make sure that worktree item points to the new
locations, so in this example it should be worktree = ../../../../../old/path/to/module.
Typically there should be two more .. then directories in the direct path in that place. . Edit
the file new/path/to/module/.git, make sure that the path in it points to the correct new
location inside the main project .git folder, so in this example gitdir: ../../../.git/modules/
new/path/to/module.

git status output looks like this afterwards:

 # On branch master
 # Changes to be committed:
 # (use "git reset HEAD <file>..." to unstage)
 #
 # modified: .gitmodules
 # renamed: old/path/to/submodule -> new/path/to/submodule
 #

7.

Finally, commit the changes.8.

This example from Stack Overflow, by Axel Beckert

Read Submodules online: https://riptutorial.com/git/topic/306/submodules

https://riptutorial.com/ 201

http://stackoverflow.com/a/6310246
http://stackoverflow.com/users/793172
https://riptutorial.com/git/topic/306/submodules

Chapter 54: Subtrees

Syntax

git subtree add -P <prefix> <commit>•
git subtree add -P <prefix> <repository> <ref>•
git subtree pull -P <prefix> <repository> <ref>•
git subtree push -P <prefix> <repository> <ref>•
git subtree merge -P <prefix> <commit>•
git subtree split -P <prefix> [OPTIONS] [<commit>]•

Remarks

This is an alternative to using a submodule

Examples

Create, Pull, and Backport Subtree

Create Subtree

Add a new remote called plugin pointing to the plugin's repository:

git remote add plugin https://path.to/remotes/plugin.git

Then Create a subtree specifying the new folder prefix plugins/demo. plugin is the remote name,
and master refers to the master branch on the subtree's repository:

git subtree add --prefix=plugins/demo plugin master

Pull Subtree Updates

Pull normal commits made in plugin:

git subtree pull --prefix=plugins/demo plugin master

Backport Subtree Updates

Specify commits made in superproject to be backported:

git commit -am "new changes to be backported"

1.

https://riptutorial.com/ 202

https://git-scm.com/docs/git-submodule

Checkout new branch for merging, set to track subtree repository:

git checkout -b backport plugin/master

2.

Cherry-pick backports:

git cherry-pick -x --strategy=subtree master

3.

Push changes back to plugin source:

git push plugin backport:master

4.

Read Subtrees online: https://riptutorial.com/git/topic/1634/subtrees

https://riptutorial.com/ 203

https://riptutorial.com/git/topic/1634/subtrees

Chapter 55: Tidying up your local and remote
repository

Examples

Delete local branches that have been deleted on the remote

To remote tracking between local and deleted remote branches use

git fetch -p

you can then use

git branch -vv

to see which branches are no longer being tracked.

Branches that are no longer being tracked will be in the form below, containing 'gone'

 branch 12345e6 [origin/branch: gone] Fixed bug

you can then use a combination of the above commands, looking for where 'git branch -vv' returns
'gone' then using '-d' to delete the branches

git fetch -p && git branch -vv | awk '/: gone]/{print $1}' | xargs git branch -d

Read Tidying up your local and remote repository online:
https://riptutorial.com/git/topic/10934/tidying-up-your-local-and-remote-repository

https://riptutorial.com/ 204

https://riptutorial.com/git/topic/10934/tidying-up-your-local-and-remote-repository

Chapter 56: TortoiseGit

Examples

Ignoring Files and Folders

Those that are using TortioseGit UI click Right Mouse on the file (or folder) you want to ignore ->
TortoiseGit -> Delete and add to ignore list, here you can choose to ignore all files of that type or
this specific file -> dialog will pop out Click Ok and you should be done.

Branching

https://riptutorial.com/ 205

http://i.stack.imgur.com/ZcQ5E.png

For those that are using UI to branch click Right Mouse on repository then Tortoise Git -> Create
Branch...

New window will open -> Give branch a name -> Tick the box Switch to new branch (Chances are
you want to start working with it after branching). -> Click OK and you should be done.

https://riptutorial.com/ 206

http://i.stack.imgur.com/3Cdaj.png

Assume unchanged

If a file is changed, but you don't like to commit it, set the file as "Assume unchanged"

https://riptutorial.com/ 207

http://i.stack.imgur.com/Sw1xl.png

Revert "Assume unchanged"

Need some steps:

https://riptutorial.com/ 208

https://i.stack.imgur.com/uOMrs.png
https://i.stack.imgur.com/nryX6.png

Squash commits

The easy way

This won't work if there are merge commits in your selection

https://riptutorial.com/ 209

https://i.stack.imgur.com/jnTC1.png
https://i.stack.imgur.com/qMTwB.png

The advanced way

Start the rebase dialog:

https://riptutorial.com/ 210

https://i.stack.imgur.com/DCM6Y.png

Read TortoiseGit online: https://riptutorial.com/git/topic/5150/tortoisegit

https://riptutorial.com/ 211

https://i.stack.imgur.com/ZONM9.png
https://riptutorial.com/git/topic/5150/tortoisegit

Chapter 57: Undoing

Examples

Undoing merges

Undoing a merge not yet pushed to a remote

If you haven't yet pushed your merge to the remote repository then you can follow the same
procedure as in undo the commit although there are some subtle differences.

A reset is the simplest option as it will undo both the merge commit and any commits added from
the branch. However, you will need to know what SHA to reset back to, this can be tricky as your
git log will now show commits from both branches. If you reset to the wrong commit (e.g. one on
the other branch) it can destroy committed work.

> git reset --hard <last commit from the branch you are on>

Or, assuming the merge was your most recent commit.

> git reset HEAD~

A revert is safer, in that it won't destroy committed work, but involves more work as you have to
revert the revert before you can merge the branch back in again (see the next section).

Undoing a merge pushed to a remote

Assume you merge in a new feature (add-gremlins)

> git merge feature/add-gremlins
...
 #Resolve any merge conflicts
> git commit #commit the merge
...
> git push
...
 501b75d..17a51fd master -> master

Afterwards you discover that the feature you just merged in broke the system for other developers,
it must be undone right away, and fixing the feature itself will take too long so you simply want to
undo the merge.

> git revert -m 1 17a51fd
...
> git push
...
 17a51fd..e443799 master -> master

https://riptutorial.com/ 212

http://stackoverflow.com/documentation/git/285/undoing/1023/undoing-commits#t=201604121857583862381

At this point the gremlins are out of the system and your fellow developers have stopped yelling at
you. However, we are not finished just yet. Once you fix the problem with the add-gremlins feature
you will need to undo this revert before you can merge back in.

> git checkout feature/add-gremlins
...
 #Various commits to fix the bug.
> git checkout master
...
> git revert e443799
...
> git merge feature/add-gremlins
...
 #Fix any merge conflicts introduced by the bug fix
> git commit #commit the merge
...
> git push

At this point your feature is now successfully added. However, given that bugs of this type are
often introduced by merge conflicts a slightly different workflow is sometimes more helpful as it lets
you fix the merge conflict on your branch.

> git checkout feature/add-gremlins
...
 #Merge in master and revert the revert right away. This puts your branch in
 #the same broken state that master was in before.
> git merge master
...
> git revert e443799
...
 #Now go ahead and fix the bug (various commits go here)
> git checkout master
...
 #Don't need to revert the revert at this point since it was done earlier
> git merge feature/add-gremlins
...
 #Fix any merge conflicts introduced by the bug fix
> git commit #commit the merge
...
> git push

Using reflog

If you screw up a rebase, one option to start again is to go back to the commit (pre rebase). You
can do this using reflog (which has the history of everything you've done for the last 90 days - this
can be configured):

$ git reflog
4a5cbb3 HEAD@{0}: rebase finished: returning to refs/heads/foo
4a5cbb3 HEAD@{1}: rebase: fixed such and such
904f7f0 HEAD@{2}: rebase: checkout upstream/master
3cbe20a HEAD@{3}: commit: fixed such and such
...

You can see the commit before the rebase was HEAD@{3} (you can also checkout the hash):

https://riptutorial.com/ 213

git checkout HEAD@{3}

Now you create a new branch / delete the old one / try the rebase again.

You can also reset directly back to a point in your reflog, but only do this if you're 100% sure it's
what you want to do:

git reset --hard HEAD@{3}

This will set your current git tree to match how it was at that point (See Undoing Changes).

This can be used if you're temporarily seeing how well a branch works when rebased on another
branch, but you don't want to keep the results.

Return to a previous commit

To jump back to a previous commit, first find the commit's hash using git log.

To temporarily jump back to that commit, detach your head with:

git checkout 789abcd

This places you at commit 789abcd. You can now make new commits on top of this old commit
without affecting the branch your head is on. Any changes can be made into a proper branch
using either branch or checkout -b.

To roll back to a previous commit while keeping the changes:

git reset --soft 789abcd

To roll back the last commit:

git reset --soft HEAD~

To permanently discard any changes made after a specific commit, use:

git reset --hard 789abcd

To permanently discard any changes made after the last commit:

git reset --hard HEAD~

Beware: While you can recover the discarded commits using reflog and reset, uncommitted
changes cannot be recovered. Use git stash; git reset instead of git reset --hard to be safe.

Undoing changes

Undo changes to a file or directory in the working copy.

https://riptutorial.com/ 214

http://www.riptutorial.com/git/topic/240/browsing-the-history
http://www.riptutorial.com/git/example/1633/creating-and-checking-out-new-branches
http://www.riptutorial.com/git/example/1633/creating-and-checking-out-new-branches
http://www.riptutorial.com/git/example/1633/creating-and-checking-out-new-branches
http://www.riptutorial.com/git/example/1633/creating-and-checking-out-new-branches
http://www.riptutorial.com/git/example/4135/recovering-from-a-reset
http://www.riptutorial.com/git/example/4135/recovering-from-a-reset
http://www.riptutorial.com/git/example/4135/recovering-from-a-reset
http://www.riptutorial.com/git/example/4135/recovering-from-a-reset
http://www.riptutorial.com/git/topic/1440/stashing

git checkout -- file.txt

Used over all file paths, recursively from the current directory, it will undo all changes in the
working copy.

git checkout -- .

To only undo parts of the changes use --patch. You will be asked, for each change, if it should be
undone or not.

git checkout --patch -- dir

To undo changes added to the index.

git reset --hard

Without the --hard flag this will do a soft reset.

With local commits that you have yet to push to a remote you can also do a soft reset. You can
thus rework the files and then the commits.

git reset HEAD~2

The above example would unwind your last two commits and return the files to your working copy.
You could then make further changes and new commits.

Beware: All of these operations, apart from soft resets, will permanently delete your changes. For
a safer option, use git stash -p or git stash, respectively. You can later undo with stash pop or
delete forever with stash drop.

Revert some existing commits

Use git revert to revert existing commits, especially when those commits have been pushed to a
remote repository. It records some new commits to reverse the effect of some earlier commits,
which you can push safely without rewriting history.

Don't use git push --force unless you wish to bring down the opprobrium of all other users of that
repository. Never rewrite public history.

