LEARNING
VBA

Free unaffiliated eBook created from
Stack Overflow contributors.

Table of Contents

A OUL . . 1
Chapter 1: Getting started With VBA 2
RIS . .. 2
Y] £ 2
= 1] 0] [T 2
Accessing the Visual Basic Editor in Microsoft Office. 2
First Module and Hello WOTI. o ettt e e e e e 4

7= 010 o o 1T 5
RUN COde Step DY St 5
WalChes WINAOW 5
ImMmediate WINAOW.o 5
Debugging best PractiCes. 6
Chapter 2: API Calls. 7
INErOTUCTION. . ..o e 7

R OIS . ..o 7
= 10 1] 0] 5 8
APLdeclaration @nd USAQE. oottt et e e e e 8
Windows API - Dedicated Module (1 Of 2). ... e 11
Windows API - Dedicated Module (2 Of 2) 15
MaC AP IS . 19

Get total monitors and SCreen reSOIULION.o e e et 20
FTP and Regional AP ISo e e e e e e e e e 21
AP O B AT S 25
e 1111 o [TP 25
Declaring an Array iN VB A e 25
ACCESSING ElEMEN S . .. o 25
ANTAY INAEXING . ..o 25
SPECIHIC INAEX. . ..o 25
DYyNamiC DECIAratioN.o 25

Use of Splitto create an array from a StriNg.ooo i e e 26

lterating €lemeNntS Of AN AITAYot e e e e e 27

Ol N XL L 27
FOr EaCh. . N XL, .. 28
Dynamic Arrays (Array Resizing and Dynamic Handling)...............oo e 29
DYNAMIC ATTAY Sot 29
Adding Values DynamicCally.oooo 29
Removing Values Dynamically. 29
Resetting an Array and Reusing Dynamically...............o 30
Jagged Arrays (Arrays Of AITaYS)ttt e et 30
Jagged Arrays NOT MUltidimensSional ArTaYS.oooiiii e 30
Creating @ Jagged AITAY 31
Dynamically Creating and Reading Jagged ArTaysS. ... 31
MUIIAIMENSIONAL ATTAYSottt et e e e e e e e e e e e e e e e e e e 33
MURIAIMENSIONAL AITAYS. e 33
TWO-DIMENSION AITAYo e 34
TRrEE-DIMENSION AITAY o e 36
Chapter 4: Assigning strings with repeated characters............................... 40
RIS . .o 40
E XM S . ..o 40
Use the String function to assign a string with n repeated characters.................. 40
Use the String and Space functions to assign an n-character String......... ... 40
Chapter 5: AttriDULES 41
)Y 1= G U 41
o= 10] o] (2 41
VB NG . 41
VB_GlobalNaAMESPACE.o 41
VB CrEatBaDIE 41
VB _Predeclaredld. o 42
DB ArAtION 42
Gl 42
VB EXPOSEA. . ..ot 42

V4= T = 2o 0 1o o 43

VB [VarJUSErMEMId.o ettt e e e e e e 43

Specifying the default memberof aclass....................... 43
Making a class iteratable with a For Each loop construct... 44
Chapter 6: Automation or Using other applications Libraries....................................... 46
I OAU G ON . .. 46
)11 3 U 46
RIS . ..o 46
o= 10 4] 0] (= 46
VBSCript RegUIAr EXPrESSIONS.ttt et e e e e e e e e e e 46
GO0 47
Scripting File System ODJECt. 48
Scripting DICHONAry ODJECL.o e 48
INternet EXPIOrer ObJECt. ..o e 49
Internet Explorer Objec BasiC MemMbErs. 49
B SO A PING . .o et 49
Gl CK . 51
Microsoft HTML Object Library or IE Bestfriend. ... e 51
LB VAN 1SS U RS . o oottt 52
Chapter 7: ColleCtioNS 53
RIS . ..o 53
Feature Comparison with Arrays and DiCtionaries. ... i 53
BN S . ..o 53
Adding ItemMS t0 @ COollECHION. e e e e e e e e 53
Removing Items From a ColleCtioN. o e e e e 55
Getting the Item Count of @ COllECHION. i e e e 56
Retrieving Items From a ColleCtioN. oo e e e 56
Determining if a Key or Item Exists in @ ColleCtion. e 58
KBy S . 58
=T 0 58
Clearing All Items From @ ColleCHioN. e e e e e e 59

Chapter 8: COMMENES. 61

REMATKS . . 61

EX APl . .. 61
APOSITOPNE COMIMENES . .. ittt e e e e e e e e e e 61
REM COMMENTS. ..ottt et e e e 62

Chapter 9: Concatenating StriNgSo 63

RIS . 63

G 1 11] o [T 63
Concatenate strings USING the & OPEIatOr. ittt e e e 63
Concatenate an array of strings using the Join function........ 63

Chapter 10: Conditional Compilation...................... 64

E XM . . oo 64
Changing code behavior at compile time. e 64
Using Declare Imports that work on all versions of Office............. ... 65

Chapter 11: Converting other types to Strings................o i 67

REMIAIKS . . 67

= 10] 0] [J 67
Use CStrto convert a nUMEeric type to @ StriNg. ...ttt e 67
Use Format to convert and format a numeric type as a String.oo.oonii it e 67
Use StrConv to convert a byte-array of single-byte characterstoastring....................coo it 67
Implicitly convert a byte array of multi-byte-characterstoastring.............ooo i 67

Chapter 12: Copying, returning and passing arraysS.coooiiiiiiii i 69

G 1 11] o [T 69
(070] o)V [0 I AN =174 TS U 69

Copying Arrays Of ODJECES. 70

Variants Containing @n ATTAYouuu e 70
Returning Arrays from FUNCHONS. o e e e e e e 70

Outputting an Array via an output argument. ... 71

OUutpUttiNg 10 @ fIXEA AITAY 71

Outputting an Array from a Class method.................o e 72
Passing Arrays t0 ProCEEAUIES. e e e e e e 72

Chapter 13: CreateObject vs. GetObjecCt., 74

REMATKS . . 74

EX APl . .. 74
Demonstrating GetObject and Create@ODbjeCt.t 74
Chapter 14: Creating a CUuStomM ClassS. ... 76
REMIAIKS . . 76
B S . .o 76
AddINg @ Property t0 @ Class.ttt e 76
Adding Functionality t0 @ Class.ot e 77
Class module scope, iINStanCINg aNd FB-USE.ottt e et 78
Chapter 15: Creating @ ProCeUIe 80
E XM S . ..o 80
Taligele [UTwiio] IR (oo fo o110 (V] (= TN 80
Returning @ ValUe 80
FUNCHION With EXamMDIES. 81
Chapter 16: Data StrUCIUreS 82
I OAUCTION. . e 82
EX APl . .. 82
LINKE LiSt. .o e 82

2T =T I (= 83
Chapter 17: Data Types and LimitS........ ..., 85
e 1111 o [TP 85
By O . . e 85

] =T 0= P 86

BOO AN 86
10 o 87
SING I . o 87
DOUDIIE . . 87
LT = oY/ 88
DA . . 88

£ 111 o O 88
Variable [eNgUN. ... 89

10 o 0 T P 89

VAITBINT. .. e 90
0 70| 1 91
DECIMAL. . .. 91
Chapter 18: Date Time Manipulation........... ... 93
E XM S . .o 93
CalBNAAY 93
= 10 1]] = 93
BaSE fUNCHIONS.t e e 94
Retrieve System Dale Time oo 94
T FUNCHION. e 94
ST 7= T 95
EXIraction fUNCHONS.o o e e e e e e 95
DatePart() FUNCHION. ... e e 96
Calculation fUNCHIONS.o e e e e e e e 97

D= 1= B 98
(D= 1= Yo (o [98
Conversion and CreatiON.oo it e e 99
(1B 1 (=T F 99
DateSErIAl(). .. 100
Chapter 19: Declaring and assigning StriNgsS. ... 102
REMIAIKS . . 102

E XM S . .o 102
Declare @ String CONSIANT e e e e et e e e e 102
Declare a variable-width string variable. 102
Declare and assign a fixed-width SIHNg. ... e 102
Declare and assign @ StING @ITaAYttt et ettt et ettt e e e e 102
Assign specific characters within a string using Mid statement. 103
Assignment to and from a byte array. 103
Chapter 20: Declaring Variables.................. 104
= 1] 0] [104

Implicit And EXPlCIt DECIAration. o e e e e e e e e 104

1Y o0 o1 O 104
Local Variables. 105
SHAtIC VAN ADIES . . 105
=6 L 106
INSEANCE FIelUS . . . 107
ENcapsulating flelds. 107
CONSIANTS (CONSY) . ..ttt et e e e e e 108
ACCESS MOTITIEIS . .. 109

Option Private MOdUI 109
TYPE HIN S . o 110
String-returning built-in functions................. 110
Declaring Fixed-Length StriNgsS.o e 112
When to use a Static variable. ... 112
Chapter 21: Error Handling ... 115

EX APl . . 115
AVOIdING EITOr CONAITIONS ettt e e et e e e e e e e e e 115
ON EITOr STALEIMENL.ttt e et e e e e e e 116

Error Handling Strategies. 116
Line NUMDEIS 117

RESUME KEYWOIT. o e 118
ON Emor RESUME NEXL. ... 118

CUSTIOM EITOS . . . 120
Raising your OWN rUNLIME@ @ITOIS ... 120
Chapter 22: EVENESo 122

11 122

RIS . 122

= 1011 5 122
Sources and HanGIEIS. oo 122

What @re EVENES ? . . . 122

HaNAIOrS 122

SOUIC S 124

Passing data back to the eVeNnt SOUICE. e 124
Using parameters passed by reference.................... 124
Using mutable objects. 125
Chapter 23: FIOW CONtrol StrUCIUIES 127

B S . ..o 127

=] =T ot = 1 127
FOr BaCh 00Do e e 128
S A . . . 129

DO 00D . e 129

Wil 00 . .. oo 130

FOr L0000 . 130
Chapter 24: Frequently used string manipulation........................... 132

I OdU G ON . . 132

= 1] 0] [T 132

String manipulation frequently used examples. 132
Chapter 25: INterfaCeS 134
I OdU G ON . . e 134
= 10] 0] [J 134
Simple Interface - Flyable. 134
Multiple Interfaces in One Class - Flyable and Swimable........ i 135
Chapter 26: Macro security and signing of VBA-projects/-modules..................................... 138
B S . ..o 138
Create a valid digital self-signed certificate SELFCERT.EXE.ottt 138
Chapter 27: Measuring the length of strings.................... 151
RIS . . 151
B S . ..o 151
Use the Len function to determine the number of charactersinastring................... o ... 151
Use the LenB function to determine the number of bytesinastring............. 151
Prefer "If Len(myString) = 0 Then™ over Iif myString =" Then 151

Chapter 28: Naming CONVENLIONS 152

EX Al . .. 152

Variable NamMES. . . o 152
Hungarian Notation 153
PrOCEAUIE NAMES. e 155
Chapter 29: Non-Latin CharaCters. 157
o0 T o o 157

E XM S . .o 157
NON-Latin TeXt iN VBA COU@.t e e e e e e 157
Non-Latin Identifiers and Language COVEIAgE.co.u ittt ettt 158
Chapter 30: Object-Oriented VBA 160
= 10] 0] 1 160
ADSTIACTION. . ..ot ee 160
Abstraction levels help determine when to split thingS Up.........oooi i e 160
ENCAPSUIALION 160
Encapsulation hides implementation details from clientcode........ i 160
Using interfaces to enforce immutability. 161
Using a Factory Method to simulate a CONSIUCION. oot e 163
POlY MO PN SN . L. 164
Polymorphism is the ability to present the same interface for different underlying impleme...................... 164
Testable code depends 0N abStraCtions. e 166
Chapter 31 OPeralOrS 167
REMIAIKS . . 167
= 1] 0] [T 167
MathematiCal OPEratOrS. et e e e e e e e e e e e 167
CoNCAteNAtiON OPEIALOIS.ttt ettt e e e e ettt 168
COMPANSON OPEIALOIS.ttt ettt ettt et e e et e e e e e e e e e e e e e 169

N O S . e 169
Bitwise \ LOQICaAl OPeIatOrs.ttt et e ettt e 171
Chapter 32: Passing Arguments ByReforByVal...................... 175
I OdUCTION. . 175
RIS . 175

PaSSING AITAYS. .. ettt 175

Passing Simple Variables BYyRef And BYVal. e 175

BY RO . . 176
DefaUIt MOIfIEr. .. 176
PaSSING DY FEfOrENCE 177
Forcing ByVal at call Site. ... 177
By VAl L 178
PasSINg DY ValUE. e e e e e 178
Chapter 33: Procedure CallS........... ... 180
) 1= ¥ G 180

P A A S . . 180
RIS . .. 180
B S . ..o 180
IMPLICIE Call SYNTAX. . .« .o e ettt e e e e e e e 180
EAQe CaS. ... 180
RETUIN ValUBS . .. 181
This is confusing. Why not just always use parentheses?.................. i 181
RUN-HIM . 181
oMl E-tImMe . .. 182
EXPHCIE Call SYNAX. ... oo e 182
OPtIONAl ATGUIMENES . . e et ettt et 182
Chapter 34: Reading 2GB+ files in binary in VBA and File Hashes.................................... 184
I OdU G ON . . 184
RIS . . 184
METHODS FOR THE CLASS BY MICROSOFT 184
PROPERTIES OF THE CLASS BY MICROSOFT i 185
NORMAL MODULEo e 185
= 10] 0] 2 185
This have to be in a Class module, examples later referred as "Random™. 185
Code for Calculating File Hash ina Standard module. ... e 189

Calculating all Files Hash from a root FOIder. o e 191

L T [191
Chapter 35: RECUISIONo 195
I OTUCTION. ...t 195
REMIAIKS . . 195
= 1] 0] [J 195
A O IS 195
FOldEr RECUISION. e e e e e e e 195
Chapter 36: Scripting.Dictionary Object. ... 197
REMIAIKS . .. 197
= 10] 0] 1 197
Properties and Methoas. o e e 197
Aggregating data with Scripting.Dictionary (Maximum, COUNE)......... ...ttt 199
Getting unique values with Scripting.DiCtioNaryo e 201
Chapter 37: Scripting.FileSystemODbject.................... 203
E XAl . . . 203
Creating a FileSysStemOD eCt. 203
Reading a text file using a FileSystemODjJecCt. oo 203
Creating a text file with FileSystemODbject. 204
Writing to an existing file with FileSystemODbJecCt. 204
Enumerate files in a directory using FileSystemObject. 204
Recursively enumerate folders and files. o 205
Strip file extension from a file NamMe. ... 206
Retrieve just the extension from afile Name. 206
Retrieve only the path from afile path. ... 207
Using FSO.BuildPath to build a Full Path from folder path and filename.................. 207
Chapter 38: Searching within strings for the presence of substrings.................................... 208
RIS . 208

E XAl . .. 208
Use InStr to determine if a string contains a SUBSHNG. 208
Use InStr to find the position of the first instance of asubstring................. i 208

Use InStrRev to find the position of the last instance of a substring.................. i, 208

Chapter 39: SOMtNG 209

o0 T 1o o 209
= 10] 0] [J 209
Algorithm Implementation - Quick Sort on a One-Dimensional Array......... ..o 209
Using the Excel Library to Sort a One-Dimensional Array.ooiiiiiit e 210
Chapter 40: String Literals - Escaping, non-printable characters and line-continuations........... 212
REMIAIKS . . 212

B XM S . ..o 212
ESCaping the " CharaCter. et e 212
AsSIgNING 1oNg SEHNG IItEralS. o e e e e 212
UsiNg VBA StNg CONSIANTS ottt ettt e e e e e 213
Chapter 41: SUDSIINGS 215
REMIAIKS . . 215
= 1] 0] (= T 215
Use Left or Left$ to get the 3 left-most charactersinastring..............oooo i 215
Use Right or Right$ to get the 3 right-most charactersinastring.................. . .. 215
Use Mid or Mid$ to get specific characters from within @ string...............o i 215

Use Trim to get a copy of the string without any leading or trailing spaces.................ccooiiiiii ... 215
Chapter 42: User FOIMISo 217
B S . ..o 217

B St PraCCES. . .ottt 217
Work with @ NeW INStANCE BVEIY tIMe. e e e e e e e 217
Implement the 10gIiC EISEWNEre. 217
Caller shouldn't be bothered with CONtroIS.. o e 218
Handle the QUEIYCIOSE EVENL. e et e e e 218
Hide, dON't CIOSE. e e e 219
N TINGS. . ..ot 219
Handling QUEINYCIOSE.ttt et e e e e e e e e e e e e 219

A Cancellable UsSerFOrm 220
Chapter 43: VBA Option KeYWOrd.......... ... o 222
)11 222

REMATKS . . 222

EX APl . .. 223
OPtION EXPICIE. ..o e e e 223
Option Compare {Binary | Text | Database}.cooiiiii i e e 223

OPtioN COMPArE BiNaArY o 223

OPLON COMPAIE TOXL. ..ottt 224

Option Compare Database. 225
OPtION Base {0 | L. oottt e 225

EXampPle N Base O i .. 225

Same Example With Base L. ... 226

The correct Code WIth BaSe L 1S & it e e 226

Chapter 44: VBA RUN-TIME@ EITOISo 228

I OAUCHION . . 228

= 1] 0] (= T 228
Run-time error '3": Return without GOSUD. 228

INCOITECE GO . .. e e 228
Why dOESN T thiS WK 2 . ..o e e e e e e 228

COITECE GO . . . 228
Why dOES thisS WOIK 2. . e ettt e 228

OB MOt 228
RUN-tIME €rror '6": OVEITIOW. ettt e e e 229

Yo o] 4 =T od A o o Lo = 229
Why dOESN T thiS WOTK 2 . ..o e e e e e e 229

COITECE COU.t 229
WY dOES this WOIK 2 . .o e e e e e e e e e 229

OB MOt e 229
Run-time error '9": SUDSCHPt OUL Of rANQE. e 229

N COITECE OO e e 229
Why oSN T thiS WOTK 2. . ettt e e e 230

(@0 1 =T o4 N o0 [P 230
WY dOES thisS WOIK 2 . . ottt e e e e e e e e e 230

Run-time error 13" TYPe MISMaAtCN. e e e e e 230

INCOITECT COUE. e 230
Why dOESN 't thiS WOTK 2 . . .o e e e e e 231
COITECE COR. . . e e e 231
Wy dOES this WOIK 2 . .o e e e e e e e e e 231
Run-time error '91": Object variable or With block variable not set............... i 231
INCOITECE COUR. .. e e e e e e 231
Wy dOBSN T this WOTK 2 . . . e e e e e e e e e e e e et 231
COITECE COUE. . ..o e e e 231
Wy dOES thisS WOTK 2 . . ottt 232
Ot r NOTES . .. 232
Run-time error '20": ReSUMeE WItNOUL EITOT e e 232
INCOITECE COUR. .. e e e e e e 232
Why dOESN T thiS WOTK 2 . ..o e e e e e e e 232
COITECE COUB. 233
Why dOES thisS WOIK 2. . .ot e e e e e e 233
OB NOTES 233
Chapter 45: Working With ADO 234
REMIAIKS . .. 234
= 1] 0] [J 234
Making a connection t0 @ data SOUICE.ttt ettt et e e e e et e e e e 234
Retrieving records With @ QUETYo e 235
EXxecuting noN-Scalar fUNCLIONS. e e e e e 236
Creating parameterized COMMANGS. ittt e e e e e e e e e e 237
Chapter 46: Working With Files and Directories Without Using FileSystemObject.................. 239
R MK . .. 239
= 1] 0] [239
Determining If Folders and Files EXISt.oiii i e e 239
Creating and Deleting File FOIAers. e e 240

04 (=70 [(= 242

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: vba

It is an unofficial and free VBA ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official VBA.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/vba
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

C_hapter 1: Getting started with VBA

Remarks

This section provides an overview of what vba is, and why a developer might want to use it.

It should also mention any large subjects within vba, and link out to the related topics. Since the
Documentation for vba is new, you may need to create initial versions of those related topics.

Versions

Office Versions Release Date Notes
Vba6 ? - 2007 [Sometime after][1] 1992-06-30
Vba7 2010 - 2016 [blog.techkit.com][2] 2010-04-15
VBA for Mac 2004, 2011 - 2016 2004-05-11

Examples

Accessing the Visual Basic Editor in Microsoft Office

You can open the VB editor in any of the Microsoft Office applications by pressing a1t+r11 Or going
to the Developer tab and clicking on the "Visual Basic" button. If you don't see the Developer tab
in the Ribbon, check if this is enabled.

By default the Developer tab is disabled. To enable the Developer tab go to File -> Options, select
Customize Ribbon in the list on the left. In the right "Customize the Ribbon" treeview find the
Developer tree item and set the check for the Developer checkbox to checked. Click Ok to close
the Options dialog.

https://riptutorial.com/ 2

G I) .
Enere E'E Customize the Ribbon,
Formulas
_ Choose commands from: Customize the Ribban: (i)
Proofing Popular Commands EI Main Tabs
Save
Language 11 Al Chart Types... |~ Main Tabs
Borders |* =l ¥ Heme
Advanced | Calculate Now Clipboard
o Center Font
Customize Ribbon Conditional Formatting r Alignment
Quick Access Toolbar Connections Number
Copy Styles
Add-Ins Custom Sort... Cells
Cut L Editing
Trust Center Decrease Font Size r Inzert
Delete Cells... [¥] Page Layout

Delete Sheet Columns

I+
Delete Sheet Rows # [¥] Formulas

Data

Ermnail .

Fill Color [» [¥] Review
Filter Yiew

Font I M L [V Developer
Font Color » hdd-Ins
Font Size Ir

Format Cells... [¥] Background Removal

Format Painter

Freeze Panes k
Increaze Font Size

Inzert Cells...

Inzert Function...

Inzert Sheet Columns
Insert Sheet Rows New Tab] IMEWGFDUPI

Macros Customizations:
Merge & Center :

Mame Manager - Import/Expo

L > A FE3OE e K] el i E

C
2w

wutig

1

0

The Developer tab is now visible in the Ribbon on which you can click on "Visual Basic" to open
the Visual Basic Editor. Alternatively you can click on "View Code" to directly view the code pane
of the currently active element, e.g. WorkSheet, Chart, Shape.

Home Insert Page Layout Farmulas Data Review View Developer Add-ins Q Tell m

|ﬂ DJ_ .ljﬂecord Macro

-’ -I:[-Q @ -]T b{ .Propertla @ i Map Properties E‘i

E Use Relative References "] View Code 3 Expansion Packs
Visual Macros Add- Excel COM Insert Design Source
Basic ! Macro Security ins Add-ins Add-ins - Mode . Run Dialog Refresh Data
Code Add-ins Contrals XML
AT - f View Code
Edit the Visual Basic code for a
A B C D E F G || control. K

https://riptutorial.com/ 3

http://i.stack.imgur.com/8WoiR.png
http://i.stack.imgur.com/388eU.png

£ Microsoft Visual Basic for Applications - Bookl - [Sheet!. (Codel] NN

Bl File Edit View Insert Format Debug Bun Tools Add-Ins Rubberduck Window Help

[& - & 3 I A @ | n3, coll l Fok
g Ready -

Project - VBAProject ﬂ |[GEFIEFE|]

EE= Nl

41

&4 VBAProject (Book1)
= A Microsoft Excel Objects

Properties - Sheetl x|
|Sheet1 Workshest -

Alphabetic | Categorized |

Sheetl

DisplayPageBreaks False

DisplayRightTolLeft False

EnableAutoFilter False

EnableCalculation True

EnableFormatConditionsCalo True

EnableCutining False

EnablePivotTable False

EnableSelection 0 - xiNoRestrictions

Mame Sheetl

Scrollarea

Standardvidth 8.43

Visible -1 - xlSheetVisible

Il
il
i

Immediate

}thps:// riptutorial.com/

http://i.stack.imgur.com/azT5a.png

key. Congratulations! You've built your first own VBA Module.
Debugging

Debugging is a very powerful way to have a closer look and fix incorrectly working (or non
working) code.

Run code step by step

First thing you need to do during debugging is to stop the code at specific locations and then run it
line by line to see whether that happens what's expected.

» Breakpoint (ro, Debug - Toggle breakpoint): You can add a breakpoint to any executed line
(e.g. not to declarations), when execution reaches that point it stops, and gives control to
user.

* You can also add the stop keyword to a blank line to have the code stop at that location on
runtime. This is useful if, for example, before declaration lines to which you can't add a
breakpoint with ro

» Step into (rs, Debug - Step into): executes only one line of code, if that's a call of a user
defined sub / function, then that's executed line by line.

» Step over (shirt+rs, Debug - Step over): executes one line of code, doesn't enter user
defined subs / functions.

» Step out (ctri+shirc+rs, Debug - Step out): Exit current sub / function (run code until its
end).

* Run to cursor (ctritrs, Debug - Run to cursor): run code until reaching the line with the
cursor.

* You can use pebug.print t0 print lines to the Immediate Window at runtime. You may also
USE pebug.? as a shortcut for pebug.print

Watches window

Running code line by line is only the first step, we need to know more details and one tool for that
is the watch window (View - Watch window), here you can see values of defined expressions. To
add a variable to the watch window, either:

* Right-click on it then select "Add watch".
* Right-click in watch window, select "Add watch".
» Go to Debug - Add watch.

When you add a new expression you can choose whether you just want to see it's value, or also
break code execution when it's true or when its value changes.

Immediate Window

https://riptutorial.com/ 5

The immediate window allows you to execute arbitrary code or print items by preceeding them
with either the rrint keyword or a single question mark "»"

Some examples:

* 2 ActiveSheet.Name - leturns name of the active sheet

* print ActiveSheet.Name - returns the name of the active sheet
* 2 foo - returns the value of foo*

* x = 10 Sets x to 10*

* Getting/Setting values for variables via the Immediate Window can only be done during runtime

Debugging best practices

Whenever your code doesn't work as expected first thing you should do is to read it again
carefully, looking for mistakes.

If that doesn't help, then start debugging it; for short procedures it can be efficient to just execute it
line by line, for longer ones you probably need to set breakpoints or breaks on watched
expressions, the goal here is to find the line not working as expected.

Once you have the line which gives the incorrect result, but the reason is not yet clear, try to
simplify expressions, or replace variables with constants, that can help understanding whether
variables' value are wrong.

If you still can't solve it, and ask for help:

* Include as small part of your code as possible for understanding of your problem

« If the problem is not related to the value of variables, then replace them by constants. (so,
instead Of sheets (a*b*c+d”2) .Range (addressOfRange) WIIte sheets (4) .Range ("A2 "))

» Describe which line gives the wrong behaviour, and what it is (error, wrong result...)

Read Getting started with VBA online: https://riptutorial.com/vba/topic/802/getting-started-with-vba

https://riptutorial.com/ 6

https://riptutorial.com/vba/topic/802/getting-started-with-vba

Introduction

API stands for Application Programming Interface
API's for VBA imply a set of methods that allow direct interaction with the operating system

System calls can be made by executing procedures defined in DLL files
Remarks
Common operating environment library files (DLL'S):

Dynamic Link Description

Library

Advanced services library for APIs including many security and

Advapi32.dll iy ek

Comdig32.dli Common dialog API library

Gdi32.dll Graphics Device Interface API library
Kernel32.dll Core Windows 32-bit base API support
Lz32.dll 32-bit compression routines

Mpr.dll Multiple Provider Router library
Netapi32.dll 32-bit Network API library

Shell32.dlI 32-bit Shell API library

User32.dll Library for user interface routines
Version.dll Version library

Winmm.dll Windows multimedia library
Winspool.drv Print spooler interface that contains the print spooler API calls

New arguments used for the 64 system:

Qualifier PtrSafe Indicates that the Declare statement is compatible with 64-bits.

https://riptutorial.com/

https://en.wikipedia.org/wiki/Application_programming_interface

This attribute is mandatory on 64-bit systems

A variable data type which is a 4-bytes data type on 32-bit versions
and an 8-byte data type on 64-bit versions of Office 2010. This is
the recommended way of declaring a pointer or a handle for new

Data Type LongPtr code but also for legacy code if it has to run in the 64-bit version of
Office 2010. It is only supported in the VBA 7 runtime on 32-bit and
64-bit. Note that you can assign numeric values to it but not
numeric types

This is an 8-byte data type which is available only in 64-bit versions
Data Type LongLong of Office 2010. You can assign numeric values but not numeric
types (to avoid truncation)

Conversion Operator CLngPtr Converts a simple expression to a LongPtr data type
Conversion Operator CLngLng Converts a simple expression to a LongLong data type

Function VarPtr Variant converter. Returns a LongPtr on 64-bit versions, and a

Long on 32-bit (4 bytes)

. . ' nverter. Returns a LongPtr on 64-bit versions, and a Lon

Function ObjPtr Object (?o verter. Returns a LongPtr on 64-bit versions, and a Long
on 32-bit (4 bytes)

String converter. Returns a LongPtr on 64-bit versions, and a Long

Function StrPtr on 32-bit (4 bytes)

Full reference of call signatures:
* Win32api32.txt for Visual Basic 5.0 (old API declarations, last reviewed Mar 2005, Microsoft)

o WIn32API_PtrSafe with 64-bit Support (Office 2010, Microsoft)

Examples

APl declaration and usage
Declaring a DLL procedure to work with different VBA versions:

Option Explicit
#If Win64 Then

Private Declare PtrSafe Sub xLib "Kernel32" Alias "Sleep" (ByVal dwMilliseconds As Long)
#ElseIf Win32 Then

Private Declare Sub apiSleep Lib "Kernel32" Alias "Sleep" (ByVal dwMilliseconds As Long)

https://riptutorial.com/ 8

https://support.microsoft.com/en-us/help/178020/file-win32api.exe-
https://www.microsoft.com/en-us/download/details.aspx?id=9970
https://msdn.microsoft.com/en-us/library/aa716201(v=vs.60).aspx

#End If

The above declaration tells VBA how to call the function "Sleep" defined in file Kernel32.dll

Win64 and Win32 are predefined constants used for conditional compilation

Pre-defined Constants

Some compilation constants are already pre-defined. Which ones exist will depend on the bitness
of the office version you're running VBA in. Note that Vba7 was introduced alongside Office 2010
to support 64 bit versions of Office.

Vbab False If Vba6 False
Vba7 False If Vba7 True
Winl6 True False False

Win32 False True True
Win64 False False True

Mac False If Mac If Mac

These constants refer to the Office version, not the Windows version. For example Win32 = TRUE
in 32-bit Office, even if the OS is a 64-bit version of Windows.

The main difference when declaring APIs is between 32 bit and 64 bit Office versions which
introduced new parameter types (see Remarks section for more details)

Notes:

» Declarations are placed at the top of the module, and outside any Subs or
Functions

» Procedures declared in standard modules are public by default

» To declare a procedure private to a module precede the declaration with the
Private keyVVOYd

» DLL procedures declared in any other type of module are private to that module

Simple example for the Sleep API call:

Public Sub TestPause ()

Dim start As Double

https://riptutorial.com/ 9

http://www.riptutorial.com/vba/topic/3364/conditional-compilation

start = Timer

Sleep 9000 'Pause execution for 9 seconds

Debug.Print "Paused for " & Format (Timer - start, "#,###.000") & " seconds"
'Immediate window result: Paused for 9.000 seconds

End Sub

It is recommended to create a dedicated API module to provide easy access to the system
functions from VBA wrappers -- normal VBA Subs or Functions that encapsulate the details
needed for the actual system call such as parameters used in libraries, and initialization of those

parameters
The module can contain all declarations and dependencies:

» Method signatures and required data structures
» Wrappers that perform input validation, and ensure all parameters are passed as expected

To declare a DLL procedure, add a pec1are Statement to the Declarations section of the code
window.

If the procedure returns a value, declare it as a Function:

Declare Function publicname Lib "libname" [Alias "alias"] [([[ByVal] variable [As type]
[, [ByVal] variable [As typell...])] As Type

If a procedure does not return a value, declare it as a Sub:

Declare Sub publicname Lib "libname" [Alias "alias"] [([[ByVal] variable [As type] [, [ByVal]
variable [As typell...])]

Also of note is that most invalid calls to the API's will crash Excel, and possibly
corrupt data files

Office 2011 for Mac

Private Declare Function system Lib "libc.dylib" (ByVal command As String) As Long

Sub RunSafari ()
Dim result As Long
result = system("open -a Safari --args http://www.google.com")
Debug.Print Str (result)

https://riptutorial.com/

10

End Sub

The examples bellow (Windows API - Dedicated Module (1 and 2)) show an API module that
includes common declarations for Win64 and Win32

Windows API - Dedicated Module (1 of 2)

Option Explicit

#If Win64 Then 'Win64 = True, Win32 = False, Winl6 = False

Private Declare PtrSafe Sub apiCopyMemory Lib "Kernel32" Alias "RtlMoveMemory" (MyDest As
Any, MySource As Any, ByVal MySize As Long)

Private Declare PtrSafe Sub apiExitProcess Lib "Kernel32" Alias "ExitProcess" (ByVal
uExitCode As Long)

Private Declare PtrSafe Sub apiSetCursorPos Lib "User32" Alias "SetCursorPos" (ByVal X As
Integer, ByVal Y As Integer)

Private Declare PtrSafe Sub apiSleep Lib "Kernel32" Alias "Sleep" (ByVal dwMilliseconds As
Long)

Private Declare PtrSafe Function apiAttachThreadInput Lib "User32" Alias
"AttachThreadInput" (ByVal idAttach As Long, ByVal idAttachTo As Long, ByVal fAttach As Long)
As Long

Private Declare PtrSafe Function apiBringWindowToTop Lib "User32" Alias "BringWindowToTop"
(ByVal lngHWnd As Long) As Long

Private Declare PtrSafe Function apiCloseWindow Lib "User32" Alias "CloseWindow" (ByVal
hWnd As Long) As Long

Private Declare PtrSafe Function apiDestroyWindow Lib "User32" Alias "DestroyWindow"
(ByVal hWnd As Long) As Boolean

Private Declare PtrSafe Function apiEndDialog Lib "User32" Alias "EndDialog" (ByVal hWnd
As Long, ByVal result As Long) As Boolean

Private Declare PtrSafe Function apiEnumChildWindows Lib "User32" Alias "EnumChildWindows"
(ByVal hWndParent As Long, ByVal pEnumProc As Long, ByVal lParam As Long) As Long

Private Declare PtrSafe Function apiExitWindowsEx Lib "User32" Alias "ExitWindowsEx"
(ByVal uFlags As Long, ByVal dwReserved As Long) As Long

Private Declare PtrSafe Function apiFindExecutable Lib "Shell32" Alias "FindExecutableA"
(ByVal lpFile As String, ByVallpDirectory As String, ByVal lpResult As String) As Long

Private Declare PtrSafe Function apiFindWindow Lib "User32" Alias "FindWindowA" (ByVal
lpClassName As String, ByVal lpWindowName As String) As Long

Private Declare PtrSafe Function apiFindWindowEx Lib "User32" Alias "FindWindowExA" (ByVal
hWndl As Long, ByVal hWnd2 As Long, ByVal lpszl As String, ByVal lpsz2 As String) As Long

Private Declare PtrSafe Function apiGetActiveWindow Lib "User32" Alias "GetActiveWindow"
() As Long

Private Declare PtrSafe Function apiGetClassNameA Lib "User32" Alias "GetClassNameA"
(ByVal hWnd As Long, ByVal szClassName As String, ByVal lLength As Long) As Long

Private Declare PtrSafe Function apiGetCommandLine Lib "Kernel32" Alias "GetCommandLineW"
() As Long

Private Declare PtrSafe Function apiGetCommandLineParams Lib "Kernel32" Alias
"GetCommandLineA" () As Long

Private Declare PtrSafe Function apiGetDiskFreeSpaceEx Lib "Kernel32" Alias
"GetDiskFreeSpaceExA" (ByVal lpDirectoryName As String, lpFreeBytesAvailableToCaller As
Currency, lpTotalNumberOfBytes As Currency, lpTotalNumberOfFreeBytes As Currency) As Long

Private Declare PtrSafe Function apiGetDriveType Lib "Kernel32" Alias "GetDriveTypeA"
(ByVal nDrive As String) As Long

Private Declare PtrSafe Function apiGetExitCodeProcess Lib "Kernel32" Alias
"GetExitCodeProcess" (ByVal hProcess As Long, lpExitCode As Long) As Long

Private Declare PtrSafe Function apiGetForegroundWindow Lib "User32" Alias

"GetForegroundWindow" () As Long
Private Declare PtrSafe Function apiGetFrequency Lib "Kernel32" Alias
"QueryPerformanceFrequency" (cyFrequency As Currency) As Long

https://riptutorial.com/

Private Declare PtrSafe Function apiGetLastError Lib "Kernel32" Alias "GetLastError" () As
Integer

Private Declare PtrSafe Function apiGetParent Lib "User32" Alias "GetParent" (ByVal hWnd
As Long) As Long

Private Declare PtrSafe Function apiGetSystemMetrics Lib "User32" Alias "GetSystemMetrics"
(ByVal nIndex As Long) As Long

Private Declare PtrSafe Function apiGetSystemMetrics32 Lib "User32" Alias
"GetSystemMetrics" (ByVal nIndex As Long) As Long

Private Declare PtrSafe Function apiGetTickCount Lib "Kernel32" Alias
"QueryPerformanceCounter" (cyTickCount As Currency) As Long

Private Declare PtrSafe Function apiGetTickCountMs Lib "Kernel32" Alias "GetTickCount" ()
As Long

Private Declare PtrSafe Function apiGetUserName Lib "AdvApi32" Alias "GetUserNameA" (ByVal
lpBuffer As String, nSize As Long) As Long

Private Declare PtrSafe Function apiGetWindow Lib "User32" Alias "GetWindow" (ByVal hWnd
As Long, ByVal wCmd As Long) As Long

Private Declare PtrSafe Function apiGetWindowRect Lib "User32" Alias "GetWindowRect"
(ByVal hWnd As Long, lpRect As winRect) As Long

Private Declare PtrSafe Function apiGetWindowText Lib "User32" Alias "GetWindowTextA"
(ByVal hWnd As Long, ByVal szWindowText As String, ByVal lLength As Long) As Long

Private Declare PtrSafe Function apiGetWindowThreadProcessId Lib "User32" Alias
"GetWindowThreadProcessId" (ByVal hWnd As Long, lpdwProcessId As Long) As Long

Private Declare PtrSafe Function apiIsCharAlphaNumericA Lib "User32" Alias
"IsCharAlphaNumericA" (ByVal byChar As Byte) As Long

Private Declare PtrSafe Function apiIsIconic Lib "User32" Alias "IsIconic" (ByVal hWnd As
Long) As Long

Private Declare PtrSafe Function apiIsWindowVisible Lib "User32" Alias "IsWindowVisible"
(ByVal hWnd As Long) As Long

Private Declare PtrSafe Function apiIsZoomed Lib "User32" Alias "IsZoomed" (ByVal hWnd As
Long) As Long

Private Declare PtrSafe Function apilLStrCpynA Lib "Kernel32" Alias "lstrcpynA" (ByVal
pDestination As String, ByVal pSource As Long, ByVal iMaxLength As Integer) As Long

Private Declare PtrSafe Function apiMessageBox Lib "User32" Alias "MessageBoxA" (ByVal
hWwnd As Long, ByVal 1lpText As String, ByVal lpCaption As String, ByVal wType As Long) As Long

Private Declare PtrSafe Function apiOpenIcon Lib "User32" Alias "OpenIcon" (ByVal hWnd As
Long) As Long

Private Declare PtrSafe Function apiOpenProcess Lib "Kernel32" Alias "OpenProcess" (ByVal
dwDesiredAccess As Long, ByVal bInheritHandle As Long, ByVal dwProcessId As Long) As Long

Private Declare PtrSafe Function apiPathAddBackslashByPointer Lib "ShlwApi" Alias
"PathAddBackslashW" (ByVal lpszPath As Long) As Long

Private Declare PtrSafe Function apiPathAddBackslashByString Lib "ShlwApi" Alias
"PathAddBackslashW" (ByVal lpszPath As String) As Long 'http://msdn.microsoft.com/en—
us/library/aal55716%280ffice.10%29.aspx

Private Declare PtrSafe Function apiPostMessage Lib "User32" Alias "PostMessageA" (ByVal
hWnd As Long, ByVal wMsg As Long, ByVal wParam As Long, ByVal lParam As Long) As Long

Private Declare PtrSafe Function apiRegQueryValue Lib "AdvApi32" Alias "RegQueryValue"
(ByVal hKey As Long, ByVal sValueName As String, ByVal dwReserved As Long, ByRef 1lValueType As
Long, ByVal sValue As String, ByRef 1ResultLen As Long) As Long

Private Declare PtrSafe Function apiSendMessage Lib "User32" Alias "SendMessageA" (ByVal
hWnd As Long, ByVal wMsg As Long, ByVal wParam As Long, lParam As Any) As Long

Private Declare PtrSafe Function apiSetActiveWindow Lib "User32" Alias "SetActiveWindow"
(ByVal hWnd As Long) As Long

Private Declare PtrSafe Function apiSetCurrentDirectoryA Lib "Kernel32" Alias
"SetCurrentDirectoryA" (ByVal lpPathName As String) As Long

Private Declare PtrSafe Function apiSetFocus Lib "User32" Alias "SetFocus" (ByVal hWnd As
Long) As Long

Private Declare PtrSafe Function apiSetForegroundWindow Lib "User32" Alias
"SetForegroundWindow" (ByVal hWnd As Long) As Long

Private Declare PtrSafe Function apiSetLocalTime Lib "Kernel32" Alias "SetLocalTime"
(lpSystem As SystemTime) As Long

Private Declare PtrSafe Function apiSetWindowPlacement Lib "User32" Alias

https://riptutorial.com/

12

"SetWindowPlacement" (ByVal hWnd As Long, ByRef lpwndpl As winPlacement)
Private Declare PtrSafe Function apiSetWindowPos Lib "User32" Alias

hWnd As Long, ByVal hWndInsertAfter As Long, ByVal X As Long, ByVal Y As Long,

As Long
"SetWindowPos" (ByVal
ByVal cx As

Long, ByVal cy As Long, ByVal wFlags As Long) As Long

Private Declare PtrSafe Function apiSetWindowText Lib "User32" Alias "SetWindowTextA"
(ByVal hWnd As Long, ByVal 1lpString As String) As Long

Private Declare PtrSafe Function apiShellExecute Lib "Shell32" Alias "ShellExecuteA"
(ByVal hWnd As Long, ByVal lpOperation As String, ByVal lpFile As String, ByVal lpParameters
As String, ByVal lpDirectory As String, ByVal nShowCmd As Long) As Long

Private Declare PtrSafe Function apiShowWindow Lib "User32" Alias "ShowWindow" (ByVal hWnd

As Long, ByVal nCmdShow As Long) As Long

Private Declare PtrSafe Function apiShowWindowAsync Lib "User32" Alias "ShowWindowAsync"
(ByVal hWnd As Long, ByVal nCmdShow As Long) As Long

Private Declare PtrSafe Function apiStrCpy Lib "Kernel32" Alias "lstrcpynA" (ByVal
pDestination As String, ByVal pSource As String, ByVal iMaxLength As Integer) As Long

Private Declare PtrSafe Function apiStringLen Lib "Kernel32" Alias "lstrlenW" (ByVal
lpString As Long) As Long

Private Declare PtrSafe Function apiStrTrimW Lib "ShlwApi" Alias "StrTrimW" () As Boolean

Private Declare PtrSafe Function apiTerminateProcess Lib "Kernel32" Alias
"TerminateProcess" (ByVal hWnd As Long, ByVal uExitCode As Long) As Long

Private Declare PtrSafe Function apiTimeGetTime Lib "Winmm" Alias "timeGetTime" () As Long

Private Declare PtrSafe Function apiVarPtrArray Lib "MsVbvm50" Alias "VarPtr" (Var() As

Any) As Long

Private Type browselInfo 'used by apiBrowseForFolder
hOwner As Long
pidlRoot As Long
pszDisplayName As String
lpszTitle As String
ulFlags As Long
lpfn As Long
lParam As Long
iImage As Long
End Type
Private Declare PtrSafe Function apiBrowseForFolder Lib "Shell32" Alias
"SHBrowseForFolderA" (lpBrowseInfo As browseInfo) As Long
Private Type CHOOSECOLOR
http://support.microsoft.com/kb/153929 and http://www.cpearson.com/Excel/Colors.aspx

'used by apiChooseColor;

1StructSize As Long

hWwndOwner As
hInstance As
rgbResult As
lpCustColors

flags As Long

1CustData As

Long
Long
Long
As String

Long

lpfnHook As Long

lpTemplateName As String
End Type
Private Declare PtrSafe Function apiChooseColor Lib "ComD1lg32" Alias "ChooseColorA"
(pChoosecolor As CHOOSECOLOR) As Long
Private Type FindWindowParameters 'Custom structure for passing in the parameters in/out
of the hook enumeration function; could use global variables instead, but this is nicer
strTitle As String 'INPUT
hWnd As Long 'OUTPUT
End Type 'Find a specific window with dynamic caption from a
list of all open windows: http://www.everythingaccess.com/tutorials.asp?ID=Bring-an—-external-

application-window-to-the-foreground

Private Declare PtrSafe Function apiEnumWindows Lib "User32" Alias "EnumWindows" (ByVal
lpEnumFunc As LongPtr, ByVal lParam As LongPtr) As Long
Private Type lastInputInfo ‘'used by apiGetLastInputInfo, getLastInputTime

cbSize As Long

dwTime As Long

https://riptutorial.com/

13

End Type

Private Declare PtrSafe Function apiGetLastInputInfo Lib "User32" Alias "GetLastInputInfo"
(ByRef plii As lastInputInfo) As Long

'http://www.pgacon.com/visualbasic.htm#Take$20Advantage$200f%$20Conditional%20Compilation

'Logical and Bitwise Operators in Visual Basic: http://msdn.microsoft.com/en-
us/library/wz3k228a (v=vs.80) .aspx and http://stackoverflow.com/questions/1070863/hidden-
features-of-vba

Private Type SystemTime

wYear As Integer
wMonth As Integer
wDayOfWeek As Integer
wDay As Integer
wHour As Integer
wMinute As Integer
wSecond As Integer

wMilliseconds As Integer
End Type
Private Declare PtrSafe Sub apiGetLocalTime Lib "Kernel32" Alias "GetLocalTime" (lpSystem
As SystemTime)

Private Type pointAPI 'used by apiSetWindowPlacement
X As Long
Y As Long

End Type

Private Type rectAPI 'used by apiSetWindowPlacement

Left_Renamed As Long
Top_Renamed As Long
Right_Renamed As Long
Bottom_Renamed As Long
End Type
Private Type winPlacement 'used by apiSetWindowPlacement
length As Long
flags As Long
showCmd As Long
ptMinPosition As pointAPI
ptMaxPosition As pointAPI
rcNormalPosition As rectAPI
End Type
Private Declare PtrSafe Function apiGetWindowPlacement Lib "User32" Alias
"GetWindowPlacement" (ByVal hWnd As Long, ByRef lpwndpl As winPlacement) As Long
Private Type winRect 'used by apiMoveWindow
Left As Long
Top As Long
Right As Long
Bottom As Long
End Type
Private Declare PtrSafe Function apiMoveWindow Lib "User32" Alias "MoveWindow" (ByVal hWnd
As Long, xLeft As Long, ByVal yTop As Long, wWidth As Long, ByVal hHeight As Long, ByVal
repaint As Long) As Long

Private Declare PtrSafe Function apiInternetOpen Lib "WiniNet" Alias "InternetOpenA"
(ByVal sAgent As String, ByVal lAccessType As Long, ByVal sProxyName As String, ByVal
sProxyBypass As String, ByVal 1lFlags As Long) As Long 'Open the Internet object 'ex:
1ngINet = InternetOpen (“MyFTP Control”, 1, vbNullString, vbNullString, O0)

Private Declare PtrSafe Function apilnternetConnect Lib "WiniNet" Alias "InternetConnectA"
(ByVal hInternetSession As Long, ByVal sServerName As String, ByVal nServerPort As Integer,
ByVal sUsername As String, ByVal sPassword As String, ByVal 1lService As Long, ByVal 1Flags As
Long, ByVal 1lContext As Long) As Long 'Connect to the network 'ex: IngINetConn =
InternetConnect (lngINet, "ftp.microsoft.com", 0, "anonymous", "wally@wallyworld.com", 1, 0, 0)

