
Microsoft SQL Server

#sql-server

Table of Contents

About 1

Chapter 1: Getting started with Microsoft SQL Server 2

Remarks 2

Versions 2

Examples 2

UPDATE Specific Row 2

UPDATE All Rows 2

INSERT / SELECT / UPDATE / DELETE: the basics of Data Manipulation Language 3

Joins 5

Table Aliases 5

Unions 6

Table Variables 6

PRINT 7

SELECT all rows and columns from a table 7

Select rows that match a condition 8

Retrieve Basic Server Information 8

Using Transactions to change data safely 9

Comments in code 10

Create new table and insert records from old table 11

Getting Table Row Count 11

DELETE All Rows 12

TRUNCATE TABLE 12

Chapter 2: Advanced options 14

Examples 14

Enable and show advanced options 14

Enable backup compression default 14

Set default fill factor percent 14

Set system recovery interval 14

Enable cmd permission 14

Set max server memory size 14

Set number of checkpoint tasks 15

Chapter 3: Aggregate Functions 16

Introduction 16

Syntax 16

Examples 16

SUM() 16

AVG() 16

MAX() 17

MIN() 17

COUNT() 18

COUNT(Column_Name) with GROUP BY Column_Name 18

Chapter 4: Alias Names in Sql Server 20

Introduction 20

Examples 20

Using AS 20

Using = 20

Giving alias after Derived table name 20

Without using AS 21

Chapter 5: Analyzing a Query 22

Examples 22

Scan vs Seek 22

Chapter 6: Backup and Restore Database 23

Syntax 23

Parameters 23

Examples 23

Basic Backup to disk with no options 23

Basic Restore from disk with no options 23

RESTORE Database with REPLACE 23

Chapter 7: Basic DDL Operations in MS SQL Server 25

Examples 25

Getting started 25

Create Database 25

Create Table 25

Create View 26

Create Procedure 26

Chapter 8: bcp (bulk copy program) Utility 28

Introduction 28

Examples 28

Example to Import Data without a Format File(using Native Format) 28

Chapter 9: BULK Import 29

Examples 29

BULK INSERT with options 29

BULK INSERT 29

Reading entire content of file using OPENROWSET(BULK) 29

Read file using OPENROWSET(BULK) and format file 29

Read json file using OPENROWSET(BULK) 30

Chapter 10: CASE Statement 31

Remarks 31

Examples 31

Simple CASE statement 31

Searched CASE statement 31

Chapter 11: CLUSTERED COLUMNSTORE 32

Examples 32

Table with CLUSTERED COLUMNSTORE index 32

Adding clustered columnstore index on existing table 32

Rebuild CLUSTERED COLUMNSTORE index 32

Chapter 12: COALESCE 34

Syntax 34

Examples 34

Using COALESCE to Build Comma-Delimited String 34

Coalesce basic Example 34

Getting the first not null from a list of column values 35

Chapter 13: Common Language Runtime Integration 36

Examples 36

Enable CLR on database 36

Adding .dll that contains Sql CLR modules 36

Create CLR Function in SQL Server 36

Create CLR User-defined type in SQL Server 37

Create CLR procedure in SQL Server 37

Chapter 14: Common Table Expressions 38

Syntax 38

Remarks 38

Examples 38

Recursive CTE 38

CTE with multiple AS statements 39

Employee Hierarchy 40

Table Setup 40

Common Table Expression 40

Output: 40

Generate a table of dates using CTE 41

Find nth highest salary using CTE 41

Delete duplicate rows using CTE 42

Chapter 15: Computed Columns 44

Examples 44

A column is computed from an expression 44

Simple example we normally use in log tables 44

Chapter 16: Converting data types 46

Examples 46

TRY PARSE 46

TRY CONVERT 46

TRY CAST 47

Cast 47

Convert 48

Chapter 17: CREATE VIEW 49

Examples 49

CREATE VIEW 49

CREATE VIEW With Encryption 49

CREATE VIEW With INNER JOIN 49

CREATE Indexed VIEW 50

Grouped VIEWs 51

UNION-ed VIEWs 51

Chapter 18: cross apply 52

Examples 52

Join table rows with dynamically generated rows from a cell 52

Join table rows with JSON array stored in cell 52

Filter rows by array values 52

Chapter 19: Cursors 54

Syntax 54

Remarks 54

Examples 54

Basic Forward Only Cursor 54

Rudimentary cursor syntax 55

Chapter 20: Data Types 57

Introduction 57

Examples 57

Exact Numerics 57

Approximate Numerics 59

Date and Time 59

Character Strings 59

Unicode Character Strings 60

Binary Strings 60

Other Data Types 60

Chapter 21: Database permissions 61

Remarks 61

Examples 61

Changing permissions 61

CREATE USER 61

CREATE ROLE 61

Changing role membership 61

Chapter 22: Database Snapshots 63

Remarks 63

Examples 63

Create a database snapshot 63

Restore a database snapshot 63

DELETE Snapshot 64

Chapter 23: Dates 65

Syntax 65

Remarks 65

Examples 66

Date Format Extended 66

Return just Date from a DateTime 72

Create function to calculate a person's age on a specific date 72

CROSS PLATFORM DATE OBJECT 73

Get the current DateTime 73

DATEADD for adding and subtracting time periods 74

Date parts reference 74

DATEDIFF for calculating time period differences 75

DATEPART & DATENAME 76

Getting the last day of a month 76

Date & Time Formatting using CONVERT 77

Date & Time Formatting using FORMAT 78

Chapter 24: DBCC 82

Examples 82

DBCC maintenance commands 82

DBCC validation statements 83

DBCC informational statements 83

DBCC Trace commands 83

DBCC statement 84

Chapter 25: DBMAIL 85

Syntax 85

Examples 85

Send simple email 85

Send results of a query 85

Send HTML email 85

Chapter 26: Delimiting special characters and reserved words 87

Remarks 87

Examples 87

Basic Method 87

Chapter 27: Drop Keyword 88

Introduction 88

Remarks 88

Examples 88

Drop tables 88

Drop Databases 89

Drop temporary tables 90

Chapter 28: Dynamic data masking 91

Examples 91

Mask email address using Dynamic data masking 91

Add partial mask on column 91

Showing random value from the range using random() mask 91

Adding default mask on the column 92

Controlling who can see unmasked data 92

Chapter 29: Dynamic SQL 93

Examples 93

Execute SQL statement provided as string 93

Dynamic SQL executed as different user 93

SQL Injection with dynamic SQL 93

Dynamic SQL with parameters 94

Chapter 30: Dynamic SQL Pivot 95

Introduction 95

Examples 95

Basic Dynamic SQL Pivot 95

Chapter 31: Encryption 97

Parameters 97

Remarks 97

Examples 97

Encryption by certificate 97

Encryption of database 98

Encryption by symmetric key 98

Encryption by passphrase 98

Chapter 32: Export data in txt file by using SQLCMD 99

Syntax 99

Examples 99

By using SQLCMD on Command Prompt 99

Chapter 33: File Group 100

Examples 100

Create filegroup in database 100

Chapter 34: Filestream 102

Introduction 102

Examples 102

Example 102

Chapter 35: FOR JSON 103

Examples 103

FOR JSON PATH 103

FOR JSON PATH with column aliases 103

FOR JSON clause without array wrapper (single object in output) 103

INCLUDE_NULL_VALUES 104

Wrapping results with ROOT object 104

FOR JSON AUTO 104

Creating custom nested JSON structure 105

Chapter 36: FOR XML PATH 106

Remarks 106

Examples 106

Hello World XML 106

Specifying namespaces 106

Specifying structure using XPath expressions 106

Using FOR XML PATH to concatenate values 108

Chapter 37: Foreign Keys 109

Examples 109

Foreign key relationship/constraint 109

Maintaining relationship between parent/child rows 109

Adding foreign key relationship on existing table 110

Add foreign key on existing table 110

Getting information about foreign key constraints 110

Chapter 38: Full-Text Indexing 111

Examples 111

A. Creating a unique index, a full-text catalog, and a full-text index 111

Creating a full-text index on several table columns 111

Creating a full-text index with a search property list without populating it 111

Full-Text Search 112

Chapter 39: Generating a range of dates 113

Parameters 113

Remarks 113

Examples 113

Generating Date Range With Recursive CTE 113

Generating a Date Range With a Tally Table 113

Chapter 40: GROUP BY 115

Examples 115

GROUP BY with ROLLUP and CUBE 115

GROUP BY multiple columns 116

Group by with multiple tables, multiple columns 116

HAVING 118

Simple Grouping 119

Chapter 41: IF...ELSE 121

Examples 121

Single IF statement 121

Multiple IF Statements 121

Single IF..ELSE statement 121

Multiple IF... ELSE with final ELSE Statements 122

Multiple IF...ELSE Statements 122

Chapter 42: Index 124

Examples 124

Create Clustered index 124

Create Non-Clustered index 124

Show index info 124

Index on view 124

Drop index 125

Returns size and fragmentation indexes 125

Reorganize and rebuild index 125

Rebuild or reorganize all indexes on a table 125

Rebuild all index database 126

Index investigations 126

Chapter 43: In-Memory OLTP (Hekaton) 127

Examples 127

Create Memory Optimized System-Versioned Temporal Table 127

Create Memory Optimized Table 127

Show created .dll files and tables for Memory Optimized Tables 128

Memory-Optimized Table Types and Temp tables 129

Declare Memory-Optimized Table Variables 130

Chapter 44: Insert 131

Examples 131

Add a row to a table named Invoices 131

Chapter 45: INSERT INTO 132

Introduction 132

Examples 132

Use OUTPUT to get the new Id 132

INSERT from SELECT Query Results 132

INSERT Hello World INTO table 133

INSERT on specific columns 133

INSERT multiple rows of data 133

INSERT a single row of data 133

Chapter 46: Installing SQL Server on Windows 135

Examples 135

Introduction 135

Chapter 47: Isolation levels and locking 136

Remarks 136

Examples 136

Examples of setting the isolation level 136

Chapter 48: Join 138

Introduction 138

Examples 138

Accidentally turning an outer join into an inner join 138

Delete using Join 139

Self Join 139

Inner Join 140

Cross Join 141

Outer Join 143

Using Join in an Update 144

Join on a Subquery 145

Chapter 49: JSON in Sql Server 147

Syntax 147

Parameters 147

Remarks 147

Examples 147

Format Query Results as JSON with FOR JSON 147

Parse JSON text 148

Join parent and child JSON entities using CROSS APPLY OPENJSON 148

Index on JSON properties by using computed columns 149

Format one table row as a single JSON object using FOR JSON 150

Parse JSON text using OPENJSON function 151

Chapter 50: Last Inserted Identity 152

Examples 152

SCOPE_IDENTITY() 152

@@IDENTITY 152

IDENT_CURRENT('tablename') 153

@@IDENTITY and MAX(ID) 153

Chapter 51: Limit Result Set 154

Introduction 154

Parameters 154

Remarks 154

Examples 154

Limiting With TOP 154

Limiting With PERCENT 154

Limiting with FETCH 154

Chapter 52: Logical Functions 156

Examples 156

CHOOSE 156

IIF 156

Chapter 53: Managing Azure SQL Database 158

Examples 158

Find service tier information for Azure SQL Database 158

Change service tier of Azure SQL Database 158

Replication of Azure SQL Database 158

Create Azure SQL Database in Elastic pool 159

Chapter 54: MERGE 160

Introduction 160

Syntax 160

Remarks 161

Examples 161

MERGE to Insert / Update / Delete 161

Merge Using CTE Source 162

MERGE using Derived Source Table 162

Merge Example - Synchronize Source And Target Table 162

Merge using EXCEPT 164

Chapter 55: Microsoft SQL Server Management Studio Shortcut Keys 165

Examples 165

Menu Activation Keyboard Shortcuts 165

Shortcut Examples 165

Custom keyboard shortcuts 165

Chapter 56: Migration 168

Examples 168

How to generate migration scripts 168

Chapter 57: Modify JSON text 170

Examples 170

Modify value in JSON text on the specified path 170

Append a scalar value into a JSON array 170

Insert new JSON Object in JSON text 170

Insert new JSON array generated with FOR JSON query 171

Insert single JSON object generated with FOR JSON clause 171

Chapter 58: Move and copy data around tables 173

Examples 173

Copy data from one table to another 173

Copy data into a table, creating that table on the fly 173

Move data into a table (assuming unique keys method) 173

Chapter 59: Natively compiled modules (Hekaton) 175

Examples 175

Natively compiled stored procedure 175

Natively compiled scalar function 175

Native inline table value function 176

Chapter 60: NULLs 178

Introduction 178

Remarks 178

Examples 178

NULL comparison 178

ANSI NULLS 179

ISNULL() 180

Is null / Is not null 180

NULL with NOT IN SubQuery 181

COALESCE () 181

Chapter 61: OPENJSON 182

Examples 182

Get key:value pairs from JSON text 182

Transform JSON array into set of rows 182

Transform nested JSON fields into set of rows 183

Extracting inner JSON sub-objects 183

Working with nested JSON sub-arrays 184

Chapter 62: ORDER BY 186

Remarks 186

Examples 186

ORDER BY with complex logic 186

Simple ORDER BY clause 186

ORDER BY multiple fields 187

Custom Ordering 187

Chapter 63: OVER Clause 189

Parameters 189

Remarks 189

Examples 189

Using Aggregation functions with OVER 189

Cumulative Sum 190

Using Aggregation funtions to find the most recent records 190

Dividing Data into equally-partitioned buckets using NTILE 191

Chapter 64: Pagination 193

Introduction 193

Syntax 193

Examples 193

Pagination using ROW_NUMBER with a Common Table Expression 193

Pagination with OFFSET FETCH 194

Paginaton with inner query 194

Paging in Various Versions of SQL Server 194

SQL Server 2012 / 2014 194

SQL Server 2005/2008/R2 194

SQL Server 2000 195

SQL Server 2012/2014 using ORDER BY OFFSET and FETCH NEXT 195

Chapter 65: Parsename 196

Syntax 196

Parameters 196

Examples 196

PARSENAME 196

Chapter 66: Partitioning 197

Examples 197

Retrieve Partition Boundary Values 197

Switching Partitions 197

Retrieve partition table,column, scheme, function, total and min-max boundry values using 197

Chapter 67: Permissions and Security 199

Examples 199

Assign Object Permissions to a user 199

Chapter 68: PHANTOM read 200

Introduction 200

Remarks 200

Examples 200

Isolation level READ UNCOMMITTED 200

Chapter 69: PIVOT / UNPIVOT 202

Syntax 202

Remarks 202

Examples 202

Simple PIVOT & UNPIVOT (T-SQL) 202

Simple Pivot - Static Columns 204

Dynamic PIVOT 205

Chapter 70: Primary Keys 207

Remarks 207

Examples 207

Create table w/ identity column as primary key 207

Create table w/ GUID primary key 207

Create table w/ natural key 207

Create table w/ composite key 207

Add primary key to existing table 208

Delete primary key 208

Chapter 71: Privileges or Permissions 209

Examples 209

Simple rules 209

Chapter 72: Queries with JSON data 210

Examples 210

Using values from JSON in query 210

Using JSON values in reports 210

Filter-out bad JSON text from query results 210

Update value in JSON column 210

Append new value into JSON array 211

JOIN table with inner JSON collection 211

Finding rows that contain value in the JSON array 211

Chapter 73: Query Hints 213

Examples 213

INDEX Hints 213

JOIN Hints 213

GROUP BY Hints 214

FAST rows hint 214

UNION hints 214

MAXDOP Option 215

Chapter 74: Query Store 216

Examples 216

Enable query store on database 216

Get execution statistics for SQL queries/plans 216

Remove data from query store 216

Forcing plan for query 217

Chapter 75: Querying results by page 218

Examples 218

Row_Number() 218

Chapter 76: Ranking Functions 219

Syntax 219

Parameters 219

Remarks 219

Examples 219

RANK() 220

DENSE_RANK () 220

Chapter 77: Resource Governor 221

Remarks 221

Examples 221

Reading the Statistics 221

Create a pool for adhoc queries 221

Chapter 78: Retrieve information about the database 223

Remarks 223

Examples 223

Find every mention of a field in the database 223

Get all schemas, tables, columns and indexes 223

Return a list of SQL Agent jobs, with schedule information 223

Retrieve information on backup and restore operations 226

Count the Number of Tables in a Database 227

Retrieve a List of all Stored Procedures 227

Get the list of all databases on a server 228

Database Files 228

Show Size of All Tables in Current Database 229

Retrieve Database Options 229

Retrieve Tables Containing Known Column 229

Determine a Windows Login's Permission Path 230

See if Enterprise-specific features are being used 230

Search and Return All Tables and Columns Containing a Specified Column Value 230

Chapter 79: Retrieve Information about your Instance 232

Examples 232

Retrieve Local and Remote Servers 232

Get information on current sessions and query executions 232

Information about SQL Server version 233

Retrieve Edition and Version of Instance 233

Retrieve Instance Uptime in Days 233

General Information about Databases, Tables, Stored procedures and how to search them. 233

Chapter 80: Row-level security 235

Examples 235

RLS filter predicate 235

Altering RLS security policy 235

Preventing updated using RLS block predicate 236

Chapter 81: Scheduled Task or Job 238

Introduction 238

Examples 238

Create a scheduled Job 238

Chapter 82: Schemas 240

Examples 240

Creating a Schema 240

Alter Schema 240

Dropping Schemas 240

Purpose 240

Chapter 83: SCOPE_IDENTITY() 241

Syntax 241

Examples 241

Introduction with Simple Example 241

Chapter 84: SELECT statement 242

Introduction 242

Examples 242

Basic SELECT from table 242

Filter rows using WHERE clause 242

Sort results using ORDER BY 242

Group result using GROUP BY 242

Filter groups using HAVING clause 243

Returning only first N rows 243

Pagination using OFFSET FETCH 243

SELECT without FROM (no data souce) 244

Chapter 85: Sequences 245

Examples 245

Create Sequence 245

Use Sequence in Table 245

Insert Into Table with Sequence 245

Delete From & Insert New 245

Chapter 86: Service broker 247

Examples 247

1. Basics 247

2. Enable service broker on database 247

3. Create basic service broker construction on database (single database communication) 247

4. How to send basic communication through service broker 248

5. How to receive conversation from TargetQueue automatically 248

Chapter 87: Sorting/ordering rows 251

Examples 251

Basics 251

Order by Case 253

Chapter 88: Spatial Data 255

Introduction 255

Examples 255

POINT 255

Chapter 89: Split String function in Sql Server 257

Examples 257

T-SQL Table variable and XML 257

Split string in Sql Server 2008/2012/2014 using XML 257

Split a String in Sql Server 2016 257

Chapter 90: SQL Server Evolution through different versions (2000 - 2016) 260

Introduction 260

Examples 260

SQL Server Version 2000 - 2016 260

Chapter 91: SQL Server Management Studio (SSMS) 264

Introduction 264

Examples 264

Refreshing the IntelliSense cache 264

Chapter 92: SQLCMD 265

Remarks 265

Examples 265

SQLCMD.exe called from a batch file or command line 265

Chapter 93: Stored Procedures 266

Introduction 266

Syntax 266

Examples 266

Creating and executing a basic stored procedure 266

Stored Procedure with If...Else and Insert Into operation 268

Dynamic SQL in stored procedure 269

Simple Looping 270

Simple Looping 270

STORED PROCEDURE with OUT parameters 271

Creating a stored procedure with a single out parameter 271

Executing the stored procedure 271

Creating a stored procedure with multiple out parameters 272

Executing the stored procedure 272

Chapter 94: Storing JSON in SQL tables 273

Examples 273

JSON stored as text column 273

Ensure that JSON is properly formatted using ISJSON 273

Expose values from JSON text as computed columns 273

Adding index on JSON path 274

JSON stored in in-memory tables 274

Chapter 95: String Aggregate functions in SQL Server 275

Examples 275

Using STUFF for string aggregation 275

String_Agg for String Aggregation 275

Chapter 96: String Functions 276

Remarks 276

Examples 277

Left 277

Right 277

Substring 278

ASCII 278

CharIndex 279

Char 279

Len 279

Concat 280

Lower 281

Upper 281

LTrim 282

RTrim 282

Unicode 282

NChar 282

Reverse 283

PatIndex 283

Space 283

Replicate 284

Replace 284

Str 285

Quotename 285

String_Split 286

String_escape 287

Soundex 287

Difference 288

Format 288

Chapter 97: Subqueries 291

Examples 291

Subqueries 291

Chapter 98: System database - TempDb 293

Examples 293

Identify TempDb usage 293

TempDB database details 293

Chapter 99: Table Valued Parameters 294

Remarks 294

Examples 294

Using a table valued parameter to insert multiple rows to a table 294

Chapter 100: Temporal Tables 295

Remarks 295

Examples 295

CREATE Temporal Tables 295

How do I query temporal data? 296

Return actual value specified point in time(FOR SYSTEM_TIME AS OF) 296

FOR SYSTEM_TIME BETWEEN AND 296

FOR SYSTEM_TIME FROM TO 296

FOR SYSTEM_TIME CONTAINED IN (,) 297

FOR SYSTEM_TIME ALL 297

Creating a Memory-Optimized System-Versioned Temporal Table and cleaning up the SQL Server 297

Chapter 101: The STUFF Function 300

Parameters 300

Examples 300

Basic Example of STUFF() function. 300

stuff for comma separated in sql server 300

Obtain column names separated with comma (not a list) 301

Using FOR XML to Concatenate Values from Multiple Rows 301

Basic Character Replacement with STUFF() 302

Chapter 102: Transaction handling 303

Parameters 303

Examples 303

basic transaction skeleton with error handling 303

Chapter 103: Transaction isolation levels 304

Syntax 304

Remarks 304

Examples 304

Repeatable Read 304

Snapshot 304

Serializable 305

Read Uncommitted 305

Read Committed 305

What are "dirty reads"? 306

Chapter 104: Trigger 307

Introduction 307

Examples 307

Types and classifications of Trigger 307

DML Triggers 307

Chapter 105: TRY/CATCH 309

Remarks 309

Examples 309

Transaction in a TRY/CATCH 309

Raising errors in try-catch block 309

Raising info messages in try catch block 310

Re-throwing exception generated by RAISERROR 310

Throwing exception in TRY/CATCH blocks 311

Chapter 106: UNION 312

Examples 312

Union and union all 312

Chapter 107: Use of TEMP Table 315

Remarks 315

Examples 315

Dropping temp tables 315

Local Temp Table 315

Global Temp Table 316

Chapter 108: User Defined Table Types 317

Introduction 317

Remarks 317

Examples 317

creating a UDT with a single int column that is also a primary key 317

Creating a UDT with multiple columns 317

Creating a UDT with a unique constraint: 317

Creating a UDT with a primary key and a column with a default value: 317

Chapter 109: Variables 319

Syntax 319

Examples 319

Declare a Table Variable 319

Updating a variable using SET 320

Updating variables using SELECT 320

Declare multiple variables at once, with initial values 321

Compound assignment operators 321

Updating variables by selecting from a table 321

Chapter 110: Views 323

Remarks 323

Examples 323

Create a view 323

Create or replace view 323

Create a view with schema binding 323

Chapter 111: WHILE loop 325

Remarks 325

Examples 325

Using While loop 325

While loop with min aggregate function usage 325

Chapter 112: Window functions 326

Examples 326

Find the single most recent item in a list of timestamped events 326

Moving Average of last 30 Items 326

Centered Moving Average 326

Chapter 113: With Ties Option 328

Examples 328

Test Data 328

Credits 330

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: microsoft-sql-server

It is an unofficial and free Microsoft SQL Server ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official Microsoft SQL
Server.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

http://www.riptutorial.com/ 1

Chapter 1: Getting started with Microsoft SQL
Server

Remarks

This is a set of examples highlighting basic usage of SQL Server.

Versions

Version Release Date

SQL Server 2016 2016-06-01

SQL Server 2014 2014-03-18

SQL Server 2012 2011-10-11

SQL Server 2008 R2 2010-04-01

SQL Server 2008 2008-08-06

SQL Server 2005 2005-11-01

SQL Server 2000 2000-11-01

Examples

UPDATE Specific Row

UPDATE HelloWorlds
SET HelloWorld = 'HELLO WORLD!!!'
WHERE Id = 5

The above code updates the value of the field "HelloWorld" with "HELLO WORLD!!!" for the record
where "Id = 5" in HelloWorlds table.

Note: In an update statement, It is advised to use a "where" clause to avoid updating the whole
table unless and until your requirement is different.

UPDATE All Rows

A simple form of updating is incrementing all the values in a given field of the table. In order to do
so, we need to define the field and the increment value

http://www.riptutorial.com/ 2

The following is an example that increments the Score field by 1 (in all rows):

UPDATE Scores
SET score = score + 1

This can be dangerous since you can corrupt your data if you accidentally make an UPDATE for a
specific Row with an UPDATE for All rows in the table.

INSERT / SELECT / UPDATE / DELETE: the basics of Data Manipulation
Language

Data Manipulation Language (DML for short) includes operations such as INSERT, UPDATE and
DELETE:

-- Create a table HelloWorld

CREATE TABLE HelloWorld (
 Id INT IDENTITY,
 Description VARCHAR(1000)
)

-- DML Operation INSERT, inserting a row into the table
INSERT INTO HelloWorld (Description) VALUES ('Hello World')

-- DML Operation SELECT, displaying the table
SELECT * FROM HelloWorld

-- Select a specific column from table
SELECT Description FROM HelloWorld

-- Display number of records in the table
SELECT Count(*) FROM HelloWorld

-- DML Operation UPDATE, updating a specific row in the table
UPDATE HelloWorld SET Description = 'Hello, World!' WHERE Id = 1

-- Selecting rows from the table (see how the Description has changed after the update?)
SELECT * FROM HelloWorld

-- DML Operation - DELETE, deleting a row from the table
DELETE FROM HelloWorld WHERE Id = 1

-- Selecting the table. See table content after DELETE operation
SELECT * FROM HelloWorld

In this script we're creating a table to demonstrate some basic queries.

The following examples are showing how to query tables:

http://www.riptutorial.com/ 3

USE Northwind;
GO
SELECT TOP 10 * FROM Customers
ORDER BY CompanyName

will select the first 10 records of the Customer table, ordered by the column CompanyName from the
database Northwind (which is one of Microsoft's sample databases, it can be downloaded from
here):

Note that Use Northwind; changes the default database for all subsequent queries. You can still
reference the database by using the fully qualified syntax in the form of
[Database].[Schema].[Table]:

SELECT TOP 10 * FROM Northwind.dbo.Customers
ORDER BY CompanyName

SELECT TOP 10 * FROM Pubs.dbo.Authors
ORDER BY City

This is useful if you're querying data from different databases. Note that dbo, specified "in between"
is called a schema and needs to be specified while using the fully qualified syntax. You can think
of it as a folder within your database. dbo is the default schema. The default schema may be
omitted. All other user defined schemas need to be specified.

If the database table contains columns which are named like reserved words, e.g. Date, you need
to enclose the column name in brackets, like this:

-- descending order
SELECT TOP 10 [Date] FROM dbo.MyLogTable
ORDER BY [Date] DESC

The same applies if the column name contains spaces in its name (which is not recommended).
An alternative syntax is to use double quotes instead of square brackets, e.g.:

-- descending order
SELECT top 10 "Date" from dbo.MyLogTable
order by "Date" desc

is equivalent but not so commonly used. Notice the difference between double quotes and single

http://www.riptutorial.com/ 4

quotes: Single quotes are used for strings, i.e.

-- descending order
SELECT top 10 "Date" from dbo.MyLogTable
where UserId='johndoe'
order by "Date" desc

is a valid syntax. Notice that T-SQL has a N prefix for NChar and NVarchar data types, e.g.

SELECT TOP 10 * FROM Northwind.dbo.Customers
WHERE CompanyName LIKE N'AL%'
ORDER BY CompanyName

returns all companies having a company name starting with AL (% is a wild card, use it as you
would use the asterisk in a DOS command line, e.g. DIR AL*). For LIKE, there are a couple of
wildcards available, look here to find out more details.

Joins

Joins are useful if you want to query fields which don't exist in one single table, but in multiple
tables. For example: You want to query all columns from the Region table in the Northwind
database. But you notice that you require also the RegionDescription, which is stored in a different
table, Region. However, there is a common key, RgionID which you can use to combine this
information in a single query as follows (Top 5 just returns the first 5 rows, omit it to get all rows):

SELECT TOP 5 Territories.*,
 Regions.RegionDescription
FROM Territories
INNER JOIN Region
 ON Territories.RegionID=Region.RegionID
ORDER BY TerritoryDescription

will show all columns from Territories plus the RegionDescription column from Region. The result is
ordered by TerritoryDescription.

Table Aliases

When your query requires a reference to two or more tables, you may find it useful to use a Table
Alias. Table aliases are shorthand references to tables that can be used in place of a full table
name, and can reduce typing and editing. The syntax for using an alias is:

<TableName> [as] <alias>

Where as is an optional keyword. For example, the previous query can be rewritten as:

SELECT TOP 5 t.*,
 r.RegionDescription
FROM Territories t
INNER JOIN Region r

http://www.riptutorial.com/ 5

 ON t.RegionID = r.RegionID
ORDER BY TerritoryDescription

Aliases must be unique for all tables in a query, even if you use the same table twice. For
example, if your Employee table included a SupervisorId field, you can use this query to return an
employee and his supervisor's name:

SELECT e.*,
 s.Name as SupervisorName -- Rename the field for output
FROM Employee e
INNER JOIN Employee s
 ON e.SupervisorId = s.EmployeeId
WHERE e.EmployeeId = 111

Unions

As we have seen before, a Join adds columns from different table sources. But what if you want to
combine rows from different sources? In this case you can use a UNION. Suppose you're planning
a party and want to invite not only employees but also the customers. Then you could run this
query to do it:

SELECT FirstName+' '+LastName as ContactName, Address, City FROM Employees
UNION
SELECT ContactName, Address, City FROM Customers

It will return names, addresses and cities from the employees and customers in one single table.
Note that duplicate rows (if there should be any) are automatically eliminated (if you don't want
this, use a UNION ALL instead). The column number, column names, order and data type must
match across all the select statements that are part of the union - this is why the first SELECT
combines FirstName and LastName from Employee into ContactName.

Table Variables

It can be useful, if you need to deal with temporary data (especially in a stored procedure), to use
table variables: The difference between a "real" table and a table variable is that it just exists in
memory for temporary processing.

Example:

DECLARE @Region TABLE
(
 RegionID int,
 RegionDescription NChar(50)
)

creates a table in memory. In this case the @ prefix is mandatory because it is a variable. You can
perform all DML operations mentioned above to insert, delete and select rows, e.g.

http://www.riptutorial.com/ 6

INSERT INTO @Region values(3,'Northern')
INSERT INTO @Region values(4,'Southern')

But normally, you would populate it based on a real table like

INSERT INTO @Region
SELECT * FROM dbo.Region WHERE RegionID>2;

which would read the filtered values from the real table dbo.Region and insert it into the memory
table @Region - where it can be used for further processing. For example, you could use it in a join
like

SELECT * FROM Territories t
JOIN @Region r on t.RegionID=r.RegionID

which would in this case return all Northern and Southern territories. More detailed information can
be found here. Temporary tables are discussed here, if you are interested to read more about that
topic.

NOTE: Microsoft only recommends the use of table variables if the number of rows of data in the
table variable are less than 100. If you will be working with larger amounts of data, use a
temporary table, or temp table, instead.

PRINT

Display a message to the output console. Using SQL Server Management Studio, this will be
displayed in the messages tab, rather than the results tab:

PRINT 'Hello World!';

SELECT all rows and columns from a table

Syntax:

SELECT *
FROM table_name

Using the asterisk operator * serves as a shortcut for selecting all the columns in the table. All
rows will also be selected because this SELECT statement does not have a WHERE clause, to specify
any filtering criteria.

This would also work the same way if you added an alias to the table, for instance e in this case:

SELECT *
FROM Employees AS e

Or if you wanted to select all from a specific table you can use the alias + " .* ":

http://www.riptutorial.com/ 7

SELECT e.*, d.DepartmentName
FROM Employees AS e
 INNER JOIN Department AS d
 ON e.DepartmentID = d.DepartmentID

Database objects may also be accessed using fully qualified names:

SELECT * FROM [server_name].[database_name].[schema_name].[table_name]

This is not necessarily recommended, as changing the server and/or database names would
cause the queries using fully-qualified names to no longer execute due to invalid object names.

Note that the fields before table_name can be omitted in many cases if the queries are executed on
a single server, database and schema, respectively. However, it is common for a database to
have multiple schema, and in these cases the schema name should not be omitted when possible.

Warning: Using SELECT * in production code or stored procedures can lead to problems later on
(as new columns are added to the table, or if columns are rearranged in the table), especially if
your code makes simple assumptions about the order of columns, or number of columns returned.
So it's safer to always explicitly specify column names in SELECT statements for production code.

SELECT col1, col2, col3
FROM table_name

Select rows that match a condition

Generally, the syntax is:

SELECT <column names>
FROM <table name>
WHERE <condition>

For example:

SELECT FirstName, Age
FROM Users
WHERE LastName = 'Smith'

Conditions can be complex:

SELECT FirstName, Age
FROM Users
WHERE LastName = 'Smith' AND (City = 'New York' OR City = 'Los Angeles')

Retrieve Basic Server Information

SELECT @@VERSION

Returns the version of MS SQL Server running on the instance.

http://www.riptutorial.com/ 8

SELECT @@SERVERNAME

Returns the name of the MS SQL Server instance.

SELECT @@SERVICENAME

Returns the name of the Windows service MS SQL Server is running as.

SELECT serverproperty('ComputerNamePhysicalNetBIOS');

Returns the physical name of the machine where SQL Server is running. Useful to identify the
node in a failover cluster.

SELECT * FROM fn_virtualservernodes();

In a failover cluster returns every node where SQL Server can run on. It returns nothing if not a
cluster.

Using Transactions to change data safely

Whenever you change data, in a Data Manipulation Language(DML) command, you can wrap
your changes in a transaction. DML includes UPDATE, TRUNCATE, INSERT and DELETE. One of the ways
that you can make sure that you're changing the right data would be to use a transaction.

DML changes will take a lock on the rows affected. When you begin a transaction, you must end
the transaction or all objects being changed in the DML will remain locked by whoever began the
transaction. You can end your transaction with either ROLLBACK or COMMIT. ROLLBACK returns
everything within the transaction to its original state. COMMIT places the data into a final state where
you cannot undo your changes without another DML statement.

Example:

--Create a test table

USE [your database]
GO
CREATE TABLE test_transaction (column_1 varchar(10))
GO

INSERT INTO
 dbo.test_transaction
 (column_1)
VALUES
 ('a')

BEGIN TRANSACTION --This is the beginning of your transaction

UPDATE dbo.test_transaction
SET column_1 = 'B'
OUTPUT INSERTED.*
WHERE column_1 = 'A'

http://www.riptutorial.com/ 9

ROLLBACK TRANSACTION --Rollback will undo your changes
 --Alternatively, use COMMIT to save your results

SELECT * FROM dbo.test_transaction --View the table after your changes have been run

DROP TABLE dbo.test_transaction

Notes:

This is a simplified example which does not include error handling. But any database
operation can fail and hence throw an exception. Here is an example how such a required
error handling might look like. You should never use transactions without an error handler,
otherwise you might leave the transaction in an unknown state.

•

Depending on the isolation level, transactions are putting locks on the data being queried or
changed. You need to ensure that transactions are not running for a long time, because they
will lock records in a database and can lead to deadlocks with other parallel running
transactions. Keep the operations encapsulated in transactions as short as possible and
minimize the impact with the amount of data you're locking.

•

Comments in code

Transact-SQL supports two forms of comment writing. Comments are ignored by the database
engine, and are meant for people to read.

Comments are preceded by -- and are ignored until a new line is encountered:

-- This is a comment
SELECT *
FROM MyTable -- This is another comment
WHERE Id = 1;

Slash star comments begin with /* and end with */. All text between those delimiters is
considered as a comment block.

/* This is
a multi-line
comment block. */
SELECT Id = 1, [Message] = 'First row'
UNION ALL
SELECT 2, 'Second row'
/* This is a one liner */
SELECT 'More';

Slash star comments have the advantage of keeping the comment usable if the SQL Statement
loses new line characters. This can happen when SQL is captured during troubleshooting.

Slash star comments can be nested and a starting /* inside a slash star comment needs to be
ended with a */ to be valid. The following code will result in an error

http://www.riptutorial.com/ 10

/*
SELECT *
FROM CommentTable
WHERE Comment = '/*'
*/

The slash star even though inside the quote is considered as the start of a comment. Hence it
needs to be ended with another closing star slash. The correct way would be

/*
SELECT *
FROM CommentTable
WHERE Comment = '/*'
*/ */

Create new table and insert records from old table

SELECT * INTO NewTable FROM OldTable

Creates a new table with structure of old table and inserts all rows into the new table.

Some Restrictions

You cannot specify a table variable or table-valued parameter as the new table.1.
You cannot use SELECT…INTO to create a partitioned table, even when the
source table is partitioned. SELECT...INTO does not use the partition scheme of
the source table; instead, the new table is created in the default filegroup. To
insert rows into a partitioned table, you must first create the partitioned table and
then use the INSERT INTO...SELECT FROM statement.

2.

Indexes, constraints, and triggers defined in the source table are not transferred
to the new table, nor can they be specified in the SELECT...INTO statement. If
these objects are required, you can create them after executing the
SELECT...INTO statement.

3.

Specifying an ORDER BY clause does not guarantee the rows are inserted in the
specified order. When a sparse column is included in the select list, the sparse
column property does not transfer to the column in the new table. If this property
is required in the new table, alter the column definition after executing the
SELECT...INTO statement to include this property.

4.

When a computed column is included in the select list, the corresponding column
in the new table is not a computed column. The values in the new column are the
values that were computed at the time SELECT...INTO was executed.

5.

[sic]

Getting Table Row Count

The following example can be used to find the total row count for a specific table in a database if
table_name is replaced by the the table you wish to query:

http://www.riptutorial.com/ 11

SELECT COUNT(*) AS [TotalRowCount] FROM table_name;

It is also possible to get the row count for all tables by joining back to the table's partition based off
the tables' HEAP (index_id = 0) or cluster clustered index (index_id = 1) using the following script:

SELECT [Tables].name AS [TableName],
 SUM([Partitions].[rows]) AS [TotalRowCount]
FROM sys.tables AS [Tables]
JOIN sys.partitions AS [Partitions]
 ON [Tables].[object_id] = [Partitions].[object_id]
 AND [Partitions].index_id IN (0, 1)
--WHERE [Tables].name = N'table name' /* uncomment to look for a specific table */
GROUP BY [Tables].name;

This is possible as every table is essentially a single partition table, unless extra partitions are
added to it. This script also has the benefit of not interfering with read/write operations to the
tables rows'.

DELETE All Rows

DELETE
FROM Helloworlds

This will delete all the data from the table. The table will contain no rows after you run this code.
Unlike DROP TABLE, this preserves the table itself and its structure and you can continue to insert
new rows into that table.

Another way to delete all rows in table is truncate it, as follow:

TRUNCATE TABLE HelloWords

Difference with DELETE operation are several:

Truncate operation doesn't store in transaction log file1.
If exists IDENTITY field, this will be reset2.
TRUNCATE can be applied on whole table and no on part of it (instead with DELETE
command you can associate a WHERE clause)

3.

Restrictions Of TRUNCATE

Cannot TRUNCATE a table if there is a FOREIGN KEY reference1.
If the table is participated in an INDEXED VIEW2.
If the table is published by using TRANSACTIONAL REPLICATION or MERGE REPLICATION3.
It will not fire any TRIGGER defined in the table4.

[sic]

TRUNCATE TABLE

http://www.riptutorial.com/ 12

TRUNCATE TABLE Helloworlds

This code will delete all the data from the table Helloworlds. Truncate table is almost similar to
Delete from Table code. The difference is that you can not use where clauses with Truncate.
Truncate table is considered better than delete because it uses less transaction log spaces.

Note that if an identity column exists, it is reset to the initial seed value (for example, auto-
incremented ID will restart from 1). This can lead to inconsistency if the identity columns is used as
a foreign key in another table.

Read Getting started with Microsoft SQL Server online: http://www.riptutorial.com/sql-
server/topic/236/getting-started-with-microsoft-sql-server

http://www.riptutorial.com/ 13

Chapter 2: Advanced options

Examples

Enable and show advanced options

Exec sp_configure 'show advanced options' ,1
RECONFIGURE
GO
-- Show all configure
sp_configure

Enable backup compression default

Exec sp_configure 'backup compression default',1
GO
RECONFIGURE;

Set default fill factor percent

sp_configure 'fill factor', 100;
GO
RECONFIGURE;

The server must be restarted before the change can take effect.

Set system recovery interval

USE master;
GO
-- Set recovery every 3 min
EXEC sp_configure 'recovery interval', '3';
RECONFIGURE WITH OVERRIDE;

Enable cmd permission

EXEC sp_configure 'xp_cmdshell', 1
GO
RECONFIGURE

Set max server memory size

USE master
EXEC sp_configure 'max server memory (MB)', 64
RECONFIGURE WITH OVERRIDE

http://www.riptutorial.com/ 14

Set number of checkpoint tasks

EXEC sp_configure "number of checkpoint tasks", 4

Read Advanced options online: http://www.riptutorial.com/sql-server/topic/5185/advanced-options

http://www.riptutorial.com/ 15

Chapter 3: Aggregate Functions

Introduction

Aggregate functions in SQL Server run calculations on sets of values, returning a single value.

Syntax

AVG([ALL|DISTINCT]expression)•
COUNT([ALL|DISTINCT]expression)•
MAX([ALL|DISTINCT]expression)•
MIN([ALL|DISTINCT]expression)•
SUM([ALL|DISTINCT]expression)•

Examples

SUM()

Returns sum of numeric values in a given column.

We have table as shown in figure that will be used to perform different aggregate functions. The
table name is Marksheet.

Select SUM(MarksObtained) From Marksheet

The sum function doesn't consider rows with NULL value in the field used as parameter

In the above example if we have another row like this:

106 Italian NULL

This row will not be consider in sum calculation

AVG()

Returns average of numeric values in a given column.

We have table as shown in figure that will be used to perform different aggregate functions. The

http://www.riptutorial.com/ 16

table name is Marksheet.

Select AVG(MarksObtained) From Marksheet

The average function doesn't consider rows with NULL value in the field used as parameter

In the above example if we have another row like this:

106 Italian NULL

This row will not be consider in average calculation

MAX()

Returns the largest value in a given column.

We have table as shown in figure that will be used to perform different aggregate functions. The
table name is Marksheet.

Select MAX(MarksObtained) From Marksheet

MIN()

Returns the smallest value in a given column.

We have table as shown in figure that will be used to perform different aggregate functions. The
table name is Marksheet.

http://www.riptutorial.com/ 17

Select MIN(MarksObtained) From Marksheet

COUNT()

Returns the total number of values in a given column.

We have table as shown in figure that will be used to perform different aggregate functions. The
table name is Marksheet.

Select COUNT(MarksObtained) From Marksheet

The count function doesn't consider rows with NULL value in the field used as parameter. Usually
the count parameter is * (all fields) so only if all fields of row are NULLs this row will not be
considered

In the above example if we have another row like this:

106 Italian NULL

This row will not be consider in count calculation

NOTE

The function COUNT(*) returns the number of rows in a table. This value can also be obtained by
using a constant non-null expression that contains no column references, such as COUNT(1).

Example

Select COUNT(1) From Marksheet

COUNT(Column_Name) with GROUP BY Column_Name

Most of the time we like to get the total number of occurrence of a column value in a table for
example:

TABLE NAME : REPORTS

ReportName ReportPrice

Test 10.00 $

http://www.riptutorial.com/ 18

ReportName ReportPrice

Test 10.00 $

Test 10.00 $

Test 2 11.00 $

Test 10.00 $

Test 3 14.00 $

Test 3 14.00 $

Test 4 100.00 $

SELECT
 ReportName AS REPORT NAME,
 COUNT(ReportName) AS COUNT
FROM
 REPORTS
GROUP BY
 ReportName

REPORT NAME COUNT

Test 4

Test 2 1

Test 3 2

Test 4 1

Read Aggregate Functions online: http://www.riptutorial.com/sql-server/topic/5802/aggregate-
functions

http://www.riptutorial.com/ 19

Chapter 4: Alias Names in Sql Server

Introduction

Here is some of different ways to provide alias names to columns in Sql Server

Examples

Using AS

This is ANSI SQL method works in all the RDBMS. Widely used approach.

CREATE TABLE AliasNameDemo (id INT,firstname VARCHAR(20),lastname VARCHAR(20))

INSERT INTO AliasNameDemo
VALUES (1,'MyFirstName','MyLastName')

SELECT FirstName +' '+ LastName As FullName
FROM AliasNameDemo

Using =

This is my preferred approach. Nothing related to performance just a personal choice. It makes the
code to look clean. You can see the resulting column names easily instead of scrolling the code if
you have a big expression.

CREATE TABLE AliasNameDemo (id INT,firstname VARCHAR(20),lastname VARCHAR(20))

INSERT INTO AliasNameDemo
VALUES (1,'MyFirstName','MyLastName')

SELECT FullName = FirstName +' '+ LastName
FROM AliasNameDemo

Giving alias after Derived table name

This is a weird approach most of the people don't know this even exist.

CREATE TABLE AliasNameDemo(id INT,firstname VARCHAR(20),lastname VARCHAR(20))

INSERT INTO AliasNameDemo
VALUES (1,'MyFirstName','MyLastName')

SELECT *
FROM (SELECT firstname + ' ' + lastname
 FROM AliasNameDemo) a (fullname)

Demo•

http://www.riptutorial.com/ 20

Without using AS

This syntax will be similar to using AS keyword. Just we don't have to use AS keyword

CREATE TABLE AliasNameDemo (id INT,firstname VARCHAR(20),lastname VARCHAR(20))

INSERT INTO AliasNameDemo
VALUES (1,'MyFirstName','MyLastName')

SELECT FirstName +' '+ LastName FullName
FROM AliasNameDemo

Read Alias Names in Sql Server online: http://www.riptutorial.com/sql-server/topic/10784/alias-
names-in-sql-server

http://www.riptutorial.com/ 21

Chapter 5: Analyzing a Query

Examples

Scan vs Seek

When viewing an execution plan, you may see that SQL Server decided to do a Seek or a Scan.

A Seek occurs when SQL Server knows where it needs to go and only grab specific items. This
typically occurs when good filters on put in a query, such as where name = 'Foo'.

A Scan is when SQL Server doesn't know exactly where all of the data it needs is, or decided that
the Scan would be more efficient than a Seek if enough of the data is selected.

Seeks are typically faster since they are only grabbing a sub-section of the data, whereas Scans
are selecting a majority of the data.

Read Analyzing a Query online: http://www.riptutorial.com/sql-server/topic/7713/analyzing-a-query

http://www.riptutorial.com/ 22

Chapter 6: Backup and Restore Database

Syntax

BACKUP DATABASE database TO backup_device [,...n] WITH with_options [,...o]•
RESTORE DATABASE database FROM backup_device [,...n] WITH with_options [,...o]•

Parameters

Parameter Details

database The name of the database to backup or restore

backup_device
The device to backup or restore the database from, Like {DISK or TAPE}.
Can be separated by commas (,)

with_options
Various options which can be used while performing the operation. Like
formatting the disk where the backup is to be placed or restoring the
database with replace option.

Examples

Basic Backup to disk with no options

The following command backs up the 'Users' database to 'D:\DB_Backup' file. Its better to not give
an extension.

BACKUP DATABASE Users TO DISK = 'D:\DB_Backup'

Basic Restore from disk with no options

The following command restores the 'Users' database from 'D:\DB_Backup' file.

RESTORE DATABASE Users FROM DISK = 'D:\DB_Backup'

RESTORE Database with REPLACE

When you try to restore database from another server you might get the following error:

Error 3154: The backup set holds a backup of a database other than the existing
database.

In that case you should use WITH REPLACE option to replace database with the database from
backup:

http://www.riptutorial.com/ 23

RESTORE DATABASE WWIDW
FROM DISK = 'C:\Backup\WideWorldImportersDW-Full.bak'
WITH REPLACE

Even in this case you might get the errors saying that files cannot be located on some path:

Msg 3156, Level 16, State 3, Line 1 File 'WWI_Primary' cannot be restored to
'D:\Data\WideWorldImportersDW.mdf'. Use WITH MOVE to identify a valid location for
the file.

This error happens probably because your files were not placed on the same folder path that exist
on new server. In that case you should move individual database files to new location:

RESTORE DATABASE WWIDW
FROM DISK = 'C:\Backup\WideWorldImportersDW-Full.bak'
WITH REPLACE,
MOVE 'WWI_Primary' to 'C:\Data\WideWorldImportersDW.mdf',
MOVE 'WWI_UserData' to 'C:\Data\WideWorldImportersDW_UserData.ndf',
MOVE 'WWI_Log' to 'C:\Data\WideWorldImportersDW.ldf',
MOVE 'WWIDW_InMemory_Data_1' to 'C:\Data\WideWorldImportersDW_InMemory_Data_1'

With this statement you can replace database with all database files moved to new location.

Read Backup and Restore Database online: http://www.riptutorial.com/sql-
server/topic/5826/backup-and-restore-database

http://www.riptutorial.com/ 24

Chapter 7: Basic DDL Operations in MS SQL
Server

Examples

Getting started

This section describes some basic DDL (="Data Definition Language") commands to create a
database, a table within a database, a view and finally a stored procedure.

Create Database

The following SQL command creates a new database Northwind on the current server, using path
C:\Program Files\Microsoft SQL Server\MSSQL11.INSTSQL2012\MSSQL\DATA\:

USE [master]
GO

CREATE DATABASE [Northwind]
 CONTAINMENT = NONE
 ON PRIMARY
 (
 NAME = N'Northwind',
 FILENAME = N'C:\Program Files\Microsoft SQL
Server\MSSQL11.INSTSQL2012\MSSQL\DATA\Northwind.mdf' , SIZE = 5120KB , MAXSIZE = UNLIMITED,
FILEGROWTH = 1024KB
)
 LOG ON
 (
 NAME = N'Northwind_log',
 FILENAME = N'C:\Program Files\Microsoft SQL
Server\MSSQL11.INSTSQL2012\MSSQL\DATA\Northwind_log.ldf' , SIZE = 1536KB , MAXSIZE = 2048GB ,
FILEGROWTH = 10%
)
GO

ALTER DATABASE [Northwind] SET COMPATIBILITY_LEVEL = 110
GO

Note: A T-SQL database consists of two files, the database file *.mdf, and its transaction log *.ldf.
Both need to be specified when a new database is created.

Create Table

The following SQL command creates a new table Categories in the current database, using
schema dbo (you can switch database context with Use <DatabaseName>):

http://www.riptutorial.com/ 25

CREATE TABLE dbo.Categories(
 CategoryID int IDENTITY NOT NULL,
 CategoryName nvarchar(15) NOT NULL,
 Description ntext NULL,
 Picture image NULL,
 CONSTRAINT PK_Categories PRIMARY KEY CLUSTERED
 (
 CategoryID ASC
)
 WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,
 ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON PRIMARY
) ON PRIMARY TEXTIMAGE_ON PRIMARY

Create View

The following SQL command creates a new view Summary_of_Sales_by_Year in the current database,
using schema dbo (you can switch database context with Use <DatabaseName>):

CREATE VIEW dbo.Summary_of_Sales_by_Year AS
 SELECT ord.ShippedDate, ord.OrderID, ordSub.Subtotal
 FROM Orders ord
 INNER JOIN [Order Subtotals] ordSub ON ord.OrderID = ordSub.OrderID

This will join tables Orders and [Order Subtotals] to display the columns ShippedDate, OrderID and
Subtotal. Because table [Order Subtotals] has a blank in its name in the Northwind database, it
needs to be enclosed in square brackets.

Create Procedure

The following SQL command creates a new stored procedure CustOrdersDetail in the current
database, using schema dbo (you can switch database context with Use <DatabaseName>):

CREATE PROCEDURE dbo.MyCustOrdersDetail @OrderID int, @MinQuantity int=0
AS BEGIN
 SELECT ProductName,
 UnitPrice=ROUND(Od.UnitPrice, 2),
 Quantity,
 Discount=CONVERT(int, Discount * 100),
 ExtendedPrice=ROUND(CONVERT(money, Quantity * (1 - Discount) * Od.UnitPrice), 2)
 FROM Products P, [Order Details] Od
 WHERE Od.ProductID = P.ProductID and Od.OrderID = @OrderID
 and Od.Quantity>=@MinQuantity
END

This stored procedure, after it has been created, can be invoked as follows:

exec dbo.MyCustOrdersDetail 10248

which will return all order details with @OrderId=10248 (and quantity >=0 as default). Or you can
specify the optional parameter

http://www.riptutorial.com/ 26

exec dbo.MyCustOrdersDetail 10248, 10

which will return only orders with a minimum quantity of 10 (or more).

Read Basic DDL Operations in MS SQL Server online: http://www.riptutorial.com/sql-
server/topic/5463/basic-ddl-operations-in-ms-sql-server

http://www.riptutorial.com/ 27

Chapter 8: bcp (bulk copy program) Utility

Introduction

The bulk copy program utility (bcp) bulk copies data between an instance of Microsoft SQL Server
and a data file in a user-specified format. The bcp utility can be used to import large numbers of
new rows into SQL Server tables or to export data out of tables into data files.

Examples

Example to Import Data without a Format File(using Native Format)

REM Truncate table (for testing)
SQLCMD -Q "TRUNCATE TABLE TestDatabase.dbo.myNative;"

REM Import data
bcp TestDatabase.dbo.myNative IN D:\BCP\myNative.bcp -T -n

REM Review results
SQLCMD -Q "SELECT * FROM TestDatabase.dbo.myNative;"

Read bcp (bulk copy program) Utility online: http://www.riptutorial.com/sql-server/topic/10942/bcp--
bulk-copy-program--utility

http://www.riptutorial.com/ 28

Chapter 9: BULK Import

Examples

BULK INSERT with options

You can customize parsing rules using different options in WITH clause:

BULK INSERT People
FROM 'f:\orders\people.csv'
WITH (CODEPAGE = '65001',
 FIELDTERMINATOR =',',
 ROWTERMINATOR ='\n'
);

In this example, CODEPAGE specifies that a source file in UTF-8 file, and TERMINATORS are
coma and new line.

BULK INSERT

BULK INSERT command can be used to import file into SQL Server:

BULK INSERT People
FROM 'f:\orders\people.csv'

BULK INSERT command will map columns in files with columns in target table.

Reading entire content of file using OPENROWSET(BULK)

You can read content of file using OPENROWSET(BULK) function and store content in some
table:

INSERT INTO myTable(content)
 SELECT BulkColumn
 FROM OPENROWSET(BULK N'C:\Text1.txt', SINGLE_BLOB) AS Document;

SINGLE_BLOB option will read entire content from a file as single cell.

Read file using OPENROWSET(BULK) and format file

Yu can define format of the file that will be imported using FORMATFILE option:

INSERT INTO mytable
SELECT a.*
FROM OPENROWSET(BULK 'c:\test\values.txt',
 FORMATFILE = 'c:\test\values.fmt') AS a;

http://www.riptutorial.com/ 29

The format file, format_file.fmt, describes the columns in values.txt:

9.0
2
1 SQLCHAR 0 10 "\t" 1 ID SQL_Latin1_General_Cp437_BIN
2 SQLCHAR 0 40 "\r\n" 2 Description SQL_Latin1_General_Cp437_BIN

Read json file using OPENROWSET(BULK)

You can use OPENROWSET to read content of file and pass it to some other function that will
parse results.

The following example shows hot to read entire content of JSON file using OPENROWSET(BULK)
and then provide BulkColumn to OPENJSON function that will parse JSON and return columns:

SELECT book.*
 FROM OPENROWSET (BULK 'C:\JSON\Books\books.json', SINGLE_CLOB) as j
 CROSS APPLY OPENJSON(BulkColumn)
 WITH(id nvarchar(100), name nvarchar(100), price float,
 pages int, author nvarchar(100)) AS book

Read BULK Import online: http://www.riptutorial.com/sql-server/topic/7330/bulk-import

http://www.riptutorial.com/ 30

Chapter 10: CASE Statement

Remarks

Above example is just to show the syntax for using case statements in SQL Server with day of
week example. Although same can output can be achieved by using "SELECT
DATENAME(WEEKDAY, GETDATE())" as well.