If, for example, you've just pushed up a commit that contains a bug and you need to back it out, do
the following:

git revert HEAD~1
git push

Now you are free to revert the revert commit locally, fix your code, and push the good code:

https://riptutorial.com/ 215

git revert HEAD~1
work .. work .. work ..
git add -A .
git commit -m "Update error code"
git push

If the commit you want to revert is already further back in the history, you can simply pass the
commit hash. Git will create a counter-commit undoing your original commit, which you can push
to your remote safely.

git revert 912aaf0228338d0c8fb8cca0a064b0161a451fdc
git push

Undo / Redo a series of commits

Assume you want to undo a dozen of commits and you want only some of them.

git rebase -i <earlier SHA>

-i puts rebase in "interactive mode". It starts off like the rebase discussed above, but before
replaying any commits, it pauses and allows you to gently modify each commit as it's replayed.
rebase -i will open in your default text editor, with a list of commits being applied, like this:

To drop a commit, just delete that line in your editor. If you no longer want the bad commits in your

https://riptutorial.com/ 216

http://i.stack.imgur.com/VHTqM.png

project, you can delete lines 1 and 3-4 above.If you want to combine two commits together, you
can use the squash or fixup commands

Read Undoing online: https://riptutorial.com/git/topic/285/undoing

https://riptutorial.com/ 217

http://i.stack.imgur.com/MV9Xd.png
https://riptutorial.com/git/topic/285/undoing

Chapter 58: Update Object Name in
Reference

Examples

Update Object Name in Reference

Use

Update the object name which is stored in reference

SYNOPSIS

git update-ref [-m <reason>] (-d <ref> [<oldvalue>] | [--no-deref] [--create-reflog] <ref>
<newvalue> [<oldvalue>] | --stdin [-z])

General Syntax

Dereferencing the symbolic refs, update the current branch head to the new object.

git update-ref HEAD <newvalue>

1.

Stores the newvalue in ref, after verify that the current value of the ref matches oldvalue.

git update-ref refs/head/master <newvalue> <oldvalue>

above syntax updates the master branch head to newvalue only if its current value is oldvalue.

2.

Use -d flag to deletes the named <ref> after verifying it still contains <oldvalue>.

Use --create-reflog, update-ref will create a reflog for each ref even if one would not ordinarily be
created.

Use -z flag to specify in NUL-terminated format, which has values like update, create, delete,
verify.

Update

Set <ref> to <newvalue> after verifying <oldvalue>, if given. Specify a zero <newvalue> to ensure the
ref does not exist after the update and/or a zero <oldvalue> to make sure the ref does not exist
before the update.

Create

https://riptutorial.com/ 218

Create <ref> with <newvalue> after verifying it does not exist. The given <newvalue> may not be zero.

Delete

Delete <ref> after verifying it exists with <oldvalue>, if given. If given, <oldvalue> may not be zero.

Verify

Verify <ref> against <oldvalue> but do not change it. If <oldvalue> zero or missing, the ref must not
exist.

Read Update Object Name in Reference online: https://riptutorial.com/git/topic/7579/update-
object-name-in-reference

https://riptutorial.com/ 219

https://riptutorial.com/git/topic/7579/update-object-name-in-reference
https://riptutorial.com/git/topic/7579/update-object-name-in-reference

Chapter 59: Using a .gitattributes file

Examples

Disable Line Ending Normalization

Create a .gitattributes file in the project root containing:

* -text

This is equivalent to setting core.autocrlf = false.

Automatic Line Ending Normalization

Create a .gitattributes file in the project root containing:

* text=auto

This will result in all text files (as identified by Git) being committed with LF, but checked out
according to the host operating system default.

This is equivalent to the recommended core.autocrlf defaults of:

input on Linux/macOS•
true on Windows•

Identify Binary Files

Git is pretty good at identifying binary files, but you can explicitly specify which files are binary.
Create a .gitattributes file in the project root containing:

*.png binary

binary is a built-in macro attribute equivalent to -diff -merge -text.

Prefilled .gitattribute Templates

If you are unsure which rules to list in your .gitattributes file, or you just want to add generally
accepted attributes to your project, you can shoose or generate a .gitattributes file at:

https://gitattributes.io/•
https://github.com/alexkaratarakis/gitattributes•

Read Using a .gitattributes file online: https://riptutorial.com/git/topic/1269/using-a--gitattributes-file

https://riptutorial.com/ 220

https://gitattributes.io/
https://github.com/alexkaratarakis/gitattributes
https://riptutorial.com/git/topic/1269/using-a--gitattributes-file

Chapter 60: Working with Remotes

Syntax

git remote [-v | --verbose]•
git remote add [-t <branch>] [-m <master>] [-f] [--[no-]tags] [--mirror=<fetch|push>]
<name> <url>

•

git remote rename <old> <new>•
git remote remove <name>•
git remote set-head <name> (-a | --auto | -d | --delete | <branch>)•
git remote set-branches [--add] <name> <branch>…•
git remote get-url [--push] [--all] <name>•
git remote set-url [--push] <name> <newurl> [<oldurl>]•
git remote set-url --add [--push] <name> <newurl>•
git remote set-url --delete [--push] <name> <url>•
git remote [-v | --verbose] show [-n] <name>…•
git remote prune [-n | --dry-run] <name>…•
git remote [-v | --verbose] update [-p | --prune] [(<group> | <remote>)…]•

Examples

Adding a New Remote Repository

git remote add upstream git-repository-url

Adds remote git repository represented by git-repository-url as new remote named upstream to
the git repository

Updating from Upstream Repository

Assuming you set the upstream (as in the "setting an upstream repository")

git fetch remote-name
git merge remote-name/branch-name

The pull command combines a fetch and a merge.

git pull

The pull with --rebase flag command combines a fetch and a rebase instead of merge.

git pull --rebase remote-name branch-name

ls-remote

git ls-remote is one unique command allowing you to query a remote repo without having to
clone/fetch it first.

https://riptutorial.com/ 221

https://git-scm.com/docs/git-ls-remote

It will list refs/heads and refs/tags of said remote repo.

You will see sometimes refs/tags/v0.1.6 and refs/tags/v0.1.6^{}: the ^{} to list the dereferenced
annotated tag (ie the commit that tag is pointing to)

Since git 2.8 (March 2016), you can avoid that double entry for a tag, and list directly those
dereferenced tags with:

git ls-remote --ref

It can also help resolve the actual url used by a remote repo when you have "url.<base>.insteadOf"
config setting.
If git remote --get-url <aremotename> returns https://server.com/user/repo, and you have set git
config url.ssh://git@server.com:.insteadOf https://server.com/:

git ls-remote --get-url <aremotename>
ssh://git@server.com:user/repo

Deleting a Remote Branch

To delete a remote branch in Git:

git push [remote-name] --delete [branch-name]

or

git push [remote-name] :[branch-name]

Removing Local Copies of Deleted Remote Branches

If a remote branch has been deleted, your local repository has to be told to prune the reference to
it.

To prune deleted branches from a specific remote:

git fetch [remote-name] --prune

To prune deleted branches from all remotes:

git fetch --all --prune

Show information about a Specific Remote

Output some information about a known remote: origin

git remote show origin

https://riptutorial.com/ 222

https://server.com/user/repo

Print just the remote's URL:

git config --get remote.origin.url

With 2.7+, it is also possible to do, which is arguably better than the above one that uses the
config command.

git remote get-url origin

List Existing Remotes

List all the existing remotes associated with this repository:

git remote

List all the existing remotes associated with this repository in detail including the fetch and push
URLs:

git remote --verbose

or simply

git remote -v

Getting Started

Syntax for pushing to a remote branch

git push <remote_name> <branch_name>

Example

git push origin master

Set Upstream on a New Branch

You can create a new branch and switch to it using

git checkout -b AP-57

After you use git checkout to create a new branch, you will need to set that upstream origin to
push to using

git push --set-upstream origin AP-57

After that, you can use git push while you are on that branch.

https://riptutorial.com/ 223

Changing a Remote Repository

To change the URL of the repository you want your remote to point to, you can use the set-url
option, like so:

git remote set-url <remote_name> <remote_repository_url>

Example:

git remote set-url heroku https://git.heroku.com/fictional-remote-repository.git

Changing Git Remote URL

Check existing remote

git remote -v
origin https://github.com/username/repo.git (fetch)
origin https://github.com/usernam/repo.git (push)

Changing repository URL

git remote set-url origin https://github.com/username/repo2.git
Change the 'origin' remote's URL

Verify new remote URL

git remote -v
origin https://github.com/username/repo2.git (fetch)
origin https://github.com/username/repo2.git (push)

Renaming a Remote

To rename remote, use command git remote rename

The git remote rename command takes two arguments:

An existing remote name, for example : origin•
A new name for the remote, for example : destination•

Get existing remote name

git remote
origin

Check existing remote with URL

git remote -v
origin https://github.com/username/repo.git (fetch)

https://riptutorial.com/ 224

origin https://github.com/usernam/repo.git (push)

Rename remote

 git remote rename origin destination
 # Change remote name from 'origin' to 'destination'

Verify new name

git remote -v
destination https://github.com/username/repo.git (fetch)
destination https://github.com/usernam/repo.git (push)

=== Posible Errors ===

Could not rename config section 'remote.[old name]' to 'remote.[new name]'

This error means that the remote you tried the old remote name (origin) doesn't exist.

1.

Remote [new name] already exists.

Error message is self explanatory.

2.

Set the URL for a Specific Remote

You can change the url of an existing remote by the command

git remote set-url remote-name url

Get the URL for a Specific Remote

You can obtain the url for an existing remote by using the command

git remote get-url <name>

By default, this will be

git remote get-url origin

Read Working with Remotes online: https://riptutorial.com/git/topic/243/working-with-remotes

https://riptutorial.com/ 225

https://riptutorial.com/git/topic/243/working-with-remotes

Chapter 61: Worktrees

Syntax

git worktree add [-f] [--detach] [--checkout] [-b <new-branch>] <path> [<branch>]•
git worktree prune [-n] [-v] [--expire <expire>]•
git worktree list [--porcelain]•

Parameters

Parameter Details

-f --force
By default, add refuses to create a new working tree when <branch> is
already checked out by another working tree. This option overrides that
safeguard.

-b <new-branch>
-B <new-branch>

With add, create a new branch named <new-branch> starting at <branch>, and
check out <new-branch> into the new working tree. If <branch> is omitted, it
defaults to HEAD. By default, -b refuses to create a new branch if it already
exists. -B overrides this safeguard, resetting <new-branch> to <branch>.

--detach With add, detach HEAD in the new working tree.

--[no-]
checkout

By default, add checks out <branch>, however, --no-checkout can be used to
suppress checkout in order to make customizations, such as configuring
sparse-checkout.

-n --dry-run With prune, do not remove anything; just report what it would remove.

--porcelain
With list, output in an easy-to-parse format for scripts. This format will
remain stable across Git versions and regardless of user configuration.

-v --verbose With prune, report all removals.

--expire <time> With prune, only expire unused working trees older than <time>.

Remarks

See the official documentation for more information: https://git-scm.com/docs/git-worktree.

Examples

Using a worktree

https://riptutorial.com/ 226

https://git-scm.com/docs/git-worktree

You are right in the middle of working on a new feature, and your boss comes in demanding that
you fix something immediately. You may typically want use git stash to store your changes away
temporarily. However, at this point your working tree is in a state of disarray (with new, moved,
and removed files, and other bits and pieces strewn around) and you don't want to disturb your
progress.