Private Declare PtrSafe Function apiFtpGetFile Lib "WiniNet" Alias "FtpGetFileA" (ByVal
hFtpSession As Long, ByVal lpszRemoteFile As String, ByVal lpszNewFile As String, ByVal
fFailIfExists As Boolean, ByVal dwFlagsAndAttributes As Long, ByVal dwFlags As Long, ByVal

https://riptutorial.com/ 14

dwContext As Long) As Boolean 'Get a file 'ex: blnRC = FtpGetFile (1lngINetConn,
"dirmap.txt", "c:\dirmap.txt", 0, 0, 1, 0)

Private Declare PtrSafe Function apiFtpPutFile Lib "WiniNet" Alias "FtpPutFileA" (ByVal
hFtpSession As Long, ByVal lpszLocalFile As String, ByVal lpszRemoteFile As String, ByVal
dwFlags As Long, ByVal dwContext As Long) As Boolean 'Send a file 'ex: blnRC =
FtpPutFile (lngINetConn, “c:\dirmap.txt”, “dirmap.txt”, 1, 0)

Private Declare PtrSafe Function apiFtpDeleteFile Lib "WiniNet" Alias "FtpDeleteFileA"
(ByVal hFtpSession As Long, ByVal lpszFileName As String) As Boolean 'Delete a file 'ex: blnRC
= FtpDeleteFile (1lngINetConn, “test.txt”)

Private Declare PtrSafe Function apilInternetCloseHandle Lib "WiniNet" (ByVal hInet As
Long) As Integer 'Close the Internet object 'ex: InternetCloseHandle lngINetConn 'ex:
InternetCloseHandle 1ngINet

Private Declare PtrSafe Function apiFtpFindFirstFile Lib "WiniNet" Alias
"FtpFindFirstFileA" (ByVal hFtpSession As Long, ByVal lpszSearchFile As String, lpFindFileData
As WIN32_FIND_DATA, ByVal dwFlags As Long, ByVal dwContent As Long) As Long

Private Type FILETIME

dwLowDateTime As Long
dwHighDateTime As Long

End Type

Private Type WIN32_FIND_DATA

dwFileAttributes As Long
ftCreationTime As FILETIME
ftLastAccessTime As FILETIME
ftLastWriteTime As FILETIME
nFileSizeHigh As Long

nFileSizeLow As Long

dwReserved0 As Long

dwReservedl As Long

cFileName As String * 1 'MAX_FTP_PATH
cAlternate As String * 14

End Type 'ex: IngHINet = FtpFindFirstFile (1lngINetConn, "*.*", pData, 0, 0)

Private Declare PtrSafe Function apilnternetFindNextFile Lib "WiniNet" Alias
"InternetFindNextFileA" (ByVal hFind As Long, lpvFindData As WIN32_FIND_DATA) As Long 'ex:
b1lnRC = InternetFindNextFile (lngHINet, pData)

#Elself Win32 Then 'Win32 = True, Winl6 = False

(continued in second example)

Windows API - Dedicated Module (2 of 2)

#ElseIf Win32 Then 'Win32 = True, Winl6 = False

Private Declare Sub apiCopyMemory Lib "Kernel32" Alias "RtlMoveMemory" (MyDest As Any,
MySource As Any, ByVal MySize As Long)

Private Declare Sub apiExitProcess Lib "Kernel32" Alias "ExitProcess" (ByVal uExitCode As
Long)

'Private Declare Sub apiGetStartupInfo Lib "Kernel32" Alias "GetStartupInfoA"
(lpStartupInfo As STARTUPINFO)

Private Declare Sub apiSetCursorPos Lib "User32" Alias "SetCursorPos" (ByVal X As Integer,
ByVal Y As Integer) 'Logical and Bitwise Operators in Visual Basic:
http://msdn.microsoft.com/en-us/library/wz3k228a (v=vs.80) .aspx and
http://stackoverflow.com/questions/1070863/hidden-features-of-vba
'http://www.pgacon.com/visualbasic.htm#Take$20Advantage$200£f%20Conditional%20Compilation

Private Declare Sub apiSleep Lib "Kernel32" Alias "Sleep" (ByVal dwMilliseconds As Long)

Private Declare Function apiAttachThreadInput Lib "User32" Alias "AttachThreadInput"
(ByVal idAttach As Long, ByVal idAttachTo As Long, ByVal fAttach As Long) As Long

Private Declare Function apiBringWindowToTop Lib "User32" Alias "BringWindowToTop" (ByVal
lngHWnd As Long) As Long

Private Declare Function apiCloseHandle Lib "Kernel32" (ByVal hObject As Long) As Long

Private Declare Function apiCloseWindow Lib "User32" Alias "CloseWindow" (ByVal hWnd As

https://riptutorial.com/ 15

Long) As Long

'Private Declare Function apiCreatePipe Lib "Kernel32" (phReadPipe As Long, phWritePipe As
Long, lpPipeAttributes As SECURITY_ATTRIBUTES, ByVal nSize As Long) As Long

'Private Declare Function apiCreateProcess Lib "Kernel32" Alias "CreateProcessA" (ByVal
lpApplicationName As Long, ByVal lpCommandLine As String, lpProcessAttributes As Any,
lpThreadAttributes As Any, ByVal bInheritHandles As Long, ByVal dwCreationFlags As Long,
lpEnvironment As Any, ByVal lpCurrentDriectory As String, lpStartupInfo As STARTUPINFO,
lpProcessInformation As PROCESS_INFORMATION) As Long

Private Declare Function apiDestroyWindow Lib "User32" Alias "DestroyWindow" (ByVal hWnd
As Long) As Boolean

Private Declare Function apiEndDialog Lib "User32" Alias "EndDialog" (ByVal hWnd As Long,
ByVal result As Long) As Boolean

Private Declare Function apiEnumChildWindows Lib "User32" Alias "EnumChildWindows" (ByVal
hWndParent As Long, ByVal pEnumProc As Long, ByVal 1lParam As Long) As Long

Private Declare Function apiExitWindowsEx Lib "User32" Alias "ExitWindowsEx" (ByVal uFlags
As Long, ByVal dwReserved As Long) As Long

Private Declare Function apiFindExecutable Lib "Shell32" Alias "FindExecutableA" (ByVal
lpFile As String, ByVallpDirectory As String, ByVal lpResult As String) As Long

Private Declare Function apiFindWindow Lib "User32" Alias "FindWindowA" (ByVal lpClassName
As String, ByVal lpWindowName As String) As Long

Private Declare Function apiFindWindowEx Lib "User32" Alias "FindWindowExA" (ByVal hWndl
As Long, ByVal hWnd2 As Long, ByVal lpszl As String, ByVal lpsz2 As String) As Long

Private Declare Function apiGetActiveWindow Lib "User32" Alias "GetActiveWindow" () As
Long

Private Declare Function apiGetClassNameA Lib "User32" Alias "GetClassNameA" (ByVal hWnd
As Long, ByVal szClassName As String, ByVal lLength As Long) As Long

Private Declare Function apiGetCommandLine Lib "Kernel32" Alias "GetCommandLineW" () As
Long

Private Declare Function apiGetCommandLineParams Lib "Kernel32" Alias "GetCommandLineA" ()
As Long

Private Declare Function apiGetDiskFreeSpaceEx Lib "Kernel32" Alias "GetDiskFreeSpaceExA"
(ByVal lpDirectoryName As String, lpFreeBytesAvailableToCaller As Currency,
lpTotalNumberOfBytes As Currency, lpTotalNumberOfFreeBytes As Currency) As Long

Private Declare Function apiGetDriveType Lib "Kernel32" Alias "GetDriveTypeA" (ByVal
nDrive As String) As Long

Private Declare Function apiGetExitCodeProcess Lib "Kernel32" (ByVal hProcess As Long,
lpExitCode As Long) As Long

Private Declare Function apiGetFileSize Lib "Kernel32" (ByVal hFile As Long,
lpFileSizeHigh As Long) As Long

Private Declare Function apiGetForegroundWindow Lib "User32" Alias "GetForegroundWindow"
() As Long

Private Declare Function apiGetFrequency Lib "Kernel32" Alias "QueryPerformanceFrequency"
(cyFrequency As Currency) As Long

Private Declare Function apiGetLastError Lib "Kernel32" Alias "GetLastError" () As Integer

Private Declare Function apiGetParent Lib "User32" Alias "GetParent" (ByVal hWnd As Long)
As Long

Private Declare Function apiGetSystemMetrics Lib "User32" Alias "GetSystemMetrics" (ByVal
nIndex As Long) As Long

Private Declare Function apiGetTickCount Lib "Kernel32" Alias "QueryPerformanceCounter"
(cyTickCount As Currency) As Long

Private Declare Function apiGetTickCountMs Lib "Kernel32" Alias "GetTickCount" () As Long

Private Declare Function apiGetUserName Lib "AdvApi32" Alias "GetUserNameA" (ByVal
lpBuffer As String, nSize As Long) As Long

Private Declare Function apiGetWindow Lib "User32" Alias "GetWindow" (ByVal hWnd As Long,
ByVal wCmd As Long) As Long

Private Declare Function apiGetWindowRect Lib "User32" Alias "GetWindowRect" (ByVal hWnd
As Long, lpRect As winRect) As Long

Private Declare Function apiGetWindowText Lib "User32" Alias "GetWindowTextA" (ByVal hWnd
As Long, ByVal szWindowText As String, ByVal lLength As Long) As Long

Private Declare Function apiGetWindowThreadProcessId Lib "User32" Alias
"GetWindowThreadProcessId" (ByVal hWnd As Long, lpdwProcessId As Long) As Long

https://riptutorial.com/

16

Private Declare Function apilIsCharAlphaNumericA Lib "User32" Alias "IsCharAlphaNumericA"
(ByVal byChar As Byte) As Long

Private Declare Function apilIsIconic Lib "User32" Alias "IsIconic" (ByVal hWnd As Long) As
Long

Private Declare Function apilIsWindowVisible Lib "User32" Alias "IsWindowVisible" (ByVal
hWwnd As Long) As Long

Private Declare Function apilsZoomed Lib "User32" Alias "IsZoomed" (ByVal hWnd As Long) As
Long

Private Declare Function apilLStrCpynA Lib "Kernel32" Alias "lstrcpynA" (ByVal pDestination
As String, ByVal pSource As Long, ByVal iMaxLength As Integer) As Long

Private Declare Function apiMessageBox Lib "User32" Alias "MessageBoxA" (ByVal hWnd As
Long, ByVal lpText As String, ByVal lpCaption As String, ByVal wType As Long) As Long

Private Declare Function apiOpenlIcon Lib "User32" Alias "OpenIcon" (ByVal hWnd As Long) As
Long

Private Declare Function apiOpenProcess Lib "Kernel32" Alias "OpenProcess" (ByVal
dwDesiredAccess As Long, ByVal bInheritHandle As Long, ByVal dwProcessId As Long) As Long

Private Declare Function apiPathAddBackslashByPointer Lib "ShlwApi" Alias
"PathAddBackslashW" (ByVal lpszPath As Long) As Long

Private Declare Function apiPathAddBackslashByString Lib "ShlwApi" Alias
"PathAddBackslashW" (ByVal lpszPath As String) As Long 'http://msdn.microsoft.com/en—
us/library/aal55716%280ffice.10%29.aspx

Private Declare Function apiPostMessage Lib "User32" Alias "PostMessageA" (ByVal hWnd As
Long, ByVal wMsg As Long, ByVal wParam As Long, ByVal lParam As Long) As Long

Private Declare Function apiReadFile Lib "Kernel32" (ByVal hFile As Long, lpBuffer As Any,
ByVal nNumberOfBytesToRead As Long, lpNumberOfBytesRead As Long, lpOverlapped As Any) As Long

Private Declare Function apiRegQueryValue Lib "AdvApi32" Alias "RegQueryValue" (ByVal hKey
As Long, ByVal sValueName As String, ByVal dwReserved As Long, ByRef 1ValueType As Long, ByVal
sValue As String, ByRef 1ResultlLen As Long) As Long

Private Declare Function apiSendMessage Lib "User32" Alias "SendMessageA" (ByVal hWnd As
Long, ByVal wMsg As Long, ByVal wParam As Long, lParam As Any) As Long

Private Declare Function apiSetActiveWindow Lib "User32" Alias "SetActiveWindow" (ByVal
hWwnd As Long) As Long

Private Declare Function apiSetCurrentDirectoryA Lib "Kernel32" Alias
"SetCurrentDirectoryA" (ByVal lpPathName As String) As Long

Private Declare Function apiSetFocus Lib "User32" Alias "SetFocus" (ByVal hWnd As Long) As
Long

Private Declare Function apiSetForegroundWindow Lib "User32" Alias "SetForegroundWindow"
(ByVal hWnd As Long) As Long

Private Declare Function apiSetLocalTime Lib "Kernel32" Alias "SetLocalTime" (lpSystem As
SystemTime) As Long

Private Declare Function apiSetWindowPlacement Lib "User32" Alias "SetWindowPlacement"
(ByVal hWnd As Long, ByRef lpwndpl As winPlacement) As Long

Private Declare Function apiSetWindowPos Lib "User32" Alias "SetWindowPos" (ByVal hWnd As
Long, ByVal hWndInsertAfter As Long, ByVal X As Long, ByVal Y As Long, ByVal cx As Long, ByVal
cy As Long, ByVal wFlags As Long) As Long

Private Declare Function apiSetWindowText Lib "User32" Alias "SetWindowTextA" (ByVal hWnd
As Long, ByVal lpString As String) As Long

Private Declare Function apiShellExecute Lib "Shell32" Alias "ShellExecuteA" (ByVal hWnd
As Long, ByVal lpOperation As String, ByVal 1lpFile As String, ByVal lpParameters As String,
ByVal lpDirectory As String, ByVal nShowCmd As Long) As Long

Private Declare Function apiShowWindow Lib "User32" Alias "ShowWindow" (ByVal hWnd As
Long, ByVal nCmdShow As Long) As Long

Private Declare Function apiShowWindowAsync Lib "User32" Alias "ShowWindowAsync" (ByVal
hWwnd As Long, ByVal nCmdShow As Long) As Long

Private Declare Function apiStrCpy Lib "Kernel32" Alias "lstrcpynA" (ByVal pDestination As
String, ByVal pSource As String, ByVal iMaxLength As Integer) As Long

Private Declare Function apiStringLen Lib "Kernel32" Alias "lstrlenW" (ByVal lpString As
Long) As Long

Private Declare Function apiStrTrimW Lib "ShlwApi" Alias "StrTrimW" () As Boolean

Private Declare Function apiTerminateProcess Lib "Kernel32" Alias "TerminateProcess"
(ByVal hWnd As Long, ByVal uExitCode As Long) As Long

https://riptutorial.com/ 17

Private Declare Function apiTimeGetTime Lib "Winmm" Alias "timeGetTime" () As Long
Private Declare Function apiVarPtrArray Lib "MsVbvm50" Alias "VarPtr" (Var() As Any) As
Long
Private Declare Function apiWaitForSingleObject Lib "Kernel32" (ByVal hHandle As Long,
ByVal dwMilliseconds As Long) As Long
Private Type browselInfo 'used by apiBrowseForFolder
hOwner As Long
pidlRoot As Long
pszDisplayName As String
lpszTitle As String
ulFlags As Long
lpfn As Long
lParam As Long
iImage As Long
End Type
Private Declare Function apiBrowseForFolder Lib "Shell32" Alias "SHBrowseForFolderA"
(lpBrowseInfo As browseInfo) As Long
Private Type CHOOSECOLOR 'used by apiChooseColor;
http://support.microsoft.com/kb/153929 and http://www.cpearson.com/Excel/Colors.aspx
1StructSize As Long
hWwndOwner As Long
hInstance As Long
rgbResult As Long
lpCustColors As String
flags As Long
1CustData As Long
lpfnHook As Long
lpTemplateName As String
End Type
Private Declare Function apiChooseColor Lib "ComD1lg32" Alias "ChooseColorA" (pChoosecolor
As CHOOSECOLOR) As Long
Private Type FindWindowParameters 'Custom structure for passing in the parameters in/out
of the hook enumeration function; could use global variables instead, but this is nicer
strTitle As String 'INPUT
hWnd As Long 'OUTPUT
End Type 'Find a specific window with dynamic caption from a
list of all open windows: http://www.everythingaccess.com/tutorials.asp?ID=Bring-an—-external-
application-window-to-the-foreground
Private Declare Function apiEnumWindows Lib "User32" Alias "EnumWindows" (ByVal lpEnumFunc
As Long, ByVal lParam As Long) As Long
Private Type lastInputInfo 'used by apiGetLastInputInfo, getLastInputTime
cbSize As Long
dwTime As Long
End Type
Private Declare Function apiGetLastInputInfo Lib "User32" Alias "GetLastInputInfo" (ByRef
plii As lastInputInfo) As Long
Private Type SystemTime

wYear As Integer
wMonth As Integer
wDayOfWeek As Integer
wDay As Integer
wHour As Integer
wMinute As Integer
wSecond As Integer
wMilliseconds As Integer
End Type
Private Declare Sub apiGetLocalTime Lib "Kernel32" Alias "GetLocalTime" (lpSystem As
SystemTime)
Private Type pointAPI
X As Long
Y As Long

https://riptutorial.com/ 18

End Type
Private Type rectAPI
Left_Renamed As Long
Top_Renamed As Long
Right_Renamed As Long
Bottom_Renamed As Long
End Type
Private Type winPlacement
length As Long
flags As Long
showCmd As Long
ptMinPosition As pointAPI
ptMaxPosition As pointAPI
rcNormalPosition As rectAPI
End Type
Private Declare Function apiGetWindowPlacement Lib "User32" Alias "GetWindowPlacement"
(ByVal hWnd As Long, ByRef lpwndpl As winPlacement) As Long
Private Type winRect
Left As Long
Top As Long
Right As Long
Bottom As Long
End Type
Private Declare Function apiMoveWindow Lib "User32" Alias "MoveWindow" (ByVal hWnd As
Long, xLeft As Long, ByVal yTop As Long, wWidth As Long, ByVal hHeight As Long, ByVal repaint
As Long) As Long

#Else ' Winl6 = True
#End If
Mac APIs

Microsoft doesn't officially support APIs but with some research more declarations can be found
online

Office 2016 for Mac is sandboxed
Unlike other versions of Office apps that support VBA, Office 2016 for Mac apps are sandboxed.

Sandboxing restricts the apps from accessing resources outside the app container. This affects
any add-ins or macros that involve file access or communication across processes. You can
minimize the effects of sandboxing by using the new commands described in the following section.
New VBA commands for Office 2016 for Mac

The following VBA commands are new and unique to Office 2016 for Mac.

GrantAccessToMultipleFiles Request a user's permission to access multiple files at once
AppleScriptTask Call external AppleScript scripts from VB

MAC_OFFICE_VERSION IFDEF between different Mac Office versions at compile time

Office 2011 for Mac

https://riptutorial.com/ 19

https://msdn.microsoft.com/en-us/library/office/mt654019.aspx
https://msdn.microsoft.com/en-us/library/office/mt654020.aspx
https://msdn.microsoft.com/en-us/library/office/mt654021.aspx
https://msdn.microsoft.com/en-us/library/office/mt654025.aspx
https://stackoverflow.com/a/12320294/4914662

Private Declare Function system Lib "libc.dylib" (ByVal command As String) As Long

Private Declare Function popen Lib "libc.dylib" (ByVal command As String, ByVal mode As
String) As Long

Private Declare Function pclose Lib "libc.dylib" (ByVal file As Long) As Long

Private Declare Function fread Lib "libc.dylib" (ByVal outStr As String, ByVal size As Long,
ByVal items As Long, ByVal stream As Long) As Long

Private Declare Function feof Lib "libc.dylib" (ByVal file As Long) As Long

Office 2016 for Mac

Private Declare PtrSafe Function popen Lib "libc.dylib" (ByVal command As String, ByVal mode
As String) As LongPtr

Private Declare PtrSafe Function pclose Lib "libc.dylib" (ByVal file As LongPtr) As Long
Private Declare PtrSafe Function fread Lib "libc.dylib" (ByVal outStr As String, ByVal size As
LongPtr, ByVal items As LongPtr, ByVal stream As LongPtr) As Long

Private Declare PtrSafe Function feof Lib "libc.dylib" (ByVal file As LongPtr) As LongPtr

Get total monitors and screen resolution

Option Explicit

'GetSystemMetrics32 info: http://msdn.microsoft.com/en-us/library/ms724385 (VS.85) .aspx
#If Win64 Then

Private Declare PtrSafe Function GetSystemMetrics32 Lib "User32" Alias "GetSystemMetrics"
(ByVal nIndex As Long) As Long
#ElseIf Win32 Then

Private Declare Function GetSystemMetrics32 Lib "User32" Alias "GetSystemMetrics" (ByVal
nIndex As Long) As Long
#End If

'VBA Wrappers:
Public Function dllGetMonitors () As Long

Const SM_CMONITORS = 80

dllGetMonitors = GetSystemMetrics32 (SM_CMONITORS)
End Function

Public Function dllGetHorizontalResolution() As Long

Const SM_CXVIRTUALSCREEN = 78

dllGetHorizontalResolution = GetSystemMetrics32 (SM_CXVIRTUALSCREEN)
End Function

Public Function dllGetVerticalResolution() As Long

Const SM_CYVIRTUALSCREEN = 79

dllGetVerticalResolution = GetSystemMetrics32 (SM_CYVIRTUALSCREEN)
End Function

Public Sub ShowDisplayInfo ()

Debug.Print "Total monitors: " & vbTab & vbTab & dllGetMonitors
Debug.Print "Horizontal Resolution: " & vbTab & dllGetHorizontalResolution
Debug.Print "Vertical Resolution: " & vbTab & dllGetVerticalResolution
'Total monitors: 1
'Horizontal Resolution: 1920
'Vertical Resolution: 1080

End Sub

https://riptutorial.com/ 20

https://stackoverflow.com/a/40029588/4914662

FTP and Regional APlIs
modFTP

Option Explicit
Option Compare Text
Option Private Module

'http://msdn.microsoft.com/en-us/library/aa384180 (v=VS.85) .aspx
'http://www.dailydoseofexcel.com/archives/2006/01/29/ftp-via-vba/
'http://www.l5seconds.com/issue/981203.htm

'Open the Internet object
Private Declare Function InternetOpen Lib "wininet.dll" Alias "InternetOpenA" (_
ByVal sAgent As String,
ByVal lAccessType As Long,
ByVal sProxyName As String,
ByVal sProxyBypass As String,
ByVal 1lFlags As Long _
) As Long
'ex: 1lngINet = InternetOpen (“MyFTP Control”, 1, vbNullString, vbNullString, O0)

'Connect to the network
Private Declare Function InternetConnect Lib "wininet.dll" Alias "InternetConnectA" (_
ByVal hInternetSession As Long,
ByVal sServerName As String,
ByVal nServerPort As Integer,
ByVal sUsername As String,
ByVal sPassword As String,
ByVal 1lService As Long,
ByVal 1Flags As Long,
ByVal lContext As Long _
) As Long

'ex: lngINetConn = InternetConnect (lngINet, "ftp.microsoft.com", 0, "anonymous",
"wally@wallyworld.com", 1, 0, 0)

'Get a file
Private Declare Function FtpGetFile Lib "wininet.dll" Alias "FtpGetFileA" (_
ByVal hFtpSession As Long, _
ByVal lpszRemoteFile As String,
ByVal lpszNewFile As String,
ByVal fFaillfExists As Boolean, _
ByVal dwFlagsAndAttributes As Long,
ByVal dwFlags As Long,
ByVal dwContext As Long _
) As Boolean
'ex: blnRC = FtpGetFile (lngINetConn, "dirmap.txt", "c:\dirmap.txt", 0, 0, 1, 0)

'Send a file
Private Declare Function FtpPutFile Lib "wininet.dll" Alias "FtpPutFileA" _
(_
ByVal hFtpSession As Long,
ByVal lpszLocalFile As String,
ByVal lpszRemoteFile As String,
ByVal dwFlags As Long, ByVal dwContext As Long _
) As Boolean
'ex: blnRC = FtpPutFile (1lngINetConn, “c:\dirmap.txt”, “dirmap.txt”, 1, 0)

'Delete a file
Private Declare Function FtpDeleteFile Lib "wininet.dll" Alias "FtpDeleteFileA" _

https://riptutorial.com/

(_
ByVal hFtpSession As Long,
ByVal lpszFileName As String _
) As Boolean
'ex: bIlnRC = FtpDeleteFile (lngINetConn, “test.txt”)

'Close the Internet object

Private Declare Function InternetCloseHandle Lib "wininet.dll" (ByVal hInet As Long) As
Integer

'ex: InternetCloseHandle 1lngINetConn

'ex: InternetCloseHandle IngINet

Private Declare Function FtpFindFirstFile Lib "wininet.dll" Alias "FtpFindFirstFileA" _
(_
ByVal hFtpSession As Long,
ByVal lpszSearchFile As String,
lpFindFileData As WIN32_FIND_DATA,
ByVal dwFlags As Long,
ByVal dwContent As Long _
) As Long
Private Type FILETIME
dwLowDateTime As Long
dwHighDateTime As Long
End Type
Private Type WIN32_FIND_DATA
dwFileAttributes As Long
ftCreationTime As FILETIME
ftLastAccessTime As FILETIME
ftLastWriteTime As FILETIME
nFileSizeHigh As Long
nFileSizelLow As Long
dwReserved0 As Long
dwReservedl As Long
cFileName As String * MAX_FTP_PATH
cAlternate As String * 14
End Type
'ex: IngHINet = FtpFindFirstFile (lngINetConn, "*.*", pData, 0, 0)

Private Declare Function InternetFindNextFile Lib "wininet.dll" Alias "InternetFindNextFileA"
(_
ByVal hFind As Long, _
lpvFindData As WIN32_FIND_DATA _
) As Long
'ex: bIlnRC = InternetFindNextFile (lngHINet, pData)

Public Sub showLatestFTPVersion ()
Dim ftpSuccess As Boolean, msg As String, lngFindFirst As Long
Dim lngINet As Long, lngINetConn As Long
Dim pData As WIN32_FIND_DATA
'init the filename buffer
pData.cFileName = String (260, 0)

msg = "FTP Error"
1ngINet = InternetOpen ("MyFTP Control", 1, vbNullString, vbNullString, O0)
If 1ngINet > 0 Then
lngINetConn = InternetConnect (1lngINet, FTP_SERVER NAME, FTP_SERVER_PORT,
FTP_USER_NAME, FTP_PASSWORD, 1, 0, 0)

https://riptutorial.com/ 22

If 1ngINetConn > 0 Then

FtpPutFile lngINetConn, "C:\Tmp\ftp.cls", "ftp.cls", FTP_TRANSFER_ BINARY, 0
'IngFindFirst = FtpFindFirstFile (1lngINetConn, "ExcelDiff.xlsm", pData, 0, 0)
If 1ngINet = 0 Then
msg = "DLL error: " & Err.LastDllError & ", Error Number: " & Err.Number & ",
Error Desc: " & Err.Description
Else
msg = left (pData.cFileName, InStr(l, pData.cFileName, String(l, O0),
vbBinaryCompare) - 1)
End If
InternetCloseHandle 1ngINetConn
End If
InternetCloseHandle 1ngINet
End If
MsgBox msg
End Sub
modRegional:
Option Explicit
Private Const LOCALE_SDECIMAL = &HE
Private Const LOCALE_SLIST = &HC
Private Declare Function GetLocaleInfo Lib "Kernel32" Alias "GetLocaleInfoA" (ByVal Locale As
Long, ByVal LCType As Long, ByVal lpLCData As String, ByVal cchData As Long) As Long
Private Declare Function SetLocaleInfo Lib "Kernel32" Alias "SetLocaleInfoA" (ByVal Locale As
Long, ByVal LCType As Long, ByVal lpLCData As String) As Boolean
Private Declare Function GetUserDefaultLCID% Lib "Kernel32" ()

Public Function getTimeSeparator ()

getTimeSeparator Application.
End Function

Public Function getDateSeparator ()

getDateSeparator Application.

End Function

Public Function getListSeparator ()
Dim ListSeparator As String,

Position As Integer,

iRetVall As Long,
Locale As Long

As String
International (x1TimeSeparator)

As String
International (x1DateSeparator)

As String

iRetVal2 As Long, lpLCDataVar As String,

Locale = GetUserDefaultLCID ()

iRetVall = GetLocaleInfo(Locale, LOCALE_SLIST, lpLCDataVar, O0)

ListSeparator = String$ (iRetVvall, 0)

iRetVal2 = GetLocaleInfo (Locale, LOCALE_SLIST, ListSeparator, iRetVall)

Position = InStr(ListSeparator, Chr$(0))

If Position > 0 Then ListSeparator = Left$(ListSeparator, Position - 1) Else ListSeparator

vbNullString
getListSeparator

End Function

Private Sub ChangeSettingExample ()
decimal separator.

Call SetLocalSetting (LOCALE_SDECIMAL,

Stop
GetLocaleInfo API function

Call SetLocalSetting (LOCALE_SDECIMAL, "

End Sub

Private Function SetLocalSetting(LC_CONST As Long,
Call SetLocalelInfo (GetUserDefaultLCID(),

ListSeparator

'change the setting of the character displayed as the

w o) "to change te ®,0

'check your control panel to verify or use the

L") 'to back change to "."

Setting As String) As Boolean

LC_CONST, Setting)

https://riptutorial.com/

23

End Function

Read API Calls online: https://riptutorial.com/vba/topic/10569/api-calls

https://riptutorial.com/

24

https://riptutorial.com/vba/topic/10569/api-calls

C_hapter 3: Arrays

Examples

Declaring an Array in VBA

Declaring an array is very similar to declaring a variable, except you need to declare the
dimension of the Array right after its name:

Dim myArray (9) As String 'Declaring an array that will contain up to 10 strings

By default, Arrays in VBA are indexed from ZERO, thus, the number inside the parenthesis
doesn't refer to the size of the array, but rather to the index of the last element

Accessing Elements

Accessing an element of the Array is done by using the name of the Array, followed by the index
of the element, inside parenthesis:

myArray (0) = "first element”
myArray (5) = "sixth element”
myArray (9) = "last element"

Array Indexing

You can change Arrays indexing by placing this line at the top of a module:

Option Base 1

With this line, all Arrays declared in the module will be indexed from ONE.

Specific Index

You can also declare each Array with its own index by using the o keyword, and the lower and
upper bound (= index):

Dim mySecondArray(l To 12) As String 'Array of 12 strings indexed from 1 to 12
Dim myThirdArray (13 To 24) As String 'Array of 12 strings indexed from 13 to 24

Dynamic Declaration

When you do not know the size of your Array prior to its declaration, you can use the dynamic
declaration, and the repim keyword:

https://riptutorial.com/ 25

Dim myDynamicArray () As Strings 'Creates an Array of an unknown number of strings
ReDim myDynamicArray (5) 'This resets the array to 6 elements

Note that using the repim keyword will wipe out any previous content of your Array. To prevent this,
you can use the preserve keyword after repim:

Dim myDynamicArray (5) As String

myDynamicArray (0) = "Something I want to keep"
ReDim Preserve myDynamicArray (8) 'Expand the size to up to 9 strings
Debug.Print myDynamicArray(0) ' still prints the element

Use of Split to create an array from a string

Split Function

returns a zero-based, one dimensional array containing a specified number of substrings.
Syntax

Split(expression [, delimiter [, limit [, compare]]])

Required. String expression containing substrings and delimiters. If expression
Is a zero-length string("" or vbNullString), Split returns an empty array

expression . . :
P containing no elements and no data. In this case, the returned array will have a

LBound of 0 and a UBound of -1.
Optional. String character used to identify substring limits. If omitted, the space

delimiter character (" ") is assumed to be the delimiter. If delimiter is a zero-length
string, a single-element array containing the entire expression string is
returned.

limit Optional. Number of substrings to be returned; -1 indicates that all substrings
are returned.

compare Optional. Numeric value indicating the kind of comparison to use when

P evaluating substrings. See Settings section for values.
Settings

The compare argument can have the following values:

Performs a comparison using the setting of the Option

Description -1
P Compare statement.

https://riptutorial.com/ 26

vbBinaryCompare 0

vbTextCompare 1

vbDatabaseCompare 2

Example

Performs a binary comparison.
Performs a textual comparison.

Microsoft Access only. Performs a comparison based on
information in your database.

In this example it is demonstrated how Split works by showing several styles. The comments will
show the result set for each of the different performed Split options. Finally it is demonstrated how
to loop over the returned string array.

Sub Test

Dim textArray () as String

textArray = Split ("Tech on the Net")

'Result: {"Tech", "on",

"the", "Net"}

textArray = Split("172.23.56.4", ".")

'Result: {"172", "23",

textArray = Split ("A;B;C;D",
'Result: {"A", "B", "C",

textArray = Split ("A;B;C;D",

ll4ll}

ll;ll)

levl}

vl;n’ 1)

'Result: {"A;B;C;D"}

textArray
'Result: {

textArray
'Result: {

textArray
'Result: {

'You can iterate over the created array

= Split ("A;B;C;D", ";", 2)
llA", "B;C;D"}

= Split ("A;B;C;D", ";", 3)
"A", "B", "C;D"}

= Split ("A;B;C;D", ";", 4)
"A", "B", "C", "D"}

Dim counter As Long

For counter = LBound (textArray) To UBound(textArray)

Debug.
Next
End Sub

Print textArray (counter)

Iterating elements of an array

For...Next

Using the iterator variable as the index number is the fastest way to iterate the elements of an

array:

https://riptutorial.com/

Dim items As Variant
items = Array (0, 1, 2, 3)

Dim index As Integer

For index = LBound(items) To UBound(items)
'assumes value can be implicitly converted to a String:
Debug.Print items (index)

Next

Nested loops can be used to iterate multi-dimensional arrays:

Dim items (0 To 1, 0 To 1) As Integer
items (0, 0) = 0

items (0, 1) 1
items (1, 0) = 2
items (1, 1) 3

Dim outer As Integer
Dim inner As Integer
For outer = LBound(items, 1) To UBound (items, 1)
For inner = LBound(items, 2) To UBound(items, 2)

'assumes value can be implicitly converted to a String:

Debug.Print items (outer, inner)
Next
Next

For Each...Next

A ror Each...Next l0Op can also be used to iterate arrays, if performance doesn't matter:

Dim items As Variant
items = Array (0, 1, 2, 3)

Dim item As Variant 'must be variant

For Each item In items
'assumes value can be implicitly converted to a String:
Debug.Print item

Next

A ror rach loop will iterate all dimensions from outer to inner (the same order as the elements are

laid out in memory), so there is no need for nested loops:

Dim items (0 To 1, 0 To 1) As Integer
items (0, 0) = 0
items (1, 0) =1
items (0, 1) = 2
items (1, 1) = 3

Dim item As Variant 'must be Variant

For Each item In items
'assumes value can be implicitly converted to a String:
Debug.Print item

Next

https://riptutorial.com/

28

Note that ror rach lOOpPS are best used to iterate co11ection Objects, if performance matters.

All 4 snippets above produce the same output:

w N = O

Dynamic Arrays (Array Resizing and Dynamic Handling)

Dynamic Arrays

Adding and reducing variables on an array dynamically is a huge advantage for when the
information you are treating does not have a set number of variables.

Adding Values Dynamically

You can simply resize the Array with the repim Statement, this will resize the array but to if you
which to retain the information already stored in the array you'll need the part preserve.

In the example below we create an array and increase it by one more variable in each iteration
while preserving the values already in the array.

Dim Dynamic_array As Variant
' first we set Dynamic_array as variant

For n = 1 To 100

If IsEmpty(Dynamic_array) Then
'isempty () will check if we need to add the first value to the array or subsequent

ones

ReDim Dynamic_array (0)
'ReDim Dynamic_array(0) will resize the array to one variable only
Dynamic_array (0) = n

Else
ReDim Preserve Dynamic_array (0 To UBound (Dynamic_array) + 1)
'in the line above we resize the array from variable 0 to the UBound() = last
variable, plus one effectivelly increeasing the size of the array by one
Dynamic_array (UBound (Dynamic_array)) = n
'attribute a value to the last variable of Dynamic_array
End If

Next

Removing Values Dynamically

We can utilise the same logic to to decrease the the array. In the example the value "last" will be

https://riptutorial.com/ 29

removed from the array.

Dim Dynamic_array As Variant
Dynamic_array = Array("first", "middle", "last")

ReDim Preserve Dynamic_array (0 To UBound (Dynamic_array) - 1)
' Resize Preserve while dropping the last value

Resetting an Array and Reusing Dynamically

We can as well re-utilise the arrays we create as not to have many on memory, which would make
the run time slower. This is useful for arrays of various sizes. One snippet you could use to re-
utilise the array is to repin the array back to (o), attribute one variable to to the array and freely
increase the array again.

In the snippet below | construct an array with the values 1 to 40, empty the array, and refill the
array with values 40 to 100, all this done dynamically.

Dim Dynamic_array As Variant
For n = 1 To 100

If IsEmpty (Dynamic_array) Then
ReDim Dynamic_array (0)

Dynamic_array (0) = n

ElseIf Dynamic_array (0) = "" Then
'if first variant is empty (= "") then give it the value of n
Dynamic_array (0) = n

Else
ReDim Preserve Dynamic_array (0 To UBound (Dynamic_array) + 1)
Dynamic_array (UBound (Dynamic_array)) = n

End If

If n = 40 Then
ReDim Dynamic_array (0)
'Resizing the array back to one variable without Preserving,
'leaving the first value of the array empty

End If

Next
Jagged Arrays (Arrays of Arrays)

Jagged Arrays NOT Multidimensional Arrays

Arrays of Arrays(Jagged Arrays) are not the same as Multidimensional Arrays if you think about
them visually Multidimensional Arrays would look like Matrices (Rectangular) with defined number
of elements on their dimensions(inside arrays), while Jagged array would be like a yearly calendar
with the inside arrays having different number of elements, like days in on different months.

Although Jagged Arrays are quite messy and tricky to use due to their nested levels and don't
have much type safety, but they are very flexible, allow you to manipulate different types of data

https://riptutorial.com/ 30

quite easily, and don't need to contain unused or empty elements.

Creating a Jagged Array

In the below example we will initialise a jagged array containing two arrays one for Names and
another for Numbers, and then accessing one element of each

Dim OuterArray () As Variant

Dim Names () As Variant

Dim Numbers () As Variant

'arrays are declared variant so we can access attribute any data type to its elements

Names = Array ("Personl", "Person2", "Person3")
Numbers = Array("001", "002", "003")

OuterArray = Array (Names, Numbers)
'Directly giving OuterArray an array containing both Names and Numbers arrays inside

Debug.Print OuterArray (0) (1)
Debug.Print OuterArray (1) (1)
'accessing elements inside the jagged by giving the coordenades of the element

Dynamically Creating and Reading Jagged Arrays

We can as well be more dynamic in our approx to construct the arrays, imagine that we have a
customer data sheet in excel and we want to construct an array to output the customer details.

Name - Phone - Email - Customer Number
Personl - 153486231 - 1@STACK - 001
Person2 - 153486242 - 2@STACK - 002
Person3 - 153486253 - 3@STACK - 003
Person4 - 153486264 - 4@STACK - 004
Person5 - 153486275 - 5@STACK - 005

We will Dynamically construct an Header array and a Customers array, the Header will contain the
column titles and the Customers array will contain the information of each customer/row as arrays.

Dim Headers As Variant
' headers array with the top section of the customer data sheet
For ¢ = 1 To 4
If IsEmpty (Headers) Then
ReDim Headers (0)

Headers (0) = Cells (1, c).Value
Else
ReDim Preserve Headers (0 To UBound (Headers) + 1)
Headers (UBound (Headers)) = Cells (1, c).Value
End If

Next

Dim Customers As Variant
'Customers array will contain arrays of customer values
Dim Customer_Values As Variant

'Customer_Values will be an array of the customer in its elements (Name-Phone-Email-CustNum)

https://riptutorial.com/

31

For r = 2 To 6
'iterate through the customers/rows
For ¢ = 1 To 4
'iterate through the values/columns

'build array containing customer wvalues
If IsEmpty (Customer_Values) Then
ReDim Customer_Values (0)
Customer_Values (0) = Cells(r, c).Value
ElseIf Customer_Values (0) = "" Then

Customer_Values (0) = Cells(r, c).Value
Else
ReDim Preserve Customer_Values (0 To UBound (Customer_Values) + 1)
Customer_Values (UBound (Customer_Values)) = Cells(r, c).Value
End If
Next

'add customer_values array to Customers Array
If IsEmpty (Customers) Then
ReDim Customers (0)

Customers (0) = Customer_Values

Else
ReDim Preserve Customers (0 To UBound (Customers) + 1)
Customers (UBound (Customers)) = Customer_Values

End If

'reset Custumer_Values to rebuild a new array if needed
ReDim Customer_Values (0)
Next

Dim Main_Array (0 To 1) As Variant
'main array will contain both the Headers and Customers

Main_Array (0) = Headers
Customers

Main_Array (1)

To better understand the way to Dynamically construct a one dimensional array please check

Dynamic Arrays (Array Resizing and Dynamic Handling) on the Arrays documentation.

The Result of the above snippet is an Jagged Array with two arrays one of those arrays with 4
elements, 2 indention levels, and the other being itself another Jagged Array containing 5 arrays of
4 elements each and 3 indention levels, see below the structure:

Main_Array(0) - Headers - Array ("Name","Phone","Email", "Customer Number")
(1) - Customers(0) - Array("Personl",153486231,"1@STACK",001)
Customers (1) - Array ("Person2",153486242,"2Q@STACK",002)
Customers (4) - Array ("Personb5",153486275,"5@STACK", 005)

To access the information you'll have to bear in mind the structure of the Jagged Array you create,
in the above example you can see that the vain array contains an Array of seaders and an Array of
Arrays (customers) hence with different ways of accessing the elements.

Now we'll read the information of the main array and print out each of the Customers information

asS Info Type: Info.

https://riptutorial.com/ 32

For n = 0 To UBound (Main_Array (1))
'n to iterate from fisrt to last array in Main_Array (1)

For j = 0 To UBound(Main_Array(l) (n))
'J will iterate from first to last element in each array of Main_Array (1)

Debug.Print Main_Array(0) (j) & ": " & Main_Array (1) (n) (J)
'print Main_Array(0) (j) which is the header and Main_Array(0) (n) (j) which is the

element in the customer array
'we can call the header with J as the header array has the same structure as the

customer array
Next
Next

REMEMBER to keep track of the structure of your Jagged Array, in the example above to access
the Name of a customer is by accessing mMain_array -> Customers -> CustomerNumber -> Name Which
is three levels, to return »rersona™ you'll need the location of Customers in the Main_Array, then
the Location of customer four on the Customers Jagged array and lastly the location of the
element you need, in this case main_array (1) (3) (0) Which is

Main_Array (Customers) (CustomerNumber) (Name) .

Multidimensional Arrays

Multidimensional Arrays

As the name indicates, multi dimensional arrays are arrays that contain more than one dimension,
usually two or three but it can have up to 32 dimensions.

A multi array works like a matrix with various levels, take in example a comparison between one,
two, and three Dimensions.

One Dimension is your typical array, it looks like a list of elements.

Dim 1D (3) as Variant

1D - Visually
(0)
(1)
(2)

Two Dimensions would look like a Sudoku Grid or an Excel sheet, when initializing the array you
would define how many rows and columns the array would have.

Dim 2D (3,3) as Variant
'this would result in a 3x3 grid

2D — Visually

(0,0) (0,1) (0,2)
(1,0) (1,1) (1,2)
(2,0) (2,1) (2,2)

https://riptutorial.com/ 33

Three Dimensions would start to look like Rubik's Cube, when initializing the array you would
define rows and columns and layers/depths the array would have.

Dim 3D(3,3,2) as Variant
'this would result in a 3x3x3 grid

3D - Visually
1st layer 2nd layer 3rd layer
front middle back
(0,0,0) (0,0,1) (0,0,2) (1,0,0) (1,0,1) (1,0,2) (2,0,0) (2,0,1) (2,0,2)
(0,1,0) (0,1,1) (0,1,2) (1,1,1) (1,1,2) (2,1,1) (2,1,2)
(0,2,0) (0,2,1) (0,2,2) (1,2,0) (1,2,1) (1,2,2) (2,2,0) (2,2,1) (2,2,2)

=
~
=
~
o
[\
~
=
~
o

Further dimensions could be thought as the multiplication of the 3D, so a 4D(1,3,3,3) would be two

side-by-side 3D arrays.

Two-Dimension Array
Creating

The example below will be a compilation of a list of employees, each employee will have a set of
information on the list (First Name, Surname, Address, Email, Phone ...), the example will
essentially be storing on the array (employee,information) being the (0,0) is the first employee's
first name.

Dim Bosses As Variant
'set bosses as Variant, so we can input any data type we want

Bosses = [{"Jonh","Snow", "President";"Ygritte","Wild", "Vice-President"}]
'initialise a 2D array directly by filling it with information, the redult wil be a array(l,2)
size 2x3 = 6 elements

Dim Employees As Variant

'initialize your Employees array as variant

'initialize and ReDim the Employee array so it is a dynamic array instead of a static one,
hence treated differently by the VBA Compiler

ReDim Employees (100, 5)

'declaring an 2D array that can store 100 employees with 6 elements of information each, but
starts empty

'the array size is 101 x 6 and contains 606 elements

For employee = 0 To UBound(Employees, 1)
'for each employee/row in the array, UBound for 2D arrays, which will get the last element on
the array

'needs two parameters 1lst the array you which to check and 2nd the dimension, in this case 1 =

employee and 2 = information
For information_e = 0 To UBound (Employees, 2)
'for each information element/column in the array

Employees (employee, information_e) = InformationNeeded ' InformationNeeded would be
the data to fill the array
'iterating the full array will allow for direct attribution of information into the
element coordinates
Next

https://riptutorial.com/

34

Next
Resizing

Resizing or repim preserve @ Multi-Array like the norm for a One-Dimension array would get an
error, instead the information needs to be transferred into a Temporary array with the same size
as the original plus the number of row/columns to add. In the example below we'll see how to
initialize a Temp Array, transfer the information over from the original array, fill the remaining
empty elements, and replace the temp array by the original array.

Dim TempEmp As Variant

'initialise your temp array as variant

ReDim TempEmp (UBound (Employees, 1) + 1, UBound(Employees, 2))

'ReDim/Resize Temp array as a 2D array with size UBound(Employees)+1l = (last element in
Employees lst dimension) + 1,

'the 2nd dimension remains the same as the original array. we effectively add 1 row in the
Employee array

'transfer
For emp = LBound(Employees, 1) To UBound (Employees, 1)
For info = LBound(Employees, 2) To UBound(Employees, 2)
'to transfer Employees into TempEmp we iterate both arrays and fill TempEmp with the
corresponding element value in Employees
TempEmp (emp, info) = Employees (emp, info)

Next
Next

'fill remaining

'after the transfers the Temp array still has unused elements at the end, being that it was
increased

'to fill the remaining elements iterate from the last "row" with values to the last row in the
array

'in this case the last row in Temp will be the size of the Employees array rows + 1, as the
last row of Employees array is already filled in the TempArray

For emp = UBound(Employees, 1) + 1 To UBound(TempEmp, 1)
For info = LBound(TempEmp, 2) To UBound (TempEmp, 2)

TempEmp (emp, info) = InformationNeeded & "NewRow"

Next
Next

'erase Employees, attribute Temp array to Employees and erase Temp array
Erase Employees

Employees = TempEmp

Erase TempEmp

Changing Element Values

To changel/alter the values in a certain element can be done by simply calling the coordinate to
change and giving it a new value: employees (0, 0) = "Newvalue"

Alternatively iterate through the coordinates use conditions to match values corresponding to the
parameters needed:

https://riptutorial.com/ 35

For emp = 0 To UBound (Employees)

If Employees (emp, 0) = "Gloria" And Employees(emp, 1) = "Stephan" Then
'if value found
Employees (emp, 1) = "Married, Last Name Change"
Exit For
'don't iterate through a full array unless necessary
End If
Next
Reading

Accessing the elements in the array can be done with a Nested Loop (iterating every element),
Loop and Coordinate (iterate Rows and accessing columns directly), or accessing directly with
both coordinates.

'nested loop, will iterate through all elements
For emp = LBound(Employees, 1) To UBound (Employees, 1)
For info = LBound(Employees, 2) To UBound (Employees, 2)
Debug.Print Employees (emp, info)
Next
Next

'loop and coordinate, iteration through all rows and in each row accessing all columns
directly
For emp = LBound(Employees, 1) To UBound (Employees, 1)
Debug.Print Employees (emp, O0)
Debug.Print Employees (emp, 1)
Debug.Print Employees (emp, 2)
Debug.Print Employees (emp, 3)
Debug.Print Employees (emp, 4)
Debug.Print Employees (emp, 5)
Next

'directly accessing element with coordinates
Debug.Print Employees (5, 5)

Remember, it's always handy to keep an array map when using Multidimensional arrays, they can
easily become confusion.