Examples

Simple CASE statement

In a simple case statement, one value or variable is checked against multiple possible answers.
The code below is an example of a simple case statement:

SELECT CASE DATEPART(WEEKDAY, GETDATE())
 WHEN 1 THEN 'Sunday'
 WHEN 2 THEN 'Monday'
 WHEN 3 THEN 'Tuesday'
 WHEN 4 THEN 'Wednesday'
 WHEN 5 THEN 'Thursday'
 WHEN 6 THEN 'Friday'
 WHEN 7 THEN 'Saturday'
END

Searched CASE statement

In a Searched Case statement, each option can test one or more values independently. The code
below is an example of a searched case statement:

DECLARE @FirstName varchar(30) = 'John'
DECLARE @LastName varchar(30) = 'Smith'

SELECT CASE
 WHEN LEFT(@FirstName, 1) IN ('a','e','i','o','u')
 THEN 'First name starts with a vowel'
 WHEN LEFT(@LastName, 1) IN ('a','e','i','o','u')
 THEN 'Last name starts with a vowel'
 ELSE
 'Neither name starts with a vowel'
END

Read CASE Statement online: http://www.riptutorial.com/sql-server/topic/7238/case-statement

http://www.riptutorial.com/ 31

Chapter 11: CLUSTERED COLUMNSTORE

Examples

Table with CLUSTERED COLUMNSTORE index

If you want to have a table organized in column-store format instead of row store, add INDEX cci
CLUSTERED COLUMNSTORE in definition of table:

DROP TABLE IF EXISTS Product
GO
CREATE TABLE Product (
 ProductID int,
 Name nvarchar(50) NOT NULL,
 Color nvarchar(15),
 Size nvarchar(5) NULL,
 Price money NOT NULL,
 Quantity int,
 INDEX cci CLUSTERED COLUMNSTORE
)

COLUMSTORE tables are better for tables where you expect full scans and reports, while row
store tables are better for tables where you will read or update smaller sets of rows.

Adding clustered columnstore index on existing table

CREATE CLUSTERED COLUMNSTORE INDEX enables you to organize a table in column
format:

DROP TABLE IF EXISTS Product
GO
CREATE TABLE Product (
 Name nvarchar(50) NOT NULL,
 Color nvarchar(15),
 Size nvarchar(5) NULL,
 Price money NOT NULL,
 Quantity int
)
GO
CREATE CLUSTERED COLUMNSTORE INDEX cci ON Product

Rebuild CLUSTERED COLUMNSTORE index

Clustered column store index can be rebuilt if you have a lot of deleted rows:

ALTER INDEX cci ON Products
REBUILD PARTITION = ALL

Rebuilding CLUSTERED COLUMNSTORE will "reload" data from the current table into new one
and apply compression again, remove deleted rows, etc.

http://www.riptutorial.com/ 32

You can rebuild one or more partitions.

Read CLUSTERED COLUMNSTORE online: http://www.riptutorial.com/sql-
server/topic/5774/clustered-columnstore

http://www.riptutorial.com/ 33

Chapter 12: COALESCE

Syntax

COALESCE([Column1],[Column2]....[ColumnN]•

Examples

Using COALESCE to Build Comma-Delimited String

We can get a comma delimited string from multiple rows using coalesce as shown below.

Since table variable is used, we need to execute whole query once. So to make easy to
understand, I have added BEGIN and END block.

BEGIN

 --Table variable declaration to store sample records
 DECLARE @Table TABLE (FirstName varchar(256), LastName varchar(256))

 --Inserting sample records into table variable @Table
 INSERT INTO @Table (FirstName, LastName)
 VALUES
 ('John','Smith'),
 ('Jane','Doe')

 --Creating variable to store result
 DECLARE @Names varchar(4000)

 --Used COLESCE function, so it will concatenate comma seperated FirstName into @Names
varible
 SELECT @Names = COALESCE(@Names + ',', '') + FirstName
 FROM @Table

 --Now selecting actual result
 SELECT @Names
 END

Coalesce basic Example

COALESCE() returns the first NON NULL value in a list of arguments. Suppose we had a table
containing phone numbers, and cell phone numbers and wanted to return only one for each user.
In order to only obtain one, we can get the first NON NULL value.

DECLARE @Table TABLE (UserID int, PhoneNumber varchar(12), CellNumber varchar(12))
INSERT INTO @Table (UserID, PhoneNumber, CellNumber)
VALUES
(1,'555-869-1123',NULL),
(2,'555-123-7415','555-846-7786'),
(3,NULL,'555-456-8521')

http://www.riptutorial.com/ 34

SELECT
 UserID,
 COALESCE(PhoneNumber, CellNumber)
FROM
 @Table

Getting the first not null from a list of column values

SELECT COALESCE(NULL, NULL, 'TechOnTheNet.com', NULL, 'CheckYourMath.com');
Result: 'TechOnTheNet.com'

SELECT COALESCE(NULL, 'TechOnTheNet.com', 'CheckYourMath.com');
Result: 'TechOnTheNet.com'

SELECT COALESCE(NULL, NULL, 1, 2, 3, NULL, 4);
Result: 1

Read COALESCE online: http://www.riptutorial.com/sql-server/topic/3234/coalesce

http://www.riptutorial.com/ 35

Chapter 13: Common Language Runtime
Integration

Examples

Enable CLR on database

CLR procedures are not enabled by default. You need to run the following queries to enable CLR:

sp_configure 'show advanced options', 1;
GO
RECONFIGURE;
GO
sp_configure 'clr enabled', 1;
GO
RECONFIGURE;
GO

In addition, if some CLR module need external access, you should set TRUSTWORTHY property
to ON in your database:

ALTER DATABASE MyDbWithClr SET TRUSTWORTHY ON

Adding .dll that contains Sql CLR modules

Procedures, functions, triggers, and types written in .Net languages are stored in .dll files. Once
you create .dll file containing CLR procedures you should import it into SQL Server:

CREATE ASSEMBLY MyLibrary
FROM 'C:\lib\MyStoredProcedures.dll'
 WITH PERMISSION_SET = EXTERNAL_ACCESS

PERMISSION_SET is Safe by default meaning that code in .dll don't need permission to access
external resources (e.g. files, web sites, other servers), and that it will not use native code that can
access memory.

PERMISSION_SET = EXTERNAL_ACCESS is used to mark assemblies that contain code that
will access external resources.

you can find information about current CLR assembly files in sys.assemblies view:

SELECT *
FROM sys.assemblies asms
WHERE is_user_defined = 1

Create CLR Function in SQL Server

http://www.riptutorial.com/ 36

If you have created .Net function, compiled it into .dll, and imported it into SQL server as an
assembly, you can create user-defined function that references function in that assembly:

CREATE FUNCTION dbo.TextCompress(@input nvarchar(max))
RETURNS varbinary(max)
AS EXTERNAL NAME MyLibrary.[Name.Space.ClassName].TextCompress

You need to specify name of the function and signature with input parameters and return values
that match .Net function. In AS EXTERNAL NAME clause you need to specify assembly name,
namespace/class name where this function is placed and name of the method in the class that
contains the code that will be exposed as function.

You can find information about the CLR functions using the following query:

SELECT * FROM dbo.sysobjects WHERE TYPE ='FS'

Create CLR User-defined type in SQL Server

If you have create .Net class that represents some user-defined type, compiled it into .dll, and
imported it into SQL server as an assembly, you can create user-defined function that references
this class:

CREATE TYPE dbo.Point
EXTERNAL NAME MyLibrary.[Name.Space.Point]

You need to specify name of the type that will be used in T-SQL queries. In EXTERNAL NAME
clause you need to specify assembly name, namespace, and class name.

Create CLR procedure in SQL Server

If you have created .Net method in some class, compiled it into .dll, and imported it into SQL
server as an assembly, you can create user-defined stored procedure that references method in
that assembly:

CREATE PROCEDURE dbo.DoSomethng(@input nvarchar(max))
AS EXTERNAL NAME MyLibrary.[Name.Space.ClassName].DoSomething

You need to specify name of the procedure and signature with input parameters that match .Net
method. In AS EXTERNAL NAME clause you need to specify assembly name, namespace/class
name where this procedure is placed and name of the method in the class that contains the code
that will be exposed as procedure.

Read Common Language Runtime Integration online: http://www.riptutorial.com/sql-
server/topic/7116/common-language-runtime-integration

http://www.riptutorial.com/ 37

Chapter 14: Common Table Expressions

Syntax

WITH cte_name [(column_name_1, column_name_2, ...)] AS (cte_expression)•

Remarks

It is necessary to separate a CTE from the previous statement with a semi-colon (;) character.

i.e. ;WITH CommonTableName (...) SELECT ... FROM CommonTableName ...

A CTE's scope is a single batch, and only downstream of its definition. A batch may contain
multiple CTEs, and a CTE may reference another CTE defined earlier in the batch, but a CTE may
not reference another CTE that is defined later in the batch.

Examples

Recursive CTE

This example shows how to get every year from this year to 2011 (2012 - 1).

WITH yearsAgo
(
 myYear
)
AS
(
 -- Base Case: This is where the recursion starts
 SELECT DATEPART(year, GETDATE()) AS myYear

 UNION ALL -- This MUST be UNION ALL (cannot be UNION)

 -- Recursive Section: This is what we're doing with the recursive call
 SELECT yearsAgo.myYear - 1
 FROM yearsAgo
 WHERE yearsAgo.myYear >= 2012
)
 SELECT myYear FROM yearsAgo; -- A single SELECT, INSERT, UPDATE, or DELETE

myYear

2016

2015

2014

2013

http://www.riptutorial.com/ 38

myYear

2012

2011

You can control the recursion (think stack overflow in code) with MAXRECURSION as a query
option that will limit the number of recursive calls.

WITH yearsAgo
(
 myYear
)
AS
(
 -- Base Case
 SELECT DATEPART(year , GETDATE()) AS myYear
 UNION ALL
 -- Recursive Section
 SELECT yearsAgo.myYear - 1
 FROM yearsAgo
 WHERE yearsAgo.myYear >= 2002
)
 SELECT * FROM yearsAgo
 OPTION (MAXRECURSION 10);

Msg 530, Level 16, State 1, Line 2The statement terminated. The maximum recursion
10 has been exhausted before statement completion.

CTE with multiple AS statements

;WITH cte_query_1
AS
(
 SELECT *
 FROM database.table1
),
cte_query_2
AS
(
 SELECT *
 FROM database.table2
)
SELECT *
FROM cte_query_1
WHERE cte_query_one.fk IN
(
 SELECT PK
 FROM cte_query_2
)

With common table expressions, it is possible to create multiple queries using comma-separated
AS statements. A query can then reference any or all of those queries in many different ways,
even joining them.

http://www.riptutorial.com/ 39

Employee Hierarchy

Table Setup

CREATE TABLE dbo.Employees
(
 EmployeeID INT NOT NULL PRIMARY KEY,
 FirstName NVARCHAR(50) NOT NULL,
 LastName NVARCHAR(50) NOT NULL,
 ManagerID INT NULL
)

GO

INSERT INTO Employees VALUES (101, 'Ken', 'Sánchez', NULL)
INSERT INTO Employees VALUES (102, 'Keith', 'Hall', 101)
INSERT INTO Employees VALUES (103, 'Fred', 'Bloggs', 101)
INSERT INTO Employees VALUES (104, 'Joseph', 'Walker', 102)
INSERT INTO Employees VALUES (105, 'Žydrė', 'Klybė', 101)
INSERT INTO Employees VALUES (106, 'Sam', 'Jackson', 105)
INSERT INTO Employees VALUES (107, 'Peter', 'Miller', 103)
INSERT INTO Employees VALUES (108, 'Chloe', 'Samuels', 105)
INSERT INTO Employees VALUES (109, 'George', 'Weasley', 105)
INSERT INTO Employees VALUES (110, 'Michael', 'Kensington', 106)

Common Table Expression

;WITH cteReports (EmpID, FirstName, LastName, SupervisorID, EmpLevel) AS
(
 SELECT EmployeeID, FirstName, LastName, ManagerID, 1
 FROM Employees
 WHERE ManagerID IS NULL

 UNION ALL

 SELECT e.EmployeeID, e.FirstName, e.LastName, e.ManagerID, r.EmpLevel + 1
 FROM Employees AS e
 INNER JOIN cteReports AS r ON e.ManagerID = r.EmpID
)

SELECT
 FirstName + ' ' + LastName AS FullName,
 EmpLevel,
 (SELECT FirstName + ' ' + LastName FROM Employees WHERE EmployeeID =
cteReports.SupervisorID) AS ManagerName
FROM cteReports
ORDER BY EmpLevel, SupervisorID

Output:

http://www.riptutorial.com/ 40

FullName EmpLevel ManagerName

Ken Sánchez 1 null

Keith Hall 2 Ken Sánchez

Fred Bloggs 2 Ken Sánchez

Žydre Klybe 2 Ken Sánchez

Joseph Walker 3 Keith Hall

Peter Miller 3 Fred Bloggs

Sam Jackson 3 Žydre Klybe

Chloe Samuels 3 Žydre Klybe

George Weasley 3 Žydre Klybe

Michael Kensington 4 Sam Jackson

Generate a table of dates using CTE

DECLARE @startdate CHAR(8), @numberDays TINYINT

SET @startdate = '20160101'
SET @numberDays = 10;

WITH CTE_DatesTable
AS
(
 SELECT CAST(@startdate as date) AS [date]
 UNION ALL
 SELECT DATEADD(dd, 1, [date])
 FROM CTE_DatesTable
 WHERE DATEADD(dd, 1, [date]) <= DateAdd(DAY, @numberDays-1, @startdate)
)

SELECT [date] FROM CTE_DatesTable

OPTION (MAXRECURSION 0)

This example returns a single-column table of dates, starting with the date specified in the
@startdate variable, and returning the next @numberDays worth of dates.

Find nth highest salary using CTE

Employees table :

| ID | FirstName | LastName | Gender | Salary |
+------+-----------+----------+--------+--------+

http://www.riptutorial.com/ 41

1	Jahangir	Alam	Male	70000
2	Arifur	Rahman	Male	60000
3	Oli	Ahammed	Male	45000
4	Sima	Sultana	Female	70000
5	Sudeepta	Roy	Male	80000
+------+-----------+----------+--------+--------+

CTE (Common Table Expression) :

 WITH RESULT AS
(
 SELECT SALARY,
 DENSE_RANK() OVER (ORDER BY SALARY DESC) AS DENSERANK
 FROM EMPLOYEES
)
SELECT TOP 1 SALARY
FROM RESULT
WHERE DENSERANK = 1

To find 2nd highest salary simply replace N with 2. Similarly, to find 3rd highest salary, simply
replace N with 3.

Delete duplicate rows using CTE

Employees table :

| ID | FirstName | LastName | Gender | Salary |
+------+-----------+----------+--------+--------+
1	Mark	Hastings	Male	60000
1	Mark	Hastings	Male	60000
2	Mary	Lambeth	Female	30000
2	Mary	Lambeth	Female	30000
3	Ben	Hoskins	Male	70000
3	Ben	Hoskins	Male	70000
3	Ben	Hoskins	Male	70000
+------+-----------+----------+--------+--------+

CTE (Common Table Expression) :

WITH EmployeesCTE AS
(
 SELECT *, ROW_NUMBER()OVER(PARTITION BY ID ORDER BY ID) AS RowNumber
 FROM Employees
)
DELETE FROM EmployeesCTE WHERE RowNumber > 1

Execution result :

| ID | FirstName | LastName | Gender | Salary |
+------+-----------+----------+--------+--------+
1	Mark	Hastings	Male	60000
2	Mary	Lambeth	Female	30000
3	Ben	Hoskins	Male	70000
+------+-----------+----------+--------+--------+

http://www.riptutorial.com/ 42

Read Common Table Expressions online: http://www.riptutorial.com/sql-
server/topic/1343/common-table-expressions

http://www.riptutorial.com/ 43

Chapter 15: Computed Columns

Examples

A column is computed from an expression

A computed column is computed from an expression that can use other columns in the same
table. The expression can be a noncomputed column name, constant, function, and any
combination of these connected by one or more operators.

Create table with a computed column

Create table NetProfit
(
 SalaryToEmployee int,
 BonusDistributed int,
 BusinessRunningCost int,
 BusinessMaintenanceCost int,
 BusinessEarnings int,
 BusinessNetIncome
 As BusinessEarnings - (SalaryToEmployee +
 BonusDistributed +
 BusinessRunningCost +
 BusinessMaintenanceCost)

)

Value is computed and stored in the computed column automatically on inserting other values.

Insert Into NetProfit
 (SalaryToEmployee,
 BonusDistributed,
 BusinessRunningCost,
 BusinessMaintenanceCost,
 BusinessEarnings)
Values
 (1000000,
 10000,
 1000000,
 50000,
 2500000)

Simple example we normally use in log tables

CREATE TABLE [dbo].[ProcessLog](
[LogId] [int] IDENTITY(1,1) NOT NULL,
[LogType] [varchar](20) NULL,
[StartTime] [datetime] NULL,
[EndTime] [datetime] NULL,
[RunMinutes] AS
(datediff(minute,coalesce([StartTime],getdate()),coalesce([EndTime],getdate())))

http://www.riptutorial.com/ 44

This gives run difference in minutes for runtime which will be very handy..

Read Computed Columns online: http://www.riptutorial.com/sql-server/topic/5561/computed-
columns

http://www.riptutorial.com/ 45

Chapter 16: Converting data types

Examples

TRY PARSE

SQL Server 2012

It converts string data type to target data type(Date or Numeric).

For example, source data is string type and we need to covert to date type. If conversion attempt
fails it returns NULL value.

Syntax: TRY_PARSE (string_value AS data_type [USING culture])

String_value – This is argument is source value which is NVARCHAR(4000) type.
Data_type – This argument is target data type either date or numeric.
Culture – It is an optional argument which helps to convert the value to in Culture format. Suppose
you want to display the date in French, then you need to pass culture type as ‘Fr-FR’. If you will
not pass any valid culture name, then PARSE will raise an error.

DECLARE @fakeDate AS varchar(10);
DECLARE @realDate AS VARCHAR(10);
SET @fakeDate = 'iamnotadate';
SET @realDate = '13/09/2015';

SELECT TRY_PARSE(@fakeDate AS DATE); --NULL as the parsing fails

SELECT TRY_PARSE(@realDate AS DATE); -- NULL due to type mismatch

SELECT TRY_PARSE(@realDate AS DATE USING 'Fr-FR'); -- 2015-09-13

TRY CONVERT

SQL Server 2012

It converts value to specified data type and if conversion fails it returns NULL. For example, source
value in string format and we need date/integer format. Then this will help us to achieve the same.

Syntax: TRY_CONVERT (data_type [(length)], expression [, style])

TRY_CONVERT() returns a value cast to the specified data type if the cast succeeds; otherwise,
returns null.

Data_type - The datatype into which to convert. Here length is an optional parameter which helps
to get result in specified length.
Expression - The value to be convert

http://www.riptutorial.com/ 46

Style - It is an optional parameter which determines formatting. Suppose you want date format like
“May, 18 2013” then you need pass style as 111.

DECLARE @sampletext AS VARCHAR(10);
SET @sampletext = '123456';
DECLARE @ realDate AS VARCHAR(10);
SET @realDate = '13/09/2015’;
SELECT TRY_CONVERT(INT, @sampletext); -- 123456
SELECT TRY_CONVERT(DATETIME, @sampletext); -- NULL
SELECT TRY_CONVERT(DATETIME, @realDate, 111); -- Sep, 13 2015

TRY CAST

SQL Server 2012

It converts value to specified data type and if conversion fails it returns NULL. For example, source
value in string format and we need it in double/integer format. Then this will help us in achieving it.

Syntax: TRY_CAST (expression AS data_type [(length)])

TRY_CAST() returns a value cast to the specified data type if the cast succeeds; otherwise,
returns null.

Expression - The source value which will go to cast.
Data_type - The target data type the source value will cast.
Length - It is an optional parameter that specifies the length of target data type.

DECLARE @sampletext AS VARCHAR(10);
SET @sampletext = '123456';

SELECT TRY_CAST(@sampletext AS INT); -- 123456
SELECT TRY_CAST(@sampletext AS DATE); -- NULL

Cast

The Cast() function is used to convert a data type variable or data from one data type to another
data type.

Syntax

CAST ([Expression] AS Datatype)

The data type to which you are casting an expression is the target type. The data type of the
expression from which you are casting is the source type.

DECLARE @A varchar(2)
DECLARE @B varchar(2)

set @A='25a'
set @B='15'

Select CAST(@A as int) + CAST(@B as int) as Result

http://www.riptutorial.com/ 47

--'25a' is casted to 25 (string to int)
--'15' is casted to 15 (string to int)

--Result
 --40

DECLARE @C varchar(2) = 'a'

select CAST(@C as int) as Result
--Result
 --Conversion failed when converting the varchar value 'a' to data type int.

Throws error if failed

Convert

When you convert expressions from one type to another, in many cases there will be a need within
a stored procedure or other routine to convert data from a datetime type to a varchar type. The
Convert function is used for such things. The CONVERT() function can be used to display
date/time data in various formats. Syntax

CONVERT(data_type(length), expression, style)

Style - style values for datetime or smalldatetime conversion to character data. Add 100 to a style
value to get a four-place year that includes the century (yyyy).

select convert(varchar(20),GETDATE(),108)

13:27:16

Read Converting data types online: http://www.riptutorial.com/sql-server/topic/5034/converting-
data-types

http://www.riptutorial.com/ 48

Chapter 17: CREATE VIEW

Examples

CREATE VIEW

CREATE VIEW view_EmployeeInfo
AS
 SELECT EmployeeID,
 FirstName,
 LastName,
 HireDate
 FROM Employee
GO

Rows from views can be selected much like tables:

SELECT FirstName
FROM view_EmployeeInfo

You may also create a view with a calculated column. We can modify the view above as follows by
adding a calculated column:

CREATE VIEW view_EmployeeReport
AS
 SELECT EmployeeID,
 FirstName,
 LastName,
 Coalesce(FirstName,'') + ' ' + Coalesce(LastName,'') as FullName,
 HireDate
 FROM Employee
GO

This view adds an additional column that will appear when you SELECT rows from it. The values in
this additional column will be dependent on the fields FirstName and LastName in the table Employee
and will automatically update behind-the-scenes when those fields are updated.

CREATE VIEW With Encryption

CREATE VIEW view_EmployeeInfo
WITH ENCRYPTION
AS
SELECT EmployeeID, FirstName, LastName, HireDate
FROM Employee
GO

CREATE VIEW With INNER JOIN

CREATE VIEW view_PersonEmployee

http://www.riptutorial.com/ 49

AS
 SELECT P.LastName,
 P.FirstName,
 E.JobTitle
 FROM Employee AS E
 INNER JOIN Person AS P
 ON P.BusinessEntityID = E.BusinessEntityID
GO

Views can use joins to select data from numerous sources like tables, table functions, or even
other views. This example uses the FirstName and LastName columns from the Person table and
the JobTitle column from the Employee table.

This view can now be used to see all corresponding rows for Managers in the database:

SELECT *
FROM view_PersonEmployee
WHERE JobTitle LIKE '%Manager%'

CREATE Indexed VIEW

To create a view with an index, the view must be created using the WITH SCHEMABINDING keywords:

CREATE VIEW view_EmployeeInfo
WITH SCHEMABINDING
AS
 SELECT EmployeeID,
 FirstName,
 LastName,
 HireDate
 FROM [dbo].Employee
GO

Any clustered or non-clustered indexes can be now be created:

CREATE UNIQUE CLUSTERED INDEX IX_view_EmployeeInfo
ON view_EmployeeInfo
(
 EmployeeID ASC
)

There Are some limitations to indexed Views:

The view definition can reference one or more tables in the same database.•

Once the unique clustered index is created, additional nonclustered indexes can be created
against the view.

•

You can update the data in the underlying tables – including inserts, updates, deletes, and
even truncates.

•

You can’t modify the underlying tables and columns. The view is created with the WITH •

http://www.riptutorial.com/ 50

SCHEMABINDING option.

It can’t contain COUNT, MIN, MAX, TOP, outer joins, or a few other keywords or elements.•

For more information about creating indexed Views you can read this MSDN article

Grouped VIEWs

A grouped VIEW is based on a query with a GROUP BY clause. Since each of the groups may
have more than one row in the base from which it was built, these are necessarily read-only
VIEWs. Such VIEWs usually have one or more aggregate functions and they are used for
reporting purposes. They are also handy for working around weaknesses in SQL. Consider a
VIEW that shows the largest sale in each state. The query is straightforward:

https://www.simple-talk.com/sql/t-sql-programming/sql-view-beyond-the-basics/

CREATE VIEW BigSales (state_code, sales_amt_total)
AS SELECT state_code, MAX(sales_amt)
 FROM Sales
 GROUP BY state_code;

UNION-ed VIEWs

VIEWs based on a UNION or UNION ALL operation are read-only because there is no single way
to map a change onto just one row in one of the base tables. The UNION operator will remove
duplicate rows from the results. Both the UNION and UNION ALL operators hide which table the
rows came from. Such VIEWs must use a , because the columns in a UNION [ALL] have no
names of their own. In theory, a UNION of two disjoint tables, neither of which has duplicate rows
in itself should be updatable.

https://www.simple-talk.com/sql/t-sql-programming/sql-view-beyond-the-basics/

CREATE VIEW DepTally2 (emp_nbr, dependent_cnt)
AS (SELECT emp_nbr, COUNT(*)
 FROM Dependents
 GROUP BY emp_nbr)
 UNION
 (SELECT emp_nbr, 0
 FROM Personnel AS P2
 WHERE NOT EXISTS
 (SELECT *
 FROM Dependents AS D2
 WHERE D2.emp_nbr = P2.emp_nbr));

Read CREATE VIEW online: http://www.riptutorial.com/sql-server/topic/3815/create-view

http://www.riptutorial.com/ 51

Chapter 18: cross apply

Examples

Join table rows with dynamically generated rows from a cell

CROSS APPLY enables you to "join" rows from a table with dynamically generated rows returned
by some table-value function.

Imagine that you have a Company table with a column that contains an array of products
(ProductList column), and a function that parse these values and returns a set of products. You
can select all rows from a Company table, apply this function on a ProductList column and "join"
generated results with parent Company row:

SELECT *
FROM Companies c
 CROSS APPLY dbo.GetProductList(c.ProductList) p

For each row, value of ProductList cell will be provided to the function, and the function will return
those products as a set of rows that can be joined with the parent row.

Join table rows with JSON array stored in cell

CROSS APPLY enables you to "join" rows from a table with collection of JSON objects stored in a
column.

Imagine that you have a Company table with a column that contains an array of products
(ProductList column) formatted as JSON array. OPENJSON table value function can parse these
values and return the set of products. You can select all rows from a Company table, parse JSON
products with OPENJSON and "join" generated results with parent Company row:

SELECT *
FROM Companies c
 CROSS APPLY OPENJSON(c.ProductList)
 WITH (Id int, Title nvarchar(30), Price money)

For each row, value of ProductList cell will be provided to OPENJSON function that will transform
JSON objects to rows with the schema defined in WITH clause.

Filter rows by array values

If you store a list of tags in a row as coma separated values, STRING_SPLIT function enables you
to transform list of tags into a table of values. CROSS APPLY enables you to "join" values parsed
by STRING_SPLIT function with a parent row.

Imagine that you have a Product table with a column that contains an array of comma separated
tags (e.g. promo,sales,new). STRING_SPLIT and CROSS APPLY enable you to join product rows

http://www.riptutorial.com/ 52

with their tags so you can filter products by tags:

SELECT *
FROM Products p
 CROSS APPLY STRING_SPLIT(p.Tags, ',') tags
WHERE tags.value = 'promo'

For each row, value of Tags cell will be provided to STRING_SPLIT function that will return tag
values. Then you can filter rows by these values.

Note: STRING_SPLIT function is not available before SQL Server 2016

Read cross apply online: http://www.riptutorial.com/sql-server/topic/5462/cross-apply

http://www.riptutorial.com/ 53

Chapter 19: Cursors

Syntax

DECLARE cursor_name CURSOR [LOCAL | GLOBAL]
[FORWARD_ONLY | SCROLL]
[STATIC | KEYSET | DYNAMIC | FAST_FORWARD]
[READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]
[TYPE_WARNING]

○

FOR select_statement○

[FOR UPDATE [OF column_name [,...n]]]○

•

Remarks

Normally you would want to avoid using cursors as they can have negative impacts on
performance. However in some special cases you may need to loop through your data record by
record and perform some action.

Examples

Basic Forward Only Cursor

Normally you would want to avoid using cursors as they can have negative impacts on
performance. However in some special cases you may need to loop through your data record by
record and perform some action.

DECLARE @orderId AS INT

-- here we are creating our cursor, as a local cursor and only allowing
-- forward operations
DECLARE rowCursor CURSOR LOCAL FAST_FORWARD FOR
 -- this is the query that we want to loop through record by record
 SELECT [OrderId]
 FROM [dbo].[Orders]

-- first we need to open the cursor
OPEN rowCursor

-- now we will initialize the cursor by pulling the first row of data, in this example the
[OrderId] column,
-- and storing the value into a variable called @orderId
FETCH NEXT FROM rowCursor INTO @orderId

-- start our loop and keep going until we have no more records to loop through
WHILE @@FETCH_STATUS = 0
BEGIN

 PRINT @orderId

http://www.riptutorial.com/ 54

 -- this is important, as it tells SQL Server to get the next record and store the
[OrderId] column value into the @orderId variable
 FETCH NEXT FROM rowCursor INTO @orderId

END

-- this will release any memory used by the cursor
CLOSE rowCursor
DEALLOCATE rowCursor

Rudimentary cursor syntax

A simple cursor syntax, operating on a few example test rows:

/* Prepare test data */
DECLARE @test_table TABLE
(
 Id INT,
 Val VARCHAR(100)
);
INSERT INTO @test_table(Id, Val)
VALUES
 (1, 'Foo'),
 (2, 'Bar'),
 (3, 'Baz');
/* Test data prepared */

/* Iterator variable @myId, for example sake */
DECLARE @myId INT;

/* Cursor to iterate rows and assign values to variables */
DECLARE myCursor CURSOR FOR
 SELECT Id
 FROM @test_table;

/* Start iterating rows */
OPEN myCursor;
FETCH NEXT FROM myCursor INTO @myId;

/* @@FETCH_STATUS global variable will be 1 / true until there are no more rows to fetch */
WHILE @@FETCH_STATUS = 0
BEGIN

 /* Write operations to perform in a loop here. Simple SELECT used for example */
 SELECT Id, Val
 FROM @test_table
 WHERE Id = @myId;

 /* Set variable(s) to the next value returned from iterator; this is needed otherwise the
cursor will loop infinitely. */
 FETCH NEXT FROM myCursor INTO @myId;
END
/* After all is done, clean up */
CLOSE myCursor;
DEALLOCATE myCursor;

Results from SSMS. Note that these are all separate queries, they are in no way unified. Notice
how the query engine processes each iteration one by one instead of as a set.

http://www.riptutorial.com/ 55

Id Val

1 Foo

(1 row(s) affected)

Id Val

2 Bar

(1 row(s) affected)

Id Val

3 Baz

(1 row(s) affected)

Read Cursors online: http://www.riptutorial.com/sql-server/topic/870/cursors

http://www.riptutorial.com/ 56

Chapter 20: Data Types

Introduction

This section discusses the data types that SQL Server can use, including their data range, length,
and limitations (if any.)

Examples

Exact Numerics

There are two basic classes of exact numeric data types - Integer, and Fixed Precision and
Scale.

Integer Data Types

bit•
tinyint•
smallint•
int•
bigint•

Integers are numeric values that never contain a fractional portion, and always use a fixed amount
of storage. The range and storage sizes of the integer data types are shown in this table:

Data
type

Range Storage

bit 0 or 1 1 bit **

tinyint 0 to 255 1 byte

smallint -2^15 (-32,768) to 2^15-1 (32,767) 2 bytes

int -2^31 (-2,147,483,648) to 2^31-1 (2,147,483,647) 4 bytes

bigint
-2^63 (-9,223,372,036,854,775,808) to 2^63-1
(9,223,372,036,854,775,807)

8 bytes

Fixed Precision and Scale Data Types

numeric•
decimal•
smallmoney•
money•

http://www.riptutorial.com/ 57

These data types are useful for representing numbers exactly. As long as the values can fit within
the range of the values storable in the data type, the value will not have rounding issues. This is
useful for any financial calculations, where rounding errors will result in clinical insanity for
accountants.

Note that decimal and numeric are synonyms for the same data type.

Data type Range Storage

Decimal [(p [, s])] or Numeric [(p [, s])] -10^38 + 1 to 10^38 - 1 See Precision table

When defining a decimal or numeric data type, you may need to specify the Precision [p] and
Scale [s].

Precision is the number of digits that can be stored. For example, if you needed to store values
between 1 and 999, you would need a Precision of 3 (to hold the three digits in 100). If you do not
specify a precision, the default precision is 18.

Scale is the number of digits after the decimal point. If you needed to store a number between
0.00 and 999.99, you would need to specify a Precision of 5 (five digits) and a Scale of 2 (two
digits after the decimal point). You must specify a precision to specify a scale. The default scale is
zero.

The Precision of a decimal or numeric data type defines the number of bytes required to store the
value, as shown below:

Precision Table

Precision Storage bytes

1 - 9 5

10-19 9

20-28 13

29-38 17

Monetary Fixed Data Types

These data types are intended specifically for accounting and other monetary data. These type
have a fixed Scale of 4 - you will always see four digits after the decimal place. For most systems
working with most currencies, using a numeric value with a Scale of 2 will be sufficient. Note that
no information about the type of currency represented is stored with the value.

Data type Range Storage

money -922,337,203,685,477.5808 to 922,337,203,685,477.5807 8 bytes

http://www.riptutorial.com/ 58

Data type Range Storage

smallmoney -214,748.3648 to 214,748.3647 4 bytes

Approximate Numerics

float [(n)]•
real•

These data types are used to store floating point numbers. Since these types are intended to hold
approximate numeric values only, these should not be used in cases where any rounding error is
unacceptable. However, if you need to handle very large numbers, or numbers with an
indeterminate number of digits after the decimal place, these may be your best option.

Data
type

Range Size

float
-1.79E+308 to -2.23E-308, 0 and 2.23E-308 to
1.79E+308

depends on n in table
below

real
-3.40E + 38 to -1.18E - 38, 0 and 1.18E - 38 to 3.40E
+ 38

4 Bytes

n value table for float numbers. If no value is specified in the declaration of the float, the default
value of 53 will be used. Note that float(24) is the equivalent of a real value.

n value Precision Size

1-24 7 digits 4 bytes

25-53 15 digits 8 bytes

Date and Time

These types are in all versions of SQL Server

datetime•
smalldatetime•

These types are in all versions of SQL Server after SQL Server 2012

date•
datetimeoffset•
datetime2•
time•

Character Strings

http://www.riptutorial.com/ 59

char•
varchar•
text•

Unicode Character Strings

nchar•
nvarchar•
ntext•

Binary Strings

binary•
varbinary•
image•

Other Data Types

cursor•
timestamp•
hierarchyid•
uniqueidentifier•
sql_variant•
xml•
table•
Spatial Types•

Read Data Types online: http://www.riptutorial.com/sql-server/topic/5260/data-types

http://www.riptutorial.com/ 60

Chapter 21: Database permissions

Remarks

Basic Syntax:

{GRANT| REVOKE | DENY} {PERMISSION_NAME} [ON {SECURABLE}] TO {PRINCIPAL};

{GRANT| REVOKE | DENY} - What you're trying to accomplish
Grant: "Give this permission to the stated principal"○

Revoke: "Take this permission away from the stated principal"○

Deny: "Make sure the stated principal never has this permission (i.e. "DENY SELECT"
means that regardless of any other permissions, SELECT will fail for this principal)

○

•

PERMISSION_NAME - The operation that you're attempting to affect. This will depend on
the securable. For instance, it doesn't make sense to GRANT SELECT on a stored procedure.

•

SECURABLE - The name of the thing on which you're trying to affect permissions on. This is
optional. Saying GRANT SELECT TO [aUser]; is perfectly acceptable; it means "for any securable
for which the SELECT permission makes sense, GRANT that permission".

•

PRINCIPAL - For whom you are trying to affect permissions. At a database level, this can be
a role (application or database) or user (mapped to a login or not) for example.

•

Examples

Changing permissions

GRANT SELECT ON [dbo].[someTable] TO [aUser];

REVOKE SELECT ON [dbo].[someTable] TO [aUser];
--REVOKE SELECT [dbo].[someTable] FROM [aUser]; is equivalent

DENY SELECT ON [dbo].[someTable] TO [aUser];

CREATE USER

--implicitly map this user to a login of the same name as the user
CREATE USER [aUser];

--explicitly mapping what login the user should be associated with
CREATE USER [aUser] FOR LOGIN [aUser];

CREATE ROLE

CREATE ROLE [myRole];

Changing role membership

http://www.riptutorial.com/ 61

-- SQL 2005+
exec sp_addrolemember @rolename = 'myRole', @membername = 'aUser';
exec sp_droprolemember @rolename = 'myRole', @membername = 'aUser';

-- SQL 2008+
ALTER ROLE [myRole] ADD MEMBER [aUser];
ALTER ROLE [myRole] DROP MEMBER [aUser];

Note: role members can be any database-level principal. That is, you can add a role as a member
in another role. Also, adding/dropping role members is idempotent. That is, attempting to add/drop
will result in their presence/absence (respectively) in the role regardless of the current state of
their role membership.

Read Database permissions online: http://www.riptutorial.com/sql-server/topic/6788/database-
permissions

http://www.riptutorial.com/ 62

Chapter 22: Database Snapshots

Remarks

A database snapshot is a read-only, static view of a SQL Server database which is transactionally
consistent with the source database as of the moment of the snapshot's creation.

A database snapshot always resides on the same server instance as its source database. As the
source database is updated, the database snapshot is updated.

A snapshot differs from a backup since the process of snapshot creation is instantaneous and the
snapshot occupies space only as changes in the source database are applied. A backup on the
other hand stores a full copy of the data as on the time of backup creation.

Additionally, a snapshot gives an instant read only copy of the database, while a backup needs to
be restored to a server in order to be readable (and once restored can be written to as well)

Database snapshots are only available in the Enterprise and Developer editions.

Examples

Create a database snapshot

A database snapshot is a read-only, static view of a SQL Server database (the source database).
It is similar to backup, but it is available as any other database so client can query snapshot
database.

CREATE DATABASE MyDatabase_morning -- name of the snapshot
ON (
 NAME=MyDatabase_data, -- logical name of the data file of the source database
 FILENAME='C:\SnapShots\MySnapshot_Data.ss' -- snapshot file;
)
AS SNAPSHOT OF MyDatabase; -- name of source database

You can also create snapshot of database with multiple files:

CREATE DATABASE MyMultiFileDBSnapshot ON
 (NAME=MyMultiFileDb_ft, FILENAME='C:\SnapShots\MyMultiFileDb_ft.ss'),
 (NAME=MyMultiFileDb_sys, FILENAME='C:\SnapShots\MyMultiFileDb_sys.ss'),
 (NAME=MyMultiFileDb_data, FILENAME='C:\SnapShots\MyMultiFileDb_data.ss'),
 (NAME=MyMultiFileDb_indx, FILENAME='C:\SnapShots\MyMultiFileDb_indx.ss')
AS SNAPSHOT OF MultiFileDb;

Restore a database snapshot

If data in a source database becomes damaged or some wrong data is written into database, in
some cases, reverting the database to a database snapshot that predates the damage might be

http://www.riptutorial.com/ 63

an appropriate alternative to restoring the database from a backup.

RESTORE DATABASE MYDATABASE FROM DATABASE_SNAPSHOT='MyDatabase_morning';

Warning: This will delete all changes made to the source database since the snapshot
was taken!

DELETE Snapshot

You can delete existing snapshots of database using DELETE DATABASE statement:

DROP DATABASE Mydatabase_morning

In this statement you should reference name of the database snapshot.

Read Database Snapshots online: http://www.riptutorial.com/sql-server/topic/677/database-
snapshots

http://www.riptutorial.com/ 64

Chapter 23: Dates

Syntax

EOMONTH (start_date [, month_to_add])•

Remarks

as per https://msdn.microsoft.com/en-us/library/ms187819.aspx, DateTimes are only precise to
3ms.

Rounding of datetime Fractional Second Precision datetime values are rounded to increments of
.000, .003, or .007 seconds, as shown in the following table.

User-specified value System stored value

01/01/98 23:59:59.999 1998-01-02 00:00:00.000

------ ------

01/01/98 23:59:59.995 1998-01-01 23:59:59.997

01/01/98 23:59:59.996

01/01/98 23:59:59.997

01/01/98 23:59:59.998

------ ------

01/01/98 23:59:59.992 1998-01-01 23:59:59.993

01/01/98 23:59:59.993

01/01/98 23:59:59.994

------ ------

01/01/98 23:59:59.990 1998-01-01 23:59:59.990

01/01/98 23:59:59.991

------ ------

If more precision is required, time, datetime2 or datetimeoffset should be used.

http://www.riptutorial.com/ 65

Examples

Date Format Extended

Date Format SQL Statement
Sample
Output

YY-MM-DD

SELECT RIGHT(CONVERT(VARCHAR(10),
SYSDATETIME(), 20), 8) AS [YY-MM-DD]
SELECT REPLACE(CONVERT(VARCHAR(8),
SYSDATETIME(), 11), '/', '-') AS [YY-MM-DD]

11-06-08

YYYY-MM-DD

SELECT CONVERT(VARCHAR(10), SYSDATETIME(), 120)
AS [YYYY-MM-DD]
SELECT REPLACE(CONVERT(VARCHAR(10),
SYSDATETIME(), 111), '/', '-') AS [YYYY-MM-DD]

2011-06-08

YYYY-M-D

SELECT CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)) +
'-' + CAST(MONTH(SYSDATETIME()) AS VARCHAR(2)) + '-'
+ CAST(DAY(SYSDATETIME()) AS VARCHAR(2)) AS
[YYYY-M-D]

2011-6-8

YY-M-D

SELECT RIGHT(CAST(YEAR(SYSDATETIME()) AS
VARCHAR(4)), 2) + '-' + CAST(MONTH(SYSDATETIME()) AS
VARCHAR(2)) + '-' + CAST(DAY(SYSDATETIME()) AS
VARCHAR(2)) AS [YY-M-D]

11-6-8

M-D-YYYY

SELECT CAST(MONTH(SYSDATETIME()) AS VARCHAR(2))
+ '-' + CAST(DAY(SYSDATETIME()) AS VARCHAR(2)) + '-' +
CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)) AS [M-D-
YYYY]

6-8-2011

M-D-YY

SELECT CAST(MONTH(SYSDATETIME()) AS VARCHAR(2))
+ '-' + CAST(DAY(SYSDATETIME()) AS VARCHAR(2)) + '-' +
RIGHT(CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)), 2)
AS [M-D-YY]

6-8-11

D-M-YYYY

SELECT CAST(DAY(SYSDATETIME()) AS VARCHAR(2)) + '-
' + CAST(MONTH(SYSDATETIME()) AS VARCHAR(2)) + '-' +
CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)) AS [D-M-
YYYY]

8-6-2011

D-M-YY

SELECT CAST(DAY(SYSDATETIME()) AS VARCHAR(2)) + '-
' + CAST(MONTH(SYSDATETIME()) AS VARCHAR(2)) + '-' +
RIGHT(CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)), 2)
AS [D-M-YY]

8-6-11

http://www.riptutorial.com/ 66

Date Format SQL Statement
Sample
Output

YY-MM

SELECT RIGHT(CONVERT(VARCHAR(7), SYSDATETIME(),
20), 5) AS [YY-MM]
SELECT SUBSTRING(CONVERT(VARCHAR(10),
SYSDATETIME(), 120), 3, 5) AS [YY-MM]

11-06

YYYY-MM
SELECT CONVERT(VARCHAR(7), SYSDATETIME(), 120)
AS [YYYY-MM]

2011-06

YY-M
SELECT RIGHT(CAST(YEAR(SYSDATETIME()) AS
VARCHAR(4)), 2) + '-' + CAST(MONTH(SYSDATETIME()) AS
VARCHAR(2)) AS [YY-M]

11-6

YYYY-M
SELECT CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)) +
'-' + CAST(MONTH(SYSDATETIME()) AS VARCHAR(2)) AS
[YYYY-M]

2011-6

MM-YY

SELECT RIGHT(CONVERT(VARCHAR(8), SYSDATETIME(),
5), 5) AS [MM-YY]
SELECT SUBSTRING(CONVERT(VARCHAR(8),
SYSDATETIME(), 5), 4, 5) AS [MM-YY]

06-11

MM-YYYY
SELECT RIGHT(CONVERT(VARCHAR(10),
SYSDATETIME(), 105), 7) AS [MM-YYYY]

06-2011

M-YY
SELECT CAST(MONTH(SYSDATETIME()) AS VARCHAR(2))
+ '-' + RIGHT(CAST(YEAR(SYSDATETIME()) AS
VARCHAR(4)), 2) AS [M-YY]

6-11

M-YYYY
SELECT CAST(MONTH(SYSDATETIME()) AS VARCHAR(2))
+ '-' + CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)) AS
[M-YYYY]

6-2011

MM-DD
SELECT CONVERT(VARCHAR(5), SYSDATETIME(), 10) AS
[MM-DD]

06-08

DD-MM
SELECT CONVERT(VARCHAR(5), SYSDATETIME(), 5) AS
[DD-MM]

08-06

M-D
SELECT CAST(MONTH(SYSDATETIME()) AS VARCHAR(2))
+ '-' + CAST(DAY(SYSDATETIME()) AS VARCHAR(2)) AS
[M-D]

6-8

D-M
SELECT CAST(DAY(SYSDATETIME()) AS VARCHAR(2)) + '-
' + CAST(MONTH(SYSDATETIME()) AS VARCHAR(2)) AS
[D-M]

8-6

SELECT CAST(MONTH(SYSDATETIME()) AS VARCHAR(2)) M/D/YYYY 6/8/2011

http://www.riptutorial.com/ 67

Date Format SQL Statement
Sample
Output

+ '/' + CAST(DAY(SYSDATETIME()) AS VARCHAR(2)) + '/' +
CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)) AS
[M/D/YYYY]

M/D/YY

SELECT CAST(MONTH(SYSDATETIME()) AS VARCHAR(2))
+ '/' + CAST(DAY(SYSDATETIME()) AS VARCHAR(2)) + '/' +
RIGHT(CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)), 2)
AS [M/D/YY]

6/8/11

D/M/YYYY

SELECT CAST(DAY(SYSDATETIME()) AS VARCHAR(2)) +
'/' + CAST(MONTH(SYSDATETIME()) AS VARCHAR(2)) + '/'
+ CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)) AS
[D/M/YYYY]

8/6/2011

D/M/YY

SELECT CAST(DAY(SYSDATETIME()) AS VARCHAR(2)) +
'/' + CAST(MONTH(SYSDATETIME()) AS VARCHAR(2)) + '/'
+ RIGHT(CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)),
2) AS [D/M/YY]

8/6/11

YYYY/M/D

SELECT CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)) +
'/' + CAST(MONTH(SYSDATETIME()) AS VARCHAR(2)) + '/'
+ CAST(DAY(SYSDATETIME()) AS VARCHAR(2)) AS
[YYYY/M/D]

2011/6/8

YY/M/D

SELECT RIGHT(CAST(YEAR(SYSDATETIME()) AS
VARCHAR(4)), 2) + '/' + CAST(MONTH(SYSDATETIME()) AS
VARCHAR(2)) + '/' + CAST(DAY(SYSDATETIME()) AS
VARCHAR(2)) AS [YY/M/D]

11/6/8

MM/YY
SELECT RIGHT(CONVERT(VARCHAR(8), SYSDATETIME(),
3), 5) AS [MM/YY]

06/11

MM/YYYY
SELECT RIGHT(CONVERT(VARCHAR(10),
SYSDATETIME(), 103), 7) AS [MM/YYYY]

06/2011

M/YY
SELECT CAST(MONTH(SYSDATETIME()) AS VARCHAR(2))
+ '/' + RIGHT(CAST(YEAR(SYSDATETIME()) AS
VARCHAR(4)), 2) AS [M/YY]

6/11

M/YYYY
SELECT CAST(MONTH(SYSDATETIME()) AS VARCHAR(2))
+ '/' + CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)) AS
[M/YYYY]

6/2011

YY/MM
SELECT CONVERT(VARCHAR(5), SYSDATETIME(), 11) AS
[YY/MM]

11/06

http://www.riptutorial.com/ 68

Date Format SQL Statement
Sample
Output

YYYY/MM
SELECT CONVERT(VARCHAR(7), SYSDATETIME(), 111)
AS [YYYY/MM]

2011/06

YY/M
SELECT RIGHT(CAST(YEAR(SYSDATETIME()) AS
VARCHAR(4)), 2) + '/' + CAST(MONTH(SYSDATETIME()) AS
VARCHAR(2)) AS [YY/M]

11/6

YYYY/M
SELECT CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)) +
'/' + CAST(MONTH(SYSDATETIME()) AS VARCHAR(2)) AS
[YYYY/M]

2011/6

MM/DD
SELECT CONVERT(VARCHAR(5), SYSDATETIME(), 1) AS
[MM/DD]

06/08

DD/MM
SELECT CONVERT(VARCHAR(5), SYSDATETIME(), 3) AS
[DD/MM]

08/06

M/D
SELECT CAST(MONTH(SYSDATETIME()) AS VARCHAR(2))
+ '/' + CAST(DAY(SYSDATETIME()) AS VARCHAR(2)) AS
[M/D]

6/8

D/M
SELECT CAST(DAY(SYSDATETIME()) AS VARCHAR(2)) +
'/' + CAST(MONTH(SYSDATETIME()) AS VARCHAR(2)) AS
[D/M]

8/6

MM.DD.YYYY
SELECT REPLACE(CONVERT(VARCHAR(10),
SYSDATETIME(), 101), '/', '.') AS [MM.DD.YYYY]

06.08.2011

MM.DD.YY
SELECT REPLACE(CONVERT(VARCHAR(8),
SYSDATETIME(), 1), '/', '.') AS [MM.DD.YY]

06.08.11

M.D.YYYY

SELECT CAST(MONTH(SYSDATETIME()) AS VARCHAR(2))
+ '.' + CAST(DAY(SYSDATETIME()) AS VARCHAR(2)) + '.' +
CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)) AS
[M.D.YYYY]

6.8.2011

M.D.YY

SELECT CAST(MONTH(SYSDATETIME()) AS VARCHAR(2))
+ '.' + CAST(DAY(SYSDATETIME()) AS VARCHAR(2)) + '.' +
RIGHT(CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)), 2)
AS [M.D.YY]

6.8.11

DD.MM.YYYY
SELECT CONVERT(VARCHAR(10), SYSDATETIME(), 104)
AS [DD.MM.YYYY]

08.06.2011

DD.MM.YY
SELECT CONVERT(VARCHAR(10), SYSDATETIME(), 4) AS
[DD.MM.YY]

08.06.11

http://www.riptutorial.com/ 69

Date Format SQL Statement
Sample
Output

D.M.YYYY

SELECT CAST(DAY(SYSDATETIME()) AS VARCHAR(2)) +
'.' + CAST(MONTH(SYSDATETIME()) AS VARCHAR(2)) + '.'
+ CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)) AS
[D.M.YYYY]

8.6.2011

D.M.YY

SELECT CAST(DAY(SYSDATETIME()) AS VARCHAR(2)) +
'.' + CAST(MONTH(SYSDATETIME()) AS VARCHAR(2)) + '.'
+ RIGHT(CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)),
2) AS [D.M.YY]

8.6.11

YYYY.M.D

SELECT CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)) +
'.' + CAST(MONTH(SYSDATETIME()) AS VARCHAR(2)) + '.'
+ CAST(DAY(SYSDATETIME()) AS VARCHAR(2)) AS
[YYYY.M.D]

2011.6.8

YY.M.D

SELECT RIGHT(CAST(YEAR(SYSDATETIME()) AS
VARCHAR(4)), 2) + '.' + CAST(MONTH(SYSDATETIME()) AS
VARCHAR(2)) + '.' + CAST(DAY(SYSDATETIME()) AS
VARCHAR(2)) AS [YY.M.D]

11.6.8

MM.YYYY
SELECT RIGHT(CONVERT(VARCHAR(10),
SYSDATETIME(), 104), 7) AS [MM.YYYY]

06.2011

MM.YY
SELECT RIGHT(CONVERT(VARCHAR(8), SYSDATETIME(),
4), 5) AS [MM.YY]

06.11

M.YYYY
SELECT CAST(MONTH(SYSDATETIME()) AS VARCHAR(2))
+ '.' + CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)) AS
[M.YYYY]

6.2011

M.YY
SELECT CAST(MONTH(SYSDATETIME()) AS VARCHAR(2))
+ '.' + RIGHT(CAST(YEAR(SYSDATETIME()) AS
VARCHAR(4)), 2) AS [M.YY]

6.11

YYYY.MM
SELECT CONVERT(VARCHAR(7), SYSDATETIME(), 102)
AS [YYYY.MM]

2011.06

YY.MM
SELECT CONVERT(VARCHAR(5), SYSDATETIME(), 2) AS
[YY.MM]

11.06

YYYY.M
SELECT CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)) +
'.' + CAST(MONTH(SYSDATETIME()) AS VARCHAR(2)) AS
[YYYY.M]

2011.6

SELECT RIGHT(CAST(YEAR(SYSDATETIME()) AS
VARCHAR(4)), 2) + '.' + CAST(MONTH(SYSDATETIME()) AS

YY.M 11.6

http://www.riptutorial.com/ 70

Date Format SQL Statement
Sample
Output

VARCHAR(2)) AS [YY.M]

MM.DD
SELECT RIGHT(CONVERT(VARCHAR(8), SYSDATETIME(),
2), 5) AS [MM.DD]

06.08

DD.MM
SELECT CONVERT(VARCHAR(5), SYSDATETIME(), 4) AS
[DD.MM]

08.06

MMDDYYYY
SELECT REPLACE(CONVERT(VARCHAR(10),
SYSDATETIME(), 101), '/', '') AS [MMDDYYYY]

06082011

MMDDYY
SELECT REPLACE(CONVERT(VARCHAR(8),
SYSDATETIME(), 1), '/', '') AS [MMDDYY]

060811

DDMMYYYY
SELECT REPLACE(CONVERT(VARCHAR(10),
SYSDATETIME(), 103), '/', '') AS [DDMMYYYY]

08062011

DDMMYY
SELECT REPLACE(CONVERT(VARCHAR(8),
SYSDATETIME(), 3), '/', '') AS [DDMMYY]

080611

MMYYYY
SELECT RIGHT(REPLACE(CONVERT(VARCHAR(10),
SYSDATETIME(), 103), '/', ''), 6) AS [MMYYYY]

062011

MMYY
SELECT RIGHT(REPLACE(CONVERT(VARCHAR(8),
SYSDATETIME(), 3), '/', ''), 4) AS [MMYY]

0611

YYYYMM
SELECT CONVERT(VARCHAR(6), SYSDATETIME(), 112)
AS [YYYYMM]

201106

YYMM
SELECT CONVERT(VARCHAR(4), SYSDATETIME(), 12) AS
[YYMM]

1106

Month DD,
YYYY

SELECT DATENAME(MONTH, SYSDATETIME())+ ' ' +
RIGHT('0' + DATENAME(DAY, SYSDATETIME()), 2) + ', ' +
DATENAME(YEAR, SYSDATETIME()) AS [Month DD, YYYY]

June 08,
2011

Mon YYYY
SELECT LEFT(DATENAME(MONTH, SYSDATETIME()), 3) +
' ' + DATENAME(YEAR, SYSDATETIME()) AS [Mon YYYY]

Jun 2011

Month YYYY
SELECT DATENAME(MONTH, SYSDATETIME()) + ' ' +
DATENAME(YEAR, SYSDATETIME()) AS [Month YYYY]

June 2011

DD Month
SELECT RIGHT('0' + DATENAME(DAY, SYSDATETIME()),
2) + ' ' + DATENAME(MONTH, SYSDATETIME()) AS [DD
Month]

08 June

SELECT DATENAME(MONTH, SYSDATETIME()) + ' ' + Month DD June 08

http://www.riptutorial.com/ 71

Date Format SQL Statement
Sample
Output

RIGHT('0' + DATENAME(DAY, SYSDATETIME()), 2) AS
[Month DD]

DD Month YY

SELECT CAST(DAY(SYSDATETIME()) AS VARCHAR(2)) + '
' + DATENAME(MM, SYSDATETIME()) + ' ' +
RIGHT(CAST(YEAR(SYSDATETIME()) AS VARCHAR(4)), 2)
AS [DD Month YY]

08 June 11

DD Month
YYYY

SELECT RIGHT('0' + DATENAME(DAY, SYSDATETIME()),
2) + ' ' + DATENAME(MONTH, SYSDATETIME())+ ' ' +
DATENAME(YEAR, SYSDATETIME()) AS [DD Month YYYY]

08 June
2011

Mon-YY
SELECT REPLACE(RIGHT(CONVERT(VARCHAR(9),
SYSDATETIME(), 6), 6), ' ', '-') AS [Mon-YY]

Jun-08

Mon-YYYY
SELECT REPLACE(RIGHT(CONVERT(VARCHAR(11),
SYSDATETIME(), 106), 8), ' ', '-') AS [Mon-YYYY]

Jun-2011

DD-Mon-YY
SELECT REPLACE(CONVERT(VARCHAR(9),
SYSDATETIME(), 6), ' ', '-') AS [DD-Mon-YY]

08-Jun-11

DD-Mon-
YYYY

SELECT REPLACE(CONVERT(VARCHAR(11),
SYSDATETIME(), 106), ' ', '-') AS [DD-Mon-YYYY]

08-Jun-
2011

Return just Date from a DateTime

There are many ways to return a Date from a DateTime object

SELECT CONVERT(Date, GETDATE())1.
SELECT DATEADD(dd, 0, DATEDIFF(dd, 0, GETDATE())) returns 2016-07-21 00:00:00.0002.
SELECT CAST(GETDATE() AS DATE)3.
SELECT CONVERT(CHAR(10),GETDATE(),111)4.
SELECT FORMAT(GETDATE(), 'yyyy-MM-dd')5.