By adding a worktree, you create a temporary linked working tree to make the emergency fix,
remove it when done, and then resume your earlier coding session:

$ git worktree add -b emergency-fix ../temp master
$ pushd ../temp
... work work work ...
$ git commit -a -m 'emergency fix for boss'
$ popd
$ rm -rf ../temp
$ git worktree prune

NOTE: In this example, the fix still is in the emergency-fix branch. At this point you probably want
to git merge or git format-patch and afterwards remove the emergency-fix branch.

Moving a worktree

Currently (as of version 2.11.0) there is no built-in functionality to move an already existing
worktree. This is listed as an official bug (see https://git-scm.com/docs/git-worktree#_bugs).

To get around this limitation it is possible to perform manual operations directly in the .git
reference files.

In this example, the main copy of the repo is living at /home/user/project-main and the secondary
worktree is located at /home/user/project-1 and we want to move it to /home/user/project-2.

Don't perform any git command in between these steps, otherwise the garbage collector might be
triggered and the references to the secondary tree can be lost. Perform these steps from the start
until the end without interruption:

Change the worktree's .git file to point to the new location inside the main tree. The file
/home/user/project-1/.git should now contain the following:

gitdir: /home/user/project-main/.git/worktrees/project-2

1.

Rename the worktree inside the .git directory of the main project by moving the worktree's
directory that exists in there:

$ mv /home/user/project-main/.git/worktrees/project-1 /home/user/project-
main/.git/worktrees/project-2

2.

Change the reference inside /home/user/project-main/.git/worktrees/project-2/gitdir to
point to the new location. In this example, the file would have the following contents:

3.

https://riptutorial.com/ 227

https://git-scm.com/docs/git-worktree#_bugs)

/home/user/project-2/.git

Finally, move your worktree to the new location:

$ mv /home/user/project-1 /home/user/project-2

4.

If you have done everything correctly, listing the existing worktrees should refer to the new
location:

$ git worktree list
/home/user/project-main 23f78ad [master]
/home/user/project-2 78ac3f3 [branch-name]

It should now also be safe to run git worktree prune.

Read Worktrees online: https://riptutorial.com/git/topic/3801/worktrees

https://riptutorial.com/ 228

https://riptutorial.com/git/topic/3801/worktrees

Credits

S.
No

Chapters Contributors

1
Getting started with
Git

Ajedi32, Ala Eddine JEBALI, Allan Burleson, Amitay Stern, Andy
Hayden, AnimiVulpis, ArtOfWarfare, bahrep, Boggin, Brian,
Community, Craig Brett, Dan Hulme, ericdwang, eykanal,
Fernando Hoces De La Guardia, Fred Barclay, Henrique
Barcelos, intboolstring, Irfan, Jackson Blankenship, janos,
Jav_Rock, jeffdill2, JonasCz, JonyD, Joseph Dasenbrock,
Kageetai, Karthik, KartikKannapur, Kayvan N, Knu, Lambda
Ninja, maccard, Marek Skiba, Mateusz Piotrowski, Mingle Li,
mouche, Nathan Arthur, Neui, NRKirby, ob1, ownsourcing dev
training, Pod, Prince J, RamenChef, Rick, Roald Nefs, ronnyfm,
Sazzad Hissain Khan, Scott Weldon, Sibi Raj, TheDarkKnight,
theheadofabroom, ʇolɐǝz ǝɥʇ qoq, Tot Zam, Tyler Zika, tymspy,
Undo, VonC

2

.mailmap file:
Associating
contributor and email
aliases

Mario, Michael Plotke

3 Aliases

AesSedai101, Ajedi32, Andy, Anthony Staunton, Asenar,
bstpierre, erewok, eush77, fracz, Gaelan, jrf, jtbandes, madhead
, Michael Deardeuff, mickeyandkaka, nus, penguincoder,
riyadhalnur, thanksd, Tom Hale, Wojciech Kazior, zinking

4
Analyzing types of
workflows

Boggin, Confiqure, Daniel Käfer, Dimitrios Mistriotis,
forresthopkinsa, hardmooth, Horen, Kissaki, Majid, Sardathrion,
Scott Weldon

5 Archive Dartmouth, forevergenin, Neto Buenrostro, RamenChef

6
Bisecting/Finding
faulty commits

4444, Hannoun Yassir, jornh, Kissaki, MrTux, Scott Weldon,
Simone Carletti, zebediah49

7 Blaming
fracz, Matthew Hallatt, nighthawk454, Priyanshu Shekhar,
WPrecht

Amitay Stern, Andrew Kay, AnimiVulpis, Bad, BobTuckerman,
Community, dan, Daniel Käfer, Daniel Stradowski, Deepak
Bansal, djb, Don Kirkby, Duncan X Simpson, Eric Bouchut,
forevergenin, fracz, Franck Dernoncourt, Fred Barclay, Frodon,
gavv, Irfan, james large, janos, Jason, Joel Cornett, Jon

8 Branching

https://riptutorial.com/ 229

https://riptutorial.com/contributor/1157054/ajedi32
https://riptutorial.com/contributor/1343790/ala-eddine-jebali
https://riptutorial.com/contributor/5703771/allan-burleson
https://riptutorial.com/contributor/3676450/amitay-stern
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/1988796/animivulpis
https://riptutorial.com/contributor/901641/artofwarfare
https://riptutorial.com/contributor/761095/bahrep
https://riptutorial.com/contributor/444244/boggin
https://riptutorial.com/contributor/938380/brian
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/718940/craig-brett
https://riptutorial.com/contributor/967945/dan-hulme
https://riptutorial.com/contributor/1944947/ericdwang
https://riptutorial.com/contributor/168775/eykanal
https://riptutorial.com/contributor/3121199/fernando-hoces-de-la-guardia
https://riptutorial.com/contributor/4588964/fred-barclay
https://riptutorial.com/contributor/1798341/henrique-barcelos
https://riptutorial.com/contributor/1798341/henrique-barcelos
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/3275134/irfan
https://riptutorial.com/contributor/4365265/jackson-blankenship
https://riptutorial.com/contributor/641955/janos
https://riptutorial.com/contributor/744859/jav-rock
https://riptutorial.com/contributor/2266827/jeffdill2
https://riptutorial.com/contributor/4428462/jonascz
https://riptutorial.com/contributor/6158542/jonyd
https://riptutorial.com/contributor/6738540/joseph-dasenbrock
https://riptutorial.com/contributor/1159510/kageetai
https://riptutorial.com/contributor/1210896/karthik
https://riptutorial.com/contributor/3001733/kartikkannapur
https://riptutorial.com/contributor/2529309/kayvan-n
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/2397327/lambda-ninja
https://riptutorial.com/contributor/2397327/lambda-ninja
https://riptutorial.com/contributor/723918/maccard
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/4694621/mateusz-piotrowski
https://riptutorial.com/contributor/4048263/mingle-li
https://riptutorial.com/contributor/128040/mouche
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/4792805/neui
https://riptutorial.com/contributor/3213157/nrkirby
https://riptutorial.com/contributor/8168719/ob1
https://riptutorial.com/contributor/5440638/ownsourcing-dev-training
https://riptutorial.com/contributor/5440638/ownsourcing-dev-training
https://riptutorial.com/contributor/57461/pod
https://riptutorial.com/contributor/2744051/prince-j
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1405475/rick
https://riptutorial.com/contributor/4779556/roald-nefs
https://riptutorial.com/contributor/204968/ronnyfm
https://riptutorial.com/contributor/1084174/sazzad-hissain-khan
https://riptutorial.com/contributor/2747593/scott-weldon
https://riptutorial.com/contributor/7333443/sibi-raj
https://riptutorial.com/contributor/5283213/thedarkknight
https://riptutorial.com/contributor/655372/theheadofabroom
https://riptutorial.com/contributor/3696113/-ol--z-----qoq
https://riptutorial.com/contributor/4660897/tot-zam
https://riptutorial.com/contributor/1086315/tyler-zika
https://riptutorial.com/contributor/3029163/tymspy
https://riptutorial.com/contributor/1849664/undo
https://riptutorial.com/contributor/6309/vonc
https://riptutorial.com/contributor/409744/mario
https://riptutorial.com/contributor/1307154/michael-plotke
https://riptutorial.com/contributor/1969198/aessedai101
https://riptutorial.com/contributor/1157054/ajedi32
https://riptutorial.com/contributor/114770/andy
https://riptutorial.com/contributor/6619998/anthony-staunton
https://riptutorial.com/contributor/724027/asenar
https://riptutorial.com/contributor/67022/bstpierre
https://riptutorial.com/contributor/1748754/erewok
https://riptutorial.com/contributor/2424184/eush77
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/1629243/gaelan
https://riptutorial.com/contributor/3985135/jrf
https://riptutorial.com/contributor/23649/jtbandes
https://riptutorial.com/contributor/750510/madhead
https://riptutorial.com/contributor/4931/michael-deardeuff
https://riptutorial.com/contributor/2659172/mickeyandkaka
https://riptutorial.com/contributor/1115652/nus
https://riptutorial.com/contributor/812879/penguincoder
https://riptutorial.com/contributor/2738732/riyadhalnur
https://riptutorial.com/contributor/2678454/thanksd
https://riptutorial.com/contributor/5353461/tom-hale
https://riptutorial.com/contributor/6787033/wojciech-kazior
https://riptutorial.com/contributor/161289/zinking
https://riptutorial.com/contributor/444244/boggin
https://riptutorial.com/contributor/903291/confiqure
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/1622/dimitrios-mistriotis
https://riptutorial.com/contributor/2172566/forresthopkinsa
https://riptutorial.com/contributor/1498405/hardmooth
https://riptutorial.com/contributor/1503476/horen
https://riptutorial.com/contributor/392626/kissaki
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/232794/sardathrion
https://riptutorial.com/contributor/2747593/scott-weldon
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/2062000/forevergenin
https://riptutorial.com/contributor/1476332/neto-buenrostro
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/72443/hannoun-yassir
https://riptutorial.com/contributor/210723/jornh
https://riptutorial.com/contributor/392626/kissaki
https://riptutorial.com/contributor/3906760/mrtux
https://riptutorial.com/contributor/2747593/scott-weldon
https://riptutorial.com/contributor/123527/simone-carletti
https://riptutorial.com/contributor/372757/zebediah49
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/894836/matthew-hallatt
https://riptutorial.com/contributor/683114/nighthawk454
https://riptutorial.com/contributor/3655261/priyanshu-shekhar
https://riptutorial.com/contributor/597408/wprecht
https://riptutorial.com/contributor/3676450/amitay-stern
https://riptutorial.com/contributor/3959702/andrew-kay
https://riptutorial.com/contributor/1988796/animivulpis
https://riptutorial.com/contributor/4383472/bad
https://riptutorial.com/contributor/3266897/bobtuckerman
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1613867/dan
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/5449709/daniel-stradowski
https://riptutorial.com/contributor/6794259/deepak-bansal
https://riptutorial.com/contributor/6794259/deepak-bansal
https://riptutorial.com/contributor/21352/djb
https://riptutorial.com/contributor/4794/don-kirkby
https://riptutorial.com/contributor/3042952/duncan-x-simpson
https://riptutorial.com/contributor/386517/eric-bouchut
https://riptutorial.com/contributor/2062000/forevergenin
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/4588964/fred-barclay
https://riptutorial.com/contributor/2531279/frodon
https://riptutorial.com/contributor/3169754/gavv
https://riptutorial.com/contributor/3275134/irfan
https://riptutorial.com/contributor/801894/james-large
https://riptutorial.com/contributor/641955/janos
https://riptutorial.com/contributor/545332/jason
https://riptutorial.com/contributor/1142167/joel-cornett
https://riptutorial.com/contributor/12484/jon-schneider