Three-Dimension Array

For the 3D array, we'll use the same premise as the 2D array, with the addition of not only storing
the Employee and Information but as well Building they work in.

The 3D array will have the Employees (can be thought of as Rows), the Information (Columns),
and Building that can be thought of as different sheets on an excel document, they have the same
size between them, but every sheets has a different set of information in its cells/elements. The 3D
array will contain n number of 2D arrays.

Creating

https://riptutorial.com/ 36

A 3D array needs 3 coordinates to be initialized pim 3parray(2,5,5) as variant the first coordinate
on the array will be the number of Building/Sheets (different sets of rows and columns), second
coordinate will define Rows and third Columns. The pin above will result in a 3D array with 108
elements (3+6+¢), effectively having 3 different sets of 2D arrays.

Dim ThreeDArray As Variant

'initialise your ThreeDArray array as variant

ReDim ThreeDArray(l, 50, 5)

'declaring an 3D array that can store two sets of 51 employees with 6 elements of information
each, but starts empty

'the array size is 2 x 51 x 6 and contains 612 elements

For building = 0 To UBound(ThreeDArray, 1)
'for each building/set in the array
For employee = 0 To UBound(ThreeDArray, 2)
'for each employee/row in the array
For information_e = 0 To UBound(ThreeDArray, 3)
'for each information element/column in the array

ThreeDArray (building, employee, information_e) = InformationNeeded '
InformationNeeded would be the data to fill the array

'iterating the full array will allow for direct attribution of information into the
element coordinates

Next
Next
Next

Resizing

Resizing a 3D array is similar to resizing a 2D, first create a Temporary array with the same size of
the original adding one in the coordinate of the parameter to increase, the first coordinate will
increase the number of sets in the array, the second and third coordinates will increase the
number of Rows or Columns in each set.

The example below increases the number of Rows in each set by one, and fills those recently
added elements with new information.

Dim TempEmp As Variant

'initialise your temp array as variant

ReDim TempEmp (UBound (ThreeDArray, 1), UBound(ThreeDArray, 2) + 1, UBound(ThreeDArray, 3))
'ReDim/Resize Temp array as a 3D array with size UBound(ThreeDArray)+1l = (last element in
Employees 2nd dimension) + 1,

'the other dimension remains the same as the original array. we effectively add 1 row in the
for each set of the 3D array

'transfer
For building = LBound(ThreeDArray, 1) To UBound(ThreeDArray, 1)
For emp = LBound(ThreeDArray, 2) To UBound(ThreeDArray, 2)
For info = LBound(ThreeDArray, 3) To UBound(ThreeDArray, 3)
'to transfer ThreeDArray into TempEmp by iterating all sets in the 3D array and
fill TempEmp with the corresponding element value in each set of each row
TempEmp (building, emp, info) = ThreeDArray (building, emp, info)

Next
Next

https://riptutorial.com/ 37

Next

'fill remaining

'to fill the remaining elements we need to iterate from the last "row" with values to the last

row in the array in each set, remember that the first empty element is the original array
Ubound () plus 1
For building = LBound(TempEmp, 1) To UBound(TempEmp, 1)
For emp = UBound(ThreeDArray, 2) + 1 To UBound(TempEmp, 2)
For info = LBound(TempEmp, 3) To UBound(TempEmp, 3)

TempEmp (building, emp, info) = InformationNeeded & "NewRow"

Next
Next
Next

'erase Employees, attribute Temp array to Employees and erase Temp array
Erase ThreeDArray

ThreeDArray = TempEmp

Erase TempEmp

Changing Element Values and Reading

Reading and changing the elements on the 3D array can be done similarly to the way we do the

2D array, just adjust for the extra level in the loops and coordinates.

Do
' using Do ... While for early exit
For building = 0 To UBound(ThreeDArray, 1)
For emp = 0 To UBound(ThreeDArray, 2)
If ThreeDArray (building, emp, 0) = "Gloria" And ThreeDArray (building, emp, 1)
"Stephan" Then
'if value found

ThreeDArray (building, emp, 1) = "Married, Last Name Change"
Exit Do
'don't iterate through all the array unless necessary
End If
Next
Next

Loop While False

'nested loop, will iterate through all elements
For building = LBound(ThreeDArray, 1) To UBound(ThreeDArray, 1)
For emp = LBound(ThreeDArray, 2) To UBound(ThreeDArray, 2)
For info = LBound(ThreeDArray, 3) To UBound(ThreeDArray, 3)
Debug.Print ThreeDArray (building, emp, info)
Next
Next
Next

'loop and coordinate, will iterate through all set of rows and ask for the row plus the value

we choose for the columns
For building = LBound(ThreeDArray, 1) To UBound(ThreeDArray, 1)
For emp = LBound(ThreeDArray, 2) To UBound(ThreeDArray, 2)
Debug.Print ThreeDArray (building, emp, O0)
Debug.Print ThreeDArray (building, emp, 1)
Debug.Print ThreeDArray (building, emp, 2)
Debug.Print ThreeDArray (building, emp, 3)
Debug.Print ThreeDArray (building, emp, 4)

https://riptutorial.com/

38

Debug.Print ThreeDArray (building, emp, 5)
Next
Next

'directly accessing element with coordinates
Debug.Print Employees (0, 5, 5)

Read Arrays online: https://riptutorial.com/vba/topic/3064/arrays

https://riptutorial.com/

39

https://riptutorial.com/vba/topic/3064/arrays

C_hapter 4: Assigning strings with repeated
characters

Remarks

There are times you need to assign a string variable with a specific character repeated a specific
number of times. VBA provides two main functions for this purpose:

b String/String$

i Space/Space$.

Examples
Use the String function to assign a string with n repeated characters

Dim lineOfHyphens As String
'Assign a string with 80 repeated hyphens
lineOfHyphens = String$ (80, "-")

Use the String and Space functions to assign an n-character string

Dim stringOfSpaces As String

'Assign a string with 255 repeated spaces using Space$
stringOfSpaces = Space$ (255)

'Assign a string with 255 repeated spaces using String$
stringOfSpaces = String$ (255, " ")

Read Assigning strings with repeated characters online:
https://riptutorial.com/vba/topic/3581/assigning-strings-with-repeated-characters

https://riptutorial.com/

https://riptutorial.com/vba/topic/3581/assigning-strings-with-repeated-characters

C_hapter 5: Attributes

Syntax

» Attribute VB_Name = "ClassOrModuleName"
 Attribute VB_GlobalNameSpace = False ' Ignored
 Attribute VB_Creatable = False ' Ignored
 Attribute VB_Predeclaredld = {True | False}
» Attribute VB_Exposed = {True | False}
 Attribute variableName.VB_VarUserMemld = 0 ' Zero indicates that this is the default
member of the class.
* Attribute variableName.VB_VarDescription = "some string" ' Adds the text to the Object
Browser information for this variable.
 Attribute procName.VB_Description = "some string" * Adds the text to the Object Browser
information for the procedure.
 Attribute procName.VB_UserMemld = {0 | -4}
o ' 0: Makes the function the default member of the class.
o '-4: Specifies that the function returns an Enumerator.

Examples

VB _Name
VB_Name specifies the class or module name.

Attribute VB_Name = "Classl"

A new instance of this class would be created with

Dim myClass As Classl
myClass = new Classl

VB_GlobalNameSpace

In VBA, this attribute is ignored. It was not ported over from VB6.

In VBB, it creates a Default Global Instance of the class (a "shortcut") so that class members can
be accessed without using the class name. For example, patetime (&S IN pateTime.Now) IS actually
part of the vea.conversion class.

Debug.Print VBA.Conversion.DateTime.Now
Debug.Print DateTime.Now

VB_Createable

https://riptutorial.com/

41

This attribute is ignored. It was not ported over from VB6.

In VB6, it was used in combination with the ve_exposed attribute to control accessibility of classes

outside of the current project.

VB_Exposed=True
VB_Creatable=True

Would result in a rubiic c1ass, that could be accessed from other projects, but this functionality

does not exist in VBA.

VB_Predeclaredld

Creates a Global Default Instance of a class. The default instance is accessed via the name of the

class.
Declaration

VERSION 1.0 CLASS

BEGIN
MultiUse = -1 'True
END
Attribute VB_Name = "Classl"

Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

Option Explicit

Public Function GiveMeATwo () As Integer
GiveMeATwo = 2
End Function

Call

Debug.Print Classl.GiveMeATwo

In some ways, this simulates the behavior of static classes in other languages, but unlike other
languages, you can still create an instance of the class.

Dim cls As Classl
Set cls = New Classl
Debug.Print cls.GiveMeATwo

VB_Exposed

Controls the instancing characteristics of a class.

Attribute VB_Exposed = False

https://riptutorial.com/

42

Makes the class rrivate. It cannot be accessed outside of the current project.

Attribute VB_Exposed = True

Exposes the class rub1icly, outside of the project. However, since ve_createable IS ignored in VBA,
instances of the class can not be created directly. This is equivalent to a the following VB.Net
class.

Public Class Foo
Friend Sub New ()
End Sub

End Class

In order to get an instance from outside the project, you must expose a factory to create instances.
One way of doing this is with a regular rub1ic module.

Public Function CreateFoo() As Foo
CreateFoo = New Foo
End Function

Since public modules are accessible from other projects, this allows us to create new instances of
OUl Public - Not Createable Classes.

VB_Description

Adds a text description to a class or module member that becomes visible in the Object Explorer.
Ideally, all public members of a public interface / API should have a description.

Public Function GiveMeATwo () As Integer
Attribute GiveMeATwo.VB_Description = "Returns a two!"
GiveMeATwo = 2

End Property

Public Function GiveMeATwo({) As Integer
Member of VBAProject.Class1
Returns a two!

Note: all accessor members of a property (cet, ret, set) use the same description.

VB_[Var]UserMemId

ve_varUserMemid (fOr module-scope variables) and vs_usermentd (for procedures) attributes are used
in VBA mostly for two things.

Specifying the default member of a class

A rist class that would encapsulate a co11ection Would want to have an rtem property, so the client

https://riptutorial.com/ 43

code can do this:

For 1 = 1 To myList.Count 'VBA Collection Objects are l-based
Debug.Print myList.Item (i)
Next

But with a ve_userventd attribute set to 0 on the rtem property, the client code can do this:

For i = 1 To myList.Count 'VBA Collection Objects are l-based
Debug.Print myList (i)
Next

Only one member can legally have vs_usermentd = 0 In @ny given class. For properties, specify the

attribute in the cet accessor:

Option Explicit
Private internal As New Collection

Public Property Get Count () As Long
Count = internal.Count
End Property

Public Property Get Item(ByVal index As Long) As Variant
Attribute Item.VB_Description = "Gets or sets the element at the specified index."
Attribute Item.VB_UserMemId = 0
'Gets the element at the specified index.
Item = internal (index)
End Property

Public Property Let Item(ByVal index As Long, ByVal value As Variant)
'Sets the element at the specified index.
With internal

If index = .Count + 1 Then
.Add item:=value
ElseIf index = .Count Then

.Remove index
.Add item:=value
ElseIf index < .Count Then
.Remove index
.Add item:=value, before:=index
End If
End With
End Property

mking a class iteratable with a s =.. lOOP
construct

With the magic value -4, the ve_usermventa attribute tells VBA that this member yields an
enumerator - which allows the client code to do this:

Dim item As Variant

https://riptutorial.com/

44

For Each item In myList
Debug.Print item
Next

The easiest way to implement this method is by calling the hidden _newenun] property getter on an
internal/encapsulated coi11ection; the identifier needs to be enclosed in square brackets because
of the leading underscore that makes it an illegal VBA identifier:

Public Property Get NewEnum () As IUnknown

Attribute NewEnum.VB_Description = "Gets an enumerator that iterates through the List."
Attribute NewEnum.VB_UserMemId = -4
Attribute NewEnum.VB_MemberFlags = "40" 'would hide the member in VB6. not supported in VBA.
'Gets an enumerator that iterates through the List.

Set NewEnum = internal. [_NewEnum]

End Property

Read Attributes online: https://riptutorial.com/vba/topic/5321/attributes

https://riptutorial.com/ 45

https://riptutorial.com/vba/topic/5321/attributes

C_hapter 6: Automation or Using other
applications Libraries

Introduction

If you use the objects in other applications as part of your Visual Basic application, you may want
to establish a reference to the object libraries of those applications. This Documentation provides
a list, sources and examples of how to use libraries of different softwares, like Windows Shell,
Internet Explorer, XML HttpRequest, and others.

Syntax

» expression.CreateObject(ObjectName)

» expression; Required. An expression that returns an Application object.

» ObjectName; Required String. The class name of the object to create. For information about
valid class names, see OLE Programmatic Identifiers.

Remarks

« MSDN-Understanding Automation

When an application supports Automation, the objects the application exposes can be
accessed by Visual Basic. Use Visual Basic to manipulate these objects by invoking
methods on the object or by getting and setting the object's properties.

e« MSDN-Check or Add an Object Library Reference

If you use the objects in other applications as part of your Visual Basic application, you
may want to establish a reference to the object libraries of those applications. Before
you can do that, you must first be sure that the application provides an object library.

« MSDN-References Dialog Box

Allows you to select another application's objects that you want available in your code
by setting a reference to that application's object library.

« MSDN-CreateObject Method

Creates an Automation object of the specified class. If the application is already
running, CreateObject will create a new instance.

Examples

VBScript Regular Expressions

https://riptutorial.com/ 46

https://msdn.microsoft.com/en-us/library/office/gg251656.aspx
https://msdn.microsoft.com/en-us/library/office/gg264402.aspx
https://msdn.microsoft.com/en-us/library/office/gg251371.aspx
https://msdn.microsoft.com/en-us/library/office/aa220083(v=office.11).aspx

Set createVBScriptRegExObject = CreateObject ("vbscript.RegExp")

Tools> References> Microsoft VBScript Regular Expressions #.#
Associated DLL: VBScript.dll
Source: Internet Explorer 1.0 and 5.5

« MSDN-Microsoft Beefs Up VBScript with Regular Expressions

 MSDN-Regular Expression Syntax (Scripting)

e experts-exchange - Using Regular Expressions in Visual Basic for Applications and Visual
Basic 6

* How to use Regular Expressions (Regex) in Microsoft Excel both in-cell and loops on SO.

e regular-expressions.info/vbscript

 regular-expressions.info/vbscriptexample

« WIKI-Regular expression

Code

You can use this functions to get RegEx results, concatenate all matches (if more than 1) into 1
string, and display result in excel cell.

Public Function getRegExResult (ByVal SourceString As String, Optional ByVal RegExPattern As
String = "\d+", _

Optional ByVal isGlobalSearch As Boolean = True, Optional ByVal isCaseSensitive As Boolean

= False, Optional ByVal Delimiter As String = ";") As String

Static RegExObject As Object
If RegExObject Is Nothing Then

Set RegExObject = createVBScriptRegExObject
End If

getRegExResult = removeleadingDelimiter (concatObjectItems (getRegExMatches (RegExObject,
SourceString, RegExPattern, isGlobalSearch, isCaseSensitive), Delimiter), Delimiter)

End Function

Private Function getRegExMatches (ByRef RegExObj As Object, _
ByVal SourceString As String, ByVal RegExPattern As String, ByVal isGlobalSearch As
Boolean, ByVal isCaseSensitive As Boolean) As Object

With RegExObj
.Global = isGlobalSearch
.IgnoreCase = Not (isCaseSensitive) 'it is more user friendly to use positive meaning
of argument, like isCaseSensitive, than to use negative IgnoreCase
.Pattern = RegExPattern
Set getRegExMatches = .Execute (SourceString)
End With

End Function

Private Function concatObjectItems (ByRef Obj As Object, Optional ByVal DelimiterCustom As
String = ";") As String
Dim ObjElement As Variant
For Each ObjElement In Obj
concatObjectItems = concatObjectItems & DelimiterCustom & ObjElement.Value

https://riptutorial.com/

a7

https://msdn.microsoft.com/en-us/library/ms974570.aspx
https://msdn.microsoft.com/en-us/library/1400241x(VS.85).aspx
https://www.experts-exchange.com/articles/1336/Using-Regular-Expressions-in-Visual-Basic-for-Applications-and-Visual-Basic-6.html
https://www.experts-exchange.com/articles/1336/Using-Regular-Expressions-in-Visual-Basic-for-Applications-and-Visual-Basic-6.html
http://stackoverflow.com/q/22542834/4636801
http://www.regular-expressions.info/vbscript.html
http://www.regular-expressions.info/vbscriptexample.html
https://en.wikipedia.org/wiki/Regular_expression

Next
End Function

Public Function removeleadingDelimiter (ByVal SourceString As String, ByVal Delimiter As
String) As String
If Left$(SourceString, Len(Delimiter)) = Delimiter Then
removelLeadingDelimiter = Mid$ (SourceString, Len(Delimiter) + 1)
End If
End Function

Private Function createVBScriptRegExObject () As Object

Set createVBScriptRegExObject = CreateObject ("vbscript.RegExp") 'ex.:
createVBScriptRegExObject .Pattern
End Function

Scripting File System Object
Set createScriptingFileSystemObject = CreateObject ("Scripting.FileSystemObject")

Tools> References> Microsoft Scripting Runtime
Associated DLL: ScrRun.dll
Source: Windows OS

MSDN-Accessing Files with FileSystemObject

The File System Object (FSO) model provides an object-based tool for working with

folders and files. It allows you to use the familiar object.method syntax with a rich set of

properties, methods, and events to process folders and files. You can also employ the
traditional Visual Basic statements and commands.

The FSO model gives your application the ability to create, alter, move, and delete
folders, or to determine if and where particular folders exist. It also enables you to get
information about folders, such as their names and the date they were created or last
modified.

MSDN-FileSystemObject topics: "...explain the concept of the FileSystemObject and how to use it.

" exceltrick-FileSystemObject in VBA — Explained
Scripting.FileSystemObject

Scripting Dictionary object
Set dict = CreateObject ("Scripting.Dictionary")

Tools> References> Microsoft Scripting Runtime
Associated DLL: ScrRun.dll
Source: Windows OS

Scripting.Dictionary object
MSDN-Dictionary Object

https://riptutorial.com/

48

https://msdn.microsoft.com/en-us/library/aa711216(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/6kxy1a51(v=vs.84).aspx
http://www.exceltrick.com/formulas_macros/filesystemobject-in-vba/
http://www.riptutorial.com/vba/topic/990/scripting-filesystemobject
http://www.riptutorial.com/vba/topic/3667/scripting-dictionary-object
https://msdn.microsoft.com/en-us/library/x4k5wbx4(v=vs.84).aspx

Internet Explorer Object
Set createlnternetExplorerObject = CreateObject ("InternetExplorer.Application")

Tools> References> Microsoft Internet Controls
Associated DLL: ieframe.dll
Source: Internet Explorer Browser

MSDN-InternetExplorer object

Controls an instance of Windows Internet Explorer through automation.

Internet Explorer Objec Basic Members

The code below should introduce how the IE object works and how to manipulate it through VBA. |

recommend stepping through it, otherwise it might error out during multiple navigations.

Sub IEGetToKnow ()
Dim IE As InternetExplorer 'Reference to Microsoft Internet Controls
Set IE = New InternetExplorer

With IE
.Visible = True 'Sets or gets a value that indicates whether the object is visible or
hidden.
'Navigation

.Navigate2 "http://www.example.com" 'Navigates the browser to a location that might

not be expressed as a URL, such as a PIDL for an entity in the Windows Shell namespace.

Debug.Print .Busy 'Gets a value that indicates whether the object is engaged in a
navigation or downloading operation.

Debug.Print .ReadyState 'Gets the ready state of the object.

.Navigate2 "http://www.example.com/2"

.GoBack 'Navigates backward one item in the history list

.GoForward 'Navigates forward one item in the history list.

.GoHome 'Navigates to the current home or start page.

.Stop 'Cancels a pending navigation or download, and stops dynamic page elements, such
as background sounds and animations.
.Refresh 'Reloads the file that is currently displayed in the object.
Debug.Print .Silent 'Sets or gets a value that indicates whether the object can
display dialog boxes.
Debug.Print .Type 'Gets the user type name of the contained document object.
Debug.Print .Top 'Sets or gets the coordinate of the top edge of the object.
Debug.Print .Left 'Sets or gets the coordinate of the left edge of the object.
Debug.Print .Height 'Sets or gets the height of the object.
Debug.Print .Width 'Sets or gets the width of the object.
End With
IE.Quit 'close the application window
End Sub
https://riptutorial.com/ 49

https://msdn.microsoft.com/en-us/library/aa752084(v=vs.85).aspx

The most common thing to do with IE is to scrape some information of a website, or to fill a
website form and submit information. We will look at how to do it.

Let us consider example.com source code:

<!doctype html>

<html>

<head>
<title>Example Domain</title>
<meta charset="utf-8" />
<meta http-equiv="Content-type" content="text/html; charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<style ... </style>

</head>

<body>
<div>

<hl>Example Domain</hl>
<p>This domain is established to be used for illustrative examples in documents.

You may use this
domain in examples without prior coordination or asking for permission.</p>

<p>More information...</p>
</div>
</body>
</html>

We can use code like below to get and set informations:

Sub IEWebScrapel ()
Dim IE As InternetExplorer 'Reference to Microsoft Internet Controls

Set IE = New InternetExplorer

With IE
.Visible = True
.Navigate2 "http://www.example.com"

'we add a loop to be sure the website is loaded and ready.
'Does not work consistently. Cannot be relied upon.

Do While .Busy = True Or .ReadyState <> READYSTATE_COMPLETE 'Equivalent = .ReadyState
<> 4
' DoEvents - worth considering. Know implications before you use it.
Application.Wait (Now + TimeValue ("00:00:01")) 'Wait 1 second, then check again.
Loop
'Print info in immediate window
With .Document 'the source code HTML "below" the displayed page.
Stop 'VBE Stop. Continue line by line to see what happens.
Debug.Print .GetElementsByTagName ("title") (0) .innerHtml 'prints "Example Domain"
Debug.Print .GetElementsByTagName ("h1l") (0) .innerHtml 'prints "Example Domain"
Debug.Print .GetElementsByTagName ("p") (0) .innerHtml 'prints "This domain is
established..."
Debug.Print .GetElementsByTagName ("p") (1) .innerHtml 'prints "More information..."
Debug.Print .GetElementsByTagName ("p") (1) .innerText 'prints "More information..."
Debug.Print .GetElementsByTagName ("a") (0).innerText 'prints "More information..."

'We can change the localy displayed website. Don't worry about breaking the site.
.GetElementsByTagName ("title") (0) .innerHtml = "Psst, scraping..."
.GetElementsByTagName ("h1l") (0) .innerHtml = "Let me try something fishy." 'You have

https://riptutorial.com/ 50

http://www.example.com/

just changed the local HTML of the site.
.GetElementsByTagName ("p") (0) .innerHtml = "Lorem ipSUmM........... The End"
.GetElementsByTagName ("a") (0) . innerText = "iana.org"
End With '.document

.Quit 'close the application window
End With 'ie

End Sub

What is going on? The key player here is the .Document, that is the HTML source code. We can
apply some queries to get the Collections or Object we want.

Fcn‘exarnpkethe IE.Document .GetElementsByTagName ("title") (0) .innerHtml. GetElement sByTagName
returns a Collection of HTML Elements, that have the "title" tag. There is only one such tag in the
source code. The Collection is 0-based. So to get the first element we add (o). Now, in our case,
we want only the innerutm1 (@ String), not the Element Object itself. So we specify the property we
want.

Click
To follow a link on a site, we can use multiple methods:

Sub IEGoToPlaces ()
Dim IE As InternetExplorer 'Reference to Microsoft Internet Controls

Set IE = New InternetExplorer

With IE
.Visible = True
.Navigate2 "http://www.example.com"
Stop 'VBE Stop. Continue line by line to see what happens.

'Click
.Document .GetElementsByTagName ("a") (0) .Click
Stop 'VBE Stop.

'Return Back
.GoBack
Stop 'VBE Stop.

'Navigate using the href attribute in the <a> tag, or "link"
.Navigate2 .Document.GetElementsByTagName ("a") (0) .href
Stop 'VBE Stop.

.Quit 'close the application window

End With
End Sub

Microsoft HTML Object Library or IE Best friend

To get the most out of the HTML that gets loaded into the IE, you can (or should) use another
Library, i.e. Microsoft HTML Object Library. More about this in another example.

https://riptutorial.com/ 51

IE Main issues

The main issue with IE is verifying that the page is done loading and is ready to be interacted with.
The po while... Loop helps, but is not reliable.

Also, using IE just to scrape HTML content is OVERKILL. Why? Because the Browser is meant for
browsing, i.e. displaying the web page with all the CSS, JavaScripts, Pictures, Popups, etc. If you
only need the raw data, consider different approach. E.g. using XML HTTPRequest. More about
this in another example.

Read Automation or Using other applications Libraries online:
https://riptutorial.com/vba/topic/8916/automation-or-using-other-applications-libraries

https://riptutorial.com/ 52

https://en.wikipedia.org/wiki/XMLHttpRequest
https://riptutorial.com/vba/topic/8916/automation-or-using-other-applications-libraries

C_hapter /. Collections

Remarks

A collection IS @ container object that is included in the VBA runtime. No additional references are

required in order to use it. A coliection Can be used to store items of any data type and allows

retrieval by either the ordinal index of the item or by using an optional unique key.

Feature Comparison with Arrays and Dictionaries

Can be resized

Items are ordered

Items are strongly typed

Items can be retrieved by ordinal

New items can be inserted at
ordinal

How to determine if an item exists

Items can be retrieved by key
Keys are case-sensitive

How to determine if a key exists

Remove all items

1 Only dynamic arrays can be resized, and only the last dimension of multi-dimensional arrays.

Yes

No

Yes

Yes

Iterate all items

Yes

No

Error handler

Iterate and

.Remove

2 The underlying .xeys and .1tens are ordered.

3 Determined by the .comparerode property.

Examples

Adding Items to a Collection

Sometimes?
Yes
Yes

Yes

No

Iterate all
items

No
N/A

N/A

Erase, ReDim

Yes?
No

No

No

Iterate all items

Yes
Optional®
.Exists function

.RemoveAll
function

https://riptutorial.com/

53

http://www.riptutorial.com/vba/topic/3064/arrays
http://www.riptutorial.com/vba/topic/3667/scripting-dictionary-object

Items are added to a coil1ection by calling its .2qa method:

Syntax:

.Add (item,

item

key

before

after

[key], [before, after])

The item to store in the co11ection. This can be essentially any value that a
variable can be assigned to, including primitive types, arrays, objects, and

Nothing.

Optional. A string that serves as a unique identifier for retrieving items from the
collection. If the specified key already exists in the coiiection, it will resultin a
Run-time error 457: "This key is already associated with an element of this
collection".

Optional. An existing key (string Value) or index (numeric value) to insert the
item before in the co11ection. If @ value is given, the after parameter must be
empty or a Run-time error 5: "Invalid procedure call or argument™ will result. If a
string Key is passed that does not exist in the coliection, @ Run-time error 5:
“Invalid procedure call or argument" will result. If a numeric index is passed that
is does not exist in the co11ection, @ Run-time error 9: "Subscript out of range"
will result.

Optional. An existing key (string value) or index (numeric value) to insert the
item after in the co11ection. If a value is given, the before parameter must be
empty. Errors raised are identical to the before parameter.

Notes:

» Keys are not case-sensitive. .add "ar", "Foo" and .add "Baz", "foo" Will result in a key

collision.

« If neither of the optional before or after parameters are given, the item will be added after the
last item in the coliection.

* Insertions made by specifying a before or after parameter will alter the numeric indexes of
existing members to match thier new position. This means that care should be taken when

making insertions in loops using numeric indexes.

Sample Usage:

Public Sub Example ()
Dim foo As New Collection

With foo

.Add

"One" 'No key. This item can only be retrieved by index.

https://riptutorial.com/

54

.Add
.Add
.Add
End With

"Two", "Second"
"Three", , 1
Peur", , , 4

Dim member As Variant

For Each member In foo

Debug.Print member

Next
End Sub

'Key given. Can be retrieved by key or index.
'Inserted at the start of the collection.

'Inserted at index 2.

'Prints "Three, Four,

Removing Items From a Collection

Items are removed from a col1ection by calling its .remove method:

Syntax:

.Remove (index)

The item to remove from the co11ection. If the value passed is a numeric type or
variant With @ numeric sub-type, it will be interpreted as a numeric index. If the
value passed is a string O variant cONtaining a string, it will be interpreted as
the a key. If a String key is passed that does not exist in the co11ection, a Run-
time error 5: "Invalid procedure call or argument" will result. If a numeric index is
passed that is does not exist in the co11ection, @ Run-time error 9: "Subscript

index

out of range" will result.

Notes:

* Removing an item from a co11ection Will change the numeric indexes of all the items after it

in the collection. For lOOPS that use numeric indexes and remove items should run
backwards (step -1) to prevent subscript exceptions and skipped items.

 Items should generally not be removed from a coliection from inside of a ror zach loop as it
can give unpredictable results.

Sample Usage:

Public Sub Example ()
Dim foo As New Collection

With foo
.Add
.Add
.Add
.Add

End With

n One n
"Two", "Second"
"Three"

"Four"

foo.Remove 1

'Removes the first item.

https://riptutorial.com/

55

foo.
foo.

Dim
For

Next

End Sub

Remove "Second" 'Removes the item with key "Second".

Remove foo.Count 'Removes the last item.

member As Variant

Each member In foo

Debug.Print member 'Prints "Three"

Getting the Item Count of a Collection

The number of items in a co11ection can be obtained by calling its .count function:

Syntax:

.Count ()

Sample Usage:

Public Sub Example ()
Dim foo As New Collection

With foo

End

.Add
.Add
.Add
.Add
With

n One n
n TWO n
"Three"

"Four"

Debug.Print foo.Count 'Prints 4

End Sub

Retrieving Items From a Collection

Items can be retrieved from a co11ection by calling the .1tem function.

Syntax:

.Item(index)

index

The item to retrieve from the coliection. If the value passed is a numeric type or
variant With @ numeric sub-type, it will be interpreted as a numeric index. If the
value passed is a string Of variant CcONtaining a string, it will be interpreted as
the a key. If a String key is passed that does not exist in the col1ection, a Run-
time error 5: "Invalid procedure call or argument” will result. If a numeric index is
passed that is does not exist in the co11ection, @ Run-time error 9: "Subscript
out of range" will result.

https://riptutorial.com/ 56

Notes:

.Ttem IS the default member of col1ection. This allows flexibility in syntax as demonstrated in
the sample usage below.

* Numeric indexes are 1-based.

» Keys are not case-sensitive. .1tem("rFoo") and .1tem("foo") refer to the same key.

» The index parameter is not implicitly cast to a number from a string Or visa-versa. It is
entirely possible that .1tem(1) and .1tem (1) refer to different items of the coliection.

Sample Usage (Indexes):

Public Sub Example ()
Dim foo As New Collection

With foo
.Add "One"
.Add "Two"
.Add "Three"
.Add "Four"
End With

Dim index As Long

For index = 1 To foo.Count
Debug.Print foo.Item(index) 'Prints One, Two, Three, Four
Next
End Sub

Sample Usage (Keys):

Public Sub Example ()
Dim keys () As String
keys = Split ("Foo,Bar,Baz", ", ")
Dim values () As String
values = Split ("One, Two, Three", ", ")

Dim foo As New Collection

Dim index As Long

For index = LBound(values) To UBound (values)
foo.Add values (index), keys (index)

Next

Debug.Print foo.Item("Bar") 'Prints "Two"
End Sub

Sample Usage (Alternate Syntax):

Public Sub Example ()
Dim foo As New Collection

With foo
.Add "One", "Foo"
.Add "Two", "Bar"
.Add "Three", "Baz"

https://riptutorial.com/ 57

End With

'All lines below print "Two"

Debug.Print foo.Item("Bar") 'Explicit call syntax.
Debug.Print foo ("Bar") 'Default member call syntax.
Debug.Print foo!Bar 'Bang syntax.

End Sub

Note that bang (1) syntax is allowed because .1tem is the default member and can take a single
string argument. The utility of this syntax is questionable.

Determining if a Key or Item Exists in a Collection

Keys

Unlike a Scripting.Dictionary, a col1ection does not have a method for determining if a given key
exists or a way to retrieve keys that are present in the coi1ection. The only method to determine if
a key is present is to use the error handler:

Public Function KeyExistsInCollection (ByVal key As String, _
ByRef container As Collection) As Boolean
With Err
If container Is Nothing Then .Raise 91
On Error Resume Next
Dim temp As Variant
temp = container.Item(key)
On Error GoTo 0

If .Number = 0 Then
KeyExistsInCollection = True
ElseIf .Number <> 5 Then
.Raise .Number
End If
End With
End Function

ltems

The only way to determine if an item is contained in a colilection IS to iterate over the collection
until the item is located. Note that because a co11ection Can contain either primitives or objects,
some extra handling is needed to avoid run-time errors during the comparisons:

Public Function ItemExistsInCollection (ByRef target As Variant, _
ByRef container As Collection) As Boolean
Dim candidate As Variant
Dim found As Boolean

For Each candidate In container
Select Case True
Case IsObiject (candidate) And IsObject (target)
found = candidate Is target
Case IsObiject (candidate), IsObject (target)

https://riptutorial.com/ 58

http://www.riptutorial.com/vba/topic/3667/scripting-dictionary-object

found = False
Case Else
found = (candidate = target)
End Select
If found Then
ItemExistsInCollection = True
Exit Function
End If
Next
End Function

Clearing All Items From a Collection

The easiest way to clear all of the items from a co11ection IS to simply replace it with a new
collection and let the old one go out of scope:

Public Sub Example ()
Dim foo As New Collection

With foo

.Add "One"

.Add "Two"

.Add "Three"
End With
Debug.Print foo.Count 'Prints 3
Set foo = New Collection
Debug.Print foo.Count 'Prints O

End Sub

However, if there are multiple references to the co11ection held, this method will only give you an
empty collection fOr the variable that is assigned.

Public Sub Example ()
Dim foo As New Collection
Dim bar As Collection

With foo
.Add "One"
.Add "Two"
.Add "Three"
End With

Set bar = foo
Set foo = New Collection

Debug.Print foo.Count 'Prints O
Debug.Print bar.Count 'Prints 3
End Sub

In this case, the easiest way to clear the contents is by looping through the number of items in the
collection and repeatedly remove the lowest item:

Public Sub ClearCollection (ByRef container As Collection)
Dim index As Long

https://riptutorial.com/ 59

For index = 1 To container.Count
container.Remove 1
Next
End Sub

Read Collections online: https://riptutorial.com/vba/topic/5838/collections

https://riptutorial.com/

60

https://riptutorial.com/vba/topic/5838/collections

C_hapter 8. Comments

Remarks

Comment Blocks

If you need to comment or uncomment several lines at once, you can use the IDE's Edit Toolbar
buttons:

Comment Block - Adds a single apostrophe to the start of all selected lines

BobkBae=FgE2ie .
Uncomment Block - Removes the first apostrophe from the start of all selected lines
-

Dokt EEg=2e ;

Multi-line Comments Many other languages support multi-line block comments, but VBA only
allows single-line comments.

Examples

Apostrophe Comments

A comment is marked by an apostrophe ('), and ignored when the code executes. Comments help
explain your code to future readers, including yourself.

Since all lines starting with a comment are ignored, they can also be used to prevent code from
executing (while you debug or refactor). Placing an apostrophe ' before your code turns it into a
comment. (This is called commenting out the line.)

Sub InlineDocumentation ()
'Comments start with an "'"

'They can be place before a line of code, which prevents the line from executing
'Debug.Print "Hello World"

'They can also be placed after a statement
'The statement still executes, until the compiler arrives at the comment

Debug.Print "Hello World" 'Prints a welcome message

'Comments can have 0 indention....
'... or as much as needed

''"'"'" Comments can contain multiple apostrophes ''''

'Comments can span lines (using line continuations) _
but this can make for hard to read code

'If you need to have mult-line comments, it is often easier to

https://riptutorial.com/ 61

http://i.stack.imgur.com/1fTtY.png
http://i.stack.imgur.com/gbE0b.png

'use an apostrophe on each line

'The continued statement syntax (:) is treated as part of the comment, so
'it is not possible to place an executable statement after a comment
'This won't run : Debug.Print "Hello World"

End Sub

'Comments can appear inside or outside a procedure

REM Comments

Sub RemComments ()
Rem Comments start with "Rem" (VBA will change any alternate casing to "Rem")
Rem i1s an abbreviation of Remark, and similar to DOS syntax

Rem Is a legacy approach to adding comments, and apostrophes should be preferred
Rem Comments CANNOT appear after a statement, use the apostrophe syntax instead
Rem Unless they are preceded by the instruction separator token

Debug.Print "Hello World": Rem prints a welcome message
Debug.Print "Hello World" 'Prints a welcome message

'Rem cannot be immediately followed by the following characters "!,Q,#,$,%,&"
'Whereas the apostrophe syntax can be followed by any printable character.

End Sub

Rem Comments can appear inside or outside a procedure

Read Comments online: https://riptutorial.com/vba/topic/2059/comments

https://riptutorial.com/

62

https://riptutorial.com/vba/topic/2059/comments

C_hapter 9. Concatenating strings

Remarks

Strings can be concatenated, or joined together, using one or more concatenation operator s.

String arrays can also be concatenated using the soin function and providing a string (which can
be zero-length) to be used between each array element.

Examples

Concatenate strings using the & operator

Const stringl As String = "foo"
Const string2 As String = "bar"
Const string3 As String = "fizz"

Dim concatenatedString As String

'Concatenate two strings
concatenatedString = stringl & string2
'concatenatedString = "foobar"

'Concatenate three strings

concatenatedString = stringl & string2 & string3
'concatenatedString = "foobarfizz"

Concatenate an array of strings using the Join function

'Declare and assign a string array
Dim widgetNames (2) As String

widgetNames (0) = "foo"
widgetNames (1) = "bar"
widgetNames (2) = "fizz"

'Concatenate with Join and separate each element with a 3-character string
concatenatedString = VBA.Strings.Join (widgetNames, " > ")
'concatenatedString = "foo > bar > fizz"

'Concatenate with Join and separate each element with a zero-width string
concatenatedString = VBA.Strings.Join (widgetNames, vbNullString)
'concatenatedString = "foobarfizz"

Read Concatenating strings online: https://riptutorial.com/vba/topic/3580/concatenating-strings

https://riptutorial.com/ 63

https://riptutorial.com/vba/topic/3580/concatenating-strings

C_hapter 10: Conditional Compilation

Examples

Changing code behavior at compile time

The #const directive is used to define a custom preprocessor constant. These can later be used by
#1£ to control which blocks of code get compiled and executed.

#Const DEBUGMODE = 1

#If DEBUGMODE Then

Const filepath As String = "C:\Users\UserName\Path\To\File.txt"
#Else

Const filepath As String = "\\server\share\path\to\file.txt"
#End If

This results in the value of filepath being setto "c:\users\UserName\Path\To\File.txt". Removing
the #const line, or changing it to #const pesucMope = o would result in the ri1epatn being set to

"\\server\share\path\to\file.txt".
#Const Scope

The #const directive is only effective for a single code file (module or class). It must be declared for
each and every file you wish to use your custom constant in. Alternatively, you can declare a
#const globally for your project by going to Tools >> [Your Project Name] Project Properties. This
will bring up the project properties dialog box where we’ll enter the constant declaration. In the
“Conditional Compilation Arguments” box, type in [constname] = [value]. YOU Can enter more than
1 constant by separating them with a colon, like [constName1] = [valuel] : [constName2] = [value2]

https://riptutorial.com/ 64

General] Protection |

Project Mame:

| ConditionalCompilation

Project Description:

Project Help
Help File Mame: Context ID:
| = o
Conditional Compilation Arguments:
| DEBUGMODE = 1
QK Cancel Help

Pre-defined Constants

Some compilation constants are already pre-defined. Which ones exist will depend on the bitness
of the office version you're running VBA in. Note that Vba7 was introduced alongside Office 2010
to support 64 bit versions of Office.

Vba6 False If Vba6 False
Vba7 False If Vba7 True
Winl6 True False False

Win32 False True True
Win64 False False True

Mac False IfMac @ If Mac

Note that Win64/Win32 refer to the Office version, not the Windows version. For example Win32 =
TRUE in 32-bit Office, even if the OS is a 64-bit version of Windows.

Using Declare Imports that work on all versions of Office

#If Vba7 Then
' It's important to check for Win64 first,
' because Win32 will also return true when Win64 does.

#If Win64 Then

https://riptutorial.com/ 65

http://i.stack.imgur.com/rEY6K.png

Declare PtrSafe Function GetFoo64 Lib "exampleLib32" () As LongLong
#Else

Declare PtrSafe Function GetFoo Lib "exampleLib32" () As Long
#End If

#Else
' Must be Vba6, the PtrSafe keyword didn't exist back then,
' so we need to declare Win32 imports a bit differently than above.

#If Win32 Then

Declare Function GetFoo Lib "exampleLib32" () As Long
#Else

Declare Function GetFoo Lib "exampleLib" () As Integer
#End If

#End If

This can be simplified a bit depending on what versions of office you need to support. For
example, not many people are still supporting 16 bit versions of Office. The last version of 16 bit

office was version 4.3, released in 1994, so the following declaration is sufficient for nearly all
modern cases (including Office 2007).

#If Vba7 Then
' It's important to check for Win64 first,

' because Win32 will also return true when Win64 does.

#If Win64 Then

Declare PtrSafe Function GetFoo64 Lib "exampleLib32" () As LongLong
#Else

Declare PtrSafe Function GetFoo Lib "exampleLib32" () As Long
#End If

#Else
' Must be Vba6. We don't support 16 bit office, so must be Win32.

Declare Function GetFoo Lib "exampleLib32" () As Long
#End If

If you don't have to support anything older than Office 2010, this declaration works just fine.

' We only have 2010 installs, so we already know we have Vba7.

#If Win64 Then

Declare PtrSafe Function GetFoo64 Lib "exampleLib32" () As LongLong
#Else

Declare PtrSafe Function GetFoo Lib "exampleLib32" () As Long
#End If

Read Conditional Compilation online: https://riptutorial.com/vba/topic/3364/conditional-compilation

https://riptutorial.com/ 66

https://en.wikipedia.org/wiki/History_of_Microsoft_Office
https://en.wikipedia.org/wiki/History_of_Microsoft_Office
https://riptutorial.com/vba/topic/3364/conditional-compilation

C_hapter 11: Converting other types to strings

Remarks

VBA will implicitly convert some types to string as necessary and without any extra work on the
part of the programmer, but VBA also provides a number of explicit string conversion functions,

and you can also write your own.

Three of the most frequently used functions are cstr, Format and strconv.

Examples
Use CStr to convert a numeric type to a string

Const zipCode As Long = 10012

Dim zipCodeText As String

'Convert the zipCode number to a string of digit characters
zipCodeText = CStr (zipCode)

'zipCodeText = "10012"

Use Format to convert and format a numeric type as a string

Const zipCode As long = 10012

Dim zeroPaddedNumber As String
zeroPaddedZipCode = Format (zipCode, "00000000")
'zeroPaddedNumber = "00010012"

Use StrConv to convert a byte-array of single-byte characters to a string

'Declare an array of bytes, assign single-byte character codes, and convert to a string

Dim singleByteChars (4) As Byte

singleByteChars (0) = 72

singleByteChars (1) = 101
singleByteChars (2) = 108
singleByteChars (3) = 108
singleByteChars (4) = 111

Dim stringFromSingleByteChars As String
stringFromSingleByteChars = StrConv (singleByteChars, vbUnicode)
'stringFromSingleByteChars = "Hello"

Implicitly convert a byte array of multi-byte-characters to a string

'Declare an array of bytes, assign multi-byte character codes, and convert to a string

Dim multiByteChars (9) As Byte
multiByteChars (0) = 87
multiByteChars (1) = 0
multiByteChars (2) 111
multiByteChars (3) 0

https://riptutorial.com/

67

multiByteChars (4) = 114
multiByteChars (5) = 0
multiByteChars (6) = 108
multiByteChars (7) = 0
multiByteChars (8) = 100
multiByteChars (9) = 0

Dim stringFromMultiByteChars As String
stringFromMultiByteChars = multiByteChars
'stringFromMultiByteChars = "World"

Read Converting other types to strings online: https://riptutorial.com/vba/topic/3467/converting-
other-types-to-strings

https://riptutorial.com/

68

https://riptutorial.com/vba/topic/3467/converting-other-types-to-strings
https://riptutorial.com/vba/topic/3467/converting-other-types-to-strings

C_hapter 12: Copying, returning and passing
arrays

Examples

Copying Arrays

You can copy a VBA array into an array of the same type using the = operator. The arrays must be

of the same type otherwise the code will throw a "Can't assign to array" compilation error.

Dim source (0 to 2) As Long
Dim destinationLong () As Long
Dim destinationDouble () As Double

destinationLong = source ' copiles contents of source into destinationLong

destinationDouble = source ' does not compile

The source array can be fixed or dynamic, but the destination array must be dynamic. Trying to
copy to a fixed array will throw a "Can't assign to array" compilation error. Any preexisting data in
the receiving array is lost and its bounds and dimenions are changed to the same as the source
array.

Dim source () As Long
ReDim source (0 To 2)

Dim fixed (0 To 2) As Long
Dim dynamic () As Long

fixed = source ' does not compile
dynamic = source ' does compile

Dim dynamic2 () As Long
ReDim dynamic2 (0 to 6, 3 to 99)

dynamic2 = source ' dynamic2 now has dimension (0 to 2)

Once the copy is made the two arrays are seperate in memory, i.e. the two variables are not
references to same underlying data, so changes made to one array do not appear in the other.

Dim source (0 To 2) As Long
Dim destination () As Long

source (0) = 3

source (1) = 1

source (2) = 4

destination = source

destination(0) = 2

Debug.Print source(0); source(l); source(2) ' outputs: 3 1 4

https://riptutorial.com/

69

Debug.Print destination(0); destination(l); destination(2) ' outputs: 2 1 4

Copying Arrays of Objects

With arrays of objects the references to those objects are copied, not the objects themselves. If a
change is made to an object in one array it will also appear to be changed in the other array - they
are both referencing the same object. However, setting an element to a different object in one
array won't set it to that object the other array.

Dim source (0 To 2) As Range
Dim destination () As Range

Set source(0) = Range("Al"): source(0).Value = 3

Set source(l) = Range ("A2"): source(l).Value =1

Set source(2) = Range ("A3"): source(2).Value = 4

destination = source

Set destination (0) = Range ("A4") 'reference changed in destination but not source
destination (0) .Value = 2 'affects an object only in destination
destination(l) .Value = 5 'affects an object in both source and destination
Debug.Print source(0); source(l); source(2) ' outputs 3 5 4
Debug.Print destination(0); destination(l); destination (2) ' outputs 2 5 4

Variants Containing an Array

You can also copy an array into and from a variant variable. When copying from a variant, it must
contain an array of the same type as the receiving array otherwise it will throw a "Type mismatch"
runtime error.

Dim var As Variant
Dim source (0 To 2) As Range
Dim destination () As Range

var = source

destination = var

var = 5

destination = var ' throws runtime error

Returning Arrays from Functions

A function in a normal module (but not a Class module) can return an array by putting () after the
data type.

Function arrayOfPiDigits () As Long()
Dim outputArray (0 To 2) As Long

outputArray (0) = 3

https://riptutorial.com/ 70

outputArray(l) =

I

outputArray (2)

arrayOfPiDigits = outputArray
End Function

The result of the function can then be put into a dynamic array of the same type or a variant. The
elements can also be accessed directly by using a second set of brackets, however this will call
the function each time, so its best to store the results in a new array if you plan to use them more
than once

Sub arrayExample ()

Dim destination() As Long
Dim var As Variant

destination = arrayOfPiDigits ()

var = arrayOfPiDigits

Debug.Print destination (0) ' outputs 3
Debug.Print var (1) ' outputs 1
Debug.Print arrayOfPiDigits () (2) ' outputs 4

End Sub

Note that what is returned is actually a copy of the array inside the function, not a reference. So if
the function returns the contents of a Static array its data can't be changed by the calling
procedure.

Outputting an Array via an output argument

It is normally good coding practice for a procedure's arguments to be inputs and to output via the
return value. However, the limitations of VBA sometimes make it necessary for a procedure to
output data via a syrer argument.