Note that options 4 and 5 returns a string, not a date.

Create function to calculate a person's age on a specific date

This function will take 2 datetime parameters, the DOB, and a date to check the age at

 CREATE FUNCTION [dbo].[Calc_Age]
 (
 @DOB datetime , @calcDate datetime
)
 RETURNS int
 AS
 BEGIN
declare @age int

http://www.riptutorial.com/ 72

IF (@calcDate < @DOB)
RETURN -1

-- If a DOB is supplied after the comparison date, then return -1
SELECT @age = YEAR(@calcDate) - YEAR(@DOB) +
 CASE WHEN DATEADD(year,YEAR(@calcDate) - YEAR(@DOB)
 ,@DOB) > @calcDate THEN -1 ELSE 0 END

RETURN @age

END

eg to check the age today of someone born on 1/1/2000

SELECT dbo.Calc_Age('2000-01-01',Getdate())

CROSS PLATFORM DATE OBJECT

SQL Server 2012

In Transact SQL , you may define an object as Date (or DateTime) using the [DATEFROMPARTS][1] (or
[DATETIMEFROMPARTS][1]) function like following:

 DECLARE @myDate DATE=DATEFROMPARTS(1988,11,28)
 DECLARE @someMoment DATETIME=DATEFROMPARTS(1988,11,28,10,30,50,123)

The parameters you provide are Year, Month, Day for the DATEFROMPARTS function and, for the
DATETIMEFROMPARTS function you will need to provide year, month, day, hour, minutes, seconds and
milliseconds.

These methods are useful and worth being used because using the plain string to build a date(or
datetime) may fail depending on the host machine region, location or date format settings.

Get the current DateTime

The built-in functions GETDATE and GETUTCDATE each return the current date and time without a time
zone offset.

The return value of both functions is based on the operating system of the computer on which the
instance of SQL Server is running.

The return value of GETDATE represents the current time in the same timezone as operating
system. The return value of GETUTCDATE represents the current UTC time.

Either function can be included in the SELECT clause of a query or as part of boolean expression in
the WHERE clause.

Examples:

http://www.riptutorial.com/ 73

-- example query that selects the current time in both the server time zone and UTC
SELECT GETDATE() as SystemDateTime, GETUTCDATE() as UTCDateTime

-- example query records with EventDate in the past.
SELECT * FROM MyEvents WHERE EventDate < GETDATE()

There are a few other built-in functions that return different variations of the current date-time:

SELECT
 GETDATE(), --2016-07-21 14:27:37.447
 GETUTCDATE(), --2016-07-21 18:27:37.447
 CURRENT_TIMESTAMP, --2016-07-21 14:27:37.447
 SYSDATETIME(), --2016-07-21 14:27:37.4485768
 SYSDATETIMEOFFSET(),--2016-07-21 14:27:37.4485768 -04:00
 SYSUTCDATETIME() --2016-07-21 18:27:37.4485768

DATEADD for adding and subtracting time periods

General syntax:

DATEADD (datepart , number , datetime_expr)

To add a time measure, the number must be positive. To subtract a time measure, the number must
be negative.

Examples

DECLARE @now DATETIME2 = GETDATE();
SELECT @now; --2016-07-21 14:39:46.4170000
SELECT DATEADD(YEAR, 1, @now) --2017-07-21 14:39:46.4170000
SELECT DATEADD(QUARTER, 1, @now) --2016-10-21 14:39:46.4170000
SELECT DATEADD(WEEK, 1, @now) --2016-07-28 14:39:46.4170000
SELECT DATEADD(DAY, 1, @now) --2016-07-22 14:39:46.4170000
SELECT DATEADD(HOUR, 1, @now) --2016-07-21 15:39:46.4170000
SELECT DATEADD(MINUTE, 1, @now) --2016-07-21 14:40:46.4170000
SELECT DATEADD(SECOND, 1, @now) --2016-07-21 14:39:47.4170000
SELECT DATEADD(MILLISECOND, 1, @now)--2016-07-21 14:39:46.4180000

NOTE: DATEADD also accepts abbreviations in the datepart parameter. Use of these abbreviations is
generally discouraged as they can be confusing (m vs mi, ww vs w, etc.).

Date parts reference

These are the datepart values available to date & time functions:

datepart Abbreviations

year yy, yyyy

quarter qq, q

month mm, m

http://www.riptutorial.com/ 74

datepart Abbreviations

dayofyear dy, y

day dd, d

week wk, ww

weekday dw, w

hour hh

minute mi, n

second ss, s

millisecond ms

microsecond mcs

nanosecond ns

NOTE: Use of abbreviations is generally discouraged as they can be confusing (m vs mi, ww vs w,
etc.). The long version of the datepart representation promotes clarity and readability, and should
be used whenever possible (month, minute, week, weekday, etc.).

DATEDIFF for calculating time period differences

General syntax:

DATEDIFF (datepart, datetime_expr1, datetime_expr2)

It will return a positive number if datetime_expr is in the past relative to datetime_expr2, and a
negative number otherwise.

Examples

DECLARE @now DATETIME2 = GETDATE();
DECLARE @oneYearAgo DATETIME2 = DATEADD(YEAR, -1, @now);
SELECT @now --2016-07-21 14:49:50.9800000
SELECT @oneYearAgo --2015-07-21 14:49:50.9800000
SELECT DATEDIFF(YEAR, @oneYearAgo, @now) --1
SELECT DATEDIFF(QUARTER, @oneYearAgo, @now) --4
SELECT DATEDIFF(WEEK, @oneYearAgo, @now) --52
SELECT DATEDIFF(DAY, @oneYearAgo, @now) --366
SELECT DATEDIFF(HOUR, @oneYearAgo, @now) --8784
SELECT DATEDIFF(MINUTE, @oneYearAgo, @now) --527040
SELECT DATEDIFF(SECOND, @oneYearAgo, @now) --31622400

NOTE: DATEDIFF also accepts abbreviations in the datepart parameter. Use of these abbreviations
is generally discouraged as they can be confusing (m vs mi, ww vs w, etc.).

http://www.riptutorial.com/ 75

DATEDIFF can also be used to determine the offset between UTC and the local time of the SQL
Server. The following statement can be used to calculate the offset between UTC and local time
(including timezone).

select DATEDIFF(hh, getutcdate(), getdate()) as 'CentralTimeOffset'

DATEPART & DATENAME

DATEPART returns the specified datepart of the specified datetime expression as a numeric value.

DATENAME returns a character string that represents the specified datepart of the specified date. In
practice DATENAME is mostly useful for getting the name of the month or the day of the week.

There are also some shorthand functions to get the year, month or day of a datetime expression,
which behave like DATEPART with their respective datepart units.

Syntax:

DATEPART (datepart , datetime_expr)
DATENAME (datepart , datetime_expr)
DAY (datetime_expr)
MONTH (datetime_expr)
YEAR (datetime_expr)

Examples:

DECLARE @now DATETIME2 = GETDATE();
SELECT @now --2016-07-21 15:05:33.8370000
SELECT DATEPART(YEAR, @now) --2016
SELECT DATEPART(QUARTER, @now) --3
SELECT DATEPART(WEEK, @now) --30
SELECT DATEPART(HOUR, @now) --15
SELECT DATEPART(MINUTE, @now) --5
SELECT DATEPART(SECOND, @now) --33
-- Differences between DATEPART and DATENAME:
SELECT DATEPART(MONTH, @now) --7
SELECT DATENAME(MONTH, @now) --July
SELECT DATEPART(WEEKDAY, @now) --5
SELECT DATENAME(WEEKDAY, @now) --Thursday
--shorthand functions
SELECT DAY(@now) --21
SELECT MONTH(@now) --7
SELECT YEAR(@now) --2016

NOTE: DATEPART and DATENAME also accept abbreviations in the datepart parameter. Use of these
abbreviations is generally discouraged as they can be confusing (m vs mi, ww vs w, etc.).

Getting the last day of a month

Using the DATEADD and DATEDIFF functions, it's possible to return the last date of a month.

SELECT DATEADD(d, -1, DATEADD(m, DATEDIFF(m, 0, '2016-09-23') + 1, 0))

http://www.riptutorial.com/ 76

-- 2016-09-30 00:00:00.000

SQL Server 2012

The EOMONTH function provides a more concise way to return the last date of a month, and has an
optional parameter to offset the month.

SELECT EOMONTH('2016-07-21') --2016-07-31
SELECT EOMONTH('2016-07-21', 4) --2016-11-30
SELECT EOMONTH('2016-07-21', -5) --2016-02-29

Date & Time Formatting using CONVERT

You can use the CONVERT function to cast a datetime datatype to a formatted string.

SELECT GETDATE() AS [Result] -- 2016-07-21 07:56:10.927

You can also use some built-in codes to convert into a specific format. Here are the options built
into SQL Server:

DECLARE @convert_code INT = 100 -- See Table Below
SELECT CONVERT(VARCHAR(30), GETDATE(), @convert_code) AS [Result]

@convert_code Result

100 "Jul 21 2016 7:56AM"

101 "07/21/2016"

102 "2016.07.21"

103 "21/07/2016"

104 "21.07.2016"

105 "21-07-2016"

106 "21 Jul 2016"

107 "Jul 21, 2016"

108 "07:57:05"

109 "Jul 21 2016 7:57:45:707AM"

110 "07-21-2016"

111 "2016/07/21"

112 "20160721"

http://www.riptutorial.com/ 77

@convert_code Result

113 "21 Jul 2016 07:57:59:553"

114 "07:57:59:553"

120 "2016-07-21 07:57:59"

121 "2016-07-21 07:57:59.553"

126 "2016-07-21T07:58:34.340"

127 "2016-07-21T07:58:34.340"

130 "16 ???? 1437 7:58:34:340AM"

131 "16/10/1437 7:58:34:340AM"

SELECT GETDATE() AS [Result] -- 2016-07-21 07:56:10.927
UNION SELECT CONVERT(VARCHAR(30),GETDATE(),100) AS [Result] -- Jul 21 2016 7:56AM
UNION SELECT CONVERT(VARCHAR(30),GETDATE(),101) AS [Result] -- 07/21/2016
UNION SELECT CONVERT(VARCHAR(30),GETDATE(),102) AS [Result] -- 2016.07.21
UNION SELECT CONVERT(VARCHAR(30),GETDATE(),103) AS [Result] -- 21/07/2016
UNION SELECT CONVERT(VARCHAR(30),GETDATE(),104) AS [Result] -- 21.07.2016
UNION SELECT CONVERT(VARCHAR(30),GETDATE(),105) AS [Result] -- 21-07-2016
UNION SELECT CONVERT(VARCHAR(30),GETDATE(),106) AS [Result] -- 21 Jul 2016
UNION SELECT CONVERT(VARCHAR(30),GETDATE(),107) AS [Result] -- Jul 21, 2016
UNION SELECT CONVERT(VARCHAR(30),GETDATE(),108) AS [Result] -- 07:57:05
UNION SELECT CONVERT(VARCHAR(30),GETDATE(),109) AS [Result] -- Jul 21 2016 7:57:45:707AM
UNION SELECT CONVERT(VARCHAR(30),GETDATE(),110) AS [Result] -- 07-21-2016
UNION SELECT CONVERT(VARCHAR(30),GETDATE(),111) AS [Result] -- 2016/07/21
UNION SELECT CONVERT(VARCHAR(30),GETDATE(),112) AS [Result] -- 20160721
UNION SELECT CONVERT(VARCHAR(30),GETDATE(),113) AS [Result] -- 21 Jul 2016 07:57:59:553
UNION SELECT CONVERT(VARCHAR(30),GETDATE(),114) AS [Result] -- 07:57:59:553
UNION SELECT CONVERT(VARCHAR(30),GETDATE(),120) AS [Result] -- 2016-07-21 07:57:59
UNION SELECT CONVERT(VARCHAR(30),GETDATE(),121) AS [Result] -- 2016-07-21 07:57:59.553
UNION SELECT CONVERT(VARCHAR(30),GETDATE(),126) AS [Result] -- 2016-07-21T07:58:34.340
UNION SELECT CONVERT(VARCHAR(30),GETDATE(),127) AS [Result] -- 2016-07-21T07:58:34.340
UNION SELECT CONVERT(VARCHAR(30),GETDATE(),130) AS [Result] -- 16 ???? 1437 7:58:34:340AM
UNION SELECT CONVERT(VARCHAR(30),GETDATE(),131) AS [Result] -- 16/10/1437 7:58:34:340AM

Date & Time Formatting using FORMAT

SQL Server 2012

You can utilize the new function: FORMAT().

Using this you can transform your DATETIME fields to your own custom VARCHAR format.

Example

DECLARE @Date DATETIME = '2016-09-05 00:01:02.333'

SELECT FORMAT(@Date, N'dddd, MMMM dd, yyyy hh:mm:ss tt')

http://www.riptutorial.com/ 78

Monday, September 05, 2016 12:01:02 AM

Arguments

Given the DATETIME being formatted is 2016-09-05 00:01:02.333, the following chart shows what their
output would be for the provided argument.

Argument Output

yyyy 2016

yy 16

MMMM September

MM 09

M 9

dddd Monday

ddd Mon

dd 05

d 5

HH 00

H 0

hh 12

h 12

mm 01

m 1

ss 02

s 2

tt AM

t A

fff 333

ff 33

http://www.riptutorial.com/ 79

Argument Output

f 3

You can also supply a single argument to the FORMAT() function to generate a pre-formatted output:

DECLARE @Date DATETIME = '2016-09-05 00:01:02.333'

SELECT FORMAT(@Date, N'U')

Monday, September 05, 2016 4:01:02 AM

Single Argument Output

D Monday, September 05, 2016

d 9/5/2016

F Monday, September 05, 2016 12:01:02 AM

f Monday, September 05, 2016 12:01 AM

G 9/5/2016 12:01:02 AM

g 9/5/2016 12:01 AM

M September 05

O 2016-09-05T00:01:02.3330000

R Mon, 05 Sep 2016 00:01:02 GMT

s 2016-09-05T00:01:02

T 12:01:02 AM

t 12:01 AM

U Monday, September 05, 2016 4:01:02 AM

u 2016-09-05 00:01:02Z

Y September, 2016

Note: The above list is using the en-US culture. A different culture can be specified for the FORMAT()
via the third parameter:

DECLARE @Date DATETIME = '2016-09-05 00:01:02.333'

SELECT FORMAT(@Date, N'U', 'zh-cn')

http://www.riptutorial.com/ 80

201695 4:01:02

Read Dates online: http://www.riptutorial.com/sql-server/topic/1471/dates

http://www.riptutorial.com/ 81

Chapter 24: DBCC

Examples

DBCC maintenance commands

DBCC commands enable user to maintain space in database, clean caches, shrink databases and
tables.

Examples are:

DBCC DROPCLEANBUFFERS

Removes all clean buffers from the buffer pool, and columnstore objects from the columnstore
object pool.

DBCC FREEPROCCACHE
-- or
DBCC FREEPROCCACHE (0x060006001ECA270EC0215D05000000000000000000000000);

Removes all SQL query in plan cache. Every new plan will be recompiled: You can specify plan
handle, query handle to clean plans for the specific query plan or SQL statement.

DBCC FREESYSTEMCACHE ('ALL', myresourcepool);
-- or
DBCC FREESYSTEMCACHE;

Cleans all cached entries created by system. It can clean entries o=in all or some specified
resource pool (myresourcepool in the example above)

DBCC FLUSHAUTHCACHE

Empties the database authentication cache containing information about logins and firewall rules.

DBCC SHRINKDATABASE (MyDB [, 10]);

Shrinks database MyDB to 10%. Second parameter is optional. You can use database id instead
of name.

DBCC SHRINKFILE (DataFile1, 7);

Shrinks data file named DataFile1 in the current database. Target size is 7 MB (tis parameter is
optional).

DBCC CLEANTABLE (AdventureWorks2012,'Production.Document', 0)

http://www.riptutorial.com/ 82

Reclaims a space from specified table

DBCC validation statements

DBCC commands enable user to validate state of database.

ALTER TABLE Table1 WITH NOCHECK ADD CONSTRAINT chkTab1 CHECK (Col1 > 100);
GO
DBCC CHECKCONSTRAINTS(Table1);
--OR
DBCC CHECKCONSTRAINTS ('Table1.chkTable1');

Check constraint is added with nocheck options, so it will not be checked on existing data. DBCC
will trigger constraint check.

Following DBCC commands check integrity of database, table or catalog:

DBCC CHECKTABLE tablename1 | tableid
DBCC CHECKDB databasename1 | dbid
DBCC CHECKFILEGROUP filegroup_name | filegroup_id | 0
DBCC CHECKCATALOG databasename1 | database_id1 | 0

DBCC informational statements

DBCC commands can show information about database objects.

DBCC PROCCACHE

Displays information in a table format about the procedure cache.

DBCC OUTPUTBUFFER (session_id [, request_id])

Returns the current output buffer in hexadecimal and ASCII format for the specified session_id
(and optional request_id).

DBCC INPUTBUFFER (session_id [, request_id])

Displays the last statement sent from a client to an instance of Microsoft SQL Server.

DBCC SHOW_STATISTICS (table_or_indexed_view_name , column_statistic_or_index_name)

DBCC Trace commands

Trace flags in SQL Server are used to modify behavior of SQL server, turn on/off some features.
DBCC commands can control trace flags:

The following example switches on trace flag 3205 globally and 3206 for the current session:

http://www.riptutorial.com/ 83

DBCC TRACEON (3205, -1);
DBCC TRACEON (3206);

The following example switches off trace flag 3205 globally and 3206 for the current session:

DBCC TRACEON (3205, -1);
DBCC TRACEON (3206);

The following example displays the status of trace flags 2528 and 3205:

DBCC TRACESTATUS (2528, 3205);

DBCC statement

DBCC statements act as Database Console Commands for SQL Server. To get the syntax
information for the specified DBCC command use DBCC HELP (...) statement.

The following example returns all DBCC statements for which Help is available:

DBCC HELP ('?');

The following example returns options for DBCC CHECKDB statement:

DBCC HELP ('CHECKDB');

Read DBCC online: http://www.riptutorial.com/sql-server/topic/7316/dbcc

http://www.riptutorial.com/ 84

Chapter 25: DBMAIL

Syntax

sp_send_dbmail [[@profile_name =] 'profile_name'] [, [@recipients =] 'recipients [; ...n]'
] [, [@copy_recipients =] 'copy_recipient [; ...n]'] [, [@blind_copy_recipients =]
'blind_copy_recipient [; ...n]'] [, [@from_address =] 'from_address'] [, [@reply_to =]
'reply_to'] [, [@subject =] 'subject'] [, [@body =] 'body'] [, [@body_format =]
'body_format'] [, [@importance =] 'importance'] [, [@sensitivity =] 'sensitivity'] [, [
@file_attachments =] 'attachment [; ...n]'] [, [@query =] 'query'] [, [
@execute_query_database =] 'execute_query_database'] [, [
@attach_query_result_as_file =] attach_query_result_as_file] [, [
@query_attachment_filename =] query_attachment_filename] [, [@query_result_header =
] query_result_header] [, [@query_result_width =] query_result_width] [, [
@query_result_separator =] 'query_result_separator'] [, [@exclude_query_output =]
exclude_query_output] [, [@append_query_error =] append_query_error] [, [
@query_no_truncate =] query_no_truncate] [, [@query_result_no_padding =]
@query_result_no_padding] [, [@mailitem_id =] mailitem_id] [OUTPUT]

•

Examples

Send simple email

This code sends a simple text-only email to recipient@someaddress.com

EXEC msdb.dbo.sp_send_dbmail
 @profile_name = 'The Profile Name',
 @recipients = 'recipient@someaddress.com',
 @body = 'This is a simple email sent from SQL Server.',
 @subject = 'Simple email'

Send results of a query

This attaches the results of the query SELECT * FROM Users and sends it to recipient@someaddress.com

EXEC msdb.dbo.sp_send_dbmail
 @profile_name = 'The Profile Name',
 @recipients = 'recipient@someaddress.com',
 @query = 'SELECT * FROM Users',
 @subject = 'List of users',
 @attach_query_result_as_file = 1;

Send HTML email

HTML content must be passed to sp_send_dbmail

SQL Server 2012

http://www.riptutorial.com/ 85

DECLARE @html VARCHAR(MAX);
SET @html = CONCAT
(
 '<html><body>',
 '<h1>Some Header Text</h1>',
 '<p>Some paragraph text</p>',
 '</body></html>'
)

SQL Server 2012

DECLARE @html VARCHAR(MAX);
SET @html =
 '<html><body>' +
 '<h1>Some Header Text</h1>' +
 '<p>Some paragraph text</p>' +
 '</body></html>';

Then use the @html variable with the @body argument. The HTML string can also be passed directly
to @body, although it may make the code harder to read.

EXEC msdb.dbo.sp_send_dbmail
 @recipients='recipient@someaddress.com',
 @subject = 'Some HTML content',
 @body = @html,
 @body_format = 'HTML';

Read DBMAIL online: http://www.riptutorial.com/sql-server/topic/4908/dbmail

http://www.riptutorial.com/ 86

Chapter 26: Delimiting special characters and
reserved words

Remarks

Generally speaking, it is best not to use T-SQL Reserved Words as table names, column names,
programming object names, alias etc. So the method to escape these keywords should only be
applied if you are inheriting a database design that cannot be changed.

For reserved words, usage of the square brackets is not mandatory. When using a tool such as
SQL Server Management Studio, the reserved words will be highlighted to bring attention to the
fact that they are reserved.

Examples

Basic Method

The basic method to escape reserved words for SQL Server is the use of the square brackets ([
and]). For example, Description and Name are reserved words; however, if there is an object
using both as names, the syntax used is:

SELECT [Description]
FROM dbo.TableName
WHERE [Name] = 'foo'

The only special character for SQL Server is the single quote ' and it is escaped by doubling its
usage. For example, to find the name O'Shea in the same table, the following syntax would be
used:

SELECT [Description]
FROM dbo.TableName
WHERE [Name] = 'O''Shea'

Read Delimiting special characters and reserved words online: http://www.riptutorial.com/sql-
server/topic/7156/delimiting-special-characters-and-reserved-words

http://www.riptutorial.com/ 87

Chapter 27: Drop Keyword

Introduction

The Drop keyword can be used with various SQL objects, this topic provides quick examples of
different usage with database objects.

Remarks

Links to MSDN.

DROP TABLE (Transact-SQL)•

DROP PROCEDURE (Transact-SQL)•

DROP DATABASE (Transact-SQL)•

Examples

Drop tables

The DROP TABLE command remove the table definitions and all data, indexes, triggers,
constraints and related permissions.

Before you drop a table, you should check if there are any object (views, stored procedures, other
tables) that reference the table.

You cannot drop a table referenced by another table by FOREIGN KEY. You must first drop the
FOREIGN KEY referencing it.

You can drop a table referenced by a view or stored procedure, but after dropping the table, the
view or stored procedure is no longer usable.

The Syntax

DROP TABLE [IF EXISTS] [database_name . [schema_name] . | schema_name .]
table_name [,...n] [;]

IF EXISTS - Drop the table only if exists•
database_name - Specify the name of the database where the table is contained•
schema_name - Specify the name of the schema where the table is under•
table_name - Specify the name of the table to be dropped•

Examples

Remove the table with name TABLE_1 from current database and default schema dbo

http://www.riptutorial.com/ 88

DROP TABLE Table_1;

Remove the table with TABLE_1 from database HR and default schema dbo

DROP TABLE HR.Table_1;

Remove the table with TABLE_1 from database HR and schema external

DROP TABLE HR.external.TABLE_1;

Drop Databases

The DROP DATABASE command removes a database catalog, regardless of its state (offline,
read-only, suspect, etc.), from the current SQL Server instance.

A database cannot be dropped if there are any database snapshots associated with it, as the
database snapshots must be dropped first.

A database drop removes all of the physical disk files (unless it's offline) used by the database
unless you use the Stored Procedure 'sp_detach_db'.

A database snapshot drop deletes the snapshot from the SQL Server instance and deletes the
physical files also used by it.

A dropped database can only be re-created by restoring a backup (not from a database snapshot
either).

The Syntax

DROP DATABASE [IF EXISTS] { database_name | database_snapshot_name } [,...n] [;]

IF EXISTS - Drop the table only if exists•
database_name - Specifies the name of the database to drop•
database_snapshot_name - Specifies the database snapshot to remove•

•

Examples

Remove a single database;

DROP DATABASE Database1;

Removing multiple databases

DROP DATABASE Database1, Database2;

Removing a snapshot

http://www.riptutorial.com/ 89

DROP DATABASE Database1_snapshot17;

Removing if database exists

DROP DATABASE IF EXISTS Database1;

Drop temporary tables

In SQL server we have 2 types of temporary tables:

##GlobalTempTable is a type of temporary table that is sheered between all user's sessions.1.
#LocalTempTable temp tab - it is a type of temporary table that only exists in current scope
(only in actual process - you can get id of your current process by SELECT @@SPID)

2.

Droping process of temporary tables is the same as for normal table:

DROP TABLE [database_name . [schema_name] . | schema_name .] table_name

BEFORE SQL Server 2016:

IF(OBJECT_ID('tempdb..#TempTable') is not null)
 DROP TABLE #TempTable;

SQL Server 2016:

DROP TABLE IF EXISTS #TempTable

Read Drop Keyword online: http://www.riptutorial.com/sql-server/topic/9532/drop-keyword

http://www.riptutorial.com/ 90

Chapter 28: Dynamic data masking

Examples

Mask email address using Dynamic data masking

If you have email column you can mask it with email() mask:

ALTER TABLE Company
ALTER COLUMN Email ADD MASKED WITH (FUNCTION = 'email()')

When user tries to select emails from Company table, he will get something like the following
values:

mXXX@XXXX.com

zXXX@XXXX.com

rXXX@XXXX.com

Add partial mask on column

You can add partial mask on the column that will show few characters from te beginning and the
end of the string and show mask instead of the characters in the middle:

ALTER TABLE Company
ALTER COLUMN Phone ADD MASKED WITH (FUNCTION = 'partial(5,"XXXXXXX",2)')

In the parameters of the partial function you can specify how many values from the beginning will
be shown, how many values from the end will be shown, and what woudl be the pattern that is
shown in the middle.

When user tries to select emails from Company table, he will get something like the following
values:

(381)XXXXXXX39

(360)XXXXXXX01

(415)XXXXXXX05

Showing random value from the range using random() mask

Random mask will show a rundom number from the specified range instead of the actual value:

ALTER TABLE Product
ALTER COLUMN Price ADD MASKED WITH (FUNCTION = 'random(100,200)')

http://www.riptutorial.com/ 91

Note that is some cases displayed value might match actual value in column (if randomly selected
number matches value in the cell).

Adding default mask on the column

If you add default mask on the column, instead of actual value in SELECT statement will be shown
mask:

ALTER TABLE Company
ALTER COLUMN Postcode ADD MASKED WITH (FUNCTION = 'default()')

Controlling who can see unmasked data

You can grant in-privileged users right to see unmasked values using the following statement:

GRANT UNMASK TO MyUser

If some user already has unmask permission, you can revoke this permission:

REVOKE UNMASK TO MyUser

Read Dynamic data masking online: http://www.riptutorial.com/sql-server/topic/7052/dynamic-
data-masking

http://www.riptutorial.com/ 92

Chapter 29: Dynamic SQL

Examples

Execute SQL statement provided as string

In some cases, you would need to execute SQL query placed in string. EXEC, EXECUTE, or
system procedure sp_executesql can execute any SQL query provided as string:

sp_executesql N'SELECT * FROM sys.objects'
-- or
sp_executesql @stmt = N'SELECT * FROM sys.objects'
-- or
EXEC sp_executesql N'SELECT * FROM sys.objects'
-- or
EXEC('SELECT * FROM sys.columns')
-- or
EXECUTE('SELECT * FROM sys.tables')

This procedure will return the same result-set as SQL query provided as statement text.
sp_executesql can execute SQL query provided as string literal, variable/parameter, or even
expression:

declare @table nvarchar(40) = N'product items'
EXEC(N'SELECT * FROM ' + @table)
declare @sql nvarchar(40) = N'SELECT * FROM ' + QUOTENAME(@table);
EXEC sp_executesql @sql

You need QUOTENAME function to escape special characters in @table variable. Without this
function you would get syntax error if @table variable contains something like spaces, brackets, or
any other special character.

Dynamic SQL executed as different user

You can execute SQL query as different user using AS USER = 'name of database user'

EXEC(N'SELECT * FROM product') AS USER = 'dbo'

SQL query will be executed under dbo database user. All permission checks applicable to dbo
user will be checked on SQL query.

SQL Injection with dynamic SQL

Dynamic queries are

SET @sql = N'SELECT COUNT(*) FROM AppUsers WHERE Username = ''' + @user + ''' AND Password =
''' + @pass + ''''
EXEC(@sql)

http://www.riptutorial.com/ 93

If value of user variable is myusername'' OR 1=1 -- the following query will be executed:

SELECT COUNT(*)
FROM AppUsers
WHERE Username = 'myusername' OR 1=1 --' AND Password = ''

Comment at the end of value of variable @username will comment-out trailing part of the query
and condition 1=1 will be evaluated. Application that checks it there at least one user returned by
this query will return count greater than 0 and login will succeed.

Using this approach attacker can login into application even if he don't know valid username and
password.

Dynamic SQL with parameters

In order to avoid injection and escaping problems, dynamic SQL queries should be executed with
parameters, e.g.:

SET @sql = N'SELECT COUNT(*) FROM AppUsers WHERE Username = @user AND Password = @pass
EXEC sp_executesql @sql, '@user nvarchar(50), @pass nvarchar(50)', @username, @password

Second parameter is a list of parameters used in query with their types, after this list are provided
variables that will be used as parameter values.

sp_executesql will escape special characters and execute sql query.

Read Dynamic SQL online: http://www.riptutorial.com/sql-server/topic/6871/dynamic-sql

http://www.riptutorial.com/ 94

Chapter 30: Dynamic SQL Pivot

Introduction

This topic covers how to do a dynamic pivot in SQL Server.

Examples

Basic Dynamic SQL Pivot

if object_id('tempdb.dbo.#temp') is not null drop table #temp
create table #temp
(
 dateValue datetime,
 category varchar(3),
 amount decimal(36,2)
)

insert into #temp values ('1/1/2012', 'ABC', 1000.00)
insert into #temp values ('2/1/2012', 'DEF', 500.00)
insert into #temp values ('2/1/2012', 'GHI', 800.00)
insert into #temp values ('2/10/2012', 'DEF', 700.00)
insert into #temp values ('3/1/2012', 'ABC', 1100.00)

DECLARE
 @cols AS NVARCHAR(MAX),
 @query AS NVARCHAR(MAX);

SET @cols = STUFF((SELECT distinct ',' + QUOTENAME(c.category)
 FROM #temp c
 FOR XML PATH(''), TYPE
).value('.', 'NVARCHAR(MAX)')
 ,1,1,'')

set @query = '
 SELECT
 dateValue,
 ' + @cols + '
 from
 (
 select
 dateValue,
 amount,
 category
 from #temp
) x
 pivot
 (
 sum(amount)
 for category in (' + @cols + ')
) p '

exec sp_executeSql @query

http://www.riptutorial.com/ 95

Read Dynamic SQL Pivot online: http://www.riptutorial.com/sql-server/topic/10751/dynamic-sql-
pivot

http://www.riptutorial.com/ 96

Chapter 31: Encryption

Parameters

Optional
Parameters

Details

WITH PRIVATE
KEY

For CREATE CERTIFICATE, a private key can be specified:
(FILE='D:\Temp\CertTest\private.pvk', DECRYPTION BY PASSWORD =
'password');

Remarks

Creation of a DER certificate will work fine. When a Base64 certificate is used however, SQL
server will complain with the cryptic message:

Msg 15468, Level 16, State 6, Line 1
An error occurred during the generation of the certificate.

Import your Base64 certificate to your OS's certificate store to be able to re-export it into DER
binary format.

Another important thing to do is having an Encryption Hierarchy so that one protects the other, all
the way to OS level. See the article on 'Encryption of database/TDE'

For more information for creation of certificates go to: https://msdn.microsoft.com/en-
us/library/ms187798.aspx

For more information for encryption of database/TDE go to: https://msdn.microsoft.com/en-
us/library/bb934049.aspx

For more information for encryption of data go to: https://msdn.microsoft.com/en-
us/library/ms188061.aspx

Examples

Encryption by certificate

CREATE CERTIFICATE My_New_Cert
FROM FILE = 'D:\Temp\CertTest\certificateDER.cer'
GO

Create the certificate

http://www.riptutorial.com/ 97

SELECT EncryptByCert(Cert_ID('My_New_Cert'),
'This text will get encrypted') encryption_test

Usually, you would encrypt with a symmetric key, that key would get encrypted by the asymmetric
key (public key) from your certificate.

Also, note that encryption is limited to certain lengths depending on key length and returns NULL
otherwise. Microsoft writes: "The limits are: a 512 bit RSA key can encrypt up to 53 bytes, a 1024
bit key can encrypt up to 117 bytes, and a 2048 bit key can encrypt up to 245 bytes."

EncryptByAsymKey has the same limits. For UNICODE this would be divided by 2 (16 bits per
character), so 58 characters for a 1024 bit key.

Encryption of database

USE TDE
CREATE DATABASE ENCRYPTION KEY
WITH ALGORITHM = AES_256
ENCRYPTION BY SERVER CERTIFICATE My_New_Cert
GO

ALTER DATABASE TDE
SET ENCRYPTION ON
GO

This uses 'Transparent Data Encryption' (TDE)

Encryption by symmetric key

-- Create the key and protect it with the cert
CREATE SYMMETRIC KEY My_Sym_Key
WITH ALGORITHM = AES_256
ENCRYPTION BY CERTIFICATE My_New_Cert;
GO

-- open the key
OPEN SYMMETRIC KEY My_Sym_Key
DECRYPTION BY CERTIFICATE My_New_Cert;

-- Encrypt
SELECT EncryptByKey(Key_GUID('SSN_Key_01'), 'This text will get encrypted');

Encryption by passphrase

SELECT EncryptByPassphrase('MyPassPhrase', 'This text will get encrypted')

This will also encrypt but then by passphrase instead of asymmetric(certificate) key or by an
explicit symmetric key.

Read Encryption online: http://www.riptutorial.com/sql-server/topic/7096/encryption

http://www.riptutorial.com/ 98

Chapter 32: Export data in txt file by using
SQLCMD

Syntax

sqlcmd -S SHERAZM-E7450\SQL2008R2 -d Baseline_DB_Aug_2016 -o c:\employee.txt -Q
"select * from employee"

•

Examples

By using SQLCMD on Command Prompt

Command Structure is

sqlcmd -S yourservername\instancename -d database_name -o outputfilename_withpath -Q "your
select query"

Switches are as follows

-S for servername and instance name

-d for source database

-o for target outputfile (it will create output file)

-Q for query to fetch data

Read Export data in txt file by using SQLCMD online: http://www.riptutorial.com/sql-
server/topic/7076/export-data-in-txt-file-by-using-sqlcmd

http://www.riptutorial.com/ 99

Chapter 33: File Group

Examples

Create filegroup in database

We can create it by two way. First from database properties designer mode:

And by sql scripts:

USE master;
GO
-- Create the database with the default data
-- filegroup and a log file. Specify the
-- growth increment and the max size for the

http://www.riptutorial.com/ 100

-- primary data file.

CREATE DATABASE TestDB ON PRIMARY
(
 NAME = 'TestDB_Primary',
 FILENAME = 'C:\Program Files\Microsoft SQL
Server\MSSQL12.MSSQLSERVER\MSSQL\DATA\TestDB_Prm.mdf',
 SIZE = 1 GB,
 MAXSIZE = 10 GB,
 FILEGROWTH = 1 GB
), FILEGROUP TestDB_FG1
(
 NAME = 'TestDB_FG1_1',
 FILENAME = 'C:\Program Files\Microsoft SQL
Server\MSSQL12.MSSQLSERVER\MSSQL\DATA\TestDB_FG1_1.ndf',
 SIZE = 10 MB,
 MAXSIZE = 10 GB,
 FILEGROWTH = 1 GB
),
(
 NAME = 'TestDB_FG1_2',
 FILENAME = 'C:\Program Files\Microsoft SQL
Server\MSSQL12.MSSQLSERVER\MSSQL\DATA\TestDB_FG1_2.ndf',
 SIZE = 10 MB,
 MAXSIZE = 10 GB,
 FILEGROWTH = 1 GB
) LOG ON
(
 NAME = 'TestDB_log',
 FILENAME = 'C:\Program Files\Microsoft SQL
Server\MSSQL12.MSSQLSERVER\MSSQL\DATA\TestDB.ldf',
 SIZE = 10 MB,
 MAXSIZE = 10 GB,
 FILEGROWTH = 1 GB
);

go
ALTER DATABASE TestDB MODIFY FILEGROUP TestDB_FG1 DEFAULT;
go

-- Create a table in the user-defined filegroup.
USE TestDB;
Go

CREATE TABLE MyTable
(
 col1 INT PRIMARY KEY,
 col2 CHAR(8)
)
ON TestDB_FG1;
GO

Read File Group online: http://www.riptutorial.com/sql-server/topic/5461/file-group

http://www.riptutorial.com/ 101

Chapter 34: Filestream

Introduction

FILESTREAM integrates the SQL Server Database Engine with an NTFS file system by storing
varbinary(max) binary large object (BLOB) data as files on the file system. Transact-SQL
statements can insert, update, query, search, and back up FILESTREAM data. Win32 file system
interfaces provide streaming access to the data.

Examples

Example

Source : MSDN https://technet.microsoft.com/en-us/library/bb933993(v=sql.105).aspx

Read Filestream online: http://www.riptutorial.com/sql-server/topic/9509/filestream

http://www.riptutorial.com/ 102

Chapter 35: FOR JSON

Examples

FOR JSON PATH

Formats results of SELECT query as JSON text. FOR JSON PATH clause is added after query:

SELECT top 3 object_id, name, type, principal_id FROM sys.objects
FOR JSON PATH

Column names will be used as keys in JSON, and cell values will be generated as JSON values.
Result of the query would be an array of JSON objects:

[
 {"object_id":3,"name":"sysrscols","type":"S "},
 {"object_id":5,"name":"sysrowsets","type":"S "},
 {"object_id":6,"name":"sysclones","type":"S "}
]

NULL values in principal_id column will be ignored (they will not be generated).

FOR JSON PATH with column aliases

FOR JSON PATH enables you to control format of the output JSON using column aliases:

SELECT top 3 object_id as id, name as [data.name], type as [data.type]
FROM sys.objects
FOR JSON PATH

Column alias will be used as a key name. Dot-separated column aliases (data.name and
data.type) will be generated as nested objects. If two column have the same prefix in dot notation,
they will be grouped together in single object (data in this example):

[
 {"id":3,"data":{"name":"sysrscols","type":"S "}},
 {"id":5,"data":{"name":"sysrowsets","type":"S "}},
 {"id":6,"data":{"name":"sysclones","type":"S "}}
]

FOR JSON clause without array wrapper (single object in output)

WITHOUT_ARRAY_WRAPPER option enables you to generate a single object instead of the
array. Use this option if you know that you will return single row/object:

SELECT top 3 object_id, name, type, principal_id
FROM sys.objects
WHERE object_id = 3

http://www.riptutorial.com/ 103

FOR JSON PATH, WITHOUT_ARRAY_WRAPPER

Single object will be returned in this case:

{"object_id":3,"name":"sysrscols","type":"S "}

INCLUDE_NULL_VALUES

FOR JSON clause ignores NULL values in cells. If you want to generate "key": null pairs for cells
that contain NULL values, add INCLUDE_NULL_VALUES option in the query:

SELECT top 3 object_id, name, type, principal_id
FROM sys.objects
FOR JSON PATH, INCLUDE_NULL_VALUES

NULL values in principal_id column will be generated:

[
 {"object_id":3,"name":"sysrscols","type":"S ","principal_id":null},
 {"object_id":5,"name":"sysrowsets","type":"S ","principal_id":null},
 {"object_id":6,"name":"sysclones","type":"S ","principal_id":null}
]

Wrapping results with ROOT object

Wraps returned JSON array in additional root object with specified key:

SELECT top 3 object_id, name, type FROM sys.objects
FOR JSON PATH, ROOT('data')

Result of the query would be array of JSON objects inside the wrapper object:

{
 "data":[
 {"object_id":3,"name":"sysrscols","type":"S "},
 {"object_id":5,"name":"sysrowsets","type":"S "},
 {"object_id":6,"name":"sysclones","type":"S "}
]
}

FOR JSON AUTO

Automatically nests values from the second table as a nested sub-array of JSON objects:

SELECT top 5 o.object_id, o.name, c.column_id, c.name
FROM sys.objects o
 JOIN sys.columns c ON o.object_id = c.object_id
FOR JSON AUTO

Result of the query would be array of JSON objects:

http://www.riptutorial.com/ 104

[
 {
 "object_id":3,
 "name":"sysrscols",
 "c":[
 {"column_id":12,"name":"bitpos"},
 {"column_id":6,"name":"cid"}
]
 },
 {
 "object_id":5,
 "name":"sysrowsets",
 "c":[
 {"column_id":13,"name":"colguid"},
 {"column_id":3,"name":"hbcolid"},
 {"column_id":8,"name":"maxinrowlen"}
]
 }
]

Creating custom nested JSON structure

If you need some complex JSON structure that cannot be created using FOR JSON PATH or FOR
JSON AUTO, you can customize your JSON output by putting FOR JSON sub-queries as column
expressions:

SELECT top 5 o.object_id, o.name,
 (SELECT column_id, c.name
 FROM sys.columns c WHERE o.object_id = c.object_id
 FOR JSON PATH) as columns,
 (SELECT parameter_id, name
 FROM sys.parameters p WHERE o.object_id = p.object_id
 FOR JSON PATH) as parameters
FROM sys.objects o
FOR JSON PATH

Each sub-query will produce JSON result that will be included in the main JSON content.

Read FOR JSON online: http://www.riptutorial.com/sql-server/topic/4661/for-json

http://www.riptutorial.com/ 105

Chapter 36: FOR XML PATH

Remarks

There are also several other FOR XML modes:

FOR XML RAW - Creates one <row> element per row.•
FOR XML AUTO - Attempts to heuristically autogenerate a hierarchy.•
FOR XML EXPLICIT - Provides more control over the shape of the XML, but is more
cumbersome than FOR XML PATH.

•

Examples

Hello World XML

SELECT 'Hello World' FOR XML PATH('example')

<example>Hello World</example>

Specifying namespaces

SQL Server 2008

WITH XMLNAMESPACES (
 DEFAULT 'http://www.w3.org/2000/svg',
 'http://www.w3.org/1999/xlink' AS xlink
)
SELECT
 'example.jpg' AS 'image/@xlink:href',
 '50px' AS 'image/@width',
 '50px' AS 'image/@height'
FOR XML PATH('svg')

<svg xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg">
 <image xlink:href="firefox.jpg" width="50px" height="50px"/>
</svg>

Specifying structure using XPath expressions

SELECT
 'XPath example' AS 'head/title',
 'This example demonstrates ' AS 'body/p',
 'https://www.w3.org/TR/xpath/' AS 'body/p/a/@href',
 'XPath expressions' AS 'body/p/a'
FOR XML PATH('html')

<html>

http://www.riptutorial.com/ 106

 <head>
 <title>XPath example</title>
 </head>
 <body>
 <p>This example demonstrates XPath
expressions</p>
 </body>
</html>

In FOR XML PATH, columns without a name become text nodes. NULL or '' therefore become empty
text nodes. Note: you can convert a named column to an unnamed one by using AS *

DECLARE @tempTable TABLE (Ref INT, Des NVARCHAR(100), Qty INT)
INSERT INTO @tempTable VALUES (100001, 'Normal', 1), (100002, 'Foobar', 1), (100003, 'Hello
World', 2)

SELECT ROW_NUMBER() OVER (ORDER BY Ref) AS '@NUM',
 'REF' AS 'FLD/@NAME', REF AS 'FLD', '',
 'DES' AS 'FLD/@NAME', DES AS 'FLD', '',
 'QTY' AS 'FLD/@NAME', QTY AS 'FLD'
FROM @tempTable
FOR XML PATH('LIN'), ROOT('row')

<row>
 <LIN NUM="1">
 <FLD NAME="REF">100001</FLD>
 <FLD NAME="DES">Normal</FLD>
 <FLD NAME="QTY">1</FLD>
 </LIN>
 <LIN NUM="2">
 <FLD NAME="REF">100002</FLD>
 <FLD NAME="DES">Foobar</FLD>
 <FLD NAME="QTY">1</FLD>
 </LIN>
 <LIN NUM="3">
 <FLD NAME="REF">100003</FLD>
 <FLD NAME="DES">Hello World</FLD>
 <FLD NAME="QTY">2</FLD>
 </LIN>
</row>

Using (empty) text nodes helps to separate the previously output node from the next one, so that
SQL Server knows to start a new element for the next column. Otherwise, it gets confused when
the attribute already exists on what it thinks is the "current" element.

For example, without the the empty strings between the element and the attribute in the SELECT
statement, SQL Server gives an error:

Attribute-centric column 'FLD/@NAME' must not come after a non-attribute-centric
sibling in XML hierarchy in FOR XML PATH.

Also note that this example also wrapped the XML in a root element named row, specified by
ROOT('row')

http://www.riptutorial.com/ 107

Using FOR XML PATH to concatenate values

The FOR XML PATH can be used for concatenating values into string. The example below
concatenates values into a CSV string:

DECLARE @DataSource TABLE
(
 [rowID] TINYINT
 ,[FirstName] NVARCHAR(32)
);

INSERT INTO @DataSource ([rowID], [FirstName])
VALUES (1, 'Alex')
 ,(2, 'Peter')
 ,(3, 'Alexsandyr')
 ,(4, 'George');

SELECT STUFF
(
 (
 SELECT ',' + [FirstName]
 FROM @DataSource
 ORDER BY [rowID] DESC
 FOR XML PATH(''), TYPE
).value('.', 'NVARCHAR(MAX)')
 ,1
 ,1
 ,''
);

Few important notes:

the ORDER BY clause can be used to order the values in a preferred way•
if a longer value is used as the concatenation separator, the STUFF function parameter must
be changed too;

•

SELECT STUFF
(
 (
 SELECT '---' + [FirstName]
 FROM @DataSource
 ORDER BY [rowID] DESC
 FOR XML PATH(''), TYPE
).value('.', 'NVARCHAR(MAX)')
 ,1
 ,3 -- the "3" could also be represented as: LEN('---') for clarity
 ,''
);

as the TYPE option and .value function are used, the concatenation works with NVARCHAR(MAX)
string

•

Read FOR XML PATH online: http://www.riptutorial.com/sql-server/topic/727/for-xml-path

http://www.riptutorial.com/ 108

Chapter 37: Foreign Keys

Examples

Foreign key relationship/constraint

Foreign keys enables you to define relationship between two tables. One (parent) table need to
have primary key that uniquely identifies rows in the table. Other (child) table can have value of
the primary key from the parent in one of the columns. FOREIGN KEY REFERENCES constraint
ensures that values in child table must exist as a primary key value in the parent table.

In this example we have parent Company table with CompanyId primary key, and child Employee
table that has id of the company where this employee works.

create table Company (
 CompanyId int primary key,
 Name nvarchar(200)
)
create table Employee (
 EmployeeId int,
 Name nvarchar(200),
 CompanyId int
 foreign key references Company(companyId)
)

foreign key references ensures that values inserted in Employee.CompanyId column must also
exist in Company.CompanyId column. Also, nobody can delete company in company table if there
is ate least one employee with a matching companyId in child table.

FOREIGN KEY relationship ensures that rows in two tables cannot be "unlinked".

Maintaining relationship between parent/child rows

Let's assume that we have one row in Company table with companyId 1. We can insert row in
employee table that has companyId 1:

insert into Employee values (17, 'John', 1)

However, we cannot insert employee that has non-existing CompanyId:

insert into Employee values (17, 'John', 111111)

Msg 547, Level 16, State 0, Line 12 The INSERT statement conflicted with the FOREIGN KEY
constraint "FK__Employee__Compan__1EE485AA". The conflict occurred in database "MyDb",
table "dbo.Company", column 'CompanyId'. The statement has been terminated.

Also, we cannot delete parent row in company table as long as there is at least one child row in

http://www.riptutorial.com/ 109

employee table that references it.

delete from company where CompanyId = 1

Msg 547, Level 16, State 0, Line 14 The DELETE statement conflicted with the REFERENCE
constraint "FK__Employee__Compan__1EE485AA". The conflict occurred in database "MyDb",
table "dbo.Employee", column 'CompanyId'. The statement has been terminated.

Foreign key relationship ensures that Company and employee rows will not be "unlinked".

Adding foreign key relationship on existing table

FOREIGN KEY constraint can be added on existing tables that are still not in relationship. Imagine
that we have Company and Employee tables where Employee table CompanyId column but don't
have foreign key relationship. ALTER TABLE statement enables you to add foreign key constraint
on an existing column that references some other table and primary key in that table:

alter table Employee
 add foreign key (CompanyId) references Company(CompanyId)

Add foreign key on existing table

FOREIGN KEY columns with constraint can be added on existing tables that are still not in
relationship. Imagine that we have Company and Employee tables where Employee table don't
have CompanyId column. ALTER TABLE statement enables you to add new column with foreign
key constraint that references some other table and primary key in that table:

alter table Employee
 add CompanyId int foreign key references Company(CompanyId)

Getting information about foreign key constraints

sys.foreignkeys system view returns information about all foreign key relationships in database:

select name,
 OBJECT_NAME(referenced_object_id) as [parent table],
 OBJECT_NAME(parent_object_id) as [child table],
 delete_referential_action_desc,
 update_referential_action_desc
from sys.foreign_keys

Read Foreign Keys online: http://www.riptutorial.com/sql-server/topic/5355/foreign-keys

http://www.riptutorial.com/ 110

Chapter 38: Full-Text Indexing

Examples

A. Creating a unique index, a full-text catalog, and a full-text index

The following example creates a unique index on the JobCandidateID column of the
HumanResources.JobCandidate table of the AdventureWorks2012 sample database. The
example then creates a default full-text catalog, ft. Finally, the example creates a full-text index on
the Resume column, using the ft catalog and the system stoplist.

USE AdventureWorks2012;
GO
CREATE UNIQUE INDEX ui_ukJobCand ON HumanResources.JobCandidate(JobCandidateID);
CREATE FULLTEXT CATALOG ft AS DEFAULT;
CREATE FULLTEXT INDEX ON HumanResources.JobCandidate(Resume)
 KEY INDEX ui_ukJobCand
 WITH STOPLIST = SYSTEM;
GO

https://www.simple-talk.com/sql/learn-sql-server/understanding-full-text-indexing-in-sql-server/

https://msdn.microsoft.com/en-us/library/cc879306.aspx

https://msdn.microsoft.com/en-us/library/ms142571.aspx

Creating a full-text index on several table columns

USE AdventureWorks2012;
GO
CREATE FULLTEXT CATALOG production_catalog;
GO
CREATE FULLTEXT INDEX ON Production.ProductReview
 (
 ReviewerName
 Language 1033,
 EmailAddress
 Language 1033,
 Comments
 Language 1033
)
 KEY INDEX PK_ProductReview_ProductReviewID
 ON production_catalog;
GO

Creating a full-text index with a search property list without populating it

USE AdventureWorks2012;
GO
CREATE FULLTEXT INDEX ON Production.Document

http://www.riptutorial.com/ 111

 (
 Title
 Language 1033,
 DocumentSummary
 Language 1033,
 Document
 TYPE COLUMN FileExtension
 Language 1033
)
 KEY INDEX PK_Document_DocumentID
 WITH STOPLIST = SYSTEM, SEARCH PROPERTY LIST = DocumentPropertyList, CHANGE_TRACKING
OFF, NO POPULATION;
 GO

And populating it later with

ALTER FULLTEXT INDEX ON Production.Document SET CHANGE_TRACKING AUTO;
GO

Full-Text Search

SELECT product_id
FROM products
WHERE CONTAINS(product_description, ”Snap Happy 100EZ” OR FORMSOF(THESAURUS,’Snap Happy’) OR
‘100EZ’)
AND product_cost < 200 ;

SELECT candidate_name,SSN
FROM candidates
WHERE CONTAINS(candidate_resume,”SQL Server”) AND candidate_division =DBA;

For more and detailed info https://msdn.microsoft.com/en-us/library/ms142571.aspx

Read Full-Text Indexing online: http://www.riptutorial.com/sql-server/topic/4557/full-text-indexing

http://www.riptutorial.com/ 112

Chapter 39: Generating a range of dates

Parameters

Parameter Details

@FromDate The inclusive lower boundary of the generated date range.

@ToDate The inclusive upper boundary of the generated date range.

Remarks

Most experts seem to recommend creating a Dates table instead of generating a sequence on the
fly. See http://dba.stackexchange.com/questions/86435/filling-in-date-holes-in-grouped-by-date-
sql-data

Examples

Generating Date Range With Recursive CTE

Using a Recursive CTE, you can generate an inclusive range of dates:

Declare @FromDate Date = '2014-04-21',
 @ToDate Date = '2014-05-02'

;With DateCte (Date) As
(
 Select @FromDate Union All
 Select DateAdd(Day, 1, Date)
 From DateCte
 Where Date < @ToDate
)
Select Date
From DateCte
Option (MaxRecursion 0)

The default MaxRecursion setting is 100. Generating more than 100 dates using this method will
require the Option (MaxRecursion N) segment of the query, where N is the desired MaxRecursion
setting. Setting this to 0 will remove the MaxRecursion limitation altogether.