Schneider, Jonathan, Joseph Dasenbrock, jrf, kartik,
KartikKannapur, khanmizan, kirrmann, kisanme, Majid, Martin,
MayeulC, Michael Richardson, Mihai, Mitch Talmadge,
mkasberg, nepda, Noah, Noushad PP, Nowhere man,
olegtaranenko, Ortomala Lokni, Ozair Kafray, PaladiN, ᴀɴᴀʏɪᴛɪs,
Priyanshu Shekhar, Ralf Rafael Frix, Richard Hamilton, Robin,
RudolphEst, Siavas, Simone Carletti, the12, Uwe, Vlad,
wintersolider, Wojciech Kazior, Wolfgang, Yerko Palma, Yury
Fedorov, zygimantus

9 Browsing the history

Ahmed Metwally, Andy Hayden, Aratz, Atif Hussain, Boggin,
Brett, Confiqure, davidcondrey, Fabio, Flows, fracz, Fred
Barclay, guleria, intboolstring, janos, jaredr, Kamiccolo, KraigH,
LeGEC, manasouza, Matt Clark, Matthew Hallatt, MByD,
mpromonet, Muhammad Abdullah, Noah, Oleander, Pedro
Pinheiro, RedGreenCode, Toby Allen, Vogel612, ydaetskcoR

10 Bundles jwd630

11
Change git
repository name

xiaoyaoworm

12 Cherry Picking
Atul Khanduri, Braiam, bud-e, dubek, Florian Hämmerle,
intboolstring, Julian, kisanme, Lochlan, mpromonet,
RedGreenCode

13 Cloning Repositories

AER, Andrea Romagnoli, Andy Hayden, Blundering Philosopher
, Dartmouth, Ezra Free, ganesshkumar, , kartik, KartikKannapur
, mnoronha, Peter Mitrano, pkowalczyk, Rick, Undo, Wojciech
Kazior

14 Committing

Aaron Critchley, AER, Alan, Allan Burleson, Amitay Stern,
Andrew Sklyarevsky, Andy Hayden, Anonymous Entity,
APerson, bandi, Cache Staheli, Chris Forrence, Cody Guldner,
cormacrelf, davidcondrey, Deep, depperm, ericdwang, Ethunxxx
, Fred Barclay, George Brighton, Igor Ivancha, intboolstring,
JacobLeach, James Taylor, janos, joeytwiddle, Jordan Knott,
KartikKannapur, kisanme, Majid, Matt Clark, Matthew Hallatt,
MayeulC, Micah Smith, Pod, Rick, Scott Weldon,
SommerEngineering, Sonny Kim, Thomas Gerot, Undo,
user1990366, vguzmanp, Vladimir F, Zaz

15 Configuration
APerson, Asenar, Cache Staheli, Chris Rasys, e.doroskevic,
Julian, Liyan Chang, Majid, Micah Smith, Ortomala Lokni, Peter
Mitrano, Priyanshu Shekhar, Scott Weldon, VonC, Wolfgang

16 diff-tree fybw id

Display commit 17 orkoden

https://riptutorial.com/ 230

https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/69875/jonathan
https://riptutorial.com/contributor/6738540/joseph-dasenbrock
https://riptutorial.com/contributor/3985135/jrf
https://riptutorial.com/contributor/2381269/kartik
https://riptutorial.com/contributor/3001733/kartikkannapur
https://riptutorial.com/contributor/1425780/khanmizan
https://riptutorial.com/contributor/1025661/kirrmann
https://riptutorial.com/contributor/3663471/kisanme
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/412044/martin
https://riptutorial.com/contributor/3795597/mayeulc
https://riptutorial.com/contributor/1812515/michael-richardson
https://riptutorial.com/contributor/6623661/mihai
https://riptutorial.com/contributor/2364405/mitch-talmadge
https://riptutorial.com/contributor/1263211/mkasberg
https://riptutorial.com/contributor/1021809/nepda
https://riptutorial.com/contributor/6464719/noah
https://riptutorial.com/contributor/5466933/noushad-pp
https://riptutorial.com/contributor/400277/nowhere-man
https://riptutorial.com/contributor/455491/olegtaranenko
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/365188/ozair-kafray
https://riptutorial.com/contributor/3887342/paladin
https://riptutorial.com/contributor/777510/---------s
https://riptutorial.com/contributor/777510/---------s
https://riptutorial.com/contributor/777510/---------s
https://riptutorial.com/contributor/777510/---------s
https://riptutorial.com/contributor/3655261/priyanshu-shekhar
https://riptutorial.com/contributor/2530378/ralf-rafael-frix
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/2895816/robin
https://riptutorial.com/contributor/2111876/rudolphest
https://riptutorial.com/contributor/5838198/siavas
https://riptutorial.com/contributor/123527/simone-carletti
https://riptutorial.com/contributor/6407868/the12
https://riptutorial.com/contributor/3817004/uwe
https://riptutorial.com/contributor/1634793/vlad
https://riptutorial.com/contributor/3292325/wintersolider
https://riptutorial.com/contributor/6787033/wojciech-kazior
https://riptutorial.com/contributor/1979340/wolfgang
https://riptutorial.com/contributor/3178237/yerko-palma
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/1766166/zygimantus
https://riptutorial.com/contributor/2080069/ahmed-metwally
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/5186167/aratz
https://riptutorial.com/contributor/3265367/atif-hussain
https://riptutorial.com/contributor/444244/boggin
https://riptutorial.com/contributor/2483/brett
https://riptutorial.com/contributor/903291/confiqure
https://riptutorial.com/contributor/1922144/davidcondrey
https://riptutorial.com/contributor/2754856/fabio
https://riptutorial.com/contributor/2394026/flows
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/4588964/fred-barclay
https://riptutorial.com/contributor/4588964/fred-barclay
https://riptutorial.com/contributor/620039/guleria
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/641955/janos
https://riptutorial.com/contributor/2887128/jaredr
https://riptutorial.com/contributor/1150918/kamiccolo
https://riptutorial.com/contributor/1352436/kraigh
https://riptutorial.com/contributor/86072/legec
https://riptutorial.com/contributor/1119153/manasouza
https://riptutorial.com/contributor/1790644/matt-clark
https://riptutorial.com/contributor/894836/matthew-hallatt
https://riptutorial.com/contributor/464988/mbyd
https://riptutorial.com/contributor/3102264/mpromonet
https://riptutorial.com/contributor/4089357/muhammad-abdullah
https://riptutorial.com/contributor/6464719/noah
https://riptutorial.com/contributor/560073/oleander
https://riptutorial.com/contributor/1252947/pedro-pinheiro
https://riptutorial.com/contributor/1252947/pedro-pinheiro
https://riptutorial.com/contributor/4803/redgreencode
https://riptutorial.com/contributor/6244/toby-allen
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/2291321/ydaetskcor
https://riptutorial.com/contributor/1124740/jwd630
https://riptutorial.com/contributor/2011900/xiaoyaoworm
https://riptutorial.com/contributor/2945616/atul-khanduri
https://riptutorial.com/contributor/792066/braiam
https://riptutorial.com/contributor/4122020/bud-e
https://riptutorial.com/contributor/884/dubek
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/201303/julian
https://riptutorial.com/contributor/3663471/kisanme
https://riptutorial.com/contributor/1491909/lochlan
https://riptutorial.com/contributor/3102264/mpromonet
https://riptutorial.com/contributor/4803/redgreencode
https://riptutorial.com/contributor/4644817/aer
https://riptutorial.com/contributor/1392008/andrea-romagnoli
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/2430414/blundering-philosopher
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/1583032/ezra-free
https://riptutorial.com/contributor/1184750/ganesshkumar
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/2381269/kartik
https://riptutorial.com/contributor/3001733/kartikkannapur
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/3353601/peter-mitrano
https://riptutorial.com/contributor/2351523/pkowalczyk
https://riptutorial.com/contributor/1405475/rick
https://riptutorial.com/contributor/1849664/undo
https://riptutorial.com/contributor/6787033/wojciech-kazior
https://riptutorial.com/contributor/6787033/wojciech-kazior
https://riptutorial.com/contributor/4323812/aaron-critchley
https://riptutorial.com/contributor/4644817/aer
https://riptutorial.com/contributor/37843/alan
https://riptutorial.com/contributor/5703771/allan-burleson
https://riptutorial.com/contributor/3676450/amitay-stern
https://riptutorial.com/contributor/894973/andrew-sklyarevsky
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/1583225/anonymous-entity
https://riptutorial.com/contributor/1757964/aperson
https://riptutorial.com/contributor/49388/bandi
https://riptutorial.com/contributor/4816518/cache-staheli
https://riptutorial.com/contributor/899126/chris-forrence
https://riptutorial.com/contributor/1470950/cody-guldner
https://riptutorial.com/contributor/559588/cormacrelf
https://riptutorial.com/contributor/1922144/davidcondrey
https://riptutorial.com/contributor/4207394/deep
https://riptutorial.com/contributor/3462319/depperm
https://riptutorial.com/contributor/1944947/ericdwang
https://riptutorial.com/contributor/5774370/ethunxxx
https://riptutorial.com/contributor/4588964/fred-barclay
https://riptutorial.com/contributor/2765666/george-brighton
https://riptutorial.com/contributor/4377017/igor-ivancha
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/2921948/jacobleach
https://riptutorial.com/contributor/1944335/james-taylor
https://riptutorial.com/contributor/641955/janos
https://riptutorial.com/contributor/99777/joeytwiddle
https://riptutorial.com/contributor/5785291/jordan-knott
https://riptutorial.com/contributor/3001733/kartikkannapur
https://riptutorial.com/contributor/3663471/kisanme
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/1790644/matt-clark
https://riptutorial.com/contributor/894836/matthew-hallatt
https://riptutorial.com/contributor/3795597/mayeulc
https://riptutorial.com/contributor/2514228/micah-smith
https://riptutorial.com/contributor/57461/pod
https://riptutorial.com/contributor/1405475/rick
https://riptutorial.com/contributor/2747593/scott-weldon
https://riptutorial.com/contributor/2258393/sommerengineering
https://riptutorial.com/contributor/5468799/sonny-kim
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/1849664/undo
https://riptutorial.com/contributor/1990366/user1990366
https://riptutorial.com/contributor/1324984/vguzmanp
https://riptutorial.com/contributor/721644/vladimir-f
https://riptutorial.com/contributor/405550/zaz
https://riptutorial.com/contributor/1757964/aperson
https://riptutorial.com/contributor/724027/asenar
https://riptutorial.com/contributor/4816518/cache-staheli
https://riptutorial.com/contributor/532744/chris-rasys
https://riptutorial.com/contributor/2346144/e-doroskevic
https://riptutorial.com/contributor/201303/julian
https://riptutorial.com/contributor/664345/liyan-chang
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/2514228/micah-smith
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/3353601/peter-mitrano
https://riptutorial.com/contributor/3353601/peter-mitrano
https://riptutorial.com/contributor/3655261/priyanshu-shekhar
https://riptutorial.com/contributor/2747593/scott-weldon
https://riptutorial.com/contributor/6309/vonc
https://riptutorial.com/contributor/1979340/wolfgang
https://riptutorial.com/contributor/6924999/fybw-id
https://riptutorial.com/contributor/1329214/orkoden

history graphically
with Gitk

18
Empty directories in
Git

Ates Goral

19
External merge and
difftools

AesSedai101, Micha Wiedenmann

20
Git Branch Name on
Bash Ubuntu

Manishh

21 Git Clean
gnis, MayeulC, n0shadow, pktangyue, Priyanshu Shekhar, Ralf
Rafael Frix

22
Git Client-Side
Hooks

Kelum Senanayake, kiamlaluno

23 Git Diff

Aaron Critchley, Abhijeet Kasurde, Adi Lester, anderas, apidae,
Brett, Charlie Egan, eush77, , intboolstring, Jack Ryan, JakeD,
Jakub Narębski, jeffdill2, Joseph K. Strauss, khanmizan, Luke
Taylor, Majid, mnoronha, Nathaniel Ford, Ogre Psalm33,
orkoden, Ortomala Lokni, penguincoder, pylang, SurDin, Will,
ydaetskcoR, Zaz