Outputting to a fixed array

Sub threePiDigits (ByRef destination() As Long)

destination(0) = 3

destination(l) =1

destination(2) = 4
End Sub

Sub printPiDigits ()
Dim digits (0 To 2) As Long

threePiDigits digits
Debug.Print digits(0); digits(l); digits(2) ' outputs 3 1 4
End Sub

https://riptutorial.com/ 71

Outputting an Array from a Class method

An output argument can also be used to output an array from a method/proceedure in a Class
module

' Class Module 'MathConstants'
Sub threePiDigits (ByRef destination() As Long)
ReDim destination (0 To 2)

destination(0) = 3

destination (1)

Il
N

destination (2)
End Sub

' Standard Code Module
Sub printPiDigits ()
Dim digits () As Long
Dim mathConsts As New MathConstants

mathConsts.threePiDigits digits
Debug.Print digits(0); digits(l); digits(2) ' outputs 3 1 4
End Sub

Passing Arrays to Proceedures
Arrays can be passed to proceedures by putting () after the name of the array variable.

Function countElements (ByRef arr() As Double) As Long
countElements = UBound(arr) - LBound(arr) + 1
End Function

Arrays must be passed by reference. If no passing mechanism is specified, €.9. myFunction (arr ()),
then VBA will assume syret by default, however it is good coding practice to make it explicit.
Trying to pass an array by value, e.g. myFunction (Byval arr()) Will result in an "Array argument
must be ByRef" compilation error (or a "Syntax error" compilation error if auto syntax check IS not
checked in the VBE options).

Passing by reference means that any changes to the array will be preserved in the calling
proceedure.

Sub testArrayPassing()
Dim source (0 To 1) As Long

source (0) = 3

source(l) =1

Debug.Print doubleAndSum (source) ' outputs 8

Debug.Print source(0); source(l) ' outputs 6 2
End Sub

Function doubleAndSum (ByRef arr () As Long)
arr(0) = arr(0) * 2
arr(l) = arr(l) * 2
doubleAndSum = arr (0) + arr (1)

https://riptutorial.com/ 72

End Function

If you want to avoid changing the original array then be careful to write the function so that it
doesn't change any elements.

Function doubleAndSum (ByRef arr () As Long)
doubleAndSum = arr(0) * 2 + arr(l) * 2
End Function

Alternatively create a working copy of the array and work with the copy.

Function doubleAndSum (ByRef arr () As Long)
Dim copyOfArr () As Long
copyOfArr = arr

copyOfArr (0) = copyOfArr (0) * 2
copyOfArr (1) = copyOfArr(l) * 2

doubleAndSum = copyOfArr (0) + copyOfArr (1)
End Function

Read Copying, returning and passing arrays online: https://riptutorial.com/vba/topic/9069/copying--
returning-and-passing-arrays

https://riptutorial.com/ 73

https://riptutorial.com/vba/topic/9069/copying--returning-and-passing-arrays
https://riptutorial.com/vba/topic/9069/copying--returning-and-passing-arrays

C_hapter 13: CreateObject vs. GetObject

Remarks

At its simplest, createobject Creates an instance of an object whereas cetobject gets an existing
instance of an object. Determining whether an object can be created or gotten will depend on it's
Instancing property. Some objects are SingleUse (eg, WMI) and cannot be created if they already
exist. Other objects (eg, Excel) are MultiUse and allow multiple instances to run at once. If an
instance of an object does not already exist and you attempt cetobject, you will receive the
following trappable message: run-time error '429': ActiveX component can't create object.

GetObject requires at least one of these two optional parameters to be present:

1. Pathname - Variant (String): The full path, including filename, of the file containing the
object. This parameter is optional, but Class is required if Pathname is omitted.

2. Class - Variant (String): A string representing the formal definition (Application and
ObjectType) of the object. Class is required if Pathname is omitted.

CreateObject has one required parameter and one optional parameter:

1. Class - Variant (String): A string representing the formal definition (Application and
ObjectType) of the object. Class is a required parameter.

2. Servername - Variant (String): The name of the remote computer on which the object will be
created. If omitted, the object will be created on the local machine.

Class is always comprised of two parts in the form of app1ication.objectType:

1. Application - The name of the application which the object is part of. |
2. Object Type - The type of object being created. |

Some example classes are:

1. Word.Application
2. Excel.Sheet
3. Scripting.FileSystemObject

Examples

Demonstrating GetObject and CreateObject

MSDN-GetObject Function
Returns a reference to an object provided by an ActiveX component.

Use the GetObject function when there is a current instance of the object or if you want

https://riptutorial.com/ 74

https://msdn.microsoft.com/en-us/library/aa242107%28v=vs.60%29.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/office/gg251785.aspx

to create the object with a file already loaded. If there is no current instance, and you
don't want the object started with a file loaded, use the CreateObject function.

Sub CreateVSGet ()
Dim ThisXLApp As Excel.Application 'An example of early binding
Dim AnotherXLApp As Object 'An example of late binding
Dim ThisNewWB As Workbook
Dim AnotherNewWB As Workbook
Dim wb As Workbook

'Get this instance of Excel

Set ThisXLApp = GetObject (ThisWorkbook.Name) .Application
'Create another instance of Excel

Set AnotherXLApp = CreateObject ("Excel.Application")
'Make the 2nd instance visible

AnotherXLApp.Visible = True

'Add a workbook to the 2nd instance

Set AnotherNewWB = AnotherXLApp.Workbooks.Add

'Add a sheet to the 2nd instance

AnotherNewWB. Sheets.Add

'You should now have 2 instances of Excel open
'The 1st instance has 1 workbook: Bookl
'The 2nd instance has 1 workbook: Book2

'Lets add another workbook to our 1lst instance
Set ThisNewWB = ThisXLApp.Workbooks.Add
'Now loop through the workbooks and show their names
For Each wb In ThisXLApp.Workbooks
Debug.Print wb.Name
Next
'Now the 1st instance has 2 workbooks: Bookl and Book3
'If you close the first instance of Excel,
'Bookl and Book3 will close, but book2 will still be open

End Sub

Read CreateObject vs. GetObject online: https://riptutorial.com/vba/topic/7729/createobject-vs--
getobject

https://riptutorial.com/

https://riptutorial.com/vba/topic/7729/createobject-vs--getobject
https://riptutorial.com/vba/topic/7729/createobject-vs--getobject

C_hapter 14: Creating a Custom Class

Remarks

This article will show how to create a complete custom class in VBA. It uses the example of a
paterange Object, because a starting and ending date are often passed together to functions.

Examples

Adding a Property to a Class

A property procedure is a series of statement that retrieves or modifies a custom property on a
module.

There are three types of property accessors:

1. A cet procedure that returns the value of a property.
2. A et procedure that assigns a (non-object) value to an object.
3. A set procedure that assigns an obsject reference.

Property accessors are often defined in pairs, using both a cet and ret/set for each property. A
property with only a cet procedure would be read-only, while a property with only a ret/set
procedure would be write-only.

In the following example, four property accessors are defined for the paterange class:

1. startpate (read/write). Date value representing the earlier date in a range. Each procedure
uses the value of the module variable, nstartpate.

2. endpate (read/write). Date value representing the later date in a range. Each procedure uses
the value of the module variable, nendpate.

3. payssetween (read-only). Calculated Integer value representing the number of days between
the two dates. Because there is only a cet procedure, this property cannot be modified

directly.
4. rangeToCopy (Write-only). A set procedure used to copy the values of an existing paterange
object.
Private mStartDate As Date ' Module variable to hold the starting date
Private mEndDate As Date ' Module variable to hold the ending date

' Return the current value of the starting date

Public Property Get StartDate () As Date
StartDate = mStartDate

End Property

' Set the starting date value. Note that two methods have the name StartDate
Public Property Let StartDate (ByVal NewValue As Date)

mStartDate = NewValue
End Property

https://riptutorial.com/ 76

' Same thing, but for the ending date

Public Property Get EndDate () As Date
EndDate = mEndDate

End Property

Public Property Let EndDate (ByVal NewValue As Date)
mEndDate = NewValue
End Property

' Read-only property that returns the number of days between the two dates
Public Property Get DaysBetween () As Integer

DaysBetween = DateDiff ("d", mStartDate, mEndDate)
End Function

' Write-only property that passes an object reference of a range to clone
Public Property Set RangeToCopy (ByRef ExistingRange As DateRange)

Me.StartDate = ExistingRange.StartDate
Me.EndDate = ExistingRange.EndDate

End Property

Adding Functionality to a Class

Any public sub, Function, OF property iNSide a class module can be called by preceding the call with
an object reference:

Object.Procedure
In @ paterange Class, a sub could be used to add a number of days to the end date:

Public Sub AddDays (ByVal NoDays As Integer)
mEndDate = mEndDate + NoDays
End Sub

A runction could return the last day of the next month-end (note that cetrirstpayofMmonth wWould not
be visible outside the class because it is private):

Public Function GetNextMonthEndDate () As Date
GetNextMonthEndDate = DateAdd("m", 1, GetFirstDayOfMonth())
End Function

Private Function GetFirstDayOfMonth () As Date
GetFirstDayOfMonth = DateAdd("d", -DatePart ("d", mEndDate), mEndDate)

End Function

Procedures can accept arguments of any type, including references to objects of the class being
defined.

The following example tests whether the current naterange 0Object has a starting date and ending
date that includes the starting and ending date of another paterange Object.

https://riptutorial.com/ 7

Public Function ContainsRange (ByRef TheRange As DateRange) As Boolean
ContainsRange = TheRange.StartDate >= Me.StartDate And TheRange.EndDate <= Me.EndDate
End Function

Note the use of the ve notation as a way to access the value of the object running the code.

Class module scope, instancing and re-use

By default, a new class module is a Private class, so it is only available for instantiation and use
within the VBProject in which it is defined. You can declare, instantiate and use the class
anywhere in the same project:

'Class List has Instancing set to Private
'In any other module in the SAME project, you can use:

Dim items As List
Set items = New List

But often you'll write classes that you'd like to use in other projects without copying the module
between projects. If you define a class called vist in projecta, and want to use that class in
projects, then you'll need to perform 4 actions:

1. Change the instancing property of the vList class in projecta in the Properties window, from

Private tO PublicNotCreatable

2. Create a public "factory"” function in rrojecta that creates and returns an instance of a rist
class. Typically the factory function would include arguments for the initialization of the class
instance. The factory function is required because the class can be used by projects but
projects cannot directly create an instance of projecta’s class.

Public Function Createlist (ParamArray values() As Variant) As List
Dim tempList As List
Dim itemCounter As Long
Set tempList = New List
For itemCounter = LBound(values) to UBound(values)
tempList.Add values (itemCounter)
Next itemCounter
Set Createlist = tempList
End Function

3. In projects add a reference to projecta USING the Tools..References... MeNu.

4. In rrojects, declare a variable and assign it an instance of rist using the factory function
from ProjectA

Dim items As ProjectA.List
Set items = ProjectA.Createlist ("foo", "bar")

'Use the items list methods and properties
items.Add "fizz"

Debug.Print items.ToString ()

'Destroy the items object

https://riptutorial.com/ 78

Set items = Nothing

Read Creating a Custom Class online: https://riptutorial.com/vba/topic/4464/creating-a-custom-
class

https://riptutorial.com/

79

https://riptutorial.com/vba/topic/4464/creating-a-custom-class
https://riptutorial.com/vba/topic/4464/creating-a-custom-class

C_hapter 15: Creating a procedure

Examples

Introduction to procedures
A sub is a procedure that performs a specific task but does not return a specific value.

Sub ProcedureName ([argument_list])
[statements]
End Sub

If no access modifier is specified, a procedure is run1ic by default.

A runction IS @ procedure that is given data and returns a value, ideally without global or module-
scope side-effects.

Function ProcedureName ([argument_list]) [As ReturnType]
[statements]
End Function

A property IS @ procedure that encapsulates module data. A property can have up to 3 accessors:
cet t0 return a value or object reference, ret to assign a value, and/or set to assign an object
reference.

Property Get|Let|Set PropertyName ([argument_list]) [As ReturnType]
[statements]
End Property

Properties are usually used in class modules (although they are allowed in standard modules as
well), exposing accessor to data that is otherwise inaccessible to the calling code. A property that
only exposes a cet accessor is "read-only"; a property that would only expose a ret and/or set
accessor is "write-only". Write-only properties are not considered a good programming practice - if
the client code can write a value, it should be able to read it back. Consider implementing a suv
procedure instead of making a write-only property.

Returning a value

A Function Of Property Get procedure can (and should!) return a value to its caller. This is done by
assigning the identifier of the procedure:

Property Get Foo() As Integer
Foo = 42
End Property

https://riptutorial.com/ 80

Function With Examples

As stated above Functions are smaller procedures that contain small pieces of code which may be

repetitive inside a Procedure.

Functions are used to reduce redundancy in code.

Similar to a Procedure, A function can be declared with or without an arguments list.

Function is declared as a return type, as all functions return a value. The Name and the Return

Variable of a function are the Same.

1. Function With Parameter:

Function check_even (i as integer) as boolean

if (i mod 2) = 0 then
check_even = True
else

check_even=False
end if

end Function

2. Function Without Parameter:

Function greet () as String
greet= "Hello Coder!"
end Function

The Function can be called in various ways inside a function. Since a Function declared with a

return type is basically a variable. it is used similar to a variable.

Functional Calls:

call greet () 'Similar to a Procedural call just allows the Procedure to use the
'variable greet
string_l=greet () 'The Return value of the function is used for variable
'assignment

Further the function can also be used as conditions for if and other conditional statements.

for i = 1 to 10

if check_even (i) then
msgbox 1 & " is Even"
else

msgbox 1 & " is Odd"
end if

next 1

Further more Functions can have modifiers such as By ref and By val for their arguments.

Read Creating a procedure online: https://riptutorial.com/vba/topic/1474/creating-a-procedure

https://riptutorial.com/

81

https://riptutorial.com/vba/topic/1474/creating-a-procedure

C_hapter 16: Data Structures

Introduction

[TODO: This topic should be an example of all the basic CS 101 data structures along with some
explanation as an overview of how data structures can be implemented in VBA. This would be a
good opportunity to tie in and reinforce concepts introduced in Class-related topics in VBA
documentation.]

Examples

Linked List

This linked list example implements Set abstract data type operations.

SinglyLinkedNode class

Option Explicit

Private Value As Variant
Private NextNode As SinglyLinkedNode '"Next" is a keyword in VBA and therefore is not a valid
variable name

LinkedList class

Option Explicit
Private head As SinglyLinkedNode
'Set type operations

Public Sub Add(value As Variant)
Dim node As SinglyLinkedNode

Set node = New SinglyLinkedNode
node.value = value
Set node.nextNode = head

Set head = node
End Sub

Public Sub Remove (value As Variant)
Dim node As SinglyLinkedNode
Dim prev As SinglyLinkedNode

Set node = head

While Not node Is Nothing
If node.value = value Then
'remove node
If node Is head Then
Set head = node.nextNode

https://riptutorial.com/

82

https://en.wikipedia.org/wiki/Set_(abstract_data_type)

Else
Set prev.nextNode = node.nextNode

End If
Exit Sub

End If

Set prev = node

Set node = node.nextNode

Wend

End Sub

Public Function Exists(value As Variant) As Boolean
Dim node As SinglyLinkedNode

Set node = head
While Not node Is Nothing
If node.value = value Then
Exists = True
Exit Function
End If
Set node = node.nextNode
Wend
End Function

Public Function Count () As Long
Dim node As SinglyLinkedNode

Set node = head

While Not node Is Nothing
Count = Count + 1
Set node = node.nextNode
Wend

End Function

Binary Tree

This is an example of an unbalanced binary search tree. A binary tree is structured conceptually
as a hierarchy of nodes descending downward from a common root, where each node has two
children: left and right. For example, suppose the numbers 7, 5, 9, 3, 11, 6, 12, 14 and 15 were
inserted into a BinaryTree. The structure would be as below. Note that this binary tree is not
balanced, which can be a desirable characteristic for guaranteeing the performance of lookups -
see AVL trees for an example of a self-balancing binary search tree.

https://riptutorial.com/ 83

https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
https://en.wikipedia.org/wiki/AVL_tree

BinaryTreeNode class

Option Explicit
Public left As BinaryTreeNode
Public right As BinaryTreeNode

Public key As Variant
Public value As Variant

BinaryTree class
[TODOQ]

Read Data Structures online: https://riptutorial.com/vba/topic/8628/data-structures

https://riptutorial.com/

84

https://riptutorial.com/vba/topic/8628/data-structures

C_hapter 17: Data Types and Limits

Examples
Byte
Dim Value As Byte

A Byte is an unsigned 8 bit data type. It can represent integer numbers between 0 and 255 and
attempting to store a value outside of that range will result in runtime error 6: overri1ow. Byte is the
only intrinsic unsigned type available in VBA.

The casting function to convert to a Byte is c=y < (). For casts from floating point types, the result is
rounded to the nearest integer value with .5 rounding up.

Byte Arrays and Strings

Strings and byte arrays can be substituted for one another through simple assignment (no
conversion functions necessary).

For example:

Sub ByteToStringAndBack ()

Dim str As String
str = "Hello, World!"

Dim byt () As Byte
byt = str

Debug.Print byt (0) ' 72

Dim str2 As String
str2 = byt

Debug.Print str2 ' Hello, World!

End Sub
In order to be able to encode Unicode characters, each character in the string takes up two bytes
in the array, with the least significant byte first. For example:

Sub UnicodeExample ()

Dim str As String
str = ChrW(&H2123) & "." ' Versicle character and a dot

Dim byt () As Byte
byt = str

Debug.Print byt (0), byt (l), byt(2), byt (3) ' Prints: 35,33,46,0

https://riptutorial.com/ 85

https://msdn.microsoft.com/en-us/library/aa264525
https://msdn.microsoft.com/en-us/library/aa264525
https://msdn.microsoft.com/en-us/library/office/gg278896.aspx
http://unicode.org/

End Sub

Integer
Dim Value As Integer

An Integer is a signed 16 bit data type. It can store integer numbers in the range of -32,768 to
32,767 and attempting to store a value outside of that range will result in runtime error 6: Overflow.

Integers are stored in memory as liitle-endian values with negatives represented as a two's
complement.

Note that in general, it is better practice to use a Long rather than an Integer unless the smaller
type is a member of a Type or is required (either by an API calling convention or some other
reason) to be 2 bytes. In most cases VBA treats Integers as 32 bit internally, so there is usually no
advantage to using the smaller type. Additionally, there is a performance penalty incurred every
time an Integer type is used as it is silently cast as a Long.

The casting function to convert to an Integer is cint (). For casts from floating point types, the
result is rounded to the nearest integer value with .5 rounding up.

Boolean
Dim Value As Boolean

A Boolean is used to store values that can be represented as either True or False. Internally, the
data type is stored as a 16 bit value with O representing False and any other value representing
True.

It should be noted that when a Boolean is cast to a numeric type, all of the bits are set to 1. This
results in an internal representation of -1 for signed types and the maximum value for an unsigned

type (Byte).

Dim Example As Boolean

Example = True

Debug.Print CInt (Example) '"Prints -1
Debug.Print CBool (42) '"Prints True
Debug.Print CByte (True) 'Prints 255

The casting function to convert to a Boolean is csoo1 (). Even though it is represented internally as
a 16 bit number, casting to a Boolean from values outside of that range is safe from overflow,
although it sets all 16 bits to 1:

Dim Example As Boolean

Example = CBool (2 ~ 17)

Debug.Print CInt (Example) 'Prints -1
Debug.Print CByte (Example) 'Prints 255

https://riptutorial.com/ 86

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Two%27s_complement
http://www.riptutorial.com/vba/example/11779/long

Long
Dim Value As Long

A Long is a signed 32 bit data type. It can store integer numbers in the range of -2,147,483,648 to
2,147,483,647 and attempting to store a value outside of that range will result in runtime error 6:
Overflow.

Longs are stored in memory as little-endian values with negatives represented as a two's
complement.

Note that since a Long matches the width of a pointer in a 32 bit operating system, Longs are
commonly used for storing and passing pointers to and from API functions.

The casting function to convert to a Long is crng (). For casts from floating point types, the result is
rounded to the nearest integer value with .5 rounding up.

Single
Dim Value As Single

A Single is a signed 32 bit floating point data type. It is stored internally using a little-endian IEEE
754 memory layout. As such, there is not a fixed range of values that can be represented by the
data type - what is limited is the precision of value stored. A Single can store a value integer
values in the range of -16,777,216 to 16,777,216 without a loss of precision. The precision of
floating point numbers depends on the exponent.

A Single will overflow if assigned a value greater than roughly 2128 1t will not overflow with
negative exponents, although the usable precision will be questionable before the upper limit is
reached.

As with all floating point numbers, care should be taken when making equality comparisons. Best
practice is to include a delta value appropriate to the required precision.

The casting function to convert to a Single is csng ().

Double

Dim Value As Double

A Double is a signed 64 bit floating point data type. Like the Single, it is stored internally using a
little-endian IEEE 754 memory layout and the same precautions regarding precision should be
taken. A Double can store integer values in the range of -9,007,199,254,740,992 to
9,007,199,254,740,992 without a loss of precision. The precision of floating point numbers
depends on the exponent.

A Double will overflow if assigned a value greater than roughly 21924 _ |t will not overflow with

https://riptutorial.com/ 87

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
http://www.riptutorial.com/vba/example/11780/single
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

negative exponents, although the usable precision will be questionable before the upper limit is
reached.

The casting function to convert to a Double is cob1 ().

Currency
Dim Value As Currency

A Currency is a signed 64 bit floating point data type similar to a Double, but scaled by 10,000 to
give greater precision to the 4 digits to the right of the decimal point. A Currency variable can store
values from -922,337,203,685,477.5808 to 922,337,203,685,477.5807, giving it the largest
capacity of any intrinsic type in a 32 bit application. As the name of the data type implies, it is
considered best practice to use this data type when representing monetary calculations as the
scaling helps to avoid rounding errors.

The casting function to convert to a Currency is ccur ().

Date

Dim Value As Date

A Date type is represented internally as a signed 64 bit floating point data type with the value to
the left of the decimal representing the number of days from the epoch date of December 30,
1899 (although see the note below). The value to the right of the decimal represents the time as a
fractional day. Thus, an integer Date would have a time component of 12:00:00AM and x.5 would
have a time component of 12:00:00PM.

Valid values for Dates are between January 15t 100 and December 315t 9999. Since a Double has
a larger range, it is possible to overflow a Date by assigning values outside of that range.

As such, it can be used interchangeably with a Double for Date calculations:

Dim MyDate As Double

MyDate = 0 'Epoch date.
Debug.Print Format$ (MyDate, "yyyy-mm—dd") 'Prints 1899-12-30.
MyDate = MyDate + 365

Debug.Print Format$ (MyDate, "yyyy-mm—-dd") 'Prints 1900-12-30.

The casting function to convert to a Date is cpate (), Wwhich accepts any numeric type string
date/time representation. It is important to note that string representations of dates will be
converted based on the current locale setting in use, so direct casts should be avoided if the code
IS meant to be portable.

String

A String represents a sequence of characters, and comes in two flavors:

https://riptutorial.com/ 88

http://www.riptutorial.com/vba/example/11781/double
http://www.riptutorial.com/vba/example/11781/double

Variable length

Dim Value As String

A variable length String allows appending and truncation and is stored in memory as a COM
BSTR. This consists of a 4 byte unsigned integer that stores the length of the String in bytes
followed by the string data itself as wide characters (2 bytes per character) and terminated with 2
null bytes. Thus, the maximum string length that can be handled by VBA is 2,147,483,647
characters.

The internal pointer to the structure (retrievable by the stretr () function) points to the memory
location of the data, not the length prefix. This means that a VBA String can be passed directly API
functions that require a pointer to a character array.

Because the length can change, VBA reallocates memory for a String every time the variable is
assigned to, which can impose performance penalties for procedures that alter them repeatedly.

Fixed length

Dim Value As String * 1024 'Declares a fixed length string of 1024 characters.

Fixed length strings are allocated 2 bytes for each character and are stored in memory as a simple
byte array. Once allocated, the length of the String is immutable. They are not null terminated in
memory, so a string that fills the memory allocated with non-null characters is unsuitable for
passing to API functions expecting a null terminated string.

Fixed length strings carry over a legacy 16 bit index limitation, so can only be up to 65,535
characters in length. Attempting to assign a value longer than the available memory space will not
result in a runtime error - instead the resulting value will simply be truncated:

Dim Foobar As String * 5
Foobar = "Foo" & "bar"

Debug.Print Foobar 'Prints "Fooba"

The casting function to convert to a String of either type is cstr ().

LonglLong
Dim Value As LongLong

A LongLong is a signed 64 bit data type and is only available in 64 bit applications. It is not
available in 32 bit applications running on 64 bit operating systems. It can store integer values in
the range of -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 and attempting to store a
value outside of that range will result in runtime error 6: Overflow.

LongLongs are stored in memory as little-endian values with negatives represented as a two's

https://riptutorial.com/ 89

https://msdn.microsoft.com/en-us/library/windows/desktop/ms221069(v=vs.85).aspx
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Two%27s_complement

complement.

The LongLong data type was introduced as part of VBA's 64 bit operating system support. In 64
bit applications, this value can be used to store and pass pointers to 64 bit APIs.

The casting function to convert to a LonglLong is crngrng (). FOr casts from floating point types, the
result is rounded to the nearest integer value with .5 rounding up.

Variant
Dim Value As Variant 'Explicit
Dim Value 'Implicit

A Variant is a COM data type that is used for storing and exchanging values of arbitrary types, and
any other type in VBA can be assigned to a Variant. Variables declared without an explicit type
specified by as [Type] default to Variant.

Variants are stored in memory as a VARIANT structure that consists of a byte type descriptor (
VARTYPE) followed by 6 reserved bytes then an 8 byte data area. For numeric types (including
Date and Boolean), the underlying value is stored in the Variant itself. For all other types, the data
area contains a pointer to the underlying value.

VARTYPE Reserved Data area
0 1 2 3 | a s | s 7 3 9 10 11

The underlying type of a Variant can be determined with either the vartype () function which returns
the numeric value stored in the type descriptor, or the typenane () function which returns the string
representation:

Dim Example As Variant
Example = 42

Debug.Print VarType (Example) 'Prints 2 (VT_I2)
Debug.Print TypeName (Example) 'Prints "Integer"
Example = "Some text"

Debug.Print VarType (Example) 'Prints 8 (VT_BSTR)
Debug.Print TypeName (Example) 'Prints "String"

Because Variants can store values of any type, assignments from literals without type hints will be
implicitly cast to a Variant of the appropriate type according to the table below. Literals with type
hints will be cast to a Variant of the hinted type.

String values String
Non-floating point numbers in Integer range Integer
Non-floating point numbers in Long range Long

Non-floating point numbers outside of Long range Double

https://riptutorial.com/ 90

https://en.wikipedia.org/wiki/Two%27s_complement
https://msdn.microsoft.com/en-us/library/windows/desktop/ms221627(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms221170(v=vs.85).aspx
https://i.stack.imgur.com/RFvAd.png
http://www.riptutorial.com/vba/example/2960/type-hints

All floating point numbers Double

Note: Unless there is a specific reason to use a Variant (i.e. an iterator in a For Each loop or an
API requirement), the type should generally be avoided for routine tasks for the following reasons:

» They are not type safe, increasing the possibility of runtime errors. For example, a Variant
holding an Integer value will silently change itself into a Long instead of overflowing.

» They introduce processing overhead by requiring at least one additional pointer dereference.

» The memory requirement for a Variant is always at least 8 bytes higher than needed to store
the underlying type.

The casting function to convert to a Variant is cvar ().

LongPtr
Dim Value As LongPtr

The LongPtr was introduced into VBA in order to support 64 bit platforms. On a 32 bit system, it is
treated as a Long and on 64 bit systems it is treated as a LonglLong.

It's primary use is in providing a portable way to store and pass pointers on both architectures
(See Changing code behavior at compile time.

Although it is treated by the operating system as a memory address when used in API calls, it
should be noted that VBA treats it like signed type (and therefore subject to unsigned to signed
overflow). For this reason, any pointer arithmetic performed using LongPtrs should not use > or <
comparisons. This "quirk" also makes it possible that adding simple offsets pointing to valid
addresses in memory can cause overflow errors, so caution should be taken when working with
pointers in VBA.

The casting function to convert to a LongPtr is cungetr (). For casts from floating point types, the
result is rounded to the nearest integer value with .5 rounding up (although since it is usually a
memory address, using it as an assignment target for a floating point calculation is dangerous at
best).

Decima

Dim Value As Variant
Value = CDec(1.234)

'Set Value to the smallest possible Decimal value
Value = CDec ("0.0000000000000000000000000001™)

The pecimal data-type is only available as a sub-type of variant, SO you must declare any variable
that needs to contain a pecimal as a variant and then assign a pecima1 value using the cpec
function. The keyword pecimal is a reserved word (which suggests that VBA was eventually going

https://riptutorial.com/ 91

http://www.riptutorial.com/vba/example/11779/long
http://www.riptutorial.com/vba/example/11785/longlong
http://www.riptutorial.com/vba/example/11557/changing-code-behavior-at-compile-time

to add first-class support for the type), so pecimal cannot be used as a variable or procedure
name.

The pecimal type requires 14 bytes of memory (in addition to the bytes required by the parent
Variant) and can store numbers with up to 28 decimal places. For numbers without any decimal
places, the range of allowed values is -79,228,162,514,264,337,593,543,950,335 to
+79,228,162,514,264,337,593,543,950,335 inclusive. For numbers with the maximum 28 decimal
places, the range of allowed values is -7.9228162514264337593543950335 to
+7.9228162514264337593543950335 inclusive.

Read Data Types and Limits online: https://riptutorial.com/vba/topic/3418/data-types-and-limits

https://riptutorial.com/ 92

https://riptutorial.com/vba/topic/3418/data-types-and-limits

C_hapter 18: Date Time Manipulation

Examples

Calendar
VBA supports 2 calendars : Gregorian and Hijri
The caiendar property is used to modify or display the current calendar.

The 2 values for the Calendar are:

0 vbCalGreg Gregorian calendar (default)
1 vbCalHijri Hijri calendar
Example

Sub CalendarExample ()
'Cache the current setting.
Dim Cached As Integer
Cached = Calendar

' Dates in Gregorian Calendar
Calendar = vbCalGreg

Dim Sample As Date

'Create sample date of 2016-07-28
Sample = DateSerial (2016, 7, 28)

Debug.Print "Current Calendar : " & Calendar
Debug.Print "SampleDate = " & Format$ (Sample, "yyyy-mm-dd")

' Date in Hijri Calendar

Calendar = vbCalHijri

Debug.Print "Current Calendar : " & Calendar

Debug.Print "SampleDate = " & Format$ (Sample, "yyyy-mm-dd")

'Reset VBA to cached value.

Cached = Calendar
End Sub

This Sub prints the following ;

Current Calendar : 0
SampleDate = 2016-07-28
Current Calendar : 1

SampleDate = 1437-10-23

https://riptutorial.com/

93

https://en.wikipedia.org/wiki/Gregorian_calendar
https://en.wikipedia.org/wiki/Islamic_calendar

Base functions

Retrieve System DateTime

VBA supports 3 built-in functions to retrieve the date and/or time from the system's clock.

Return Type | Return Value

Now Date Returns the current date and time
Date Date Returns the date portion of the current date and time
Time Date Returns the time portion of the current date and time

Sub DateTimeExample ()

Debug.Print Now ' prints 28/07/2016 10:16:01 (output below assumes this date and time)
Debug.Print Date ' prints 28/07/2016
Debug.Print Time ' prints 10:16:01

' Apply a custom format to the current date or time

Debug.Print Format$ (Now, "dd mmmm yyyy hh:nn") ' prints 28 July 2016 10:16
Debug.Print Format$ (Date, "yyyy-mm-dd") ' prints 2016-07-28
Debug.Print Format$ (Time, "hh") & " hour " & _
Format$ (Time, "nn") & " min " & _
Format$ (Time, "ss") & " sec " ' prints 10 hour 16 min 01 sec
End Sub

Timer Function

The rimer function returns a Single representing the number of seconds elapsed since midnight.

The precision is one hundredth of a second.

Sub TimerExample ()

Debug.Print Time ' prints 10:36:31 (time at execution)
Debug.Print Timer ' prints 38191,13 (seconds since midnight)
End Sub

Because now and time functions are only precise to seconds, timer Offers a convenient way to
increase accuracy of time measurement:

Sub GetBenchmark ()

https://riptutorial.com/

94

Dim StartTime As Single
StartTime = Timer 'Store the current Time

Dim i As Long

Dim temp As String

For i = 1 To 1000000 'See how long it takes Left$ to execute 1,000,000 times
temp = Left$ ("Text", 2)

Next i

Dim Elapsed As Single
Elapsed = Timer - StartTime

Debug.Print "Code completed in " & CInt (Elapsed * 1000) & " ms"

End Sub

IsDate()

IsDate() tests whether an expression is a valid date or not. Returns a soo1ean.

Sub IsDateExamples ()
Dim anything As Variant
anything = "September 11, 2001"
Debug.Print IsDate (anything) 'Prints True

anything = #9/11/2001#

Debug.Print IsDate (anything) 'Prints True
anything = "Jjust a string"
Debug.Print IsDate (anything) 'Prints False

anything = vbNull
Debug.Print IsDate (anything) 'Prints False

End Sub

Extraction functions

These functions take a variant that can be cast to a pate as a parameter and return an integer
representing a portion of a date or time. If the parameter can not be cast to a pate, it will result in a
run-time error 13: Type mismatch.

: _ Returned
Function Description
value
; Integer (100 to
Year() Returns the year portion of the date argument. gggg) (
Month() Returns the month portion of the date argument. Integer (1 to

https://riptutorial.com/ 95

Function Description

Day() Returns the day portion of the date argument.

Returns the day of the week of the date argument. Accepts an

WeekDa . o .

y0 optional second argument definining the first day of the week
Hour() Returns the hour portion of the date argument.
Minute() Returns the minute portion of the date argument.

Second() Returns the second portion of the date argument.

Examples:

Sub ExtractionExamples ()
Dim MyDate As Date

MyDate = DateSerial (2016, 7, 28) + TimeSerial (12, 34, 56)

Returned

value

12)

Integer (1 to
31)

Integer (1 to 7)

Integer (O to
23)

Integer (O to
59)

Integer (O to
59)

Debug.Print Format$ (MyDate, "yyyy-mm-dd hh:nn:ss") ' prints 2016-07-28 12:34:56
Debug.Print Year (MyDate) ' prints 2016

Debug.Print Month (MyDate) ' prints 7

Debug.Print Day (MyDate) ' prints 28

Debug.Print Hour (MyDate) ' prints 12

Debug.Print Minute (MyDate) ' prints 34

Debug.Print Second (MyDate) ' prints 56

Debug.Print Weekday (MyDate) ' prints 5

'Varies by locale - i.e. will print 4 in the EU and 5 in the US
Debug.Print Weekday (MyDate, vbUseSystemDayOfWeek)

Debug.Print Weekday (MyDate, vbMonday) ' prints 4
Debug.Print Weekday (MyDate, vbSunday) ' prints 5
End Sub

DatePart() Function

patepart () IS also a function returning a portion of a date, but works differently and allow more
possibilities than the functions above. It can for instance return the Quarter of the year or the

Week of the year.

Syntax:

https://riptutorial.com/

DatePart (interval, date [, firstdayofweek] [, firstweekofyear])

interval argument can be :

yyyy" Year (100 to 9999)

"y" Day of the year (1 to 366)
“m" Month (1 to 12)

"q" Quarter (1 to 4)

"ww" Week (1 to 53)

"w" Day of the week (1 to 7)
"d" Day of the month (1 to 31)
"h" Hour (0 to 23)

"n" Minute (0 to 59)

"s" Second (0 to 59)

firstdayofweek is optional. it is a constant that specifies the first day of the week. If not specified,
vbSunday IS assumed.

firstweekofyear is optional. it is a constant that specifies the first week of the year. If not specified,
the first week is assumed to be the week in which January 1 occurs.

Examples:
Sub DatePartExample ()

Dim MyDate As Date

MyDate = DateSerial (2016, 7, 28) + TimeSerial (12, 34, 56)

Debug.Print Format$ (MyDate, "yyyy-mm—-dd hh:nn:ss") ' prints 2016-07-28 12:34:56
Debug.Print DatePart ("yyyy", MyDate) ' prints 2016

Debug.Print DatePart ("y", MyDate) ' prints 210

Debug.Print DatePart ("h", MyDate) ' prints 12

Debug.Print DatePart ("Q", MyDate) ' prints 3

Debug.Print DatePart ("w", MyDate) ' prints 5

Debug.Print DatePart ("ww", MyDate) ' prints 31

End Sub

Calculation functions

https://riptutorial.com/ 97

DateDiff()

DateDiff () retUrns a rong representing the number of time intervals between two specified dates.

Syntax
DateDiff (interval, datel, date2 [, firstdayofweek] [, firstweekofyear])
* interval can be any of the intervals defined in the v-ccrarc () function

» datel and date2 are the two dates you want to use in the calculation
« firstdayofweek and firstweekofyear are optional. Refer to n-t<rar () function for explanations

Examples

Sub DateDiffExamples ()

' Check to see if 2016 is a leap year.
Dim NumberOfDays As Long
NumberOfDays = DateDiff ("d", #1/1/2016#, #1/1/2017+#)

If NumberOfDays = 366 Then
Debug.Print "2016 is a leap year." 'This will output.
End If

' Number of seconds in a day

Dim StartTime As Date

Dim EndTime As Date

StartTime = TimeSerial (0, 0, 0)

EndTime = TimeSerial (24, 0, 0)

Debug.Print DateDiff ("s", StartTime, EndTime) 'prints 86400

End Sub

DateAdd()

pateadd () returns a nate to which a specified date or time interval has been added.

Syntax

DateAdd (interval, number, date)

* interval can be any of the intervals defined in the v-tcrarc () function

* number Numeric expression that is the number of intervals you want to add. It can be
positive (to get dates in the future) or negative (to get dates in the past).

» date is a pate or literal representing date to which the interval is added

Examples :

Sub DateAddExamples ()

https://riptutorial.com/ 98

http://www.riptutorial.com/vba/example/15553/extraction-functions
http://www.riptutorial.com/vba/example/15553/extraction-functions
http://www.riptutorial.com/vba/example/15553/extraction-functions

Dim Sample As Date
'Create sample date and time of 2016-07-28 12:34:56
Sample = DateSerial (2016, 7, 28) + TimeSerial (12, 34, 56)

' Date 5 months previously (prints 2016-02-28):

Debug.Print Format$ (DateAdd("m", -5, Sample), "yyyy-mm-dd")

' Date 10 months previously (prints 2015-09-28):

Debug.Print Format$ (DateAdd("m", -10, Sample), "yyyy-mm-dd")

' Date in 8 months (prints 2017-03-28):

Debug.Print Format$ (DateAdd("m", 8, Sample), "yyyy-mm-dd")

' Date/Time 18 hours previously (prints 2016-07-27 18:34:56) :
Debug.Print Format$ (DateAdd("h", -18, Sample), "yyyy-mm-dd hh:nn:ss")

' Date/Time in 36 hours (prints 2016-07-30 00:34:56) :

Debug.Print Format$ (DateAdd("h", 36, Sample), "yyyy-mm-dd hh:nn:ss")

End Sub
Conversion and Creation

CDate()

cpate () converts something from any datatype to a nate datatype

Sub CDateExamples ()

Dim sample As Date

' Converts a String representing a date and time to a Date

sample = CDate ("September 11, 2001 12:34")
Debug.Print Format$ (sample, "yyyy-mm-dd hh:nn:ss")

' Converts a String containing a date to a Date
sample = CDate ("September 11, 2001")
Debug.Print Format$ (sample, "yyyy-mm-dd hh:nn:ss")

' Converts a String containing a time to a Date
sample = CDate ("12:34:56")

Debug.Print Hour (sample) ' prints
Debug.Print Minute (sample) ' prints
Debug.Print Second (sample) ' prints

' Find the 10000th day from the epoch date of 1899-12-31
sample = CDate (10000)
Debug.Print Format$ (sample, "yyyy-mm-dd") ' prints

End Sub

prints 2001-09-11 12:34:00

prints 2001-09-11 00:00:00

12
34
56

1927-05-18

Note that VBA also has a loosely typed cvpate () that functions in the same way as the coate ()
function other than returning a date typed variant instead of a strongly typed pate. The cpate ()
version should be preferred when passing to a nate parameter or assigning to a nate variable, and
the cvpate () version should be preferred when when passing to a variant parameter or assigning

to a variant variable. This avoids implicit type casting.

https://riptutorial.com/

99

DateSerial()

pateserial () function is used to create a date. It returns a nate for a specified year, month, and
day.

Syntax:

DateSerial (year, month, day)

With year, month and day arguments being valid Integers (Year from 100 to 9999, Month from 1 to
12, Day from 1 to 31).

Examples

Sub DateSerialExamples ()

' Build a specific date

Dim sample As Date

sample = DateSerial (2001, 9, 11)

Debug.Print Format$ (sample, "yyyy-mm-dd") ' prints 2001-09-11

' Find the first day of the month for a date.
sample = DateSerial (Year (sample), Month (sample), 1)

Debug.Print Format$ (sample, "yyyy-mm-dd") ' prints 2001-09-11

' Find the last day of the previous month.

sample = DateSerial (Year (sample), Month (sample), 1) - 1
Debug.Print Format$ (sample, "yyyy-mm-dd") ' prints 2001-09-11
End Sub

Note that pateserial () Will accept "invalid" dates and calculate a valid date from it. This can be
used creatively for good:

Positive Example

Sub GoodDateSerialExample ()

'Calculate 45 days from today

Dim today As Date

today = DateSerial (2001, 9, 11)

Dim futureDate As Date

futureDate = DateSerial (Year (today), Month (today), Day(today) + 45)
Debug.Print Format$ (futureDate, "yyyy-mm-dd") 'prints 2009-10-26

End Sub

However, it is more likely to cause grief when attempting to create a date from unvalidated user
input:

Negative Example

Sub BadDateSerialExample ()

https://riptutorial.com/ 100

'Allow user to enter unvalidate date information
Dim myYear As Long
myYear = InputBox ("Enter Year")
'Assume user enters 2009
Dim myMonth As Long
myMonth = InputBox ("Enter Month")
'Assume user enters 2
Dim myDay As Long
myDay = InputBox ("Enter Day")
'Assume user enters 31
Debug.Print Format$ (DateSerial (myYear, myMonth, myDay), "yyyy-mm-dd")
'prints 2009-03-03

End Sub

Read Date Time Manipulation online: https://riptutorial.com/vba/topic/4452/date-time-manipulation

https://riptutorial.com/ 101

https://riptutorial.com/vba/topic/4452/date-time-manipulation

C_hapter 19: Declaring and assigning strings

Remarks

Strings are a Reference type and are central to most programming tasks. Strings are assigned
text, even if the text happens to be numeric. Strings can be zero-length, or any length up to 2GB.
Modern versions of VBA store Strings internally using a Byte array of Multi-Byte Character Set
bytes (an alternative to Unicode).

Examples
Declare a string constant

Const appName As String = "The App For That"

Declare a variable-width string variable

Dim surname As String 'surname can accept strings of variable length
surname = "Smith"
surname = "Johnson"

Declare and assign a fixed-width string

'Declare and assign a l-character fixed-width string
Dim middleInitial As String * 1 'middleInitial must be 1 character in length
middleInitial = "M"

'Declare and assign a 2-character fixed-width string " stateCode’,
'must be 2 characters in length

Dim stateCode As String * 2

stateCode = "TX"

Declare and assign a string array

'Declare, dimension and assign a string array with 3 elements
Dim departments(2) As String

departments (0) = "Engineering"
departments (1) = "Finance"
departments (2) = "Marketing"

'Declare an undimensioned string array and then dynamically assign with
'the results of a function that returns a string array

Dim stateNames () As String

stateNames = VBA.Strings.Split ("Texas;California;New York", ";")

'Declare, dimension and assign a fixed-width string array
Dim stateCodes (2) As String * 2
stateCodes (0) = "TX"

https://riptutorial.com/ 102

https://msdn.microsoft.com/en-us/library/t63sy5hs.aspx

stateCodes (1) = "CA"
stateCodes (2) "NY"

Assign specific characters within a string using Mid statement

VBA offers a Mid function for returning substrings within a string, but it also offers the Mid
Statement which can be used to assign substrings or individual characters withing a string.

The wmia function will typically appear on the right-hand-side of an assignment statement or in a
condition, but the via Statement typically appears on the left hand side of an assignment
statement.

Dim surname As String
surname = "Smith"

'Use the Mid statement to change the 3rd character in a string
Mid (surname, 3, 1) = "y"
Debug.Print surname

'Output:
'Smyth

Note: If you need to assign to individual bytes in a string instead of individual characters within a
string (see the Remarks below regarding the Multi-Byte Character Set), the mias Statement can be
used. In this instance, the second argument for the uiqas Statement is the 1-based position of the
byte where the replacement will start so the equivalent line to the example above would be

MidB (surname, 5, 2) = "y".
Assignment to and from a byte array

Strings can be assigned directly to byte arrays and visa-versa. Remember that Strings are stored
in a Multi-Byte Character Set (see Remarks below) so only every other index of the resulting array
will be the portion of the character that falls within the ASCII range.

Dim bytes () As Byte
Dim example As String

example = "Testing."
bytes = example 'Direct assignment.

'Loop through the characters. Step 2 is used due to wide encoding.
Dim i As Long
For 1 = LBound(bytes) To UBound (bytes) Step 2
Debug.Print Chr$ (bytes (i)) 'Prints T, e, s, t, i, n, g,
Next

Dim reverted As String
reverted = bytes 'Direct assignment.
Debug.Print reverted 'Prints "Testing."

Read Declaring and assigning strings online: https://riptutorial.com/vba/topic/3446/declaring-and-
assigning-strings

https://riptutorial.com/ 103

https://riptutorial.com/vba/topic/3446/declaring-and-assigning-strings
https://riptutorial.com/vba/topic/3446/declaring-and-assigning-strings

C_hapter 20: Declaring Variables

Examples

Implicit And Explicit Declaration

If a code module does not contain option Explicit at the top of the module, then the compiler will
automatically (that is, "implicitly") create variables for you when you use them. They will default to
variable type variant.

Public Sub ExampleDeclaration ()
someVariable = 10
someOtherVariable = "Hello World"
'Both of these variables are of the Variant type.

End Sub

In the above code, if option Explicit IS Specified, the code will interrupt because it is missing the
required pim Statements for somevariable and someothervariable.

Option Explicit

Public Sub ExampleDeclaration ()

Dim someVariable As Long
someVariable = 10

Dim someOtherVariable As String
someOtherVariable = "Hello World"

End Sub

It is considered best practice to use Option Explicit in code modules, to ensure that you declare all
variables.

See VBA Best Practices how to set this option by default.

Variables

Scope

A variable can be declared (in increasing visibility level):

» At procedure level, using the pim keyword in any procedure; a local variable.

At module level, using the rrivate keyword in any type of module; a private field.

At instance level, using the rriena keyword in any type of class module; a friend field.
At instance level, using the ruv1ic keyword in any type of class module; a public field.
Globally, using the rub1ic keyword in a standard module; a global variable.

https://riptutorial.com/ 104

http://www.riptutorial.com/excel-vba/topic/1107/vba-best-practices

Variables should always be declared with the smallest possible scope: prefer passing parameters
to procedures, rather than declaring global variables.

See Access Modifiers for more information.

Local variables
Use the pim keyword to declare a local variable:

Dim identifierName [As Typel] [, identifierName [As Typel], ...]

The [as Type] part of the declaration syntax is optional. When specified, it sets the variable's data
type, which determines how much memory will be allocated to that variable. This declares a string
variable:

Dim identifierName As String

When a type is not specified, the type is implicitly variant:

Dim identifierName 'As Variant is implicit

The VBA syntax also supports declaring multiple variables in a single statement:

Dim someString As String, someVariant, someValue As Long

Notice that the [as Type] has to be specified for each variable (other than 'Variant' ones). This is a
relatively common trap:

Dim integerl, integer2, integer3 As Integer 'Only integer3 is an Integer.
'The rest are Variant.