Generating a Date Range With a Tally Table

Another way you can generate a range of dates is by utilizing a Tally Table to create the dates
between the range:

Declare @FromDate Date = '2014-04-21',
 @ToDate Date = '2014-05-02'

http://www.riptutorial.com/ 113

;With
 E1(N) As (Select 1 From (Values (1), (1), (1), (1), (1), (1), (1), (1), (1), (1)) DT(N)),
 E2(N) As (Select 1 From E1 A Cross Join E1 B),
 E4(N) As (Select 1 From E2 A Cross Join E2 B),
 E6(N) As (Select 1 From E4 A Cross Join E2 B),
 Tally(N) As
 (
 Select Row_Number() Over (Order By (Select Null))
 From E6
)
Select DateAdd(Day, N - 1, @FromDate) Date
From Tally
Where N <= DateDiff(Day, @FromDate, @ToDate) + 1

Read Generating a range of dates online: http://www.riptutorial.com/sql-
server/topic/3232/generating-a-range-of-dates

http://www.riptutorial.com/ 114

Chapter 40: GROUP BY

Examples

GROUP BY with ROLLUP and CUBE

The ROLLUP operator is useful in generating reports that contain subtotals and totals.

CUBE generates a result set that shows aggregates for all combinations of values in the
selected columns.

•

ROLLUP generates a result set that shows aggregates for a hierarchy of values in the
selected columns.

Item Color Quantity

Table Blue 124

Table Red 223

Chair Blue 101

Chair Red 210

•

SELECT CASE WHEN (GROUPING(Item) = 1) THEN 'ALL'
 ELSE ISNULL(Item, 'UNKNOWN')
 END AS Item,
 CASE WHEN (GROUPING(Color) = 1) THEN 'ALL'
 ELSE ISNULL(Color, 'UNKNOWN')
 END AS Color,
 SUM(Quantity) AS QtySum
FROM Inventory
GROUP BY Item, Color WITH ROLLUP

Item Color QtySum
-------------------- -------------------- --------------------------
Chair Blue 101.00
Chair Red 210.00
Chair ALL 311.00
Table Blue 124.00
Table Red 223.00
Table ALL 347.00
ALL ALL 658.00

(7 row(s) affected)

If the ROLLUP keyword in the query is changed to CUBE, the CUBE result set is the same, except
these two additional rows are returned at the end:

ALL Blue 225.00

http://www.riptutorial.com/ 115

ALL Red 433.00

https://technet.microsoft.com/en-us/library/ms189305(v=sql.90).aspx

GROUP BY multiple columns

One might want to GROUP BY more than one column

declare @temp table(age int, name varchar(15))

insert into @temp
select 18, 'matt' union all
select 21, 'matt' union all
select 21, 'matt' union all
select 18, 'luke' union all
select 18, 'luke' union all
select 21, 'luke' union all
select 18, 'luke' union all
select 21, 'luke'

SELECT Age, Name, count(1) count
FROM @temp
GROUP BY Age, Name

will group by both age and name and will produce:

Age Name count

18 luke 3

21 luke 2

18 matt 1

21 matt 2

Group by with multiple tables, multiple columns

Group by is often used with join statement. Let's assume we have two tables. The first one is the
table of students:

Id Full Name Age

1 Matt Jones 20

2 Frank Blue 21

3 Anthony Angel 18

Second table is the table of subject each student can take:

http://www.riptutorial.com/ 116

Subject_Id Subject

1 Maths

2 P.E.

3 Physics

And because one student can attend many subjects and one subject can be attended by many
students (therefore N:N relationship) we need to have third "bounding" table. Let's call the table
Students_subjects:

Subject_Id Student_Id

1 1

2 2

2 1

3 2

1 3

1 1

Now lets say we want to know the number of subjects each student is attending. Here the
standalone GROUP BY statement is not sufficient as the information is not available through single
table. Therefore we need to use GROUP BY with the JOIN statement:

Select Students.FullName, COUNT(Subject Id) as SubjectNumber FROM Students_Subjects
LEFT JOIN Students
ON Students_Subjects.Student_id = Students.Id
GROUP BY Students.FullName

The result of the given query is as follows:

FullName SubjectNumber

Matt Jones 3

Frank Blue 2

Anthony Angel 1

For an even more complex example of GROUP BY usage, let's say student might be able to
assign the same subject to his name more than once (as shown in table Students_Subjects). In
this scenario we might be able to count number of times each subject was assigned to a student
by GROUPing by more than one column:

http://www.riptutorial.com/ 117

SELECT Students.FullName, Subjects.Subject,
COUNT(Students_subjects.Subject_id) AS NumberOfOrders
FROM ((Students_Subjects
INNER JOIN Students
ON Students_Subjcets.Student_id=Students.Id)
INNER JOIN Subjects
ON Students_Subjects.Subject_id=Subjects.Subject_id)
GROUP BY Fullname,Subject

This query gives the following result:

FullName Subject SubjectNumber

Matt Jones Maths 2

Matt Jones P.E 1

Frank Blue P.E 1

Frank Blue Physics 1

Anthony Angel Maths 1

HAVING

Because the WHERE clause is evaluated before GROUP BY, you cannot use WHERE to pare down results
of the grouping (typically an aggregate function, such as COUNT(*)). To meet this need, the HAVING
clause can be used.

For example, using the following data:

DECLARE @orders TABLE(OrderID INT, Name NVARCHAR(100))

INSERT INTO @orders VALUES
(1, 'Matt'),
(2, 'John'),
(3, 'Matt'),
(4, 'Luke'),
(5, 'John'),
(6, 'Luke'),
(7, 'John'),
(8, 'John'),
(9, 'Luke'),
(10, 'John'),
(11, 'Luke')

If we want to get the number of orders each person has placed, we would use

SELECT Name, COUNT(*) AS 'Orders'
FROM @orders
GROUP BY Name

http://www.riptutorial.com/ 118

and get

Name Orders

Matt 2

John 5

Luke 4

However, if we want to limit this to individuals who have placed more than two orders, we can add
a HAVING clause.

SELECT Name, COUNT(*) AS 'Orders'
FROM @orders
GROUP BY Name
HAVING COUNT(*) > 2

will yield

Name Orders

John 5

Luke 4

Note that, much like GROUP BY, the columns put in HAVING must exactly match their counterparts in
the SELECT statement. If in the above example we had instead said

SELECT Name, COUNT(DISTINCT OrderID)

our HAVING clause would have to say

HAVING COUNT(DISTINCT OrderID) > 2

Simple Grouping

Orders Table

CustomerId ProductId Quantity Price

1 2 5 100

1 3 2 200

1 4 1 500

2 1 4 50

http://www.riptutorial.com/ 119

CustomerId ProductId Quantity Price

3 5 6 700

When grouping by a specific column, only unique values of this column are returned.

SELECT customerId
FROM orders
GROUP BY customerId;

Return value:

customerId

1

2

3

Aggregate functions like count() apply to each group and not to the complete table:

SELECT customerId,
 COUNT(productId) as numberOfProducts,
 sum(price) as totalPrice
FROM orders
GROUP BY customerId;

Return value:

customerId numberOfProducts totalPrice

1 3 800

2 1 50

3 1 700

Read GROUP BY online: http://www.riptutorial.com/sql-server/topic/3231/group-by

http://www.riptutorial.com/ 120

Chapter 41: IF...ELSE

Examples

Single IF statement

Like most of the other programming languages, T-SQL also supports IF..ELSE statements.

For example in the example below 1 = 1 is the expression, which evaluates to True and the control
enters the BEGIN..END block and the Print statement prints the string 'One is equal to One'

IF (1 = 1) --<-- Some Expression
 BEGIN
 PRINT 'One is equal to One'
 END

Multiple IF Statements

We can use multiple IF statement to check multiple expressions totally independent from each
other.

In the example below, each IF statement's expression is evaluated and if it is true the code inside
the BEGIN...END block is executed. In this particular example, the First and Third expressions are
true and only those print statements will be executed.

IF (1 = 1) --<-- Some Expression --<-- This is true
BEGIN
 PRINT 'First IF is True' --<-- this will be executed
END

IF (1 = 2) --<-- Some Expression
BEGIN
 PRINT 'Second IF is True'
END

IF (3 = 3) --<-- Some Expression --<-- This true
BEGIN
 PRINT 'Thrid IF is True' --<-- this will be executed
END

Single IF..ELSE statement

In a single IF..ELSE statement, if the expression evaluates to True in the IF statement the control
enters the first BEGIN..END block and only the code inside that block gets executed , Else block is
simply ignored.

On the other hand if the expression evaluates to False the ELSE BEGIN..END block gets executed and
the control never enters the first BEGIN..END Block.

http://www.riptutorial.com/ 121

In the Example below the expression will evaluate to false and the Else block will be executed
printing the string 'First expression was not true'

IF (1 <> 1) --<-- Some Expression
 BEGIN
 PRINT 'One is equal to One'
 END
ELSE
 BEGIN
 PRINT 'First expression was not true'
 END

Multiple IF... ELSE with final ELSE Statements

If we have Multiple IF...ELSE IF statements but we also want also want to execute some piece of
code if none of expressions are evaluated to True , then we can simple add a final ELSE block
which only gets executed if none of the IF or ELSE IF expressions are evaluated to true.

In the example below none of the IF or ELSE IF expression are True hence only ELSE block is
executed and prints 'No other expression is true'

IF (1 = 1 + 1)
 BEGIN
 PRINT 'First If Condition'
 END
ELSE IF (1 = 2)
 BEGIN
 PRINT 'Second If Else Block'
 END
ELSE IF (1 = 3)
 BEGIN
 PRINT 'Third If Else Block'
 END
ELSE
 BEGIN
 PRINT 'No other expression is true' --<-- Only this statement will be printed
 END

Multiple IF...ELSE Statements

More often than not we need to check multiple expressions and take specific actions based on
those expressions. This situation is handled using multiple IF...ELSE IF statements.

In this example all the expressions are evaluated from top to bottom. As soon as an expression
evaluates to true, the code inside that block is executed. If no expression is evaluated to true,
nothing gets executed.

IF (1 = 1 + 1)
BEGIN
 PRINT 'First If Condition'
END
ELSE IF (1 = 2)
BEGIN

http://www.riptutorial.com/ 122

 PRINT 'Second If Else Block'
END
ELSE IF (1 = 3)
BEGIN
 PRINT 'Third If Else Block'
END
ELSE IF (1 = 1) --<-- This is True
BEGIN
 PRINT 'Last Else Block' --<-- Only this statement will be printed
END

Read IF...ELSE online: http://www.riptutorial.com/sql-server/topic/5186/if---else

http://www.riptutorial.com/ 123

Chapter 42: Index

Examples

Create Clustered index

With a clustered index the leaf pages contain the actual table rows. Therefore, there can be only
one clustered index.

CREATE TABLE Employees
(
 ID CHAR(900),
 FirstName NVARCHAR(3000),
 LastName NVARCHAR(3000),
 StartYear CHAR(900)
)
GO

CREATE CLUSTERED INDEX IX_Clustered
ON Employees(ID)
GO

Create Non-Clustered index

Non-clustered indexes have a structure separate from the data rows. A non-clustered index
contains the non-clustered index key values and each key value entry has a pointer to the data
row that contains the key value. There can be maximum 999 non-clustered index on SQL Server
2008/ 2012.

Link for reference: https://msdn.microsoft.com/en-us/library/ms143432.aspx

CREATE TABLE Employees
(
 ID CHAR(900),
 FirstName NVARCHAR(3000),
 LastName NVARCHAR(3000),
 StartYear CHAR(900)
)
GO

CREATE NONCLUSTERED INDEX IX_NonClustered
ON Employees(StartYear)
GO

Show index info

SP_HELPINDEX tableName

Index on view

http://www.riptutorial.com/ 124

CREATE VIEW View_Index02
WITH SCHEMABINDING
AS
SELECT c.CompanyName, o.OrderDate, o.OrderID, od.ProductID
 FROM dbo.Customers C
 INNER JOIN dbo.orders O ON c.CustomerID=o.CustomerID
 INNER JOIN dbo.[Order Details] od ON o.OrderID=od.OrderID
GO

CREATE UNIQUE CLUSTERED INDEX IX1 ON
 View_Index02(OrderID, ProductID)

Drop index

DROP INDEX IX_NonClustered ON Employees

Returns size and fragmentation indexes

sys.dm_db_index_physical_stats (
 { database_id | NULL | 0 | DEFAULT }
 , { object_id | NULL | 0 | DEFAULT }
 , { index_id | NULL | 0 | -1 | DEFAULT }
 , { partition_number | NULL | 0 | DEFAULT }
 , { mode | NULL | DEFAULT }
)

Sample :

SELECT * FROM sys.dm_db_index_physical_stats
 (DB_ID(N'DBName'), OBJECT_ID(N'IX_NonClustered '), NULL, NULL , 'DETAILED');

Reorganize and rebuild index

avg_fragmentation_in_percent value Corrective statement

>5% and < = 30% REORGANIZE

>30% REBUILD

ALTER INDEX IX_NonClustered ON tableName REORGANIZE;

ALTER INDEX ALL ON Production.Product
 REBUILD WITH (FILLFACTOR = 80, SORT_IN_TEMPDB = ON,
 STATISTICS_NORECOMPUTE = ON);

Rebuild or reorganize all indexes on a table

Rebuilding indexes is done using the following statement

http://www.riptutorial.com/ 125

ALTER INDEX All ON tableName REBUILD;

This drops the index and recreates it, removing fragementation, reclaims disk space and reorders
index pages.

One can also reorganize an index using

ALTER INDEX All ON tableName REORGANIZE;

which will use minimal system resources and defragments the leaf level of clustered and
nonclustered indexes on tables and views by physically reordering the leaf-level pages to match
the logical, left to right, order of the leaf nodes

Rebuild all index database

EXEC sp_MSForEachTable 'ALTER INDEX ALL ON ? REBUILD'

Index investigations

You could use "SP_HELPINDEX Table_Name", but Kimberly Tripp has a stored procedure (that
can be found here), which is better example, as it shows more about the indexes, including
columns and filter definition, for example:
Usage:

USE Adventureworks
EXEC sp_SQLskills_SQL2012_helpindex 'dbo.Product'

Alternatively, Tibor Karaszi has a stored procedure (found here). The later will show information on
index usage too, and optionally provide a list of index suggestions. Usage:

USE Adventureworks
EXEC sp_indexinfo 'dbo.Product'

Read Index online: http://www.riptutorial.com/sql-server/topic/4998/index

http://www.riptutorial.com/ 126

Chapter 43: In-Memory OLTP (Hekaton)

Examples

Create Memory Optimized System-Versioned Temporal Table

CREATE TABLE [dbo].[MemOptimizedTemporalTable]
(
 [BusinessDocNo] [bigint] NOT NULL,
 [ProductCode] [int] NOT NULL,
 [UnitID] [tinyint] NOT NULL,
 [PriceID] [tinyint] NOT NULL,
 [SysStartTime] [datetime2](7) GENERATED ALWAYS AS ROW START NOT NULL,
 [SysEndTime] [datetime2](7) GENERATED ALWAYS AS ROW END NOT NULL,
 PERIOD FOR SYSTEM_TIME ([SysStartTime], [SysEndTime]),

 CONSTRAINT [PK_MemOptimizedTemporalTable] PRIMARY KEY NONCLUSTERED
 (
 [BusinessDocNo] ASC,
 [ProductCode] ASC
)
)
WITH (
 MEMORY_OPTIMIZED = ON , DURABILITY = SCHEMA_AND_DATA, -- Memory Optimized Option ON
 SYSTEM_VERSIONING = ON (HISTORY_TABLE = [dbo].[MemOptimizedTemporalTable_History] ,
DATA_CONSISTENCY_CHECK = ON)
)

more informations

Create Memory Optimized Table

-- Create demo database
CREATE DATABASE SQL2016_Demo
 ON PRIMARY
(
 NAME = N'SQL2016_Demo',
 FILENAME = N'C:\Dump\SQL2016_Demo.mdf',
 SIZE = 5120KB,
 FILEGROWTH = 1024KB
)
 LOG ON
 (
 NAME = N'SQL2016_Demo_log',
 FILENAME = N'C:\Dump\SQL2016_Demo_log.ldf',
 SIZE = 1024KB,
 FILEGROWTH = 10%
)
GO

use SQL2016_Demo
go

-- Add Filegroup by MEMORY_OPTIMIZED_DATA type

http://www.riptutorial.com/ 127

ALTER DATABASE SQL2016_Demo
 ADD FILEGROUP MemFG CONTAINS MEMORY_OPTIMIZED_DATA
GO

--Add a file to defined filegroup
ALTER DATABASE SQL2016_Demo ADD FILE
 (
 NAME = MemFG_File1,
 FILENAME = N'C:\Dump\MemFG_File1' -- your file path, check directory exist before
executing this code
)
TO FILEGROUP MemFG
GO

--Object Explorer -- check database created
GO

-- create memory optimized table 1
CREATE TABLE dbo.MemOptTable1
(
 Column1 INT NOT NULL,
 Column2 NVARCHAR(4000) NULL,
 SpidFilter SMALLINT NOT NULL DEFAULT (@@spid),

 INDEX ix_SpidFiler NONCLUSTERED (SpidFilter),
 INDEX ix_SpidFilter HASH (SpidFilter) WITH (BUCKET_COUNT = 64),

 CONSTRAINT CHK_soSessionC_SpidFilter
 CHECK (SpidFilter = @@spid),
)
 WITH
 (MEMORY_OPTIMIZED = ON,
 DURABILITY = SCHEMA_AND_DATA); --or DURABILITY = SCHEMA_ONLY
go

-- create memory optimized table 2
CREATE TABLE MemOptTable2
(
 ID INT NOT NULL PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 10000),
 FullName NVARCHAR(200) NOT NULL,
 DateAdded DATETIME NOT NULL
) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA)
GO

Show created .dll files and tables for Memory Optimized Tables

SELECT
 OBJECT_ID('MemOptTable1') AS MemOptTable1_ObjectID,
 OBJECT_ID('MemOptTable2') AS MemOptTable2_ObjectID
GO

SELECT
 name,description
FROM sys.dm_os_loaded_modules
WHERE name LIKE '%XTP%'
GO

Show all Memory Optimized Tables:

http://www.riptutorial.com/ 128

SELECT
 name,type_desc,durability_desc,Is_memory_Optimized
FROM sys.tables
 WHERE Is_memory_Optimized = 1
GO

Memory-Optimized Table Types and Temp tables

For example, this is traditional tempdb-based table type:

CREATE TYPE dbo.testTableType AS TABLE
(
 col1 INT NOT NULL,
 col2 CHAR(10)
);

To memory-optimize this table type simply add the option memory_optimized=on, and add an index if
there is none on the original type:

CREATE TYPE dbo.testTableType AS TABLE
(
 col1 INT NOT NULL,
 col2 CHAR(10)
)WITH (MEMORY_OPTIMIZED=ON);

Global temporary table is like this:

CREATE TABLE ##tempGlobalTabel
(
 Col1 INT NOT NULL ,
 Col2 NVARCHAR(4000)
);

Memory-optimized global temporary table:

CREATE TABLE dbo.tempGlobalTabel
(
 Col1 INT NOT NULL INDEX ix NONCLUSTERED,
 Col2 NVARCHAR(4000)
)
 WITH
 (MEMORY_OPTIMIZED = ON,
 DURABILITY = SCHEMA_ONLY);

To memory-optimize global temp tables (##temp):

Create a new SCHEMA_ONLY memory-optimized table with the same schema as the global
##temp table

Ensure the new table has at least one index•

1.

Change all references to ##temp in your Transact-SQL statements to the new memory-
optimized table temp

2.

Replace the DROP TABLE ##temp statements in your code with DELETE FROM temp, to clean up the 3.

http://www.riptutorial.com/ 129

contents
Remove the CREATE TABLE ##temp statements from your code – these are now redundant4.

more informations

Declare Memory-Optimized Table Variables

For faster performance you can memory-optimize your table variable. Here is the T-SQL for a
traditional table variable:

DECLARE @tvp TABLE
(
 col1 INT NOT NULL ,
 Col2 CHAR(10)
);

To define memory-optimized variables, you must first create a memory-optimized table type and
then declare a variable from it:

CREATE TYPE dbo.memTypeTable
AS TABLE
(
 Col1 INT NOT NULL INDEX ix1,
 Col2 CHAR(10)
)
WITH
 (MEMORY_OPTIMIZED = ON);

Then we can use the table type like this:

DECLARE @tvp memTypeTable
insert INTO @tvp
values (1,'1'),(2,'2'),(3,'3'),(4,'4'),(5,'5'),(6,'6')

SELECT * FROM @tvp

Result:

Col1 Col2
1 1
2 2
3 3
4 4
5 5
6 6

Read In-Memory OLTP (Hekaton) online: http://www.riptutorial.com/sql-server/topic/5295/in-
memory-oltp--hekaton-

http://www.riptutorial.com/ 130

Chapter 44: Insert

Examples

Add a row to a table named Invoices

INSERT INTO Invoices [/* column names may go here */]
VALUES (123, '1234abc', '2016-08-05 20:18:25.770', 321, 5, '2016-08-04');

Column names are required if the table you are inserting into contains a column with the
IDENTITY attribute.

•

INSERT INTO Invoices ([ID], [Num], [DateTime], [Total], [Term], [DueDate])
VALUES (123, '1234abc', '2016-08-05 20:18:25.770', 321, 5, '2016-08-25');

Read Insert online: http://www.riptutorial.com/sql-server/topic/5323/insert

http://www.riptutorial.com/ 131

Chapter 45: INSERT INTO

Introduction

The INSERT INTO statement is used to insert new records in a table.

Examples

Use OUTPUT to get the new Id

When INSERTing, you can use OUTPUT INSERTED.ColumnName to get values from the newly inserted
row, for example the newly generated Id - useful if you have an IDENTITY column or any sort of
default or calculated value.

When programatically calling this (e.g., from ADO.net) you would treat it as a normal query and
read the values as if you would've made a SELECT-statement.

-- CREATE TABLE OutputTest ([Id] INT NOT NULL PRIMARY KEY IDENTITY, [Name] NVARCHAR(50))

INSERT INTO OutputTest ([Name])
OUTPUT INSERTED.[Id]
VALUES ('Testing')

If the ID of the recently added row is required inside the same set of query or stored procedure.

-- CREATE a table variable having column with the same datatype of the ID

DECLARE @LastId TABLE (id int);

INSERT INTO OutputTest ([Name])
OUTPUT INSERTED.[Id] INTO @LastId
VALUES ('Testing')

SELECT id FROM @LastId

-- We can set the value in a variable and use later in procedure

DECLARE @LatestId int = (SELECT id FROM @LastId)

INSERT from SELECT Query Results

To insert data retrieved from SQL query (single or multiple rows)

INSERT INTO Table_name (FirstName, LastName, Position)
SELECT FirstName, LastName, 'student' FROM Another_table_name

Note, 'student' in SELECT is a string constant that will be inserted in each row.

If required, you can select and insert data from/into the same table

http://www.riptutorial.com/ 132

INSERT Hello World INTO table

CREATE TABLE MyTableName
(
 Id INT,
 MyColumnName NVARCHAR(1000)
)
GO

INSERT INTO MyTableName (Id, MyColumnName)
VALUES (1, N'Hello World!')
GO

INSERT on specific columns

To do an insert on specific columns (as opposed to all of them) you must specify the columns you
want to update.

INSERT INTO USERS (FIRST_NAME, LAST_NAME)
VALUES ('Stephen', 'Jiang');

This will only work if the columns that you did not list are nullable, identity, timestamp data type or
computed columns; or columns that have a default value constraint. Therefore, if any of them are
non-nullable, non-identity, non-timestamp, non-computed, non-default valued columns...then
attempting this kind of insert will trigger an error message telling you that you have to provide a
value for the applicable field(s).

INSERT multiple rows of data

To insert multiple rows of data in SQL Server 2008 or later:

INSERT INTO USERS VALUES
(2, 'Michael', 'Blythe'),
(3, 'Linda', 'Mitchell'),
(4, 'Jillian', 'Carson'),
(5, 'Garrett', 'Vargas');

To insert multiple rows of data in earlier versions of SQL Server, use "UNION ALL" like so:

INSERT INTO USERS (FIRST_NAME, LAST_NAME)
SELECT 'James', 'Bond' UNION ALL
SELECT 'Miss', 'Moneypenny' UNION ALL
SELECT 'Raoul', 'Silva'

Note, the "INTO" keyword is optional in INSERT queries. Another warning is that SQL server only
supports 1000 rows in one INSERT so you have to split them in batches.

INSERT a single row of data

A single row of data can be inserted in two ways:

http://www.riptutorial.com/ 133

INSERT INTO USERS(Id, FirstName, LastName)
VALUES (1, 'Mike', 'Jones');

Or

INSERT INTO USERS
VALUES (1, 'Mike', 'Jones');

Note that the second insert statement only allows the values in exactly the same order as the table
columns whereas in the first insert, the order of the values can be changed like:

INSERT INTO USERS(FirstName, LastName, Id)
VALUES ('Mike', 'Jones', 1);

Read INSERT INTO online: http://www.riptutorial.com/sql-server/topic/3814/insert-into

http://www.riptutorial.com/ 134

Chapter 46: Installing SQL Server on
Windows

Examples

Introduction

These are the available editions of SQL Server, as told by the Editions Matrix:

Express: Entry-level free database. Includes core-RDBMS functionality. Limited to 10G of
disk size. Ideal for development and testing.

•

Standard Edition: Standard Licensed edition. Includes core functionality and Business
Intelligence capabilities.

•

Enterprise Edition: Full-featured SQL Server edition. Includes advanced security and data
warehousing capabilities.

•

Developer Edition: Includes all of the features from Enterprise Edition and no limitations, and
it is free to download and use for development purposes only.

•

After downloading/acquiring SQL Server, the installation gets executed with SQLSetup.exe, which
is available as a GUI or a command-line program.

Installing via either of these will require you to specify a product key and run some initial
configuration that includes enabling features, separate services and setting the initial parameters
for each of them. Additional services and features can be enabled at any time by running the
SQLSetup.exe program in either the command-line or the GUI version.

Read Installing SQL Server on Windows online: http://www.riptutorial.com/sql-
server/topic/5801/installing-sql-server-on-windows

http://www.riptutorial.com/ 135

Chapter 47: Isolation levels and locking

Remarks

I found this link - it's useful as a reference: "Isolation Levels"

Examples

Examples of setting the isolation level

Example of setting the isolation level:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
SELECT * FROM Products WHERE ProductId=1;
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ; --return to the default one

READ UNCOMMITTED - means that a query in the current transaction can't access the modified
data from another transaction that is not yet committed - no dirty reads! BUT, nonrepeatable
reads and phantom reads are possible, because data can still be modified by other
transactions.

1.

REPEATABLE READ - means that a query in the the current transaction can't access the modified
data from another transaction that is not yet committed - no dirty reads! No other
transactions can modify data being read by the current transaction until it is completed,
which eliminates NONREPEATABLE reads. BUT, if another transaction inserts NEW ROWS
and the query is executed more then once, phantom rows can appear starting the second
read (if it matches the where statement of the query).

2.

SNAPSHOT - only able to return data that exists at the beginning of the query. Ensures
consistency of the data. It prevents dirty reads, nonrepeatable reads and phantom reads. To
use that - DB configurationis required:

3.

ALTER DATABASE DBTestName SET ALLOW_SNAPSHOT_ISOLATION ON;GO;
SET TRANSACTION ISOLATION LEVEL SNAPSHOT;

READ COMMITTED - default isolation of the SQL server. It prevents reading the data that is
changed by another transaction until committed. It uses shared locking and row versioning
on the tables which prevents dirty reads. It depends on DB configuration
READ_COMMITTED_SNAPSHOT - if enabled - row versioning is used. to enable - use this:

4.

ALTER DATABASE DBTestName SET ALLOW_SNAPSHOT_ISOLATION ON;GO;
SET TRANSACTION ISOLATION LEVEL READ COMMITTED; --return to the default one

SERIALIZABLE - uses physical locks that are acquired and held until end of the transaction,
which prevents dirty reads, phantom reads, nonrepeatable reads. BUT, it impacts on the
performance of the DataBase, because the concurrent transactions are serialized and are

5.

http://www.riptutorial.com/ 136

being executed one by one.

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE ;

Read Isolation levels and locking online: http://www.riptutorial.com/sql-server/topic/5331/isolation-
levels-and-locking

http://www.riptutorial.com/ 137

Chapter 48: Join

Introduction

In Structured Query Language (SQL), a JOIN is a method of linking two data tables in a single
query, allowing the database to return a set that contains data from both tables at once, or using
data from one table to be used as a Filter on the second table. There are several types of JOINs
defined within the ANSI SQL standard.

Examples

Accidentally turning an outer join into an inner join

Outer joins return all the rows from one or both tables, plus matching rows.

Table People
PersonID FirstName
 1 Alice
 2 Bob
 3 Eve

Table Scores
PersonID Subject Score
 1 Math 100
 2 Math 54
 2 Science 98

Left joining the tables:

Select * from People a
left join Scores b
on a.PersonID = b.PersonID

Returns:

PersonID FirstName PersonID Subject Score
 1 Alice 1 Math 100
 2 Bob 2 Math 54
 2 Bob 2 Science 98
 3 Eve NULL NULL NULL

If you wanted to return all the people, with any applicable math scores, a common mistake is to
write:

Select * from People a
left join Scores b
on a.PersonID = b.PersonID
where Subject = 'Math'

http://www.riptutorial.com/ 138

This would remove Eve from your results, in addition to removing Bob's science score, as Subject
is NULL for her.

The correct syntax to remove non-Math records while retaining all individuals in the People table
would be:

Select * from People a
left join Scores b
on a.PersonID = b.PersonID
and b.Subject = 'Math'

Delete using Join

Joins can also be used in a DELETE statement. Given a schema as follows:

CREATE TABLE Users (
 UserId int NOT NULL,
 AccountId int NOT NULL,
 RealName nvarchar(200) NOT NULL
)

CREATE TABLE Preferences (
 UserId int NOT NULL,
 SomeSetting bit NOT NULL
)

We can delete rows from the Preferences table, filtering by a predicate on the Users table as
follows:

DELETE p
FROM Users u
INNER JOIN Preferences p ON u.UserId = p.UserId
WHERE u.AccountId = 1234

Here p is an alias for Preferences defined in the FROM clause of the statement and we only delete
rows that have a matching AccountId from the Users table.

Self Join

A table can be joined onto itself in what is known as a self join, combining records in the table with
other records in the same table. Self joins are typically used in queries where a hierarchy in the
table's columns is defined.

Consider the sample data in a table called Employees:

ID Name Boss_ID

1 Bob 3

2 Jim 1

http://www.riptutorial.com/ 139

ID Name Boss_ID

3 Sam 2

Each employee's Boss_ID maps to another employee's ID. To retrieve a list of employees with their
respective boss' name, the table can be joined on itself using this mapping. Note that joining a
table in this manner requires the use of an alias (Bosses in this case) on the second reference to
the table to distinguish itself from the original table.

SELECT Employees.Name,
 Bosses.Name AS Boss
FROM Employees
INNER JOIN Employees AS Bosses
 ON Employees.Boss_ID = Bosses.ID

Executing this query will output the following results:

Name Boss

Bob Sam

Jim Bob

Sam Jim

Inner Join

Inner join returns only those records/rows that match/exists in both the tables based on one or
more conditions (specified using ON keyword). It is the most common type of join. The general
syntax for inner join is:

SELECT *
FROM table_1
INNER JOIN table_2
 ON table_1.column_name = table_2.column_name

It can also be simplified as just JOIN:

SELECT *
FROM table_1
JOIN table_2
 ON table_1.column_name = table_2.column_name

Example

/* Sample data. */
DECLARE @Animal table (
 AnimalId Int IDENTITY,
 Animal Varchar(20)
);

http://www.riptutorial.com/ 140

DECLARE @AnimalSound table (
 AnimalSoundId Int IDENTITY,
 AnimalId Int,
 Sound Varchar(20)
);

INSERT INTO @Animal (Animal) VALUES ('Dog');
INSERT INTO @Animal (Animal) VALUES ('Cat');
INSERT INTO @Animal (Animal) VALUES ('Elephant');

INSERT INTO @AnimalSound (AnimalId, Sound) VALUES (1, 'Barks');
INSERT INTO @AnimalSound (AnimalId, Sound) VALUES (2, 'Meows');
INSERT INTO @AnimalSound (AnimalId, Sound) VALUES (3, 'Trumpets');
/* Sample data prepared. */

SELECT
 *
FROM
 @Animal
 JOIN @AnimalSound
 ON @Animal.AnimalId = @AnimalSound.AnimalId;

AnimalId Animal AnimalSoundId AnimalId Sound
----------- -------------------- ------------- ----------- --------------------
1 Dog 1 1 Barks
2 Cat 2 2 Meows
3 Elephant 3 3 Trumpets

Using inner join with left outer join (Substitute for Not exists)

This query will return data from table 1 where fields matching with table2 with a key and data not
in Table 1 when comparing with Table2 with a condition and key

select *
 from Table1 t1
 inner join Table2 t2 on t1.ID_Column = t2.ID_Column
 left join Table3 t3 on t1.ID_Column = t3.ID_Column
 where t2.column_name = column_value
 and t3.ID_Column is null
 order by t1.column_name;

Cross Join

A cross join is a Cartesian join, meaning a Cartesian product of both the tables. This join does not
need any condition to join two tables. Each row in the left table will join to each row of the right
table. Syntax for a cross join:

SELECT * FROM table_1
CROSS JOIN table_2

Example:

/* Sample data. */

http://www.riptutorial.com/ 141

DECLARE @Animal table (
 AnimalId Int IDENTITY,
 Animal Varchar(20)
);

DECLARE @AnimalSound table (
 AnimalSoundId Int IDENTITY,
 AnimalId Int,
 Sound Varchar(20)
);

INSERT INTO @Animal (Animal) VALUES ('Dog');
INSERT INTO @Animal (Animal) VALUES ('Cat');
INSERT INTO @Animal (Animal) VALUES ('Elephant');

INSERT INTO @AnimalSound (AnimalId, Sound) VALUES (1, 'Barks');
INSERT INTO @AnimalSound (AnimalId, Sound) VALUES (2, 'Meows');
INSERT INTO @AnimalSound (AnimalId, Sound) VALUES (3, 'Trumpet');
/* Sample data prepared. */

SELECT
 *
FROM
 @Animal
 CROSS JOIN @AnimalSound;

Results:

AnimalId Animal AnimalSoundId AnimalId Sound
----------- -------------------- ------------- ----------- --------------------
1 Dog 1 1 Barks
2 Cat 1 1 Barks
3 Elephant 1 1 Barks
1 Dog 2 2 Meows
2 Cat 2 2 Meows
3 Elephant 2 2 Meows
1 Dog 3 3 Trumpet
2 Cat 3 3 Trumpet
3 Elephant 3 3 Trumpet

Note that there are other ways that a CROSS JOIN can be applied. This is a an "old style" join
(deprecated since ANSI SQL-92) with no condition, which results in a cross/Cartesian join:

SELECT *
FROM @Animal, @AnimalSound;

This syntax also works due to an "always true" join condition, but is not recommended and should
be avoided, in favor of explicit CROSS JOIN syntax, for the sake of readability.

SELECT *
FROM
 @Animal
 JOIN @AnimalSound
 ON 1=1

http://www.riptutorial.com/ 142

Outer Join

Left Outer Join

LEFT JOIN returns all rows from the left table, matched to rows from the right table where the ON
clause conditions are met. Rows in which the ON clause is not met have NULL in all of the right
table's columns. The syntax of a LEFT JOIN is:

SELECT * FROM table_1 AS t1
LEFT JOIN table_2 AS t2 ON t1.ID_Column = t2.ID_Column

Right Outer Join

RIGHT JOIN returns all rows from the right table, matched to rows from the left table where the ON
clause conditions are met. Rows in which the ON clause is not met have NULL in all of the left table's
columns. The syntax of a RIGHT JOIN is:

SELECT * FROM table_1 AS t1
RIGHT JOIN table_2 AS t2 ON t1.ID_Column = t2.ID_Column

Full Outer Join

FULL JOIN combines LEFT JOIN and RIGHT JOIN. All rows are returned from both tables, regardless of
whether the conditions in the ON clause are met. Rows that do not satisfy the ON clause are
returned with NULL in all of the opposite table's columns (that is, for a row in the left table, all
columns in the right table will contain NULL, and vice versa). The syntax of a FULL JOIN is:

SELECT * FROM table_1 AS t1
FULL JOIN table_2 AS t2 ON t1.ID_Column = t2.ID_Column

Examples

/* Sample test data. */
DECLARE @Animal table (
 AnimalId Int IDENTITY,
 Animal Varchar(20)
);

DECLARE @AnimalSound table (
 AnimalSoundId Int IDENTITY,
 AnimalId Int,
 Sound Varchar(20)
);

INSERT INTO @Animal (Animal) VALUES ('Dog');
INSERT INTO @Animal (Animal) VALUES ('Cat');
INSERT INTO @Animal (Animal) VALUES ('Elephant');
INSERT INTO @Animal (Animal) VALUES ('Frog');

INSERT INTO @AnimalSound (AnimalId, Sound) VALUES (1, 'Barks');
INSERT INTO @AnimalSound (AnimalId, Sound) VALUES (2, 'Meows');
INSERT INTO @AnimalSound (AnimalId, Sound) VALUES (3, 'Trumpet');

http://www.riptutorial.com/ 143

INSERT INTO @AnimalSound (AnimalId, Sound) VALUES (5, 'Roars');
/* Sample data prepared. */

LEFT OUTER JOIN

SELECT *
FROM @Animal As t1
LEFT JOIN @AnimalSound As t2 ON t1.AnimalId = t2.AnimalId;

Results for LEFT JOIN

AnimalId Animal AnimalSoundId AnimalId Sound
----------- -------------------- ------------- ----------- --------------------
1 Dog 1 1 Barks
2 Cat 2 2 Meows
3 Elephant 3 3 Trumpet
4 Frog NULL NULL NULL

RIGHT OUTER JOIN

SELECT *
FROM @Animal As t1
RIGHT JOIN @AnimalSound As t2 ON t1.AnimalId = t2.AnimalId;

Results for RIGHT JOIN

AnimalId Animal AnimalSoundId AnimalId Sound
----------- -------------------- ------------- ----------- --------------------
1 Dog 1 1 Barks
2 Cat 2 2 Meows
3 Elephant 3 3 Trumpet
NULL NULL 4 5 Roars

FULL OUTER JOIN

SELECT *
FROM @Animal As t1
FULL JOIN @AnimalSound As t2 ON t1.AnimalId = t2.AnimalId;

Results for FULL JOIN

AnimalId Animal AnimalSoundId AnimalId Sound
----------- -------------------- ------------- ----------- --------------------
1 Dog 1 1 Barks
2 Cat 2 2 Meows
3 Elephant 3 3 Trumpet
4 Frog NULL NULL NULL
NULL NULL 4 5 Roars

Using Join in an Update

Joins can also be used in an UPDATE statement:

http://www.riptutorial.com/ 144

CREATE TABLE Users (
 UserId int NOT NULL,
 AccountId int NOT NULL,
 RealName nvarchar(200) NOT NULL
)

CREATE TABLE Preferences (
 UserId int NOT NULL,
 SomeSetting bit NOT NULL
)

Update the SomeSetting column of the Preferences table filtering by a predicate on the Users table as
follows:

UPDATE p
SET p.SomeSetting = 1
FROM Users u
JOIN Preferences p ON u.UserId = p.UserId
WHERE u.AccountId = 1234

p is an alias for Preferences defined in the FROM clause of the statement. Only rows with a matching
AccountId from the Users table will be updated.

Update with left outer join statements

Update t
SET t.Column1=100
FROM Table1 t LEFT JOIN Table12 t2
ON t2.ID=t.ID

Update tables with inner join and aggregate function

UPDATE t1
SET t1.field1 = t2.field2Sum
FROM table1 t1
INNER JOIN (select field3, sum(field2) as field2Sum
from table2
group by field3) as t2
on t2.field3 = t1.field3

Join on a Subquery

Joining on a subquery is often used when you want to get aggregate data (such as Count, Avg,
Max, or Min) from a child/details table and display that along with records from the parent/header
table. For example, you may want to retrieve the top/first child row based on Date or Id or maybe
you want a Count of all Child Rows or an Average.

This example uses aliases which makes queries easier to read when you have multiple tables
involved. In this case we are retrieving all rows from the parent table Purchase Orders and
retrieving only the last (or most recent) child row from the child table PurchaseOrderLineItems.
This example assumes the child table uses incremental numeric Id's.

http://www.riptutorial.com/ 145

SELECT po.Id, po.PODate, po.VendorName, po.Status, item.ItemNo,
 item.Description, item.Cost, item.Price
FROM PurchaseOrders po
LEFT JOIN
 (
 SELECT l.PurchaseOrderId, l.ItemNo, l.Description, l.Cost, l.Price, Max(l.id) as Id
 FROM PurchaseOrderLineItems l
 GROUP BY l.PurchaseOrderId, l.ItemNo, l.Description, l.Cost, l.Price
) AS item ON item.PurchaseOrderId = po.Id

Read Join online: http://www.riptutorial.com/sql-server/topic/1008/join

http://www.riptutorial.com/ 146

Chapter 49: JSON in Sql Server

Syntax

JSON_VALUE(expression , path) -- extract a scalar value from a JSON string.•
JSON_QUERY(expression [, path]) -- Extracts an object or an array from a JSON string.•
OPENJSON(jsonExpression [, path]) -- table-value function that parses JSON text and
returns objects and properties in JSON as rows and columns.

•

ISJSON(expression) -- Tests whether a string contains valid JSON.•
JSON_MODIFY(expression , path , newValue) -- Updates the value of a property in a
JSON string and returns the updated JSON string.

•

Parameters

Parameters Details

expression Typically the name of a variable or a column that contains JSON text.

path
A JSON path expression that specifies the property to update. path has the
following syntax: [append] [lax | strict] $.<json path>

jsonExpression Is a Unicode character expression containing the JSON text.

Remarks

The OPENJSON function is only available under compatibility level 130. If your database
compatibility level is lower than 130, SQL Server will not be able to find and execute OPENJSON
function. Currently all Azure SQL databases are set to 120 by default. You can change the
compatibility level of a database using the following command:

ALTER DATABASE <Database-Name-Here> SET COMPATIBILITY_LEVEL = 130

Examples

Format Query Results as JSON with FOR JSON

Input table data (People table)

Id Name Age

1 John 23

2 Jane 31

http://www.riptutorial.com/ 147

Query

SELECT Id, Name, Age
FROM People
FOR JSON PATH

Result

[
 {"Id":1,"Name":"John","Age":23},
 {"Id":2,"Name":"Jane","Age":31}
]

Parse JSON text

JSON_VALUE and JSON_QUERY functions parse JSON text and return scalar values or
objects/arrays on the path in JSON text.

DECLARE @json NVARCHAR(100) = '{"id": 1, "user":{"name":"John"}, "skills":["C#","SQL"]}'

SELECT
 JSON_VALUE(@json, '$.id') AS Id,
 JSON_VALUE(@json, '$.user.name') AS Name,
 JSON_QUERY(@json, '$.user') AS UserObject,
 JSON_QUERY(@json, '$.skills') AS Skills,
 JSON_VALUE(@json, '$.skills[0]') AS Skill0

Result

Id Name UserObject Skills Skill0

1 John {"name":"John"} ["C#","SQL"] C#

Join parent and child JSON entities using CROSS APPLY OPENJSON

Join parent objects with their child entities, for example we want a relational table of each person
and their hobbies

DECLARE @json nvarchar(1000) =
N'[
 {
 "id":1,
 "user":{"name":"John"},
 "hobbies":[
 {"name": "Reading"},
 {"name": "Surfing"}
]
 },
 {
 "id":2,
 "user":{"name":"Jane"},
 "hobbies":[

http://www.riptutorial.com/ 148

 {"name": "Programming"},
 {"name": "Running"}
]
 }
]'

Query

SELECT
 JSON_VALUE(person.value, '$.id') as Id,
 JSON_VALUE(person.value, '$.user.name') as PersonName,
 JSON_VALUE(hobbies.value, '$.name') as Hobby
FROM OPENJSON (@json) as person
 CROSS APPLY OPENJSON(person.value, '$.hobbies') as hobbies

Alternatively this query can be written using the WITH clause.

SELECT
 Id, person.PersonName, Hobby
FROM OPENJSON (@json)
WITH(
 Id int '$.id',
 PersonName nvarchar(100) '$.user.name',
 Hobbies nvarchar(max) '$.hobbies' AS JSON
) as person
CROSS APPLY OPENJSON(Hobbies)
WITH(
 Hobby nvarchar(100) '$.name'
)

Result

Id PersonName Hobby

1 John Reading

1 John Surfing

2 Jane Programming

2 Jane Running

Index on JSON properties by using computed columns

When storing JSON documents in SQL Server, We need to be able to efficiently filter and sort
query results on properties of the JSON documents.

CREATE TABLE JsonTable
(
 id int identity primary key,
 jsonInfo nvarchar(max),
 CONSTRAINT [Content should be formatted as JSON]
 CHECK (ISJSON(jsonInfo)>0)

http://www.riptutorial.com/ 149

)

INSERT INTO JsonTable
VALUES(N'{"Name":"John","Age":23}'),
(N'{"Name":"Jane","Age":31}'),
(N'{"Name":"Bob","Age":37}'),
(N'{"Name":"Adam","Age":65}')
GO

Given the above table If we want to find the row with the name = 'Adam', we would execute the
following query.

SELECT *
FROM JsonTable Where
JSON_VALUE(jsonInfo, '$.Name') = 'Adam'

However this will require SQL server to perform a full table which on a large table is not efficent.

To speed this up we would like to add an index, however we cannot directly reference properties
in the JSON document. The solution is to add a computed column on the JSON path $.Name, then
add an index on the computed column.

ALTER TABLE JsonTable
ADD vName as JSON_VALUE(jsonInfo, '$.Name')

CREATE INDEX idx_name
ON JsonTable(vName)

Now when we execute the same query, instead of a full table scan SQL server uses an index to
seek into the non-clustered index and find the rows that satisfy the specified conditions.

Note: For SQL server to use the index, you must create the computed column with the same
expression that you plan to use in your queries - in this example JSON_VALUE(jsonInfo, '$.Name'),
however you can also use the name of computed column vName

Format one table row as a single JSON object using FOR JSON

WITHOUT_ARRAY_WRAPPER option in FOR JSON clause will remove array brackets from the
JSON output. This is useful if you are returning single row in the query.

Note: this option will produce invalid JSON output if more than one row is returned.

Input table data (People table)

Id Name Age

1 John 23

2 Jane 31

http://www.riptutorial.com/ 150

Query

SELECT Id, Name, Age
FROM People
WHERE Id = 1
FOR JSON PATH, WITHOUT_ARRAY_WRAPPER

Result

{"Id":1,"Name":"John","Age":23}

Parse JSON text using OPENJSON function

OPENJSON function parses JSON text and returns multiple outputs. Values that should be
returned are specified using the paths defined in the WITH clause. If a path is not specified for
some column, the column name is used as a path. This function casts returned values to the SQL
types defined in the WITH clause. AS JSON option must be specified in the column definition if
some object/array should be returned.

DECLARE @json NVARCHAR(100) = '{"id": 1, "user":{"name":"John"}, "skills":["C#","SQL"]}'

SELECT *
FROM OPENJSON (@json)
 WITH(Id int '$.id',
 Name nvarchar(100) '$.user.name',
 UserObject nvarchar(max) '$.user' AS JSON,
 Skills nvarchar(max) '$.skills' AS JSON,
 Skill0 nvarchar(20) '$.skills[0]')

Result

Id Name UserObject Skills Skill0

1 John {"name":"John"} ["C#","SQL"] C#

Read JSON in Sql Server online: http://www.riptutorial.com/sql-server/topic/2568/json-in-sql-server

http://www.riptutorial.com/ 151

Chapter 50: Last Inserted Identity

Examples

SCOPE_IDENTITY()

CREATE TABLE dbo.logging_table(log_id INT IDENTITY(1,1) PRIMARY KEY,
 log_message VARCHAR(255))

CREATE TABLE dbo.person(person_id INT IDENTITY(1,1) PRIMARY KEY,
 person_name VARCHAR(100) NOT NULL)
GO;

CREATE TRIGGER dbo.InsertToADifferentTable ON dbo.person
AFTER INSERT
AS
 INSERT INTO dbo.logging_table(log_message)
 VALUES('Someone added something to the person table')
GO;

INSERT INTO dbo.person(person_name)
VALUES('John Doe')

SELECT SCOPE_IDENTITY();

This will return the most recently added identity value produced on the same connection, within
the current scope. In this case, 1, for the first row in the dbo.person table.

@@IDENTITY

CREATE TABLE dbo.logging_table(log_id INT IDENTITY(1,1) PRIMARY KEY,
 log_message VARCHAR(255))

CREATE TABLE dbo.person(person_id INT IDENTITY(1,1) PRIMARY KEY,
 person_name VARCHAR(100) NOT NULL)
GO;

CREATE TRIGGER dbo.InsertToADifferentTable ON dbo.person
AFTER INSERT
AS
 INSERT INTO dbo.logging_table(log_message)
 VALUES('Someone added something to the person table')
GO;

INSERT INTO dbo.person(person_name)
VALUES('John Doe')

SELECT @@IDENTITY;

This will return the most recently-added identity on the same connection, regardless of scope. In
this case, whatever the current value of the identity column on logging_table is, assuming no other
activity is occurring on the instance of SQL Server and no other triggers fire from this insert.

http://www.riptutorial.com/ 152

IDENT_CURRENT('tablename')

SELECT IDENT_CURRENT('dbo.person');

This will select the most recently-added identity value on the selected table, regardless of
connection or scope.

@@IDENTITY and MAX(ID)

SELECT MAX(Id) FROM Employees -- Display the value of Id in the last row in Employees table.
GO
INSERT INTO Employees (FName, LName, PhoneNumber) -- Insert a new row
VALUES ('John', 'Smith', '25558696525')
GO
SELECT @@IDENTITY
GO
SELECT MAX(Id) FROM Employees -- Display the value of Id of the newly inserted row.
GO

The last two SELECT statements values are the same.

Read Last Inserted Identity online: http://www.riptutorial.com/sql-server/topic/5674/last-inserted-
identity

http://www.riptutorial.com/ 153

Chapter 51: Limit Result Set

Introduction

As database tables grow, it's often useful to limit the results of queries to a fixed number or
percentage. This can be achieved using SQL Server's TOP keyword or OFFSET FETCH clause.

Parameters

Parameter Details

TOP Limiting keyword. Use with a number.

PERCENT Percentage keyword. Comes after TOP and limiting number.

Remarks

If ORDER BY clause is used, limiting applies to the ordered result set.

Examples

Limiting With TOP

This example limits SELECT result to 100 rows.

SELECT TOP 100 *
FROM table_name;

It is also possible to use a variable to specify the number of rows:

DECLARE @CountDesiredRows int = 100;
SELECT TOP (@CountDesiredRows) *
FROM table_name;

Limiting With PERCENT

This example limits SELECT result to 15 percentage of total row count.

SELECT TOP 15 PERCENT *
FROM table_name

Limiting with FETCH

SQL Server 2012

http://www.riptutorial.com/ 154

FETCH is generally more useful for pagination, but can be used as an alternative to TOP:

SELECT *
FROM table_name
ORDER BY 1
OFFSET 0 ROWS
FETCH NEXT 50 ROWS ONLY

Read Limit Result Set online: http://www.riptutorial.com/sql-server/topic/1555/limit-result-set

http://www.riptutorial.com/ 155

Chapter 52: Logical Functions

Examples

CHOOSE

SQL Server 2012

Returns the item at the specified index from a list of values. If index exceeds the bounds of values
then NULL is returned.

Parameters:

index: integer, index to item in values. 1-based.1.
values: any type, comma separated list2.

SELECT CHOOSE (1, 'apples', 'pears', 'oranges', 'bananas') AS chosen_result

chosen_result

apples

IIF

SQL Server 2012

Returns one of two values, depending on whether a given Boolean expression evaluates to true or
false.

Parameters:

boolean_expression evaluated to dtermine what value to return1.
true_value returned if boolean_expression evaluates to true2.
false_value returned if boolean_expression evaluates to false3.

SELECT IIF (42 > 23, 'I knew that!', 'That is not true.') AS iif_result

iif_result

I knew that!

SQL Server 2012

IIF may be replaced by a CASE statement. The above example my be written as

SELECT CASE WHEN 42 > 23 THEN 'I knew that!' ELSE 'That is not true.' END AS iif_result

iif_result

http://www.riptutorial.com/ 156

I knew that!

Read Logical Functions online: http://www.riptutorial.com/sql-server/topic/10647/logical-functions

http://www.riptutorial.com/ 157

Chapter 53: Managing Azure SQL Database

Examples

Find service tier information for Azure SQL Database

Azure SQL Database has different editions and performance tiers.

You can find version, edition (basic, standard, or premium), and service objective (S0,S1,P4,P11,
etc.) of SQL Database that is running as a service in Azure using the following statements:

select @@version
SELECT DATABASEPROPERTYEX('Wwi', 'EDITION')
SELECT DATABASEPROPERTYEX('Wwi', 'ServiceObjective')

Change service tier of Azure SQL Database

You can scale-up or scale-down Azure SQL database using ALTER DATABASE statement:

ALTER DATABASE WWI
MODIFY (SERVICE_OBJECTIVE = 'P6')
-- or
ALTER DATABASE CURRENT
MODIFY (SERVICE_OBJECTIVE = 'P2')

If you try to change service level while changing service level of the current database is still in
progress you wil get the following error:

Msg 40802, Level 16, State 1, Line 1 A service objective assignment on server '......'
and database '.......' is already in progress. Please wait until the service objective
assignment state for the database is marked as 'Completed'.

Re-run your ALTER DATABASE statement when transition period finishes.

Replication of Azure SQL Database

You can create a secondary replica of database with the same name on another Azure SQL
Server, making the local database primary, and begins asynchronously replicating data from the
primary to the new secondary.

ALTER DATABASE <<mydb>>
ADD SECONDARY ON SERVER <<secondaryserver>>
WITH (ALLOW_CONNECTIONS = ALL)

Target server may be in another data center (usable for geo-replication). If a database with the
same name already exists on the target server, the command will fail. The command is executed
on the master database on the server hosting the local database that will become the primary.

http://www.riptutorial.com/ 158

When ALLOW_CONNECTIONS is set to ALL (it is set to NO by default), secondary replica will be
a read-only database that will allow all logins with the appropriate permissions to connect.

Secondary database replica might be promoted to primary using the following command:

ALTER DATABASE mydb FAILOVER

You can remove the secondary database on secondary server:

ALTER DATABASE <<mydb>>
REMOVE SECONDARY ON SERVER <<testsecondaryserver>>

Create Azure SQL Database in Elastic pool

You can put your azure SQL Database in SQL elastic pool:

CREATE DATABASE wwi
(SERVICE_OBJECTIVE = ELASTIC_POOL (name = mypool1))

You can create copy of an existing database and place it in some elastic pool:

CREATE DATABASE wwi
AS COPY OF myserver.WideWorldImporters
(SERVICE_OBJECTIVE = ELASTIC_POOL (name = mypool1))

Read Managing Azure SQL Database online: http://www.riptutorial.com/sql-
server/topic/7113/managing-azure-sql-database

http://www.riptutorial.com/ 159

Chapter 54: MERGE

Introduction

Starting with SQL Server 2008, it is possible to perform insert, update, or delete operations in a
single statement using the MERGE statement.

The MERGE statement allows you to join a data source with a target table or view, and then
perform multiple actions against the target based on the results of that join.