24 Git GUI Clients
Alu, Daniel Käfer, Greg Bray, Nemanja Trifunovic, Pedro
Pinheiro

25
Git Large File
Storage (LFS)

Alex Stuckey, Matthew Hallatt, shoelzer

26 Git Patch Dartmouth, Liju Thomas

27 Git Remote
AER, ambes, Dániel Kis, Dartmouth, Elizabeth, Jav_Rock,
Kalpit, RamenChef, sonali, sunkuet02

28 Git rerere Isak Combrinck

29 Git revisions syntax Dartmouth, Jakub Narębski

30 git send-email Aaron Skomra, Dong Thang, fybw id, Jav_Rock, kofemann

31 Git statistics
Dartmouth, Farhad Faghihi, Hugo Buff, KartikKannapur, lxer,
penguincoder, RamenChef, SashaZd, Tyler Hyndman, vkluge

32 Git Tagging Atul Khanduri, demonplus, TheDarkKnight

33 git-svn Bryan, Randy, Ricardo Amores, RobPethi

34 git-tfs Boggin, Kissaki

https://riptutorial.com/ 231

https://riptutorial.com/contributor/23501/ates-goral
https://riptutorial.com/contributor/1969198/aessedai101
https://riptutorial.com/contributor/1671066/micha-wiedenmann
https://riptutorial.com/contributor/3759158/manishh
https://riptutorial.com/contributor/2407615/gnis
https://riptutorial.com/contributor/3795597/mayeulc
https://riptutorial.com/contributor/1195935/n0shadow
https://riptutorial.com/contributor/1076889/pktangyue
https://riptutorial.com/contributor/3655261/priyanshu-shekhar
https://riptutorial.com/contributor/2530378/ralf-rafael-frix
https://riptutorial.com/contributor/2530378/ralf-rafael-frix
https://riptutorial.com/contributor/1699937/kelum-senanayake
https://riptutorial.com/contributor/225647/kiamlaluno
https://riptutorial.com/contributor/4323812/aaron-critchley
https://riptutorial.com/contributor/1075324/abhijeet-kasurde
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/3198247/anderas
https://riptutorial.com/contributor/6578619/apidae
https://riptutorial.com/contributor/2483/brett
https://riptutorial.com/contributor/1510063/charlie-egan
https://riptutorial.com/contributor/2424184/eush77
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/4595837/jack-ryan
https://riptutorial.com/contributor/6655092/jaked
https://riptutorial.com/contributor/46058/jakub-narebski
https://riptutorial.com/contributor/46058/jakub-narebski
https://riptutorial.com/contributor/2266827/jeffdill2
https://riptutorial.com/contributor/4354956/joseph-k--strauss
https://riptutorial.com/contributor/1425780/khanmizan
https://riptutorial.com/contributor/4414003/luke-taylor
https://riptutorial.com/contributor/4414003/luke-taylor
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/13140/ogre-psalm33
https://riptutorial.com/contributor/1329214/orkoden
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/812879/penguincoder
https://riptutorial.com/contributor/4531270/pylang
https://riptutorial.com/contributor/70898/surdin
https://riptutorial.com/contributor/145279/will
https://riptutorial.com/contributor/2291321/ydaetskcor
https://riptutorial.com/contributor/405550/zaz
https://riptutorial.com/contributor/4256535/alu
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/17373/greg-bray
https://riptutorial.com/contributor/4004007/nemanja-trifunovic
https://riptutorial.com/contributor/1252947/pedro-pinheiro
https://riptutorial.com/contributor/1252947/pedro-pinheiro
https://riptutorial.com/contributor/298051/alex-stuckey
https://riptutorial.com/contributor/894836/matthew-hallatt
https://riptutorial.com/contributor/1339280/shoelzer
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/4714914/liju-thomas
https://riptutorial.com/contributor/4644817/aer
https://riptutorial.com/contributor/4052699/ambes
https://riptutorial.com/contributor/5728926/daniel-kis
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/4750768/elizabeth
https://riptutorial.com/contributor/744859/jav-rock
https://riptutorial.com/contributor/2424332/kalpit
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4159318/sonali
https://riptutorial.com/contributor/2315473/sunkuet02
https://riptutorial.com/contributor/7600596/isak-combrinck
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/46058/jakub-narebski
https://riptutorial.com/contributor/46058/jakub-narebski
https://riptutorial.com/contributor/646507/aaron-skomra
https://riptutorial.com/contributor/5597864/dong-thang
https://riptutorial.com/contributor/6924999/fybw-id
https://riptutorial.com/contributor/744859/jav-rock
https://riptutorial.com/contributor/1356883/kofemann
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/2450855/farhad-faghihi
https://riptutorial.com/contributor/3392335/hugo-buff
https://riptutorial.com/contributor/3001733/kartikkannapur
https://riptutorial.com/contributor/2595183/lxer
https://riptutorial.com/contributor/812879/penguincoder
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/966247/sashazd
https://riptutorial.com/contributor/207415/tyler-hyndman
https://riptutorial.com/contributor/4189791/vkluge
https://riptutorial.com/contributor/2945616/atul-khanduri
https://riptutorial.com/contributor/462639/demonplus
https://riptutorial.com/contributor/5283213/thedarkknight
https://riptutorial.com/contributor/366335/bryan
https://riptutorial.com/contributor/1691311/randy
https://riptutorial.com/contributor/10136/ricardo-amores
https://riptutorial.com/contributor/4818089/robpethi
https://riptutorial.com/contributor/444244/boggin
https://riptutorial.com/contributor/392626/kissaki

35 Hooks
AesSedai101, AnoE, Christiaan Maks, Confiqure, Eidolon,
Flows, fracz, kaartic, lostphilosopher, mwarsco

36
Ignoring Files and
Folders

AER, AesSedai101, agilob, Alex, Amitay Stern, AnimiVulpis,
Ates Goral, Aukhan, Avamander, Ben, bpoiss, Braiam, bwegs,
Cache Staheli, Collin M, Community, Dartmouth, David Grayson
, Devesh Saini, Dheeraj vats, eckes, Ed Cottrell, enrico.bacis,
Everettss, Fabio, fracz, Franck Dernoncourt, Fred Barclay,
Functino, geek1011, Guillaume Pascal, HerrSerker,
intboolstring, Irfan, Jakub Narębski, Jeff Puckett, Jens,
joaquinlpereyra, John Slegers, JonasCz, Jörn Hees, joshng, Ka
čer, Kapep, Kissaki, knut, LeftRight92, Mackattack, Marvin, Matt
, MayeulC, Mitch Talmadge, Narayan Acharya, Nathan Arthur,
Neui, noɥʇʎԀʎzɐɹƆ, Nuri Tasdemir, Ortomala Lokni, PaladiN,
Panda, peci1, pktangyue, poke, pylang, RhysO, Rick, rokonoid,
Sascha, Scott Weldon, Sebastianb, SeeuD1, sjas, Slayther,
SnoringFrog, spikeheap, theJollySin, Toby, ʇolɐǝz ǝɥʇ qoq, Tom

Gijselinck, Tomasz Bąk, Vi., Victor Schröder, VonC, Wilfred
Hughes, Wolfgang, ydaetskcoR, Yosvel Quintero, Yury Fedorov
, Zaz, Zeeker

37 Internals nighthawk454

38 Merging
brentonstrine, Liam Ferris, Noah, penguincoder, Undo,
Vogel612, Wolfgang

39 Migrating to Git
AesSedai101, Boggin, Confiqure, Guillaume Pascal, Indregaard
, Rick, TheDarkKnight

40 Pulling
Kissaki, MayeulC, mpromonet, rene, Ryan, Scott Weldon,
Shog9, Stony, Thamilan, Thomas Gerot, Zaz

41 Pushing
AER, Cody Guldner, cringe, frlan, Guillaume, intboolstring,
Mário Meyrelles, Marvin, Matt S, MayeulC, pcm, pogosama,
Thomas Gerot, Tomás Cañibano

42 Rebasing

AER, Alexander Bird, anderas, Ashwin Ramaswami, Braiam,
BusyAnt, Confiqure, Daniel Käfer, Derek Liu, Dunno,
e.doroskevic, Enrico Campidoglio, eskwayrd, , Hugo Ferreira,
intboolstring, Jeffrey Lin, Joel Cornett, Joseph K. Strauss,
jtbandes, Julian, Kissaki, LeGEC, Libin Varghese, Luca Putzu,
lucash, madhukar93, Majid, Matt, Matthew Hallatt, Menasheh,
Michael Mrozek, Nemanja Boric, Ortomala Lokni, Peter Mitrano,
pylang, Richard, takteek, Travis, Victor Schröder, VonC, Wasabi
Fan, yarons, Zaz