Static variables

Local variables can also be static. In VBA the static keyword is used to make a variable
"remember" the value it had, last time a procedure was called:

Private Sub DoSomething ()
Static values As Collection
If values Is Nothing Then
Set values = New Collection
values.Add "foo"
values.Add "bar"
End If
DoSomethingElse values
End Sub

Here the vaiues collection is declared as a static local; because it's an object variable, it is
initialized to nothing. The condition that follows the declaration verifies if the object reference was

https://riptutorial.com/ 105

http://www.riptutorial.com/vba/example/2959/access-modifiers

set before - if it's the first time the procedure runs, the collection gets initialized. posomethingElse
might be adding or removing items, and they'll still be in the collection next time posomething IS
called.

Alternative

VBA's static keyword can easily be misunderstood - especially by seasoned
programmers that usually work in other languages. In many languages, static is used
to make a class member (field, property, method, ...) belong to the type rather than to
the instance. Code in static context cannot reference code in instance context. The
VBA static keyword means something wildly different.

Often, a static local could just as well be implemented as a rrivate, module-level variable (field) -
however this challenges the principle by which a variable should be declared with the smallest
possible scope; trust your instincts, use whichever you prefer - both will work... but using static
without understanding what it does could lead to interesting bugs.

Dim vs. Private

The pin keyword is legal at procedure and module levels; its usage at module level is equivalent to
using the private keyword:

Option Explicit
Dim privateFieldl As Long 'same as Private privateField2 as Long
Private privateField2 As Long 'same as Dim privateField2 as Long

The rprivate keyword is only legal at module level; this invites reserving pin for local variables and
declaring module variables with rrivate, especially with the contrasting rub1ic keyword that would
have to be used anyway to declare a public member. Alternatively use pim everywhere - what
matters is consistency:

"Private fields"

* DO use rrivate to declare a module-level variable.
« DO use pim to declare a local variable.
« DO NOT use pin to declare a module-level variable.

"Dim everywhere"

* DO use pim to declare anything private/local.
* DO NOT use rrivate to declare a module-level variable.
* AVOID declaring pub1ic fields.*

*In general, one should avoid declaring Public or Global fields anyway.

Fields

A variable declared at module level, in the declarations section at the top of the module body, is a

https://riptutorial.com/ 106

field. A run1ic field declared in a standard module is a global variable:

Public PublicField As Long

A variable with a global scope can be accessed from anywhere, including other VBA projects that
would reference the project it's declared in.

To make a variable global/public, but only visible from within the project, use the rriena modifier:

Friend FriendField As Long

This is especially useful in add-ins, where the intent is that other VBA projects reference the add-in
project and can consume the public API.

Friend FriendField As Long 'public within the project, aka for "friend" code
Public PublicField As Long 'public within and beyond the project

Friend fields are not available in standard modules.

Instance Fields

A variable declared at module level, in the declarations section at the top of the body of a class
module (including thisworkbook, Thisbocument, Worksheet, UserForm @and class modules), is an
instance field: it only exists as long as there's an instance of the class around.

'> Classl
Option Explicit
Public PublicField As Long

'> Modulel
Option Explicit
Public Sub DoSomething ()
'Classl.PublicField means nothing here
With New Classl
.PublicField = 42
End With
'Classl.PublicField means nothing here
End Sub

Encapsulating fields

Instance data is often kept rrivate, and dubbed encapsulated. A private field can be exposed
using a property procedure. To expose a private variable publicly without giving write access to the
caller, a class module (or a standard module) implements a property et member:

Option Explicit
Private encapsulated As Long

https://riptutorial.com/ 107

Public Property Get SomeValue () As Long
SomeValue = encapsulated

End Property

Public Sub DoSomething ()

encapsulated = 42
End Sub

The class itself can modify the encapsulated value, but the calling code can only access the pub1ic
members (and rriena members, if the caller is in the same project).

To allow the caller to modify:

* An encapsulated value, a module exposes a property Let member.
* An encapsulated object reference, a module exposes a property set member.

Constants (Const)

If you have a value that never changes in your application, you can define a named constant and
use it in place of a literal value.

You can use Const only at module or procedure level. This means the declaration context for a
variable must be a class, structure, module, procedure, or block, and cannot be a source file,
namespace, or interface.

Public Const GLOBAL_CONSTANT As String = "Project Version #1.000.000.001"
Private Const MODULE_CONSTANT As String = "Something relevant to this Module"

Public Sub ExampleDeclaration ()
Const SOME_CONSTANT As String = "Hello World"
Const PI As Double = 3.141592653

End Sub

Whilst it can be considered good practice to specify Constant types, it isn't strictly required. Not
specifying the type will still result in the correct type:

Public Const GLOBAIL_CONSTANT = "Project Version #1.000.000.001" 'Still a string
Public Sub ExampleDeclaration ()

Const SOME_CONSTANT = "Hello World" 'Still a string

Const DERIVED_CONSTANT = SOME_CONSTANT 'DERIVED_CONSTANT is also a string
Const VAR_CONSTANT As Variant = SOME_CONSTANT 'VAR_CONSTANT is Variant/String
Const PI = 3.141592653 'Still a double

Const DERIVED_PI = PI 'DERIVED_PI is also a double

Const VAR_PI As Variant = PI '"VAR_PI is Variant/Double

End Sub

Note that this is specific to Constants and in contrast to variables where not specifying the type

https://riptutorial.com/ 108

results in a Variant type.

While it is possible to explicitly declare a constant as a String, it is not possible to declare a
constant as a string using fixed-width string syntax

'This is a valid 5 character string constant
Const FOO As String = "ABCDE"

'This is not valid syntax for a 5 character string constant

Const FOO As String * 5 = "ABCDE"

Access Modifiers

The pim statement should be reserved for local variables. At module-level, prefer explicit access
modifiers:

* private foOr private fields, which can only be accessed within the module they're declared in.

* public for public fields and global variables, which can be accessed by any calling code.

» rriend for variables public within the project, but inaccessible to other referencing VBA
projects (relevant for add-ins)

* Global Can also be used for runiic fields in standard modules, but is illegal in class modules
and is obsolete anyway - prefer the rub1ic modifier instead. This modifier isn't legal for
procedures either.

Access modifiers are applicable to variables and procedures alike.

Private ModuleVariable As String
Public GlobalVariable As String

Private Sub ModuleProcedure ()

ModuleVariable = "This can only be done from within the same Module"
End Sub
Public Sub GlobalProcedure ()

GlobalVariable = "This can be done from any Module within this Project"

End Sub

O_ption Private Module

Public parameterless sub procedures in standard modules are exposed as macros and can be
attached to controls and keyboard shortcuts in the host document.

Conversely, public Function procedures in standard modules are exposed as user-defined
functions (UDF's) in the host application.

Specifying option private Module at the top of a standard module prevents its members from being

https://riptutorial.com/ 109

exposed as macros and UDF's to the host application.
Type Hints

Type Hints are heavily discouraged. They exist and are documented here for historical and
backward-compatibility reasons. You should use the as [pataType] Syntax instead.

Public Sub ExampleDeclaration ()

Dim somelInteger% '$ Equivalent to "As Integer"
Dim someLongé& '¢ Equivalent to "As Long"

Dim someDecimal@ '@ Equivalent to "As Currency"
Dim someSingle! '! Equivalent to "As Single"
Dim someDouble# '# Equivalent to "As Double"
Dim someString$ '$ Equivalent to "As String"

Dim someLongLong” '~ Equivalent to "As LongLong" in 64-bit VBA hosts
End Sub

Type hints significantly decrease code readability and encourage a legacy Hungarian Notation
which also hinders readability:

Dim strFile$
Dim iFile%

Instead, declare variables closer to their usage and name things for what they're used, not after
their type:

Dim path As String
Dim handle As Integer

Type hints can also be used on literals, to enforce a specific type. By default, a numeric literal
smaller than 32,768 will be interpreted as an integer literal, but with a type hint you can control
that:

Dim foo 'implicit Variant

foo = 42& ' foo is now a Long
foo = 42# ' foo is now a Double
Debug.Print TypeName (42!) ' prints "Single"

Type hints are usually not needed on literals, because they would be assigned to a variable
declared with an explicit type, or implicitly converted to the appropriate type when passed as
parameters. Implicit conversions can be avoided using one of the explicit type conversion
functions:

'Calls procedure DoSomething and passes a literal 42 as a Long using a type hint
DoSomething 42&

'Calls procedure DoSomething and passes a literal 42 explicitly converted to a Long
DoSomething CLng (42)

https://riptutorial.com/ 110

https://en.wikipedia.org/wiki/Hungarian_notation

%ng-returning built-in functions

The majority of the built-in functions that handle strings come in two versions: A loosely typed
version that returns a variant, and a strongly typed version (ending with s) that returns a string.
Unless you are assigning the return value to a variant, you should prefer the version that returns a
string - Otherwise there is an implicit conversion of the return value.

Debug.Print Left (foo, 2) 'Left returns a Variant
Debug.Print Left$ (foo, 2) 'Left$ returns a String

These functions are:

» VBA.Conversion.Error -> VBA.Conversion.Error$

» VBA.Conversion.Hex -> VBA.Conversion.Hex$

» VBA.Conversion.Oct -> VBA.Conversion.Oct$

» VBA.Conversion.Str -> VBA.Conversion.Str$

» VBA.FileSystem.CurDir -> VBA.FileSystem.CurDir$

* VBA.[_HiddenModule].Input -> VBA.[_HiddenModule].Input$
* VBA.[_HiddenModule].InputB -> VBA.[_HiddenModule].InputB$
» VBA.Interaction.Command -> VBA.Interaction.Command$
« VBA.Interaction.Environ -> VBA.Interaction.Environ$

» VBA.Strings.Chr -> VBA.Strings.Chr$

* VBA.Strings.ChrB -> VBA.Strings.ChrB$

* VBA.Strings.ChrW -> VBA.Strings.Chrw$

* VBA.Strings.Format -> VBA.Strings.Format$

« VBA.Strings.LCase -> VBA.Strings.LCase$

» VBA.Strings.Left -> VBA.Strings.Left$

* VBA.Strings.LeftB -> VBA.Strings.LeftB$

* VBA.Strings.LTtrim -> VBA.Strings.LTrim$

* VBA.Strings.Mid -> VBA.Strings.Mid$

« VBA.Strings.MidB -> VBA.Strings.MidB$

» VBA.Strings.Right -> VBA.Strings.Right$

« VBA.Strings.RightB -> VBA.Strings.RightB$

e VBA.Strings.RTrim -> VBA.Strings.RTrim$

» VBA.Strings.Space -> VBA.Strings.Space$

e VBA.Strings.Str -> VBA.Strings.Str$

» VBA.Strings.String -> VBA.Strings.String$

e VBA.Strings.Trim -> VBA.Strings.Trim$

» VBA.Strings.UCase -> VBA.Strings.UCase$

Note that these are function aliases, not quite type hints. The rett function corresponds to the
hidden s_var_rert function, while the rerts version corresponds to the hidden s_str_rert function.

In very early versions of VBA the s sign isn't an allowed character and the function name had to be
enclosed in square brackets. In Word Basic, there were many, many more functions that returned
strings that ended in $.

https://riptutorial.com/ 111

Declaring Fixed-Length Strings

In VBA, Strings can be declared with a specific length; they are automatically padded or truncated
to maintain that length as declared.

Public Sub TwoTypesOfStrings ()

End

Dim FixedLengthString As String * 5
Dim NormalString As String

Debug.Print FixedLengthString
Debug.Print NormalString

FixedLengthString = "123"
NormalString = "456"
FixedLengthString = "123456"
NormalString = "456789"

Sub

When to use a Static variable

A Static variable declared locally is not destructed and does not lose its value when the Sub
procedure is exited. Subsequent calls to the procedure do not require re-initialization or

declares a string of 5 characters

Prints " "

Prints ""

FixedLengthString now equals "123 "
NormalString now equals "456"

FixedLengthString now equals "12345"
NormalString now equals "456789"

assignment although you may want to 'zero' any remembered value(s).

These are particularly useful when late binding an object in a 'helper’ sub that is called repeatedly.

Snippet 1: Reuse a Scripting.Dictionary object across many worksheets

Option Explicit

Sub

End

Sub

main ()
Dim w As Long

For w = 1 To Worksheets.Count

processDictionary ws:=Worksheets (w)

Next w
Sub

processDictionary (ws As Worksheet)
Dim i As Long, rng As Range

Static dict As Object

If dict Is Nothing Then

'initialize and set the dictionary object

Set dict = CreateObiject ("Scripting.Dictionary")

dict.CompareMode = vbTextCompare
Else

'remove all pre-existing dictionary entries

' this may or may not be desired if a single dictionary of entries

' from all worksheets is preferred

dict.RemoveAll
End If

https://riptutorial.com/

112

http://www.riptutorial.com/vba/topic/3667/scripting-dictionary-object

With ws

'work with a fresh dictionary object for each worksheet

' without constructing/destructing a new object each time

' or do not clear the dictionary upon subsequent uses and

' build a dictionary containing entries from all worksheets

End With
End Sub

Snippet 2: Create a worksheet UDF that late binds the VBScript.RegExp object

Option Explicit

Function numbersOnly (str As String,
Optional delim As String = ", ")
Dim n As Long, nums () As Variant

Static rgx As Object, cmat As Object

'with rgx as static, it only has to be created once
'this is beneficial when filling a long column with this UDF
If rgx Is Nothing Then
Set rgx = CreateObject ("VBScript.RegExp")
Else
Set cmat = Nothing
End If

With rgx
.Global = True
.MultilLine = True
.Pattern = "[0-9]1{1,999}"
If .Test(str) Then
Set cmat = .Execute(str)
'resize the nums array to accept the matches
ReDim nums (cmat.Count - 1)
'populate the nums array with the matches
For n = LBound (nums) To UBound (nums)
nums (n) = cmat.Item(n)
Next n
'convert the nums array to a delimited string
numbersOnly = Join (nums, delim)
Else
numbersOnly = vbNullString
End If
End With
End Function

https://riptutorial.com/ 113

B500000 ~ frx | =numbersonly(A500000)

A B C D
1 serial no numbers
2 abcl123xy 123
3 thisland2that3 1,2, 3
4 only text

5 1234567890-09876545321 1234567890, 0987654321
499997 |1234567890-0987654321 1234567890, 0987654321
499998 | anly text
499999 |thisland2that3 1,2, 3
500000 abc123xy [123 |

ChmininA

Example of UDF with Static object filled through a half-million rows

*Elapsed times to fill 500K rows with UDF:
- with Dim rgx As Object: 148.74 seconds
- with Static rgx As Object: 26.07 seconds
* These should be considered for relative comparison only. Your own results will vary according to the

complexity and
scope of the operations performed.

Remember that a UDF is not calculated once in the lifetime of a workbook. Even a non-volatile

UDF will recalculate whenever the values within the range(s) it references are subject to change.
Each subsequent recalculation event only increases the benefits of a statically declared variable.

» A Static variable is available for the lifetime of the module, not the procedure or function in
which it was declared and assigned.
« Static variables can only be declared locally.

 Static variable hold many of the same properties of a private module level variable but with a

more restricted scope.

Related reference: Static (Visual Basic)

Read Declaring Variables online: https://riptutorial.com/vba/topic/877/declaring-variables

https://riptutorial.com/

114

http://i.stack.imgur.com/BN6gX.png
https://msdn.microsoft.com/en-us/library/z2cty7t8.aspx
https://riptutorial.com/vba/topic/877/declaring-variables

C_hapter 21: Error Handling

Examples

Avoiding error conditions

When a runtime error occurs, good code should handle it. The best error handling strategy is to
write code that checks for error conditions and simply avoids executing code that results in a
runtime error.

One key element in reducing runtime errors, is writing small procedures that do one thing. The
fewer reasons procedures have to fail, the easier the code as a whole is to debug.

Avoiding runtime error 91 - Object or With block variable not set:

This error will be raised when an object is used before its reference is assigned. One might have a
procedure that receives an object parameter:

Private Sub DoSomething (ByVal target As Worksheet)
Debug.Print target.Name
End Sub

If target iSN't assigned a reference, the above code will raise an error that is easily avoided by
checking if the object contains an actual object reference:

Private Sub DoSomething (ByVal target As Worksheet)
If target Is Nothing Then Exit Sub
Debug.Print target.Name

End Sub

If target isN't assigned a reference, then the unassigned reference is never used, and no error
occurs.

This way of early-exiting a procedure when one or more parameter isn't valid, is called a guard
clause.

Avoiding runtime error 9 - Subscript out of range:

This error is raised when an array is accessed outside of its boundaries.

Private Sub DoSomething (ByVal index As Integer)
Debug.Print ActiveWorkbook.Worksheets (index)
End Sub

Given an index greater than the number of worksheets in the activeworkbook, the above code will
raise a runtime error. A simple guard clause can avoid that:

https://riptutorial.com/ 115

Private Sub DoSomething (ByVal index As Integer)
If index > ActiveWorkbook.Worksheets.Count Or index <= 0 Then Exit Sub
Debug.Print ActiveWorkbook.Worksheets (index)

End Sub

Most runtime errors can be avoided by carefully verifying the values we're using before we use
them, and branching on another execution path accordingly using a simple 1 statement - in guard
clauses that makes no assumptions and validates a procedure's parameters, or even in the body
of larger procedures.

On Error statement

Even with guard clauses, one cannot realistically always account for all possible error conditions
that could be raised in the body of a procedure. The on Error coro Statement instructs VBA to jump
to a line label and enter "error handling mode" whenever an unexpected error occurs at runtime.
After handling an error, code can resume back into "normal” execution using the resume keyword.

Line labels denote subroutines: because subroutines originate from legacy BASIC code and uses
GoTo and cosub juMps and return Statements to jump back to the "main” routine, it's fairly easy to
write hard-to-follow spaghetti code if things aren't rigorously structured. For this reason, it's best
that:

» aprocedure has one and only one error-handling subroutine
« the error-handling subroutine only ever runs in an error state

This means a procedure that handles its errors, should be structured like this:

Private Sub DoSomething ()
On Error GoTo CleanFail

'procedure code here

CleanExit:
'cleanup code here
Exit Sub

CleanFail:
'error-handling code here
Resume CleanExit

End Sub

Error Handling Strategies

Sometimes you want to handle different errors with different actions. In that case you will inspect
the global exr object, which will contain information about the error that was raised - and act
accordingly:

CleanExit:

https://riptutorial.com/ 116

Exit Sub

CleanFail:
Select Case Err.Number
Case 9
MsgBox "Specified number doesn't exist. Please try again.", vbExclamation
Resume
Case 91

'woah there, this shouldn't be happening.

Stop 'execution will break here

Resume 'hit F8 to jump to the line that raised the error
Case Else

MsgBox "An unexpected error has occurred:" & vbNewLine & Err.Description,

vbCritical
Resume CleanExit
End Select
End Sub

As a general guideline, consider turning on the error handling for entire subroutine or function, and
handle all the errors that may occur within its scope. If you need to only handle errors in the small
section section of the code -- turn error handling on and off a the same level:

Private Sub DoSomething (CheckValue as Long)

If CheckValue = 0 Then

On Error GoTo ErrorHandler ' turn error handling on
' code that may result in error
On Error GoTo O ' turn error handling off - same level
End If
CleanExit:
Exit Sub
ErrorHandler:

' error handling code here

' do not turn off error handling here
Resume

End Sub

Line numbers

VBA supports legacy-style (e.g. QBASIC) line numbers. The er1 hidden property can be used to
identify the line number that raised the last error. If you're not using line numbers, er1 will only ever
return O.

Sub DoSomething ()

10 On Error GoTo 50
20 Debug.Print 42 / O
30 Exit Sub

40
50 Debug.Print "Error raised on line " & Erl ' returns 20
End Sub

https://riptutorial.com/ 117

If you are using line numbers, but not consistently, then ex1 will return the last line number before
the instruction that raised the error.

Sub DoSomething ()

10 On Error GoTo 50
Debug.Print 42 / O

30 Exit Sub

50 Debug.Print "Error raised on line " & Erl 'returns 10
End Sub

Keep in mind that er1 also only has 1nteger precision, and will silently overflow. This means that
line numbers outside of the integer range will give incorrect results:

Sub DoSomething ()
99997 On Error GoTo 99999
99998 Debug.Print 42 / 0
99999
Debug.Print Erl 'Prints 34462
End Sub

The line number isn't quite as relevant as the statement that caused the error, and numbering
lines quickly becomes tedious and not quite maintenance-friendly.

Resume keyword

An error-handling subroutine will either:

 run to the end of the procedure, in which case execution resumes in the calling procedure.
* or, use the resume keyword to resume execution inside the same procedure.

The resume keyword should only ever be used inside an error handling subroutine, because if VBA
encounters resume Without being in an error state, runtime error 20 "Resume without error" is
raised.

There are several ways an error-handling subroutine may use the resume keyword:

* resume USed alone, execution continues on the statement that caused the error. If the error
isn't actually handled before doing that, then the same error will be raised again, and
execution might enter an infinite loop.

* Rresume Next cOntinues execution on the statement immediately following the statement
that caused the error. If the error isn't actually handled before doing that, then execution is
permitted to continue with potentially invalid data, which may result in logical errors and
unexpected behavior.

* Resume [line label] CONtinues execution at the specified line label (or line number, if you're
using legacy-style line numbers). This would typically allow executing some cleanup code
before cleanly exiting the procedure, such as ensuring a database connection is closed
before returning to the caller.

https://riptutorial.com/ 118

http://www.riptutorial.com/vba/example/11777/integer

The on error Statement itself can use the resume keyword to instruct the VBA runtime to effectively

ignore all errors.

If the error isn't actually handled before doing that, then execution is permitted to
continue with potentially invalid data, which may result in logical errors and
unexpected behavior.

The emphasis above cannot be emphasized enough. On Error Resume Next effectively ignores

all errors and shoves them under the carpet. A program that blows up with a runtime error

given invalid input is a better program than one that keeps running with unknown/unintended data
- be it only because the bug is much more easily identifiable. on Error resume Next can easily hide

bugs.

The on Error Statement is procedure-scoped - that's why there should normally be only one, single

such on error Statement in a given procedure.

However sometimes an error condition can't quite be avoided, and jumping to an error-handling

subroutine only to resume Next just doesn't feel right. In this specific case, the known-to-possibly-

fail statement can be wrapped between two on error Statements:

On Error Resume Next
[possibly-failing statement]
Err.Clear 'resets current error
On Error GoTo 0

The on Error GoTo 0 iNstruction resets error handling in the current procedure, such that any

further instruction causing a runtime error would be unhandled within that procedure and instead

passed up the call stack until it is caught by an active error handler. If there is no active error
handler in the call stack, it will be treated as an unhandled exception.

Public Sub Caller()
On Error GoTo Handler

Callee

Exit Sub
Handler:

Debug.Print "Error " & Err.Number & " in Caller."
End Sub

Public Sub Callee()
On Error GoTo Handler

Err.Raise 1 'This will be handled by the Callee handler.
On Error GoTo 0 'After this statement, errors are passed up the stack.
Err.Raise 2 'This will be handled by the Caller handler.
Exit Sub
Handler:

https://riptutorial.com/

119

Debug.Print "Error " & Err.Number & " in Callee."
Resume Next
End Sub

Custom Errors

Often when writing a specialized class, you'll want it to raise its own specific errors, and you'll want
a clean way for user/calling code to handle these custom errors. A neat way to achieve this is by
defining a dedicated enun type:

Option Explicit

Public Enum FoobarError
Err_FooWasNotBarred = vbObjectError + 1024
Err_BarNotInitialized
Err_SomethingElseHappened

End Enum

Using the vbobjecterror BUilt-in constant ensures the custom error codes don't overlap with
reserved/existing error codes. Only the first enum value needs to be explicitly specified, for the
underlying value of each =num member is 1 greater than the previous member, so the underlying
value of err_BarNotInitialized IS iMPpIiCitly vbobjectError + 1025.

Raising your own runtime errors

A runtime error can be raised using the err.raise Statement, so the custom err_roowasNotBarred
error can be raised as follows:

Err.Raise Err_FooWasNotBarred

The err.raise method can also take custom pescription and source parameters - for this reason it's
a good idea to also define constants to hold each custom error's description:

Private Const Msg_FooWasNotBarred As String = "The foo was not barred."
Private Const Msg_BarNotInitialized As String = "The bar was not initialized."

And then create a dedicated private method to raise each error:

Private Sub OnFooWasNotBarredError (ByVal source As String)
Err.Raise Err_ FooWasNotBarred, source, Msg_FooWasNotBarred
End Sub

Private Sub OnBarNotInitializedError (ByVal source As String)

Err.Raise Err_BarNotInitialized, source, Msg_BarNotInitialized
End Sub

The class' implementation can then simply call these specialized procedures to raise the error:

Public Sub DoSomething ()
'raises the custom 'BarNotInitialized' error with "DoSomething" as the source:

https://riptutorial.com/ 120

If Me.Bar Is Nothing Then OnBarNotInitializedError "DoSomething"

End Sub

The client code can then handle £rr_sarnot1nitialized as it would any other error, inside its own
error-handling subroutine.

Note: the legacy error keyword can also be used in place of err.raise, butit's
obsolete/deprecated.

Read Error Handling online: https://riptutorial.com/vba/topic/3211/error-handling

https://riptutorial.com/ 121

https://riptutorial.com/vba/topic/3211/error-handling

C_hapter 22: Events

Syntax

« Source Module; [Public] Event [identifier] ([argument_list])

« Handler Module: Dim|Private|Public WithEvents [identifier] As [type]

Remarks

* An event can only be rub1ic. The modifier is optional because class module members
(including events) are implicitly pub1ic by default.

* Auwithevents Variable can be private Of Public, but not rriena. The modifier is mandatory
because withevents iSn't a keyword that declares a variable, but a modifier keyword part of
the variable declaration syntax. Hence the pim keyword must be used if an access modifier
isn't present.

Examples

Sources and Handlers

What are events?

VBA is event-driven: VBA code runs in response to events raised by the host application or the
host document - understanding events is fundamental to understanding VBA.

APIs often expose objects that raise a number of events in response to various states. For
example an excel.application Object raises an event whenever a new workbook is created,
opened, activated, or closed. Or whenever a worksheet gets calculated. Or just before a file is
saved. Or immediately after. A button on a form raises a ci1ick event when the user clicks it, the
user form itself raises an event just after it's activated, and another just before it's closed.

From an API perspective, events are extension points: the client code can chose to implement
code that handles these events, and execute custom code whenever these events are fired: that's
how you can execute your custom code automatically every time the selection changes on any
worksheet - by handling the event that gets fired when the selection changes on any worksheet.

An object that exposes events is an event source. A method that handles an event is a handler.

H_andlers

https://riptutorial.com/ 122

VBA document modules (e.g. Thisbocument, ThisWorkbook, Sheet1, €C.) and userrorm modules are
class modules that implement special interfaces that expose a number of events. You can browse
these interfaces in the left-side dropdown at the top of the code pane:

(General) | o | (Declarations) o |

[{General) |
Workbook L

The right-side dropdown lists the members of the interface selected in the left-side dropdown:

|W{rrksheet v| SelectionChange |v

Activate .
BeforeDoubleClick
BeforeRightClick

Calculate

Change

End Sub Deactivate

FollowHyperlink
PivotTableAftervValueChange
PivotTableBeforeAllocateChanges
PivoiTableBeforeCommitChanges
PivotTableBeforeliscardChanges
PivotTableChangeSync
PivotTablel pdate

SelectionChange

Cption Explicit

Private Sub Worksheet SelectionChange (§

The VBE automatically generates an event handler stub when an item is selected on the right-side
list, or navigates there if the handler exists.

You can define a module-scoped withevents variable in any module:

Private WithEvents Foo As Workbook
Private WithEvents Bar As Worksheet

Each witnhevents declaration becomes available to select from the left-side dropdown. When an
event is selected in the right-side dropdown, the VBE generates an event handler stub named
after the withevents Object and the name of the event, joined with an underscore:

Private WithEvents Foo As Workbook
Private WithEvents Bar As Worksheet

Private Sub Foo_Open ()

End Sub

Private Sub Bar_SelectionChange (ByVal Target As Range)
End Sub

Only types that expose at least one event can be used with withevents, and withevents declarations
cannot be assigned a reference on-the-spot with the new keyword. This code is illegal:

Private WithEvents Foo As New Workbook 'illegal

https://riptutorial.com/ 123

The object reference must be set explicitly; in a class module, a good place to do that is often in
the ciass_tnitialize handler, because then the class handles that object's events for as long as its
instance exists.

sSources

Any class module (or document module, or user form) can be an event source. Use the event
keyword to define the signature for the event, in the declarations section of the module:

Public Event SomethingHappened(ByVal something As String)

The signature of the event determines how the event is raised, and what the event handlers will
look like.

Events can only be raised within the class they're defined in - client code can only handle them.
Events are raised with the raiservent keyword; the event's arguments are provided at that point:

Public Sub DoSomething ()
RaiseEvent SomethingHappened("hello")
End Sub

Without code that handles the somethinghappened €vent, running the posomething procedure will still
raise the event, but nothing will happen. Assuming the event source is the above code in a class
named something, this code in Thisworkbook WOUld show a message box saying "hello” whenever
test.DoSomething gets called:

Private WithEvents test As Something

Private Sub Workbook_Open ()
Set test = New Something
test.DoSomething

End Sub

Private Sub test_SomethingHappened (ByVal bar As String)

'this procedure runs whenever 'test' raises the 'SomethingHappened' event
MsgBox bar

End Sub

Passing data back to the event source

Using parameters passed by reference

An event may define a syrer parameter meant to be returned to the caller:

Public Event BeforeSomething(ByRef cancel As Boolean)
Public Event AfterSomething()

https://riptutorial.com/ 124

Public Sub DoSomething ()
Dim cancel As Boolean
RaiseEvent BeforeSomething(cancel)
If cancel Then Exit Sub

'todo: actually do something

RaiseEvent AfterSomething
End Sub

If the Beforesomething €vent has a handler that sets its cance1 parameter to rrue, then when
execution returns from the handler, cance1 will be True and aftersomething Will never be raised.

Private WithEvents foo As Something

Private Sub foo_BeforeSomething (ByRef cancel As Boolean)
cancel = MsgBox ("Cancel?", vbYesNo) = vbYes
End Sub

Private Sub foo_AfterSomething/()
MsgBox "Didn't cancel!"
End Sub

Assuming the foo Object reference is assigned somewhere, when foo.posomething runs, a message
box prompts whether to cancel, and a second message box says "didn't cancel" only when no was
selected.

Gng mutable objects

You could also pass a copy of a mutable object syva1, and let handlers modify that object's
properties; the caller can then read the modified property values and act accordingly.

'class module ReturnBoolean
Option Explicit
Private encapsulated As Boolean

Public Property Get ReturnValue () As Boolean

'Attribute ReturnValue.VB_UserMemId = 0
ReturnValue = encapsulated

End Property

Public Property Let ReturnValue (ByVal value As Boolean)

encapsulated = value
End Property

Combined with the variant type, this can be used to create rather non-obvious ways to return a
value to the caller:
Public Event SomeEvent (ByVal foo As Variant)

Public Sub DoSomething ()
Dim result As ReturnBoolean

https://riptutorial.com/ 125

result = New ReturnBoolean

RaiseEvent SomeEvent (result)

If result Then ' If result.ReturnValue Then
'handler changed the value to True

Else
'handler didn't modify the value
End If
End Sub

The handler would look like this:

Private Sub source_SomeEvent (ByVal foo As Variant) 'foo is actually a ReturnBoolean object
foo = True 'True is actually assigned to foo.ReturnValue, the class' default member
End Sub

Read Events online: https://riptutorial.com/vba/topic/5278/events

https://riptutorial.com/ 126

https://riptutorial.com/vba/topic/5278/events

C_hapter 23:. Flow control structures

Examples

Select Case

select case Can be used when many different conditions are possible. The conditions are checked

from top to bottom and only the first case that match will be executed.

Sub TestCase ()
Dim MyVar As String

Select Case MyVar 'We Select the Variable MyVar to Work with

Case "Hello" 'Now we simply check the cases we want to check
MsgBox "This Case"

Case "World"
MsgBox "Important”

Case "How"
MsgBox "Stuff"

Case "Are"
MsgBox "I'm running out of ideas"

Case "You?", "Today" 'You can separate several conditions with a comma
MsgBox "Uuuhm..." 'if any is matched it will go into the case
Case Else 'If none of the other cases is hit
MsgBox "All of the other cases failed"
End Select

Dim i As Integer
Select Case 1
Case Is > 2 '""Is" can be used instead of the variable in conditions.
MsgBox "i is greater than 2"

'Case 2 < Is '""Is" can only be used at the beginning of the condition.
'Case Else is optional
End Select
End Sub

The logic of the se1ect case block can be inverted to support testing of different variables too, in

this kind of scenario we can also use logical operators:

Dim x As Integer
Dim y As Integer

X 2
y =5

Select Case True
Case x > 3
MsgBox "x is greater than 3"
Case y < 2
MsgBox "y is less than 2"
Case x = 1
MsgBox "x is equal to 1"
Case x = 2 Xor y = 3
MsgBox "Go read about ""Xor"""

https://riptutorial.com/

127

Case Not y = 5
MsgBox "y is not 5"
Case x = 3 Or x = 10
MsgBox "x = 3 or 10"
Case y < 10 And x < 10
MsgBox "x and y are less than 10"
Case Else
MsgBox "No match found"
End Select

Case statements can also use arithmetic operators. Where an arithmetic operator is being used
against the seiect case vValue it should be preceded with the 1s keyword:

Dim x As Integer

Select Case x
Case 1
MsgBox "x equals 1"
Case 2, 3, 4
MsgBox "x is 2, 3 or 4"
Case 7 To 10
MsgBox "x is between 7 and 10 (inclusive)"
Case Is < 2
MsgBox "x is less than one"
Case Is >= 7
MsgBox "x is greater than or equal to 7"
Case Else
MsgBox "no match found"
End Select

For Each loop
The ror rach lOOp construct is ideal for iterating all elements of a collection.

Public Sub IterateCollection(ByVal items As Collection)

'For Each iterator must always be variant
Dim element As Variant

For Each element In items
'assumes element can be converted to a string
Debug.Print element

Next

End Sub

Use ror each When iterating object collections:

Dim sheet As Worksheet

For Each sheet In ActiveWorkbook.Worksheets
Debug.Print sheet.Name

Next

https://riptutorial.com/

128

Avoid ror Each When iterating arrays; a ror loop will offer significantly better performance with
arrays. Conversely, a ror rach loop will offer better performance when iterating a coliection.

Syntax

For Each [item] In [collection]
[statements]
Next [item]

The ~next keyword may optionally be followed by the iterator variable; this can help clarify nested
loops, although there are better ways to clarify nested code, such as extracting the inner loop into
its own procedure.

Dim book As Workbook
For Each book In Application.Workbooks

Debug.Print book.FullName

Dim sheet As Worksheet
For Each sheet In ActiveWorkbook.Worksheets
Debug.Print sheet.Name
Next sheet
Next book

Do loop

Public Sub DoLoop ()
Dim entry As String
entry = ""
'Equivalent to a While loop will ask for strings until "Stop" in given
'Prefer using a While loop instead of this form of Do loop
Do While entry <> "Stop"
entry = InputBox ("Enter a string, Stop to end")
Debug.Print entry
Loop

'Equivalent to the above loop, but the condition is only checked AFTER the
'first iteration of the loop, so it will execute even at least once even
'if entry is equal to "Stop" before entering the loop (like in this case)
Do

entry = InputBox ("Enter a string, Stop to end")

Debug.Print entry
Loop While entry <> "Stop"

'Equivalent to writing Do While Not entry="Stop"
'
'Because the Until is at the top of the loop, it will
'not execute because entry is still equal to "Stop"
'when evaluating the condition
Do Until entry = "Stop"
entry = InputBox ("Enter a string, Stop to end")
Debug.Print entry
Loop

https://riptutorial.com/ 129

'Equivalent to writing Do ... Loop While Not i >= 100
Do
entry = InputBox ("Enter a string, Stop to end")
Debug.Print entry
Loop Until entry = "Stop"
End Sub

While loop

'Will return whether an element is present in the array

Public Function IsInArray(values () As String, ByVal whatToFind As String) As Boolean
Dim i As Integer
i =0

While 1 < UBound(values) And values (i) <> whatToFind
i=14+1

Wend

IsInArray = values (i) = whatToFind
End Function

For loop

The ror loOp is used to repeat the enclosed section of code a given number of times. The following
simple example illustrates the basic syntax:

Dim i1 as Integer 'Declaration of i

For i = 1 to 10 'Declare how many times the loop shall be executed
Debug.Print i 'The piece of code which is repeated

Next i 'The end of the loop

The code above declares an Integer i. The ror loop assigns every value between 1 and 10 to 1
and then executes pebug.print i - i.e. the code prints the numbers 1 through 10 to the immediate
window. Note that the loop variable is incremented by the vext Statement, that is after the enclosed
code executes as opposed to before it executes.

By default, the counter will be incremented by 1 each time the loop executes. However, a step can
be specified to change the amount of the increment as either a literal or the return value of a
function. If the starting value, ending value, or step value is a floating point number, it will be
rounded to the nearest integer value. step can be either a positive or negative value.

Dim i As Integer
For 1 = 1 To 10 Step 2

Debug.Print i 'Prints 1, 3, 5, 7, and 9
Next

In general a ror loop would be used in situations where it is known before the loop starts how
many times to execute the enclosed code (otherwise a po Or while l0Op May be more appropriate).
This is because the exit condition is fixed after the first entry into loop, as this code demonstrates:

https://riptutorial.com/ 130

Private Iterations As Long 'Module scope

Public Sub Example ()
Dim i As Long
Iterations = 10
For i = 1 To Iterations
Debug.Print Iterations 'Prints 10 through 1, descending.
Iterations = Iterations - 1
Next
End Sub

A ror loop can be exited early with the exit ror Statement:

Dim i As Integer

For i = 1 To 10
If i > 5 Then
Exit For
End If
Debug.Print i 'Prints 1, 2, 3, 4, 5 before loop exits early.
Next

Read Flow control structures online: https://riptutorial.com/vba/topic/1873/flow-control-structures

https://riptutorial.com/ 131

https://riptutorial.com/vba/topic/1873/flow-control-structures

C_hapter 24 Frequently used string
manipulation

Introduction

Quick examples for MID LEFT and RIGHT string functions using INSTR FIND and LEN.

How do you find the text between two search terms (Say: after a colon and before a comma)?
How do you get the remainder of a word (using MID or using RIGHT)? Which of these functions
use Zero-based params and return codes vs One-based? What happens when things go wrong?
How do they handle empty strings, unfound results and negative numbers?

Examples

String manipulation frequently used examples

Better MID() and other string extraction examples, currently lacking from the web. Please help me
make a good example, or complete this one here. Something like this:

DIM strEmpty as String, strNull as String, theText as String
DIM idx as Integer

DIM letterCount as Integer

DIM result as String

strNull = NOTHING

strEmpty = ""
theText = "1234, 78910"
' Extract the word after the comma ", " and before "910" result: "78" **x*

' Get index (place) of comma using INSTR
idx = ... ' some explanation here
if idx < ... ' check if no comma found in text

' or get index of comma using FIND

idx = ... ' some explanation here... Note: The difference is...
if idx < ... ' check if no comma found in text
result = MID(theText, ..., LEN(...

' Retrieve remaining word after the comma
result = MID (theText, idx+1, LEN (theText) - idx+1)

' Get word until the comma using LEFT
result = LEFT (theText, idx - 1)

' Get remaining text after the comma-and-space using RIGHT
E@SULE = oo

https://riptutorial.com/ 132

' What happens when things go wrong

result = MID (strNothing, 1, 2) ' this causes ...

result = MID

result = MID
result = MID (theText, 0, 2)
result = MID (theText, 2, 0)
result = MID (theText -1, 2)
result = MID (theText 2, -1)

idx = INSTR(strNothing, "123")
INSTR (theText, strNothing)
idx INSTR (theText, strEmpty)

i = LEN(strEmpty)

i = LEN(strNothing) '...

(
(
(
(
(
(

idx

strEmpty, 1, 2) ' which causes...
result = MID (theText, 30, 2) ' and now...
theText, 2, 999) ' no worries...

Please feel free to edit this example and make it better. As long as it remains clear, and has in it

common usage practices.

Read Frequently used string manipulation online: https://riptutorial.com/vba/topic/8890/frequently-

used-string-manipulation

https://riptutorial.com/

133

https://riptutorial.com/vba/topic/8890/frequently-used-string-manipulation
https://riptutorial.com/vba/topic/8890/frequently-used-string-manipulation

C_hapter 25: Interfaces

Introduction

An Interface is a way to define a set of behaviors that a class will perform. The definition of an

interface is a list of method signatures (name, parameters, and return type). A class having all of

the methods is said to "implement” that interface.

In VBA, using interfaces lets the compiler check that a module implements all of its methods. A
variable or parameter can be defined in terms of an interface instead of a specific class.

Examples

Simple Interface - Flyable

The interface r1yabie is a class module with the following code:

Public Sub Fly ()
' No code.
End Sub

Public Function GetAltitude () As Long
' No code.
End Function

A class module, airplane, uses the mmpiements keyword to tell the compiler to raise an error unless

it has two methods: a riyable r1y () SUb and a riyable_cetaltitude () function that returns a rong.

Implements Flyable

Public Sub Flyable_Fly ()
Debug.Print "Flying With Jet Engines!"
End Sub

Public Function Flyable_GetAltitude () As Long
Flyable_GetAltitude = 10000
End Function

A second class module, puck, also implements riyabie:

Implements Flyable

Public Sub Flyable_ Fly ()
Debug.Print "Flying With Wings!"
End Sub

Public Function Flyable_GetAltitude () As Long
Flyable_GetAltitude = 30
End Function

https://riptutorial.com/

134

We can write a routine that accepts any riyabie value, knowing that it will respond to a command
of F1y O Getaltitude:

Public Sub FlyAndCheckAltitude (F As Flyable)
F.Fly
Debug.Print F.GetAltitude

End Sub

Because the interface is defined, the IntelliSense popup window will show r1y and cetaltitude for v

When we run the following code:

Dim MyDuck As New Duck
Dim MyAirplane As New Airplane

FlyAndCheckAltitude MyDuck
FlyAndCheckAltitude MyAirplane

The output is:

Flying With Wings!

30

Flying With Jet Engines!
10000

Note that even though the subroutine is named riyabie_r1y in both airpiane and ouck, it can be
called as r1y when the variable or parameter is defined as riyabie. If the variable is defined
specifically as a puck, it would have to be called as riyabie_riy.

Multiple Interfaces in One Class - Flyable and Swimable

Using the r1yabie example as a starting point, we can add a second interface, swimmabie, With the
following code:

Sub Swim ()
' No code
End Sub

The puck object can tmpiement both flying and swimming:

Implements Flyable
Implements Swimmable

Public Sub Flyable_Fly ()
Debug.Print "Flying With Wings!"
End Sub

Public Function Flyable_GetAltitude () As Long
Flyable_GetAltitude = 30
End Function

https://riptutorial.com/ 135

Public Sub Swimmable_Swim ()
Debug.Print "Floating on the water"
End Sub

A risnh class can implement swinmable, tOO:

Implements Swimmable
Public Sub Swimmable_Swim ()

Debug.Print "Swimming under the water"
End Sub

Now, we can see that the puck object can be passed to a Sub as a riyab1e On one hand, and a
swimmable ON the other:

Sub InterfaceTest ()

Dim MyDuck As New Duck

Dim MyAirplane As New Airplane

Dim MyFish As New Fish

Debug.Print "Fly Check..."

FlyAndCheckAltitude MyDuck
FlyAndCheckAltitude MyAirplane

Debug.Print "Swim Check..."

TrySwimming MyDuck
TrySwimming MyFish

End Sub

Public Sub FlyAndCheckAltitude (F As Flyable)
F.Fly
Debug.Print F.GetAltitude

End Sub

Public Sub TrySwimming (S As Swimmable)
S.Swim
End Sub

The output of this code is:
Fly Check...
Flying With Wings!
30
Flying With Jet Engines!
10000

Swim Check...

https://riptutorial.com/ 136

Floating on the water
Swimming under the water

Read Interfaces online: https://riptutorial.com/vba/topic/8784/interfaces

https://riptutorial.com/ 137

https://riptutorial.com/vba/topic/8784/interfaces

C_hapter 26: Macro security and signing of
VBA-projects/-modules

Examples

Create a valid digital self-signed certificate SELFCERT.EXE

To run macros and maintain the security Office applications provide against malicious code, it is
necessary to digitally sign the VBAProject.OTM from the VBA editor > Tools > Digital Signature.

View Insert Format Debug Run [Tools | Add-Ins
EaWr-W: N | g B References...
Additional Controls...

Macros...

Options...
ExcelVBA Properties...

Digital Signature...

Office comes with a utility to create a self-signed digital certificate that you can employ on the PC
to sign your projects.

This utility SELFCERT.EXE is in the Office program folder,
Click on Digital Certificate for VBA Projects to open the certificate wizard.

In the dialog enter a suitable name for the certificate and click OK.

https://riptutorial.com/ 138

https://i.stack.imgur.com/FjwVD.png

Create Digital Certificate @

This program creates a seffsigned digital certificate that bears the name you type
below. This type of cerificate does not verfy your identity.

Since a seff-signed digital cerificate might be a forgery, users will receive a security
waming when they open a file that contains a macro project with a seffsigned
signature.

Cffice will only allow you to trust a self-signed cerfficate on the machine on which it
was created.

A selff-signed certfficate is only for personal use. f you need an authenticated code
signing certificate for signing commencial or broadly distibuted macros, you will
need to cortact a certification authority.

Click here for a list of commercial cerificate authorities

Your cerificate’s name:

Om3r

QK | Cancel

M

If all goes well you will see a confirmation:

Create Digital Certificate @

This program creates a seffsigned digital certificate that bears the name you type
below. This type of cerificate does not verify your identity.

Since a seff-signed digital certificate might be a forgery, users will receive a security

WaMmino wiham thenr aman = fila that ~erdoine = moees eeicet with o oo ed

signaty SelfCert Success

Office n which it
was cri

Successfully created a new certificate for Om3r.
A self-3 ed code
signing will
need t
Click: b ok

L
Your certficate’s name:

Om3r

QK | Cancel

b

You can now close the SELFCERT wizard and turn your attention to the certificate you have

created.

If you try to employ the certificate you have just created and you check its properties

https://riptutorial.com/

139

https://i.stack.imgur.com/tbaZ5.png
https://i.stack.imgur.com/XVtmg.png

Select a Certificate

DY MK
Iszuer: DY RAK
Walid From: 1/1/2016 to 1/1/2022

Om3r
Issuer: Om3r
Walid From: 1/1/2016 to 1/1/2022

iClick here to view certificate prope...!

General | Details I Certification P'aﬂ'1|

@a : Certificate Information

This CA Root certificate is not trusted. To enable trust,
install this certificate in the Trusted Root Certification
Authorities store.

Issued to: Om3r

Issued by: Om3r

valid from 1/ 1f 2016 to 1/ 1f 2022

? You have a private key that corresponds to this certificate.

Issuer Statement

Learn mare about terfificates

Lo |

You will see that the certificate is not trusted and the reason is indicated in the dialog.

The certificate has been created in the Current User > Personal > Certificates store. It needs to go
in Local Computer > Trusted Root Certificate Authorities > Certificates store, so you need to
export from the former and import to the latter.

Pressing the Windows key+r Which will open the 'Run’ Window. then Enter 'mmc’ in the window as

https://riptutorial.com/ 140

https://i.stack.imgur.com/2zTPg.png
https://i.stack.imgur.com/ZJiw2.png

shown below and click 'OK .

'] Run A u

= Type the name of a program, folder, document, or Internet

—_ resource, and Windows will open it for you.

Open: mmcl -

Cancel] ’ Browse...

The Microsoft Management Console will open and look like the following.

ﬁ Consolel - [Console Root] l

ﬁ Eile Action Wiew Favorites Window Help

&= E = HE

| "] Console Root | Marne

There are no items to show in this view.

From the File menu, select Add/Remove Snap-in... Then from the ensuing dialog, double click
Certificates and then click OK

https://riptutorial.com/ 141

https://i.stack.imgur.com/gIi1B.png
https://i.stack.imgur.com/WwrQL.png

Add or Remove Snap-ins

S

Available snap-ins:

Snap-n
=" ActiveX, Control
Aumnrizatiun Manager
e ficates |
Component Services
;é‘ Computer Managem...
ﬁDeuice Manager
=7 Disk Management
@ Event Viewer

~| Folder
\=[Group Policy Object ...
8 1p security Monitor

&, 1p security Policy M. .
|£ Link to Web Address

Vendor

Microsoft Caor. ..
Microsoft Cor. ..
Microsoft Cor. ..
Microsoft Caor. ..
Microsoft Cor. ..
Microsoft Cor. ..
Microsoft and. ..
Microsoft Cor...
Microsoft Caor. ..
Microsoft Cor. ..
Microsoft Cor. ..
Microsoft Caor. ..
Microsoft Cor. ..