Syntax

As per MSDN - https://msdn.microsoft.com/en-us/library/bb510625.aspx [WITH
<common_table_expression> [,...n]] MERGE [TOP (expression) [PERCENT]] [INTO]
<target_table> [WITH (<merge_hint>)] [[AS] table_alias] USING <table_source> ON
<merge_search_condition> [WHEN MATCHED [AND <clause_search_condition>] THEN
<merge_matched>] [...n] [WHEN NOT MATCHED [BY TARGET] [AND
<clause_search_condition>] THEN <merge_not_matched>] [WHEN NOT MATCHED BY
SOURCE [AND <clause_search_condition>] THEN <merge_matched>] [...n] [
<output_clause>] [OPTION (<query_hint> [,...n])] ; <target_table> ::= { [database_name
. schema_name . | schema_name .] target_table } <merge_hint>::= { { [<table_hint_limited>
[,...n]] [[,] INDEX (index_val [,...n])] } } <table_source> ::= { table_or_view_name [[AS
] table_alias] [<tablesample_clause>] [WITH (table_hint [[,]...n])] | rowset_function [[
AS] table_alias] [(bulk_column_alias [,...n])] | user_defined_function [[AS] table_alias]
| OPENXML <openxml_clause> | derived_table [AS] table_alias [(column_alias [,...n])] |
<joined_table> | <pivoted_table> | <unpivoted_table> } <merge_search_condition> ::=
<search_condition> <merge_matched>::= { UPDATE SET <set_clause> | DELETE }
<set_clause>::= SET { column_name = { expression | DEFAULT | NULL } | {
udt_column_name.{ { property_name = expression | field_name = expression } |
method_name (argument [,...n]) } } | column_name { .WRITE (expression , @Offset ,
@Length) } | @variable = expression | @variable = column = expression | column_name {
+= | -= | *= | /= | %= | &= | ^= | |= } expression | @variable { += | -= | *= | /= | %= | &= | ^= | |= }
expression | @variable = column { += | -= | *= | /= | %= | &= | ^= | |= } expression } [,...n]
<merge_not_matched>::= { INSERT [(column_list)] { VALUES (values_list) | DEFAULT
VALUES } } <clause_search_condition> ::= <search_condition> ::= { [NOT] | (
<search_condition>) } [{ AND | OR } [NOT] { | (<search_condition>) }] [,...n] ::= {
expression { = | < > | ! = |

| > = | ! > | < | < = | ! < } expression | string_expression [NOT] LIKE
string_expression [ESCAPE 'escape_character'] | expression [NOT]
BETWEEN expression AND expression | expression IS [NOT] NULL |
CONTAINS ({ column | * } , '< contains_search_condition >') | FREETEXT ({
column | * } , 'freetext_string') | expression [NOT] IN (subquery | expression [
,...n]) | expression { = | < > | ! = | | > = | ! > | < | < = | ! < } { ALL | SOME | ANY} (
subquery) | EXISTS (subquery) } <output_clause>::= { [OUTPUT

•

http://www.riptutorial.com/ 160

<dml_select_list> INTO { @table_variable | output_table } [(column_list)]] [
OUTPUT <dml_select_list>] } <dml_select_list>::= { <column_name> |
scalar_expression } [[AS] column_alias_identifier] [,...n] <column_name> ::= {
DELETED | INSERTED | from_table_name } . { * | column_name } | $action

Remarks

Performs insert, update, or delete operations on a target table based on the results of a join with a
source table. For example, you can synchronize two tables by inserting, updating, or deleting rows
in one table based on differences found in the other table.

Examples

MERGE to Insert / Update / Delete

MERGE INTO targetTable

USING sourceTable
ON (targetTable.PKID = sourceTable.PKID)

WHEN MATCHED AND (targetTable.PKID > 100) THEN
 DELETE

WHEN MATCHED AND (targetTable.PKID <= 100) THEN
 UPDATE SET
 targetTable.ColumnA = sourceTable.ColumnA,
 targetTable.ColumnB = sourceTable.ColumnB

WHEN NOT MATCHED THEN
 INSERT (ColumnA, ColumnB) VALUES (sourceTable.ColumnA, sourceTable.ColumnB);

WHEN NOT MATCHED BY SOURCE THEN
 DELETE
; --< Required

Description:

MERGE INTO targetTable - table to be modified•
USING sourceTable - source of data (can be table or view or table valued function)•
ON ... - join condition between targetTable and sourceTable.•
WHEN MATCHED - actions to take when a match is found•

AND (targetTable.PKID > 100) - additional condition(s) that must be satisfied in order for
the action to be taken

○•

THEN DELETE - delete matched record from the targetTable•
THEN UPDATE - update columns of matched record specified by SET•
WHEN NOT MATCHED - actions to take when match is not found in targetTable•
WHEN NOT MATCHED BY SOURCE - actions to take when match is not found in sourceTable•

Comments:

http://www.riptutorial.com/ 161

If a specific action is not needed then omit the condition e.g. removing WHEN NOT MATCHED THEN
INSERT will prevent records from being inserted

Merge statement requires a terminating semicolon.

Restrictions:

WHEN MATCHED does not allow INSERT action•
UPDATE action can update a row only once. This implies that the join condition must produce
unique matches.

•

Merge Using CTE Source

WITH SourceTableCTE AS
(
 SELECT * FROM SourceTable
)
MERGE
 TargetTable AS target
USING SourceTableCTE AS source
ON (target.PKID = source.PKID)
WHEN MATCHED THEN
 UPDATE SET target.ColumnA = source.ColumnA
WHEN NOT MATCHED THEN
 INSERT (ColumnA) VALUES (Source.ColumnA);

MERGE using Derived Source Table

MERGE INTO TargetTable AS Target
USING (VALUES (1,'Value1'), (2, 'Value2'), (3,'Value3'))
 AS Source (PKID, ColumnA)
ON Target.PKID = Source.PKID
WHEN MATCHED THEN
 UPDATE SET target.ColumnA= source.ColumnA
WHEN NOT MATCHED THEN
 INSERT (PKID, ColumnA) VALUES (Source.PKID, Source.ColumnA);

Merge Example - Synchronize Source And Target Table

To Illustrate the MERGE Statement, consider the following two tables -

dbo.Product : This table contains information about the product that company is currently
selling

1.

dbo.ProductNew: This table contains information about the product that the company will
sell in the future.

2.

The following T-SQL will create and populate these two tables

IF OBJECT_id(N'dbo.Product',N'U') IS NOT NULL
DROP TABLE dbo.Product
GO

http://www.riptutorial.com/ 162

CREATE TABLE dbo.Product (
ProductID INT PRIMARY KEY,
ProductName NVARCHAR(64),
PRICE MONEY
)

IF OBJECT_id(N'dbo.ProductNew',N'U') IS NOT NULL
DROP TABLE dbo.ProductNew
GO

CREATE TABLE dbo.ProductNew (
ProductID INT PRIMARY KEY,
ProductName NVARCHAR(64),
PRICE MONEY
)

INSERT INTO dbo.Product VALUES(1,'IPod',300)
,(2,'IPhone',400)
,(3,'ChromeCast',100)
,(4,'raspberry pi',50)

INSERT INTO dbo.ProductNew VALUES(1,'Asus Notebook',300)
,(2,'Hp Notebook',400)
,(3,'Dell Notebook',100)
,(4,'raspberry pi',50)

Now, Suppose we want to synchoronize the dbo.Product Target Table with the dbo.ProductNew
table. Here is the criterion for this task:

Product that exist in both the dbo.ProductNew source table and the dbo.Product target table
are updated in the dbo.Product target table with new new Products.

1.

Any product in the dbo.ProductNew source table that do not exist in the dob.Product target
table are inserted into the dbo.Product target table.

2.

Any Product in the dbo.Product target table that do not exist in the dbo.ProductNew source
table must be deleted from the dbo.Product target table. Here is the MERGE statement to
perform this task.

3.

MERGE dbo.Product AS SourceTbl
USING dbo.ProductNew AS TargetTbl ON (SourceTbl.ProductID = TargetTbl.ProductID)
WHEN MATCHED
 AND SourceTbl.ProductName <> TargetTbl.ProductName
 OR SourceTbl.Price <> TargetTbl.Price
 THEN UPDATE SET SourceTbl.ProductName = TargetTbl.ProductName,
 SourceTbl.Price = TargetTbl.Price
WHEN NOT MATCHED
 THEN INSERT (ProductID, ProductName, Price)
 VALUES (TargetTbl.ProductID, TargetTbl.ProductName, TargetTbl.Price)
WHEN NOT MATCHED BY SOURCE
 THEN DELETE
OUTPUT $action, INSERTED.*, DELETED.*;

Note:Semicolon must be present in the end of MERGE statement.

http://www.riptutorial.com/ 163

Merge using EXCEPT

Use EXCEPT to prevent updates to unchanged records

MERGE TargetTable targ
USING SourceTable AS src
 ON src.id = targ.id
WHEN MATCHED
 AND EXISTS (
 SELECT src.field
 EXCEPT
 SELECT targ.field
)
 THEN
 UPDATE
 SET field = src.field
WHEN NOT MATCHED BY TARGET
 THEN
 INSERT (
 id
 ,field
)
 VALUES (
 src.id
 ,src.field
)
WHEN NOT MATCHED BY SOURCE
 THEN
 DELETE;

Read MERGE online: http://www.riptutorial.com/sql-server/topic/4550/merge

http://www.riptutorial.com/ 164

Chapter 55: Microsoft SQL Server
Management Studio Shortcut Keys

Examples

Menu Activation Keyboard Shortcuts

Move to the SQL Server Management Studio menu bar (ALT)1.
Activate the menu for a tool component (ALT+ HYPHEN)2.
Display the context menu (SHIFT+F)3.
Display the New File dialog box to create a file (CTRL+N)4.
Display the Open Project dialog box to open an existing project (CTRL+SHIFT+0)5.
Display the Add New Item dialog box to add a new file to the current project (CTRL+SHIFT+A)6.
Display the Add Existing Item dialog box to add an existing file to the current project (CTRL+
SHIFT+A)

7.

Display the Query Designer (CTRL+SHIFT+Q)8.
Close a menu or dialog box, canceling the action (ESC)9.

Shortcut Examples

Open a new Query Window with current connection (Ctrl + N)1.
Toggle between opened tabs (Ctrl + Tab)2.
Show/Hide Results pane (Ctrl + R)3.
Execute highlighted query (Ctrl + E)4.
Make selected text uppercase or lowercase (Ctrl + Shift + U, Ctrl + Shift + L)5.
Intellisense list member and complete word (Ctrl + Space, Tab)6.
Go to line (Ctrl + G)7.
close a tab in SQL Server Managament Studio (Ctrl + F4)8.

Custom keyboard shortcuts

Go to Tools -> Options. Go to Environment -> Keyboard -> Query Shortcuts

On the right side you can see some shortcuts which are by default in SSMS. Now if you need to
add a new one, just click on any column under Stored Procedure column.

http://www.riptutorial.com/ 165

Click OK. Now please go to a query window and select the stored procedure then press CTRL+3,
it will show the stored procedure result.

Now if you need to select all the records from a table when you select the table and press
CTRL+5(You can select any key). You can make the shortcut as follows.

http://www.riptutorial.com/ 166

Now go ahead and select the table name from the query window and press CTRL+4(The key we
selected), it will give you the result.

Read Microsoft SQL Server Management Studio Shortcut Keys online:
http://www.riptutorial.com/sql-server/topic/7749/microsoft-sql-server-management-studio-shortcut-
keys

http://www.riptutorial.com/ 167

Chapter 56: Migration

Examples

How to generate migration scripts

Click Right Mouse on Database you want to migrate then -> Tasks -> Generate Scripts...1.

Wizard will open click Next then chose objects you want to migrate and click Next again, then
click Advanced scroll a bit down and in Types of data to script choose Schema and data (unless
you want only structures)

2.

http://www.riptutorial.com/ 168

Click couple more times Next and Finish and you should have your database scripted in .sql
file.

3.

run .sql file on your new server, and you should be done.4.

Read Migration online: http://www.riptutorial.com/sql-server/topic/4451/migration

http://www.riptutorial.com/ 169

Chapter 57: Modify JSON text

Examples

Modify value in JSON text on the specified path

JSON_MODIFY function uses JSON text as input parameter, and modifies a value on the
specified path using third argument:

declare @json nvarchar(4000) = N'{"Id":1,"Name":"Toy Car","Price":34.99}'
set @json = JSON_MODIFY(@json, '$.Price', 39.99)
print @json -- Output: {"Id":1,"Name":"Toy Car","Price":39.99}

As a result, we will have new JSON text with "Price":39.99 and other value will not be changed. If
object on the specified path does not exists, JSON_MODIFY will insert key:value pair.

In order to delete key:value pair, put NULL as new value:

declare @json nvarchar(4000) = N'{"Id":1,"Name":"Toy Car","Price":34.99}'
set @json = JSON_MODIFY(@json, '$.Price', NULL)
print @json -- Output: {"Id":1,"Name":"Toy Car"}

JSON_MODIFY will by default delete key if it does not have value so you can use it to delete a
key.

Append a scalar value into a JSON array

JSON_MODIFY has 'append' mode that appends value into array.

declare @json nvarchar(4000) = N'{"Id":1,"Name":"Toy Car","Tags":["toy","game"]}'
set @json = JSON_MODIFY(@json, 'append $.Tags', 'sales')
print @json -- Output: {"Id":1,"Name":"Toy Car","Tags":["toy","game","sales"]}

If array on the specified path does not exists, JSON_MODIFY(append) will create new array with a
single element:

declare @json nvarchar(4000) = N'{"Id":1,"Name":"Toy Car","Price":34.99}'
set @json = JSON_MODIFY(@json, 'append $.Tags', 'sales')
print @json -- Output {"Id":1,"Name":"Toy Car","Tags":["sales"]}

Insert new JSON Object in JSON text

JSON_MODIFY function enables you to insert JSON objects into JSON text:

declare @json nvarchar(4000) = N'{"Id":1,"Name":"Toy Car"}'
set @json = JSON_MODIFY(@json, '$.Price',
 JSON_QUERY('{"Min":34.99,"Recommended":45.49}'))

http://www.riptutorial.com/ 170

print @json
-- Output: {"Id":1,"Name":"Toy Car","Price":{"Min":34.99,"Recommended":45.49}}

Since third parameter is text you need to wrap it with JSON_QUERY function to "cast" text to
JSON. Without this "cast", JSON_MODIFY will treat third parameter as plain text and escape
characters before inserting it as string value. Without JSON_QUERY results will be:

{"Id":1,"Name":"Toy Car","Price":'{\"Min\":34.99,\"Recommended\":45.49}'}

JSON_MODIFY will insert this object if it does not exist, or delete it if value of third parameter is
NULL.

Insert new JSON array generated with FOR JSON query

You can generate JSON object using standard SELECT query with FOR JSON clause and insert it
into JSON text as third parameter:

declare @json nvarchar(4000) = N'{"Id":17,"Name":"WWI"}'
set @json = JSON_MODIFY(@json, '$.tables',
 (select name from sys.tables FOR JSON PATH))
print @json

(1 row(s) affected)
{"Id":1,"Name":"master","tables":[{"name":"Colors"},{"name":"Colors_Archive"},{"name":"OrderLines"},{"name":"PackageTypes"},{"name":"PackageTypes_Archive"},{"name":"StockGroups"},{"name":"StockItemStockGroups"},{"name":"StockGroups_Archive"},{"name":"StateProvinces"},{"name":"CustomerTransactions"},{"name":"StateProvinces_Archive"},{"name":"Cities"},{"name":"Cities_Archive"},{"name":"SystemParameters"},{"name":"InvoiceLines"},{"name":"Suppliers"},{"name":"StockItemTransactions"},{"name":"Suppliers_Archive"},{"name":"Customers"},{"name":"Customers_Archive"},{"name":"PurchaseOrders"},{"name":"Orders"},{"name":"People"},{"name":"StockItems"},{"name":"People_Archive"},{"name":"ColdRoomTemperatures"},{"name":"ColdRoomTemperatures_Archive"},{"name":"VehicleTemperatures"},{"name":"StockItems_Archive"},{"name":"Countries"},{"name":"StockItemHoldings"},{"name":"sysdiagrams"},{"name":"PurchaseOrderLines"},{"name":"Countries_Archive"},{"name":"DeliveryMethods"},{"name":"DeliveryMethods_Archive"},{"name":"PaymentMethods"},{"name":"SupplierTransactions"},{"name":"PaymentMethods_Archive"},{"name":"TransactionTypes"},{"name":"SpecialDeals"},{"name":"TransactionTypes_Archive"},{"name":"SupplierCategories"},{"name":"SupplierCategories_Archive"},{"name":"BuyingGroups"},{"name":"Invoices"},{"name":"BuyingGroups_Archive"},{"name":"CustomerCategories"},{"name":"CustomerCategories_Archive"}]}

JSON_MODIFY will know that select query with FOR JSON clause generates valid JSON array
and it will just insert it into JSON text.

You can use all FOR JSON options in SELECT query, except
WITHOUT_ARRAY_WRAPPER, which will generate single object instead of JSON
array. See other example in this topic to see how insert single JSON object.

Insert single JSON object generated with FOR JSON clause

You can generate JSON object using standard SELECT query with FOR JSON clause and
WITHOUT_ARRAY_WRAPPER option, and insert it into JSON text as a third parameter:

declare @json nvarchar(4000) = N'{"Id":17,"Name":"WWI"}'
set @json = JSON_MODIFY(@json, '$.table',
 JSON_QUERY(
 (select name, create_date, schema_id
 from sys.tables
 where name = 'Colors'
 FOR JSON PATH, WITHOUT_ARRAY_WRAPPER)))
print @json

(1 row(s) affected)
{"Id":17,"Name":"WWI","table":{"name":"Colors","create_date":"2016-06-
02T10:04:03.280","schema_id":13}}

http://www.riptutorial.com/ 171

FOR JSON with WITHOUT_ARRAY_WRAPPER option may generate invalid JSON text if
SELECT query returns more than one result (you should use TOP 1 or filter by primary key in this
case). Therefore, JSON_MODIFY will assume that returned result is just a plain text and escape it
like any other text if you don't wrap it with JSON_QUERY function.

You should wrap FOR JSON, WITHOUT_ARRAY_WRAPPER query with
JSON_QUERY function in order to cast result to JSON.

Read Modify JSON text online: http://www.riptutorial.com/sql-server/topic/6883/modify-json-text

http://www.riptutorial.com/ 172

Chapter 58: Move and copy data around
tables

Examples

Copy data from one table to another

This code selects data out of a table and displays it in the query tool (usually SSMS)

SELECT Column1, Column2, Column3 FROM MySourceTable;

This code inserts that data into a table:

INSERT INTO MyTargetTable (Column1, Column2, Column3)
SELECT Column1, Column2, Column3 FROM MySourceTable;

Copy data into a table, creating that table on the fly

This code selects data out of a table:

SELECT Column1, Column2, Column3 FROM MySourceTable;

This code creates a new table called MyNewTable and puts that data into it

SELECT Column1, Column2, Column3
INTO MyNewTable
FROM MySourceTable;

Move data into a table (assuming unique keys method)

To move data you first insert it into the target, then delete whatever you inserted from the source
table. This is not a normal SQL operation but it may be enlightening

What did you insert? Normally in databases you need to have one or more columns that you can
use to uniquely identify rows so we will assume that and make use of it.

This statement selects some rows

SELECT Key1, Key2, Column3, Column4 FROM MyTable;

First we insert these into our target table:

INSERT INTO TargetTable (Key1, Key2, Column3, Column4)
SELECT Key1, Key2, Column3, Column4 FROM MyTable;

http://www.riptutorial.com/ 173

Now assuming records in both tables are unique on Key1,Key2, we can use that to find and delete
data out of the source table

DELETE MyTable
WHERE EXISTS (
 SELECT * FROM TargetTable
 WHERE TargetTable.Key1 = SourceTable.Key1
 AND TargetTable.Key2 = SourceTable.Key2
);

This will only work correctly if Key1, Key2 are unique in both tables

Lastly, we don't want the job half done. If we wrap this up in a transaction then either all data will
be moved, or nothing will happen. This ensures we don't insert the data in then find ourselves
unable to delete the data out of the source.

BEGIN TRAN;

INSERT INTO TargetTable (Key1, Key2, Column3, Column4)
SELECT Key1, Key2, Column3, Column4 FROM MyTable;

DELETE MyTable
WHERE EXISTS (
 SELECT * FROM TargetTable
 WHERE TargetTable.Key1 = SourceTable.Key1
 AND TargetTable.Key2 = SourceTable.Key2
);

COMMIT TRAN;

Read Move and copy data around tables online: http://www.riptutorial.com/sql-
server/topic/1467/move-and-copy-data-around-tables

http://www.riptutorial.com/ 174

Chapter 59: Natively compiled modules
(Hekaton)

Examples

Natively compiled stored procedure

In a procedure with native compilation, T-SQL code is compiled to dll and executed as native C
code. To create a Native Compiled stored Procedure you need to:

Use standard CREATE PROCEDURE syntax•
Set NATIVE_COMPILATION option in stored procedure definition•
Use SCHEMABINDING option in stored procedure definition•
Define EXECUTE AS OWNER option in stored procedure definition•

Instead of standard BEGIN END block, you need to use BEGIN ATOMIC block:

BEGIN ATOMIC
 WITH (TRANSACTION ISOLATION LEVEL=SNAPSHOT, LANGUAGE='us_english')
 -- T-Sql code goes here
END

Example:

CREATE PROCEDURE usp_LoadMemOptTable (@maxRows INT, @FullName NVARCHAR(200))
WITH
 NATIVE_COMPILATION,
 SCHEMABINDING,
 EXECUTE AS OWNER
AS
BEGIN ATOMIC
WITH (TRANSACTION ISOLATION LEVEL=SNAPSHOT, LANGUAGE='us_english')
 DECLARE @i INT = 1
 WHILE @i <= @maxRows
 BEGIN
 INSERT INTO dbo.MemOptTable3 VALUES(@i, @FullName, GETDATE())
 SET @i = @i+1
 END
END
GO

Natively compiled scalar function

Code in natively compiled function will be transformed into C code and compiled as dll. To create
a Native Compiled scalar function you need to:

Use standard CREATE FUNCTION syntax•
Set NATIVE_COMPILATION option in function definition•

http://www.riptutorial.com/ 175

Use SCHEMABINDING option in function definition•

Instead of standard BEGIN END block, you need to use BEGIN ATOMIC block:

BEGIN ATOMIC
 WITH (TRANSACTION ISOLATION LEVEL=SNAPSHOT, LANGUAGE='us_english')
 -- T-Sql code goes here
END

Example:

CREATE FUNCTION [dbo].[udfMultiply](@v1 int, @v2 int)
RETURNS bigint
WITH NATIVE_COMPILATION, SCHEMABINDING
AS
BEGIN ATOMIC WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE = N'English')

 DECLARE @ReturnValue bigint;
 SET @ReturnValue = @v1 * @v2;

 RETURN (@ReturnValue);
END

-- usage sample:
SELECT dbo.udfMultiply(10, 12)

Native inline table value function

Native compiled table value function returns table as result. Code in natively compiled function will
be transformed into C code and compiled as dll. Only inline table valued functions are supported in
version 2016. To create a native table value function you need to:

Use standard CREATE FUNCTION syntax•
Set NATIVE_COMPILATION option in function definition•
Use SCHEMABINDING option in function definition•

Instead of standard BEGIN END block, you need to use BEGIN ATOMIC block:

BEGIN ATOMIC
 WITH (TRANSACTION ISOLATION LEVEL=SNAPSHOT, LANGUAGE='us_english')
 -- T-Sql code goes here
END

Example:

CREATE FUNCTION [dbo].[udft_NativeGetBusinessDoc]
(
 @RunDate VARCHAR(25)
)
RETURNS TABLE
WITH SCHEMABINDING,
 NATIVE_COMPILATION
AS

http://www.riptutorial.com/ 176

 RETURN
(
 SELECT BusinessDocNo,
 ProductCode,
 UnitID,
 ReasonID,
 PriceID,
 RunDate,
 ReturnPercent,
 Qty,
 RewardAmount,
 ModifyDate,
 UserID
 FROM dbo.[BusinessDocDetail_11]
 WHERE RunDate >= @RunDate
);

Read Natively compiled modules (Hekaton) online: http://www.riptutorial.com/sql-
server/topic/6089/natively-compiled-modules--hekaton-

http://www.riptutorial.com/ 177

Chapter 60: NULLs

Introduction

In SQL Server, NULL represents data that is missing, or unknown. This means that NULL is not really
a value; it's better described as a placeholder for a value. This is also the reason why you can't
compare NULL with any value, and not even with another NULL.

Remarks

SQL Server provides other methods to handle nulls, such as IS NULL, IS NOT NULL, ISNULL(),
COALESCE() and others.

Examples

NULL comparison

NULL is a special case when it comes to comparisons.

Assume the following data.

id someVal

 0 NULL
 1 1
 2 2

With a query:

 SELECT id
 FROM table
 WHERE someVal = 1

would return id 1

 SELECT id
 FROM table
 WHERE someVal <> 1

would return id 2

 SELECT id
 FROM table
 WHERE someVal IS NULL

would return id 0

http://www.riptutorial.com/ 178

 SELECT id
 FROM table
 WHERE someVal IS NOT NULL

would return both ids 1 and 2.

If you wanted NULLs to be "counted" as values in a =, <> comparison, it must first be converted to
a countable data type:

 SELECT id
 FROM table
 WHERE ISNULL(someVal, -1) <> 1

OR

 SELECT id
 FROM table
 WHERE someVal IS NULL OR someVal <> 1

returns 0 and 2

Or you can change your ANSI Null setting.

ANSI NULLS

From MSDN

In a future version of SQL Server, ANSI_NULLS will always be ON and any
applications that explicitly set the option to OFF will generate an error. Avoid using this
feature in new development work, and plan to modify applications that currently use
this feature.

ANSI NULLS being set to off allows for a =/<> comparison of null values.

Given the following data:

id someVal

 0 NULL
 1 1
 2 2

And with ANSI NULLS on, this query:

 SELECT id
 FROM table
 WHERE someVal = NULL

would produce no results. However the same query, with ANSI NULLS off:

http://www.riptutorial.com/ 179

 set ansi_nulls off

 SELECT id
 FROM table
 WHERE someVal = NULL

Would return id 0.

ISNULL()

The IsNull() function accepts two parameters, and returns the second parameter if the first one is
null.

Parameters:

check expression. Any expression of any data type.1.
replacement value. This is the value that would be returned if the check expression is null.
The replacement value must be of a data type that can be implicitly converted to the data
type of the check expression.

2.

The IsNull() function returns the same data type as the check expression.

DECLARE @MyInt int -- All variables are null until they are set with values.

SELECT ISNULL(@MyInt, 3) -- Returns 3.

See also COALESCE, above

Is null / Is not null

Since null is not a value, you can't use comparison operators with nulls.
To check if a column or variable holds null, you need to use is null:

DECLARE @Date date = '2016-08-03'

The following statement will select the value 6, since all comparisons with null values evaluates to
false or unknown:

SELECT CASE WHEN @Date = NULL THEN 1
 WHEN @Date <> NULL THEN 2
 WHEN @Date > NULL THEN 3
 WHEN @Date < NULL THEN 4
 WHEN @Date IS NULL THEN 5
 WHEN @Date IS NOT NULL THEN 6

Setting the content of the @Date variable to null and try again, the following statement will return
5:

SET @Date = NULL -- Note that the '=' here is an assignment operator!

http://www.riptutorial.com/ 180

SELECT CASE WHEN @Date = NULL THEN 1
 WHEN @Date <> NULL THEN 2
 WHEN @Date > NULL THEN 3
 WHEN @Date < NULL THEN 4
 WHEN @Date IS NULL THEN 5
 WHEN @Date IS NOT NULL THEN 6

NULL with NOT IN SubQuery

While handling not in sub-query with null in the sub-query we need to eliminate NULLS to get your
expected results

create table #outertable (i int)
create table #innertable (i int)

insert into #outertable (i) values (1), (2),(3),(4), (5)
insert into #innertable (i) values (2), (3), (null)

select * from #outertable where i in (select i from #innertable)
--2
--3
--So far so good

select * from #outertable where i not in (select i from #innertable)
--Expectation here is to get 1,4,5 but it is not. It will get empty results because of the
NULL it executes as {select * from #outertable where i not in (null)}

--To fix this
select * from #outertable where i not in (select i from #innertable where i is not null)
--you will get expected results
--1
--4
--5

While handling not in sub-query with null be cautious with your expected output

COALESCE ()

COALESCE () Evaluates the arguments in order and returns the current value of the first expression
that initially does not evaluate to NULL.

DECLARE @MyInt int -- variable is null until it is set with value.
DECLARE @MyInt2 int -- variable is null until it is set with value.
DECLARE @MyInt3 int -- variable is null until it is set with value.

SET @MyInt3 = 3

SELECT COALESCE (@MyInt, @MyInt2 ,@MyInt3 ,5) -- Returns 3 : value of @MyInt3.

Although ISNULL() operates similarly to COALESCE(), the ISNULL() function only accepts two
parameters - one to check, and one to use if the first parameter is NULL. See also ISNULL, below

Read NULLs online: http://www.riptutorial.com/sql-server/topic/5044/nulls

http://www.riptutorial.com/ 181

Chapter 61: OPENJSON

Examples

Get key:value pairs from JSON text

OPENJSON function parse JSON text and returns all key:value pairs at the first level of JSON:

declare @json NVARCHAR(4000) = N'{"Name":"Joe","age":27,"skills":["C#","SQL"]}';
SELECT * FROM OPENJSON(@json);

key value type

Name Joe 1

age 27 2

skills ["C#","SQL"] 4

Column type describe the type of value, i.e. null(0), string(1), number(2), boolean(3), array(4), and
object(5).

Transform JSON array into set of rows

OPENJSON function parses collection of JSON objects and returns values from JSON text as set
of rows.

declare @json nvarchar(4000) = N'[
 {"Number":"SO43659","Date":"2011-05-31T00:00:00","Customer":
"MSFT","Price":59.99,"Quantity":1},
 {"Number":"SO43661","Date":"2011-06-
01T00:00:00","Customer":"Nokia","Price":24.99,"Quantity":3}
]'

SELECT *
FROM OPENJSON (@json)
 WITH (
 Number varchar(200),
 Date datetime,
 Customer varchar(200),
 Quantity int
)

In the WITH clause is specified return schema of OPENJSON function. Keys in the JSON objects
are fetched by column names. If some key in JSON is not specified in the WITH clause (e.g. Price
in this example) it will be ignored. Values are automatically converted into specified types.

http://www.riptutorial.com/ 182

Number Date Customer Quantity

SO43659 2011-05-31T00:00:00 MSFT 1

SO43661 2011-06-01T00:00:00 Nokia 3

Transform nested JSON fields into set of rows

OPENJSON function parses collection of JSON objects and returns values from JSON text as set
of rows. If the values in input object are nested, additional mapping parameter can be specified in
each column in WITH clause:

declare @json nvarchar(4000) = N'[
 {"data":{"num":"SO43659","date":"2011-05-
31T00:00:00"},"info":{"customer":"MSFT","Price":59.99,"qty":1}},
 {"data":{"number":"SO43661","date":"2011-06-
01T00:00:00"},"info":{"customer":"Nokia","Price":24.99,"qty":3}}
]'

SELECT *
FROM OPENJSON (@json)
 WITH (
 Number varchar(200) '$.data.num',
 Date datetime '$.data.date',
 Customer varchar(200) '$.info.customer',
 Quantity int '$.info.qty',
)

In the WITH clause is specified return schema of OPENJSON function. After the type is specified
path to the JSON nodes where returned value should be found. Keys in the JSON objects are
fetched by these paths. Values are automatically converted into specified types.

Number Date Customer Quantity

SO43659 2011-05-31T00:00:00 MSFT 1

SO43661 2011-06-01T00:00:00 Nokia 3

Extracting inner JSON sub-objects

OPENJSON can extract fragments of JSON objects inside the JSON text. In the column definition
that references JSON sub-object set the type nvarchar(max) and AS JSON option:

declare @json nvarchar(4000) = N'[
 {"Number":"SO43659","Date":"2011-05-
31T00:00:00","info":{"customer":"MSFT","Price":59.99,"qty":1}},
 {"Number":"SO43661","Date":"2011-06-
01T00:00:00","info":{"customer":"Nokia","Price":24.99,"qty":3}}
]'

SELECT *
FROM OPENJSON (@json)

http://www.riptutorial.com/ 183

 WITH (
 Number varchar(200),
 Date datetime,
 Info nvarchar(max) '$.info' AS JSON
)

Info column will be mapped to "Info" object. Results will be:

Number Date Info

SO43659 2011-05-31T00:00:00 {"customer":"MSFT","Price":59.99,"qty":1}

SO43661 2011-06-01T00:00:00 {"customer":"Nokia","Price":24.99,"qty":3}

Working with nested JSON sub-arrays

JSON may have complex structure with inner arrays. In this example, we have array of orders with
nested sub array of OrderItems.

declare @json nvarchar(4000) = N'[
 {"Number":"SO43659","Date":"2011-05-31T00:00:00",
 "Items":[{"Price":11.99,"Quantity":1},{"Price":12.99,"Quantity":5}]},
 {"Number":"SO43661","Date":"2011-06-01T00:00:00",

"Items":[{"Price":21.99,"Quantity":3},{"Price":22.99,"Quantity":2},{"Price":23.99,"Quantity":2}]}

]'

We can parse root level properties using OPENJSON that will return Items array AS JSON
fragment. Then we can apply OPENJSON again on Items array and open inner JSON table. First
level table and inner table will be "joined" like in the JOIN between standard tables:

SELECT *
FROM
 OPENJSON (@json)
 WITH (Number varchar(200), Date datetime,
 Items nvarchar(max) AS JSON)
 CROSS APPLY
 OPENJSON (Items)
 WITH (Price float, Quantity int)

Results:

Number Date Items Price Quantity

SO43659
2011-05-31
00:00:00.000

[{"Price":11.99,"Quantity":1},{"Price":12.99,"Quantity":5}] 11.99 1

SO43659
2011-05-31
00:00:00.000

[{"Price":11.99,"Quantity":1},{"Price":12.99,"Quantity":5}] 12.99 5

http://www.riptutorial.com/ 184

Number Date Items Price Quantity

SO43661
2011-06-01
00:00:00.000

[{"Price":21.99,"Quantity":3},{"Price":22.99,"Quantity":2},{"Price":23.99,"Quantity":2}] 21.99 3

SO43661
2011-06-01
00:00:00.000

[{"Price":21.99,"Quantity":3},{"Price":22.99,"Quantity":2},{"Price":23.99,"Quantity":2}] 22.99 2

SO43661
2011-06-01
00:00:00.000

[{"Price":21.99,"Quantity":3},{"Price":22.99,"Quantity":2},{"Price":23.99,"Quantity":2}] 23.99 2

Read OPENJSON online: http://www.riptutorial.com/sql-server/topic/5030/openjson

http://www.riptutorial.com/ 185

Chapter 62: ORDER BY

Remarks

The purpose of the ORDER BY clause is to sort the data returned by a query.

It's important to note that the order of rows returned by a query is undefined unless there is
an ORDER BY clause.

See MSDN documentation for full details of the ORDER BY clause:
https://msdn.microsoft.com/en-us/library/ms188385.aspx

Examples

ORDER BY with complex logic

If we want to order the data differently for per group, we can add a CASE syntax to the ORDER BY. In
this example, we want to order employees from Department 1 by last name and employees from
Department 2 by salary.

Id FName LName PhoneNumber ManagerId DepartmentId Salary HireDate

1 James Smith 1234567890 NULL 1 1000
01-01-
2002

2 John Johnson 2468101214 1 1 400
23-03-
2005

3 Michael Williams 1357911131 1 2 600
12-05-
2009

4 Johnathon Smith 1212121212 2 1 500
24-07-
2016

5 Sam Saxon 1372141312 2 2 400
25-03-
2015

The following query will provide the required results:
SELECT Id, FName, LName, Salary FROM Employees
ORDER BY Case When DepartmentId = 1 then LName else Salary end

Simple ORDER BY clause

Using the Employees Table, below is an example to return the Id, FName and LName columns in
(ascending) LName order:

http://www.riptutorial.com/ 186

SELECT Id, FName, LName FROM Employees
ORDER BY LName

Returns:

Id FName LName

2 John Johnson

1 James Smith

4 Johnathon Smith

3 Michael Williams

To sort in descending order add the DESC keyword after the field parameter, e.g. the same query
in LName descending order is:

SELECT Id, FName, LName FROM Employees
ORDER BY LName DESC

ORDER BY multiple fields

Multiple fields can be specified for the ORDER BY clause, in either ASCending or DESCending order.

For example, using the http://stackoverflow.com/documentation/sql/280/example-
databases/1207/item-sales-table#t=201607211314066434211 table, we can return a query that
sorts by SaleDate in ascending order, and Quantity in descending order.

SELECT ItemId, SaleDate, Quantity
FROM [Item Sales]
ORDER BY SaleDate ASC, Quantity DESC

Note that the ASC keyword is optional, and results are sorted in ascending order of a given field by
default.

Custom Ordering

If you want to order by a column using something other than alphabetical/numeric ordering, you
can use case to specify the order you want.

order by Group returns:

Group Count

Not Retired 6

Retired 4

http://www.riptutorial.com/ 187

Group Count

Total 10

order by case group when 'Total' then 1 when 'Retired' then 2 else 3 end returns:

Group Count

Total 10

Retired 4

Not Retired 6

Read ORDER BY online: http://www.riptutorial.com/sql-server/topic/4149/order-by

http://www.riptutorial.com/ 188

Chapter 63: OVER Clause

Parameters

Parameter Details

PARTITION
BY

The field(s) that follows PARTITION BY is the one that the 'grouping' will be
based on

Remarks

The OVER clause determines a windows or a subset of row within a query result set. A window
function can be applied to set and compute a value for each row in the set. The OVER clause can
be used with:

Ranking functions•
Aggregate functions•

so someone can compute aggregated values such as moving averages, cumulative aggregates,
running totals, or a top N per group results.

In a very abstract way we can say that OVER behaves like GROUP BY. However OVER is applied
per field / column and not to the query as whole as GROUP BY does.

Note#1: In SQL Server 2008 (R2) ORDER BY Clause cannot be used with aggregate window
functions (link).

Examples

Using Aggregation functions with OVER

Using the Cars Table, we will calculate the total, max, min and average amount of money each
costumer spent and haw many times (COUNT) she brought a car for repairing.

Id CustomerId MechanicId Model Status Total Cost

SELECT CustomerId,
 SUM(TotalCost) OVER(PARTITION BY CustomerId) AS Total,
 AVG(TotalCost) OVER(PARTITION BY CustomerId) AS Avg,
 COUNT(TotalCost) OVER(PARTITION BY CustomerId) AS Count,
 MIN(TotalCost) OVER(PARTITION BY CustomerId) AS Min,
 MAX(TotalCost) OVER(PARTITION BY CustomerId) AS Max
 FROM CarsTable
 WHERE Status = 'READY'

Beware that using OVER in this fashion will not aggregate the rows returned. The above query will

http://www.riptutorial.com/ 189

return the following:

CustomerId Total Avg Count Min Max

1 430 215 2 200 230

1 430 215 2 200 230

The duplicated row(s) may not be that useful for reporting purposes.

If you wish to simply aggregate data, you will be better off using the GROUP BY clause along with
the appropriate aggregate functions Eg:

SELECT CustomerId,
 SUM(TotalCost) AS Total,
 AVG(TotalCost) AS Avg,
 COUNT(TotalCost) AS Count,
 MIN(TotalCost) AS Min,
 MAX(TotalCost) AS Max
 FROM CarsTable
 WHERE Status = 'READY'
GROUP BY CustomerId

Cumulative Sum

Using the Item Sales Table, we will try to find out how the sales of our items are increasing
through dates. To do so we will calculate the Cumulative Sum of total sales per Item order by the
sale date.

SELECT item_id, sale_Date
 SUM(quantity * price) OVER(PARTITION BY item_id ORDER BY sale_Date ROWS BETWEEN
UNBOUNDED PRECEDING) AS SalesTotal
 FROM SalesTable

Using Aggregation funtions to find the most recent records

Using the Library Database, we try to find the last book added to the database for each author. For
this simple example we assume an always incrementing Id for each record added.

SELECT MostRecentBook.Name, MostRecentBook.Title
FROM (SELECT Authors.Name,
 Books.Title,
 RANK() OVER (PARTITION BY Authors.Id ORDER BY Books.Id DESC) AS NewestRank
 FROM Authors
 JOIN Books ON Books.AuthorId = Authors.Id
) MostRecentBook
WHERE MostRecentBook.NewestRank = 1

Instead of RANK, two other functions can be used to order. In the previous example the result will
be the same, but they give different results when the ordering gives multiple rows for each rank.

http://www.riptutorial.com/ 190

RANK(): duplicates get the same rank, the next rank takes the number of duplicates in the
previous rank into account

•

DENSE_RANK(): duplicates get the same rank, the next rank is always one higher than the
previous

•

ROW_NUMBER(): will give each row a unique 'rank', 'ranking' the duplicates randomly•

For example, if the table had a non-unique column CreationDate and the ordering was done based
on that, the following query:

SELECT Authors.Name,
 Books.Title,
 Books.CreationDate,
 RANK() OVER (PARTITION BY Authors.Id ORDER BY Books.CreationDate DESC) AS RANK,
 DENSE_RANK() OVER (PARTITION BY Authors.Id ORDER BY Books.CreationDate DESC) AS
DENSE_RANK,
 ROW_NUMBER() OVER (PARTITION BY Authors.Id ORDER BY Books.CreationDate DESC) AS
ROW_NUMBER,
FROM Authors
JOIN Books ON Books.AuthorId = Authors.Id

Could result in:

Author Title CreationDate RANK DENSE_RANK ROW_NUMBER

Author 1 Book 1 22/07/2016 1 1 1

Author 1 Book 2 22/07/2016 1 1 2

Author 1 Book 3 21/07/2016 3 2 3

Author 1 Book 4 21/07/2016 3 2 4

Author 1 Book 5 21/07/2016 3 2 5

Author 1 Book 6 04/07/2016 6 3 6

Author 2 Book 7 04/07/2016 1 1 1

Dividing Data into equally-partitioned buckets using NTILE

Let's say that you have exam scores for several exams and you want to divide them into quartiles
per exam.

-- Setup data:
declare @values table(Id int identity(1,1) primary key, [Value] float, ExamId int)
insert into @values ([Value], ExamId) values
(65, 1), (40, 1), (99, 1), (100, 1), (90, 1), -- Exam 1 Scores
(91, 2), (88, 2), (83, 2), (91, 2), (78, 2), (67, 2), (77, 2) -- Exam 2 Scores

-- Separate into four buckets per exam:
select ExamId,
 ntile(4) over (partition by ExamId order by [Value] desc) as Quartile,

http://www.riptutorial.com/ 191

 Value, Id
from @values
order by ExamId, Quartile

ntile works great when you really need a set number of buckets and each filled to approximately
the same level. Notice that it would be trivial to separate these scores into percentiles by simply
using ntile(100).

Read OVER Clause online: http://www.riptutorial.com/sql-server/topic/353/over-clause

http://www.riptutorial.com/ 192

Chapter 64: Pagination

Introduction

Row Offset and Paging in Various Versions of SQL Server

Syntax

SELECT * FROM TableName ORDER BY id OFFSET 10 ROWS FETCH NEXT 10 ROWS
ONLY;

•

Examples

Pagination using ROW_NUMBER with a Common Table Expression

SQL Server 2008

The ROW_NUMBER function can assign an incrementing number to each row in a result set. Combined
with a Common Table Expression that uses a BETWEEN operator, it is possible to create 'pages' of
result sets. For example: page one containing results 1-10, page two containing results 11-20,
page three containing results 21-30, and so on.

WITH data
AS
(
 SELECT ROW_NUMBER() OVER (ORDER BY name) AS row_id,
 object_id,
 name,
 type,
 create_date
 FROM sys.objects
)
SELECT *
FROM data
WHERE row_id BETWEEN 41 AND 50

Note: It is not possible to use ROW_NUMBER in a WHERE clause like:

SELECT object_id,
 name,
 type,
 create_date
FROM sys.objects
WHERE ROW_NUMBER() OVER (ORDER BY name) BETWEEN 41 AND 50

Although this would be more convenient, SQL server will return the following error in this case:

Msg 4108, Level 15, State 1, Line 6

http://www.riptutorial.com/ 193

Windowed functions can only appear in the SELECT or ORDER BY clauses.

Pagination with OFFSET FETCH

SQL Server 2012

The OFFSET FETCH clause implements pagination in a more concise manner. With it, it's possible to
skip N1 rows (specified in OFFSET) and return the next N2 rows (specified in FETCH):

SELECT *
FROM sys.objects
ORDER BY object_id
OFFSET 40 ROWS FETCH NEXT 10 ROWS ONLY

The ORDER BY clause is required in order to provide deterministic results.

Paginaton with inner query

In earlier versions of SQL Server, developers had to use double sorting combined with the TOP
keyword to return rows in a page:

 SELECT TOP 10 *
 FROM
 (
 SELECT
 TOP 50 object_id,
 name,
 type,
 create_date
 FROM sys.objects
 ORDER BY name ASC
) AS data
ORDER BY name DESC

The inner query will return the first 50 rows ordered by name. Then the outer query will reverse the
order of these 50 rows and select the top 10 rows (these will be last 10 rows in the group before
the reversal).

Paging in Various Versions of SQL Server

SQL Server 2012 / 2014

DECLARE @RowsPerPage INT = 10, @PageNumber INT = 4
SELECT OrderId, ProductId
FROM OrderDetail
ORDER BY OrderId
OFFSET (@PageNumber - 1) * @RowsPerPage ROWS
FETCH NEXT @RowsPerPage ROWS ONLY

http://www.riptutorial.com/ 194

SQL Server 2005/2008/R2

DECLARE @RowsPerPage INT = 10, @PageNumber INT = 4
SELECT OrderId, ProductId
FROM (
 SELECT OrderId, ProductId, ROW_NUMBER() OVER (ORDER BY OrderId) AS RowNum
 FROM OrderDetail) AS OD
WHERE OD.RowNum BETWEEN ((@PageNumber - 1) * @RowsPerPage) + 1
AND @RowsPerPage * @PageNumber

SQL Server 2000

DECLARE @RowsPerPage INT = 10, @PageNumber INT = 4
SELECT OrderId, ProductId
FROM (SELECT TOP (@RowsPerPage) OrderId, ProductId
 FROM (SELECT TOP ((@PageNumber)*@RowsPerPage) OrderId, ProductId
 FROM OrderDetail
 ORDER BY OrderId) AS OD
 ORDER BY OrderId DESC) AS OD2
ORDER BY OrderId ASC

SQL Server 2012/2014 using ORDER BY OFFSET and FETCH NEXT

For getting the next 10 rows just run this query:

SELECT * FROM TableName ORDER BY id OFFSET 10 ROWS FETCH NEXT 10 ROWS ONLY;

Key points to consider when using it:

ORDER BY is mandatory to use OFFSET and FETCH clause.•
OFFSET clause is mandatory with FETCH. You can never use, ORDER BY … FETCH.•
TOP cannot be combined with OFFSET and FETCH in the same query expression.•

Read Pagination online: http://www.riptutorial.com/sql-server/topic/6874/pagination

http://www.riptutorial.com/ 195

Chapter 65: Parsename

Syntax

PARSENAME ('object_name' , object_piece)•

Parameters

'object_name' object_piece

Is the name of the object for which to retrieve the
specified object part. object_name is sysname. This
parameter is an optionally-qualified object name. If all
parts of the object name are qualified, this name can
have four parts: the server name, the database name,
the owner name, and the object name.

Is the object part to return.
object_piece is of type int, and
can have these values:1 = Object
name 2 = Schema name 3 =
Database name 4 = Server name

Examples

PARSENAME

Declare @ObjectName nVarChar(1000)
Set @ObjectName = 'HeadOfficeSQL1.Northwind.dbo.Authors'

SELECT
 PARSENAME(@ObjectName, 4) as Server
,PARSENAME(@ObjectName, 3) as DB
,PARSENAME(@ObjectName, 2) as Owner
,PARSENAME(@ObjectName, 1) as Object

Returns:

Server DB

HeadofficeSQL1 Northwind

Owner Object

dbo Authors

Read Parsename online: http://www.riptutorial.com/sql-server/topic/5775/parsename

http://www.riptutorial.com/ 196

Chapter 66: Partitioning

Examples

Retrieve Partition Boundary Values

SELECT ps.name AS PartitionScheme
 , fg.name AS [FileGroup]
 , prv.*
 , LAG(prv.Value) OVER (PARTITION BY ps.name ORDER BY ps.name, boundary_id) AS
PreviousBoundaryValue

FROM sys.partition_schemes ps
INNER JOIN sys.destination_data_spaces dds
 ON dds.partition_scheme_id = ps.data_space_id
INNER JOIN sys.filegroups fg
 ON dds.data_space_id = fg.data_space_id
INNER JOIN sys.partition_functions f
 ON f.function_id = ps.function_id
INNER JOIN sys.partition_range_values prv
 ON f.function_id = prv.function_id
 AND dds.destination_id = prv.boundary_id

Switching Partitions

According to this [TechNet Microsoft page][1],

Partitioning data enables you to manage and access subsets of your data quickly and
efficiently while maintaining the integrity of the entire data collection.

When you call the following query the data is not physically moved; only the metadata about the
location of the data changes.

ALTER TABLE [SourceTable] SWITCH TO [TargetTable]

The tables must have the same columns with the same data types and NULL settings, they need
to be in the same file group and the new target table must be empty. See the page link above for
more info on switching partitions.

[1]: https://technet.microsoft.com/en-us/library/ms191160(v=sql.105).aspx The column IDENTITY
property may differ.

Retrieve partition table,column, scheme, function, total and min-max boundry
values using single query

SELECT DISTINCT
 object_name(i.object_id) AS [Object Name],
 c.name AS [Partition Column],
 s.name AS [Partition Scheme],
 pf.name AS [Partition Function],

http://www.riptutorial.com/ 197

 prv.tot AS [Partition Count],
 prv.miVal AS [Min Boundry Value],
 prv.maVal AS [Max Boundry Value]
FROM sys.objects o
INNER JOIN sys.indexes i ON i.object_id = o.object_id
INNER JOIN sys.columns c ON c.object_id = o.object_id
INNER JOIN sys.index_columns ic ON ic.object_id = o.object_id
 AND ic.column_id = c.column_id
 AND ic.partition_ordinal = 1
INNER JOIN sys.partition_schemes s ON i.data_space_id = s.data_space_id
INNER JOIN sys.partition_functions pf ON pf.function_id = s.function_id
OUTER APPLY(SELECT
 COUNT(*) tot, MIN(value) miVal, MAX(value) maVal
 FROM sys.partition_range_values prv
 WHERE prv.function_id = pf.function_id) prv
--WHERE object_name(i.object_id) = 'table_name'
ORDER BY OBJECT_NAME(i.object_id)

Just un-comment where clause and replace table_name with actual table name to view the detail of
desired object.

Read Partitioning online: http://www.riptutorial.com/sql-server/topic/3212/partitioning

http://www.riptutorial.com/ 198

Chapter 67: Permissions and Security

Examples

Assign Object Permissions to a user

In Production its good practice to secure your data and only allow operations on it to be
undertaken via Stored Procedures. This means your application can't directly run CRUD
operations on your data and potentially cause problems. Assigning permissions is a time-
consuming, fiddly and generally onerous task. For this reason its often easier to harness some of
the (considerable) power contained in the INFORMATION_SCHEMA er schema which is
contained in every SQL Server database.

Instead individually assigning permissions to a user on a piece-meal basis, just run the script
below, copy the output and then run it in a Query window.

SELECT 'GRANT EXEC ON core.' + r.ROUTINE_NAME + ' TO ' + <MyDatabaseUsername>
FROM INFORMATION_SCHEMA.ROUTINES r
WHERE r.ROUTINE_CATALOG = '<MyDataBaseName>'

Read Permissions and Security online: http://www.riptutorial.com/sql-
server/topic/7929/permissions-and-security

http://www.riptutorial.com/ 199

Chapter 68: PHANTOM read

Introduction

In database systems, isolation determines how transaction integrity is visible to other users and
systems, so it defines how/when the changes made by one operation become visible to other. The
phantom read may occurs when you getting data not yet commited to database.

Remarks

You can read the various ISOLATION LEVEL on MSDN

Examples

Isolation level READ UNCOMMITTED

Create a sample table on a sample database

CREATE TABLE [dbo].[Table_1](
 [Id] [int] IDENTITY(1,1) NOT NULL,
 [title] [varchar](50) NULL,
 CONSTRAINT [PK_Table_1] PRIMARY KEY CLUSTERED
(
 [Id] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS =
ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

Now open a First query editor (on the database) insert the code below, and execute (do not
touch the --rollback) in this case you insert a row on DB but do not commit changes.

begin tran

INSERT INTO Table_1 values('Title 1')

SELECT * FROM [Test].[dbo].[Table_1]

--rollback

Now open a Second Query Editor (on the database), insert the code below and execute

begin tran

set transaction isolation level READ UNCOMMITTED

SELECT * FROM [Test].[dbo].[Table_1]

You may notice that on second editor you can see the newly created row (but not committed) from

http://www.riptutorial.com/ 200

first transaction. On first editor execute the rollback (select the rollback word and execute).

-- Rollback the first transaction
rollback

Execute the query on second editor and you see that the record disappear (phantom read), this
occurs because you tell, to the 2nd transaction to get all rows, also the uncommitteds.

This occurs when you change the isolation level with

set transaction isolation level READ UNCOMMITTED

Read PHANTOM read online: http://www.riptutorial.com/sql-server/topic/8235/phantom-read

http://www.riptutorial.com/ 201

Chapter 69: PIVOT / UNPIVOT

Syntax

SELECT <non-pivoted column>,
[first pivoted column] AS <column name>,
[second pivoted column] AS <column name>,
...
[last pivoted column] AS <column name>
FROM
(<SELECT query that produces the data>)
AS <alias for the source query>
PIVOT
(
<aggregation function>(<column being aggregated>)
FOR
[<column that contains the values that will become column headers>]
IN ([first pivoted column], [second pivoted column],
... [last pivoted column])
) AS <alias for the pivot table> <optional ORDER BY clause>;

•

Remarks

Using PIVOT and UNPIVOT operators you transform a table by shifting the rows (column values)
of a table to columns and vise-versa. As part of this transformation aggregation functions can be
applied on the table values.

Examples

Simple PIVOT & UNPIVOT (T-SQL)

Below is a simple example which shows average item's price of each item per weekday.

First, suppose we have a table which keeps daily records of all items' prices.