43 Recovering
Creative John, Hardik Kanjariya ツ, Julie David, kisanme, ᴀɴᴀʏɪ
ᴛɪs, Scott Weldon, strangeqargo, Zaz

https://riptutorial.com/ 232

https://riptutorial.com/contributor/1969198/aessedai101
https://riptutorial.com/contributor/5227053/anoe
https://riptutorial.com/contributor/3710120/christiaan-maks
https://riptutorial.com/contributor/903291/confiqure
https://riptutorial.com/contributor/3064195/eidolon
https://riptutorial.com/contributor/2394026/flows
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/5614968/kaartic
https://riptutorial.com/contributor/1504372/lostphilosopher
https://riptutorial.com/contributor/2635496/mwarsco
https://riptutorial.com/contributor/4644817/aer
https://riptutorial.com/contributor/1969198/aessedai101
https://riptutorial.com/contributor/1238944/agilob
https://riptutorial.com/contributor/971392/alex
https://riptutorial.com/contributor/3676450/amitay-stern
https://riptutorial.com/contributor/1988796/animivulpis
https://riptutorial.com/contributor/23501/ates-goral
https://riptutorial.com/contributor/1379089/aukhan
https://riptutorial.com/contributor/4636860/avamander
https://riptutorial.com/contributor/4070984/ben
https://riptutorial.com/contributor/2039482/bpoiss
https://riptutorial.com/contributor/792066/braiam
https://riptutorial.com/contributor/745750/bwegs
https://riptutorial.com/contributor/4816518/cache-staheli
https://riptutorial.com/contributor/202095/collin-m
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/28128/david-grayson
https://riptutorial.com/contributor/2419921/devesh-saini
https://riptutorial.com/contributor/4909765/dheeraj-vats
https://riptutorial.com/contributor/520162/eckes
https://riptutorial.com/contributor/2057919/ed-cottrell
https://riptutorial.com/contributor/1003123/enrico-bacis
https://riptutorial.com/contributor/3708596/everettss
https://riptutorial.com/contributor/2754856/fabio
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/4588964/fred-barclay
https://riptutorial.com/contributor/3601420/functino
https://riptutorial.com/contributor/5139282/geek1011
https://riptutorial.com/contributor/4186872/guillaume-pascal
https://riptutorial.com/contributor/476951/herrserker
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/3275134/irfan
https://riptutorial.com/contributor/46058/jakub-narebski
https://riptutorial.com/contributor/46058/jakub-narebski
https://riptutorial.com/contributor/4233593/jeff-puckett
https://riptutorial.com/contributor/925649/jens
https://riptutorial.com/contributor/1960460/joaquinlpereyra
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/4428462/jonascz
https://riptutorial.com/contributor/1423333/jorn-hees
https://riptutorial.com/contributor/99749/joshng
https://riptutorial.com/contributor/923255/kacer
https://riptutorial.com/contributor/923255/kacer
https://riptutorial.com/contributor/897024/kapep
https://riptutorial.com/contributor/392626/kissaki
https://riptutorial.com/contributor/676874/knut
https://riptutorial.com/contributor/5298389/leftright92
https://riptutorial.com/contributor/3928651/mackattack
https://riptutorial.com/contributor/4616087/marvin
https://riptutorial.com/contributor/2641576/matt
https://riptutorial.com/contributor/3795597/mayeulc
https://riptutorial.com/contributor/2364405/mitch-talmadge
https://riptutorial.com/contributor/5512274/narayan-acharya
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/4792805/neui
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/3887342/paladin
https://riptutorial.com/contributor/5022249/panda
https://riptutorial.com/contributor/1076564/peci1
https://riptutorial.com/contributor/1076889/pktangyue
https://riptutorial.com/contributor/216074/poke
https://riptutorial.com/contributor/4531270/pylang
https://riptutorial.com/contributor/5269656/rhyso
https://riptutorial.com/contributor/1405475/rick
https://riptutorial.com/contributor/893197/rokonoid
https://riptutorial.com/contributor/66907/sascha
https://riptutorial.com/contributor/2747593/scott-weldon
https://riptutorial.com/contributor/5796253/sebastianb
https://riptutorial.com/contributor/3288649/seeud1
https://riptutorial.com/contributor/805284/sjas
https://riptutorial.com/contributor/4936137/slayther
https://riptutorial.com/contributor/919057/snoringfrog
https://riptutorial.com/contributor/384693/spikeheap
https://riptutorial.com/contributor/1287593/thejollysin
https://riptutorial.com/contributor/1292918/toby
https://riptutorial.com/contributor/3696113/-ol--z-----qoq
https://riptutorial.com/contributor/4667966/tom-gijselinck
https://riptutorial.com/contributor/4667966/tom-gijselinck
https://riptutorial.com/contributor/2777364/tomasz-bak
https://riptutorial.com/contributor/2777364/tomasz-bak
https://riptutorial.com/contributor/266720/vi-
https://riptutorial.com/contributor/1240001/victor-schroder
https://riptutorial.com/contributor/6309/vonc
https://riptutorial.com/contributor/509706/wilfred-hughes
https://riptutorial.com/contributor/509706/wilfred-hughes
https://riptutorial.com/contributor/1979340/wolfgang
https://riptutorial.com/contributor/2291321/ydaetskcor
https://riptutorial.com/contributor/1932552/yosvel-quintero
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/405550/zaz
https://riptutorial.com/contributor/2274224/zeeker
https://riptutorial.com/contributor/683114/nighthawk454
https://riptutorial.com/contributor/925897/brentonstrine
https://riptutorial.com/contributor/5363885/liam-ferris
https://riptutorial.com/contributor/6464719/noah
https://riptutorial.com/contributor/812879/penguincoder
https://riptutorial.com/contributor/1849664/undo
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/1979340/wolfgang
https://riptutorial.com/contributor/1969198/aessedai101
https://riptutorial.com/contributor/444244/boggin
https://riptutorial.com/contributor/903291/confiqure
https://riptutorial.com/contributor/4186872/guillaume-pascal
https://riptutorial.com/contributor/2864568/indregaard
https://riptutorial.com/contributor/1405475/rick
https://riptutorial.com/contributor/5283213/thedarkknight
https://riptutorial.com/contributor/392626/kissaki
https://riptutorial.com/contributor/3795597/mayeulc
https://riptutorial.com/contributor/3102264/mpromonet
https://riptutorial.com/contributor/578411/rene
https://riptutorial.com/contributor/707111/ryan
https://riptutorial.com/contributor/2747593/scott-weldon
https://riptutorial.com/contributor/811/shog9
https://riptutorial.com/contributor/411918/stony
https://riptutorial.com/contributor/5447994/thamilan
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/405550/zaz
https://riptutorial.com/contributor/4644817/aer
https://riptutorial.com/contributor/1470950/cody-guldner
https://riptutorial.com/contributor/834/cringe
https://riptutorial.com/contributor/2915834/frlan
https://riptutorial.com/contributor/857728/guillaume
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/692083/mario-meyrelles
https://riptutorial.com/contributor/4616087/marvin
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/3795597/mayeulc
https://riptutorial.com/contributor/2321151/pcm
https://riptutorial.com/contributor/3009574/pogosama
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/5384592/tomas-canibano
https://riptutorial.com/contributor/4644817/aer
https://riptutorial.com/contributor/10608/alexander-bird
https://riptutorial.com/contributor/3198247/anderas
https://riptutorial.com/contributor/1950269/ashwin-ramaswami
https://riptutorial.com/contributor/792066/braiam
https://riptutorial.com/contributor/5018771/busyant
https://riptutorial.com/contributor/903291/confiqure
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/1618628/derek-liu
https://riptutorial.com/contributor/2266261/dunno
https://riptutorial.com/contributor/2346144/e-doroskevic
https://riptutorial.com/contributor/26396/enrico-campidoglio
https://riptutorial.com/contributor/4023764/eskwayrd
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/1380781/hugo-ferreira
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/1440897/jeffrey-lin
https://riptutorial.com/contributor/1142167/joel-cornett
https://riptutorial.com/contributor/4354956/joseph-k--strauss
https://riptutorial.com/contributor/23649/jtbandes
https://riptutorial.com/contributor/201303/julian
https://riptutorial.com/contributor/392626/kissaki
https://riptutorial.com/contributor/86072/legec
https://riptutorial.com/contributor/7274758/libin-varghese
https://riptutorial.com/contributor/755798/luca-putzu
https://riptutorial.com/contributor/1406321/lucash
https://riptutorial.com/contributor/2140732/madhukar93
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/2641576/matt
https://riptutorial.com/contributor/894836/matthew-hallatt
https://riptutorial.com/contributor/3817111/menasheh
https://riptutorial.com/contributor/309308/michael-mrozek
https://riptutorial.com/contributor/133707/nemanja-boric
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/3353601/peter-mitrano
https://riptutorial.com/contributor/4531270/pylang
https://riptutorial.com/contributor/559845/richard
https://riptutorial.com/contributor/115563/takteek
https://riptutorial.com/contributor/396746/travis
https://riptutorial.com/contributor/1240001/victor-schroder
https://riptutorial.com/contributor/6309/vonc
https://riptutorial.com/contributor/2422874/wasabi-fan
https://riptutorial.com/contributor/2422874/wasabi-fan
https://riptutorial.com/contributor/2759075/yarons
https://riptutorial.com/contributor/405550/zaz
https://riptutorial.com/contributor/5065086/creative-john
https://riptutorial.com/contributor/4423221/hardik-kanjariya--
https://riptutorial.com/contributor/4423221/hardik-kanjariya--
https://riptutorial.com/contributor/5216847/julie-david
https://riptutorial.com/contributor/3663471/kisanme
https://riptutorial.com/contributor/777510/---------s
https://riptutorial.com/contributor/777510/---------s
https://riptutorial.com/contributor/777510/---------s
https://riptutorial.com/contributor/777510/---------s
https://riptutorial.com/contributor/2747593/scott-weldon
https://riptutorial.com/contributor/5006740/strangeqargo
https://riptutorial.com/contributor/405550/zaz

44
Reflog - Restoring
commits not shown
in git log

Braiam, Peter Amidon, Scott Weldon

45 Renaming bud-e, Karan Desai, P.J.Meisch, PhotometricStereo

46
Resolving merge
conflicts

Braiam, Dartmouth, David Ben Knoble, Fabio, nus, Vivin
George, Yury Fedorov

47 Rev-List mkasberg

48
Rewriting history with
filter-branch

gavinbeatty, gavv, Glenn Smith

49 Show Zaz

50 Squashing
adarsh, ams, AndiDog, bandi, Braiam, Caleb Brinkman, eush77,
georgebrock, jpkrohling, Julian, Mateusz Piotrowski, Ortomala
Lokni, RamenChef, Tall Sam, WMios

51 Staging
AesSedai101, Andy Hayden, Asaph, Confiqure, intboolstring,
Jakub Narębski, jkdev, Muhammad Abdullah, Nathan Arthur,
ownsourcing dev training, Richard Dally, Wolfgang

52 Stashing

aavrug, AesSedai101, Asaph, Brian Hinchey, bud-e, Cache
Staheli, Deep, e.doroskevic, fracz, GingerPlusPlus, Guillaume,
inkista, Jakub Narębski, Jarede, jeffdill2, joeytwiddle, Julie
David, Kara, Koraktor, Majid, manasouza, Ortomala Lokni,
Patrick, Peter Mitrano, Ralf Rafael Frix, Sebastianb, Tomás
Cañibano, Wojciech Kazior

53 Submodules
321hendrik, Chin Huang, ComicSansMS, foraidt, intboolstring, J
F, kowsky, mpromonet, PaladiN, tinlyx, Undo, VonC

54 Subtrees 4444, Jeff Puckett

55
Tidying up your local
and remote
repository

Thomas Crowley

56 TortoiseGit Julian, Matas Vaitkevicius

57 Undoing

Adi Lester, AesSedai101, Alexander Bird, Andy Hayden, Boggin
, brentonstrine, Brian, Colin D Bennett, ericdwang, Karan Desai,
Matthew Hallatt, Nathan Arthur, Nathaniel Ford, Nithin K Anil,
Pace, Rick, textshell, Undo, Zaz