-

13

m

Description:

You can select snap-ns for this console from those available on your computer and configure the selected set of snap-ins. For
extensible snap-ns, you can configure which extensions are enabled.

Selected snap-ins:

[] console Root
_H.bj Certificates - Current User

Edit Extensions...

Remove

Mave Up

Mawve Daown

Advanced...

The Certificates snap-n allows you to browse the contents of the certificate stores for yourself, a service, or a computer,

][Cancel]

Expand the dropdown in the left window for Certificates - Current User' and select certificates as
shown below. The center panel will then show the certificates in that location, which will include

the certificate you created earlier:

https://riptutorial.com/

142

https://i.stack.imgur.com/K0dW0.png

ﬁ Consolel - [Console Root\Certificates - Current User'Personal\C

ertificates]

—. sl

ﬁ File Action View Favorites Window Help

e | HE 4= XRE = HE

|| Console Root
4 Eﬁ] Certificates - Current Liser

4 || Personal

|| Certificates
i+ || Trusted Root Certification .
i [| Enterprise Trust
[] Intermediate Certification
i || Active Directory User Objes
i+ | Trusted Publishers
|| Untrusted Certificates
i [| Third-Party Root Certificat
i [| Trusted People
i || Other People
i [Certificate Enrollment Reg
¢ [| Smart Card Trusted Roots

] | r

Issued To
I DYMX

Issued By
DWhAX

Expiration Date

17172022

Inte

Coc

[LLJ

1/1/2022

Personal store contains 3 certificates.

Right click the certificate and select All Tasks > Export:

https://riptutorial.com/

143

https://i.stack.imgur.com/xUFK4.png

’
ﬁ Consalel - [Console Root\Certificates - Current User\Personal\Certificates]

ﬁ File Action View Favorites Window Help

e | HE | XE = HE

| Console Root Issued To - Issued By Expiration Date Inte
4 Iﬁl Certificates - Current User ?ﬁ DYMX DYMX 1/1/2022 Co
<@ Pn.:-_rsona.l . ?ﬂ rmukhtar.omar@dynamex.com Communications Server 11372016 Clie
5 Certificates = Omir 1/1/2022
= || Trusted Root Certification . T -
i [| Enterprise Trust
i [Intermediate Certification , All Tasks Open
B[] Active Directory User Obje . _
& [Trusted Publishers Cut Request Certificate with New Key...
i [Untrusted Certificates Copy Renew Certificate with New Key...
| Third-Party Root Certificat
I i g Trusted Pr:';bple Delete Advanced Operations
i [| Other People Properties Export...
l i || Certificate Enrollment Req Help .
= [| Smart Card Trusted Roots

4 | i Bl i

Export a certificate

.

Export Wizard

https://riptutorial.com/

144

https://i.stack.imgur.com/Rp7Rd.png

-

Certificate Export Wizard

|5

Welcome to the Certificate Export
Wizard

This wizard helps you copy certificates, certificate trust
lists and certificate revocation lists from a certificate
store to your disk.

A certificate, which is issued by a certification autharity, is
a confirmation of your identity and contains information
used to protect data or to establish secure netwaork
connections. A certificate store is the system area where
certificates are kept.

To continue, dick Mext,

« Back Mext =] [Cancel

Click Next

=

Certificate Export Wizard

Export Private Key

You can choose to export the private key with the certificate.

Private keys are password protected. If you want to export the private key with the
certificate, you must type a password on a later page.

Do you want to export the private key with the certificate?

Yes, export the private key

@ Mo, do not export the private key

Mote: The assodated private key is marked as not exportable. Only the certificate

can be exported.

Learn more about exporting private keys

< Back][Mext =][Cancel

https://riptutorial.com/

145

https://i.stack.imgur.com/VlTfq.png
https://i.stack.imgur.com/Fa4jb.png

the Only one pre-selected option will be available, so click 'Next' again:

.
Certificate Export Wizard ﬁ

Export File Format
Certificates can be exported in a variety of file formats.

Select the format you want to use:
@ DER encoded binary ¥, 509 ((CER) 1
(") Base-64 encoded %, 509 {L.CER)
() Cryptographic Message Syntax Standard - PKCS #7 Certificates (.P7E)

Indude all certificates in the certification path if possible

Personal Information Exchange - PKCS #12 (LPFX)

Indude all certificates in the certification path if possible
Delete the private key if the export is successful
Export all extended properties

Microsoft Serialized Certificate Store (L55T)

Learn more about cerfificate file formats

[< Back][Mext =][Cancel]

b

The top item will already be pre-selected. Click Next again and choose a name and location to
save the exported certificate.

https://riptutorial.com/ 146

https://i.stack.imgur.com/tVRfM.png

Certificate Export Wizard @

File to Export
Spedfy the name of the file you want to export

File name:

C:\Temp\Om3r. cer

[< Back][Mext =][Cancel

L

Click Next again to save the certificate
Once focus is returned to the Management Console.

Expand the Certificates menu and from the Trusted Root Certification Authorities menu, select
Certificates.

https://riptutorial.com/ 147

https://i.stack.imgur.com/6xmub.png

ﬁ File Action View Favorites

Window Help

% e = EEE e

ﬁ Consolel - [Console Root\Certificates - Current User\Trusted Root Certification Authornties\Certificates]

_| Console Root Issued To Issued By Expiration Da * || Acti
a Gl ’EéﬁF:f'CEtESI' Current User [Starfield Class 2 Certification A... Starfield Class 2 Certification Auth... 6/29/2034 Cert
— Ter:”jﬂ Certification || Starfield Root Certificate Autho.. Starfield Root Certficate Authorit.. 12/31/2037
4 ;” Cert' f_““t SHNCEHON | = Starfield Services Root Certificat... Starfield Services Root Certificate ... 12/31/2029
ertificates
“ Enterprise Trust [StartCom Certification Authority StartCom Certification Authority 91772036
| | ¥
. [Intermediate Certification [l Thawte Premium Server CA Thawte Premium Server CA 1273172020
" . [Active Directory User Obje [5;/thawte Primary Root CA thawte Prirary Root CA 7/16/2036
. [Trusted Publishers [=lthawte Primary Root CA - G3 thawte Prirary Root CA - G3 12/1/2037
. 7] Untrusted Certificates [l Thawte Server CA Thawte Server CA 1273172020
.] Third-Party Root Certificat 5] Thawte Timestamping CA Thawte Timestarnping CA 12/31/2020
. [Trusted People 5] UTN-USERFirst-Object UTM-USERFirst-Object 1/9/2019
» [| OtherPeople [:]VeriSign Class 3 Public Primary ... VeriSign Class 3 Public Primary Ce... 7/16/2036
. [7] Certificate Enrollment Reqy|| 53] VeriSign Commercial Software ... VeriSign Commercial Software Pu... 1/7/2004 =
» | Smart Card Trusted Roots || (5] VeriSign Trust Network VeriSign Trust Network 8/1/2028
[5;|VeriSign Universal Root Certific... VeriSign Universal Root Certificati... 12/1/2037 -
1 | 1] [I 1] [r
Right click. Select All Tasks and Import
ﬁ Consolel - [Console Root\Certificates - Current User\Trusted Root Certification Authonties\Certificates) l
ﬁ File Action View Favorites Window Help
o3 x@olc=zHE
_| Console Root Issued To Izsued By Expiration Da * || Acti
o G ﬁ?ﬂﬂcates |- Current User 1| I Starfield Class 2 Certification A... Starfield Class 2 Certification Auth... 6/29/2034 Cen
> . Ter:”;ﬂ Cortificat [/ Starfield Root Certificate Autho... Starfield Root Certificate Authorit.. 12/31/2037
4 ;r.lu CErt' f_””f SMHNCAHON | = Starfield Services Root Certificat... Starfield Services Root Certificate ... 12/31/2029
ErLITIFates - .
» I Enterprise All Tasks ’ Import.. Certification Authority 9/17/2036
. [Intermedi Fear em rererereet FEMiUM Senver CA 1273172020
! » [Active Dir View bt CA thawte Primary Root CA 7/16/2036
. 7 Trusted P Mew Window from Here b CA - G3 thawte Primary Root CA - G3 127172037
; . 7] Untrusted New Tacknad Vi Thawte Server CA 12/31/2020
.] Third-Parl S Taskpad VIew... ing CA Thawte Timestamping CA 12/31/2020
=[] Trusted P Refresh ect UTM-USERFirst-Object 7/9/2019
» || Other Peo Export List olic Primary ... VeriSign Class 3 Public Primary Ce... 7/16/2036
- | Certificate al Software ... VeriSign Comrmercial Software Pu... 1/7,/2004 E
= || Smart Car Help jork YeriSign Trust Metwork 8/1/2028
glVen5ign Universal Root Certific.. VeriSign Universal Root Certificati... 12/1/2037 -
1| 1] | k(|] | F
Add a certificate to a store
https://riptutorial.com/ 148

https://i.stack.imgur.com/ymFx2.png
https://i.stack.imgur.com/vYVwj.png

'-- T -
Certificate Import Wizard ﬁ

File to Import
Spedfy the file you want to impart,

File name:

e

Mote: More than one certificate can be stored in a single file in the following formats:
Personal Information Exchange- PKICS #£12 ((PFX,.P12)
Cryptographic Message Syntax Standard- PKICS #7 Certificates ((P7E)

Microsoft Serialized Certificate Store (L55T)

Learn more about cerfificate file formats

[< Back][Mext =][Cancel

Click next and Save to the Trusted Root Certification Authorities store:

Certificate Import Wizard Iﬁ
e 9

Certificate Store

Certificate stores are system areas where certificates are kept.

Windows can automatically select a certificate store, or you can spedfy a location for
the certificate.

() Automatically select the certificate store based on the type of certificate

@ Place all certificates in the following store!

Certificate store:

Trusted Root Certification Autharities

Learn more about cerfificate stores

< Back][Mext =][Cancel

https://riptutorial.com/

149

https://i.stack.imgur.com/Y5Lp5.png
https://i.stack.imgur.com/o0avf.png

Then Next > Finish, now close the Console.

If you now use the certificate and check its properties, you will see that it is a trusted certificate
and you can use it to sign your project:

-
Certificate Detailz ﬁ

General | Details | Certification Path

z ﬁ Certificate Information

This certificate is intended for the following purpose(s)

*» Ensures software came from software publisher
* Protects software from alteration after publication
* All issuance policies

Issued to: Om3r
Issued by: Om3r

valid from 1/ 1/ 2016 to 1 1f 2022

? You have a private key that corresponds to this certificate.

Issuer Statement

Learn mare about certificates

[o]

Read Macro security and signing of VBA-projects/-modules online:
https://riptutorial.com/vba/topic/7733/macro-security-and-signing-of-vba-projects--modules

https://riptutorial.com/ 150

https://i.stack.imgur.com/DlxuT.png
https://riptutorial.com/vba/topic/7733/macro-security-and-signing-of-vba-projects--modules

C_hapter 27: Measuring the length of strings

Remarks

A string's length can be measured in two ways: The most frequently used measure of length is the
number of characters using the ren functions, but VBA can also reveal the number of bytes using
rens functions. A double-byte or Unicode character is more than one byte long.

Examples
Use the Len function to determine the number of characters in a string

Const baseString As String = "Hello World"
Dim charlLength As Long

charLength = Len (baseString)
'charlength = 11

Use the LenB function to determine the number of bytes in a string

Const baseString As String = "Hello World"
Dim bytelLength As Long
bytelLength = LenB (baseString)

'bytelength = 22

Prefer “If Len(myString) =0 Then™ over 'If myString ="" Then’

When checking if a string is zero-length, it is better practice, and more efficient, to inspect the
length of the string rather than comparing the string to an empty string.

Const myString As String = vbNullString

'Prefer this method when checking if myString is a zero-length string

If Len(myString) = 0 Then
Debug.Print "myString is zero-length"
End If

'Avoid using this method when checking if myString is a zero-length string
If myString = vbNullString Then

Debug.Print "myString is zero-length"
End If

Read Measuring the length of strings online: https://riptutorial.com/vba/topic/3576/measuring-the-
length-of-strings

https://riptutorial.com/ 151

https://riptutorial.com/vba/topic/3576/measuring-the-length-of-strings
https://riptutorial.com/vba/topic/3576/measuring-the-length-of-strings

C_hapter 28: Naming Conventions

Examples

Variable Names

Variables hold data. Name them after what they're used for, not after their data type or scope,
using a noun. If you feel compelled to number your variables (e.g. thing1, thing2, thing3), then
consider using an appropriate data structure instead (e.g. an array, a collection, OF @ Dictionary).

Names of variables that represent an iteratable set of values - e.g. an array, a coilection, a
Dictionary, OF @ rRange Of cells, should be plural.

Some common VBA naming conventions go thus:

For procedure-level Variables:

camelCase

Public Sub ExampleNaming (ByVal inputValue As Long, ByRef inputVariable As Long)

Dim procedureVariable As Long
Dim someOtherVariable As String

End Sub

For module-level Variables:

PascalCase

Public GlobalVariable As Long
Private ModuleVariable As String

For Constants:

SHOUTY_SNAKE_cask IS commonly used to differentiate constants from variables:

Public Const GLOBAL_CONSTANT As String = "Project Version #1.000.000.001"
Private Const MODULE_CONSTANT As String = "Something relevant to this Module"

Public Sub SomeProcedure ()
Const PROCEDURE_CONSTANT As Long = 10
End Sub

However rascaicase Names make cleaner-looking code and are just as good, given IntelliSense
uses different icons for variables and constants:

https://riptutorial.com/ 152

Cption Explicit
Public Const Foo As String = "foo"
Public Bar As String

Sub DoSomething ()
Modulel.
End Sub g Bar
=3 DoSomething
= Foo

Hungarian Notation

Name them after what they're used for, not after their data type or scope.
"Hungarian Notation makes it easier to see what the type of a variable is"

If you write your code such as procedures adhere to the Single Responsibility Principle (as it
should), you should never be looking at a screenful of variable declarations at the top of any
procedure; declare variables as close as possible to their first usage, and their data type will
always be in plain sight if you declare them with an explicit type. The VBE's ctr1+i shortcut can be
used to display a variable's type in a tooltip, too.

What a variable is used for is much more useful information than its data type, especially in a
language such as VBA which happily and implicitly converts a type into another as needed.

Consider irile and strrile in this example:

Function bReadFile (ByVal strFile As String, ByRef strData As String) As Boolean
Dim bRetVal As Boolean
Dim iFile As Integer

On Error GoTo CleanFail

iFile = FreeFile
Open strFile For Input As #iFile
Input #iFile, strData

bRetVal = True

CleanExit:
Close #iFile
bReadFile = bRetVal
Exit Function
CleanFail:
bRetVal = False
Resume CleanExit
End Function

Compare to:

Function CanReadFile (ByVal path As String, ByRef outContent As String) As Boolean

https://riptutorial.com/ 153

On Error GoTo CleanFail

Dim handle As Integer
handle = FreeFile

Open path For Input As #handle
Input #handle, outContent

Dim result As Boolean
result = True

CleanExit:
Close #handle
CanReadFile = result
Exit Function
CleanFail:
result = False
Resume CleanExit
End Function

strbata IS passed syrer in the top example, but beside the fact that we're lucky enough to see that
it's explicitly passed as such, there's no indication that strpata is actually returned by the function.

The bottom example names it outcontent; this out prefix is what Hungarian Notation was invented
for: to help clarify what a variable is used for, in this case to clearly identify it as an "out"
parameter.

This is useful, because IntelliSense by itself doesn't display syret, even when the parameter is
explicitly passed by reference:

Public Sub DoSomething()
if CanReadFile (path, |
End Sub CanReadFile(ByVal path As String, ourContent As String) As Boolean |

Which leads to...
Hungarian Done Right

Hungarian Notation originally didn't have anything to do with variable types. In fact, Hungarian
Notation done right is actually useful. Consider this small example (syval and as 1nteger removed
for brevety):

Public Sub Copy (iX1l, 1iY1l, iX2, 1iY2)
End Sub

Compare to:

Public Sub Copy (srcColumn, srcRow, dstColumn, dstRow)
End Sub

src and dast are Hungarian Notation prefixes here, and they convey useful information that cannot
otherwise already be inferred from the parameter names or IntelliSense showing us the declared

type.

https://riptutorial.com/ 154

http://www.joelonsoftware.com/articles/Wrong.html

Of course there's a better way to convey it all, using proper abstraction and real words that can be

pronounced out loud and make sense - as a contrived example:

Type Coordinate
RowIndex As Long
ColumnIndex As Long

End Type

Sub Copy (source As Coordinate, destination As Coordinate)

End Sub

Procedure Names

Procedures do something. Name them after what they're doing, using a verb. If accurately naming
a procedure is not possible, likely the procedure is doing too many things and needs to be broken

down into smaller, more specialized procedures.

Some common VBA naming conventions go thus:

For all Procedures:

PascalCase

Public Sub DoThing ()
End Sub
Private Function ReturnSomeValue () As [DataType]

End Function

For event handler procedures:

ObjectName_EventName

Public Sub Workbook_Open ()
End Sub
Public Sub Buttonl_Click ()

End Sub

Event handlers are usually automatically named by the VBE; renaming them without renaming the
object and/or the handled event will break the code - the code will run and compile, but the handler

procedure will be orphaned and will never be executed.

Boolean Members

Consider a Boolean-returning function:

Function bReadFile (ByVal strFile As String, ByRef strData As String)

As Boolean

https://riptutorial.com/

155

End Function

Compare to:

Function CanReadFile (ByVal path As String, ByRef outContent As String) As Boolean
End Function

The can prefix does serve the same purpose as the v prefix: it identifies the function's return value
as a Boolean. But can reads better than v:

If CanReadFile (path, content) Then

Compared to:

If bReadFile (strFile, strData) Then

Consider using prefixes such as can, 1s Or nas in front of Boolean-returning members (functions
and properties), but only when it adds value. This conforms with the current Microsoft naming
guidelines.

Read Naming Conventions online: https://riptutorial.com/vba/topic/1184/naming-conventions

https://riptutorial.com/ 156

https://msdn.microsoft.com/en-us/library/ms229012(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms229012(v=vs.110).aspx
https://riptutorial.com/vba/topic/1184/naming-conventions

C_hapter 29: Non-Latin Characters

Introduction

VBA can read and write strings in any language or script using Unicode. However, there are
stricter rules in place for Identifier Tokens.

Examples

Non-Latin Text in VBA Code

In spreadsheet cell A1, we have the following Arabic pangram:
e 2Eds B Seead e e 13 oG ksl cue = oloadl ekl

VBA provides the ascw and cnrw functions to work with multi-byte character codes. We can also
use syte arrays to manipulate the string variable directly:

Sub NonLatinStrings ()

Dim rng As Range

Set rng = Range ("Al")

Do Until rng = ""
Dim MyString As String
MyString = rng.Value

' AscW functions

Dim char As String

char = AscW(Left (MyString, 1))

Debug.Print "First char (ChrW): " & char

Debug.Print "First char (binary): " & BinaryFormat (char, 12)

' ChrW functions

Dim uString As String

uString = ChrW(char)

Debug.Print "String value (text): " & uString ' Fails! Appears as '?'
Debug.Print "String value (AscW): " & AscW(uString)

' Using a Byte string
Dim StringAsByt () As Byte
StringAsByt = MyString
Dim i As Long
For 1 = 0 To 1 Step 2
Debug.Print "Byte values (in decimal): " & _
StringAsByt (i) & "|" & StringAsByt(i + 1)
Debug.Print "Byte values (binary): " & _
BinaryFormat (StringAsByt (i)) & "|" & BinaryFormat (StringAsByt (i + 1))
Next i
Debug.Print ""

' Printing the entire string to the immediate window fails (all '?'s)
Debug.Print "Whole String" & vbNewLine & rng.Value
Set rng = rng.Offset (1)

https://riptutorial.com/

157

http://www.unicode.org/
https://msdn.microsoft.com/en-us/library/ee200272.aspx

Loop

End Sub

This produces the following output for the Arabic Letter Sad:

First char (Chrw): 1589

First char (binary): 00011000110101
String value (text): ?

String value (AscW): 1589

Byte values (in decimal): 53|6

Byte values (binary): 00110101|00000110

Whole String
P 27977 27777 2277777 22777772 277 2222777 — 27777 227772727 27727 272727777

Note that VBA is unable to print non-Latin text to the immediate window even though the string
functions work correctly. This is a limitation of the IDE and not the language.

Non-Latin Identifiers and Language Coverage

VBA Identifiers (variable and function names) can use the Latin script and may also be able to use
Japanese, Korean, Simplified Chinese, and Traditional Chinese scripts.

The extended Latin script has full coverage for many languages:

English, French, Spanish, German, Italian, Breton, Catalan, Danish, Estonian, Finnish, Icelandic,
Indonesian, Irish, Lojban, Mapudungun, Norwegian, Portuguese, Scottish Gaelic, Swedish,
Tagalog

Some languages are only partially covered:
Azeri, Croatian, Czech, Esperanto, Hungarian, Latvian, Lithuanian, Polish, Romanian, Serbian,
Slovak, Slovenian, Turkish, Yoruba, Welsh

Some languages have little or no coverage:
Arabic, Bulgarian, Cherokee, Dzongkha, Greek, Hindi, Macedonian, Malayalam, Mongolian,
Russian, Sanskrit, Thai, Tibetan, Urdu, Uyghur

The following variable declarations are all valid:

Dim Yec’hed As String 'Breton

Dim «Ddéna» As String 'Catalan

Dim frek As String 'Danish

Dim tsSellomdngija As String 'Estonian

Dim Térkylempijdvongahdus As String 'Finnish
Dim j’examine As String 'French

Dim PaB As String 'German

Dim pjéfum As String 'Icelandic

Dim hOighe As String 'Irish

Dim sofybakni As String 'Lojban (.o0’i does not work)
Dim fiizol As String 'Mapudungun

https://riptutorial.com/ 158

http://www.fileformat.info/info/unicode/char/0635/index.htm
https://msdn.microsoft.com/en-us/library/ee200272.aspx
https://msdn.microsoft.com/en-us/library/ee199767.aspx
https://msdn.microsoft.com/en-us/library/ee177191.aspx
https://msdn.microsoft.com/en-us/library/ee199765.aspx
https://msdn.microsoft.com/en-us/library/ee199727.aspx

Dim Var As String 'Norwegian
Dim «bragdes» As String 'Portuguese
Dim d’ fhag As String 'Scottish Gaelic

Note that in the VBA IDE, a single apostrophe within a variable name does not turn the line into a
comment (as it does on Stack Overflow).

Also, languages that use two angles to indicate a quote «» are allowed to use those in variable
names desipte the fact that the "'-type quotes are not.

Read Non-Latin Characters online: https://riptutorial.com/vba/topic/10555/non-latin-characters

https://riptutorial.com/ 159

https://riptutorial.com/vba/topic/10555/non-latin-characters

C_hapter 30: Object-Oriented VBA

Examples

Abstraction

Abstraction levels help determine when to split things up.

Abstraction is achieved by implementing functionality with increasingly detailed code. The entry
point of a macro should be a small procedure with a high abstraction level that makes it easy to
grasp at a glance what's going on:

Public Sub DoSomething ()
With New SomeForm
Set .Model = CreateViewModel
.Show vbModal
If .IsCancelled Then Exit Sub
ProcessUserData .Model
End With
End Sub

The posomething procedure has a high abstraction level: we can tell that it's displaying a form and
creating some model, and passing that object to some processuserbata procedure that knows what
to do with it - how the model is created is the job of another procedure:

Private Function CreateViewModel () As ISomeModel
Dim result As ISomeModel
Set result = SomeModel.Create (Now, Environ$ ("UserName"))
result.AvailableItems = GetAvailableItems
Set CreateViewModel = result
End Function

The createviewMode1 function is only responsible for creating some 1someModel instance. Part of that
responsibility is to acquire an array of available items - how these items are acquired is an
implementation detail that's abstracted behind the cetavailablertems procedure:

Private Function GetAvailableItems () As Variant
GetAvailableItems = DataSheet.Names ("AvailableItems") .RefersToRange
End Function

Here the procedure is reading the available values from a named range on a patasheet WOrksheet.
It could just as well be reading them from a database, or the values could be hard-coded: it's an
implementation detail that's none of a concern for any of the higher abstraction levels.

Encapsulation

Encapsulation hides implementation details from client code.

https://riptutorial.com/ 160

The Handling QueryClose example demonstrates encapsulation: the form has a checkbox control,
but its client code doesn't work with it directly - the checkbox is an implementation detail, what the
client code needs to know is whether the setting is enabled or not.

When the checkbox value changes, the handler assigns a private field member:

Private Type TView
IsCancelled As Boolean
SomeOtherSetting As Boolean
'other properties skipped for brievety
End Type
Private this As TView

Private Sub SomeOtherSettingInput_Change ()
this.SomeOtherSetting = CBool (SomeOtherSettingInput.Value)
End Sub

And when the client code wants to read that value, it doesn't need to worry about a checkbox -
instead it simply uses the someothersetting property:

Public Property Get SomeOtherSetting() As Boolean
SomeOtherSetting = this.SomeOtherSetting
End Property

The someothersetting property encapsulates the checkbox' state; client code doesn't need to know
that there's a checkbox involved, only that there's a setting with a Boolean value. By encapsulating
the Boolean Value, we've added an abstraction layer around the checkbox.

Using interfaces to enforce immutability

Let's push that a step further by encapsulating the form's model in a dedicated class module. But if
we made a public Property for the username and Timestamp, W€ would have to EXPOSE pProperty Let
accessors, making the properties mutable, and we don't want the client code to have the ability to
change these values after they're set.

The createviewMode1 function in the Abstraction example returns an rsomemode1 class: that's our
interface, and it looks something like this:
Option Explicit

Public Property Get Timestamp() As Date
End Property

Public Property Get UserName () As String
End Property

Public Property Get AvailableItems () As Variant
End Property

Public Property Let AvailableItems (ByRef value As Variant)

https://riptutorial.com/ 161

http://www.riptutorial.com/vba/example/19037/handling-queryclose

End Property

Public Property Get SomeSetting() As String
End Property

Public Property Let SomeSetting(ByVal value As String)
End Property

Public Property Get SomeOtherSetting() As Boolean
End Property

Public Property Let SomeOtherSetting(ByVal value As Boolean)
End Property

Notice Timestamp and username properties only expose a property Get accessor. Now the somemodel

class can implement that interface:

Option Explicit
Implements ISomeModel

Private Type TModel
Timestamp As Date
UserName As String
SomeSetting As String
SomeOtherSetting As Boolean
AvailablelItems As Variant
End Type
Private this As TModel

Private Property Get ISomeModel_ Timestamp () As Date
ISomeModel_Timestamp = this.Timestamp
End Property

Private Property Get ISomeModel_UserName () As String
ISomeModel_UserName = this.UserName
End Property

Private Property Get ISomeModel_ AvailableItems () As Variant
ISomeModel_AvailableItems = this.AvailableItems
End Property

Private Property Let ISomeModel_ AvailableItems (ByRef value As Variant)
this.AvailableItems = value
End Property

Private Property Get ISomeModel_SomeSetting() As String
ISomeModel_SomeSetting = this.SomeSetting
End Property

Private Property Let ISomeModel_SomeSetting(ByVal value As String)
this.SomeSetting = value
End Property

Private Property Get ISomeModel_SomeOtherSetting() As Boolean
ISomeModel_SomeOtherSetting = this.SomeOtherSetting
End Property

Private Property Let ISomeModel_SomeOtherSetting(ByVal value As Boolean)
this.SomeOtherSetting = value
End Property

https://riptutorial.com/

162

Public Property Get Timestamp () As Date
Timestamp = this.Timestamp
End Property

Public Property Let Timestamp (ByVal value As Date)
this.Timestamp = value
End Property

Public Property Get UserName () As String
UserName = this.UserName
End Property

Public Property Let UserName (ByVal value As String)
this.UserName = value
End Property

Public Property Get AvailablelItems () As Variant
AvailableItems = this.AvailablelItems
End Property

Public Property Let AvailableItems (ByRef value As Variant)
this.AvailableItems = value
End Property

Public Property Get SomeSetting() As String
SomeSetting = this.SomeSetting
End Property

Public Property Let SomeSetting(ByVal value As String)
this.SomeSetting = value
End Property

Public Property Get SomeOtherSetting() As Boolean
SomeOtherSetting = this.SomeOtherSetting
End Property

Public Property Let SomeOtherSetting(ByVal value As Boolean)
this.SomeOtherSetting = value
End Property

The interface members are all private, and all members of the interface must be implemented for

the code to compile. The run1ic members are not part of the interface, and are therefore not

exposed to code written against the rsomemode1 interface.

Using a Factory Method to simulate a constructor

Using a VB_Predeclaredld attribute, we can make the somerode1 class have a default instance, and
write a function that works like a type-level (shareda in VB.NET, static in C#) member that the client

code can call without needing to first create an instance, like we did here:

Private Function CreateViewModel () As ISomeModel
Dim result As ISomeModel

Set result = SomeModel.Create (Now, Environ$ ("UserName"))
result.AvailableItems = GetAvailableItems
Set CreateViewModel = result

https://riptutorial.com/

163

http://www.riptutorial.com/vba/example/18932/vb-predeclaredid

End Function

This factory method assigns the property values that are read-only when accessed from the
IsomeModel iNterface, here Timestamp and vserName:

Public Function Create (ByVal pTimeStamp As Date, ByVal pUserName As String) As ISomeModel
With New SomeModel
.Timestamp = pTimeStamp
.UserName = pUserName
Set Create = .Self
End With
End Function

Public Property Get Self () As ISomeModel

Set Self = Me
End Property

And now we can code against the rsomeMode1 interface, which exposes Timestamp and userName as
read-only properties that can never be reassigned (as long as the code is written against the
interface).

Polymorphism

Polymorphism is the ability to present the same interface for different
underlying implementations.

The ability to implement interfaces allows completely decoupling the application logic from the U,
or from the database, or from this or that worksheet.

Say you have an 1someview interface that the form itself implements:

Option Explicit

Public Property Get IsCancelled() As Boolean
End Property

Public Property Get Model () As ISomeModel
End Property

Public Property Set Model (ByVal value As ISomeModel)
End Property

Public Sub Show ()
End Sub

The form's code-behind could look like this:

Option Explicit
Implements ISomeView

Private Type TView
IsCancelled As Boolean
Model As ISomeModel

https://riptutorial.com/ 164

End Type
Private this As TView

Private Property Get ISomeView_IsCancelled() As Boolean
ISomeView_IsCancelled = this.IsCancelled
End Property

Private Property Get ISomeView_Model () As ISomeModel
Set ISomeView_Model = this.Model
End Property

Private Property Set ISomeView_Model (ByVal value As ISomeModel)
Set this.Model = value
End Property

Private Sub ISomeView_Show ()
Me.Show vbModal
End Sub

Private Sub SomeOtherSettingInput_Change ()
this.Model.SomeOtherSetting = CBool (SomeOtherSettingInput.Value)
End Sub

'...other event handlers...

Private Sub OkButton_Click ()
Me.Hide
End Sub

Private Sub CancelButton_Click ()
this.IsCancelled = True
Me.Hide

End Sub

Private Sub UserForm_ QueryClose (Cancel As Integer, CloseMode As Integer)
If CloseMode = VbQueryClose.vbFormControlMenu Then
Cancel = True
this.IsCancelled = True
Me.Hide
End If
End Sub

But then, nothing forbids creating another class module that implements the 1someview interface
without being a user form - this could be a someviewnMock Class:

Option Explicit
Implements ISomeView

Private Type TView
IsCancelled As Boolean
Model As ISomeModel

End Type

Private this As TView

Public Property Get IsCancelled() As Boolean
IsCancelled = this.IsCancelled
End Property

Public Property Let IsCancelled(ByVal value As Boolean)
this.IsCancelled = value

https://riptutorial.com/ 165

End Property

Private Property Get ISomeView_IsCancelled() As Boolean
ISomeView_IsCancelled = this.IsCancelled
End Property

Private Property Get ISomeView_Model () As ISomeModel
Set ISomeView_Model = this.Model
End Property

Private Property Set ISomeView_Model (ByVal value As ISomeModel)
Set this.Model = value
End Property

Private Sub ISomeView_Show ()
'do nothing
End Sub

And now we can change the code that works with a userrorm and make it work off the 1someview
interface, e.g. by giving it the form as a parameter instead of instantiating it:

Public Sub DoSomething (ByVal view As ISomeView)
With view
Set .Model = CreateViewModel
.Show
If .IsCancelled Then Exit Sub
ProcessUserData .Model
End With
End Sub

Because the posomething method depends on an interface (i.e. an abstraction) and not a concrete
class (e.g. a specific userrorm), We can write an automated unit test that ensures that
ProcessUserData ISN't executed When view.1scancelled iS True, By making our test create a
SomeViewMock INStance, setting itS rscance11ed property to rrue, and passing it to posomething.

Testable code depends on abstractions

Writing unit tests in VBA can be done, there are add-ins out there that even integrate it into the
IDE. But when code is tightly coupled with a worksheet, a database, a form, or the file system,
then the unit test starts requiring an actual worksheet, database, form, or file system - and these
dependencies are new out-of-control failure points that testable code should isolate, so that unit
tests don't require an actual worksheet, database, form, or file system.

By writing code against interfaces, in a way that allows test code to inject stub/mock
implementations (like the above someviewMock €xample), you can write tests in a "controlled
environment"”, and simulate what happens when every single one of the 42 possible permutations
of user interactions on the form's data, without even once displaying a form and manually clicking
on a form control.

Read Object-Oriented VBA online: https://riptutorial.com/vba/topic/5357/object-oriented-vba

https://riptutorial.com/ 166

https://riptutorial.com/vba/topic/5357/object-oriented-vba

Remarks

Operators are evaluated in the following order:

* Mathematical operators

Bitwise operators

Logical operators

Concatenation operators
Comparison operators

Operators with matching precedence are evaluated from left to right. The default order can be
overridden by using parentheses (and) to group expressions.

Examples

Mathematical Operators

Listed in order of precedence:

2 Exponentiation

/ Division!

* Multiplication®

. Integer
Division

Mod Modulo

Return the result of raising the left-hand operand to the power of
the right-hand operand. Note that the value returned by
exponentiation is always a poub1e, regardless of the value types
being divided. Any coercion of the result into a variable type takes
place after the calculation is performed.

Returns the result of dividing the left-hand operand by the right-
hand operand. Note that the value returned by division is always a
pouble, regardless of the value types being divided. Any coercion of
the result into a variable type takes place after the calculation is
performed.

Returns the product of 2 operands.

Returns the integer result of dividing the left-hand operand by the
right-hand operand after rounding both sides with .5 rounding
down. Any remainder of the division is ignored. If the right-hand
operand (the divisor) is o, a Run-time error 11: Division by zero will
result. Note that this is after all rounding is performed -
expressions such as 3 \ o.4 will also result in a division by zero
error.

Returns the integer remainder of dividing the left-hand operand by

https://riptutorial.com/

167

the right-hand operand. The operand on each side is rounded to
an integer before the division, with .5 rounding down. For example,
both s.6 Mod 3 @and 12 moda 2.6 result in o. If the right-hand operand
(the divisor) is o, a Run-time error 11: Division by zero will result.
Note that this is after all rounding is performed - expressions such
as 3 mod 0.4 Will also result in a division by zero error.

Returns the result of subtracting the right-hand operand from the

— [2
Subtraction left-hand operand.

Returns the sum of 2 operands. Note that this token also treated as
+ Addition? a concatenation operator when it is applied to a string. See
Concatenation Operators.

1 Multiplication and division are treated as having the same precedence.

2 Addition and subtraction are treated as having the same precedence.
Concatenation Operators

VBA supports 2 different concatenation operators, + and « and both perform the exact same
function when used with string types - the right-hand string is appended to the end of the left-
hand String.

If the s« operator is used with a variable type other than a string, it is implicitly cast to a string
before being concatenated.

Note that the + concatenation operator is an overload of the + addition operator. The behavior of +
is determined by the variable types of the operands and precedence of operator types. If both
operands are typed as a string Of variant With a sub-type of string, they are concatenated:

Public Sub Example ()
Dim left As String
Dim right As String

left = "5"

right = "5"

Debug.Print left + right 'Prints "55"
End Sub

If either side is a numeric type and the other side is a string that can be coerced into a number,
the type precedence of mathematical operators causes the operator to be treated as the addition
operator and the numeric values are added:

Public Sub Example ()
Dim left As Variant
Dim right As String

https://riptutorial.com/ 168

http://www.riptutorial.com/vba/topic/3418/data-types-and-limits

left

=5

right = "5"

Debug.Print left + right

End Sub

'Prints 10

This behavior can lead to subtle, hard to debug errors - especially if variant types are being used,
so only the s« operator should typically be used for concatenation.

Comparison Operators

<>

Is

Equal to

Not equal to

Greater than

Less than

Greater than or equal

Less than or equal

Reference equity

Returns true if the left-hand and right-hand operands are
equal. Note that this is an overload of the assignment
operator.

Returns True if the left-hand and right-hand operands are
not equal.

Returns true if the left-hand operand is greater than the
right-hand operand.

Returns True if the left-hand operand is less than the right-
hand operand.

Returns true if the if the left-hand operand is greater than
or equal to the right-hand operand.

Returns true if the if the left-hand operand is less than or
equal to the right-hand operand.

Returns true if the left-hand object reference is the same
instance as the right-hand object reference. It can also be
used with nothing (the null object reference) on either side.
Note: The 1s operator will attempt to coerce both operands
into an object before performing the comparison. If either
side is a primitive type or a variant that does not contain
an object (either a non-object subtype or vtempty), the
comparison will result in a Run-time error 424 - "Object
required”. If either operand belongs to a different interface
of the same object, the comparison will return True. If you
need to test for equity of both the instance and the
interface, use objptr(left) = objptr(right) iNStead.

Notes

https://riptutorial.com/

169

The VBA syntax allows for "chains" of comparison operators, but these constructs should
generally be avoided. Comparisons are always performed from left to right on only 2 operands at a
time, and each comparison results in a sco1ean. FOr example, the expression...

a=2:b=1: c =0
expr = a

...may be read in some contexts as a test of whether » is between 2 and c. In VBA, this evaluates
as follows:

a=2: b=1: c =0
expr = a > b > ¢

expr = (2 > 1) >0

expr = True > 0

expr = -1 > 0 'CInt(True) = -1
expr = False

Any comparison operator other than 1s used with an ovject as an operand will be performed on
the return value of the ovect's default member. If the object does not have a default member, the
comparison will result in a Run-time error 438 - "Object doesn't support his property or method".

If the object IS unintitialized, the comparison will result in a Run-time error 91 - "Object variable or
With block variable not set".

If the literal nothing IS used with any comparison operator other than s, it will result in a Compile
error - "Invalid use of object".

If the default member of the obsect is another object, VBA will continually call the default member
of each successive return value until a primitive type is returned or an error is raised. For example,
assume someclass has a default member of vaiue, Which is an instance of chiidciass with a default
member of childavaiue. The comparison...

Set x = New SomeClass
Debug.Print x > 42

...will be evaluated as:

Set x = New SomeClass
Debug.Print x.Value.ChildValue > 42

If either operand is a numeric type and the other operand is @ string Of variant Of subtype string,
a numeric comparison will be performed. In this case, if the string cannot be cast to a number, a
Run-time error 13 - "Type mismatch" will result from the comparison.

If both operands are a string Or a variant Of subtype string, a string comparison will be performed
based on the Option Compare setting of the code module. These comparisons are performed on a
character by character basis. Note that the character representation of a string containing a
number is not the same as a comparison of the numeric values:

https://riptutorial.com/ 170

http://www.riptutorial.com/vba/example/18935/vb--var-usermemid
http://www.riptutorial.com/vba/example/13937/option-compare--binary---text---database-

Public Sub Example ()
Dim left As Variant
Dim right As Variant

left = "42"

right = "5"

Debug.Print left > right 'Prints False

Debug.Print Val (left) > Val(right) 'Prints True
End Sub

For this reason, make sure that string Or variant variables are cast to numbers before performing
numeric inequity comparisons on them.

If one operand is a pate, & NumMeric comparison on the underlying Double value will be performed if
the other operand is numeric or can be cast to a numeric type.

If the other operand is a string Or @ variant Of subtype string that can be cast to a pate using the
current locale, the string Will be cast to a nate. If it cannot be cast to a pate in the current locale, a
Run-time error 13 - "Type mismatch" will result from the comparison.

Care should be taken when making comparisons between poubie Or single Values and Booleans.
Unlike other numeric types, non-zero values cannot be assumed to be true due to VBA's behavior
of promoting the data type of a comparison involving a floating point number to poubie:

Public Sub Example ()
Dim Test As Double

Test = 42 Debug.Print CBool (Test) '"Prints True.
'True is promoted to Double - Test is not cast to Boolean
Debug.Print Test = True 'Prints False

'With explicit casts:

Debug.Print CBool (Test) = True '"Prints True
Debug.Print CDbl (-1) = CDbl (True) '"Prints True
End Sub

Bitwise \ Logical Operators

All of the logical operators in VBA can be thought of as "overrides" of the bitwise operators of the
same name. Technically, they are always treated as bitwise operators. All of the comparison
operators in VBA return a Boolean, which will always have none of its bits set (ra1se) or all of its
bits set (rrue). But it will treat a value with any bit set as rrue. This means that the result of the
casting the bitwise result of an expression to a soo1ean (See Comparison Operators) will always be
the same as treating it as a logical expression.

Assigning the result of an expression using one of these operators will give the bitwise result. Note
that in the truth tables below, o is equivalent to raise and 1 is equivalent to True.

And

Returns true if the expressions on both sides evaluate to True.

https://riptutorial.com/ 171

http://www.riptutorial.com/vba/example/11783/date
http://www.riptutorial.com/vba/example/11778/boolean
http://www.riptutorial.com/vba/example/11778/boolean

Left-hand Operand | Right-hand Operand

0 0 0
0 1 0
1 0 0
1 1 1

Or

Returns true if either side of the expression evaluates to rrue.

Left-hand Operand | Right-hand Operand

0 0 0
0 1 1
1 0 1
1 1 1

Not

Returns true if the expression evaluates to raise and raise if the expression evaluations to rrue.

Right-hand Operand

0 1

1 0

ot IS the only operand without a Left-hand operand. The Visual Basic Editor will automatically
simplify expressions with a left hand argument. If you type...

Debug.Print x Not y
...the VBE will change the line to:

Debug.Print Not x

Similar simplifications will be made to any expression that contains a left-hand operand (including
expressions) for wot.

Xor

https://riptutorial.com/ 172

Also known as "exclusive or". Returns rrue if both expressions evaluate to different results.

Left-hand Operand | Right-hand Operand

0 0 0
0 1 1
1 0 1
1 1 0

Note that although the xor operator can be used like a logical operator, there is absolutely no
reason to do so as it gives the same result as the comparison operator <>.

Eqv

Also known as "equivalence". Returns rrue when both expressions evaluate to the same result.

Left-hand Operand | Right-hand Operand

0 0 1
0 1 0
1 0 0
1 1 1

Note that the eqv function is very rarely used as x eqv y iS equivalent to the much more readable

Not (x Xor vy).

Imp

Also known as "implication". Returns rrue if both operands are the same or the second operand is

True.

Left-hand Operand | Right-hand Operand

0 0 1
0 1 1
1 0 0
1 1 1

Note that the mp function is very rarely used. A good rule of thumb is that if you can't explain what

https://riptutorial.com/ 173

it means, you should use another construct.

Read Operators online: https://riptutorial.com/vba/topic/5813/operators

https://riptutorial.com/ 174

https://riptutorial.com/vba/topic/5813/operators

C_hapter 32: Passing Arguments ByRef or
ByVal

Introduction

The syrer and syva1 modifiers are part of a procedure's signature and indicate how an argument is
passed to a procedure. In VBA a parameter is passed syret Unless specified otherwise (i.e. syret
is implicit if absent).

Note In many other programming languages (including VB.NET), parameters are implicitly passed
by value if no modifier is specified: consider specifying syrer modifiers explicitly to avoid possible
confusion.

Remarks

Passing arrays

Arrays must be passed by reference. This code compiles, but raises run-time error 424 "Object
Required":

Public Sub Test ()
DoSomething Array(l, 2, 3)
End Sub

Private Sub DoSomething (ByVal foo As Variant)
foo.Add 42
End Sub

This code does not compile:

Private Sub DoSomething (ByVal foo() As Variant) 'ByVal is illegal for arrays
foo.Add 42
End Sub

Examples

Passing Simple Variables ByRef And ByVal

Passing syrer Or Byval indicates whether the actual value of an argument is passed to the
CalledProcedure DY the callingprocedure, OFr Whether a reference (called a pointer in some other
languages) is passed to the cailiedprocedure.

If an argument is passed syret, the memory address of the argument is passed to the
calledprocedure @and any modification to that parameter by the caliedrrocedure is made to the value
in the CallingProcedure.

https://riptutorial.com/ 175

If an argument is passed syva1, the actual value, not a reference to the variable, is passed to the

CalledProcedure.

A simple example will illustrate this clearly:

Sub CalledProcedure (ByRef X As Long, ByVal Y As Long)

X = 321
Y = 654
End Sub

Sub CallingProcedure ()
Dim A As Long
Dim B As Long

A = 123
B = 456
Debug.Print "BEFORE CALL => A: " & CStr(A), "B: " & CStr(B)

''Result : BEFORE CALL => A: 123 B: 456

CalledProcedure X:=A, Y:=B

Debug.Print "AFTER CALL = A: " & CStr(A), "B: " & CStr(B)
''Result : AFTER CALL => A: 321 B: 456
End Sub

Another example:

Sub Main ()
Dim IntVarByVal As Integer
Dim IntVarByRef As Integer

IntVarByVal =

IntVarByRef 10

SubChangeArguments IntVarByVal, IntVarByRef '5 goes in as a "copy". 10 goes in as a

reference
Debug.Print "IntVarByVal: " & IntVarByVal 'prints 5 (no change made by SubChangeArguments)
Debug.Print "IntVarByRef: " & IntVarByRef 'prints 99 (the variable was changed in
SubChangeArguments)
End Sub

Sub SubChangeArguments (ByVal ParameterByVal As Integer, ByRef ParameterByRef As Integer)

ParameterByVal = ParameterByVal + 2 ' 5 + 2 = 7 (changed only inside this Sub)
ParameterByRef = ParameterByRef + 89 ' 10 + 89 = 99 (changes the IntVarByRef itself - in
the Main Sub)
End Sub
ByRef

Default modifier

If no modifier is specified for a parameter, that parameter is implicitly passed by reference.

Public Sub DoSomethingl (foo As Long)

https://riptutorial.com/ 176

End Sub

Public Sub DoSomething2 (ByRef foo As Long)
End Sub

The roo parameter is passed eyref iN both posomethingl and posomething2.

Watch out! If you're coming to VBA with experience from other languages, this is very
likely the exact opposite behavior to the one you're used to. In many other
programming languages (including VB.NET), the implicit/default modifier passes
parameters by value.

Passing by reference
* When a value is passed eyret, the procedure receives a reference to the value.

Public Sub Test ()
Dim foo As Long
foo = 42
DoSomething foo
Debug.Print foo
End Sub

Private Sub DoSomething (ByRef foo As Long)
foo = foo * 2
End Sub

Calling the above test procedure outputs 84. posomething IS given foo and receives a
reference to the value, and therefore works with the same memory address as the caller.

* When a reference is passed syret, the procedure receives a reference to the pointer.

Public Sub Test ()
Dim foo As Collection
Set foo = New Collection
DoSomething foo
Debug.Print foo.Count
End Sub

Private Sub DoSomething (ByRef foo As Collection)
foo.Add 42
Set foo = Nothing

End Sub

The above code raises run-time error 91, because the caller is calling the count member of
an object that no longer exists, because posomething Was given a reference to the object
pointer and assigned it to nothing before returning.

Forcing ByVal at call site

https://riptutorial.com/ 177

http://www.riptutorial.com/vba/example/27750/run-time-error--91---object-variable-or-with-block-variable-not-set

Using parentheses at the call site, you can override syrer and force an argument to be passed

ByVal.:

Public Sub Test ()
Dim foo As Long
foo = 42
DoSomething (foo)
Debug.Print foo
End Sub

Private Sub DoSomething (ByRef foo As Long)
foo = foo * 2
End Sub

The above code outputs 42, regardless of whether syrer is specified implicitly or explicitly.