CREATE TABLE tbl_stock(item NVARCHAR(10), weekday NVARCHAR(10), price INT);

INSERT INTO tbl_stock VALUES
('Item1', 'Mon', 110), ('Item2', 'Mon', 230), ('Item3', 'Mon', 150),
('Item1', 'Tue', 115), ('Item2', 'Tue', 231), ('Item3', 'Tue', 162),
('Item1', 'Wed', 110), ('Item2', 'Wed', 240), ('Item3', 'Wed', 162),
('Item1', 'Thu', 109), ('Item2', 'Thu', 228), ('Item3', 'Thu', 145),
('Item1', 'Fri', 120), ('Item2', 'Fri', 210), ('Item3', 'Fri', 125),
('Item1', 'Mon', 122), ('Item2', 'Mon', 225), ('Item3', 'Mon', 140),
('Item1', 'Tue', 110), ('Item2', 'Tue', 235), ('Item3', 'Tue', 154),
('Item1', 'Wed', 125), ('Item2', 'Wed', 220), ('Item3', 'Wed', 142);

http://www.riptutorial.com/ 202

The table should look like below:

+========+=========+=======+
| item | weekday | price |
+========+=========+=======+
| Item1 | Mon | 110 |
+--------+---------+-------+
| Item2 | Mon | 230 |
+--------+---------+-------+
| Item3 | Mon | 150 |
+--------+---------+-------+
| Item1 | Tue | 115 |
+--------+---------+-------+
| Item2 | Tue | 231 |
+--------+---------+-------+
| Item3 | Tue | 162 |
+--------+---------+-------+
| . . . |
+--------+---------+-------+
| Item2 | Wed | 220 |
+--------+---------+-------+
| Item3 | Wed | 142 |
+--------+---------+-------+

In order to perform aggregation which is to find the average price per item for each week day, we
are going to use the relational operator PIVOT to rotate the column weekday of table-valued
expression into aggregated row values as below:

SELECT * FROM tbl_stock
PIVOT (
 AVG(price) FOR weekday IN ([Mon], [Tue], [Wed], [Thu], [Fri])
) pvt;

Result:

+--------+------+------+------+------+------+
| item | Mon | Tue | Wed | Thu | Fri |
+--------+------+------+------+------+------+
Item1	116	112	117	109	120
Item2	227	233	230	228	210
Item3	145	158	152	145	125
+--------+------+------+------+------+------+

Lastly, in order to perform the reverse operation of PIVOT, we can use the relational operator
UNPIVOT to rotate columns into rows as below:

SELECT * FROM tbl_stock
PIVOT (
 AVG(price) FOR weekday IN ([Mon], [Tue], [Wed], [Thu], [Fri])
) pvt
UNPIVOT (
 price FOR weekday IN ([Mon], [Tue], [Wed], [Thu], [Fri])
) unpvt;

Result:

http://www.riptutorial.com/ 203

+=======+========+=========+
| item | price | weekday |
+=======+========+=========+
| Item1 | 116 | Mon |
+-------+--------+---------+
| Item1 | 112 | Tue |
+-------+--------+---------+
| Item1 | 117 | Wed |
+-------+--------+---------+
| Item1 | 109 | Thu |
+-------+--------+---------+
| Item1 | 120 | Fri |
+-------+--------+---------+
| Item2 | 227 | Mon |
+-------+--------+---------+
| Item2 | 233 | Tue |
+-------+--------+---------+
| Item2 | 230 | Wed |
+-------+--------+---------+
| Item2 | 228 | Thu |
+-------+--------+---------+
| Item2 | 210 | Fri |
+-------+--------+---------+
| Item3 | 145 | Mon |
+-------+--------+---------+
| Item3 | 158 | Tue |
+-------+--------+---------+
| Item3 | 152 | Wed |
+-------+--------+---------+
| Item3 | 145 | Thu |
+-------+--------+---------+
| Item3 | 125 | Fri |
+-------+--------+---------+

Simple Pivot - Static Columns

Using Item Sales Table from Example Database, let us calculate and show the total Quantity we
sold of each Product.

This can be easily done with a group by, but lets assume we to 'rotate' our result table in a way
that for each Product Id we have a column.

SELECT [100], [145]
 FROM (SELECT ItemId , Quantity
 FROM #ItemSalesTable
) AS pivotIntermediate
 PIVOT (SUM(Quantity)
 FOR ItemId IN ([100], [145])
) AS pivotTable

Since our 'new' columns are numbers (in the source table), we need to square brackets []

This will give us an output like

http://www.riptutorial.com/ 204

100 145

45 18

Dynamic PIVOT

One problem with the PIVOT query is that you have to specify all values inside the IN selection if
you want to see them as columns. A quick way to circumvent this problem is to create a dynamic
IN selection making your PIVOT dynamic.

For demonstration we will use a table Books in a Bookstore’s database. We assume that the table is
quite de-normalised and has following columns

Table: Books

BookId (Primary Key Column)
Name
Language
NumberOfPages
EditionNumber
YearOfPrint
YearBoughtIntoStore
ISBN
AuthorName
Price
NumberOfUnitsSold

Creation script for the table will be like:

CREATE TABLE [dbo].[BookList](
 [BookId] [int] NOT NULL,
 [Name] [nvarchar](100) NULL,
 [Language] [nvarchar](100) NULL,
 [NumberOfPages] [int] NULL,
 [EditionNumber] [nvarchar](10) NULL,
 [YearOfPrint] [int] NULL,
 [YearBoughtIntoStore] [int] NULL,
[NumberOfBooks] [int] NULL,
[ISBN] [nvarchar](30) NULL,
 [AuthorName] [nvarchar](200) NULL,
 [Price] [money] NULL,
 [NumberOfUnitsSold] [int] NULL,
 CONSTRAINT [PK_BookList] PRIMARY KEY CLUSTERED
(
 [BookId] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS =
ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

GO

Now if we need to query on the database and figure out number of books in English, Russian,
German, Hindi, Latin languages bought into the bookstore every year and present our output in a
small report format, we can use PIVOT query like this

http://www.riptutorial.com/ 205

SELECT * FROM
 (
 SELECT YearBoughtIntoStore AS [Year Bought],[Language], NumberOfBooks
 FROM BookList
) sourceData
 PIVOT
 (
 SUM(NumberOfBooks)
 FOR [Language] IN (English, Russian, German, Hindi, Latin)
) pivotrReport

Special case is when we do not have a full list of the languages, so we'll use dynamic SQL like
below

DECLARE @query VARCHAR(4000)
DECLARE @languages VARCHAR(2000)
SELECT @languages =
 STUFF((SELECT DISTINCT '],['+LTRIM([Language])FROM [dbo].[BookList]
 ORDER BY '],['+LTRIM([Language]) FOR XML PATH('')),1,2,'') + ']'
SET @query=
'SELECT * FROM
 (SELECT YearBoughtIntoStore AS [Year Bought],[Language],NumberOfBooks
 FROM BookList) sourceData
PIVOT(SUM(NumberOfBooks)FOR [Language] IN ('+ @languages +')) pivotrReport' EXECUTE(@query)

Read PIVOT / UNPIVOT online: http://www.riptutorial.com/sql-server/topic/591/pivot---unpivot

http://www.riptutorial.com/ 206

Chapter 70: Primary Keys

Remarks

Primary keys are used to uniquely identify a record in a table. A table may only have a single
primary key (though the primary key can consist of multiple columns), and a primary key is
required for certain types of replication.

Primary keys are often used as (but don't have to be) the clustered index on a table.

Examples

Create table w/ identity column as primary key

 -- Identity primary key - unique arbitrary increment number
 create table person (
 id int identity(1,1) primary key not null,
 firstName varchar(100) not null,
 lastName varchar(100) not null,
 dob DateTime not null,
 ssn varchar(9) not null
)

Create table w/ GUID primary key

 -- GUID primary key - arbitrary unique value for table
 create table person (
 id uniqueIdentifier default (newId()) primary key,
 firstName varchar(100) not null,
 lastName varchar(100) not null,
 dob DateTime not null,
 ssn varchar(9) not null
)

Create table w/ natural key

 -- natural primary key - using an existing piece of data within the table that uniquely
identifies the record
 create table person (
 firstName varchar(100) not null,
 lastName varchar(100) not null,
 dob DateTime not null,
 ssn varchar(9) primary key not null
)

Create table w/ composite key

 -- composite key - using two or more existing columns within a table to create a primary key

http://www.riptutorial.com/ 207

 create table person (
 firstName varchar(100) not null,
 lastName varchar(100) not null,
 dob DateTime not null,
 ssn varchar(9) not null,
 primary key (firstName, lastName, dob)
)

Add primary key to existing table

ALTER TABLE person
 ADD CONSTRAINT pk_PersonSSN PRIMARY KEY (ssn)

Note, if the primary key column (in this case ssn) has more than one row with the same candidate
key, the above statement will fail, as primary key values must be unique.

Delete primary key

ALTER TABLE Person
 DROP CONSTRAINT pk_PersonSSN

Read Primary Keys online: http://www.riptutorial.com/sql-server/topic/4543/primary-keys

http://www.riptutorial.com/ 208

Chapter 71: Privileges or Permissions

Examples

Simple rules

Granting permission to create tables

USE AdventureWorks;
GRANT CREATE TABLE TO MelanieK;
GO

Granting SHOWPLAN permission to an application role

USE AdventureWorks2012;
GRANT SHOWPLAN TO AuditMonitor;
GO

Granting CREATE VIEW with GRANT OPTION

USE AdventureWorks2012;
GRANT CREATE VIEW TO CarmineEs WITH GRANT OPTION;
GO

Granting all rights to a user on a specific database

use YourDatabase
go
exec sp_addrolemember 'db_owner', 'UserName'
go

Read Privileges or Permissions online: http://www.riptutorial.com/sql-server/topic/5333/privileges-
or-permissions

http://www.riptutorial.com/ 209

Chapter 72: Queries with JSON data

Examples

Using values from JSON in query

JSON_VALUE function enables you to take a data from JSON text on the path specified as the
second argument, and use this value in any part of the select query:

select ProductID, Name, Color, Size, Price, JSON_VALUE(Data, '$.Type') as Type
from Product
where JSON_VALUE(Data, '$.Type') = 'part'

Using JSON values in reports

Once JSON values are extracted from JSON text, you can use them ina any part of the query. You
can create some kind of report on JSON data with grouping aggregations, etc:

select JSON_VALUE(Data, '$.Type') as type,
 AVG(cast(JSON_VALUE(Data, '$.ManufacturingCost') as float)) as cost
from Product
group by JSON_VALUE(Data, '$.Type')
having JSON_VALUE(Data, '$.Type') is not null

Filter-out bad JSON text from query results

If some JSON text might not be properly formatted, you can remove those entries from query
using ISJSON function.

select ProductID, Name, Color, Size, Price, JSON_VALUE(Data, '$.Type') as Type
from Product
where JSON_VALUE(Data, '$.Type') = 'part'
and ISJSON(Data) > 0

Update value in JSON column

JSON_MODIFY function can be used to update value on some path. You can use this function to
modify original value of JSON cell in UPDATE statement:

update Product
set Data = JSON_MODIFY(Data, '$.Price', 24.99)
where ProductID = 17;

JSON_MODIFY function will update or create Price key (if it does not exists). If new value is
NULL, the key will be removed. JSON_MODIFY function will treat new value as string (escape
special characters, wrap it with double quotes to create proper JSON string). If your new value is
JSON fragment, you should wrap it with JSON_QUERY function:

http://www.riptutorial.com/ 210

update Product
set Data = JSON_MODIFY(Data, '$.tags', JSON_QUERY('["promo","new"]'))
where ProductID = 17;

JSON_QUERY function without second parameter behaves like a "cast to JSON". Since the result
of JSON_QUERY is valid JSON fragment (object or array), JSON_MODIFY will no escape this
value when modifies input JSON.

Append new value into JSON array

JSON_MODIFY function can be used to append new value to some array inside JSON:

update Product
set Data = JSON_MODIFY(Data, 'append $.tags', "sales")
where ProductID = 17;

New value will be appended at the end of the array, or a new array with value ["sales"] will be
created. JSON_MODIFY function will treat new value as string (escape special characters, wrap it
with double quotes to create proper JSON string). If your new value is JSON fragment, you should
wrap it with JSON_QUERY function:

update Product
set Data = JSON_MODIFY(Data, 'append $.tags', JSON_QUERY('{"type":"new"}'))
where ProductID = 17;

JSON_QUERY function without second parameter behaves like a "cast to JSON". Since the result
of JSON_QUERY is valid JSON fragment (object or array), JSON_MODIFY will no escape this
value when modifies input JSON.

JOIN table with inner JSON collection

If you have a "child table" formatted as JSON collection and stored in-row as JSON column, you
can unpack this collection, transform it to table and join it with parent row. Instead of the standard
JOIN operator, you should use CROSS APPLY. In this example, product parts are formatted as
collection of JSON objects in and stored in Data column:

select ProductID, Name, Size, Price, Quantity, PartName, Code
from Product
 CROSS APPLY OPENJSON(Data, '$.Parts') WITH (PartName varchar(20), Code varchar(5))

Result of the query is equivalent to the join between Product and Part tables.

Finding rows that contain value in the JSON array

In this example, Tags array may contain various keywords like ["promo", "sales"], so we can open
this array and filter values:

select ProductID, Name, Color, Size, Price, Quantity
from Product

http://www.riptutorial.com/ 211

 CROSS APPLY OPENJSON(Data, '$.Tags')
where value = 'sales'

OPENJSON will open inner collection of tags and return it as table. Then we can filter results by
some value in the table.

Read Queries with JSON data online: http://www.riptutorial.com/sql-server/topic/5028/queries-
with-json-data

http://www.riptutorial.com/ 212

Chapter 73: Query Hints

Examples

INDEX Hints

Index hints are used to force a query to use a specific index, instead of allowing SQL Server's
Query Optimizer to choose what it deems the best index. In some cases you may gain benefits by
specifying the index a query must use. Usually SQL Server's Query Optimizer chooses the best
index suited for the query, but due to missing/outdated statistics or specific needs you can force it.

SELECT *
FROM mytable WITH (INDEX (ix_date))
WHERE field1 > 0
 AND CreationDate > '20170101'

JOIN Hints

When you join two tables, SQL Server query optimizer (QO) can choose different types of joins
that will be used in query:

HASH join•
LOOP join•
MERGE join•

QO will explore plans and choose the optimal operator for joining tables. However, if you are sure
that you know what would be the optimal join operator, you can specify what kind of JOIN should
be used. Inner LOOP join will force QO to choose Nested loop join while joining two tables:

select top 100 *
from Sales.Orders o
 inner loop join Sales.OrderLines ol
 on o.OrderID = ol.OrderID

inner merge join will force MERGE join operator:

select top 100 *
from Sales.Orders o
 inner merge join Sales.OrderLines ol
 on o.OrderID = ol.OrderID

inner hash join will force HASH join operator:

select top 100 *
from Sales.Orders o
 inner hash join Sales.OrderLines ol
 on o.OrderID = ol.OrderID

http://www.riptutorial.com/ 213

GROUP BY Hints

When you use GROUP BY clause, SQL Server query optimizer (QO) can choose different types of
grouping operators:

HASH Aggregate that creates hash-map for grouping entries•
Stream Aggregate that works well with pre-ordered inputs•

You can explicitly require that QO picks one or another aggregate operator if you know what would
be the optimal. With OPTION (ORDER GROUP), QO will always choose Stream aggregate and
add Sort operator in front of Stream aggregate if input is not sorted:

select OrderID, AVG(Quantity)
from Sales.OrderLines
group by OrderID
OPTION (ORDER GROUP)

With OPTION (HASH GROUP), QO will always choose Hash aggregate :

select OrderID, AVG(Quantity)
from Sales.OrderLines
group by OrderID
OPTION (HASH GROUP)

FAST rows hint

Specifies that the query is optimized for fast retrieval of the first number_rows. This is a
nonnegative integer. After the first number_rows are returned, the query continues execution and
produces its full result set.

select OrderID, AVG(Quantity)
from Sales.OrderLines
group by OrderID
OPTION (FAST 20)

UNION hints

When you use UNION operator on two query results, Query optimizer (QO) can use following
operators to create a union of two result sets:

Merge (Union)•
Concat (Union)•
Hash Match (Union)•

You can explicitly specify what operator should be used using OPTION() hint:

select OrderID, OrderDate, ExpectedDeliveryDate, Comments
from Sales.Orders
where OrderDate > DATEADD(day, -1, getdate())
UNION

http://www.riptutorial.com/ 214

select PurchaseOrderID as OrderID, OrderDate, ExpectedDeliveryDate, Comments
from Purchasing.PurchaseOrders
where OrderDate > DATEADD(day, -1, getdate())
OPTION(HASH UNION)
-- or OPTION(CONCAT UNION)
-- or OPTION(MERGE UNION)

MAXDOP Option

Specifies the max degree of parallelism for the query specifying this option.

SELECT OrderID,
 AVG(Quantity)
FROM Sales.OrderLines
GROUP BY OrderID
OPTION (MAXDOP 2);

This option overrides the MAXDOP configuration option of sp_configure and Resource Governor.
If MAXDOP is set to zero then the server chooses the max degree of parallelism.

Read Query Hints online: http://www.riptutorial.com/sql-server/topic/6881/query-hints

http://www.riptutorial.com/ 215

Chapter 74: Query Store

Examples

Enable query store on database

Query store can be enabled on database by using the following command:

ALTER DATABASE tpch SET QUERY_STORE = ON

SQL Server/Azure SQL Database will collect information about executed queries and provide
information in sys.query_store views:

sys.query_store_query•
sys.query_store_query_text•
sys.query_store_plan•
sys.query_store_runtime_stats•
sys.query_store_runtime_stats_interval•
sys.database_query_store_options•
sys.query_context_settings•

Get execution statistics for SQL queries/plans

The following query will return informationa about qeries, their plans and average statistics
regarding their duration, CPU time, physical and logical io reads.

SELECT Txt.query_text_id, Txt.query_sql_text, Pl.plan_id,
 avg_duration, avg_cpu_time,
 avg_physical_io_reads, avg_logical_io_reads
FROM sys.query_store_plan AS Pl
JOIN sys.query_store_query AS Qry
 ON Pl.query_id = Qry.query_id
JOIN sys.query_store_query_text AS Txt
 ON Qry.query_text_id = Txt.query_text_id
JOIN sys.query_store_runtime_stats Stats
 ON Pl.plan_id = Stats.plan_id

Remove data from query store

If you want to remove some query or query plan from query store, you can use the following
commands:

EXEC sp_query_store_remove_query 4;
EXEC sp_query_store_remove_plan 3;

Parameters for these stored procedures are query/plan id retrieved from system views.

http://www.riptutorial.com/ 216

You can also just remove execution statistics for particular plan without removing the plan from the
store:

EXEC sp_query_store_reset_exec_stats 3;

Parameter provided to this procedure plan id.

Forcing plan for query

SQL Query optimizer will choose the baes possible plan that he can find for some query. If you
can find some plan that works optimally for some query, you can force QO to always use that plan
using the following stored procedure:

EXEC sp_query_store_unforce_plan @query_id, @plan_id

From this point, QO will always use plan provided for the query.

If you want to remove this binding, you can use the following stored procedure:

EXEC sp_query_store_force_plan @query_id, @plan_id

From this point, QO will again try to find the best plan.

Read Query Store online: http://www.riptutorial.com/sql-server/topic/7349/query-store

http://www.riptutorial.com/ 217

Chapter 75: Querying results by page

Examples

Row_Number()

SELECT Row_Number() OVER(ORDER BY UserName) As RowID, UserFirstName, UserLastName
FROM Users

From which it will yield a result set with a RowID field which you can use to page between.

SELECT *
FROM
 (SELECT Row_Number() OVER(ORDER BY UserName) As RowID, UserFirstName, UserLastName
 FROM Users
) As RowResults
WHERE RowID Between 5 AND 10

Read Querying results by page online: http://www.riptutorial.com/sql-server/topic/5803/querying-
results-by-page

http://www.riptutorial.com/ 218

Chapter 76: Ranking Functions

Syntax

DENSE_RANK () OVER ([<partition_by_clause>] < order_by_clause >)•
RANK () OVER ([partition_by_clause] order_by_clause)•

Parameters

Arguments Details

<partition_by_clause>
Divides the result set produced by the FROM clause into partitions
to which the DENSE_RANK function is applied. For the PARTITION BY
syntax, see OVER Clause (Transact-SQL).

<order_by_clause>
Determines the order in which the DENSE_RANK function is applied to
the rows in a partition.

OVER ([
partition_by_clause]
order_by_clause)

partition_by_clause divides the result set produced by the FROM
clause into partitions to which the function is applied. If not
specified, the function treats all rows of the query result set as a
single group. order_by_clause determines the order of the data
before the function is applied. The order_by_clause is required.
The <rows or range clause> of the OVER clause cannot be specified
for the RANK function. For more information, see OVER Clause
(Transact-SQL).

Remarks

If two or more rows tie for a rank in the same partition, each tied rows receives the same rank. For
example, if the two top salespeople have the same SalesYTD value, they are both ranked one.
The salesperson with the next highest SalesYTD is ranked number two. This is one more than the
number of distinct rows that come before this row. Therefore, the numbers returned by the
DENSE_RANK function do not have gaps and always have consecutive ranks.

The sort order used for the whole query determines the order in which the rows appear in a result.
This implies that a row ranked number one does not have to be the first row in the partition.

DENSE_RANK is nondeterministic. For more information, see Deterministic and Nondeterministic
Functions.

Examples

http://www.riptutorial.com/ 219

RANK()

A RANK() Returns the rank of each row in the result set of partitioned column.

Eg :

Select Studentid,Name,Subject,Marks,
RANK() over(partition by name order by Marks desc)Rank
From Exam
order by name,subject

 Studentid Name Subject Marks Rank

 101 Ivan Maths 70 2
 101 Ivan Science 80 1
 101 Ivan Social 60 3
 102 Ryan Maths 60 2
 102 Ryan Science 50 3
 102 Ryan Social 70 1
 103 Tanvi Maths 90 1
 103 Tanvi Science 90 1
 103 Tanvi Social 80 3

DENSE_RANK ()

Same as that of RANK(). It returns rank without any gaps:

Select Studentid, Name,Subject,Marks,
DENSE_RANK() over(partition by name order by Marks desc)Rank
From Exam
order by name

Studentid Name Subject Marks Rank
101 Ivan Science 80 1
101 Ivan Maths 70 2
101 Ivan Social 60 3
102 Ryan Social 70 1
102 Ryan Maths 60 2
102 Ryan Science 50 3
103 Tanvi Maths 90 1
103 Tanvi Science 90 1
103 Tanvi Social 80 2

Read Ranking Functions online: http://www.riptutorial.com/sql-server/topic/5031/ranking-functions

http://www.riptutorial.com/ 220

Chapter 77: Resource Governor

Remarks

Resource Governor in SQL Server is a feature that allows you to manage resource usage by
different applications and users. It kicks in realtime by setting CPU and memory limits. It will help
preventing that one heavy process will eat up all system resources while for example smaller tasks
are awaiting them.

Only available in Enterprise Editions

Examples

Reading the Statistics

select *
from sys.dm_resource_governor_workload_groups

select *
from sys.dm_resource_governor_resource_pools

Create a pool for adhoc queries

First create a resource pool besides the default one

CREATE RESOURCE POOL [PoolAdhoc] WITH(min_cpu_percent=0,
 max_cpu_percent=50,
 min_memory_percent=0,
 max_memory_percent=50)
GO

Create the worload group for the pool

CREATE WORKLOAD GROUP [AdhocMedium] WITH(importance=Medium) USING [PoolAdhoc]

Create the function that contains the logic for the resource governor and attach it

create function [dbo].[ufn_ResourceGovernorClassifier]()
 returns sysname with schemabinding
as
begin
 return CASE
 WHEN APP_NAME() LIKE 'Microsoft Office%' THEN
'AdhocMedium' -- Excel
 WHEN APP_NAME() LIKE 'Microsoft SQL Server Management Studio%' THEN
'AdhocMedium' -- Adhoc SQL
 WHEN SUSER_NAME() LIKE 'DOMAIN\username' THEN 'AdhocMedium'
-- Ssis
 ELSE 'default'

http://www.riptutorial.com/ 221

 END
end

GO

alter resource governor
with (classifier_function = dbo.ufn_ResourceGovernorClassifier)

GO

alter resource governor reconfigure

GO

Read Resource Governor online: http://www.riptutorial.com/sql-server/topic/4146/resource-
governor

http://www.riptutorial.com/ 222

Chapter 78: Retrieve information about the
database

Remarks

As with other relational database systems, SQL Server exposes metadata about your databases.

This is provided through the ISO Standard INFORMATION_SCHEMA schema, or the SQL Server-specific
sys catalog views.

Examples

Find every mention of a field in the database

SELECT DISTINCT
 o.name AS Object_Name,o.type_desc
 FROM sys.sql_modules m
 INNER JOIN sys.objects o ON m.object_id=o.object_id
 WHERE m.definition Like '%myField%'
 ORDER BY 2,1

Will find mentions of myField in SProcs, Views, etc.

Get all schemas, tables, columns and indexes

SELECT
 s.name AS [schema],
 t.object_id AS [table_object_id],
 t.name AS [table_name],
 c.column_id,
 c.name AS [column_name],
 i.name AS [index_name],
 i.type_desc AS [index_type]
FROM sys.schemas AS s
INNER JOIN sys.tables AS t
 ON s.schema_id = t.schema_id
INNER JOIN sys.columns AS c
 ON t.object_id = c.object_id
LEFT JOIN sys.index_columns AS ic
 ON c.object_id = ic.object_id and c.column_id = ic.column_id
LEFT JOIN sys.indexes AS i
 ON ic.object_id = i.object_id and ic.index_id = i.index_id
ORDER BY [schema], [table_name], c.column_id;

Return a list of SQL Agent jobs, with schedule information

USE msdb
Go

http://www.riptutorial.com/ 223

SELECT dbo.sysjobs.Name AS 'Job Name',
 'Job Enabled' = CASE dbo.sysjobs.Enabled
 WHEN 1 THEN 'Yes'
 WHEN 0 THEN 'No'
 END,
 'Frequency' = CASE dbo.sysschedules.freq_type
 WHEN 1 THEN 'Once'
 WHEN 4 THEN 'Daily'
 WHEN 8 THEN 'Weekly'
 WHEN 16 THEN 'Monthly'
 WHEN 32 THEN 'Monthly relative'
 WHEN 64 THEN 'When SQLServer Agent starts'
 END,
 'Start Date' = CASE active_start_date
 WHEN 0 THEN null
 ELSE
 substring(convert(varchar(15),active_start_date),1,4) + '/' +
 substring(convert(varchar(15),active_start_date),5,2) + '/' +
 substring(convert(varchar(15),active_start_date),7,2)
 END,
 'Start Time' = CASE len(active_start_time)
 WHEN 1 THEN cast('00:00:0' + right(active_start_time,2) as char(8))
 WHEN 2 THEN cast('00:00:' + right(active_start_time,2) as char(8))
 WHEN 3 THEN cast('00:0'
 + Left(right(active_start_time,3),1)
 +':' + right(active_start_time,2) as char (8))
 WHEN 4 THEN cast('00:'
 + Left(right(active_start_time,4),2)
 +':' + right(active_start_time,2) as char (8))
 WHEN 5 THEN cast('0'
 + Left(right(active_start_time,5),1)
 +':' + Left(right(active_start_time,4),2)
 +':' + right(active_start_time,2) as char (8))
 WHEN 6 THEN cast(Left(right(active_start_time,6),2)
 +':' + Left(right(active_start_time,4),2)
 +':' + right(active_start_time,2) as char (8))
 END,

 CASE len(run_duration)
 WHEN 1 THEN cast('00:00:0'
 + cast(run_duration as char) as char (8))
 WHEN 2 THEN cast('00:00:'
 + cast(run_duration as char) as char (8))
 WHEN 3 THEN cast('00:0'
 + Left(right(run_duration,3),1)
 +':' + right(run_duration,2) as char (8))
 WHEN 4 THEN cast('00:'
 + Left(right(run_duration,4),2)
 +':' + right(run_duration,2) as char (8))
 WHEN 5 THEN cast('0'
 + Left(right(run_duration,5),1)
 +':' + Left(right(run_duration,4),2)
 +':' + right(run_duration,2) as char (8))
 WHEN 6 THEN cast(Left(right(run_duration,6),2)
 +':' + Left(right(run_duration,4),2)
 +':' + right(run_duration,2) as char (8))
 END as 'Max Duration',
 CASE(dbo.sysschedules.freq_subday_interval)
 WHEN 0 THEN 'Once'

http://www.riptutorial.com/ 224

 ELSE cast('Every '
 + right(dbo.sysschedules.freq_subday_interval,2)
 + ' '
 + CASE(dbo.sysschedules.freq_subday_type)
 WHEN 1 THEN 'Once'
 WHEN 4 THEN 'Minutes'
 WHEN 8 THEN 'Hours'
 END as char(16))
 END as 'Subday Frequency'
FROM dbo.sysjobs
LEFT OUTER JOIN dbo.sysjobschedules
ON dbo.sysjobs.job_id = dbo.sysjobschedules.job_id
INNER JOIN dbo.sysschedules ON dbo.sysjobschedules.schedule_id = dbo.sysschedules.schedule_id
LEFT OUTER JOIN (SELECT job_id, max(run_duration) AS run_duration
 FROM dbo.sysjobhistory
 GROUP BY job_id) Q1
ON dbo.sysjobs.job_id = Q1.job_id
WHERE Next_run_time = 0

UNION

SELECT dbo.sysjobs.Name AS 'Job Name',
 'Job Enabled' = CASE dbo.sysjobs.Enabled
 WHEN 1 THEN 'Yes'
 WHEN 0 THEN 'No'
 END,
 'Frequency' = CASE dbo.sysschedules.freq_type
 WHEN 1 THEN 'Once'
 WHEN 4 THEN 'Daily'
 WHEN 8 THEN 'Weekly'
 WHEN 16 THEN 'Monthly'
 WHEN 32 THEN 'Monthly relative'
 WHEN 64 THEN 'When SQLServer Agent starts'
 END,
 'Start Date' = CASE next_run_date
 WHEN 0 THEN null
 ELSE
 substring(convert(varchar(15),next_run_date),1,4) + '/' +
 substring(convert(varchar(15),next_run_date),5,2) + '/' +
 substring(convert(varchar(15),next_run_date),7,2)
 END,
 'Start Time' = CASE len(next_run_time)
 WHEN 1 THEN cast('00:00:0' + right(next_run_time,2) as char(8))
 WHEN 2 THEN cast('00:00:' + right(next_run_time,2) as char(8))
 WHEN 3 THEN cast('00:0'
 + Left(right(next_run_time,3),1)
 +':' + right(next_run_time,2) as char (8))
 WHEN 4 THEN cast('00:'
 + Left(right(next_run_time,4),2)
 +':' + right(next_run_time,2) as char (8))
 WHEN 5 THEN cast('0' + Left(right(next_run_time,5),1)
 +':' + Left(right(next_run_time,4),2)
 +':' + right(next_run_time,2) as char (8))
 WHEN 6 THEN cast(Left(right(next_run_time,6),2)
 +':' + Left(right(next_run_time,4),2)
 +':' + right(next_run_time,2) as char (8))
 END,

 CASE len(run_duration)
 WHEN 1 THEN cast('00:00:0'
 + cast(run_duration as char) as char (8))

http://www.riptutorial.com/ 225

 WHEN 2 THEN cast('00:00:'
 + cast(run_duration as char) as char (8))
 WHEN 3 THEN cast('00:0'
 + Left(right(run_duration,3),1)
 +':' + right(run_duration,2) as char (8))
 WHEN 4 THEN cast('00:'
 + Left(right(run_duration,4),2)
 +':' + right(run_duration,2) as char (8))
 WHEN 5 THEN cast('0'
 + Left(right(run_duration,5),1)
 +':' + Left(right(run_duration,4),2)
 +':' + right(run_duration,2) as char (8))
 WHEN 6 THEN cast(Left(right(run_duration,6),2)
 +':' + Left(right(run_duration,4),2)
 +':' + right(run_duration,2) as char (8))
 END as 'Max Duration',
 CASE(dbo.sysschedules.freq_subday_interval)
 WHEN 0 THEN 'Once'
 ELSE cast('Every '
 + right(dbo.sysschedules.freq_subday_interval,2)
 + ' '
 + CASE(dbo.sysschedules.freq_subday_type)
 WHEN 1 THEN 'Once'
 WHEN 4 THEN 'Minutes'
 WHEN 8 THEN 'Hours'
 END as char(16))
 END as 'Subday Frequency'
FROM dbo.sysjobs
LEFT OUTER JOIN dbo.sysjobschedules ON dbo.sysjobs.job_id = dbo.sysjobschedules.job_id
INNER JOIN dbo.sysschedules ON dbo.sysjobschedules.schedule_id = dbo.sysschedules.schedule_id
LEFT OUTER JOIN (SELECT job_id, max(run_duration) AS run_duration
 FROM dbo.sysjobhistory
 GROUP BY job_id) Q1
ON dbo.sysjobs.job_id = Q1.job_id
WHERE Next_run_time <> 0

ORDER BY [Start Date],[Start Time]

Retrieve information on backup and restore operations

To get the list of all backup operations performed on the current database instance:

SELECT sdb.Name AS DatabaseName,
 COALESCE(CONVERT(VARCHAR(50), bus.backup_finish_date, 120),'-') AS LastBackUpDateTime
FROM sys.sysdatabases sdb
 LEFT OUTER JOIN msdb.dbo.backupset bus ON bus.database_name = sdb.name
ORDER BY sdb.name, bus.backup_finish_date DESC

To get the list of all restore operations performed on the current database instance:

SELECT
 [d].[name] AS database_name,
 [r].restore_date AS last_restore_date,
 [r].[user_name],
 [bs].[backup_finish_date] AS backup_creation_date,
 [bmf].[physical_device_name] AS [backup_file_used_for_restore]
FROM master.sys.databases [d]
 LEFT OUTER JOIN msdb.dbo.[restorehistory] r ON r.[destination_database_name] = d.Name

http://www.riptutorial.com/ 226

 INNER JOIN msdb.dbo.backupset [bs] ON [r].[backup_set_id] = [bs].[backup_set_id]
 INNER JOIN msdb.dbo.backupmediafamily bmf ON [bs].[media_set_id] = [bmf].[media_set_id]
ORDER BY [d].[name], [r].restore_date DESC

Count the Number of Tables in a Database

This query will return the number of tables in the specified database.

USE YourDatabaseName
SELECT COUNT(*) from INFORMATION_SCHEMA.TABLES
WHERE TABLE_TYPE = 'BASE TABLE'

Following is another way this can be done for all user tables with SQL Server 2008+. The
reference is here.

SELECT COUNT(*) FROM sys.tables

Retrieve a List of all Stored Procedures

The following queries will return a list of all Stored Procedures in the database, with basic
information about each Stored Procedure:

SQL Server 2005

SELECT *
FROM INFORMATION_SCHEMA.ROUTINES
WHERE ROUTINE_TYPE = 'PROCEDURE'

The ROUTINE_NAME, ROUTINE_SCHEMA and ROUTINE_DEFINITION columns are generally the most useful.

SQL Server 2005

SELECT *
FROM sys.objects
WHERE type = 'P'

SQL Server 2005

SELECT *
FROM sys.procedures

Note that this version has an advantage over selecting from sys.objects since it includes the
additional columns is_auto_executed, is_execution_replicated, is_repl_serializable, and
skips_repl_constraints.

SQL Server 2005

SELECT *
FROM sysobjects
WHERE type = 'P'

http://www.riptutorial.com/ 227

Note that the output contains many columns that will never relate to a stored procedure.

The next set of queries will return all Stored Procedures in the database that include the string
'SearchTerm':

SQL Server 2005

SELECT o.name
FROM syscomments c
INNER JOIN sysobjects o
 ON c.id=o.id
WHERE o.xtype = 'P'
 AND c.TEXT LIKE '%SearchTerm%'

SQL Server 2005

SELECT p.name
FROM sys.sql_modules AS m
INNER JOIN sys.procedures AS p
 ON m.object_id = p.object_id
WHERE definition LIKE '%SearchTerm%'

Get the list of all databases on a server

Method 1: Below query will be applicable for SQL Server 2000+ version (Contains 12 columns)

SELECT * FROM dbo.sysdatabases

Method 2: Below query extract information about databases with more informations (ex: State,
Isolation, recovery model etc.)

Note: This is a catalog view and will be available SQL SERVER 2005+ versions

SELECT * FROM sys.databases

Method 3: To see just database names you can use undocumented sp_MSForEachDB

EXEC sp_MSForEachDB 'SELECT ''?'' AS DatabaseName'

Method 4: Below SP will help you to provide database size along with databases name , owner,
status etc. on the server

EXEC sp_helpdb

Method 5 Similarly, below stored procedure will give database name, database size and Remarks

EXEC sp_databases

Database Files

http://www.riptutorial.com/ 228

Display all data files for all databases with size and growth info

SELECT d.name AS 'Database',
 d.database_id,
 SF.fileid,
 SF.name AS 'LogicalFileName',
 CASE SF.status & 0x100000
 WHEN 1048576 THEN 'Percentage'
 WHEN 0 THEN 'MB'
 END AS 'FileGrowthOption',
 Growth AS GrowthUnit,
 ROUND(((CAST(Size AS FLOAT)*8)/1024)/1024,2) [SizeGB], -- Convert 8k pages to GB
 Maxsize,
 filename AS PhysicalFileName

FROM Master.SYS.SYSALTFILES SF
Join Master.SYS.Databases d on sf.fileid = d.database_id

Order by d.name

Show Size of All Tables in Current Database

SELECT
 s.name + '.' + t.NAME AS TableName,
 SUM(a.used_pages)*8 AS 'TableSizeKB' --a page in SQL Server is 8kb
FROM sys.tables t
 JOIN sys.schemas s on t.schema_id = s.schema_id
 LEFT JOIN sys.indexes i ON t.OBJECT_ID = i.object_id
 LEFT JOIN sys.partitions p ON i.object_id = p.OBJECT_ID AND i.index_id = p.index_id
 LEFT JOIN sys.allocation_units a ON p.partition_id = a.container_id
GROUP BY
 s.name, t.name
ORDER BY
 --Either sort by name:
 s.name + '.' + t.NAME
 --Or sort largest to smallest:
 --SUM(a.used_pages) desc

Retrieve Database Options

The following query returns the database options and metadata:

select * from sys.databases WHERE name = 'MyDatabaseName';

Retrieve Tables Containing Known Column

This query will return all COLUMNS and their associated TABLES for a given column name. It is
designed to show you what tables (unknown) contain a specified column (known)

SELECT
 c.name AS ColName,
 t.name AS TableName
FROM
 sys.columns c

http://www.riptutorial.com/ 229

 JOIN sys.tables t ON c.object_id = t.object_id
WHERE
 c.name LIKE '%MyName%'

Determine a Windows Login's Permission Path

This will show the user type and permission path (which windows group the user is getting its
permissions from).

xp_logininfo 'DOMAIN\user'

See if Enterprise-specific features are being used

It is sometimes useful to verify that your work on Developer edition hasn't introduced a
dependency on any features restricted to Enterprise edition.

You can do this using the sys.dm_db_persisted_sku_features system view, like so:

SELECT * FROM sys.dm_db_persisted_sku_features

Against the database itself.

This will list the features being used, if any.

Search and Return All Tables and Columns Containing a Specified Column
Value

This script, from here and here, will return all Tables and Columns where a specified value exists.
This is powerful in finding out where a certain value is in a database. It can be taxing, so it is
suggested that it be executed in a backup / test enviroment first.

DECLARE @SearchStr nvarchar(100)
SET @SearchStr = '## YOUR STRING HERE ##'

 -- Copyright © 2002 Narayana Vyas Kondreddi. All rights reserved.
 -- Purpose: To search all columns of all tables for a given search string
 -- Written by: Narayana Vyas Kondreddi
 -- Site: http://vyaskn.tripod.com
 -- Updated and tested by Tim Gaunt
 -- http://www.thesitedoctor.co.uk
 --
http://blogs.thesitedoctor.co.uk/tim/2010/02/19/Search+Every+Table+And+Field+In+A+SQL+Server+Database+Updated.aspx

 -- Tested on: SQL Server 7.0, SQL Server 2000, SQL Server 2005 and SQL Server 2010
 -- Date modified: 03rd March 2011 19:00 GMT
 CREATE TABLE #Results (ColumnName nvarchar(370), ColumnValue nvarchar(3630))

 SET NOCOUNT ON

 DECLARE @TableName nvarchar(256), @ColumnName nvarchar(128), @SearchStr2 nvarchar(110)
 SET @TableName = ''

http://www.riptutorial.com/ 230

 SET @SearchStr2 = QUOTENAME('%' + @SearchStr + '%','''')

 WHILE @TableName IS NOT NULL

 BEGIN
 SET @ColumnName = ''
 SET @TableName =
 (
 SELECT MIN(QUOTENAME(TABLE_SCHEMA) + '.' + QUOTENAME(TABLE_NAME))
 FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_TYPE = 'BASE TABLE'
 AND QUOTENAME(TABLE_SCHEMA) + '.' + QUOTENAME(TABLE_NAME) > @TableName
 AND OBJECTPROPERTY(
 OBJECT_ID(
 QUOTENAME(TABLE_SCHEMA) + '.' + QUOTENAME(TABLE_NAME)
), 'IsMSShipped'
) = 0
)

 WHILE (@TableName IS NOT NULL) AND (@ColumnName IS NOT NULL)

 BEGIN
 SET @ColumnName =
 (
 SELECT MIN(QUOTENAME(COLUMN_NAME))
 FROM INFORMATION_SCHEMA.COLUMNS
 WHERE TABLE_SCHEMA = PARSENAME(@TableName, 2)
 AND TABLE_NAME = PARSENAME(@TableName, 1)
 AND DATA_TYPE IN ('char', 'varchar', 'nchar', 'nvarchar', 'int',
'decimal')
 AND QUOTENAME(COLUMN_NAME) > @ColumnName
)

 IF @ColumnName IS NOT NULL

 BEGIN
 INSERT INTO #Results
 EXEC
 (
 'SELECT ''' + @TableName + '.' + @ColumnName + ''', LEFT(' + @ColumnName +
', 3630) FROM ' + @TableName + ' (NOLOCK) ' +
 ' WHERE ' + @ColumnName + ' LIKE ' + @SearchStr2
)
 END
 END
 END

 SELECT ColumnName, ColumnValue FROM #Results

DROP TABLE #Results
- See more at: http://thesitedoctor.co.uk/blog/search-every-table-and-field-in-a-sql-server-
database-updated#sthash.bBEqfJVZ.dpuf

Read Retrieve information about the database online: http://www.riptutorial.com/sql-
server/topic/697/retrieve-information-about-the-database

http://www.riptutorial.com/ 231

Chapter 79: Retrieve Information about your
Instance

Examples

Retrieve Local and Remote Servers

To retrieve a list of all servers registered on the instance:

EXEC sp_helpserver;

Get information on current sessions and query executions

sp_who2

This procedure can be used to find information on current SQL server sessions. Since it is a
procedure, it's often helpful to store the results into a temporary table or table variable so one can
order, filter, and transform the results as needed.

The below can be used for a queryable version of sp_who2:

-- Create a variable table to hold the results of sp_who2 for querying purposes

DECLARE @who2 TABLE (
 SPID INT NULL,
 Status VARCHAR(1000) NULL,
 Login SYSNAME NULL,
 HostName SYSNAME NULL,
 BlkBy SYSNAME NULL,
 DBName SYSNAME NULL,
 Command VARCHAR(8000) NULL,
 CPUTime INT NULL,
 DiskIO INT NULL,
 LastBatch VARCHAR(250) NULL,
 ProgramName VARCHAR(250) NULL,
 SPID2 INT NULL, -- a second SPID for some reason...?
 REQUESTID INT NULL
)

INSERT INTO @who2
EXEC sp_who2

SELECT *
FROM @who2 w
WHERE 1=1

Examples:

-- Find specific user sessions:

http://www.riptutorial.com/ 232

SELECT *
FROM @who2 w
WHERE 1=1
 and login = 'userName'

-- Find longest CPUTime queries:
SELECT top 5 *
FROM @who2 w
WHERE 1=1
order by CPUTime desc

Information about SQL Server version

To discover SQL Server's edition, product level and version number as well as the host machine
name and the server type:

SELECT SERVERPROPERTY('MachineName') AS Host,
 SERVERPROPERTY('InstanceName') AS Instance,
 DB_NAME() AS DatabaseContext,
 SERVERPROPERTY('Edition') AS Edition,
 SERVERPROPERTY('ProductLevel') AS ProductLevel,
 CASE SERVERPROPERTY('IsClustered')
 WHEN 1 THEN 'CLUSTERED'
 ELSE 'STANDALONE' END AS ServerType,
 @@VERSION AS VersionNumber;

Retrieve Edition and Version of Instance

SELECT SERVERPROPERTY('ProductVersion') AS ProductVersion,
 SERVERPROPERTY('ProductLevel') AS ProductLevel,
 SERVERPROPERTY('Edition') AS Edition,
 SERVERPROPERTY('EngineEdition') AS EngineEdition;

Retrieve Instance Uptime in Days

SELECT DATEDIFF(DAY, login_time, getdate()) UpDays
FROM master..sysprocesses
WHERE spid = 1

General Information about Databases, Tables, Stored procedures and how to
search them.

Query to search last executed sp's in db

SELECT execquery.last_execution_time AS [Date Time], execsql.text AS [Script]
FROM sys.dm_exec_query_stats AS execquery
CROSS APPLY sys.dm_exec_sql_text(execquery.sql_handle) AS execsql
ORDER BY execquery.last_execution_time DESC

Query to search through Stored procedures

http://www.riptutorial.com/ 233

SELECT o.type_desc AS ROUTINE_TYPE,o.[name] AS ROUTINE_NAME,
m.definition AS ROUTINE_DEFINITION
FROM sys.sql_modules AS m INNER JOIN sys.objects AS o
ON m.object_id = o.object_id WHERE m.definition LIKE '%Keyword%'
order by ROUTINE_NAME

Query to Find Column From All Tables of Database

SELECT t.name AS table_name,
SCHEMA_NAME(schema_id) AS schema_name,
c.name AS column_name
FROM sys.tables AS t
INNER JOIN sys.columns c ON t.OBJECT_ID = c.OBJECT_ID
where c.name like 'Keyword%'
ORDER BY schema_name, table_name;

Query to to check restore details

WITH LastRestores AS
(
SELECT
 DatabaseName = [d].[name] ,
 [d].[create_date] ,
 [d].[compatibility_level] ,
 [d].[collation_name] ,
 r.*,
 RowNum = ROW_NUMBER() OVER (PARTITION BY d.Name ORDER BY r.[restore_date] DESC)
FROM master.sys.databases d
LEFT OUTER JOIN msdb.dbo.[restorehistory] r ON r.[destination_database_name] = d.Name
)
SELECT *
FROM [LastRestores]
WHERE [RowNum] = 1

Query to to find the log

select top 100 * from databaselog
Order by Posttime desc

Query to to check the Sps details

SELECT name, create_date, modify_date
FROM sys.objects
WHERE type = 'P'
Order by modify_date desc

Read Retrieve Information about your Instance online: http://www.riptutorial.com/sql-
server/topic/2029/retrieve-information-about-your-instance

http://www.riptutorial.com/ 234

Chapter 80: Row-level security

Examples

RLS filter predicate

Sql Server 2016+ and Azure Sql database enables you to automatically filter rows that are
returned in select statement using some predicate. This feature is called Row-level security.

First, you need a table-valued function that contains some predicate that describes what it the
condition that will allow users to read data from some table:

DROP FUNCTION IF EXISTS dbo.pUserCanAccessCompany
GO
CREATE FUNCTION

dbo.pUserCanAccessCompany(@CompanyID int)

 RETURNS TABLE
 WITH SCHEMABINDING
AS RETURN (
 SELECT 1 as canAccess WHERE

 CAST(SESSION_CONTEXT(N'CompanyID') as int) = @CompanyID

)

In this example, the predicate says that only users that have a value in SESSION_CONTEXT that
is matching input argument can access the company. You can put any other condition e.g. that
checks database role or database_id of the current user, etc.

Most of the code above is a template that you will copy-paste. The only thing that will
change here is the name and arguments of predicate and condition in WHERE clause.
Now you create security policy that will apply this predicate on some table.

Now you can create security policy that will apply predicate on some table:

CREATE SECURITY POLICY dbo.CompanyAccessPolicy
 ADD FILTER PREDICATE dbo.pUserCanAccessCompany(CompanyID) ON dbo.Company
 WITH (State=ON)

This security policy assigns predicate to company table. Whenever someone tries to read data
from Company table , security policy will apply predicate on each row, pass CompanyID column
as a parameter of the predicate, and predicate will evaluate should this row be returned in the
result of SELECT query.

Altering RLS security policy

Security policy is a group of predicates associated to tables that can be managed together. You

http://www.riptutorial.com/ 235

can add, or remove predicates or turn on/off entire policy.

You can add more predicates on tables in the existing security policy.

ALTER SECURITY POLICY dbo.CompanyAccessPolicy
 ADD FILTER PREDICATE dbo.pUserCanAccessCompany(CompanyID) ON dbo.Company

You can drop some predicates from security policy:

ALTER SECURITY POLICY dbo.CompanyAccessPolicy
 DROP FILTER PREDICATE ON dbo.Company

You can disable security policy

ALTER SECURITY POLICY dbo.CompanyAccessPolicy WITH (STATE = OFF);

You can enable security policy that was disabled:

ALTER SECURITY POLICY dbo.CompanyAccessPolicy WITH (STATE = ON);

Preventing updated using RLS block predicate

Row-level security enables you to define some predicates that will control who could update rows
in the table. First you need to define some table-value function that represents predicate that wll
control access policy.

CREATE FUNCTION

dbo.pUserCanAccessProduct(@CompanyID int)

RETURNS TABLE
WITH SCHEMABINDING

AS RETURN (SELECT 1 as canAccess WHERE

CAST(SESSION_CONTEXT(N'CompanyID') as int) = @CompanyID

) In this example, the predicate says that only users that have a value in SESSION_CONTEXT
that is matching input argument can access the company. You can put any other condition e.g.
that checks database role or database_id of the current user, etc.

Most of the code above is a template that you will copy-paste. The only thing that will
change here is the name and arguments of predicate and condition in WHERE clause.
Now you create security policy that will apply this predicate on some table.

Now we can create security policy with the predicate that will block updates on product table if
CompanyID column in table do not satisfies predicate.

CREATE SECURITY POLICY dbo.ProductAccessPolicy ADD BLOCK PREDICATE

http://www.riptutorial.com/ 236

dbo.pUserCanAccessProduct(CompanyID) ON dbo.Product

This predicate will be applied on all operations. If you want to apply predicate on some operation
you can write something like:

CREATE SECURITY POLICY dbo.ProductAccessPolicy ADD BLOCK PREDICATE
dbo.pUserCanAccessProduct(CompanyID) ON dbo.Product AFTER INSERT

Possible options that you can add after block predicate definition are:

[{ AFTER { INSERT | UPDATE } }
| { BEFORE { UPDATE | DELETE } }]

Read Row-level security online: http://www.riptutorial.com/sql-server/topic/7045/row-level-security

http://www.riptutorial.com/ 237

Chapter 81: Scheduled Task or Job

Introduction

SQL Server Agent uses SQL Server to store job information. Jobs contain one or more job steps.
Each step contains its own task,i.e: backing up a database. SQL Server Agent can run a job on a
schedule, in response to a specific event, or on demand.

Examples

Create a scheduled Job

Create a Job

To add a job first we have to use a stored procedure named sp_add_job

USE msdb ;
GO
EXEC dbo.sp_add_job
@job_name = N'Weekly Job' ; -- the job name

•

Then we have to add a job step using a stored procedure named sp_add_jobStep

EXEC sp_add_jobstep
@job_name = N'Weekly Job', -- Job name to add a step
@step_name = N'Set database to read only', -- step name
@subsystem = N'TSQL', -- Step type
@command = N'ALTER DATABASE SALES SET READ_ONLY', -- Command
@retry_attempts = 5, --Number of attempts
@retry_interval = 5 ; -- in minutes

•

Target the job to a server

EXEC dbo.sp_add_jobserver
@job_name = N'Weekly Sales Data Backup',
@server_name = 'MyPC\data; -- Default is LOCAL
GO

•

Create a schedule using SQL

To Create a schedule we have to use a system stored procedure called sp_add_schedule

USE msdb
GO

EXEC sp_add_schedule
 @schedule_name = N'NightlyJobs' , -- specify the schedule name
 @freq_type = 4, -- A value indicating when a job is to be executed (4) means Daily
 @freq_interval = 1, -- The days that a job is executed and depends on the value of

http://www.riptutorial.com/ 238

`freq_type`.
 @active_start_time = 010000 ; -- The time on which execution of a job can begin
GO

There are more parameters that can be used with sp_add_schedule you can read more about in the
the link provided above.

Attaching schedule to a JOB

To attach a schedule to an SQL agent job you have to use a stored procedure called
sp_attach_schedule

-- attaches the schedule to the job BackupDatabase
EXEC sp_attach_schedule
 @job_name = N'BackupDatabase', -- The job name to attach with
 @schedule_name = N'NightlyJobs' ; -- The schedule name
GO

Read Scheduled Task or Job online: http://www.riptutorial.com/sql-server/topic/5329/scheduled-
task-or-job

http://www.riptutorial.com/ 239

Chapter 82: Schemas

Examples

Creating a Schema

CREATE SCHEMA dvr AUTHORIZATION Owner
 CREATE TABLE sat_Sales (source int, cost int, partid int)
 GRANT SELECT ON SCHEMA :: dvr TO User1
 DENY SELECT ON SCHEMA :: dvr to User 2
GO

Alter Schema

ALTER SCHEMA dvr
 TRANSFER dbo.tbl_Staging;
GO

This would transfer the tbl_Staging table from the dbo schema to the dvr schema

Dropping Schemas

DROP SCHEMA dvr

Purpose

Schema refers to a specific database tables and how they are related to each other. It provides an
organisational blueprint of how the database is constructed. Additional benefits of implementing
database schemas is that schemas can be used as a method restricting / granting access to
specific tables within a database.

Read Schemas online: http://www.riptutorial.com/sql-server/topic/5806/schemas

http://www.riptutorial.com/ 240

Chapter 83: SCOPE_IDENTITY()

Syntax

SELECT SCOPE_IDENTITY();•
SELECT SCOPE_IDENTITY() AS [SCOPE_IDENTITY];•
SCOPE_IDENTITY()•

Examples

Introduction with Simple Example

SCOPE_IDENTITY() returns the last identity value inserted into an identity column in the same
scope. A scope is a module: a stored procedure, trigger, function, or batch. Therefore, two
statements are in the same scope if they are in the same stored procedure, function, or batch.

INSERT INTO ([column1],[column2]) VALUES (8,9);
GO
SELECT SCOPE_IDENTITY() AS [SCOPE_IDENTITY];
GO

Read SCOPE_IDENTITY() online: http://www.riptutorial.com/sql-server/topic/5326/scope-identity--

http://www.riptutorial.com/ 241

Chapter 84: SELECT statement

Introduction

In SQL, SELECT statements return sets of results from data collections like tables or views. SELECT
statements can be used with various other clauses like WHERE, GROUP BY, or ORDER BY to further refine
the desired results.

Examples

Basic SELECT from table

Select all columns from some table (system table in this case):

SELECT *
FROM sys.objects

Or, select just some specific columns:

SELECT object_id, name, type, create_date
FROM sys.objects

Filter rows using WHERE clause

WHERE clause filters only those rows that satisfy some condition:

SELECT *
FROM sys.objects
WHERE type = 'IT'

Sort results using ORDER BY

ORDER BY clause sorts rows in the returned result set by some column or expression:

SELECT *
FROM sys.objects
ORDER BY create_date

Group result using GROUP BY

GROUP BY clause groups rows by some value:

SELECT type, count(*) as c
FROM sys.objects
GROUP BY type

http://www.riptutorial.com/ 242

You can apply some function on each group (aggregate function) to calculate sum or count of the
records in the group.

type c

SQ 3

S 72

IT 16

PK 1

U 5

Filter groups using HAVING clause

HAVING clause removes groups that do not satisfy condition:

SELECT type, count(*) as c
FROM sys.objects
GROUP BY type
HAVING count(*) < 10

type c

SQ 3

PK 1

U 5

Returning only first N rows

TOP clause returns only first N rows in the result:

SELECT TOP 10 *
FROM sys.objects

Pagination using OFFSET FETCH

OFFSET FETCH clause is more advanced version of TOP. It enables you to skip N1 rows and
take next N2 rows:

SELECT *
FROM sys.objects
ORDER BY object_id
OFFSET 50 ROWS FETCH NEXT 10 ROWS ONLY

http://www.riptutorial.com/ 243

You can use OFFSET without fetch to just skip first 50 rows:

SELECT *
FROM sys.objects
ORDER BY object_id
OFFSET 50 ROWS

SELECT without FROM (no data souce)

SELECT statement can be executed without FROM clause:

declare @var int = 17;

SELECT @var as c1, @var + 2 as c2, 'third' as c3

In this case, one row with values/results of expressions are returned.