58
Update Object Name
in Reference

Keyur Ramoliya, RamenChef

https://riptutorial.com/ 233

https://riptutorial.com/contributor/792066/braiam
https://riptutorial.com/contributor/6676199/peter-amidon
https://riptutorial.com/contributor/2747593/scott-weldon
https://riptutorial.com/contributor/4122020/bud-e
https://riptutorial.com/contributor/2828434/karan-desai
https://riptutorial.com/contributor/4393565/p-j-meisch
https://riptutorial.com/contributor/5883832/photometricstereo
https://riptutorial.com/contributor/792066/braiam
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/4400820/david-ben-knoble
https://riptutorial.com/contributor/2754856/fabio
https://riptutorial.com/contributor/1115652/nus
https://riptutorial.com/contributor/1663360/vivin-george
https://riptutorial.com/contributor/1663360/vivin-george
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/1263211/mkasberg
https://riptutorial.com/contributor/261268/gavinbeatty
https://riptutorial.com/contributor/3169754/gavv
https://riptutorial.com/contributor/214063/glenn-smith
https://riptutorial.com/contributor/405550/zaz
https://riptutorial.com/contributor/1068887/adarsh
https://riptutorial.com/contributor/1057909/ams
https://riptutorial.com/contributor/245706/andidog
https://riptutorial.com/contributor/49388/bandi
https://riptutorial.com/contributor/792066/braiam
https://riptutorial.com/contributor/2489497/caleb-brinkman
https://riptutorial.com/contributor/2424184/eush77
https://riptutorial.com/contributor/5168/georgebrock
https://riptutorial.com/contributor/524946/jpkrohling
https://riptutorial.com/contributor/201303/julian
https://riptutorial.com/contributor/4694621/mateusz-piotrowski
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1740468/tall-sam
https://riptutorial.com/contributor/3830876/wmios
https://riptutorial.com/contributor/1969198/aessedai101
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/166339/asaph
https://riptutorial.com/contributor/903291/confiqure
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/46058/jakub-narebski
https://riptutorial.com/contributor/46058/jakub-narebski
https://riptutorial.com/contributor/3345375/jkdev
https://riptutorial.com/contributor/4089357/muhammad-abdullah
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/5440638/ownsourcing-dev-training
https://riptutorial.com/contributor/5037799/richard-dally
https://riptutorial.com/contributor/1979340/wolfgang
https://riptutorial.com/contributor/3129610/aavrug
https://riptutorial.com/contributor/1969198/aessedai101
https://riptutorial.com/contributor/166339/asaph
https://riptutorial.com/contributor/62278/brian-hinchey
https://riptutorial.com/contributor/4122020/bud-e
https://riptutorial.com/contributor/4816518/cache-staheli
https://riptutorial.com/contributor/4816518/cache-staheli
https://riptutorial.com/contributor/4207394/deep
https://riptutorial.com/contributor/2346144/e-doroskevic
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/3821804/gingerplusplus
https://riptutorial.com/contributor/857728/guillaume
https://riptutorial.com/contributor/3587579/inkista
https://riptutorial.com/contributor/46058/jakub-narebski
https://riptutorial.com/contributor/46058/jakub-narebski
https://riptutorial.com/contributor/127606/jarede
https://riptutorial.com/contributor/2266827/jeffdill2
https://riptutorial.com/contributor/99777/joeytwiddle
https://riptutorial.com/contributor/5216847/julie-david
https://riptutorial.com/contributor/5216847/julie-david
https://riptutorial.com/contributor/881229/kara
https://riptutorial.com/contributor/81071/koraktor
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/1119153/manasouza
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/116249/patrick
https://riptutorial.com/contributor/3353601/peter-mitrano
https://riptutorial.com/contributor/2530378/ralf-rafael-frix
https://riptutorial.com/contributor/5796253/sebastianb
https://riptutorial.com/contributor/5384592/tomas-canibano
https://riptutorial.com/contributor/5384592/tomas-canibano
https://riptutorial.com/contributor/6787033/wojciech-kazior
https://riptutorial.com/contributor/3066053/321hendrik
https://riptutorial.com/contributor/57719/chin-huang
https://riptutorial.com/contributor/577603/comicsansms
https://riptutorial.com/contributor/27596/foraidt
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/7598462/kowsky
https://riptutorial.com/contributor/3102264/mpromonet
https://riptutorial.com/contributor/3887342/paladin
https://riptutorial.com/contributor/683218/tinlyx
https://riptutorial.com/contributor/1849664/undo
https://riptutorial.com/contributor/6309/vonc
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/4233593/jeff-puckett
https://riptutorial.com/contributor/8330953/thomas-crowley
https://riptutorial.com/contributor/201303/julian
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/1969198/aessedai101
https://riptutorial.com/contributor/10608/alexander-bird
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/444244/boggin
https://riptutorial.com/contributor/925897/brentonstrine
https://riptutorial.com/contributor/938380/brian
https://riptutorial.com/contributor/994153/colin-d-bennett
https://riptutorial.com/contributor/1944947/ericdwang
https://riptutorial.com/contributor/2828434/karan-desai
https://riptutorial.com/contributor/894836/matthew-hallatt
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/1112259/nithin-k-anil
https://riptutorial.com/contributor/202694/pace
https://riptutorial.com/contributor/1405475/rick
https://riptutorial.com/contributor/4973666/textshell
https://riptutorial.com/contributor/1849664/undo
https://riptutorial.com/contributor/405550/zaz
https://riptutorial.com/contributor/6326344/keyur-ramoliya
https://riptutorial.com/contributor/6392939/ramenchef

59
Using a .gitattributes
file

Chin Huang, dahlbyk, Toby

60
Working with
Remotes

Boggin, Caleb Brinkman, forevergenin, heitortsergent,
intboolstring, jeffdill2, Julie David, Kalpit, Matt Clark, MByD,
mnoronha, mpromonet, mystarrocks, Pascalz, Raghav, Ralf
Rafael Frix, Salah Eddine Lahniche, Sam, Scott Weldon, Stony,
Thamilan, Vivin George, VonC, Zaz

61 Worktrees andipla, Confiqure, Victor Schröder

https://riptutorial.com/ 234

https://riptutorial.com/contributor/57719/chin-huang
https://riptutorial.com/contributor/54249/dahlbyk
https://riptutorial.com/contributor/1292918/toby
https://riptutorial.com/contributor/444244/boggin
https://riptutorial.com/contributor/2489497/caleb-brinkman
https://riptutorial.com/contributor/2062000/forevergenin
https://riptutorial.com/contributor/1144141/heitortsergent
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/2266827/jeffdill2
https://riptutorial.com/contributor/5216847/julie-david
https://riptutorial.com/contributor/2424332/kalpit
https://riptutorial.com/contributor/1790644/matt-clark
https://riptutorial.com/contributor/464988/mbyd
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/3102264/mpromonet
https://riptutorial.com/contributor/934307/mystarrocks
https://riptutorial.com/contributor/698366/pascalz
https://riptutorial.com/contributor/3639087/raghav
https://riptutorial.com/contributor/2530378/ralf-rafael-frix
https://riptutorial.com/contributor/2530378/ralf-rafael-frix
https://riptutorial.com/contributor/6253742/salah-eddine-lahniche
https://riptutorial.com/contributor/4405881/sam
https://riptutorial.com/contributor/2747593/scott-weldon
https://riptutorial.com/contributor/411918/stony
https://riptutorial.com/contributor/5447994/thamilan
https://riptutorial.com/contributor/1663360/vivin-george
https://riptutorial.com/contributor/6309/vonc
https://riptutorial.com/contributor/405550/zaz
https://riptutorial.com/contributor/5118212/andipla
https://riptutorial.com/contributor/903291/confiqure
https://riptutorial.com/contributor/1240001/victor-schroder

	About
	Chapter 1: Getting started with Git
	Remarks
	Versions
	Examples
	Create your first repository, then add and commit files
	Clone a repository
	Setting up the upstream remote
	Sharing code
	Setting your user name and email
	Learning about a command
	Set up SSH for Git
	Git Installation

	Chapter 2: .mailmap file: Associating contributor and email aliases
	Syntax
	Remarks
	Examples
	Merge contributers by aliases to show commit count in shortlog.

	Chapter 3: Aliases
	Examples
	Simple aliases
	List / search existing aliases

	Searching aliases
	Advanced Aliases
	Temporarily ignore tracked files
	Show pretty log with branch graph
	Updating code while keeping a linear history
	See which files are being ignored by your .gitignore configuration
	Unstage staged files

	Chapter 4: Analyzing types of workflows
	Remarks
	Examples
	Gitflow Workflow
	Forking Workflow
	Centralized Workflow
	Feature Branch Workflow
	GitHub Flow

	Chapter 5: Archive
	Syntax
	Parameters
	Examples
	Create an archive of git repository with directory prefix
	Create archive of git repository based on specific branch, revision, tag or directory
	Create an archive of git repository

	Chapter 6: Bisecting/Finding faulty commits
	Syntax
	Examples
	Binary search (git bisect)
	Semi-automatically find a faulty commit

	Chapter 7: Blaming
	Syntax
	Parameters
	Remarks
	Examples
	Show the commit that last modified a line
	Ignore whitespace-only changes
	Only show certain lines
	To find out who changed a file

	Chapter 8: Branching
	Syntax
	Parameters
	Remarks
	Examples
	Listing branches
	Creating and checking out new branches
	Delete a branch locally
	Check out a new branch tracking a remote branch
	Rename a branch
	Overwrite single file in current working directory with the same from another branch
	Delete a remote branch
	Create an orphan branch (i.e. branch with no parent commit)
	Push branch to remote
	Move current branch HEAD to an arbitrary commit
	Quick switch to the previous branch
	Searching in branches

	Chapter 9: Browsing the history
	Syntax
	Parameters
	Remarks
	Examples
	"Regular" Git Log
	Oneline log
	Prettier log
	Log with changes inline
	Log search
	List all contributions grouped by author name
	Filter logs
	Log for a range of lines within a file
	Colorize Logs
	One line showing commiter name and time since commit
	Git Log Between Two Branches
	Log showing commited files
	Show the contents of a single commit
	Searching commit string in git log

	Chapter 10: Bundles
	Remarks
	Examples
	Creating a git bundle on the local machine and using it on another

	Chapter 11: Change git repository name
	Introduction
	Examples
	Change local setting

	Chapter 12: Cherry Picking
	Introduction
	Syntax
	Parameters
	Examples
	Copying a commit from one branch to another
	Copying a range of commits from one branch to another
	Checking if a cherry-pick is required
	Find commits yet to be applied to upstream

	Chapter 13: Cloning Repositories
	Syntax
	Examples
	Shallow Clone
	Regular Clone
	Clone a specific branch
	Clone recursively
	Clone using a proxy

	Chapter 14: Committing
	Introduction
	Syntax
	Parameters
	Examples
	Committing without opening an editor
	Amending a commit
	Committing changes directly
	Creating an empty commit
	Stage and commit changes

	The basics
	Shortcuts
	Sensitive data
	Committing on behalf of someone else
	Commiting changes in specific files
	Good commit messages

	The seven rules of a great git commit message
	Committing at a specific date
	Selecting which lines should be staged for committing
	Amending the time of a commit
	Amending the author of a commit
	GPG signing commits

	Chapter 15: Configuration
	Syntax
	Parameters
	Examples
	Username and email address
	Multiple git configurations
	Setting which editor to use
	Configuring line endings

	Description
	Microsoft Windows
	Unix Based (Linux/OSX)
	configuration for one command only
	Setup a proxy
	Auto correct typos
	List and edit the current configuration
	Multiple usernames and email address