Watch out! Because of this, using extraneous parentheses in procedure calls can

easily introduce bugs. Pay attention to the whitespace between the procedure name

and the argument list:

bar = DoSomething(foo) 'function call, no whitespace; parens are part of args list
DoSomething (foo) 'procedure call, notice whitespace; parens are NOT part of args

list
DoSomething foo 'procedure call does not force the foo parameter to be ByVal

ByVal
Passing by value
* When a value is passed syva1, the procedure receives a copy of the value.

Public Sub Test ()
Dim foo As Long
foo = 42
DoSomething foo
Debug.Print foo
End Sub

Private Sub DoSomething (ByVal foo As Long)
foo = foo * 2
End Sub

Calling the above test procedure outputs 42. posomething IS given foo and receives a copy of

the value. The copy is multiplied by 2, and then discarded when the procedure exits; the

caller's copy was never altered.

* When a reference is passed syva1, the procedure receives a copy of the pointer.

Public Sub Test ()
Dim foo As Collection
Set foo = New Collection
DoSomething foo
Debug.Print foo.Count

https://riptutorial.com/

178

End Sub

Private Sub DoSomething (ByVal foo As Collection)
foo.Add 42
Set foo = Nothing

End Sub

Calling the above rest procedure outputs 1. posomething IS given foo and receives a copy of

the pointer to the co11ection Object. Because the roo Object variable in the test scope points
to the same object, adding an item in posomething adds the item to the same object. Because
it's a copy of the pointer, setting its reference to nothing does not affect the caller's own copy.

Read Passing Arguments ByRef or ByVal online: https://riptutorial.com/vba/topic/7363/passing-
arguments-byref-or-byval

https://riptutorial.com/ 179

https://riptutorial.com/vba/topic/7363/passing-arguments-byref-or-byval
https://riptutorial.com/vba/topic/7363/passing-arguments-byref-or-byval

C_hapter 33: Procedure Calls

Syntax

IdentifierName [arguments]

Call IdentifierName[(arguments)]

[Let|Set] expression = IdentifierName[(arguments)]
[Let|Set] IdentifierName[(arguments)] = expression

Parameters

Parameter Info

IdentifierName The name of the procedure to call.

arguments A comma-separated list of arguments to be passed to the procedure.

Remarks

The first two syntaxes are for calling sub procedures; notice the first syntax involves no
parentheses.

See This is confusing. Why not just always use parentheses? for a thorough explanation of the
differences between the first two syntaxes.

The third syntax is for calling runction and property cet procedures; when there are parameters,
the parentheses are always mandatory. The et keyword is optional when assigning a value, but
the set keyword is required when assigning a reference.

Fourth syntax is for calling property ret and property set procedures; the expression On the right-
hand side of the assignment is passed to the property's value parameter.

Examples

Implicit Call Syntax

ProcedureName

ProcedureName argumentl, argument2

Call a procedure by its name without any parentheses.

Edge case

https://riptutorial.com/ 180

http://www.riptutorial.com/vba/example/3818/this-is-confusing--why-not-just-always-use-parentheses-

The ca11 keyword is only required in one edge case:

Call DoSomething : DoSomethingElse

DoSomething &N DoSomethingElse are procedures being called. If the ca11 keyword was removed,
then posomething WoUld be parsed as a line label rather than a procedure call, which would break
the code:

DoSomething: DoSomethingElse 'only DoSomethingElse will run

Return Values

To retrieve the result of a procedure call (e.g. Function OF Property cet procedures), put the call on
the right-hand side of an assignment:

result = ProcedureName

result = ProcedureName (argumentl, argument?2)

Parentheses must be present if there are parameters. If the procedure has no parameters, the
parentheses are redundant.

This is confusing. Why not just always use parentheses?

Parentheses are used to enclose the arguments of function calls. Using them for procedure calls
can cause unexpected problems.

Because they can introduce bugs, both at run-time by passing a possibly unintended value to the
procedure, and at compile-time by simply being invalid syntax.

Run-time

Redundant parentheses can introduce bugs. Given a procedure that takes an object reference as
a parameter...

Sub DoSomething (ByRef target As Range)
End Sub

...and called with parentheses:

DoSomething (Application.ActiveCell) 'raises an error at runtime

This will raise an "Object Required” runtime error #424. Other errors are possible in other
circumstances: here the appiication.activecell rRange Object reference is being evaluated and
passed by value regardless of the procedure's signature specifying that target wWould be passed
Byref. The actual value passed syval t0 posomething iN the above snippet, is

Application.ActiveCell.Value.

https://riptutorial.com/ 181

Parentheses force VBA to evaluate the value of the bracketed expression, and pass the result
Byval 0 the called procedure. When the type of the evaluated result mismatches the procedure's
expected type and cannot be implicitly converted, a runtime error is raised.

Compile-time
This code will fail to compile:

MsgBox ("Invalid Code!", vbCritical)

Because the expression ("invalid code!", vbCritical) cannot be evaluated to a value.

This would compile and work:

MsgBox ("Invalid Code!"), (vbCritical)
But would definitely look silly. Avoid redundant parentheses.

Explicit Call Syntax

Call ProcedureName
Call ProcedureName (argumentl, argument?2)

The explicit call syntax requires the ca11 keyword and parentheses around the argument list;
parentheses are redundant if there are no parameters. This syntax was made obsolete when the
more modern implicit call syntax was added to VB.

Optional Arguments

Some procedures have optional arguments. Optional arguments always come after required
arguments, but the procedure can be called without them.

For example, if the function, procedurename Were to have two required arguments (argument1,
argument2), and one optional argument, optargument3, it could be called at least four ways:

' Without optional argument
result = ProcedureName ("A", "B")

' With optional argument
result = ProcedureName ("A", "B", "C")

' Using named arguments (allows a different order)
result = ProcedureName (optArgument3:="C", argumentl:="A", argument2:="B")

' Mixing named and unnamed arguments
result = ProcedureName ("A", "B", optArgument3:="C")

The structure of the function header being called here would look something like this:

https://riptutorial.com/ 182

Function ProcedureName (argumentl As String, argument2 As String, Optional optArgument3 As
String) As String

The optional keyword indicates that this argument can be omitted. As mentioned before - any
optional arguments introduced in the header must appear at the end, after any required
arguments.

You can also provide a default value for the argument in the case that a value isn't passed to the
function:

Function ProcedureName (argumentl As String, argument2 As String, Optional optArgument3 As
String = "C") As String

In this function, if the argument for c isn't supplied it's value will default to »c». If a value is supplied
then this will override the default value.

Read Procedure Calls online: https://riptutorial.com/vba/topic/1179/procedure-calls

https://riptutorial.com/ 183

https://riptutorial.com/vba/topic/1179/procedure-calls

Introduction

There is a built in easy way to read files in binary within VBA, however it has a restriction of 2GB
(2,147,483,647 bytes - max of Long data type). As technology evolves, this 2GB limit is easily
breached. e.g. an ISO image of Operating System install DVD disc. Microsoft does provide a way
to overcome this via low level Windows API and here is a backup of it.

Also demonstrate (Read part) for calculating File Hashes without external program like tciv.exe

from Microsoft.

Remarks

METHODS FOR THE CLASS BY MICROSOFT

IsOpen

OpenFile(sFileName
As String)

CloseFile

ReadBytes(
ByteCount As Long)

WriteBytes(
DataBytes() As Byte)

Flush

SeekAbsolute(
HighPos As Long,
LowPos As Long)

SeekRelative(Offset
As Long)

Returns a boolean to indicate whether the file is open.

Opens the file specified by the sFileName argument.

Closes the currently open file.

Reads ByteCount bytes and returns them in a Variant byte array and
moves the pointer.

Writes the contents of the byte array to the current position in the file
and moves the pointer.

Forces Windows to flush the write cache.

Moves the file pointer to the designated position from the beginning
of the file. Though VBA treats the DWORDS as signed values, the
API treats them as unsigned. Make the high-order argument non-
zero to exceed 4GB. The low-order DWORD will be negative for
values between 2GB and 4GB.

Moves the file pointer up to +/- 2GB from the current location. You
can rewrite this method to allow for offsets greater than 2GB by
converting a 64-bit signed offset into two 32-bit values.

https://riptutorial.com/

184

PROPERTIES OF THE CLASS BY MICROSOFT

The file handle for the currently open file. This is not compatible with VBA file

FileHand|
WERENEE handles.

FileName The name of the currently open file.

AutoFlush Sets/indicates whether WriteBytes will automatically call the Flush method.

NORMAL MODULE

Simply throw in the full path to be hashed, Blocksize to use
(number of bytes), and the type of Hash to use - one of the private
constants: HashTypeMD5, HashTypeSHA1, HashTypeSHA256,
HashTypeSHA384, HashTypeSHA512. This was designed to be
as generic as possible.

GetFileHash(sFile As
String, uBlockSize As
Double, sHashType As
String)

You should un/comment the uFileSize As Double accordingly. | have tested MD5 and SHAL.

Examples
This have to be in a Class module, examples later referred as "Random"”

' How To Seek Past VBA's 2GB File Limit
' Source: https://support.microsoft.com/en-us/kb/189981 (Archived)
' This must be in a Class Module

Option Explicit

Public Enum W32F_Errors
W32F_UNKNOWN_ERROR = 45600
W32F_FILE_ALREADY_OPEN
W32F_PROBLEM_OPENING_FILE
W32F_FILE_ALREADY_CLOSED
W32F_Problem_seeking

End Enum

Private Const W32F_SOURCE = "Win32File Object"
Private Const GENERIC_WRITE = &H40000000
Private Const GENERIC_READ = &H80000000
Private Const FILE_ATTRIBUTE_NORMAL = &H80
Private Const CREATE_ALWAYS = 2

Private Const OPEN_ALWAYS = 4

Private Const INVALID_HANDLE_VALUE = -1

https://riptutorial.com/ 185

Private Const FILE_BEGIN = 0, FILE_CURRENT = 1, FILE_END = 2

Private Const FORMAT_MESSAGE_FROM_SYSTEM = &H1000

Private Declare Function FormatMessage Lib "kernel32" Alias "FormatMessageA" (_
ByVal dwFlags As Long,
lpSource As Long, _
ByVal dwMessageId As Long,
ByVal dwLanguageId As Long,
ByVal lpBuffer As String,
ByVal nSize As Long,

Arguments As Any) As Long

Private Declare Function ReadFile Lib "kernel32" (_
ByVal hFile As Long,
lpBuffer As Any, _
ByVal nNumberOfBytesToRead As Long,
lpNumberOfBytesRead As Long,
ByVal lpOverlapped As Long) As Long

Private Declare Function CloseHandle Lib "kernel32" (ByVal hObject As Long) As Long

Private Declare Function WriteFile Lib "kernel32" (_
ByVal hFile As Long,
lpBuffer As Any,
ByVal nNumberOfBytesToWrite As Long,

lpNumberOfBytesWritten As Long,
ByVal lpOverlapped As Long) As Long

Private Declare Function CreateFile Lib "kernel32" Alias "CreateFileA" (_
ByVal lpFileName As String,
ByVal dwDesiredAccess As Long,
ByVal dwShareMode As Long,
ByVal lpSecurityAttributes As Long,

ByVal dwCreationDisposition As Long,
ByVal dwFlagsAndAttributes As Long,
ByVal hTemplateFile As Long) As Long

Private Declare Function SetFilePointer Lib "kernel32" (_
ByVal hFile As Long,
ByVal 1DistanceToMove As Long,

lpDistanceToMoveHigh As Long,
ByVal dwMoveMethod As Long) As Long

Private Declare Function FlushFileBuffers Lib "kernel32" (ByVal hFile As Long) As Long

Private hFile As Long, sFName As String, fAutoFlush As Boolean

Public Property Get FileHandle () As Long
If hFile = INVALID_HANDLE_VALUE Then
RaiseError W32F_FILE_ALREADY_CLOSED
End If
FileHandle = hFile
End Property

Public Property Get FileName () As String
If hFile = INVALID_HANDLE_VALUE Then
RaiseError W32F_FILE_ALREADY_CLOSED
End If
FileName = sFName
End Property

https://riptutorial.com/ 186

Public Property Get IsOpen() As Boolean
IsOpen = hFile <> INVALID_HANDLE_VALUE
End Property

Public Property Get AutoFlush () As Boolean
If hFile = INVALID_HANDLE_VALUE Then
RaiseError W32F_FILE_ALREADY_CLOSED
End If
AutoFlush = fAutoFlush
End Property

Public Property Let AutoFlush(ByVal NewVal As Boolean)
If hFile = INVALID_HANDLE_VALUE Then
RaiseError W32F_FILE_ALREADY_CLOSED
End If
fAutoFlush = NewVal
End Property

Public Sub OpenFile (ByVal sFileName As String)
If hFile <> INVALID_HANDLE_VALUE Then
RaiseError W32F_FILE_ALREADY_OPEN, sFName
End If
hFile = CreateFile(sFileName, GENERIC_WRITE Or GENERIC_READ, 0, 0, OPEN_ALWAYS,
FILE_ATTRIBUTE_NORMAL, O0)
If hFile = INVALID_HANDLE_VALUE Then
RaiseError W32F_PROBLEM_OPENING_FILE, sFileName
End If
sFName = sFileName
End Sub

Public Sub CloseFile ()
If hFile = INVALID_HANDLE_VALUE Then
RaiseError W32F_FILE_ALREADY_CLOSED
End If
CloseHandle hFile
sFName = ""
fAutoFlush = False
hFile = INVALID_HANDLE_VALUE
End Sub

Public Function ReadBytes (ByVal ByteCount As Long) As Variant
Dim BytesRead As Long, Bytes () As Byte
If hFile = INVALID_HANDLE_VALUE Then
RaiseError W32F_FILE_ALREADY_CLOSED
End If
ReDim Bytes (0 To ByteCount - 1) As Byte
ReadFile hFile, Bytes(0), ByteCount, BytesRead, 0
ReadBytes = Bytes
End Function

Public Sub WriteBytes (DataBytes () As Byte)
Dim fSuccess As Long, BytesToWrite As Long, BytesWritten As Long
If hFile = INVALID_HANDLE_VALUE Then
RaiseError W32F_FILE_ALREADY_CLOSED

End If
BytesToWrite = UBound (DataBytes) - LBound(DataBytes) + 1
fSuccess = WriteFile (hFile, DataBytes (LBound (DataBytes)), BytesToWrite, BytesWritten, 0)
If fAutoFlush Then Flush
End Sub

https://riptutorial.com/ 187

Public Sub Flush ()
If hFile = INVALID_HANDLE_VALUE Then
RaiseError W32F_FILE_ALREADY_CLOSED
End If
FlushFileBuffers hFile
End Sub

Public Sub SeekAbsolute (ByVal HighPos As Long, ByVal LowPos As Long)
If hFile = INVALID_HANDLE_VALUE Then
RaiseError W32F_FILE_ALREADY_CLOSED
End If
LowPos = SetFilePointer (hFile, LowPos, HighPos, FILE_BEGIN)
End Sub

Public Sub SeekRelative (ByVal Offset As Long)
Dim TempLow As Long, TempErr As Long
If hFile = INVALID_HANDLE_VALUE Then
RaiseError W32F_FILE_ALREADY_CLOSED

End If
TempLow = SetFilePointer (hFile, Offset, ByVal 0&, FILE_CURRENT)
If TempLow = -1 Then

TempErr = Err.LastDllError
If TempErr Then
RaiseError W32F_Problem_seeking, "Error " & TempErr & "." & vbCrLf & CStr (TempErr)
End If
End If
End Sub

Private Sub Class_Initialize ()
hFile = INVALID_HANDLE_VALUE
End Sub

Private Sub Class_Terminate ()
If hFile <> INVALID_HANDLE_VALUE Then CloseHandle hFile
End Sub

Private Sub RaiseError (ByVal ErrorCode As W32F_Errors, Optional sExtra)
Dim Win32Err As Long, Win32Text As String
Win32Err = Err.LastDllError
If Win32Err Then
Win32Text = vbCrLf & "Error " & Win32Err & vbCrLf & _
DecodeAPIErrors (Win32Err)
End If
Select Case ErrorCode
Case W32F_FILE_ALREADY_OPEN
Err.Raise W32F_FILE_ALREADY_OPEN, W32F_SOURCE, "The file '" & sExtra & "' is
already open." & Win32Text
Case W32F_PROBLEM_OPENING_FILE
Err.Raise W32F_PROBLEM_OPENING_FILE, W32F_SOURCE, "Error opening '" & sExtra &
"t." & Win32Text
Case W32F_FILE_ALREADY_CLOSED
Err.Raise W32F_FILE_ALREADY_ CLOSED, W32F_SOURCE, "There is no open file."
Case W32F_Problem_seeking
Err.Raise W32F_Problem_seeking, W32F_SOURCE, "Seek Error." & vbCrLf & sExtra
Case Else
Err.Raise W32F_UNKNOWN_ERROR, W32F_ SOURCE, "Unknown error." & Win32Text
End Select
End Sub

Private Function DecodeAPIErrors (ByVal ErrorCode As Long) As String
Dim sMessage As String, MessagelLength As Long

https://riptutorial.com/ 188

sMessage = Space$ (256)

MessagelLength = FormatMessage (FORMAT_MESSAGE_FROM_SYSTEM, 0&, ErrorCode, 0&, sMessage,

256&, 0&)
If MessagelLength > 0 Then
DecodeAPIErrors = Left (sMessage, Messagelength)
Else
DecodeAPIErrors = "Unknown Error."
End If
End Function

Code for Calculating File Hash in a Standard module

Private Const HashTypeMD5 As String = "MD5" ' https://msdn.microsoft.com/en-—
us/library/system.security.cryptography.md5cryptoserviceprovider (v=vs.110) .aspx
Private Const HashTypeSHAl As String = "SHA1" ' https://msdn.microsoft.com/en-—
us/library/system.security.cryptography.shalcryptoserviceprovider (v=vs.110) .aspx
Private Const HashTypeSHA256 As String = "SHA256" ' https://msdn.microsoft.com/en—
us/library/system.security.cryptography.sha256cryptoserviceprovider (v=vs.110) .aspx
Private Const HashTypeSHA384 As String = "SHA384" ' https://msdn.microsoft.com/en—
us/library/system.security.cryptography.sha384cryptoserviceprovider (v=vs.110) .aspx
Private Const HashTypeSHAS512 As String = "SHA512" ' https://msdn.microsoft.com/en—

us/library/system.security.cryptography.sha5l2cryptoserviceprovider (v=vs.110) .aspx
Private uFileSize As Double ' Comment out if not testing performance by FileHashes ()

Sub FileHashes ()

Dim tStart As Date, tFinish As Date, sHash As String, aTestFiles As Variant, oTestFile As

Variant, aBlockSizes As Variant, oBlockSize As Variant
Dim BLOCKSIZE As Double
' This performs performance testing on different file sizes and block sizes
aBlockSizes = Array("2712-1", "2~13-1", "2~14-1", "27~15-1", "2716-1", "2~17-1",
WML G=al i - WRSRQ=1lV, WZaza =W Wgama=ilW =~ W2azd=illi— Waapd=ill = WRaze=all U2 E=il)
aTestFiles = Array("C:\ISO\clonezilla-live-2.2.2-37-amd64.iso",
"C:\ISO\HPIP201.2014_0902.29.is0",
"C:\ISO\SW_DVD5_Windows_Vista_Business_W32_32BIT_English.ISO",
"C:\ISO\Winl0_1607_English_x64.iso",
"C:\ISO\SW_DVD9_Windows_Svr_Std_and_DataCtr_2012_R2_64Bit_English.ISO")
Debug.Print "Test files: " & Join(aTestFiles, " | ")
Debug.Print "BlockSizes: " & Join(aBlockSizes, " | ")
For Each oTestFile In aTestFiles
Debug.Print oTestFile
For Each oBlockSize In aBlockSizes
BLOCKSIZE = Evaluate (oBlockSize)
tStart = Now
sHash = GetFileHash (CStr (oTestFile), BLOCKSIZE, HashTypeMD5)
tFinish = Now

ll2A18_1Il,

Debug.Print sHash, uFileSize, Format (tFinish - tStart, "hh:mm:ss"), oBlockSize & "

(" & BLOCKSIZE & ")"
Next
Next
End Sub

Private Function GetFileHash (ByVal sFile As String, ByVal uBlockSize As Double, ByVal

sHashType As String) As String
Dim oFSO As Object ' "Scripting.FileSystemObject"
Dim oCSP As Object ' One of the "CryptoServiceProvider"
Dim oRnd As Random ' "Random" Class by Microsoft, must be in the same file
Dim uBytesRead As Double, uBytesToRead As Double, bDone As Boolean

https://riptutorial.com/

189

Dim aBlock () As Byte, aBytes As Variant ' Arrays to store bytes
Dim aHash () As Byte, sHash As String, i As Long
'Dim uFileSize As Double ' Un-Comment if GetFileHash () is to be used individually

Set oRnd = New Random ' Class by Microsoft: Random

Set oOFSO = CreateObject ("Scripting.FileSystemObject")

Set oCSP = CreateObiject ("System.Security.Cryptography." & sHashType &
"CryptoServiceProvider")

If oFSO Is Nothing Or oRnd Is Nothing Or oCSP Is Nothing Then
MsgBox "One or more required objects cannot be created"
GoTo CleanUp

End If

uFileSize = oFSO.GetFile(sFile) .Size ' FILELEN() has 2GB max!
uBytesRead = 0

bDone = False

sHash = String(oCSP.HashSize / 4, "O") ' Each hexadecimal has 4 bits

Application.ScreenUpdating = False
' Process the file in chunks of uBlockSize or less
If uFileSize = 0 Then
ReDim aBlock (0)
oCSP.TransformFinalBlock aBlock, 0, O
bDone = True
Else
With oRnd
.OpenFile sFile
Do
If uBytesRead + uBlockSize < uFileSize Then
uBytesToRead = uBlockSize
Else
uBytesToRead = uFileSize - uBytesRead
bDone = True
End If
' Read in some bytes
aBytes = .ReadBytes (uBytesToRead)
aBlock = aBytes
If bDone Then
oCSP.TransformFinalBlock aBlock, 0, uBytesToRead
uBytesRead = uBytesRead + uBytesToRead
Else
uBytesRead = uBytesRead + oCSP.TransformBlock (aBlock, 0, uBytesToRead,

aBlock, 0)
End If
DoEvents
Loop Until bDone
.CloseFile
End With
End If

If bDone Then
' convert Hash byte array to an hexadecimal string
aHash = oCSP.hash
For i = 0 To UBound (aHash)

Mid$ (sHash, 1 * 2 + (aHash(i) > 15) + 2) = Hex(aHash (1))
Next
End If
Application.ScreenUpdating = True
' Clean up
oCSP.Clear
CleanUp:

https://riptutorial.com/ 190

Set oFSO = Nothing

Set oRnd = Nothing

Set oCSP = Nothing

GetFileHash = sHash
End Function

The output is pretty interesting, my test files indicates that srocks1ze = 131071 (2417-1)
gives overall best performance with 32bit Office 2010 on Windows 7 x64, next best is
2716-1 (65535). Note 2~27-1 yields Out of memory.

File Size)

(byics) File Name

146,800,640 clonezilla-live-2.2.2-37-amd64.iso
798,210,048 HPIP201.2014 0902.29.is0

2,073,016,320 SW_DVD5_Windows_Vista_Business_W32_32BIT_English.ISO
4,380,387,328 Win10_1607_English_x64.iso

5,400,115,200 SW_DVD9 Windows_Svr_Std_and_DataCtr_2012_R2_64Bit_English.ISO

Calculating all Files Hash from a root Folder

Another variation from the code above gives you more performance when you want to get hash
codes of all files from a root folder including all sub folders.

Example of Worksheet:

N A =] C
1 SHAL | - RootPath: C:b
File Hash «|File Size «|Flle Name «|Flle

Code

Option Explicit

Private Const HashTypeMD5 As String = "MD5" ' https://msdn.microsoft.com/en-
us/library/system.security.cryptography.md5cryptoserviceprovider (v=vs.110) .aspx
Private Const HashTypeSHAl As String = "SHA1" ' https://msdn.microsoft.com/en-
us/library/system.security.cryptography.shalcryptoserviceprovider (v=vs.110) .aspx
Private Const HashTypeSHA256 As String = "SHA256" ' https://msdn.microsoft.com/en-—
us/library/system.security.cryptography.sha256cryptoserviceprovider (v=vs.110) .aspx
Private Const HashTypeSHA384 As String = "SHA384" ' https://msdn.microsoft.com/en—
us/library/system.security.cryptography.sha384cryptoserviceprovider (v=vs.110) .aspx
Private Const HashTypeSHA512 As String = "SHA512" ' https://msdn.microsoft.com/en—

us/library/system.security.cryptography.sha5l2cryptoserviceprovider (v=vs.110) .aspx

Private Const BLOCKSIZE As Double = 131071 ' 2717-1

https://riptutorial.com/ 191

https://i.stack.imgur.com/7wEZ3.png

Private oFSO As Object

Private oCSP As Object

Private oRnd As Random ' Requires the Class from Microsoft https://support.microsoft.com/en—
us/kb/189981

Private sHashType As String

Private sRootFDR As String

Private oRng As Range

Private uFileCount As Double

Sub AllFileHashes () ' Active—-X button calls this
Dim oWS As Worksheet
' | A: FileHash | B: FileSize | C: FileName | D: FilaName and Path | E: File Last
Modification Time | F: Time required to calculate has code (seconds)
With ThisWorkbook
' Clear All old entries on all worksheets
For Each oWS In .Worksheets
Set oRng = Intersect (oWS.UsedRange, oWS.UsedRange.Offset (2))
If Not oRng Is Nothing Then oRng.ClearContents

Next

With .Worksheets (1)
sHashType = Trim(.Range ("Al") .Value) ' Range (Al)
sRootFDR = Trim(.Range ("C1l") .Value) ' Range(Cl) Column B for file size
If Len(sHashType) = 0 Or Len(sRootFDR) = 0 Then Exit Sub
Set oRng = .Range ("A3") ' First entry on First Page

End With

End With

uFileCount = 0

If oRnd Is Nothing Then Set oRnd = New Random ' Class by Microsoft: Random

If oFSO Is Nothing Then Set oFSO = CreateObject ("Scripting.FileSystemObject") ' Just to
get correct FileSize

If oCSP Is Nothing Then Set oCSP = CreateObject ("System.Security.Cryptography." &
sHashType & "CryptoServiceProvider")

ProcessFolder oFSO.GetFolder (sRootFDR)

Application.StatusBar = False

Application.ScreenUpdating = True

oCSP.Clear

Set oCSP

Set oRng = Nothing

Set oFSO = Nothing

Set oRnd = Nothing

Debug.Print "Total file count: " & uFileCount
End Sub

Nothing

Private Sub ProcessFolder (ByRef oFDR As Object)
Dim oFile As Object, oSubFDR As Object, sHash As String, dStart As Date, dFinish As Date
Application.ScreenUpdating = False
For Each oFile In oFDR.Files
uFileCount = uFileCount + 1
Application.StatusBar = uFileCount & ": " & Right (oFile.Path, 255 - Len(uFileCount) -

oCSP.Initialize ' Reinitialize the CryptoServiceProvider
dStart = Now
sHash = GetFileHash (oFile, BLOCKSIZE, sHashType)
dFinish = Now
With oRng
.Value = sHash
.Offset (0, 1).Value = oFile.Size ' File Size in bytes

https://riptutorial.com/ 192

.Offset (0, 2).Value = oFile.Name ' File name with extension
.Offset (0, 3).Value = oFile.Path ' Full File name and Path
.Offset (0, 4).Value = FileDateTime (oFile.Path) ' Last modification timestamp of
file
.Offset (0, 5).Value = dFinish - dStart ' Time required to calculate hash code
End With
If oRng.Row = Rows.Count Then
' Max rows reached, start on Next sheet
If oRng.Worksheet.Index + 1 > ThisWorkbook.Worksheets.Count Then
MsgBox "All rows in all worksheets have been used, please create more sheets"
End
End If
Set oRng = ThisWorkbook.Sheets (oRng.Worksheet.Index + 1) .Range ("A3")
oRng.Worksheet.Activate
Else
' Move to next row otherwise
Set oRng = oRng.Offset (1)
End If
Next
'Application.StatusBar = False
Application.ScreenUpdating = True
oRng.Activate
For Each oSubFDR In oFDR.SubFolders

ProcessFolder oSubFDR
Next
End Sub

Private Function GetFileHash (ByVal
sHashType As String) As String
uBytesRead As Double,
aBlock () As Byte,
aHash () As Byte,

uFileSize As Double '

Dim
Dim
Dim
Dim

If oRnd
If oFSO
correct
If oCSP
sHashType &

get FileSize
"CryptoServiceProvider

If oFSO

uBytesToRead As Double,
aBytes As Variant '
sHash As String,
Un-Comment if GetFileHash ()

Is Nothing Then Set oRnd =
Is Nothing Then Set oFSO =

Is Nothing Then Set oCSP =

sFile As String, ByVal uBlockSize As Double, ByVal
bDone As Boolean

Arrays to store bytes

i As Long, oTmp As Variant

is to be used individually

New Random ' Class by Microsoft: Random

CreateObject ("Scripting.FileSystemObject") ' Just to
CreateObject ("System.Security.Cryptography." &
")

Is Nothing Or oRnd Is Nothing Or oCSP Is Nothing Then

MsgBox "One or more required objects cannot be created"

Exit Function
End If

uFileSize =
uBytesRead = 0
bDone = False

sHash = String(oCSP.HashSize /

If uFileSize = 0 Then
ReDim aBlock (0)

oCSP.TransformFinalBlock aBlock,

bDone = True
Else

With oRnd

OoFSO.GetFile(sFile) .Size '

FILELEN () has 2GB max

4, "O") ' Each hexadecimal is 4 bits

Process the file in chunks of uBlockSize or less

0, O

On Error GoTo CannotOpenFile

.OpenFile sFile
Do

If uBytesRead + uBlockSize < uFileSize Then

https://riptutorial.com/

193

uBytesToRead = uBlockSize
Else
uBytesToRead = uFileSize - uBytesRead
bDone = True
End If
' Read in some bytes
aBytes = .ReadBytes (uBytesToRead)
aBlock = aBytes
If bDone Then
oCSP.TransformFinalBlock aBlock, 0, uBytesToRead
uBytesRead = uBytesRead + uBytesToRead
Else
uBytesRead = uBytesRead + oCSP.TransformBlock (aBlock, 0, uBytesToRead,

aBlock, 0)
End If
DoEvents
Loop Until bDone
.CloseFile
CannotOpenFile:
If Err.Number <> 0 Then ' Change the hash code to the Error description
oTmp = Split (Err.Description, vbCrLf)
sHash = oTmp (1) & ":" & oTmp (2)
End If
End With
End If

If bDone Then
' convert Hash byte array to an hexadecimal string
aHash = oCSP.hash
For 1 = 0 To UBound (aHash)

Mid$ (sHash, i * 2 4+ (aHash(i) > 15) + 2) = Hex(aHash (1))

Next

End If

GetFileHash = sHash

End Function

Read Reading 2GB+ files in binary in VBA and File Hashes online:
https://riptutorial.com/vba/topic/8786/reading-2gbplus-files-in-binary-in-vba-and-file-hashes

https://riptutorial.com/

194

https://riptutorial.com/vba/topic/8786/reading-2gbplus-files-in-binary-in-vba-and-file-hashes

C_hapter 35: Recursion

Introduction

A function that calls itself is said to be recursive. Recursive logic can often be implemented as a
loop, too. Recursion must be controlled with a parameter, so that the function knows when to stop
recursing and deepening the call stack. Infinite recursion eventually causes a run-time error '28"
"Out of stack space".

See Recursion.

Remarks

Recursion allows for repeated, self-referencing calls of a procedure.
Examples

Factorials

Function Factorial (Value As Long) As Long
If Value = 0 Or Value = 1 Then

Factorial =1
Else
Factorial = Factorial (Value - 1) * Value
End If

End Function

Folder Recursion
Early Bound (with a reference to microsoft scripting Runtime)

Sub EnumerateFilesAndFolders(_
FolderPath As String, _
Optional MaxDepth As Long = -1,
Optional CurrentDepth As Long = _

0,
Optional Indentation As Long = 2)

Dim FSO As Scripting.FileSystemObject
Set FSO = New Scripting.FileSystemObject

'Check the folder exists

If FSO.FolderExists (FolderPath) Then
Dim fldr As Scripting.Folder
Set fldr = FSO.GetFolder (FolderPath)

'Output the starting directory path

If CurrentDepth = 0 Then
Debug.Print fldr.Path

End If

https://riptutorial.com/ 195

http://www.riptutorial.com/vba/topic/3236/recursion

'Enumerate the subfolders
Dim subFldr As Scripting.Folder
For Each subFldr In fldr.SubFolders
Debug.Print Space$ ((CurrentDepth + 1) * Indentation) & subFldr.Name
If CurrentDepth < MaxDepth Or MaxDepth = -1 Then
'Recursively call EnumerateFilesAndFolders
EnumerateFilesAndFolders subFldr.Path, MaxDepth, CurrentDepth + 1,
Indentation
End If
Next subFldr

'Enumerate the files
Dim fil As Scripting.File
For Each fil In fldr.Files
Debug.Print Space$ ((CurrentDepth + 1) * Indentation) & fil.Name
Next fil
End If
End Sub

Read Recursion online: https://riptutorial.com/vba/topic/3236/recursion

https://riptutorial.com/ 196

https://riptutorial.com/vba/topic/3236/recursion

C_hapter 36: Scripting.Dictionary object

Remarks

You must add Microsoft Scripting Runtime to the VBA project through the VBE's Tools —
References command in order to implement early binding of the Scripting Dictionary object. This
library reference is carried with the project; it does not have to be re-referenced when the VBA
project is distributed and run on another computer.

Examples

Properties and Methods

A Scripting Dictionary object stores information in Key/ltem pairs. The Keys must be unique and
not an array but the associated Items can be repeated (their uniqueness is held by the companion
Key) and can be of any type of variant or object.

A dictionary can be thought of as a two field in-memory database with a primary unique index on
the first 'field' (the Key). This unique index on the Keys property allows very fast 'lookups’ to
retrieve a Key's associated Item value.

Properties

Setting the CompareMode can only be

read / CompareMode performed on an empty dictionary. Accepted
CompareMode . .
write constant values are 0 (vbBinaryCompare), 1
(vbTextCompare), 2 (vbDatabaseCompare).
Count read unsigned long A one-based count of the key/item pairs in the
only integer scripting dictionary object.
Key regd / nor.l-array Each individual unique key in the dictionary.
write variant
Default property. Each individual item
read / associated with a key in the dictionary. Note
Item(Key) write any variant that attempting to retrieve an item with a key
that does not exist in the dictionary will
implicitly add the passed key.
Methods

https://riptutorial.com/ 197

https://msdn.microsoft.com/en-us/library/x4k5wbx4(v=vs.84).aspx

name description

Add(Key,

ftem) unique keys.

Exists(Key) Boolean test to determine if a Key already exists in the dictionary.

Keys Returns the array or collection of unique keys.
Items Returns the array or collection of associated items.
Remove(

Key) Removes an individual dictionary key and its associated item.

RemoveAll Clears all of a dictionary object's keys and items.

Adds a new Key and Item to the dictionary. The new key must not exist in the
dictionary's current Keys collection but an item can be repeated among many

Sample Code

'Populate, enumerate, locate and remove entries in a dictionary that was created
'with late binding
Sub iterateDictionaryLate ()

Dim k As Variant, dict As Object

Set dict = CreateObject ("Scripting.Dictionary")
dict.CompareMode = vbTextCompare 'non-case sensitive compare model

'populate the dictionary

dict.Add Key:="Red", Item:="Balloon"
dict.Add Key:="Green", Item:="Balloon"
dict.Add Key:="Blue", Item:="Balloon"

'iterate through the keys
For Each k In dict.Keys

Debug.Print k & " - " & dict.Item(k)
Next k

'locate the Item for Green
Debug.Print dict.Item("Green")

'remove key/item pairs from the dictionary

dict.Remove "blue" 'remove individual key/item pair by key
dict.RemoveAll 'remove all remaining key/item pairs
End Sub

'Populate, enumerate, locate and remove entries in a dictionary that was created
'with early binding (see Remarks)
Sub iterateDictionaryEarly ()

Dim d As Long, k As Variant

Dim dict As New Scripting.Dictionary

dict.CompareMode = vbTextCompare 'non-case sensitive compare model

'populate the dictionary
dict.Add Key:="Red", Item:="Balloon"

https://riptutorial.com/

198

dict.Add Key:="Green", Item:="Balloon"
dict.Add Key:="Blue", Item:="Balloon"
dict.Add Key:="White", Item:="Balloon"

'iterate through the keys
For Each k In dict.Keys

Debug.Print k & " — " & dict.Item(k)

Next k

'iterate through the keys by
For d = 0 To dict.Count - 1

Debug.Print dict.Keys (d)
Next d

the count

& " - " & dict.Items(d)

'iterate through the keys by the boundaries of the keys collection

For d = LBound(dict.Keys) To
Debug.Print dict.Keys (d)
Next d

'locate the Item for Green

UBound (dict .Keys)

& " - " & dict.Items(d)

Debug.Print dict.Item("Green")
'locate the Item for the first key
Debug.Print dict.Item(dict.Keys(0))
'locate the Item for the last key

Debug.Print dict.Item(dict.Keys (UBound (dict.Keys)))

'remove key/item pairs from the dictionary

dict.Remove "blue"
dict.Remove dict.Keys (0)

'remove
'remove

dict.Remove dict.Keys (UBound (dict.Keys)) 'remove

dict.RemoveAll

End Sub

Log WOrksheet

A e
bob 10/12/2016 9:00
alice 10/13/2016 13:00

bob 10/13/2016 13:30

alice 10/13/2016 14:00

'remove

individual key/item pair by key
first key/item by index position
last key/item by index position
all remaining key/item pairs

Aggregating data with Scripting.Dictionary (Maximum, Count)

Dictionaries are great for managing information where multiple entries occur, but you are only
concerned with a single value for each set of entries — the first or last value, the mininmum or
maximum value, an average, a sum etc.

Consider a workbook that holds a log of user activity, with a script that inserts the username and
edit date every time someone edits the workbook:

https://riptutorial.com/

199

LN R

alice 10/14/2016

Let's say you want to output the last edit time for each user, into a worksheet named summary.

Notes:

13:00

1. The data is assumed to be in ActiveWorkbook.

2. We are using an array to pull the values from the worksheet; this is more efficient than iterating over each cell.

3. The pictionary is created using early binding.

Sub LastEdit ()

Dim vLog as Variant, vKey as Variant

Dim dict as New Scripting.Dictionary

Dim lastRow As Integer,
Dim i as Long
Dim anchor As Range

With ActiveWorkbook
With .Sheets ("Log")
'Pull entries in
lastRow = .Range
vlog = .Range ("a

'Loop through ar
For i = 1 to las
Dim username

lastColumn As Integer

"log" into a variant array

("a" & .Rows.Count) .End(x1lUp) .Row

1", .Cells(lastRow, 2)).Value2

ray
tRow
As String

username = vlog(i, 1)

Dim editDate

As Date

editDate = vlog (i, 2)

'If the username is not yet in the dictionary:

If Not dict.

Exists (username) Then

dict (username) = editDate

ElseIf dict(

username) < editDate Then

dict (username) = editDate

End If
Next
End With

With .Sheets ("Summary")
'Loop through keys

For Each vKey in dict.Keys

'Add the key and value at the next available row

Anchor = .Range ("A"
Anchor = vKey
Anchor.Offset (0, 1)
Next vKey
End With
End With
End Sub

and the output will look like this:

summary WOrksheet

&

.Rows.Count) .End (x1Up) .Offset (1,0)

dict (vKey)

https://riptutorial.com/

200

LN R
bob 10/13/2016 13:30

alice 10/14/2016 13:00

If on the other hand you want to output how many times each user edited the workbook, the body
of the ror loop should look like this:

'Loop through array

For 1 = 1 to lastRow
Dim username As String
username = vlog(i, 1)

'If the username is not yet in the dictionary:
If Not dict.Exists (username) Then

dict (username) = 1
Else

dict (username) = dict (username) + 1
End If

Next

and the output will look like this:

summary WOrksheet

alice 3

Getting unique values with Scripting.Dictionary
The pictionary allows getting a unigue set of values very simply. Consider the following function:

Function Unique (values As Variant) As Variant ()
'Put all the values as keys into a dictionary
Dim dict As New Scripting.Dictionary
Dim val As Variant
For Each val In values
dict (val) = 1 'The value doesn't matter here
Next
Unique = dict.Keys
End Function

which you could then call like this:

Dim duplicates () As Variant
duplicates = Array(l, 2, 3, 1, 2, 3)
Dim uniqueVals () As Variant

https://riptutorial.com/ 201

uniqueVals = Unique (duplicates)

and uniquevals would contain only (1,2, 3}.
Note: This function can be used with any enumerable object.

Read Scripting.Dictionary object online: https://riptutorial.com/vba/topic/3667/scripting-dictionary-
object

https://riptutorial.com/ 202

https://riptutorial.com/vba/topic/3667/scripting-dictionary-object
https://riptutorial.com/vba/topic/3667/scripting-dictionary-object

C_hapter 37: Scripting.FileSystemObject

Examples

Creating a FileSystemObject

N -

Const ForReading
Const ForWriting =
Const ForAppending = 8

Sub FsoExample ()
Dim fso As Object ' declare variable
Set fso = CreateObject ("Scripting.FileSystemObject") ' Set it to be a File System Object

' now use it to check if a file exists
Dim myFilePath As String
myFilePath = "C:\mypath\to\myfile.txt"
If fso.FileExists (myFilePath) Then
' do something
Else
' file doesn't exist
MsgBox "File doesn't exist"
End If
End Sub

Reading a text file using a FileSystemObject

Const ForReading =

N

Const ForWriting =

Il
fo]

Const ForAppending

Sub ReadTextFileExample ()
Dim fso As Object
Set fso = CreateObject ("Scripting.FileSystemObject")

Dim sourceFile As Object
Dim myFilePath As String
Dim myFileText As String

myFilePath = "C:\mypath\to\myfile.txt"

Set sourceFile = fso.OpenTextFile (myFilePath, ForReading)

myFileText = sourceFile.ReadAll ' myFileText now contains the content of the text file
sourceFile.Close ' close the file

' do whatever you might need to do with the text

' You can also read it line by line

Dim line As String

Set sourceFile = fso.OpenTextFile (myFilePath, ForReading)

While Not sourceFile.AtEndOfStream ' while we are not finished reading through the file
line = sourceFile.ReadLine
' do something with the line...

Wend

sourceFile.Close

End Sub

https://riptutorial.com/

203

Creating a text file with FileSystemObject

Sub CreateTextFileExample ()
Dim fso As Object
Set fso = CreateObject ("Scripting.FileSystemObject")

Dim targetFile As Object
Dim myFilePath As String
Dim myFileText As String

myFilePath = "C:\mypath\to\myfile.txt"

Set targetFile = fso.CreateTextFile (myFilePath, True) ' this will overwrite any existing
file

targetFile.Write "This is some new text"

targetFile.Write " And this text will appear right after the first bit of text."

targetFile.WriteLine "This bit of text includes a newline character to ensure each write
takes its own line."

targetFile.Close ' close the file
End Sub

Writing to an existing file with FileSystemObject

N -

Const ForReading
Const ForWriting =

I
o]

Const ForAppending

Sub WriteTextFileExample ()
Dim oFso
Set oFso = CreateObject ("Scripting.FileSystemObject")

Dim oFile as Object
Dim myFilePath as String
Dim myFileText as String

myFilePath = "C:\mypath\to\myfile.txt"

' First check if the file exists

If oFso.FileExists (myFilePath) Then
' this will overwrite any existing filecontent with whatever you send the file
' to append data to the end of an existing file, use ForAppending instead
Set oFile = oFso.OpenTextFile (myFilePath, ForWriting)

Else
' create the file instead
Set oFile = oFso.CreateTextFile (myFilePath) ' skipping the optional boolean for
overwrite if exists as we already checked that the file doesn't exist.
End If

oFile.Write "This is some new text"
oFile.Write " And this text will appear right after the first bit of text."
oFile.WriteLine "This bit of text includes a newline character to ensure each write takes
its own line."
oFile.Close ' close the file
End Sub

Enumerate files in a directory using FileSystemObject

Early bound (requires a reference to Microsoft Scripting Runtime):

https://riptutorial.com/ 204

Public Sub EnumerateDirectory ()
Dim fso As Scripting.FileSystemObject
Set fso = New Scripting.FileSystemObject

Dim targetFolder As Folder
Set targetFolder = fso.GetFolder ("C:\")

Dim foundFile As Variant
For Each foundFile In targetFolder.Files
Debug.Print foundFile.Name
Next
End Sub

Late bound:

Public Sub EnumerateDirectory ()
Dim fso As Object
Set fso = CreateObject ("Scripting.FileSystemObject")

Dim targetFolder As Object
Set targetFolder = fso.GetFolder ("C:\")

Dim foundFile As Variant
For Each foundFile In targetFolder.Files
Debug.Print foundFile.Name
Next
End Sub

Recursively enumerate folders and files
Early Bound (with a reference to microsoft scripting Runtime)

Sub EnumerateFilesAndFolders (_
FolderPath As String,
Optional MaxDepth As Long = -1,
Optional CurrentDepth As Long =

0,
Optional Indentation As Long = 2)

Dim FSO As Scripting.FileSystemObject
Set FSO = New Scripting.FileSystemObject

'Check the folder exists

If FSO.FolderExists (FolderPath) Then
Dim fldr As Scripting.Folder
Set fldr = FSO.GetFolder (FolderPath)

'Output the starting directory path

If CurrentDepth = 0 Then
Debug.Print fldr.Path

End If

'Enumerate the subfolders
Dim subFldr As Scripting.Folder
For Each subFldr In fldr.SubFolders
Debug.Print Space$ ((CurrentDepth + 1) * Indentation) & subFldr.Name
If CurrentDepth < MaxDepth Or MaxDepth = -1 Then
'Recursively call EnumerateFilesAndFolders
EnumerateFilesAndFolders subFldr.Path, MaxDepth, CurrentDepth + 1, Indentation

https://riptutorial.com/ 205

End If
Next subFldr

'Enumerate the files
Dim fil As Scripting.File
For Each fil In fldr.Files
Debug.Print Space$ ((CurrentDepth + 1) * Indentation) & fil.Name
Next fil
End If
End Sub

Output when called with arguments like: enumerateFilesandrolders "C:\Test"

C:\Test
Documents
Personal
Budget .xls
Recipes.doc
Work
Planning.doc
Downloads
FooBar.exe
ReadMe.txt

Output when called with arguments like: enumerateFilesandrolders "C:\Test", 0

C:\Test
Documents
Downloads
ReadMe.txt

Output when called with arguments like: enumeraterFilesandrolders "C:\Test", 1, 4

C:\Test
Documents
Personal
Work
Downloads
FooBar.exe
ReadMe.txt

Strip file extension from a file name

Dim fso As New Scripting.FileSystemObject
Debug.Print fso.GetBaseName ("MyFile.something.txt")

Pr"ﬂS]MyFile.something

Note that the cetsasename () method already handles multiple periods in a file name.

Retrieve just the extension from a file name

Dim fso As New Scripting.FileSystemObject

https://riptutorial.com/ 206

Debug.Print fso.GetExtensionName ("MyFile.something.txt")

Prints txt Note that the cetextensionname () method already handles multiple periods in a file name.
Retrieve only the path from a file path

The GetParentFolderName method returns the parent folder for any path. While this can also be
used with folders, it is arguably more useful for extracting the path from an absolute file path:

Dim fso As New Scripting.FileSystemObject
Debug.Print fso.GetParentFolderName ("C:\Users\Me\My Documents\SomeFile.txt")

Prints C:\Users\Me\My Documents

Note that the trailing path separator is not included in the returned string.
Using FSO.BuildPath to build a Full Path from folder path and file name

If you're accepting user input for folder paths, you might need to check for trailing backslashes (\)
before building a file path. The rso.suildrath method makes this simpler:

Const sourceFilePath As String = "C:\Temp" '<-- Without trailing backslash
Const targetFilePath As String = "C:\Temp\" '<-—- With trailing backslash
Const fileName As String = "Results.txt"

Dim FSO As FileSystemObject
Set FSO = New FileSystemObject

Debug.Print FSO.BuildPath (sourceFilePath, fileName)
Debug.Print FSO.BuildPath (targetFilePath, fileName)

Output:

C:\Temp\Results.txt
C:\Temp\Results.txt

Read Scripting.FileSystemObject online: https://riptutorial.com/vba/topic/990/scripting-
filesystemobject

https://riptutorial.com/ 207

https://riptutorial.com/vba/topic/990/scripting-filesystemobject
https://riptutorial.com/vba/topic/990/scripting-filesystemobject

C_hapter 38: Searching within strings for the
presence of substrings

Remarks

When you need to check for the presence or position of a substring within a string, VBA offers the

instr and 1nstrrev functions that return the character position of the substring in the string, if it is
present.