Read SELECT statement online: http://www.riptutorial.com/sql-server/topic/4662/select-statement

http://www.riptutorial.com/ 244

Chapter 85: Sequences

Examples

Create Sequence

CREATE SEQUENCE [dbo].[CustomersSeq]
AS INT
START WITH 10001
INCREMENT BY 1
MINVALUE -1;

Use Sequence in Table

CREATE TABLE [dbo].[Customers]
(
 CustomerID INT DEFAULT (NEXT VALUE FOR [dbo].[CustomersSeq]) NOT NULL,
 CustomerName VARCHAR(100),
);

Insert Into Table with Sequence

INSERT INTO [dbo].[Customers]
 ([CustomerName])
 VALUES
 ('Jerry'),
 ('Gorge')

SELECT * FROM [dbo].[Customers]

Results

CustomerID CustomerName

10001 Jerry

10002 Gorge

Delete From & Insert New

DELETE FROM [dbo].[Customers]
WHERE CustomerName = 'Gorge';

INSERT INTO [dbo].[Customers]
 ([CustomerName])
 VALUES ('George')

SELECT * FROM [dbo].[Customers]

http://www.riptutorial.com/ 245

Results

CustomerID CustomerName

10001 Jerry

10003 George

Read Sequences online: http://www.riptutorial.com/sql-server/topic/5324/sequences

http://www.riptutorial.com/ 246

Chapter 86: Service broker

Examples

1. Basics

Service broker is technology based on asyncronous communication between two(or more)
entities. Service broker consists of: message types, contracts, queues, services, routes, and at
least instance endpoints

More: https://msdn.microsoft.com/en-us/library/bb522893.aspx

2. Enable service broker on database

ALTER DATABASE [MyDatabase] SET ENABLE_BROKER WITH ROLLBACK IMMEDIATE;

3. Create basic service broker construction on database (single database
communication)

USE [MyDatabase]

CREATE MESSAGE TYPE [//initiator] VALIDATION = WELL_FORMED_XML;
 GO

CREATE CONTRACT [//call/contract]
(
 [//initiator] SENT BY INITIATOR
)
GO

CREATE QUEUE InitiatorQueue;
GO

CREATE QUEUE TargetQueue;
GO

CREATE SERVICE InitiatorService
 ON QUEUE InitiatorQueue
(
 [//call/contract]

)

CREATE SERVICE TargetService
ON QUEUE TargetQueue
(
 [//call/contract]

)

GRANT SEND ON SERVICE::[InitiatorService] TO PUBLIC
GO

http://www.riptutorial.com/ 247

GRANT SEND ON SERVICE::[TargetService] TO PUBLIC
GO

We dont need route for one database communication.

4. How to send basic communication through service broker

For this demonstration we will use service broker construction created in another part of this
documentation. Mentioned part is named 3. Create basic service broker construction on
database (single database communication).

USE [MyDatabase]

DECLARE @ch uniqueidentifier = NEWID()
DECLARE @msg XML

BEGIN DIALOG CONVERSATION @ch
 FROM SERVICE [InitiatorService]
 TO SERVICE 'TargetService'
 ON CONTRACT [//call/contract]
 WITH ENCRYPTION = OFF; -- more possible options

 SET @msg = (
 SELECT 'HelloThere' "elementNum1"
 FOR XML PATH(''), ROOT('ExampleRoot'), ELEMENTS XSINIL, TYPE
);

SEND ON CONVERSATION @ch MESSAGE TYPE [//initiator] (@msg);
END CONVERSATION @ch;

After this conversation will be your msg in TargetQueue

5. How to receive conversation from TargetQueue automatically

For this demonstration we will use service broker construction created in another part of this
documentation. Mentioned part is called 3. Create basic service broker construction on
database (single database communication).

First we need to create a procedure that is able to read and process data from the Queue

USE [MyDatabase]
GO

SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO

CREATE PROCEDURE [dbo].[p_RecieveMessageFromTargetQueue]

 AS
 BEGIN

http://www.riptutorial.com/ 248

 declare
 @message_body xml,
 @message_type_name nvarchar(256),
 @conversation_handle uniqueidentifier,
 @messagetypename nvarchar(256);

 WHILE 1=1
 BEGIN

 BEGIN TRANSACTION
 WAITFOR(
 RECEIVE TOP(1)
 @message_body = CAST(message_body as xml),
 @message_type_name = message_type_name,
 @conversation_handle = conversation_handle,
 @messagetypename = message_type_name
 FROM DwhInsertSmsQueue
), TIMEOUT 1000;

 IF (@@ROWCOUNT = 0)
 BEGIN
 ROLLBACK TRANSACTION
 BREAK
 END

 IF (@messagetypename = '//initiator')
 BEGIN

 IF OBJECT_ID('MyDatabase..MyExampleTableHelloThere') IS NOT NULL
 DROP TABLE dbo.MyExampleTableHelloThere

 SELECT @message_body.value('(/ExampleRoot/"elementNum1")[1]', 'VARCHAR(50)')
AS MyExampleMessage
 INTO dbo.MyExampleTableHelloThere

 END

 IF (@messagetypename = 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog')
 BEGIN
 END CONVERSATION @conversation_handle;
 END

 COMMIT TRANSACTION
 END

END

Second step: Allow your TargetQueue to automatically run your procedure:

USE [MyDatabase]

ALTER QUEUE [dbo].[TargetQueue] WITH STATUS = ON , RETENTION = OFF ,
ACTIVATION
 (STATUS = ON , --activation status
 PROCEDURE_NAME = dbo.p_RecieveMessageFromTargetQueue , --procedure name

http://www.riptutorial.com/ 249

 MAX_QUEUE_READERS = 1 , --number of readers
 EXECUTE AS SELF)

Read Service broker online: http://www.riptutorial.com/sql-server/topic/7651/service-broker

http://www.riptutorial.com/ 250

Chapter 87: Sorting/ordering rows

Examples

Basics

First, let's setup the example table.

-- Create a table as an example
CREATE TABLE SortOrder
(
 ID INT IDENTITY PRIMARY KEY,
 [Text] VARCHAR(256)
)
GO

-- Insert rows into the table
INSERT INTO SortOrder ([Text])
SELECT ('Lorem ipsum dolor sit amet, consectetur adipiscing elit')
UNION ALL SELECT ('Pellentesque eu dapibus libero')
UNION ALL SELECT ('Vestibulum et consequat est, ut hendrerit ligula')
UNION ALL SELECT ('Suspendisse sodales est congue lorem euismod, vel facilisis libero
pulvinar')
UNION ALL SELECT ('Suspendisse lacus est, aliquam at varius a, fermentum nec mi')
UNION ALL SELECT ('Praesent tincidunt tortor est, nec consequat dolor malesuada quis')
UNION ALL SELECT ('Quisque at tempus arcu')
GO

Remember that when retrieving data, if you don't specify a row ordering clause (ORDER BY) SQL
server does not guarantee the sorting (order of the columns) at any time. Really, at any time. And
there's no point arguing about that, it has been shown literaly thousands of times and all over the
internet.

No ORDER BY == no sorting. End of story.

-- It may seem the rows are sorted by identifiers,
-- but there is really no way of knowing if it will always work.
-- And if you leave it like this in production, Murphy gives you a 100% that it wont.
SELECT * FROM SortOrder
GO

There are two directions data can be ordered by:

ascending (moving upwards), using ASC•
descending (moving downwards), using DESC•

-- Ascending - upwards
SELECT * FROM SortOrder ORDER BY ID ASC
GO

-- Ascending is default
SELECT * FROM SortOrder ORDER BY ID

http://www.riptutorial.com/ 251

GO

-- Descending - downwards
SELECT * FROM SortOrder ORDER BY ID DESC
GO

When ordering by the textual column ((n)char or (n)varchar), pay attention that the order respects
the collation. For more information on collation look up for the topic.

Ordering and sorting of data can consume resources. This is where properly created indexes
come handy. For more information on indexes look up for the topic.

There is a possibility to pseudo-randomize the order of rows in your resultset. Just force the
ordering to appear nondeterministic.

SELECT * FROM SortOrder ORDER BY CHECKSUM(NEWID())
GO

Ordering can be remembered in a stored procedure, and that's the way you should do it if it is the
last step of manipulating the rowset before showing it to the end user.

CREATE PROCEDURE GetSortOrder
AS
 SELECT *
 FROM SortOrder
 ORDER BY ID DESC
GO

EXEC GetSortOrder
GO

There is a limited (and hacky) support for ordering in the SQL Server views as well, but be
encouraged NOT to use it.

/* This may or may not work, and it depends on the way
 your SQL Server and updates are installed */
CREATE VIEW VwSortOrder1
AS
 SELECT TOP 100 PERCENT *
 FROM SortOrder
 ORDER BY ID DESC
GO

SELECT * FROM VwSortOrder1
GO

-- This will work, but hey... should you really use it?
CREATE VIEW VwSortOrder2
AS
 SELECT TOP 99999999 *
 FROM SortOrder
 ORDER BY ID DESC
GO

SELECT * FROM VwSortOrder2

http://www.riptutorial.com/ 252

GO

For ordering you can either use column names, aliases or column numbers in your ORDER BY.

SELECT *
FROM SortOrder
ORDER BY [Text]

-- New resultset column aliased as 'Msg', feel free to use it for ordering
SELECT ID, [Text] + ' (' + CAST(ID AS nvarchar(10)) + ')' AS Msg
FROM SortOrder
ORDER BY Msg

-- Can be handy if you know your tables, but really NOT GOOD for production
SELECT *
FROM SortOrder
ORDER BY 2

I advise against using the numbers in your code, except if you want to forget about it the moment
after you execute it.

Order by Case

If you want to sort your data numerically or alphabetically, you can simply use order by [column]. If
you want to sort using a custom hierarchy, use a case statement.

Group

Total
Young
MiddleAge
Old
Male
Female

Using a basic order by:

Select * from MyTable
Order by Group

returns an alphabetical sort, which isn't always desirable:

Group

Female
Male
MiddleAge
Old
Total
Young

Adding a 'case' statement, assigning ascending numerical values in the order you want your data
sorted:

http://www.riptutorial.com/ 253

Select * from MyTable
Order by case Group
 when 'Total' then 10
 when 'Male' then 20
 when 'Female' then 30
 when 'Young' then 40
 when 'MiddleAge' then 50
 when 'Old' then 60
 end

returns data in the order specified:

Group

Total
Male
Female
Young
MiddleAge
Old

Read Sorting/ordering rows online: http://www.riptutorial.com/sql-server/topic/5332/sorting-
ordering-rows

http://www.riptutorial.com/ 254

Chapter 88: Spatial Data

Introduction

There are 2 spatial data types

Geometry X/Y coordinate system for a flat surface

Geography Latitude/Longitude coordinate system for a curved surface (the earth). There are
multiple projections of curved surfaces so each geography spatial must let SQL Server know
which projection to use. The usual Spatial Reference ID (SRID) is 4326, which is measuring
distances in Kilometers. This is the default SRID used in most web maps

Examples

POINT

Creates a single Point. This will be a geometry or geography point depending on the class used.

Parameter Detail

Lat or X Is a float expression representing the x-coordinate of the Point being generated

Long or Y Is a float expression representing the y-coordinate of the Point being generated

String Well Known Text (WKB) of a geometry/geography shape

Binary Well Known Binary (WKB) of a geometry/geography shape

SRID
Is an int expression representing the spatial reference ID (SRID) of the
geometry/geography instance you wish to return

--Explicit constructor
DECLARE @gm1 GEOMETRY = GEOMETRY::Point(10,5,0)

DECLARE @gg1 GEOGRAPHY = GEOGRAPHY::Point(51.511601,-0.096600,4326)

--Implicit constructor (using WKT - Well Known Text)
DECLARE @gm1 GEOMETRY = GEOMETRY::STGeomFromText('POINT(5 10)', 0)

DECLARE @gg1 GEOGRAPHY= GEOGRAPHY::STGeomFromText('POINT(-0.096600 51.511601)', 4326)

--Implicit constructor (using WKB - Well Known Binary)
DECLARE @gm1 GEOMETRY = GEOMETRY::STGeomFromWKB(0x010100000000000000000014400000000000002440,
0)

DECLARE @gg1 GEOGRAPHY= GEOGRAPHY::STGeomFromWKB(0x01010000005F29CB10C7BAB8BFEACC3D247CC14940,
4326)

http://www.riptutorial.com/ 255

Read Spatial Data online: http://www.riptutorial.com/sql-server/topic/6816/spatial-data

http://www.riptutorial.com/ 256

Chapter 89: Split String function in Sql Server

Examples

T-SQL Table variable and XML

Declare @userList Table(UserKey VARCHAR(60))
Insert into @userList values ('bill'),('jcom'),('others')
--Declared a table variable and insert 3 records

Declare @text XML
Select @text = (
 select UserKey from @userList for XML Path('user'), root('group')
)
--Set the XML value from Table

Select @text

--View the variable value
XML:
\<group>\<user>\<UserKey>bill\</UserKey>\</user>\<user>\<UserKey>jcom\</UserKey>\</user>\<user>\<UserKey>others\</UserKey>\</user>\</group>

Split string in Sql Server 2008/2012/2014 using XML

Since there is no STRING_SPLIT function we need to use XML hack to split the string into rows:

Example:

SELECT split.a.value('.', 'VARCHAR(100)') AS Value
FROM (SELECT Cast ('<M>' + Replace('A|B|C', '|', '</M><M>')+ '</M>' AS XML) AS Data) AS A
 CROSS apply data.nodes ('/M') AS Split(a);

Result:

+-----+
|Value|
+-----+
|A |
+-----+
|B |
+-----+
|C |
+-----+

Split a String in Sql Server 2016

In SQL Server 2016 finally they have introduced Split string function : STRING_SPLIT

Parameters: It accepts two parameters

http://www.riptutorial.com/ 257

String:

Is an expression of any character type (i.e. nvarchar, varchar, nchar or char).

separator :

Is a single character expression of any character type (e.g. nvarchar(1), varchar(1),
nchar(1) or char(1)) that is used as separator for concatenated strings.

Note: You should always check if the expression is a non-empty string.

Example:

Select Value
From STRING_SPLIT('a|b|c','|')

In above example

String : 'a|b|c'
separator : '|'

Result :

+-----+
|Value|
+-----+
|a |
+-----+
|b |
+-----+
|c |
+-----+

If it's an empty string:

SELECT value
FROM STRING_SPLIT('',',')

Result :

 +-----+
 |Value|
 +-----+
1 | |
 +-----+

You can avoid the above situation by adding a WHERE clause

SELECT value
FROM STRING_SPLIT('',',')
WHERE LTRIM(RTRIM(value))<>''

http://www.riptutorial.com/ 258

Read Split String function in Sql Server online: http://www.riptutorial.com/sql-
server/topic/3713/split-string-function-in-sql-server

http://www.riptutorial.com/ 259

Chapter 90: SQL Server Evolution through
different versions (2000 - 2016)

Introduction

I am using SQL Server since 2004. I started with 2000 and now I am going to use SQL Server
2016. I created tables, views, functions, triggers, stored procedures and wrote many SQL queries
but I did not use many new features from subsequent versions. I googled it but unfortunately, I did
not find all the features in one place. So I gathered and validated these information from different
sources and put here. I am just adding the high level information for all the versions starting from
2000 to 20

Examples

SQL Server Version 2000 - 2016

The following features added in SQL Server 2000 from its previous version:

New data types were added (BIGINT, SQL_VARIANT, TABLE)1.
Instead of and for Triggers were introduced as advancement to the DDL.2.
Cascading referential integrity.3.
XML support4.
User defined functions and partition views.5.
Indexed Views (Allowing index on views with computed columns).6.

The following features added in version 2005 from its previous version:

Enhancement in TOP clause with “WITH TIES” option.1.
Data Manipulation Commands (DML) and OUTPUT clause to get INSERTED and DELETED
values

2.

The PIVOT and UNPIVOT operators.3.
Exception Handling with TRY/CATCH block4.
Ranking functions5.
Common Table Expressions (CTE)6.
Common Language Runtime (Integration of .NET languages to build objects like stored
procedures, triggers, functions etc.)

7.

Service Broker (Handling message between a sender and receiver in a loosely coupled
manner)

8.

Data Encryption (Native capabilities to support encryption of data stored in user defined
databases)

9.

SMTP mail10.
HTTP endpoints (Creation of endpoints using simple T-SQL statement exposing an object to
be accessed over the internet)

11.

Multiple Active Result Sets (MARS).This allows a persistent database connection from a 12.

http://www.riptutorial.com/ 260

single client to have more than one active request per connection.
SQL Server Integration Services (Will be used as a primary ETL (Extraction, Transformation
and Loading) Tool

13.

Enhancements in Analysis Services and Reporting Services.14.
Table and index partitioning. Allows partitioning of tables and indexes based on partition
boundaries as specified by a PARTITION FUNCTION with individual partitions mapped to
file groups via a PARTITION SCHEME.

15.

The following features added in version 2008 from its previous version:

Enhancement in existing DATE and TIME Data Types1.
New functions like – SYSUTCDATETIME() and SYSDATETIMEOFFSET()2.
Spare Columns – To save a significant amount of disk space.3.
Large User Defined Types (up to 2 GB in size)4.
Introduced a new feature to pass a table datatype into stored procedures and functions5.
New MERGE command for INSERT, UPDATE and DELETE operations6.
New HierarchyID datatype7.
Spatial datatypes - To represent the physical location and shape of any geometric object.8.
Faster queries and reporting with GROUPING SETS - An extension to the GROUP BY
clause.

9.

Enhancement to FILESTREAM storage option10.

The following features added in version 2008 R2 from its previous version:

PowerPivot – For processing large data sets.1.
Report Builder 3.02.
Cloud ready3.
StreamInsight4.
Master Data Services5.
SharePoint Integration6.
DACPAC (Data-tier Application Component Packages)7.
Enhancement in other features of SQL Server 20088.

The following features added in version 2012 from its previous version:

Column store indexes - reduces I/O and memory utilization on large queries.1.
Pagination - pagination can be done by using “OFFSET” and “FETCH’ commands.2.
Contained database – Great feature for periodic data migrations.3.
AlwaysOn Availability Groups4.
Windows Server Core Support5.
User-Defined Server Roles6.
Big Data Support7.
PowerView8.
SQL Azure Enhancements9.
Tabular Model (SSAS)10.
DQS Data quality services11.
File Table - an enhancement to the FILESTREAM feature which was introduced in 2008.12.
Enhancement in Error Handling including THROW statement13.

http://www.riptutorial.com/ 261

Improvement to SQL Server Management Studio Debugging a. SQL Server 2012 introduces
more options to control breakpoints. b. Improvements to debug-mode windows
c. Enhancement in IntelliSense - like Inserting Code Snippets.

14.

The following features added in version 2014 from its previous version:

In-Memory OLTP Engine – Improves performance up to 20 times.1.
AlwaysOn Enhancements2.
Buffer Pool Extension3.
Hybrid Cloud Features4.
Enhancement in Column store Indexes (like Updatable Column store Indexes)5.
Query Handling Enhancements (like parallel SELECT INTO)6.
Power BI for Office 365 Integration7.
Delayed durability8.
Enhancements for Database Backups9.

The following features added in version 2016 from its previous version:

Always Encrypted - Always Encrypted is designed to protect data at rest or in motion.1.
Real-time Operational Analytics2.
PolyBase into SQL Server3.
Native JSON Support4.
Query Store5.
Enhancements to AlwaysOn6.
Enhanced In-Memory OLTP7.
Multiple TempDB Database Files8.
Stretch Database9.
Row Level Security10.
In-Memory Enhancements11.

T-SQL Enhancements or new additions in SQL Server 2016

TRUNCATE TABLE with PARTITION1.

DROP IF EXISTS2.

STRING_SPLIT and STRING_ESCAPE Functions3.

ALTER TABLE can now alter many columns while the table remains online, using WITH
(ONLINE = ON | OFF).

4.

MAXDOP for DBCC CHECKDB, DBCC CHECKTABLE and DBCC CHECKFILEGROUP5.

ALTER DATABASE SET AUTOGROW_SINGLE_FILE6.

ALTER DATABASE SET AUTOGROW_ALL_FILES7.

COMPRESS and DECOMPRESS Functions8.

FORMATMESSAGE Statement9.

http://www.riptutorial.com/ 262

2016 introduces 8 more properties with SERVERPROPERTY10.

a. InstanceDefaultDataPath

b. InstanceDefaultLogPath

c. ProductBuild

d. ProductBuildType

e. ProductMajorVersion

f. ProductMinorVersion

g. ProductUpdateLevel

h. ProductUpdateReference

Read SQL Server Evolution through different versions (2000 - 2016) online:
http://www.riptutorial.com/sql-server/topic/10129/sql-server-evolution-through-different-versions--
2000---2016-

http://www.riptutorial.com/ 263

Chapter 91: SQL Server Management Studio
(SSMS)

Introduction

SQL Server Management Studio (SSMS) is a tool to manage and administer SQL Server and SQL
Database.

SSMS is offered free of charge by Microsoft.

SSMS Documentation is available.

Examples

Refreshing the IntelliSense cache

When objects are created or modified they are not automatically available for IntelliSense. To
make them available to IntelliSense the local cache has to be refreshed.

Within an query editor window either press Ctrl + Shift + R or select Edit | IntelliSense |
Refresh Local Cache from the menu.

After this all changes since the last refresh will be available to IntelliSense.

Read SQL Server Management Studio (SSMS) online: http://www.riptutorial.com/sql-
server/topic/10642/sql-server-management-studio--ssms-

http://www.riptutorial.com/ 264

Chapter 92: SQLCMD

Remarks

You either need to be in the path where SQLCMD.exe exists or add it to your PATH environment
variable.

Examples

SQLCMD.exe called from a batch file or command line

echo off

cls

sqlcmd.exe -S "your server name" -U "sql user name" -P "sql password" -d "name of databse" -Q
"here you may write your query/stored procedure"

Batch files like these can be used to automate tasks, for example to make backups of databases
at a specified time (can be scheduled with Task Scheduler) for a SQL Server Express version
where Agent Jobs can't be used.

Read SQLCMD online: http://www.riptutorial.com/sql-server/topic/5396/sqlcmd

http://www.riptutorial.com/ 265

Chapter 93: Stored Procedures

Introduction

In SQL Server, a procedure is a stored program that you can pass parameters into. It does not
return a value like a function does. However, it can return a success/failure status to the procedure
that called it.

Syntax

CREATE { PROCEDURE | PROC } [schema_name.]procedure_name•
[@parameter [type_schema_name.] datatype•
[VARYING] [= default] [OUT | OUTPUT | READONLY]•
, @parameter [type_schema_name.] datatype•
[VARYING] [= default] [OUT | OUTPUT | READONLY]]•
[WITH { ENCRYPTION | RECOMPILE | EXECUTE AS Clause }]•
[FOR REPLICATION]•
AS•
BEGIN•
[declaration_section]•
executable_section•
END;•

Examples

Creating and executing a basic stored procedure

Using the Authors table in the Library Database

CREATE PROCEDURE GetName
(
 @input_id INT = NULL, --Input parameter, id of the person, NULL default
 @name VARCHAR(128) = NULL --Input parameter, name of the person, NULL default
)
AS
BEGIN
 SELECT Name + ' is from ' + Country
 FROM Authors
 WHERE Id = @input_id OR Name = @name
END
GO

You can execute a procedure with a few different syntaxes. First, you can use EXECUTE or EXEC

EXECUTE GetName @id = 1
EXEC Getname @name = 'Ernest Hemingway'

http://www.riptutorial.com/ 266

Additionally, you can omit the EXEC command. Also, you don't have to specify what parameter
you are passing in, as you pass in all parameters.

GetName NULL, 'Ernest Hemingway'

When you want to specify the input parameters in a different order than how they are declared in
the procedure you can specify the parameter name and assign values. For example

 CREATE PROCEDURE dbo.sProcTemp
 (
 @Param1 INT,
 @Param2 INT
)
AS
BEGIN

 SELECT
 Param1 = @Param1,
 Param2 = @Param2

END

the normal order to execute this procedure is to specify the value for @Param1 first and then
@Param2 second. So it will look something like this

 EXEC dbo.sProcTemp @Param1 = 0,@Param2=1

But it's also possible that you can use the following

 EXEC dbo.sProcTemp @Param2 = 0,@Param1=1

in this, you are specifying the value for @param2 first and @Param1 second. Which means you
do not have to keep the same order as it is declared in the procedure but you can have any order
as you wish. but you will need to specify to which parameter you are setting the value

Access stored procedure from any database

And also you can create a procedure with a prefix sp_ these procuedres, like all system stored
procedures, can be executed without specifying the database because of the default behavior of
SQL Server. When you execute a stored procedure that starts with "sp_", SQL Server looks for the
procedure in the master database first. If the procedure is not found in master, it looks in the active
database. If you have a stored procedure that you want to access from all your databases, create
it in master and use a name that includes the "sp_" prefix.

Use Master

CREATE PROCEDURE sp_GetName
(
 @input_id INT = NULL, --Input parameter, id of the person, NULL default
 @name VARCHAR(128) = NULL --Input parameter, name of the person, NULL default
)

http://www.riptutorial.com/ 267

AS
BEGIN
 SELECT Name + ' is from ' + Country
 FROM Authors
 WHERE Id = @input_id OR Name = @name
END
GO

Stored Procedure with If...Else and Insert Into operation

Create example table Employee:

CREATE TABLE Employee
(
 Id INT,
 EmpName VARCHAR(25),
 EmpGender VARCHAR(6),
 EmpDeptId INT
)

Creates stored procedure that checks whether the values passed in stored procedure are not null
or non empty and perform insert operation in Employee table.

CREATE PROCEDURE spSetEmployeeDetails
(
 @ID int,
 @Name VARCHAR(25),
 @Gender VARCHAR(6),
 @DeptId INT
)
AS
BEGIN
 IF (
 (@ID IS NOT NULL AND LEN(@ID) !=0)
 AND (@Name IS NOT NULL AND LEN(@Name) !=0)
 AND (@Gender IS NOT NULL AND LEN(@Gender) !=0)
 AND (@DeptId IS NOT NULL AND LEN(@DeptId) !=0)
)
 BEGIN
 INSERT INTO Employee
 (
 Id,
 EmpName,
 EmpGender,
 EmpDeptId
)
 VALUES
 (
 @ID,
 @Name,
 @Gender,
 @DeptId
)
 END
ELSE
 PRINT 'Incorrect Parameters'
END

http://www.riptutorial.com/ 268

GO

Execute the stored procedure

DECLARE @ID INT,
 @Name VARCHAR(25),
 @Gender VARCHAR(6),
 @DeptId INT

EXECUTE spSetEmployeeDetails
 @ID = 1,
 @Name = 'Subin Nepal',
 @Gender = 'Male',
 @DeptId = 182666

Dynamic SQL in stored procedure

Dynamic SQL enables us to generate and run SQL statements at run time. Dynamic SQL is
needed when our SQL statements contains identifier that may change at different compile times.

Simple Example of dynamic SQL:

CREATE PROC sp_dynamicSQL
@table_name NVARCHAR(20),
@col_name NVARCHAR(20),
@col_value NVARCHAR(20)
AS
BEGIN
DECLARE @Query NVARCHAR(max)
SET @Query = 'SELECT * FROM ' + @table_name
SET @Query = @Query + ' WHERE ' + @col_name + ' = ' + ''''+@col_value+''''
EXEC (@Query)
END

In the above sql query, we can see that we can use above query by defining values in @table_name,
@col_name, and @col_value at run time. The query is generated at runtime and executed. This is
technique in which we can create whole scripts as string in a variable and execute it. We can
create more complex queries using dynamic SQL and concatenation concept. This concept is very
powerful when you want to create a script that can be used under several conditions.

Executing stored procedure

DECLARE @table_name NVARCHAR(20) = 'ITCompanyInNepal',
 @col_name NVARCHAR(20) = 'Headquarter',
 @col_value NVARCHAR(20) = 'USA'

EXEC sp_dynamicSQL @table_name,
 @col_name,
 @col_value

Table I have used

http://www.riptutorial.com/ 269

Output

Simple Looping

CREATE PROCEDURE SprocWithSimpleLoop
(
 @SayThis VARCHAR(30),
 @ThisManyTimes INT
)
AS
BEGIN
 WHILE @ThisManyTimes > 0
 BEGIN
 PRINT @SayThis;
 SET @ThisManyTimes = @ThisManyTimes - 1;
 END

 RETURN;
END
GO

Simple Looping

First lets get some data into a temp table named #systables and ad a incrementing row number so
we can query one record at a time

select
 o.name,
 row_number() over (order by o.name) as rn
into
 #systables
from
 sys.objects as o
where
 o.type = 'S'

http://www.riptutorial.com/ 270

Next we declare some variables to control the looping and store the table name in this example

declare
 @rn int = 1,
 @maxRn int = (
 select
 max(rn)
 from
 #systables as s
)
declare @tablename sys name

Now we can loop using a simple while. We increment @rn in the select statement but this could
also have been a separate statement for ex set @rn = @rn + 1 it will depend on your requirements.
We also use the value of @rn before it's incremented to select a single record from #systables.
Lastly we print the table name.

while @rn <= @maxRn
 begin

 select
 @tablename = name,
 @rn = @rn + 1
 from
 #systables as s
 where
 s.rn = @rn

 print @tablename
 end

STORED PROCEDURE with OUT parameters

Stored procedures can return values using the OUTPUT keyword in its parameter list.

Creating a stored procedure with a single out
parameter

CREATE PROCEDURE SprocWithOutParams
(
 @InParam VARCHAR(30),
 @OutParam VARCHAR(30) OUTPUT
)
AS
BEGIN
 SELECT @OutParam = @InParam + ' must come out'
 RETURN
END
GO

http://www.riptutorial.com/ 271

Executing the stored procedure

DECLARE @OutParam VARCHAR(30)
EXECUTE SprocWithOutParams 'what goes in', @OutParam OUTPUT
PRINT @OutParam

Creating a stored procedure with multiple out
parameters

CREATE PROCEDURE SprocWithOutParams2
(
 @InParam VARCHAR(30),
 @OutParam VARCHAR(30) OUTPUT,
 @OutParam2 VARCHAR(30) OUTPUT
)
AS
BEGIN
 SELECT @OutParam = @InParam +' must come out'
 SELECT @OutParam2 = @InParam +' must come out'
 RETURN
END
GO

Executing the stored procedure

DECLARE @OutParam VARCHAR(30)
DECLARE @OutParam2 VARCHAR(30)
EXECUTE SprocWithOutParams2 'what goes in', @OutParam OUTPUT, @OutParam2 OUTPUT
PRINT @OutParam
PRINT @OutParam2

Read Stored Procedures online: http://www.riptutorial.com/sql-server/topic/3213/stored-
procedures

http://www.riptutorial.com/ 272

Chapter 94: Storing JSON in SQL tables

Examples

JSON stored as text column

JSON is textual format, so it is stored in standard NVARCHAR columns. NoSQL collection is
equivalent to two column key value table:

CREATE TABLE ProductCollection (
 Id int identity primary key,
 Data nvarchar(max)
)

Use nvarchar(max) as you are not sure what would be the size of your JSON documents.
nvarchar(4000) and varchar(8000) have better performance but with size limit to 8KB.

Ensure that JSON is properly formatted using ISJSON

Since JSON is stored textual column, you might want to ensure that it is properly formatted. You
can add CHECK constraint on JSON column that checks is text properly formatted JSON:

CREATE TABLE ProductCollection (
 Id int identity primary key,
 Data nvarchar(max)
 CONSTRAINT [Data should be formatted as JSON]
 CHECK (ISJSON(Data) > 0)
)

If you already have a table, you can add check constraint using the ALTER TABLE statement:

ALTER TABLE ProductCollection
 ADD CONSTRAINT [Data should be formatted as JSON]
 CHECK (ISJSON(Data) > 0)

Expose values from JSON text as computed columns

You can expose values from JSON column as computed columns:

CREATE TABLE ProductCollection (
 Id int identity primary key,
 Data nvarchar(max),
 Price AS JSON_VALUE(Data, '$.Price'),
 Color JSON_VALUE(Data, '$.Color') PERSISTED
)

If you add PERSISTED computed column, value from JSON text will be materialized in this
column. This way your queries can faster read value from JSON text because no parsing is

http://www.riptutorial.com/ 273

needed. Each time JSON in this row changes, value will be re-calculated.

Adding index on JSON path

Queries that filter or sort data by some value in JSON column usually use full table scan.

SELECT * FROM ProductCollection
WHERE JSON_VALUE(Data, '$.Color') = 'Black'

To optimize these kind of queries, you can add non-persisted computed column that exposes
JSON expression used in filter or sort (in this example JSON_VALUE(Data, '$.Color')), and create
index on this column:

ALTER TABLE ProductCollection
ADD vColor as JSON_VALUE(Data, '$.Color')

CREATE INDEX idx_JsonColor
ON ProductCollection(vColor)

Queries will use the index instead of plain table scan.

JSON stored in in-memory tables

If you can use memory-optimized tables, you can store JSON as text:

CREATE TABLE ProductCollection (
 Id int identity primary key nonclustered,
 Data nvarchar(max)
) WITH (MEMORY_OPTIMIZED=ON)

Advantages of JSON in in-memory:

JSON data is always in memory so there is no disk access•
There are no locks and latches while working with JSON•

Read Storing JSON in SQL tables online: http://www.riptutorial.com/sql-server/topic/5029/storing-
json-in-sql-tables

http://www.riptutorial.com/ 274

Chapter 95: String Aggregate functions in
SQL Server

Examples

Using STUFF for string aggregation

We have a Student table with SubjectId. Here the requirement is to concatenate based on
subjectId.

All SQL Server versions

create table #yourstudent (subjectid int, studentname varchar(10))

insert into #yourstudent (subjectid, studentname) values
 (1 ,'Mary')
,(1 ,'John')
,(1 ,'Sam')
,(2 ,'Alaina')
,(2 ,'Edward')

select subjectid, stuff((select concat(',', studentname) from #yourstudent y where
y.subjectid = u.subjectid for xml path('')),1,1, '')
 from #yourstudent u
 group by subjectid

String_Agg for String Aggregation

In case of SQL Server 2017 or vnext we can use in-built STRING_AGG for this aggregation. For
same student table,

create table #yourstudent (subjectid int, studentname varchar(10))

insert into #yourstudent (subjectid, studentname) values
 (1 ,'Mary')
,(1 ,'John')
,(1 ,'Sam')
,(2 ,'Alaina')
,(2 ,'Edward')

select subjectid, string_agg(studentname, ',') from #yourstudent
 group by subjectid

Read String Aggregate functions in SQL Server online: http://www.riptutorial.com/sql-
server/topic/9892/string-aggregate-functions-in-sql-server

http://www.riptutorial.com/ 275

Chapter 96: String Functions

Remarks

List of string functions (Alphabetically sorted):

Ascii•

Char•

Charindex•

Concat•

Difference•

Format•

Left•

Len•

Lower•

Ltrim•

Nchar•

Patindex•

Quotename•

Replace•

Replicate•

Reverse•

Right•

Rtrim•

Soundex•

Space•

Str•

String_escape•

http://www.riptutorial.com/ 276

String_split•

Stuff•

Substring•

Unicode•

Upper•

Examples

Left

Returns a sub string starting with the left most char of a string and up to the maximum length
specified.

Parameters:

character expression. The character expression can be of any data type that can be implicitly
converted to varchar or nvarchar, except for text or ntext

1.

max length. An integer number between 0 and bigint max value
(9,223,372,036,854,775,807).
If the max length parameter is negative, an error will be raised.

2.

SELECT LEFT('This is my string', 4) -- result: 'This'

If the max length is more then the number of characters in the string, the entier string is returned.

SELECT LEFT('This is my string', 50) -- result: 'This is my string'

Right

Returns a sub string that is the right most part of the string, with the specified max length.

Parameters:

character expression. The character expression can be of any data type that can be implicitly
converted to varchar or nvarchar, except for text or ntext

1.

max length. An integer number between 0 and bigint max value
(9,223,372,036,854,775,807). If the max length parameter is negative, an error will be
raised.

2.

SELECT RIGHT('This is my string', 6) -- returns 'string'

If the max length is more then the number of characters in the string, the entier string is returned.

SELECT RIGHT('This is my string', 50) -- returns 'This is my string'

http://www.riptutorial.com/ 277

Substring

Returns a substring that starts with the char that's in the specified start index and the specified
max length.

Parameters:

Character expression. The character expression can be of any data type that can be
implicitly converted to varchar or nvarchar, except for text or ntext.

1.

Start index. A number (int or bigint) that specifies the start index of the requested substring.
(Note: strings in sql server are base 1 index, meaning that the first character of the string is
index 1). This number can be less then 1. In this case, If the sum of start index and max
length is greater then 0, the return string would be a string starting from the first char of the
character expression and with the length of (start index + max length - 1). If it's less then 0,
an empty string would be returned.

2.

Max length. An integer number between 0 and bigint max value
(9,223,372,036,854,775,807). If the max length parameter is negative, an error will be
raised.

3.

SELECT SUBSTRING('This is my string', 6, 5) -- returns 'is my'

If the max length + start index is more then the number of characters in the string, the entier string
is returned.

SELECT SUBSTRING('Hello World',1,100) -- returns 'Hello World'

If the start index is bigger then the number of characters in the string, an empty string is returned.

SELECT SUBSTRING('Hello World',15,10) -- returns ''

ASCII

Returns an int value representing the ASCII code of the leftmost character of a string.

SELECT ASCII('t') -- Returns 116
SELECT ASCII('T') -- Returns 84
SELECT ASCII('This') -- Returns 84

If the string is Unicode and the leftmost character is not ASCII but representable in the current
collation, a value greater than 127 can be returned:

SELECT ASCII(N'ï') -- returns 239 when `SERVERPROPERTY('COLLATION') =
'SQL_Latin1_General_CP1_CI_AS'`

If the string is Unicode and the leftmost character cannot be represented in the current collation,
the int value of 63 is returned: (which represents question mark in ASCII):

http://www.riptutorial.com/ 278

SELECT ASCII(N'�') -- returns 63
SELECT ASCII(nchar(2039)) -- returns 63

CharIndex

Returns the start index of a the first occurrence of string expression inside another string
expression.

Parameters list:

String to find (up to 8000 chars)1.
String to search (any valid character data type and length, including binary)2.
(Optional) index to start. A number of type int or big int. If omitted or less then 1, the search
starts at the beginning of the string.

3.

If the string to search is varchar(max), nvarchar(max) or varbinary(max), the CHARINDEX function will
return a bigint value. Otherwise, it will return an int.

SELECT CHARINDEX('is', 'this is my string') -- returns 3
SELECT CHARINDEX('is', 'this is my string', 4) -- returns 6
SELECT CHARINDEX(' is', 'this is my string') -- returns 5

Char

Returns a char represented by an int ASCII code.

SELECT CHAR(116) -- Returns 't'
SELECT CHAR(84) -- Returns 'T'

This can be used to introduce new line/line feed CHAR(10), carriage returns CHAR(13), etc. See
AsciiTable.com for reference.

If the argument value is not between 0 and 255, the CHAR function returns NULL.
The return data type of the CHAR function is char(1)

Len

Returns the number of characters of a string.
Note: the LEN function ignores trailing spaces:

SELECT LEN('My string'), -- returns 9
 LEN('My string '), -- returns 9
 LEN(' My string') -- returns 12

If the length including trailing spaces is desired there are several techniques to achieve this,
although each has its drawbacks. One technique is to append a single character to the string, and
then use the LEN minus one:

http://www.riptutorial.com/ 279

DECLARE @str varchar(100) = 'My string '
SELECT LEN(@str + 'x') - 1 -- returns 12

The drawback to this is if the type of the string variable or column is of the maximum length, the
append of the extra character is discarded, and the resulting length will still not count trailing
spaces. To address that, the following modified version solves the problem, and gives the correct
results in all cases at the expense of a small amount of additional execution time, and because of
this (correct results, including with surrogate pairs, and reasonable execution speed) appears to
be the best technique to use:

SELECT LEN(CONVERT(NVARCHAR(MAX), @str) + 'x') - 1

Another technique is to use theDATALENGTH function.

DECLARE @str varchar(100) = 'My string '
SELECT DATALENGTH(@str) -- returns 12

It's important to note though that DATALENGTH returns the length in bytes of the string in memory.
This will be different for varchar vs. nvarchar.

DECLARE @str nvarchar(100) = 'My string '
SELECT DATALENGTH(@str) -- returns 24

You can adjust for this by dividing the datalength of the string by the datalength of a single
character (which must be of the same type). The example below does this, and also handles the
case where the target string happens to be empty, thus avoiding a divide by zero.

DECLARE @str nvarchar(100) = 'My string '
SELECT DATALENGTH(@str) / DATALENGTH(LEFT(LEFT(@str, 1) + 'x', 1)) -- returns 12

Even this, though, has a problem in SQL Server 2012 and above. It will produce incorrect results
when the string contains surrogate pairs (some characters can occupy more bytes than other
characters in the same string).

Another technique is to use REPLACE to convert spaces to a non-space character, and take the LEN
of the result. This gives correct results in all cases, but has very poor execution speed with long
strings.

Concat

SQL Server 2012

Returns a string that is the result of two or more strings joined together. CONCAT accepts two or
more arguments.

SELECT CONCAT('This', ' is', ' my', ' string') -- returns 'This is my string'

Note: Unlike concatenating strings using the string concatenation operator (+), when passing a null

http://www.riptutorial.com/ 280

value to the concat function it will implicitly convert it to an empty string:

SELECT CONCAT('This', NULL, ' is', ' my', ' string'), -- returns 'This is my string'
 'This' + NULL + ' is' + ' my' + ' string' -- returns NULL.

Also arguments of a non-string type will be implicitly converted to a string:

SELECT CONCAT('This', ' is my ', 3, 'rd string') -- returns 'This is my 3rd string'

Non-string type variables will also be converted to string format, no need to manually covert or
cast it to string:

DECLARE @Age INT=23;
SELECT CONCAT('Ram is ', @Age,' years old'); -- returns 'Ram is 23 years old'

SQL Server 2012

Older versions do not support CONCAT function and must use the string concatenation operator (+)
instead. Non-string types must be cast or converted to string types in order to concatenate them
this way.

SELECT 'This is the number ' + CAST(42 AS VARCHAR(5)) --returns 'This is the number 42'

Lower

Returns a character expression (varchar or nvarchar) after converting all uppercase characters to
lowercase.

Parameters:

Character expression. Any expression of character or binary data that can be implicitly
converted to varchar.

1.

SELECT LOWER('This IS my STRING') -- Returns 'this is my string'

DECLARE @String nchar(17) = N'This IS my STRING';
SELECT LOWER(@String) -- Returns 'this is my string'

Upper

Returns a character expression (varchar or nvarchar) after converting all lowercase characters to
uppercase.

Parameters:

Character expression. Any expression of character or binary data that can be implicitly
converted to varchar.

1.

SELECT UPPER('This IS my STRING') -- Returns 'THIS IS MY STRING'

http://www.riptutorial.com/ 281

DECLARE @String nchar(17) = N'This IS my STRING';
SELECT UPPER(@String) -- Returns 'THIS IS MY STRING'

LTrim

Returns a character expression (varchar or nvarchar) after removing all leading white spaces, i.e.,
white spaces from the left through to the first non-white space character.

Parameters:

character expression. Any expression of character or binary data that can be implicitly
converted to varcher, except text, ntext and image.

1.

SELECT LTRIM(' This is my string') -- Returns 'This is my string'

RTrim

Returns a character expression (varchar or nvarchar) after removing all trailing white spaces, i.e.,
spaces from the right end of the string up until the first non-white space character to the left.

Parameters:

character expression. Any expression of character or binary data that can be implicitly
converted to varcher, except text, ntext and image.

1.

SELECT RTRIM('This is my string ') -- Returns 'This is my string'

Unicode

Returns the integer value representing the Unicode value of the first character of the input
expression.

Parameters:

Unicode character expression. Any valid nchar or nvarchar expression.1.

SELECT UNICODE(N'Ɛ') -- Returns 400

DECLARE @Unicode nvarchar(11) = N'Ɛ is a char'
SELECT UNICODE(@Unicode) -- Returns 400

NChar

Returns the Unicode character(s) (nchar(1) or nvarchar(2)) corresponding to the integer argument
it receives, as defined by the Unicode standard.

Parameters:

http://www.riptutorial.com/ 282

integer expression. Any integer expression that is a positive number between 0 and 65535,
or if the collation of the database supports supplementary character (CS) flag, the supported
range is between 0 to 1114111. If the integer expression does not fall inside this range, null
is returned.

1.

SELECT NCHAR(257) -- Returns 'ā'
SELECT NCHAR(400) -- Returns 'Ɛ'

Reverse

Returns a string value in reversed order.

Parameters:

string expression. Any string or binary data that can be implicitly converted to varchar.1.

Select REVERSE('Sql Server') -- Returns 'revreS lqS'

PatIndex

Returns the starting position of the first occurrence of a the specified pattern in the specified
expression.

Parameters:

pattern. A character expression the contains the sequence to be found. Limited to A
maximum length of 8000 chars. Wildcards (%, _) can be used in the pattern. If the pattern
does not start with a wildcard, it may only match whatever is in the beginning of the
expression. If it doesn't end with a wildcard, it may only match whatever is in the end of the
expression.

1.

expression. Any string data type.2.

SELECT PATINDEX('%ter%', 'interesting') -- Returns 3.

SELECT PATINDEX('%t_r%t%', 'interesting') -- Returns 3.

SELECT PATINDEX('ter%', 'interesting') -- Returns 0, since 'ter' is not at the start.

SELECT PATINDEX('inter%', 'interesting') -- Returns 1.

SELECT PATINDEX('%ing', 'interesting') -- Returns 9.

Space

Returns a string (varchar) of repeated spaces.

Parameters:

integer expression. Any integer expression, up to 8000. If negative, null is returned. if 0, an 1.

http://www.riptutorial.com/ 283

empty string is returned. (To return a string longer then 8000 spaces, use Replicate.

SELECT SPACE(-1) -- Returns NULL
SELECT SPACE(0) -- Returns an empty string
SELECT SPACE(3) -- Returns ' ' (a string containing 3 spaces)

Replicate

Repeats a string value a specified number of times.

Parameters:

string expression. String expression can be a character string or binary data.1.
integer expression. Any integer type, including bigint. If negative, null is returned. If 0, an
empty string is returned.

2.

SELECT REPLICATE('a', -1) -- Returns NULL

SELECT REPLICATE('a', 0) -- Returns ''

SELECT REPLICATE('a', 5) -- Returns 'aaaaa'

SELECT REPLICATE('Abc', 3) -- Returns 'AbcAbcAbc'

Note: If string expression is not of type varchar(max) or nvarchar(max), the return value will not
exceed 8000 chars. Replicate will stop before adding the string that will cause the return value to
exceed that limit:

SELECT LEN(REPLICATE('a b c d e f g h i j k l', 350)) -- Returns 7981

SELECT LEN(REPLICATE(cast('a b c d e f g h i j k l' as varchar(max)), 350)) -- Returns 8050

Replace

Returns a string (varchar or nvarchar) where all occurrences of a specified sub string is replaced
with another sub string.

Parameters:

string expression. This is the string that would be searched. It can be a character or binary
data type.

1.

pattern. This is the sub string that would be replaced. It can be a character or binary data
type. The pattern argument cannot be an empty string.

2.

replacement. This is the sub string that would replace the pattern sub string. It can be a
character or binary data.

3.

SELECT REPLACE('This is my string', 'is', 'XX') -- Returns 'ThXX XX my string'.

Notes:

http://www.riptutorial.com/ 284

If string expression is not of type varchar(max) or nvarchar(max), the replace function truncates
the return value at 8,000 chars.

•

Return data type depends on input data types - returns nvarchar if one of the input values is
nvarchar, or varchar otherwise.

•

Return NULL if any of the input parameters is NULL•

Str

Returns character data (varchar) converted from numeric data.

Parameters:

float expression. An approximate numeric data type with a decimal point.1.
length. optional. The total length of the string expression that would return, including digits,
decimal point and leading spaces (if needed). The default value is 10.

2.

decimal. optional. The number of digits to the right of the decimal point. If higher then 16,
the result would be truncated to sixteen places to the right of the decimal point.

3.

SELECT STR(1.2) -- Returns ' 1'

SELECT STR(1.2, 3) -- Returns ' 1'

SELECT STR(1.2, 3, 2) -- Returns '1.2'

SELECT STR(1.2, 5, 2) -- Returns ' 1.20'

SELECT STR(1.2, 5, 5) -- Returns '1.200'

SELECT STR(1, 5, 2) -- Returns ' 1.00'

SELECT STR(1) -- Returns ' 1'

Quotename

Returns a Unicode string surrounded by delimiters to make it a valid SQL Server delimited
identifier.

Parameters:

character string. A string of Unicode data, up to 128 characters (sysname). If an input string is
longer than 128 characters function returns null.

1.

quote character. Optional. A single character to use as a delimiter. Can be a single
quotation mark (' or ``), a left or right bracket ({,[,(,< or >,),],}) or a double quotation mark ("
). Any other value will return null. Default value is square brackets.

2.

SELECT QUOTENAME('what''s my name?') -- Returns [what's my name?]

SELECT QUOTENAME('what''s my name?', '[') -- Returns [what's my name?]
SELECT QUOTENAME('what''s my name?', ']') -- Returns [what's my name?]

SELECT QUOTENAME('what''s my name?', '''') -- Returns 'what''s my name?'

http://www.riptutorial.com/ 285

SELECT QUOTENAME('what''s my name?', '"') -- Returns "what's my name?"

SELECT QUOTENAME('what''s my name?', ')') -- Returns (what's my name?)
SELECT QUOTENAME('what''s my name?', '(') -- Returns (what's my name?)

SELECT QUOTENAME('what''s my name?', '<') -- Returns <what's my name?>
SELECT QUOTENAME('what''s my name?', '>') -- Returns <what's my name?>

SELECT QUOTENAME('what''s my name?', '{') -- Returns {what's my name?}
SELECT QUOTENAME('what''s my name?', '}') -- Returns {what's my name?}

SELECT QUOTENAME('what''s my name?', '`') -- Returns `what's my name?`

String_Split

SQL Server 2016

Splits a string expression using a character separator. Note that STRING_SPLIT() is a table-valued
function and therefore must be used within FROM clause.

Parameters:

string. Any character type expression (char, nchar, varchar or nvarchar)1.
seperator. A single character expression of any type (char(1), nchar(1), varchar(1) or
nvarchar(1)).

2.

Returns a single column table where each row contains a fragment of the string. The name of the
columns is value, and the datatype is nvarchar if any of the parameters is either nchar or nvarchar,
otherwise varchar.

The following example splits a string using space as a separator:

SELECT value FROM STRING_SPLIT('Lorem ipsum dolor sit amet.', ' ');

Result:

value

Lorem
ipsum
dolor
sit
amet.

Remarks:

The STRING_SPLIT function is available only under compatibility level 130. If your
database compatibility level is lower than 130, SQL Server will not be able to find and
execute STRING_SPLIT function. You can change the compatibility level of a database
using the following command:

ALTER DATABASE [database_name] SET COMPATIBILITY_LEVEL = 130

http://www.riptutorial.com/ 286

SQL Server 2016

Older versions of sql server does not have a built in split string function. There are many user
defined functions that handles the problem of splitting a string. You can read Aaron Bertrand's
article Split strings the right way – or the next best way for a comprehensive comparison of some
of them.

String_escape

SQL Server 2016

Escapes special characters in texts and returns text (nvarchar(max)) with escaped characters.

Parameters:

text. is a nvarchar expression representing the string that should be escaped.1.

type. Escaping rules that will be applied. Currently the only supported value is 'json'.2.

SELECT STRING_ESCAPE('\ /
\\ " ', 'json') -- returns '\\\t\/\n\\\\\t\"\t'

List of characters that will be escaped:

Special character Encoded sequence

Quotation mark (") \"
Reverse solidus (\) \\
Solidus (/) \/
Backspace \b
Form feed \f
New line \n
Carriage return \r
Horizontal tab \t

Control character Encoded sequence

CHAR(0) \u0000
CHAR(1) \u0001
... ...
CHAR(31) \u001f

Soundex

Returns a four-character code (varchar) to evaluate the phonetic similarity of two strings.

Parameters:

character expression. An alphanumeric expression of character data.1.

The soundex function creates a four-character code that is based on how the character expression
would sound when spoken. the first char is the the upper case version of the first character of the

http://www.riptutorial.com/ 287

parameter, the rest 3 characters are numbers representing the letters in the expression (except a,
e, i, o, u, h, w and y that are ignored).

SELECT SOUNDEX ('Smith') -- Returns 'S530'

SELECT SOUNDEX ('Smythe') -- Returns 'S530'

Difference

Returns an integer (int) value that indicates the difference between the soundex values of two
character expressions.

Parameters:

character expression 1.1.
character expression 2.2.

Both parameters are alphanumeric expressions of character data.

The integer returned is the number of chars in the soundex values of the parameters that are the
same, so 4 means that the expressions are very similar and 0 means that they are very different.

SELECT SOUNDEX('Green'), -- G650
 SOUNDEX('Greene'), -- G650
 DIFFERENCE('Green','Greene') -- Returns 4

SELECT SOUNDEX('Blotchet-Halls'), -- B432
 SOUNDEX('Greene'), -- G650
 DIFFERENCE('Blotchet-Halls', 'Greene') -- Returns 0

Format

SQL Server 2012

Returns a NVARCHAR value formatted with the specified format and culture (if specified). This is
primarily used for converting date-time types to strings.

Parameters:

value. An expression of a supported data type to format. valid types are listed below.1.
format. An NVARCHAR format pattern. See Microsoft official documentation for standard and
custom format strings.

2.

culture. Optional. nvarchar argument specifying a culture. The default value is the culture of
the current session.

3.

DATE

Using standard format strings:

DECLARE @d DATETIME = '2016-07-31';

http://www.riptutorial.com/ 288

SELECT
 FORMAT (@d, 'd', 'en-US') AS 'US English Result' -- Returns '7/31/2016'
 ,FORMAT (@d, 'd', 'en-gb') AS 'Great Britain English Result' -- Returns '31/07/2016'
 ,FORMAT (@d, 'd', 'de-de') AS 'German Result' -- Returns '31.07.2016'
 ,FORMAT (@d, 'd', 'zh-cn') AS 'Simplified Chinese (PRC) Result' -- Returns '2016/7/31'
 ,FORMAT (@d, 'D', 'en-US') AS 'US English Result' -- Returns 'Sunday, July 31, 2016'
 ,FORMAT (@d, 'D', 'en-gb') AS 'Great Britain English Result' -- Returns '31 July 2016'
 ,FORMAT (@d, 'D', 'de-de') AS 'German Result' -- Returns 'Sonntag, 31. Juli 2016'

Using custom format strings:

SELECT FORMAT(@d, 'dd/MM/yyyy', 'en-US') AS 'DateTime Result' -- Returns '31/07/2016'
 ,FORMAT(123456789,'###-##-####') AS 'Custom Number Result' -- Returns '123-45-6789',
 ,FORMAT(@d,'dddd, MMMM dd, yyyy hh:mm:ss tt','en-US') AS 'US' -- Returns 'Sunday, July
31, 2016 12:00:00 AM'
 ,FORMAT(@d,'dddd, MMMM dd, yyyy hh:mm:ss tt','hi-IN') AS 'Hindi' -- Returns �ž�£�¬�£�«�ž�����Š�®� �«�v����������
�����������������������������˜�¯�ž�º�£�«�§�º�–��
��������������FORMAT (@d, 'dddd', 'en-US') AS 'US' -- Returns 'Sunday'
 ,FORMAT (@d, 'dddd', 'hi-IN') AS 'Hindi' -- Returns '�ž�£�¬�£�«�ž��

FORMAT can also be used for formatting CURRENCY,PERCENTAGE and NUMBERS.

CURRENCY

DECLARE @Price1 INT = 40
SELECT FORMAT(@Price1,'c','en-US') AS 'CURRENCY IN US Culture' -- Returns '$40.00'
 ,FORMAT(@Price1,'c','de-DE') AS 'CURRENCY IN GERMAN Culture' -- Returns '40,00 €'

We can specify the number of digits after the decimal.