	Example for Windows:
	.gitconfig
	.gitconfig-work.config
	.gitconfig-opensource.config

	Example for Linux

	Chapter 16: diff-tree
	Introduction
	Examples
	See the files changed in a specific commit
	Usage
	Common diff options

	Chapter 17: Display commit history graphically with Gitk
	Examples
	Display commit history for one file
	Display all commits between two commits
	Display commits since version tag

	Chapter 18: Empty directories in Git
	Examples
	Git doesn't track directories

	Chapter 19: External merge and difftools
	Examples
	Setting up Beyond Compare
	Setting up KDiff3 as merge tool
	Setting up KDiff3 as diff tool
	Setting up an IntelliJ IDE as merge tool (Windows)
	Setting up an IntelliJ IDE as diff tool (Windows)

	Chapter 20: Git Branch Name on Bash Ubuntu
	Introduction
	Examples
	Branch Name in terminal

	Chapter 21: Git Clean
	Syntax
	Parameters
	Examples
	Clean Ignored Files
	Clean All Untracked Directories
	Forcefully remove untracked files
	Clean Interactively

	Chapter 22: Git Client-Side Hooks
	Introduction
	Examples
	Installing a Hook
	Git pre-push hook

	Chapter 23: Git Diff
	Syntax
	Parameters
	Examples
	Show differences in working branch
	Show differences for staged files
	Show both staged and unstaged changes
	Show changes between two commits
	Using meld to see all modifications in the working directory
	Show differences for a specific file or directory
	Viewing a word-diff for long lines
	Viewing a three-way merge including the common ancestor
	Show differences between current version and last version
	Diff UTF-16 encoded text and binary plist files
	Comparing branches
	Show changes between two branches
	Produce a patch-compatible diff
	difference between two commit or branch

	Chapter 24: Git GUI Clients
	Examples
	GitHub Desktop
	Git Kraken
	SourceTree
	gitk and git-gui
	SmartGit
	Git Extensions

	Chapter 25: Git Large File Storage (LFS)
	Remarks
	Examples
	Install LFS
	Declare certain file types to store externally
	Set LFS config for all clones

	Chapter 26: Git Patch
	Syntax
	Parameters
	Examples
	Creating a patch
	Applying patches

	Chapter 27: Git Remote
	Syntax
	Parameters
	Examples
	Add a Remote Repository
	Rename a Remote Repository
	Remove a Remote Repository
	Display Remote Repositories
	Change remote url of your Git repository
	Show more information about remote repository

	Chapter 28: Git rerere
	Introduction
	Examples
	Enabling rerere

	Chapter 29: Git revisions syntax
	Remarks
	Examples
	Specifying revision by object name
	Symbolic ref names: branches, tags, remote-tracking branches
	The default revision: HEAD
	Reflog references: @{}
	Reflog references: @{}
	Tracked / upstream branch: @{upstream}
	Commit ancestry chain: ^, ~, etc.
	Dereferencing branches and tags: ^0, ^{}
	Youngest matching commit: ^{/}, :/

	Chapter 30: git send-email
	Syntax
	Remarks
	Examples
	Use git send-email with Gmail
	Composing
	Sending patches by mail

	Chapter 31: Git statistics
	Syntax
	Parameters
	Examples
	Commits per developer
	Commits per date
	Total number of commits in a branch
	Listing each branch and its last revision's date
	Lines of code per developer
	List all commits in pretty format
	Find All Local Git Repositories on Computer
	Show the total number of commits per author

	Chapter 32: Git Tagging
	Introduction
	Syntax
	Examples
	Listing all available tags
	Create and push tag(s) in GIT

	Chapter 33: git-svn
	Remarks

	Troubleshooting
	Examples
	Cloning the SVN repository
	Getting the latest changes from SVN
	Pushing local changes to SVN
	Working locally
	Handling empty folders

	Chapter 34: git-tfs
	Remarks
	Examples
	git-tfs clone
	git-tfs clone from bare git repository
	git-tfs install via Chocolatey
	git-tfs Check In
	git-tfs push

	Chapter 35: Hooks
	Syntax
	Remarks
	Examples
	Commit-msg
	Local hooks
	Post-checkout
	Post-commit
	Post-receive
	Pre-commit
	Prepare-commit-msg
	Pre-rebase
	Pre-receive
	Update
	Pre-push
	Verify Maven build (or other build system) before committing
	Automatically forward certain pushes to other repositories

	Chapter 36: Ignoring Files and Folders
	Introduction
	Examples
	Ignoring files and directories with a .gitignore file

	Examples
	Other forms of .gitignore
	Cleaning up ignored files
	Exceptions in a .gitignore file
	A global .gitignore file
	Ignore files that have already been committed to a Git repository
	Checking if a file is ignored
	Ignoring files in subfolders (Multiple gitignore files)
	Ignoring a file in any directory
	Ignore files locally without committing ignore rules
	Prefilled .gitignore Templates
	Ignoring subsequent changes to a file (without removing it)
	Ignoring only part of a file [stub]
	Ignoring changes in tracked files. [stub]
	Clear already committed files, but included in .gitignore
	Create an Empty Folder
	Finding files ignored by .gitignore

	Chapter 37: Internals
	Examples
	Repo
	Objects
	HEAD ref
	Refs
	Commit Object

	Tree
	Parent
	Tree Object
	Blob Object
	Creating new Commits
	Moving HEAD
	Moving refs around
	Creating new Refs

	Chapter 38: Merging
	Syntax
	Parameters
	Examples
	Merge one branch into another
	Automatic Merging
	Aborting a merge
	Keep changes from only one side of a merge
	Merge with a commit
	Finding all branches with no merged changes

	Chapter 39: Migrating to Git
	Examples
	Migrate from SVN to Git using Atlassian conversion utility
	SubGit
	Migrate from SVN to Git using svn2git
	Migrate from Team Foundation Version Control (TFVC) to Git
	Migrating Mercurial to Git

	Chapter 40: Pulling
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Updating with local changes
	Pull code from remote
	Pull, overwrite local
	Keeping linear history when pulling

	Rebasing when pulling
	Making it the default behavior
	Check if fast-forwardable
	Pull, "permission denied"
	Pulling changes to a local repository

	Simple pull
	Pull from a different remote or branch
	Manual pull
	Chapter 41: Pushing
	Introduction
	Syntax
	Parameters
	Remarks
	Upstream & Downstream
	Examples
	Push

	Specify remote repository
	Specify Branch
	Set the remote tracking branch
	Pushing to a new repository
	Explanation
	Force Pushing

	Important notes
	Push a specific object to a remote branch

	General syntax
	Example

	Delete remote branch
	Example
	Example

	Push a single commit
	Example
	Changing the default push behavior
	Push tags

	Chapter 42: Rebasing
	Syntax
	Parameters
	Remarks
	Examples
	Local Branch Rebasing
	Rebase: ours and theirs, local and remote

	Inversion illustrated
	On a merge:
	On a rebase:
	Interactive Rebase

	Rewording commit messages
	Changing the content of a commit
	Splitting a single commit into multiple
	Squashing multiple commits into one
	Aborting an Interactive Rebase
	Pushing after a rebase
	Rebase down to the initial commit
	Rebasing before a code review

	Summary
	Assuming:
	Strategy:
	Example:
	Recap
	Setup git-pull for automatically perform a rebase instead of a merge
	Testing all commits during rebase
	Configuring autostash

	Chapter 43: Recovering
	Examples
	Recovering from a lost commit
	Restore a deleted file after a commit
	Restore file to a previous version
	Recover a deleted branch
	Recovering from a reset

	With Git, you can (almost) always turn the clock back
	Recover from git stash

	Chapter 44: Reflog - Restoring commits not shown in git log
	Remarks
	Examples
	Recovering from a bad rebase

	Chapter 45: Renaming
	Syntax
	Parameters
	Examples
	Rename Folders
	Renaming a local branch
	rename a local and the remote branch

	Chapter 46: Resolving merge conflicts
	Examples
	Manual Resolution

	Chapter 47: Rev-List
	Syntax
	Parameters
	Examples
	List Commits in master but not in origin/master

	Chapter 48: Rewriting history with filter-branch
	Examples
	Changing the author of commits
	Setting git committer equal to commit author

	Chapter 49: Show
	Syntax
	Remarks
	Examples
	Overview

	For commits:
	For trees and blobs:
	For tags:

	Chapter 50: Squashing
	Remarks
	What is squashing?
	Squashing and Remote Branches

	Examples
	Squash Recent Commits Without Rebasing
	Squashing Commits During a Rebase
	Autosquash: Committing code you want to squash during a rebase
	Squashing Commit During Merge
	Autosquashing and fixups

	Chapter 51: Staging
	Remarks
	Examples
	Staging A Single File
	Staging All Changes to Files
	Stage deleted files
	Unstage a file that contains changes
	Interactive add
	Add changes by hunk
	Show Staged Changes

	Chapter 52: Stashing
	Syntax
	Parameters
	Remarks
	Examples
	What is Stashing?
	Create stash
	List saved stashes
	Show stash
	Remove stash
	Apply and remove stash
	Apply stash without removing it
	Recovering earlier changes from stash
	Partial stash
	Apply part of a stash with checkout
	Interactive Stashing
	Move your work in progress to another branch
	Recover a dropped stash

	Chapter 53: Submodules
	Examples
	Adding a submodule
	Cloning a Git repository having submodules
	Updating a Submodule
	Setting a submodule to follow a branch
	Removing a submodule
	Moving a submodule

	Chapter 54: Subtrees
	Syntax
	Remarks
	Examples
	Create, Pull, and Backport Subtree

	Create Subtree
	Pull Subtree Updates
	Backport Subtree Updates
	Chapter 55: Tidying up your local and remote repository
	Examples
	Delete local branches that have been deleted on the remote

	Chapter 56: TortoiseGit
	Examples
	Ignoring Files and Folders
	Branching
	Assume unchanged

	Revert "Assume unchanged"
	Squash commits

	The easy way
	The advanced way
	Chapter 57: Undoing
	Examples
	Undoing merges
	Using reflog
	Return to a previous commit
	Undoing changes
	Revert some existing commits
	Undo / Redo a series of commits

	Chapter 58: Update Object Name in Reference
	Examples
	Update Object Name in Reference

	Use
	SYNOPSIS
	General Syntax

	Chapter 59: Using a .gitattributes file
	Examples
	Disable Line Ending Normalization
	Automatic Line Ending Normalization
	Identify Binary Files
	Prefilled .gitattribute Templates

	Chapter 60: Working with Remotes
	Syntax
	Examples
	Adding a New Remote Repository
	Updating from Upstream Repository
	ls-remote
	Deleting a Remote Branch
	Removing Local Copies of Deleted Remote Branches
	Show information about a Specific Remote
	List Existing Remotes
	Getting Started

	Syntax for pushing to a remote branch
	Example
	Set Upstream on a New Branch
	Changing a Remote Repository
	Changing Git Remote URL
	Renaming a Remote
	Set the URL for a Specific Remote
	Get the URL for a Specific Remote

	Chapter 61: Worktrees
	Syntax
	Parameters
	Remarks
	Examples
	Using a worktree
	Moving a worktree

	Credits