DECLARE @Price DECIMAL(5,3) = 40.356
SELECT FORMAT(@Price, 'C') AS 'Default', -- Returns '$40.36'
 FORMAT(@Price, 'C0') AS 'With 0 Decimal', -- Returns '$40'
 FORMAT(@Price, 'C1') AS 'With 1 Decimal', -- Returns '$40.4'
 FORMAT(@Price, 'C2') AS 'With 2 Decimal', -- Returns '$40.36'

PERCENTAGE

 DECLARE @Percentage float = 0.35674
 SELECT FORMAT(@Percentage, 'P') AS '% Default', -- Returns '35.67 %'
 FORMAT(@Percentage, 'P0') AS '% With 0 Decimal', -- Returns '36 %'
 FORMAT(@Percentage, 'P1') AS '% with 1 Decimal' -- Returns '35.7 %'

NUMBER

DECLARE @Number AS DECIMAL(10,2) = 454545.389
SELECT FORMAT(@Number, 'N','en-US') AS 'Number Format in US', -- Returns '454,545.39'
FORMAT(@Number, 'N','en-IN') AS 'Number Format in INDIA', -- Returns '4,54,545.39'
FORMAT(@Number, '#.0') AS 'With 1 Decimal', -- Returns '454545.4'
FORMAT(@Number, '#.00') AS 'With 2 Decimal', -- Returns '454545.39'
FORMAT(@Number, '#,##.00') AS 'With Comma and 2 Decimal', -- Returns '454,545.39'
FORMAT(@Number, '##.00') AS 'Without Comma and 2 Decimal', -- Returns '454545.39'
FORMAT(@Number, '000000000') AS 'Left-padded to nine digits' -- Returns '000454545'

http://www.riptutorial.com/ 289

Valid value types list: (source)

Category Type .Net type

Numeric bigint Int64
Numeric int Int32
Numeric smallint Int16
Numeric tinyint Byte
Numeric decimal SqlDecimal
Numeric numeric SqlDecimal
Numeric float Double
Numeric real Single
Numeric smallmoney Decimal
Numeric money Decimal
Date and Time date DateTime
Date and Time time TimeSpan
Date and Time datetime DateTime
Date and Time smalldatetime DateTime
Date and Time datetime2 DateTime
Date and Time datetimeoffset DateTimeOffset

Important Notes:

FORMAT returns NULL for errors other than a culture that is not valid. For example, NULL is
returned if the value specified in format is not valid.

•

FORMAT relies on the presence of the .NET Framework Common Language Runtime (CLR).•
FORMAT relies upon CLR formatting rules which dictate that colons and periods must be
escaped. Therefore, when the format string (second parameter) contains a colon or period,
the colon or period must be escaped with backslash when an input value (first parameter) is
of the time data type.

•

See also Date & Time Formatting using FORMAT documentation example.

Read String Functions online: http://www.riptutorial.com/sql-server/topic/4113/string-functions

http://www.riptutorial.com/ 290

Chapter 97: Subqueries

Examples

Subqueries

A subquery is a query within another SQL query. A subquery is also called inner query or inner
select and the statement containing a subquery is called an outer query or outer select.

Note

Subqueries must be enclosed within parenthesis,1.
An ORDER BY cannot be used in a subquery.2.
The image type such as BLOB, array, text datatypes are not allowed in subqueries.3.

Subqueries can be used with select, insert, update and delete statement within where, from, select
clause along with IN, comparison operators, etc.

We have a table named ITCompanyInNepal on which we will perform queries to show subqueries
examples:

Examples: SubQueries With Select Statement

with In operator and where clause:

SELECT *
FROM ITCompanyInNepal
WHERE Headquarter IN (SELECT Headquarter
 FROM ITCompanyInNepal
 WHERE Headquarter = 'USA');

with comparison operator and where clause

SELECT *
FROM ITCompanyInNepal
WHERE NumberOfEmployee < (SELECT AVG(NumberOfEmployee)
 FROM ITCompanyInNepal

http://www.riptutorial.com/ 291

)

with select clause

SELECT CompanyName,
 CompanyAddress,
 Headquarter,
 (Select SUM(NumberOfEmployee)
 FROM ITCompanyInNepal
 Where Headquarter = 'USA') AS TotalEmployeeHiredByUSAInKathmandu
FROM ITCompanyInNepal
WHERE CompanyAddress = 'Kathmandu' AND Headquarter = 'USA'

Subqueries with insert statement

We have to insert data from IndianCompany table to ITCompanyInNepal. The table for
IndianCompany is shown below:

INSERT INTO ITCompanyInNepal
SELECT *
FROM IndianCompany

Subqueries with update statement

Suppose all the companies whose headquarter is USA decided to fire 50 employees from all US
based companies of Nepal due to some change in policy of USA companies.

UPDATE ITCompanyInNepal
SET NumberOfEmployee = NumberOfEmployee - 50
WHERE Headquarter IN (SELECT Headquarter
 FROM ITCompanyInNepal
 WHERE Headquarter = 'USA')

Subqueries with Delete Statement

Suppose all the companies whose headquarter is Denmark decided to shutdown their companies
from Nepal.

DELETE FROM ITCompanyInNepal
WHERE Headquarter IN (SELECT Headquarter
 FROM ITCompanyInNepal
 WHERE Headquarter = 'Denmark')

Read Subqueries online: http://www.riptutorial.com/sql-server/topic/5629/subqueries

http://www.riptutorial.com/ 292

Chapter 98: System database - TempDb

Examples

Identify TempDb usage

Following query will provide information about TempDb usage. Analyzing the counts you can
identify which thing is impacting TempDb

SELECT
 SUM (user_object_reserved_page_count)*8 as usr_obj_kb,
 SUM (internal_object_reserved_page_count)*8 as internal_obj_kb,
 SUM (version_store_reserved_page_count)*8 as version_store_kb,
 SUM (unallocated_extent_page_count)*8 as freespace_kb,
 SUM (mixed_extent_page_count)*8 as mixedextent_kb
FROM sys.dm_db_file_space_usage

TempDB database details

Below query can be used to get TempDB database details:

USE [MASTER]
SELECT * FROM sys.databases WHERE database_id = 2

OR

USE [MASTER]
SELECT * FROM sys.master_files WHERE database_id = 2

With the help of below DMV, you can check how much TempDb space does your session is using.
This query is quite helpful while debugging TempDb issues

SELECT * FROM sys.dm_db_session_space_usage WHERE session_id = @@SPID

Read System database - TempDb online: http://www.riptutorial.com/sql-server/topic/4427/system-
database---tempdb

http://www.riptutorial.com/ 293

Chapter 99: Table Valued Parameters

Remarks

Table valued parameters (TVP for short) are parameters passed to a stored procedure or function
that contains data that is table structured. Using table valued parameters requires creating a user
defined table type for the parameter being used.

Tabled valued parameters are readonly parameters.

Examples

Using a table valued parameter to insert multiple rows to a table

First, define a used defined table type to use:

CREATE TYPE names as TABLE
(
 FirstName varchar(10),
 LastName varchar(10)
)
GO

Create the stored procedure:

CREATE PROCEDURE prInsertNames
(
 @Names dbo.Names READONLY -- Note: You must specify the READONLY
)
AS

INSERT INTO dbo.TblNames (FirstName, LastName)
SELECT FirstName, LastName
FROM @Names
GO

Executing the stored procedure:

DECLARE @names dbo.Names
INSERT INTO @Names VALUES
('Zohar', 'Peled'),
('First', 'Last')

EXEC dbo.prInsertNames @Names

Read Table Valued Parameters online: http://www.riptutorial.com/sql-server/topic/5285/table-
valued-parameters

http://www.riptutorial.com/ 294

Chapter 100: Temporal Tables

Remarks

SQL Server 2016 introduces support for system-versioned temporal tables as a database feature
that brings built-in support for providing information about data stored in the table at any point in
time rather than only the data that is correct at the current moment in time.

A system-versioned temporal table is a new type of user table in SQL Server 2016, designed to
keep a full history of data changes and allow easy point in time analysis. This type of temporal
table is referred to as a system-versioned temporal table because the period of validity for each
row is managed by the system (i.e. database engine). Every temporal table has two explicitly
defined columns, each with a datetime2 data type. These columns are referred to as period
columns. These period columns are used exclusively by the system to record period of validity for
each row whenever a row is modified.

Examples

CREATE Temporal Tables

CREATE TABLE dbo.Employee
(
 [EmployeeID] int NOT NULL PRIMARY KEY CLUSTERED
 , [Name] nvarchar(100) NOT NULL
 , [Position] varchar(100) NOT NULL
 , [Department] varchar(100) NOT NULL
 , [Address] nvarchar(1024) NOT NULL
 , [AnnualSalary] decimal (10,2) NOT NULL
 , [ValidFrom] datetime2 (2) GENERATED ALWAYS AS ROW START
 , [ValidTo] datetime2 (2) GENERATED ALWAYS AS ROW END
 , PERIOD FOR SYSTEM_TIME (ValidFrom, ValidTo)
)
 WITH (SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.EmployeeHistory));

INSERTS: On an INSERT, the system sets the value for the ValidFrom column to the begin time
of the current transaction (in the UTC time zone) based on the system clock and assigns the value
for the ValidTo column to the maximum value of 9999-12-31. This marks the row as open.

UPDATES: On an UPDATE, the system stores the previous value of the row in the history table
and sets the value for the ValidTo column to the begin time of the current transaction (in the UTC
time zone) based on the system clock. This marks the row as closed, with a period recorded for
which the row was valid. In the current table, the row is updated with its new value and the system
sets the value for the ValidFrom column to the begin time for the transaction (in the UTC time
zone) based on the system clock. The value for the updated row in the current table for the
ValidTo column remains the maximum value of 9999-12-31.

DELETES: On a DELETE, the system stores the previous value of the row in the history table and
sets the value for the ValidTo column to the begin time of the current transaction (in the UTC time

http://www.riptutorial.com/ 295

zone) based on the system clock. This marks the row as closed, with a period recorded for which
the previous row was valid. In the current table, the row is removed. Queries of the current table
will not return this row. Only queries that deal with history data return data for which a row is
closed.

MERGE: On a MERGE, the operation behaves exactly as if up to three statements (an INSERT,
an UPDATE, and/or a DELETE) executed, depending on what is specified as actions in the
MERGE statement.

Tip : The times recorded in the system datetime2 columns are based on the begin time of the
transaction itself. For example, all rows inserted within a single transaction will have the same
UTC time recorded in the column corresponding to the start of the SYSTEM_TIME period.

How do I query temporal data?

SELECT * FROM Employee
 FOR SYSTEM_TIME
 BETWEEN '2014-01-01 00:00:00.0000000' AND '2015-01-01 00:00:00.0000000'
 WHERE EmployeeID = 1000 ORDER BY ValidFrom;

Return actual value specified point in time(FOR SYSTEM_TIME AS OF)

Returns a table with a rows containing the values that were actual (current) at the specified point
in time in the past.

SELECT * FROM Employee
 FOR SYSTEM_TIME AS OF '2016-08-06 08:32:37.91'

FOR SYSTEM_TIME BETWEEN AND

Same as above in the FOR SYSTEM_TIME FROM <start_date_time>TO <end_date_time>
description, except the table of rows returned includes rows that became active on the upper
boundary defined by the <end_date_time> endpoint.

SELECT * FROM Employee
 FOR SYSTEM_TIME BETWEEN '2015-01-01' AND '2015-12-31'

FOR SYSTEM_TIME FROM TO

Returns a table with the values for all row versions that were active within the specified time range,
regardless of whether they started being active before the <start_date_time> parameter value for
the FROM argument or ceased being active after the <end_date_time> parameter value for the
TO argument. Internally, a union is performed between the temporal table and its history table and
the results are filtered to return the values for all row versions that were active at any time during
the time range specified. Rows that became active exactly on the lower boundary defined by the
FROM endpoint are included and records that became active exactly on the upper boundary
defined by the TO endpoint are not included.

http://www.riptutorial.com/ 296

SELECT * FROM Employee
 FOR SYSTEM_TIME FROM '2015-01-01' TO '2015-12-31'

FOR SYSTEM_TIME CONTAINED IN (,)

Returns a table with the values for all row versions that were opened and closed within the
specified time range defined by the two datetime values for the CONTAINED IN argument. Rows
that became active exactly on the lower boundary or ceased being active exactly on the upper
boundary are included.

SELECT * FROM Employee
 FOR SYSTEM_TIME CONTAINED IN ('2015-04-01', '2015-09-25')

FOR SYSTEM_TIME ALL

Returns the union of rows that belong to the current and the history table.

SELECT * FROM Employee
 FOR SYSTEM_TIME ALL

Creating a Memory-Optimized System-Versioned Temporal Table and cleaning
up the SQL Server history table

Creating a temporal table with a default history table is a convenient option when you want to
control naming and still rely on system to create history table with default configuration. In the
example below, a new system-versioned memory-optimized temporal table linked to a new disk-
based history table.

CREATE SCHEMA History
GO
CREATE TABLE dbo.Department
(
 DepartmentNumber char(10) NOT NULL PRIMARY KEY NONCLUSTERED,
 DepartmentName varchar(50) NOT NULL,
 ManagerID int NULL,
 ParentDepartmentNumber char(10) NULL,
 SysStartTime datetime2 GENERATED ALWAYS AS ROW START HIDDEN NOT NULL,
 SysEndTime datetime2 GENERATED ALWAYS AS ROW END HIDDEN NOT NULL,
 PERIOD FOR SYSTEM_TIME (SysStartTime,SysEndTime)
)
WITH
 (
 MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA,
 SYSTEM_VERSIONING = ON (HISTORY_TABLE = History.DepartmentHistory)
);

Cleaning up the SQL Server history table Over time the history table can grow significantly.
Since inserting, updating or deleting data from the history table are not allowed, the only way to
clean up the history table is first to disable system versioning:

http://www.riptutorial.com/ 297

ALTER TABLE dbo.Employee

SET (SYSTEM_VERSIONING = OFF); GO

Delete unnecessary data from the history table:

 DELETE FROM dbo.EmployeeHistory

WHERE EndTime <= '2017-01-26 14:00:29';

and then re-enable system versioning:

ALTER TABLE dbo.Employee

SET (SYSTEM_VERSIONING = ON (HISTORY_TABLE = [dbo].[EmployeeHistory],
DATA_CONSISTENCY_CHECK = ON));

Cleaning the history table in Azure SQL Databases is a little different, since Azure SQL databases
have built-in support for cleaning of the history table. First, temporal history retention cleanup need
to be enable on a database level:

ALTER DATABASE CURRENT

SET TEMPORAL_HISTORY_RETENTION ON GO

Then set the retention period per table:

ALTER TABLE dbo.Employee

SET (SYSTEM_VERSIONING = ON (HISTORY_RETENTION_PERIOD = 90 DAYS));

This will delete all data in the history table older than 90 days. SQL Server 2016 on-premise
databases do not support TEMPORAL_HISTORY_RETENTION and
HISTORY_RETENTION_PERIOD and either of the above two queries are executed on the SQL
Server 2016 on-premise databases the following errors will occur.

For TEMPORAL_HISTORY_RETENTION error will be:

Msg 102, Level 15, State 6, Line 34

Incorrect syntax near ‘TEMPORAL_HISTORY_RETENTION’.

For HISTORY_RETENTION_PERIOD error will be:

Msg 102, Level 15, State 1, Line 39

Incorrect syntax near ‘HISTORY_RETENTION_PERIOD’.

http://www.riptutorial.com/ 298

Read Temporal Tables online: http://www.riptutorial.com/sql-server/topic/5296/temporal-tables

http://www.riptutorial.com/ 299

Chapter 101: The STUFF Function

Parameters

Parameter Details

character_expression the existing string in your data

start_position
the position in character_expression to delete length and then insert
the replacement_string

length the number of characters to delete from character_expression

replacement_string the sequence of characters to insert in character_expression

Examples

Basic Example of STUFF() function.

STUFF(Original_Expression, Start, Length, Replacement_expression)

STUFF() function inserts Replacement_expression, at the start position specified, along with
removing the characters specified using Length parameter.

 Select FirstName, LastName,Email, STUFF(Email, 2, 3, '*****') as StuffedEmail From Employee

Executing this example will result in returning the given table

FirstName LastName Email StuffedEmail

Jomes Hunter James@hotmail.com J*****s@hotmail.com

Shyam rathod Shyam@hotmail.com S*****m@hotmail.com

Ram shinde Ram@hotmail.com R*****hotmail.com

stuff for comma separated in sql server

FOR XML PATH and STUFF to concatenate the multiple rows into a single row:

 select distinct t1.id,
 STUFF(
 (SELECT ', ' + convert(varchar(10), t2.date, 120)
 FROM yourtable t2
 where t1.id = t2.id
 FOR XML PATH (''))

http://www.riptutorial.com/ 300

 , 1, 1, '') AS date
 from yourtable t1;

Obtain column names separated with comma (not a list)

/*
The result can be use for fast way to use columns on Insertion/Updates.
Works with tables and views.

Example: eTableColumns 'Customers'
ColumnNames
--
Id, FName, LName, Email, PhoneNumber, PreferredContact

INSERT INTO Customers (Id, FName, LName, Email, PhoneNumber, PreferredContact)
 VALUES (5, 'Ringo', 'Star', 'two@beatles.now', NULL, 'EMAIL')
*/
CREATE PROCEDURE eTableColumns (@Table VARCHAR(100))
AS
SELECT ColumnNames =
 STUFF((SELECT ', ' + c.name
FROM
 sys.columns c
INNER JOIN
 sys.types t ON c.user_type_id = t.user_type_id
WHERE
 c.object_id = OBJECT_ID(@Table)
 FOR XML PATH, TYPE).value('.[1]','varchar(2000)'),
 1, 1, '')
GO

Using FOR XML to Concatenate Values from Multiple Rows

One common use for the FOR XML function is to concatenate the values of multiple rows.

Here's an example using the Customers table:

SELECT
 STUFF((SELECT ';' + Email
 FROM Customers
 where (Email is not null and Email <> '')
 ORDER BY Email ASC
 FOR XML PATH('')),
 1, 1, '')

In the example above, FOR XML PATH('')) is being used to concatenate email addresses, using ; as
the delimiter character. Also, the purpose of STUFF is to remove the leading ; from the
concatenated string. STUFF is also implicitly casting the concatenated string from XML to varchar.

Note: the result from the above example will be XML-encoded, meaning it will replace < characters
with < etc. If you don't want this, change FOR XML PATH('')) to FOR XML PATH,
TYPE).value('.[1]','varchar(MAX)'), e.g.:

SELECT

http://www.riptutorial.com/ 301

 STUFF((SELECT ';' + Email
 FROM Customers
 where (Email is not null and Email <> '')
 ORDER BY Email ASC
 FOR XML PATH, TYPE).value('.[1]','varchar(900)'),
 1, 1, '')

This can be used to achieve a result similar to GROUP_CONCAT in MySQL or string_agg in PostgreSQL
9.0+, although we use subqueries instead of GROUP BY aggregates. (As an alternative, you can
install a user-defined aggregate such as this one if you're looking for functionality closer to that of
GROUP_CONCAT).

Basic Character Replacement with STUFF()

The STUFF() function inserts a string into another string by first deleting a specified number of
characters. The following example, deletes "Svr" and replaces it with "Server". This happens by
specifying the start_position and length of the replacement.

SELECT STUFF('SQL Svr Documentation', 5, 3, 'Server')

Executing this example will result in returning SQL Server Documentation instead of SQL Svr
Documentation.

Read The STUFF Function online: http://www.riptutorial.com/sql-server/topic/703/the-stuff-function

http://www.riptutorial.com/ 302

Chapter 102: Transaction handling

Parameters

Parameter Details

transaction_name
for naming your transaction - useful with the parameter [with mark]
which will allow a meaningfull logging -- case-sensitive (!)

with mark
['description']

can be added to [transaction_name] and will store a mark in the log

Examples

basic transaction skeleton with error handling

BEGIN TRY -- start error handling
 BEGIN TRANSACTION; -- from here on transactions (modifictions) are not final
 -- start your statement(s)
 select 42/0 as ANSWER -- simple SQL Query with an error
 -- end your statement(s)
 COMMIT TRANSACTION; -- finalize all transactions (modifications)
END TRY -- end error handling -- jump to end
BEGIN CATCH -- execute this IF an error occured
 ROLLBACK TRANSACTION; -- undo any transactions (modifications)
-- put together some information as a query
 SELECT
 ERROR_NUMBER() AS ErrorNumber
 ,ERROR_SEVERITY() AS ErrorSeverity
 ,ERROR_STATE() AS ErrorState
 ,ERROR_PROCEDURE() AS ErrorProcedure
 ,ERROR_LINE() AS ErrorLine
 ,ERROR_MESSAGE() AS ErrorMessage;

END CATCH; -- final line of error handling
GO -- execute previous code

Read Transaction handling online: http://www.riptutorial.com/sql-server/topic/5859/transaction-
handling

http://www.riptutorial.com/ 303

Chapter 103: Transaction isolation levels

Syntax

SET TRANSACTION ISOLATION LEVEL { READ UNCOMMITTED | READ COMMITTED |
REPEATABLE READ | SNAPSHOT | SERIALIZABLE } [;]

•

Remarks

MSDN Reference: SET TRANSACTION ISOLATION LEVEL

Examples

Repeatable Read

SQL Server 2008 R2

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

This transaction isolation level is slightly less permissive than READ COMMITTED, in that shared locks
are placed on all data read by each statement in the transaction and are held until the
transaction completes, as opposed to being released after each statement.

Note: Use this option only when necessary, as it is more likely to cause database performance
degradation as well as deadlocks than READ COMMITTED.

Snapshot

SQL Server 2008 R2

SET TRANSACTION ISOLATION LEVEL SNAPSHOT

Specifies that data read by any statement in a transaction will be the transactionally consistent
version of the data that existed at the start of the transaction, i.e., it will only read data that has
been committed prior to the transaction starting.

SNAPSHOT transactions do not request or cause any locks on the data that is being read, as it is only
reading the version (or snapshot) of the data that existed at the time the transaction began.

A transaction running in SNAPSHOT isolation level read only its own data changes while it is running.
For example, a transaction could update some rows and then read the updated rows, but that
change will only be visible to the current transaction until it is committed.

Note: The ALLOW_SNAPSHOT_ISOLATION database option must be set to ON before the SNAPSHOT

http://www.riptutorial.com/ 304

isolation level can be used.

Serializable

SQL Server 2008 R2

SET TRANSACTION ISOLATION LEVEL SERIALIZEABLE

This isolation level is the most restrictive. It requests range locks the range of key values that are
read by each statement in the transaction. This also means that INSERT statements from other
transactions will be blocked if the rows to be inserted are in the range locked by the current
transaction.

This option has the same effect as setting HOLDLOCK on all tables in all SELECT statements in a
transaction.

Note: This transaction isolation has the lowest concurrency and should only be used when
necessary.

Read Uncommitted

SQL Server 2008 R2

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

This is the most permissive isolation level, in that it does not cause any locks at all. It specifies that
statements can read all rows, including rows that have been written in transactions but not yet
committed (i.e., they are still in transaction). This isolation level can be subject to "dirty reads".

Read Committed

SQL Server 2008 R2

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

This isolation level is the 2nd most permissive. It prevents dirty reads. The behavior of READ
COMMITTED depends on the setting of the READ_COMMITTED_SNAPSHOT:

If set to OFF (the default setting) the transaction uses shared locks to prevent other
transactions from modifying rows used by the current transaction, as well as block the
current transaction from reading rows modified by other transactions.

•

If set to ON, the READCOMMITTEDLOCK table hint can be used to request shared locking instead of
row versioning for transactions running in READ COMMITTED mode.

•

Note: READ COMMITTED is the default SQL Server behavior.

http://www.riptutorial.com/ 305

What are "dirty reads"?

Dirty reads (or uncommitted reads) are reads of rows which are being modified by an open
transaction.

This behavior can be replicated by using 2 separate queries: one to open a transaction and write
some data to a table without committing, the other to select the data to be written (but not yet
committed) with this isolation level.

Query 1 - Prepare a transaction but do not finish it:

CREATE TABLE dbo.demo (
 col1 INT,
 col2 VARCHAR(255)
);
GO
--This row will get committed normally:
BEGIN TRANSACTION;
 INSERT INTO dbo.demo(col1, col2)
 VALUES (99, 'Normal transaction');
COMMIT TRANSACTION;
--This row will be "stuck" in an open transaction, causing a dirty read
BEGIN TRANSACTION;
 INSERT INTO dbo.demo(col1, col2)
 VALUES (42, 'Dirty read');
--Do not COMMIT TRANSACTION or ROLLBACK TRANSACTION here

Query 2 - Read the rows including the open transaction:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
SELECT * FROM dbo.demo;

Returns:

col1 col2
----------- ---------------------------------------
99 Normal transaction
42 Dirty read

P.S.: Don't forget to clean up this demo data:

COMMIT TRANSACTION;
DROP TABLE dbo.demo;
GO

Read Transaction isolation levels online: http://www.riptutorial.com/sql-
server/topic/5114/transaction-isolation-levels

http://www.riptutorial.com/ 306

Chapter 104: Trigger

Introduction

A trigger is a special type of stored procedure, which is executed automatically after an event
occurs. There are two types of triggers: Data Definition Language Triggers and Data Manipulation
Language Triggers.

It is usually bound to a table and fires automatically. You cannot explicitly call any trigger.

Examples

Types and classifications of Trigger

In SQL Server, there are two categories of triggers: DDL Triggers and DML Triggers.

DDL Triggers are fired in response to Data Definition Language (DDL) events. These events
primarily correspond to Transact-SQL statements that start with the keywords CREATE, ALTER and
DROP.

DML Triggers are fired in response to Data Manipulation Language (DML) events. These events
corresponds to Transact-SQL statements that start with the keywords INSERT, UPDATE and DELETE.

DML triggers are classified into two main types:

After Triggers (for triggers)

AFTER INSERT Trigger.•
AFTER UPDATE Trigger.•
AFTER DELETE Trigger.•

1.

Instead of triggers

INSTEAD OF INSERT Trigger.•
INSTEAD OF UPDATE Trigger.•
INSTEAD OF DELETE Trigger.•

2.

DML Triggers

DML Triggers are fired as a response to dml statements (insert, update or delete).
A dml trigger can be created to address one or more dml events for a single table or view. This
means that a single dml trigger can handle inserting, updating and deleting records from a specific
table or view, but in can only handle data being changed on that single table or view.

DML Triggers provides access to inserted and deleted tables that holds information about the data
that was / will be affected by the insert, update or delete statement that fired the trigger.

http://www.riptutorial.com/ 307

Note that DML triggers are statement based, not row based. This means that if the statement
effected more then one row, the inserted or deleted tables will contain more then one row.

Examples:

CREATE TRIGGER tblSomething_InsertOrUpdate ON tblSomething
FOR INSERT
AS

 INSERT INTO tblAudit (TableName, RecordId, Action)
 SELECT 'tblSomething', Id, 'Inserted'
 FROM Inserted

GO

CREATE TRIGGER tblSomething_InsertOrUpdate ON tblSomething
FOR UPDATE
AS

 INSERT INTO tblAudit (TableName, RecordId, Action)
 SELECT 'tblSomething', Id, 'Updated'
 FROM Inserted

GO

CREATE TRIGGER tblSomething_InsertOrUpdate ON tblSomething
FOR DELETE
AS

 INSERT INTO tblAudit (TableName, RecordId, Action)
 SELECT 'tblSomething', Id, 'Deleted'
 FROM Deleted

GO

All the examples above will add records to tblAudit whenever a record is added, deleted or
updated in tblSomething.

Read Trigger online: http://www.riptutorial.com/sql-server/topic/5032/trigger

http://www.riptutorial.com/ 308

Chapter 105: TRY/CATCH

Remarks

TRY/CATCH is a language construct specific to MS SQL Server's T-SQL.

It allows error handling within T-SQL, similar to that seen in .NET code.

Examples

Transaction in a TRY/CATCH

This will rollback both inserts due to an invalid datetime:

BEGIN TRANSACTION
BEGIN TRY
 INSERT INTO dbo.Sale(Price, SaleDate, Quantity)
 VALUES (5.2, GETDATE(), 1)
 INSERT INTO dbo.Sale(Price, SaleDate, Quantity)
 VALUES (5.2, 'not a date', 1)
 COMMIT TRANSACTION
END TRY
BEGIN CATCH
 ROLLBACK TRANSACTION -- First Rollback and then throw.
 THROW
END CATCH

This will commit both inserts:

BEGIN TRANSACTION
BEGIN TRY
 INSERT INTO dbo.Sale(Price, SaleDate, Quantity)
 VALUES (5.2, GETDATE(), 1)
 INSERT INTO dbo.Sale(Price, SaleDate, Quantity)
 VALUES (5.2, GETDATE(), 1)
 COMMIT TRANSACTION
END TRY
BEGIN CATCH
 THROW
 ROLLBACK TRANSACTION
END CATCH

Raising errors in try-catch block

RAISERROR function will generate error in the TRY CATCH block:

DECLARE @msg nvarchar(50) = 'Here is a problem!'
BEGIN TRY
 print 'First statement';
 RAISERROR(@msg, 11, 1);
 print 'Second statement';

http://www.riptutorial.com/ 309

END TRY
BEGIN CATCH
 print 'Error: ' + ERROR_MESSAGE();
END CATCH

RAISERROR with second parameter greater than 10 (11 in this example) will stop execution in
TRY BLOCK and raise an error that will be handled in CATCH block. You can access error
message using ERROR_MESSAGE() function. Output of this sample is:

First statement
Error: Here is a problem!

Raising info messages in try catch block

RAISERROR with severity (second parameter) less or equal to 10 will not throw exception.

BEGIN TRY
 print 'First statement';
 RAISERROR('Here is a problem!', 10, 15);
 print 'Second statement';
END TRY
BEGIN CATCH
 print 'Error: ' + ERROR_MESSAGE();
END CATCH

After RAISERROR statement, third statement will be executed and CATCH block will not be
invoked. Result of execution is:

First statement
Here is a problem!
Second statement

Re-throwing exception generated by RAISERROR

You can re-throw error that you catch in CATCH block using TRHOW statement:

DECLARE @msg nvarchar(50) = 'Here is a problem! Area: ''%s'' Line:''%i'''
BEGIN TRY
 print 'First statement';
 RAISERROR(@msg, 11, 1, 'TRY BLOCK', 2);
 print 'Second statement';
END TRY
BEGIN CATCH
 print 'Error: ' + ERROR_MESSAGE();
 THROW;
END CATCH

Note that in this case we are raising error with formatted arguments (fourth and fifth parameter).
This might be useful if you want to add more info in message. Result of execution is:

First statement

http://www.riptutorial.com/ 310

Error: Here is a problem! Area: 'TRY BLOCK' Line:'2'
Msg 50000, Level 11, State 1, Line 26
Here is a problem! Area: 'TRY BLOCK' Line:'2'

Throwing exception in TRY/CATCH blocks

You can throw exception in try catch block:

DECLARE @msg nvarchar(50) = 'Here is a problem!'
BEGIN TRY
 print 'First statement';
 THROW 51000, @msg, 15;
 print 'Second statement';
END TRY
BEGIN CATCH
 print 'Error: ' + ERROR_MESSAGE();
 THROW;
END CATCH

Exception with be handled in CATCH block and then re-thrown using THROW without parameters.

First statement
Error: Here is a problem!
Msg 51000, Level 16, State 15, Line 39
Here is a problem!

THROW is similar to RAISERROR with following differences:

Recommendation is that new applications should use THROW instead of RASIERROR.•
THROW can use any number as first argument (error number), RAISERROR can use only
ids in sys.messages view

•

THROW has severity 16 (cannot be changed)•
THROW cannot format arguments like RAISERROR. Use FORMATMESSAGE function as
an argument of RAISERROR if you need this feature.

•

Read TRY/CATCH online: http://www.riptutorial.com/sql-server/topic/5189/try-catch

http://www.riptutorial.com/ 311

Chapter 106: UNION

Examples

Union and union all

Union operation combines the results of two or more queries into a single result set that includes
all the rows that belong to all queries in the union and will ignore any duplicates that exist. Union
all also does the same thing but include even the duplicate values. The concept of union operation
will be clear from the example below. Few things to consider while using union are:

1.The number and the order of the columns must be the same in all queries.

2.The data types must be compatible.

Example:

We have three tables : Marksheet1, Marksheet2 and Marksheet3. Marksheet3 is the duplicate
table of Marksheet2 which contains same values as that of Marksheet2.

Table1: Marksheet1

Table2: Marksheet2

Table3: Marksheet3

http://www.riptutorial.com/ 312

Union on tables Marksheet1 and Marksheet2

SELECT SubjectCode, SubjectName, MarksObtained
FROM Marksheet1
UNION
SELECT CourseCode, CourseName, MarksObtained
FROM Marksheet2

Note: The output for union of the three tables will also be same as union on Marksheet1 and
Marksheet2 because union operation does not take duplicate values.

SELECT SubjectCode, SubjectName, MarksObtained
FROM Marksheet1
UNION
SELECT CourseCode, CourseName, MarksObtained
FROM Marksheet2
UNION
SELECT SubjectCode, SubjectName, MarksObtained
FROM Marksheet3

OUTPUT

Union All

SELECT SubjectCode, SubjectName, MarksObtained
FROM Marksheet1
UNION ALL
SELECT CourseCode, CourseName, MarksObtained
FROM Marksheet2
UNION ALL
SELECT SubjectCode, SubjectName, MarksObtained
FROM Marksheet3

OUTPUT

http://www.riptutorial.com/ 313

You will notice here that the duplicate values from Marksheet3 are also displayed using union all.

Read UNION online: http://www.riptutorial.com/sql-server/topic/5590/union

http://www.riptutorial.com/ 314

Chapter 107: Use of TEMP Table

Remarks

Temporary Tables are really very helpful.

The table can be created at runtime and can do all operations which are done in a normal table.

These tables are created in a tempdb database.

Used when ?

We have to do complex join operation.1.

We do large number of row manipulation in stored procedures.2.

Can replace the usage of cursor.3.

Thus increases the performance.

Examples

Dropping temp tables

Temp tables must have unique IDs (within the session, for local temp tables, or within the server,
for global temp tables). Trying to create a table using a name that already exists will return the
following error:

There is already an object named '#tempTable' in the database.

If your query produces temp tables, and you want to run it more than once, you will need to drop
the tables before trying to generate them again. The basic syntax for this is:

drop table #tempTable

Trying to execute this syntax before the table exists (e.g. on the first run of your syntax) will cause
another error:

Cannot drop the table '#tempTable', because it does not exist or you do not have permission.

To avoid this, you can check to see if the table already exists before dropping it, like so:

IF OBJECT_ID ('tempdb..#tempTable', 'U') is not null DROP TABLE #tempTable

Local Temp Table

http://www.riptutorial.com/ 315

Will be available till the current connection persists for the user.

Automatically deleted when the user disconnects.

The name should start with # (#temp)

 CREATE TABLE #LocalTempTable(
 StudentID int,
 StudentName varchar(50),
 StudentAddress varchar(150))

•

insert into #LocalTempTable values (1, 'Ram','India');

select * from #LocalTempTable

After executing all these statements if we close the query window and open it again and try
inserting and select it will show an error message

“Invalid object name #LocalTempTable”

Global Temp Table

Will start with ## (##temp).

Will be deleted only if user disconnects all connections.

It behaves like a permanent table.

CREATE TABLE ##NewGlobalTempTable(
 StudentID int,
 StudentName varchar(50),
 StudentAddress varchar(150))

Insert Into ##NewGlobalTempTable values (1,'Ram','India');
Select * from ##NewGlobalTempTable

•

Note: These are viewable by all users of the database, irrespective of permissions level.

Read Use of TEMP Table online: http://www.riptutorial.com/sql-server/topic/5328/use-of-temp-
table

http://www.riptutorial.com/ 316

Chapter 108: User Defined Table Types

Introduction

User defined table types (UDT for short) are data types that allows the user to define a table
structure. User defined table types supports primary keys, unique constraints and default values.

Remarks

UDTs have following restrictions -

can not be used as a column in a table or a field in a structured user-defined types•
a non-clustered index cannot be created in a UDT unless the index is the result of creating a
PRIMARY KEY or UNIQUE constraint on the UDT

•

UDT definition CANNOT be modified after it is created•

Examples

creating a UDT with a single int column that is also a primary key

CREATE TYPE dbo.Ids as TABLE
(
 Id int PRIMARY KEY
)

Creating a UDT with multiple columns

CREATE TYPE MyComplexType as TABLE
(
 Id int,
 Name varchar(10)
)

Creating a UDT with a unique constraint:

CREATE TYPE MyUniqueNamesType as TABLE
(
 FirstName varchar(10),
 LastName varchar(10),
 UNIQUE (FirstName,LastName)
)

Note: constraints in user defined table types can not be named.

Creating a UDT with a primary key and a column with a default value:

http://www.riptutorial.com/ 317

CREATE TYPE MyUniqueNamesType as TABLE
(
 FirstName varchar(10),
 LastName varchar(10),
 CreateDate datetime default GETDATE()
 PRIMARY KEY (FirstName,LastName)
)

Read User Defined Table Types online: http://www.riptutorial.com/sql-server/topic/5280/user-
defined-table-types

http://www.riptutorial.com/ 318

Chapter 109: Variables

Syntax

DECLARE @VariableName DataType [= Value] ;•
SET @VariableName = Value ;•

Examples

Declare a Table Variable

DECLARE @Employees TABLE
(
 EmployeeID INT NOT NULL PRIMARY KEY,
 FirstName NVARCHAR(50) NOT NULL,
 LastName NVARCHAR(50) NOT NULL,
 ManagerID INT NULL
)

When you create a normal table, you use CREATE TABLE Name (Columns) syntax. When creating a
table variable, you use DECLARE @Name TABLE (Columns) syntax.

To reference the table variable inside a SELECT statement, SQL Server requires that you give the
table variable an alias, otherwise you'll get an error:

Must declare the scalar variable "@TableVariableName".

i.e.

DECLARE @Table1 TABLE (Example INT)
DECLARE @Table2 TABLE (Example INT)

/*
-- the following two commented out statements would generate an error:
SELECT *
FROM @Table1
INNER JOIN @Table2 ON @Table1.Example = @Table2.Example

SELECT *
FROM @Table1
WHERE @Table1.Example = 1
*/

-- but these work fine:
SELECT *
FROM @Table1 T1
INNER JOIN @Table2 T2 ON T1.Example = T2.Example

SELECT *
FROM @Table1 Table1
WHERE Table1.Example = 1

http://www.riptutorial.com/ 319

Updating a variable using SET

DECLARE @VariableName INT
SET @VariableName = 1
PRINT @VariableName

1

Using SET, you can only update one variable at a time.

Updating variables using SELECT

Using SELECT, you can update multiple variables at once.

DECLARE @Variable1 INT, @Variable2 VARCHAR(10)
SELECT @Variable1 = 1, @Variable2 = 'Hello'
PRINT @Variable1
PRINT @Variable2

1

Hello

When using SELECT to update a variable from a table column, if there are multiple values, it will use
the last value. (Normal order rules apply - if no sort is given, the order is not guaranteed.)

CREATE TABLE #Test (Example INT)
INSERT INTO #Test VALUES (1), (2)

DECLARE @Variable INT
SELECT @Variable = Example
FROM #Test
ORDER BY Example ASC

PRINT @Variable

2

SELECT TOP 1 @Variable = Example
FROM #Test
ORDER BY Example ASC

PRINT @Variable

1

If there are no rows returned by the query, the variable's value won't change:

SELECT TOP 0 @Variable = Example
FROM #Test
ORDER BY Example ASC

http://www.riptutorial.com/ 320

PRINT @Variable

1

Declare multiple variables at once, with initial values

DECLARE
 @Var1 INT = 5,
 @Var2 NVARCHAR(50) = N'Hello World',
 @Var3 DATETIME = GETDATE()

Compound assignment operators

SQL Server 2008 R2

Supported compound operators:

+= Add and assign

-= Subtract and assign

*= Multiply and assign

/= Divide and assign

%= Modulo and assign

&= Bitwise AND and assign

^= Bitwise XOR and assign

|= Bitwise OR and assign

Example usage:

DECLARE @test INT = 42;
SET @test += 1;
PRINT @test; --43
SET @test -= 1;
PRINT @test; --42
SET @test *= 2
PRINT @test; --84
SET @test /= 2;
PRINT @test; --42

Updating variables by selecting from a table

Depending on the structure of your data, you can create variables that update dynamically.

http://www.riptutorial.com/ 321

DECLARE @CurrentID int = (SELECT TOP 1 ID FROM Table ORDER BY CreateDate desc)

DECLARE @Year int = 2014
DECLARE @CurrentID int = (SELECT ID FROM Table WHERE Year = @Year)

In most cases, you will want to ensure that your query returns only one value when using this
method.

Read Variables online: http://www.riptutorial.com/sql-server/topic/2566/variables

http://www.riptutorial.com/ 322

Chapter 110: Views

Remarks

Views are stored queries that can be queried like regular tables. Views are not part of the physical
model of the database. Any changes that are applied to the data source of a view, such as a table,
will be reflected in the view as well.

Examples

Create a view

CREATE VIEW dbo.PersonsView
AS
SELECT
 name,
 address
FROM persons;

Create or replace view

This query will drop the view - if it already exists - and create a new one.

IF OBJECT_ID('dbo.PersonsView', 'V') IS NOT NULL
 DROP VIEW dbo.PersonsView
GO

CREATE VIEW dbo.PersonsView
AS
SELECT
 name,
 address
FROM persons;

Create a view with schema binding

If a view is created WITH SCHEMABINDING, the underlying table(s) can't be dropped or modified
in such a way that they would break the view. For example, a table column referenced in a view
can't be removed.

CREATE VIEW dbo.PersonsView
WITH SCHEMABINDING
AS
SELECT
 name,
 address
FROM dbo.PERSONS -- database schema must be specified when WITH SCHEMABINDING is present

http://www.riptutorial.com/ 323

Views without schema binding can break if their underlying table(s) change or get dropped.
Querying a broken view results in an error message. sp_refreshview can be used to ensure
existing views without schema binding aren't broken.

Read Views online: http://www.riptutorial.com/sql-server/topic/5327/views

http://www.riptutorial.com/ 324

Chapter 111: WHILE loop

Remarks

Using a WHILE loop or other iterative process is not normally the most efficient way to process data
in SQL Server.

You should prefer to use a set-based query on the data to achieve the same results, where
possible

Examples

Using While loop

The WHILE loop can be used as an alternative to CURSORS. The following example will print numbers
from 0 to 99.

 DECLARE @i int = 0;
 WHILE(@i < 100)
 BEGIN
 PRINT @i;
 SET @i = @i+1
 END

While loop with min aggregate function usage

DECLARE @ID AS INT;

SET @ID = (SELECT MIN(ID) from TABLE);

WHILE @ID IS NOT NULL
BEGIN
 PRINT @ID;
 SET @ID = (SELECT MIN(ID) FROM TABLE WHERE ID > @ID);
END

Read WHILE loop online: http://www.riptutorial.com/sql-server/topic/4249/while-loop

http://www.riptutorial.com/ 325

Chapter 112: Window functions

Examples

Find the single most recent item in a list of timestamped events

In tables recording events there is often a datetime field recording the time an event happened.
Finding the single most recent event can be difficult because it's always possible that two events
were recorded with exactly identical timestamps. You can use row_number() over (order by ...) to
make sure all records are uniquely ranked, and select the top one (where my_ranking=1)

select *
from (
 select
 *,
 row_number() over (order by crdate desc) as my_ranking
 from sys.sysobjects
) g
where my_ranking=1

This same technique can be used to return a single row from any dataset with potentially duplicate
values.

Moving Average of last 30 Items

Moving Average of last 30 Items sold

SELECT
 value_column1,
 (SELECT
 AVG(value_column1) AS moving_average
 FROM Table1 T2
 WHERE (SELECT
 COUNT(*)
 FROM Table1 T3
 WHERE date_column1 BETWEEN T2.date_column1 AND T1.date_column1
) BETWEEN 1 AND 30
) as MovingAvg
FROM Table1 T1

Centered Moving Average

Calculate a 6-month (126-business-day) centered moving average of a price:

SELECT TradeDate, AVG(Px) OVER (ORDER BY TradeDate ROWS BETWEEN 63 PRECEDING AND 63 FOLLOWING)
AS PxMovingAverage
FROM HistoricalPrices

Note that, because it will take up to 63 rows before and after each returned row, at the beginning

http://www.riptutorial.com/ 326

and end of the TradeDate range it will not be centered: When it reaches the largest TradeDate it
will only be able to find 63 preceding values to include in the average.

Read Window functions online: http://www.riptutorial.com/sql-server/topic/3209/window-functions

http://www.riptutorial.com/ 327

Chapter 113: With Ties Option

Examples

Test Data

CREATE TABLE #TEST
(
Id INT,
Name VARCHAR(10)
)

Insert Into #Test
select 1,'A'
Union All
Select 1,'B'
union all
Select 1,'C'
union all
Select 2,'D'

Below is the output of above table,As you can see Id Column is repeated three times..

Id Name
1 A
1 B
1 C
2 D

Now Lets check the output using simple order by..

Select Top (1) Id,Name From
#test
Order By Id ;

Output :(Output of above query is not guaranteed to be same every time)

Id Name
1 B

Lets run the Same query With Ties Option..

Select Top (1) With Ties Id,Name
 From
#test
Order By Id

Output :

Id Name

http://www.riptutorial.com/ 328

1 A
1 B
1 C

As you can see SQL Server outputs all the Rows which are tied with Order by Column. Lets see
one more Example to understand this better..

Select Top (1) With Ties Id,Name
 From
#test
Order By Id ,Name

Output:

Id Name
1 A

In Summary ,when we use with Ties Option,SQL Server Outputs all the Tied rows irrespective of
limit we impose

Read With Ties Option online: http://www.riptutorial.com/sql-server/topic/2546/with-ties-option

http://www.riptutorial.com/ 329

Credits

S.
No

Chapters Contributors

1
Getting started with
Microsoft SQL
Server

Abhilash R Vankayala, Abhishek Jain, Ahmad Aghazadeh,
Ahmar, Akshay Anand, alalp, Almir Vuk, Arthur D, ATC,
Athafoud, BeaglesEnd, Bhanu, Biju jose, Blachshma, bluefeet,
ChrisM, Christos, Community, cteski, D M, Darshak, Gidil,
Gordon Bell, Greg Bray, Iztoksson, Jared Hooper, JerryOL, Job
AJ, Joe Taras, John Odom, John Slegers, JonasCz, K48, kafka,
Lamak, Laughing Vergil, Mahesh Dahal, Malt, Martin Smith,
Matt, Matt, Max, Mihai-Daniel Virna, Mudassir Hasan, n00b,
Nick, Nikolay Kostov, onupdatecascade, OzrenTkalcecKrznaric,
Peter Tirrell, Phrancis, Prateek, Sam, Shaneis, Thuta Aung,
Tony L., Tot Zam, Uberzen1, Umachandar - Microsoft, user_0,
user2314737, VoidDemon, Zsuzsa

2 Advanced options Ahmad Aghazadeh

3 Aggregate Functions
Akshay Anand, cnayak, cteski, Jeffrey L Whitledge, Joe Taras,
Vexator

4
Alias Names in Sql
Server

P�&� �1�#�9

5 Analyzing a Query DForck42

6
Backup and Restore
Database

Jones Joseph, Jovan MSFT

7
Basic DDL
Operations in MS
SQL Server

Matt

8
bcp (bulk copy
program) Utility

MarmiK

9 BULK Import Jovan MSFT

10 CASE Statement Laughing Vergil, RamenChef, Vikas Vaidya

11
CLUSTERED
COLUMNSTORE

Jovan MSFT

12 COALESCE
Bharat Prasad Satyal, Edathadan Chief aka Arun, Karthikeyan,
Matej, scsimon, Tab Alleman

http://www.riptutorial.com/ 330

13
Common Language
Runtime Integration

Jovan MSFT

14
Common Table
Expressions

Arif, bbrown, cteski, DForck42, Jeffrey Van Laethem, Jovan
MSFT, kafka, Keith Hall, Monty Wild, SQLMason

15 Computed Columns cnayak, Kannan Kandasamy

16
Converting data
types

Ben O, Edathadan Chief aka Arun

17 CREATE VIEW
Almir Vuk, cteski, Edathadan Chief aka Arun, Hadi, Josh B,
Robert Columbia, Tot Zam

18 cross apply Hamza Rabah, Jovan MSFT, Tom V

19 Cursors Kane, Phrancis

20 Data Types Laughing Vergil, Matas Vaitkevicius

21
Database
permissions

Ben Thul

22
Database
Snapshots

Akash, Daryl, Jovan MSFT, Wolfgang

23 Dates

A_Arnold, Adam Porad, Akshay Anand, Bellash, cteski,
Edathadan Chief aka Arun, JamieA, Jared Hooper, Kritner,
Lamak, Mert Gülsoy, Nick, Phrancis, SHD, Siyual, Soukai,
UnhandledExcepSean, Zohar Peled

24 DBCC Jovan MSFT

25 DBMAIL Phrancis

26
Delimiting special
characters and
reserved words

bassrek

27 Drop Keyword Ignas, Jakub Ojmucianski, Justin Rohr, Max, scsimon

28
Dynamic data
masking

Jovan MSFT

29 Dynamic SQL Jovan MSFT

30 Dynamic SQL Pivot Jesse

31 Encryption Rubenisme

Export data in txt file 32 sheraz mirza

http://www.riptutorial.com/ 331

by using SQLCMD

33 File Group Behzad

34 Filestream Raghu Ariga

35 FOR JSON James, Jovan MSFT

36 FOR XML PATH bluefeet, gotqn, Keith Hall, Wolfgang

37 Foreign Keys Jovan MSFT

38 Full-Text Indexing Edathadan Chief aka Arun

39
Generating a range
of dates

James, Siyual

40 GROUP BY
Andy, Edathadan Chief aka Arun, Jenism, juergen d, Julien
Vavasseur, Kiran Ukande, Matas Vaitkevicius, ShlomiR

41 IF...ELSE cteski, M.Ali, RamenChef

42 Index
Ahmad Aghazadeh, Akshay Anand, cteski, Henrik Staun
Poulsen, Martin Smith, Tom V

43
In-Memory OLTP
(Hekaton)

Akshay Anand, Behzad, Brandon, Jovan MSFT, Martijn Pieters

44 Insert Randall

45 INSERT INTO
Abubakar Riaz, barcanoj, DVJex, Hari K M, intox, martinshort,
Matas Vaitkevicius, Max, Michael Stum, n00b, Piotr Nawrot,
Robert Columbia, Tot Zam, woony

46
Installing SQL
Server on Windows

Luis Bosquez

47
Isolation levels and
locking

RamenChef, sqlandmore.com

48 Join

4444, Akshay Anand, Andy, APH, Bino Mathew Varghese,
cteski, Dean Ward, DhruvJoshi, Dileep, Gajendra, HK1,
Iztoksson, Jeffrey Van Laethem, Joao Araujo, JonH, L J, Lamak
, Laughing Vergil, LowlyDBA, mtb, Nikolay Kostov,
OzrenTkalcecKrznaric, Phrancis, Ram Grandhi, SqlZim

49 JSON in Sql Server Jovan MSFT, Mono

50
Last Inserted
Identity

Jeffrey Van Laethem, sqluser, Tot Zam

http://www.riptutorial.com/ 332

51 Limit Result Set alalp, chrisb, cteski, ErikE

52 Logical Functions dd4711

53
Managing Azure
SQL Database

Jovan MSFT

54 MERGE
Abhilash R Vankayala, Abubakar Riaz, Alex, David Kaminski,
dd4711, Hari K M, Moshiour, Rogerio Soares, Serg

55

Microsoft SQL
Server Management
Studio Shortcut
Keys

Bino Mathew Varghese, cteski, Sibeesh Venu

56 Migration Matas Vaitkevicius

57 Modify JSON text Jovan MSFT

58
Move and copy data
around tables

Nick.McDermaid

59
Natively compiled
modules (Hekaton)

bakedpatato, Jovan MSFT

60 NULLs
Amir Pourmand, Hadi, Kannan Kandasamy, Kritner, Laughing
Vergil, podiluska, Sean Branchaw, Zohar Peled

61 OPENJSON James, Jovan MSFT

62 ORDER BY APH, beercohol, cteski, Gidil, RamenChef

63 OVER Clause
Athafoud, bluefeet, Brandon, DVT, gofr1, Lamak, Paul Bambury
, RamenChef, Rowland Shaw, Sam

64 Pagination cteski, Jovan MSFT, Sender

65 Parsename Mani

66 Partitioning Dan Guzman, James Anderson, John Odom, Susang

67
Permissions and
Security

5arx

68 PHANTOM read Max

69 PIVOT / UNPIVOT Athafoud, bluefeet, DhruvJoshi, kolunar

70 Primary Keys Kritner

Privileges or 71 Oluwafemi

http://www.riptutorial.com/ 333

Permissions

72
Queries with JSON
data

bakedpatato, James, Jovan MSFT

73 Query Hints cteski, DARKOCEAN, Jovan MSFT, user_0

74 Query Store bakedpatato, Jovan MSFT

75
Querying results by
page

Pat

76 Ranking Functions cteski, kolunar, New

77 Resource Governor Ako, RamenChef

78
Retrieve information
about the database

Andrea, Anuj Tripathi, Baodad, Brent Ozar, dario, feetwet,
James Anderson, JamieA, Jasmin Solanki, Jeffrey Van
Laethem, jyao, Kritner, Laughing Vergil, LowlyDBA, Mahendra,
Moshiour, Phrancis, Rhumborl, scsimon, Shiva, spaghettidba,
Tot Zam, TZHX, Umachandar - Microsoft

79
Retrieve Information
about your Instance

Bino Mathew Varghese, feetwet, James Anderson, Kritner,
LowlyDBA, S.Karras, scsimon

80 Row-level security Carsten Hynne, Jovan MSFT

81
Scheduled Task or
Job

Edathadan Chief aka Arun, Hadi

82 Schemas Merenix

83 SCOPE_IDENTITY() Dheeraj Kumar

84 SELECT statement cteski, Jovan MSFT

85 Sequences Josh Morel

86 Service broker Ken S., Matej, RamenChef

87
Sorting/ordering
rows

APH, OzrenTkalcecKrznaric

88 Spatial Data cteski, Neil Kennedy, RamenChef, Vladimir Oselsky

89
Split String function
in Sql Server

Jibin Balachandran, Jovan MSFT, MasterBob, P�&� �1�#�9,
RamenChef

SQL Server
Evolution through
different versions

90 Dan Guzman, M.Ali

http://www.riptutorial.com/ 334

(2000 - 2016)

91
SQL Server
Management Studio
(SSMS)

dd4711

92 SQLCMD Eugene Niemand, Techie

93 Stored Procedures
Bino Mathew Varghese, cnayak, cteski, Erik Oppedijk, Eugene
Niemand, Hari K M, Jayasurya Satheesh, Matas Vaitkevicius,
Nathan Skerl, Pirate X, scsimon

94
Storing JSON in
SQL tables

Ed Harper, Jovan MSFT, RamenChef

95
String Aggregate
functions in SQL
Server

Kannan Kandasamy

96 String Functions
A_Arnold, anon, cteski, FoxyBOA, Hadi, hatchet, Igor Micev,
Jibin Balachandran, Jovan MSFT, mtb, Phrancis, Raidri,
Ricardo C, Ross Presser, takrl, Zohar Peled

97 Subqueries cnayak

98
System database -
TempDb

Anuj Tripathi, RamenChef

99
Table Valued
Parameters

Zohar Peled

100 Temporal Tables Ahmad Aghazadeh, Akshay Anand, Ben O, Mspaja

101
The STUFF
Function

Arthur D, bluefeet, Chetan Sanghani, dacohenii, Kiran Ukande,
Luis Bosquez, MrE, user1690166

102
Transaction
handling

Metanormal

103
Transaction isolation
levels

Phrancis

104 Trigger Oluwafemi, The_Outsider, Zohar Peled

105 TRY/CATCH Jovan MSFT, ravindra, Uberzen1

106 UNION cnayak

107 Use of TEMP Table APH, New

User Defined Table 108 Jivan, Zohar Peled

http://www.riptutorial.com/ 335

Types

109 Variables APH, Keith Hall, Phrancis

110 Views Benjamin Hodgson, Daniel Lemke, Max

111 WHILE loop
lord5et, Matas Vaitkevicius, podiluska, RamenChef, Wojciech
Kazior

112 Window functions andyabel, feetwet, MarmiK

113 With Ties Option TheGameiswar

http://www.riptutorial.com/ 336