Examples

Use InStr to determine if a string contains a substring

Const baseString As String = "Foo Bar"
Dim containsBar As Boolean

'Check if baseString contains "bar" (case insensitive)
containsBar = InStr(l, baseString, "bar", vbTextCompare) > 0
'containsBar = True

'Check if baseString contains bar (case insensitive)
containsBar = InStr(l, baseString, "bar", vbBinaryCompare) > 0
'containsBar = False

Use InStr to find the position of the first instance of a substring

Const baseString As String = "Foo Bar"
Dim containsBar As Boolean

Dim posB As Long

posB = InStr(l, baseString, "B", vbBinaryCompare)
'posB = 5

Use InStrRev to find the position of the last instance of a substring

Const baseString As String = "Foo Bar"
Dim containsBar As Boolean

'Find the position of the last "B"

Dim posX As Long

'Note the different number and order of the paramters for InStrRev
posX = InStrRev (baseString, "X", -1, vbBinaryCompare)

'posX = 0

Read Searching within strings for the presence of substrings online:
https://riptutorial.com/vba/topic/3480/searching-within-strings-for-the-presence-of-substrings

https://riptutorial.com/ 208

https://riptutorial.com/vba/topic/3480/searching-within-strings-for-the-presence-of-substrings

C_hapter 39: Sorting

Introduction

Unlike the .NET framework, the Visual Basic for Applications library does not include routines to
sort arrays.

There are two types of workarounds: 1) implementing a sorting algorithm from scratch, or 2) using
sorting routines in other commonly-available libraries.

Examples

Algorithm Implementation - Quick Sort on a One-Dimensional Array
From VBA array sort function?

Public Sub QuickSort (vArray As Variant, inLow As Long, inHi As Long)

Dim pivot As Variant
Dim tmpSwap As Variant
Dim tmpLow As Long
Dim tmpHi As Long

tmpLow = inLow
tmpHi = inHi

pivot = vArray((inLow + inHi) \ 2)
While (tmpLow <= tmpHi)

While (vArray (tmpLow) < pivot And tmpLow < inHi)
tmpLow = tmpLow + 1
Wend

While (pivot < vArray (tmpHi) And tmpHi > inLow)
tmpHi = tmpHi - 1
Wend

If (tmplLow <= tmpHi) Then
tmpSwap = vArray (tmpLow)
vArray (tmpLow) = vArray (tmpHi)
vArray (tmpHi) = tmpSwap
tmpLow = tmpLow + 1
tmpHi = tmpHi - 1

End If

Wend

If (inLow < tmpHi) Then QuickSort vArray, inLow, tmpHi
If (tmpLow < inHi) Then QuickSort vArray, tmpLow, inHi

End Sub

https://riptutorial.com/ 209

http://stackoverflow.com/questions/152319/vba-array-sort-function

Using the Excel Library to Sort a One-Dimensional Array

This code takes advantage of the sort class in the Microsoft Excel Object Library.

For further reading, see:

e Copy a range to a virtual range

* How to copy selected range into given array?

Sub testExcelSort ()

Dim arr As Variant

InitArray arr

ExcelSort arr

End Sub

Private Sub InitArray(arr As Variant)

Const size = 10

ReDim arr(size)

Dim i As Integer

' Add descending numbers to the array to start

For 1 = 0 To size

arr (i) = size - i
Next i
End Sub

Private Sub ExcelSort (arr As Variant)

Ininitialize the Excel objects (required)

Dim x1 As New Excel.Application
Dim wbk As Workbook

Set wbk = x1.Workbooks.Add

Dim sht As Worksheet

Set sht = wbk.ActiveSheet

Copy the array to the Range object

Dim rng As Range
Set rng = sht.Range ("Al")
Set rng = rng.Resize (UBound(arr, 1), 1)

rng.Value = x1l.WorksheetFunction.Transpose (arr)

Run the worksheet's sort routine on the Range

Dim MySort As Sort
Set MySort = sht.Sort

With MySort

.SortFields.Clear

.SortFields.Add rng, xlSortOnValues, xlAscending,

.SetRange rng
.Header = x1No

.Apply

End With

x1SortNormal

https://riptutorial.com/

210

http://stackoverflow.com/questions/28616373/copy-a-range-to-a-virtual-range
http://stackoverflow.com/questions/18000617/how-to-copy-selected-range-into-given-array

' Copy the results back to the array

CopyRangeToArray rng, arr

' Clear the objects
Set rng = Nothing
wbk.Close False
x1.Quit

End Sub

Private Sub CopyRangeToArray (rng As Range,

Dim i As Long
Dim c As Range

' Can't just set the array to Range.value

For Each ¢ In rng.Cells
arr (i) = c.Value
i =1+ 1

Next c

End Sub

Read Sorting online: https://riptutorial.com/vba/topic/8836/sorting

(adds a dimension)

https://riptutorial.com/

211

https://riptutorial.com/vba/topic/8836/sorting

C_hapter 40: String Literals - Escaping, non-
printable characters and line-continuations

Remarks

The assignment of string-literals in VBA is confined by the limitations of the IDE and the codepage
of the current user's language settings. The examples above demonstrate the special-cases of
escaped strings, special, non-printable strings and long string-literals.

When assigning string-literals that contain characters that are specific to a certain codepage, you
may need to consider internationalization concerns by assigning a string from a separate unicode
resource file.

Examples

Escaping the " character
VBA syntax requires that a string-literal appear within » marks, so when your string needs to
contain quotation marks, you'll need to escape/prepend the » character with an extra » so that VBA

understands that you intend the »~ to be interpreted as a - string.

'The following 2 lines produce the same output

Debug.Print "The man said, ""Never use air-quotes"""
Debug.Print "The man said, " & """" & "Never use air—-quotes" & """"
'Output:

'The man said, "Never use air—-quotes"
'The man said, "Never use air—-quotes"

Assigning long string literals

The VBA editor only allows 1023 characters per line, but typically only the first 100-150 characters
are visible without scrolling. If you need to assign long string literals, but you want to keep your
code readable, you'll need to use line-continuations and concatenation to assign your string.

Debug.Print "Lorem ipsum dolor sit amet, consectetur adipiscing elit. " & _
"Integer hendrerit maximus arcu, ut elementum odio varius " & _
"nec. Integer ipsum enim, iaculis et egestas ac, condiment" & _
"um ut tellus."
'Output:
'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer hendrerit maximus arcu, ut
elementum odio varius nec. Integer ipsum enim, iaculis et egestas ac, condimentum ut tellus.

VBA will let you use a limited number of line-continuations (the actual number varies by the length
of each line within the continued-block), so if you have very long strings, you'll need to assign and
re-assign with concatenation.

https://riptutorial.com/ 212

Dim loremIpsum As String

'Assign the first part of the string

loremIpsum = "Lorem ipsum dolor sit amet, consectetur adipiscing elit. " & _
"Integer hendrerit maximus arcu, ut elementum odio varius "

'Re—assign with the previous value AND the next section of the string

loremIpsum = loremIpsum & _

"nec. Integer ipsum enim, iaculis et egestas ac, condiment" & _
"um ut tellus."

Debug.Print loremIpsum

'Output:
'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer hendrerit maximus arcu, ut

elementum odio varius nec. Integer ipsum enim, iaculis et egestas ac, condimentum ut tellus.

Using VBA string constants

VBA defines a number of string constants for special characters like:

» vbCr : Carriage-Return 'Same as "\r" in C style languages.

* vbLf: Line-Feed 'Same as "\n" in C style languages.

» vbCrLf : Carriage-Return & Line-Feed (a new-line in Windows)
» vbTab: Tab Character

* vbNullString: an empty string, like ™"

You can use these constants with concatenation and other string functions to build string-literals
with special-characters.

Debug.Print "Hello " & vbCrLf & "World"
'Output:

'Hello

'World

Debug.Print vbTab & "Hello" & vbTab & "World"
'Output:
! Hello World

Dim EmptyString As String
EmptyString = vbNullString
Debug.Print EmptyString = ""
'Output:

'True

Using vbrulistring IS considered better practice than the equivalent value of "~ due to differences
in how the code is compiled. Strings are accessed via a pointer to an allocated area of memory,
and the VBA compiler is smart enough to use a null pointer to represent vbnulistring. The literal v

is allocated memory as if it were a String typed Variant, making the use of the constant much more
efficient:

Debug.Print StrPtr (vbNullString) 'Prints O.
Debug.Print StrPtr("") 'Prints a memory address.

https://riptutorial.com/ 213

Read String Literals - Escaping, non-printable characters and line-continuations online:
https://riptutorial.com/vba/topic/3445/string-literals---escaping--non-printable-characters-and-line-
continuations

https://riptutorial.com/ 214

https://riptutorial.com/vba/topic/3445/string-literals---escaping--non-printable-characters-and-line-continuations
https://riptutorial.com/vba/topic/3445/string-literals---escaping--non-printable-characters-and-line-continuations

C_hapter 41: Substrings

Remarks

VBA has built-in functions for extracting specific parts of strings, including:

¢ Left/refts
* Right/Right$
* Mid/Mids

i TrinJTrim$

To avoid implicit type conversion onverhead (and therefore for better performance), use the $-
suffixed version of the function when a string variable is passed to the function, and/or if the result
of the function is assigned to a string variable.

Passing a nu11 parameter value to a $-suffixed function will raise a runtime error ("invalid use of
null") - this is especially relevant for code involving a database.

Examples
Use Left or Left$ to get the 3 left-most characters in a string

Const baseString As String = "Foo Bar"

Dim leftText As String
leftText = Left$ (baseString, 3)
'leftText = "Foo"

Use Right or Right$ to get the 3 right-most characters in a string

Const baseString As String = "Foo Bar"
Dim rightText As String

rightText = Right$ (baseString, 3)
'rightText = "Bar"

Use Mid or Mid$ to get specific characters from within a string

Const baseString As String = "Foo Bar"

'Get the string starting at character 2 and ending at character 6
Dim midText As String

midText = Mid$ (baseString, 2, 5)

'midText = "oo Ba"

Use Trim to get a copy of the string without any leading or trailing spaces

https://riptutorial.com/ 215

'Trim the leading and trailing spaces in a string
" Foo Bar "

Const paddedText As String

Dim trimmedText As String
Trim$ (paddedText)

trimmedText

'trimmedText = "Foo Bar"

Read Substrings online: https://riptutorial.com/vba/topic/3481/substrings

216

https://riptutorial.com/

https://riptutorial.com/vba/topic/3481/substrings

C_hapter 42: User Forms

Examples

Best Practices

A userrorn IS @ class module with a designer and a default instance. The designer can be
accessed by pressing snift+r7 While viewing the code-behind, and the code-behind can be
accessed by pressing =7 while viewing the designer.

Work with a new instance every time.

Being a class module, a form is therefore a blueprint for an object. Because a form can hold state
and data, it's a better practice to work with a new instance of the class, rather than with the
default/global one:

With New UserForml
.Show vbModal
If Not .IsCancelled Then

End If
End With

Instead of:

UserForml.Show vbModal
If Not UserForml.IsCancelled Then

End If

Working with the default instance can lead to subtle bugs when the form is closed with the red "X"
button and/or when uniocad wme is used in the code-behind.

Implement the logic elsewhere.

A form should be concerned with nothing but presentation: a button c1icx handler that connects to
a database and runs a parameterized query based on user input, is doing too many things.

Instead, implement the applicative logic in the code that's responsible for displaying the form, or
even better, in dedicated modules and procedures.

Write the code in such a way that the UserForm is only ever responsible for knowing how to
display and collect data: where the data comes from, or what happens with the data afterwards, is
none of its concern.

https://riptutorial.com/ 217

http://www.riptutorial.com/vba/example/18932/vb-predeclaredid

Caller shouldn't be bothered with controls.

Make a well-defined model for the form to work with, either in its own dedicated class module, or
encapsulated within the form's code-behind itself - expose the model with property cet
procedures, and have the client code work with these: this makes the form an abstraction over
controls and their nitty-gritty details, exposing only the relevant data to the client code.

This means code that looks like this:

With New UserForml
.Show vbModal
If Not .IsCancelled Then
MsgBox .Message, vbInformation
End If
End With

Instead of this:

With New UserForml
.Show vbModal
If Not .IsCancelled Then
MsgBox .txtMessage.Text, vbInformation
End If
End With

Handle the QueryClose event.

Forms typically have a ciocse button, and prompts/dialogs have ok and cance1 buttons; the user may
close the form using the form's control box (the red "X" button), which destroys the form instance
by default (another good reason to work with a new instance every time).

With New UserForml
.Show vbModal
If Not .IsCancelled Then 'if QueryClose isn't handled, this can raise a runtime error.
'...
End With
End With

The simplest way to handle the gueryciose event is to set the cance1 parameter to true, and then to
hide the form instead of closing it:

Private Sub UserForm_QueryClose (Cancel As Integer, CloseMode As Integer)
Cancel = True
Me.Hide

End Sub

That way the "X" button will never destroy the instance, and the caller can safely access all the
public members.

https://riptutorial.com/ 218

Hide, don't close.

The code that creates an object should be responsible for destroying it: it's not the form's
responsibility to unload and terminate itself.

Avoid using unicad Me in @ form's code-behind. Call ve.nide instead, so that the calling code can
still use the object it created when the form closes.

Name things.

Use the properties toolwindow (r4) to carefully name each control on a form. The name of a
control is used in the code-behind, so unless you're using a refactoring tool that can handle this,
renaming a control will break the code - so it's much easier to do things right in the first place,
than try to puzzle out exactly which of the 20 textboxes TextBox12 Stands for.

Traditionally, UserForm controls are named with Hungarian-style prefixes:

* 1pluserName fOr @ Label control that indicates a user name.

* txtUserName fOr @ TextBox control where the user can enter a user name.

* cboUserName fOr & comboBox CONtrol where the user can enter or pick a user name.
* 1stUserName fOr @ ListBox control where the user can pick a user name.

* btnok OF cmdok fOr @ sutton control labelled "Ok".

The problem is that when e.g. the Ul gets redesigned and a comborox Changes to a visteox, the
name needs to change to reflect the new control type: it's better to name controls for what they
represent, rather than after their control type - to decouple the code from the Ul as much as
possible.

» userNameLabel fOr a read-only label that indicates a user name.
* userNameInput fOr a control where the user can enter or pick a user name.
* oksutton fOr a command button labelled "Ok".

Whichever style is chosen, anything is better than leaving all controls their default names.
Consistency in naming style is ideal, too.

Handling QueryClose
The queryciose event is raised whenever a form is about to be closed, whether it's via user action

or programmatically. The ciosemode parameter contains a vooueryclose €num value that indicates
how the form was closed:

vbFormControlMenu FOrm is closing in response to user action 0
vbFormCode Form is closing in response to an uniocad Statement 1
vbAppWindows Windows session is ending 2

https://riptutorial.com/ 219

vbappTaskManager Windows Task Manager is closing the host application 3

vbFormMDIForm Not supported in VBA 4

For better readability, it's best to use these constants instead of using their value directly.

A Cancellable UserForm

Given a form with a cance1 button

i T

UserForml £

Some Title
Some user-friendly instructions,

Some setting | j
Another setting | j

[Some other setting

The form's code-behind could look like this:

Option Explicit
Private Type TView
IsCancelled As Boolean
SomeOtherSetting As Boolean
'other properties skipped for brievety
End Type
Private this As TView

Public Property Get IsCancelled() As Boolean
IsCancelled = this.IsCancelled
End Property

Public Property Get SomeOtherSetting() As Boolean
SomeOtherSetting = this.SomeOtherSetting
End Property

'...more properties...

Private Sub SomeOtherSettingInput_Change ()
this.SomeOtherSetting = CBool (SomeOtherSettingInput.Value)
End Sub

Private Sub OkButton_Click ()
Me.Hide
End Sub

https://riptutorial.com/ 220

Private Sub CancelButton_Click ()
this.IsCancelled = True
Me.Hide

End Sub

Private Sub UserForm_ QueryClose (Cancel As Integer, CloseMode As Integer)
If CloseMode = VbQueryClose.vbFormControlMenu Then

Cancel = True
this.IsCancelled = True
Me.Hide
End If
End Sub

The calling code could then display the form, and know whether it was cancelled:

Public Sub DoSomething ()
With New UserForml
.Show vbModal
If .IsCancelled Then Exit Sub
If .SomeOtherSetting Then
'setting is enabled
Else
'setting is disabled
End If
End With
End Sub

The 1scancelled property returns rrue when the cance1 button is clicked, or when the user closes
the form using the control box.

Read User Forms online: https://riptutorial.com/vba/topic/5351/user-forms

https://riptutorial.com/ 221

https://riptutorial.com/vba/topic/5351/user-forms

Syntax

* Option optionName [value]

Option Explicit

Option Compare {Text | Binary | Database}
Option Private Module

Option Base {0 | 1}

Parameters

Require variable declaration in the module it's specified in (ideally all of
Explicit them); with this option specified, using an undeclared (/mispelled)
variable becomes a compilation error.

Makes the module's string comparisons be case-insensitive, based on

T N . .
Compare Text system locale, prioritizing alphabetical equivalency (e.g. "a" = "A").

Default string comparison mode. Makes the module's string
Compare Binary comparisons be case sensitive, comparing strings using the binary
representation / numeric value of each character (e.g. ASCII).

(MS-Access only) Makes the module's string comparisons work the

Compare Database way they would in an SQL statement.

Prevents the module's rub1ic member from being accessed from
outside of the project that the module resides in, effectively hiding
procedures from the host application (i.e. not available to use as
macros or user-defined functions).

Private Module

Default setting. Sets the implicit array lower bound to o in a module.
Option Base 0 When an array is declared without an explicit lower boundary value, o
will be used.

Sets the implicit array lower bound to 1 in a module. When an array is

Option Base 1) - :
P declared without an explicit lower boundary value, 1 will be used.

Remarks

It is much easier to control the boundaries of arrays by declaring the boundaries explicitly rather
than letting the compiler fall back on an option Base (0/1} declaration. This can be done like so:

https://riptutorial.com/ 222

Dim myStringsA (0 To 5) As String '// This has 6 elements (0 — 5)
Dim myStringsB(l To 5) As String '// This has 5 elements (1 - 5)
Dim myStringsC(6 To 9) As String '// This has 3 elements (6 — 9)

Examples

Option Explicit

It is deemed best practice to always use option Explicit IN VBA as it forces the developer to
declare all their variables before use. This has other benefits too, such as auto-capitalization for
declared variable names and IntelliSense.

Option Explicit

Sub OptionExplicit ()
Dim a As Integer

a =>5
b = 10 '// Causes compile error as 'b' is not declared
End Sub

Setting Require Variable Declaration within the VBE's Tools » Options » Editor
property page will put the Option Explicit statement at the top of each newly created
code sheet.

Options il
Edtor | Edtor Format | General | Docking |

—Code Settings -
[v Auto Syntax Check ¥ sAuto Indent
[Require Variable Dedaration
ED Tab Width: |4
[¥ Auto List Members
[¥ Auto Quick Info
[¥ Auto Data Tips

Window Settings
[V Drag-and-Drop Tesxt Editing
¥ Default to Full Module View
[+ Procedure Separator

oK | Cancel | Help |

This will avoid silly coding mistakes like misspellings as well as influencing you to use the correct
variable type in the variable declaration. (Some more examples are given at ALWAYS Use "Option
Explicit".)

Option Compare {Binary | Text | Database}

Option Compare Binary

https://riptutorial.com/ 223

https://msdn.microsoft.com/en-us/library/y9341s4f.aspx
http://i.stack.imgur.com/C29RO.png
http://www.riptutorial.com/excel-vba/example/3554/always-use--option-explicit-
http://www.riptutorial.com/excel-vba/example/3554/always-use--option-explicit-

Binary comparison makes all checks for string equality within a module/class case sensitive.
Technically, with this option, string comparisons are performed using sort order of the binary
representations of each character.

A<B<E<Z<a<b<ex<xz

If no Option Compare is specified in a module, Binary is used by default.

Option Compare Binary
Sub CompareBinary ()

Dim foo As String
Dim bar As String

'// Case sensitive

foo = "abc"

bar = "ABC"

Debug.Print (foo = bar) '// Prints "False"
'// Still differentiates accented characters
foo = "&abc"

bar = "abc"

Debug.Print (foo = bar) '// Prints "False"
'// "b" (Chr 98) is greater than "a" (Chr 97)
foo e "a"

bar e "b"

Debug.Print (bar > foo) '// Prints "True"

'// "b" (Chr 98) is NOT greater than "&" (Chr 225)
foo e "é"

bar e "b"

Debug.Print (bar > foo) '// Prints "False"

End Sub

Option Compare Text

Option Compare Text makes all string comparisons within a module/class use a case insensitive
comparison.

(Ala)<(B]b)<(2]2)

Option Compare Text
Sub CompareText ()

Dim foo As String
Dim bar As String

'// Case insensitivity

https://riptutorial.com/ 224

foo = "abc"
bar = "ABC"

Debug.Print (foo = bar) '// Prints "True"
'// Still differentiates accented characters
foo = "abc"

bar = "abc"

Debug.Print (foo = bar) '// Prints "False"
'// "b" still comes after "a" or "&a"

foo = lléll

bar = "b"

Debug.Print (bar > foo) '// Prints "True"

End Sub

Option Compare Database

Option Compare Database is only available within MS Access. It sets the module/class to use the
current database settings to determine whether to use Text or Binary mode.

Note: The use of this setting is discouraged unless the module is used for writing custom Access
UDFs (User defined functions) that should treat text comparisons in the same manner as SQL
gueries in that database.

Option Base {0 | 1}

option Base IS USed to declare the default lower bound of array elements. It is declared at module
level and is valid only for the current module.

By default (and thus if no Option Base is specified), the Base is 0. Which means that the first
element of any array declared in the module has an index of 0.

If option Base 1 IS specified, the first array element has the index 1
Example in Base O :

Option Base 0
Sub BaseZero ()
Dim myStrings As Variant

' Create an array out of the Variant, having 3 fruits elements

myStrings = Array ("Apple", "Orange", "Peach")

Debug.Print LBound(myStrings) ' This Prints "O"

Debug.Print UBound (myStrings) ' This print "2", because we have 3 elements beginning at 0
=> 0,1,2

https://riptutorial.com/ 225

For i = 0 To UBound (myStrings)
Debug.Print myStrings (i) ' This will print "Apple", then "Orange", then "Peach"
Next 1

End Sub

Same Example with Base 1

Option Base 1
Sub BaseOne ()
Dim myStrings As Variant

' Create an array out of the Variant, having 3 fruits elements

myStrings = Array ("Apple", "Orange", "Peach")

Debug.Print LBound (myStrings) ' This Prints "1"

Debug.Print UBound (myStrings) ' This print "3", because we have 3 elements beginning at 1
-> 1,2,3

For 1 = 0 To UBound (myStrings)
Debug.Print myStrings (i) ' This triggers an error 9 "Subscript out of range"
Next i
End Sub
The second example generated a Subscript out of range (Error 9) at the first loop stage because

an attempt to access the index O of the array was made, and this index doesn't exists as the
module is declared with sase 1

The correct code with Base 1 is:

For 1 = 1 To UBound (myStrings)
Debug.Print myStrings (i) ' This will print "Apple", then "Orange", then "Peach"

Next i

It should be noted that the Split function always creates an array with a zero-based element index
regardless of any option Base Setting. Examples on how to use the Split function can be found
here

Split Function

Returns a zero-based, one-dimensional array containing a specified number of substrings.

In Excel, the range.value and range.Formula properties for a multi-celled range always returns a 1-
based 2D Variant array.

https://riptutorial.com/ 226

https://msdn.microsoft.com/en-us/library/aa264519.aspx
https://msdn.microsoft.com/en-us/library/aa263365.aspx
http://www.riptutorial.com/vba/example/10413/use-of-split-to-create-an-array-from-a-string

Likewise, in ADO, the recordset .cetrows method always returns a 1-based 2D array.

One recommended 'best practice' is to always use the LBound and UBound functions to determine
the extents of an array.

'for single dimensioned array

Debug.Print LBound(arr) & ":" & UBound(arr)
Dim i As Long
For 1 = LBound(arr) To UBound(arr)

Debug.Print arr (i)
Next i

'for two dimensioned array
Debug.Print LBound(arr, 1) & ":" & UBound(arr, 1)
Debug.Print LBound(arr, 2) & ":" & UBound(arr, 2)
Dim i1 As long, J As Long
For i = LBound(arr, 1) To UBound(arr, 1)

For j = LBound(arr, 2) To UBound(arr, 2)

Debug.Print arr (i, 3j)

Next j

Next i

The option Base 1 Must be at the top of every code module where an array is created or re-
dimensioned if arrays are to be consistently created with an lower boundary of 1.

Read VBA Option Keyword online: https://riptutorial.com/vba/topic/3992/vba-option-keyword

https://riptutorial.com/ 227

https://msdn.microsoft.com/en-us/library/t9a7w1ac.aspx
https://msdn.microsoft.com/en-us/library/office/gg278658.aspx
https://riptutorial.com/vba/topic/3992/vba-option-keyword

C_hapter 44: VBA Run-Time Errors

Introduction

Code that compiles can still run into errors, at run-time. This topic lists the most common ones,
their causes, and how to avoid them.

Examples

Run-time error '3": Return without GoSub

Incorrect Code

Sub DoSomething ()
GoSub DoThis

DoThis:
Debug.Print "Hi!"
Return

End Sub

Why doesn't this work?

Execution enters the posomething procedure, jumps to the pothis label, prints "Hi!" to the debug
output, returns to the instruction immediately after the cosux call, prints "Hi!" again, and then
encounters a return Statement, but there's nowhere to return to now, because we didn't get here
with a cosub Statement.

Correct Code

Sub DoSomething ()
GoSub DoThis
Exit Sub

DoThis:
Debug.Print "Hi!"
Return

End Sub

Why does this work?
By introducing an exit sub instruction before the nothis line label, we have segregated the pothis

subroutine from the rest of the procedure body - the only way to execute the pothis Subroutine is
via the cosub jJump.

Other notes

https://riptutorial.com/ 228

GosublrReturn IS deprecated, and should be avoided in favor of actual procedure calls. A procedure
should not contain subroutines, other than error handlers.

This is very similar to Run-time error '20": Resume without error; in both situations, the solution is
to ensure that the normal execution path cannot enter a sub-routine (identified by a line label)
without an explicit jump (assuming on Error GoTo IS considered an explicit jump).

Run-time error '6'; Overflow

Incorrect code

Sub DoSomething ()
Dim row As Integer
For row = 1 To 100000
'do stuff
Next
End Sub

Why doesn't this work?

The 1nteger data type is a 16-bit signed integer with a maximum value of 32,767; assigning it to
anything larger than that will overflow the type and raise this error.

Correct code

Sub DoSomething ()
Dim row As Long
For row = 1 To 100000
'do stuff
Next
End Sub

Why does this work?

By using a rong (32-bit) integer instead, we can now make a loop that iterates more than 32,767
times without overflowing the counter variable's type.

Other notes

See Data Types and Limits for more information.

Run-time error '9": Subscript out of range

Incorrect code

Sub DoSomething ()
Dim foo (1l To 10)

https://riptutorial.com/ 229

http://www.riptutorial.com/vba/example/27776/run-time-error--20---resume-without-error
http://www.riptutorial.com/vba/topic/3418/data-types-and-limits

Dim i As Long
For 1 = 1 To 100
foo(i) =1
Next
End Sub

Why doesn't this work?

foo IS @n array that contains 10 items. When the i loop counter reaches a value of 11, roo (i) IS out
of range. This error occurs whenever an array or collection is accessed with an index that doesn't
exist in that array or collection.

Correct code

Sub DoSomething ()
Dim foo (1l To 10)
Dim i As Long

For i1 = LBound(foo) To UBound (foo)
foo(i) = 1
Next
End Sub

Why does this work?

Use 1eound and ueound functions to determine the lower and upper boundaries of an array,
respectively.

Other notes

When the index is a string, €.g. Thisworkbook.Worksheets ("I don't exist"), this error means the
supplied name doesn't exist in the queried collection.

The actual error is implementation-specific though; coiiection Will raise run-time error 5 "Invalid
procedure call or argument" instead:

Sub RaisesRunTimeErrorb5 ()
Dim foo As New Collection

foo.Add "foo", "foo"
Debug.Print foo ("bar")
End Sub

Run-time error '13": Type mismatch

Incorrect code

Public Sub DoSomething ()
DoSomethingElse "42°?2"
End Sub

https://riptutorial.com/ 230

Private Sub DoSomethingElse (foo As Date)
' Debug.Print MonthName (Month (foo))
End Sub

Why doesn't this work?

VBA is trying really hard to convert the »422 argument into a nate value. When it fails, the call to
DoSomethingElse CAnnot be executed, because VBA doesn't know what date to pass, so it raises

run-time error 13 type mismatch, because the type of the argument doesn't match the expected
type (and can't be implicitly converted either).

Correct code

Public Sub DoSomething ()
DoSomethingElse Now
End Sub

Private Sub DoSomethingElse (foo As Date)
' Debug.Print MonthName (Month (foo))
End Sub

Why does this work?
By passing a pate argument to a procedure that expects a pate parameter, the call can succeed.

Run-time error '91": Object variable or With block variable not set

Incorrect code

Sub DoSomething ()
Dim foo As Collection
With foo
.Add "ABC"
.Add "Xyz"
End With
End Sub

Why doesn't this work?

Object variables hold a reference, and references need to be set using the set keyword. This error
occurs whenever a member call is made on an object whose reference is nothing. In this case oo
IS a collection reference, but it's not initialized, so the reference contains nothing - and we can't
call .adad ON Nothing.

Correct code

https://riptutorial.com/ 231

Sub DoSomething ()
Dim foo As Collection
Set foo = New Collection
With foo
.Add "ABC"
.Add "Xyz"
End With
End Sub

Why does this work?

By assigning the object variable a valid reference using the set keyword, the .ad44 calls succeed.

Other notes

Often, a function or property can return an object reference - a common example is Excel's
range.Find Method, which returns a range Object:

Dim resultRow As Long
resultRow = SomeSheet.Cells.Find ("Something") .Row

However the function can very well return rnothing (if the search term isn't found), so it's likely that
the chained .row member call fails.

Before calling object members, verify that the reference is set with a 1t not xxxx Is Nothing
condition:

Dim result As Range
Set result = SomeSheet.Cells.Find ("Something")

Dim resultRow As Long
If Not result Is Nothing Then resultRow = result.Row

Run-time error '20": Resume without error

Incorrect code

Sub DoSomething ()
On Error GoTo CleanFail
DoSomethingElse

CleanFail:
Debug.Print Err.Number
Resume Next

End Sub

Why doesn't this work?

If the posomethingElse procedure raises an error, execution jumps to the cieanraii line label, prints
the error number, and the resume next instruction jumps back to the instruction that immediately

https://riptutorial.com/ 232

follows the line where the error occurred, which in this case is the pebug.print instruction: the error-
handling subroutine is executing without an error context, and when the resume next instruction is
reached, run-time error 20 is raised because there is nowhere to resume to.

Correct Code

Sub DoSomething ()
On Error GoTo CleanFail
DoSomethingElse

Exit Sub

CleanFail:
Debug.Print Err.Number
Resume Next

End Sub

Why does this work?

By introducing an exit sub instruction before the cieanraii line label, we have segregated the
cleanrail error-handling subroutine from the rest of the procedure body - the only way to execute
the error-handling subroutine is via an on error jump; therefore, no execution path reaches the
resume INStruction outside of an error context, which avoids run-time error 20.

Other notes

This is very similar to Run-time error '3": Return without GoSub; in both situations, the solution is to
ensure that the normal execution path cannot enter a sub-routine (identified by a line label) without
an explicit jump (assuming on Error GoTo IS cOnsidered an explicit jump).

Read VBA Run-Time Errors online: https://riptutorial.com/vba/topic/8917/vba-run-time-errors

https://riptutorial.com/ 233

http://www.riptutorial.com/vba/topic/8917/vba-run-time-errors
https://riptutorial.com/vba/topic/8917/vba-run-time-errors

C_hapter 45: Working with ADO

Remarks

The examples shown in this topic use early binding for clarity, and require a reference to the
Microsoft ActiveX Data Object x.x Library. They can be converted to late binding by replacing the
strongly typed references with onject and replacing object creation using new With createobiject
where appropriate.

Examples

Making a connection to a data source

The first step in accessing a data source via ADO is creating an ADO connection 0Object. This is
typically done using a connection string to specify the data source parameters, although it is also
possible to open a DSN connection by passing the DSN, user ID, and password to the .open
method.

Note that a DSN is not required to connect to a data source via ADO - any data source that has an
ODBC provider can be connected to with the appropriate connection string. While specific
connection strings for different providers are outside of the scope of this topic,
ConnectionStrings.com is an excellent reference for finding the appropriate string for your
provider.

Const SomeDSN As String = "DSN=SomeDSN;Uid=UserName; Pwd=MyPassword;"

Public Sub Example ()
Dim database As ADODB.Connection
Set database = OpenDatabaseConnection (SomeDSN)
If Not database Is Nothing Then
'... Do work.
database.Close 'Make sure to close all database connections.
End If
End Sub

Public Function OpenDatabaseConnection (ConnString As String) As ADODB.Connection
On Error GoTo Handler
Dim database As ADODB.Connection
Set database = New ADODB.Connection

With database
.ConnectionString = ConnString
.ConnectionTimeout = 10 'Value is given in seconds.
.Open

End With

OpenDatabaseConnection = database
Exit Function

Handler:
Debug.Print "Database connection failed. Check your connection string."

https://riptutorial.com/ 234

https://www.connectionstrings.com/

End Function

Note that the database password is included in the connection string in the example above only for
the sake of clarity. Best practices would dictate not storing database passwords in code. This can
be accomplished by taking the password via user input or using Windows authentication.

Retrieving records with a query

Queries can be performed in two ways, both of which return an ADO recordset Object which is a
collection of returned rows. Note that both of the examples below use the openbatabaseconnection
function from the Making a connection to a data source example for the purpose of brevity.
Remember that the syntax of the SQL passed to the data source is provider specific.

The first method is to pass the SQL statement directly to the Connection object, and is the easiest
method for executing simple queries:

Public Sub DisplayDistinctItems ()
On Error GoTo Handler
Dim database As ADODB.Connection
Set database = OpenDatabaseConnection (SomeDSN)

If Not database Is Nothing Then
Dim records As ADODB.Recordset
Set records = database.Execute ("SELECT DISTINCT Item FROM Table")
'Loop through the returned Recordset.
Do While Not records.EOF 'EOF is false when there are more records.
'Individual fields are indexed either by name or 0 based ordinal.
'Note that this is using the default .Fields member of the Recordset.
Debug.Print records ("Item")
'Move to the next record.
records.MoveNext
Loop
End If
CleanExit:
If Not records Is Nothing Then records.Close
If Not database Is Nothing And database.State = adStateOpen Then
database.Close
End If
Exit Sub
Handler:
Debug.Print "Error " & Err.Number & ": " & Err.Description
Resume CleanExit
End Sub

The second method is to create an ADO command Object for the query you want to execute. This
requires a little more code, but is necessary in order to use parametrized queries:

Public Sub DisplayDistinctItems ()
On Error GoTo Handler
Dim database As ADODB.Connection
Set database = OpenDatabaseConnection (SomeDSN)

If Not database Is Nothing Then
Dim query As ADODB.Command
Set query = New ADODB.Command

https://riptutorial.com/ 235

http://www.riptutorial.com/vba/example/12351/making-a-connection-to-a-data-source

'Build the command to pass to the data source.
With query
.ActiveConnection = database

.CommandText = "SELECT DISTINCT Item FROM Table"
.CommandType = adCmdText
End With

Dim records As ADODB.Recordset
'Execute the command to retrieve the recordset.
Set records = query.Execute ()

Do While Not records.EOF
Debug.Print records ("Item")
records.MoveNext
Loop
End If
CleanExit:
If Not records Is Nothing Then records.Close
If Not database Is Nothing And database.State = adStateOpen Then
database.Close
End If
Exit Sub
Handler:
Debug.Print "Error " & Err.Number & ": " & Err.Description
Resume CleanExit
End Sub

Note that commands sent to the data source are vulnerable to SQL injection, either intentional
or unintentional. In general, queries should not be created by concatenating user input of any kind.
Instead, they should be parameterized (see Creating parameterized commands).

Executing non-scalar functions

ADO connections can be used to perform pretty much any database function that the provider
supports via SQL. In this case it isn't always necessary to use the recordset returned by the
rxecute function, although it can be useful for obtaining key assignments after INSERT statements
with @ @Ildentity or similar SQL commands. Note that the example below uses the
OpenDatabaseConnect ion function from the Making a connection to a data source example for the
purpose of brevity.

Public Sub UpdateTheFoos ()
On Error GoTo Handler
Dim database As ADODB.Connection
Set database = OpenDatabaseConnection (SomeDSN)

If Not database Is Nothing Then
Dim update As ADODB.Command
Set update = New ADODB.Command
'Build the command to pass to the data source.
With update

.ActiveConnection = database
.CommandText = "UPDATE Table SET Foo = 42 WHERE Bar IS NULL"
.CommandType = adCmdText
.Execute 'We don't need the return from the DB, so ignore it.
End With
End If
CleanExit:

https://riptutorial.com/ 236

http://www.riptutorial.com/vba/example/12354/creating-parameterized-commands
http://www.riptutorial.com/vba/example/12351/making-a-connection-to-a-data-source

If Not database Is Nothing And database.State = adStateOpen Then
database.Close
End If
Exit Sub
Handler:
Debug.Print "Error " & Err.Number & ": " & Err.Description
Resume CleanExit
End Sub

Note that commands sent to the data source are vulnerable to SQL injection, either intentional
or unintentional. In general, SQL statements should not be created by concatenating user input of
any kind. Instead, they should be parameterized (see Creating parameterized commands).

Creating parameterized commands

Any time SQL executed through an ADO connection needs to contain user input, it is considered
best practice to parameterize it in order to minimize the chance of SQL injection. This method is
also more readable than long concatenations and facilitates more robust and maintainable code
(i.e. by using a function that returns an array of parameter).

In standard ODBC syntax, parameters are given - "placeholders" in the query text, and then
parameters are appended to the commana in the same order that they appear in the query.

Note that the example below uses the openpatabaseconnection function from the Making a
connection to a data source for brevity.

Public Sub UpdateTheFoos ()
On Error GoTo Handler
Dim database As ADODB.Connection
Set database = OpenDatabaseConnection (SomeDSN)

If Not database Is Nothing Then

Dim update As ADODB.Command

Set update = New ADODB.Command

'Build the command to pass to the data source.

With update
.ActiveConnection = database
.CommandText = "UPDATE Table SET Foo = ? WHERE Bar = ?"
.CommandType = adCmdText

'Create the parameters.

Dim fooValue As ADODB.Parameter

Set fooValue = .CreateParameter ("FooValue", adNumeric, adParamInput)
fooValue.Value = 42

Dim condition As ADODB.Parameter
Set condition = .CreateParameter ("Condition", adBSTR, adParamInput)
condition.Value = "Bar"

'Add the parameters to the Command
.Parameters.Append fooValue
.Parameters.Append condition

.Execute
End With
End If
CleanExit:

https://riptutorial.com/ 237

http://www.riptutorial.com/vba/example/12354/creating-parameterized-commands
http://www.riptutorial.com/vba/example/12351/making-a-connection-to-a-data-source
http://www.riptutorial.com/vba/example/12351/making-a-connection-to-a-data-source

If Not database Is Nothing And database.State = adStateOpen Then
database.Close
End If
Exit Sub
Handler:
Debug.Print "Error " & Err.Number & ": " & Err.Description
Resume CleanExit
End Sub

Note: The example above demonstrates a parameterized UPDATE statement, but any SQL
statement can be given parameters.

Read Working with ADO online: https://riptutorial.com/vba/topic/3578/working-with-ado

https://riptutorial.com/ 238

https://riptutorial.com/vba/topic/3578/working-with-ado

C_hapter 46: Working With Files and
Directories Without Using FileSystemODbject

Remarks

The scripting.Filesystemobject IS much more robust that the legacy methods in this topic. It should
be preferred in almost all cases.

Examples

Determining If Folders and Files Exist

Files:

To determine if a file exists, simply pass the filename to the pirs function and test to see if it
returns a result. Note that nirs supports wild-cards, so to test for a specific file, the passed
pathName Should to be tested to ensure that it does not contain them. The sample below raises an
error - if this isn't the desired behavior, the function can be changed to simply return raise.

Public Function FileExists (pathName As String) As Boolean
If InStr(l, pathName, "*") Or InStr(l, pathName, "?") Then

'Exit Function 'Return False on wild-cards.
Err.Raise 52 'Raise error on wild-cards.
End If

FileExists = Dir$ (pathName) <> vbNullString
End Function

Folders (Dir$ method):

The pirs () function can also be used to determine if a folder exists by specifying passing
vbbirectory fOr the optional attributes parameter. In this case, the passed pathname Value must end
with a path separator (\), as matching filenames will cause false positives. Keep in mind that wild-
cards are only allowed after the last path separator, so the example function below will throw a
run-time error 52 - "Bad file name or number" if the input contains a wild-card. If this isn't the
desired behavior, uncomment on Error resume Next at the top of the function. Also remember that
pirs supports relative file paths (i.e. . .\roo\Bar), SO results are only guaranteed to be valid as long
as the current working directory is not changed.

Public Function FolderExists (ByVal pathName As String) As Boolean
'Uncomment the "On Error" line if paths with wild-cards should return False
'instead of raising an error.
'On Error Resume Next
If pathName = vbNullString Or Right$ (pathName, 1) <> "\" Then
Exit Function
End If
FolderExists = Dir$ (pathName, vbDirectory) <> vbNullString

https://riptutorial.com/ 239

End Function

Folders (ChDir method):

The cnpir statement can also be used to test if a folder exists. Note that this method will
temporarily change the environment that VBA is running in, so if that is a consideration, the pirs
method should be used instead. It does have the advantage of being much less forgiving with its
parameter. This method also supports relative file paths, so has the same caveat as the pirs
method.

Public Function FolderExists (ByVal pathName As String) As Boolean
'Cache the current working directory
Dim cached As String
cached = CurDir$

On Error Resume Next
ChDir pathName
FolderExists = Err.Number = 0
On Error GoTo 0
'Change back to the cached working directory.
ChDir cached
End Function

Creating and Deleting File Folders

NOTE: For brevity, the examples below use the FolderExists function from the Determining If
Folders and Files Exist example in this topic.

The vxpir Statement can be used to create a new folder. It accepts paths containing drive letters (
c:\Foo), UNC names (\\server\roo), relative paths (..\roo), or the current working directory (roo).

If the drive or UNC name is omitted (i.e. \roo), the folder is created on the current drive. This may
or may not be the same drive as the current working directory.

Public Sub MakeNewDirectory (ByVal pathName As String)
'MkDir will fail if the directory already exists.
If FolderExists (pathName) Then Exit Sub
'This may still fail due to permissions, etc.
MkDir pathName

End Sub

The rmpir Statement can be used to delete existing folders. It accepts paths in the same forms as
mkpir and uses the same relationship to the current working directory and drive. Note that the
statement is similar to the Windows ra shell command, so will throw a run-time error 75: "Path/File
access error" if the target directory is not empty.

Public Sub DeleteDirectory (ByVal pathName As String)
If Right$ (pathName, 1) <> "\" Then

https://riptutorial.com/ 240

pathName = pathName & "\"
End If
'Rmdir will fail if the directory doesn't exist.
If Not FolderExists (pathName) Then Exit Sub
'Rmdir will fail if the directory contains files.
If Dir$ (pathName & "*") <> vbNullString Then Exit Sub

'Rmdir will fail if the directory contains directories.

Dim subDir As String
subDir = Dir$ (pathName & "*", vbDirectory)

Do
If subDir <> "." And subDir <> ".." Then Exit Sub

subDir = Dir$(, vbDirectory)
Loop While subDir <> vbNullString

'This may still fail due to permissions, etc.
RmDir pathName
End Sub

Read Working With Files and Directories Without Using FileSystemObject online:
https://riptutorial.com/vba/topic/5706/working-with-files-and-directories-without-using-

filesystemobject

https://riptutorial.com/ 241

https://riptutorial.com/vba/topic/5706/working-with-files-and-directories-without-using-filesystemobject
https://riptutorial.com/vba/topic/5706/working-with-files-and-directories-without-using-filesystemobject

Credits

10

11

12

13

14

15

16

Chapters

Getting started with VBA

API Calls

Arrays

Assigning strings with
repeated characters

Attributes

Automation or Using other

applications Libraries

Collections

Comments

Concatenating strings
Conditional Compilation

Converting other types to
strings

Copying, returning and
passing arrays

CreateObject vs.
GetObject

Creating a Custom Class

Creating a procedure

Data Structures

Contributors

Om3r, Andre Terra, Benno Grimm, Bookeater, Comintern,
Community, Derpcode, Kaz, Ifrandom, litelite, Maarten van

Stam, Macro Man, Maté Juhasz, Nick Dewitt,
PankajKushwaha, RubberDuck, Stefan Pinnow

paul bica

Comintern, Dave, Hubisan, jamheadart, Josan Iracheta,
Maarten van Stam, Mark.R, Mat's Mug, Miguel_Ryu, Tazaf

ThunderFrame

hymced, Mat's Mug, RamenChef, RubberDuck

Branislav Kollar

Comintern

Comintern, Hosch250, Johnny C, litelite, Macro Man,
Nijin22, Shawn V. Wilson, ThunderFrame

ThunderFrame

Macro Man, Mat's Mug, RubberDuck, Steve Rindsberg

ThunderFrame

Mark.R

Branislav Kollar, Dave, Tim

Branislav Kollar, Macro Man, Mat's Mug, Neil Mussett,
ThunderFrame

Comintern, LiamH, Mat's Mug, Sivaprasath Vadivel,
Tomas Zubiri

Blackhawk

https://riptutorial.com/

242

https://riptutorial.com/contributor/4539709/0m3r
https://riptutorial.com/contributor/447485/andre-terra
https://riptutorial.com/contributor/6476653/benno-grimm
https://riptutorial.com/contributor/6548647/bookeater
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5412719/derpcode
https://riptutorial.com/contributor/4169411/kaz
https://riptutorial.com/contributor/1760495/lfrandom
https://riptutorial.com/contributor/3072566/litelite
https://riptutorial.com/contributor/5793786/maarten-van-stam
https://riptutorial.com/contributor/5793786/maarten-van-stam
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/4721734/mate-juhasz
https://riptutorial.com/contributor/1641172/nick-dewitt
https://riptutorial.com/contributor/3025905/pankajkushwaha
https://riptutorial.com/contributor/3198973/rubberduck
https://riptutorial.com/contributor/5776000/stefan-pinnow
https://riptutorial.com/contributor/4914662/paul-bica
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/6255978/dave
https://riptutorial.com/contributor/1365754/hubisan
https://riptutorial.com/contributor/6480658/jamheadart
https://riptutorial.com/contributor/2481559/josan-iracheta
https://riptutorial.com/contributor/5793786/maarten-van-stam
https://riptutorial.com/contributor/5773890/mark-r
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/3005534/miguel-ryu
https://riptutorial.com/contributor/4687028/tazaf
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/2981328/hymced
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3198973/rubberduck
https://riptutorial.com/contributor/4636801/branislav-kollar
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/2509848/hosch250
https://riptutorial.com/contributor/5444958/johnny-c
https://riptutorial.com/contributor/3072566/litelite
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/3298787/nijin22
https://riptutorial.com/contributor/2821274/shawn-v--wilson
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/3198973/rubberduck
https://riptutorial.com/contributor/1667023/steve-rindsberg
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/5773890/mark-r
https://riptutorial.com/contributor/4636801/branislav-kollar
https://riptutorial.com/contributor/6255978/dave
https://riptutorial.com/contributor/5094258/tim
https://riptutorial.com/contributor/4636801/branislav-kollar
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/2103496/neil-mussett
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/5043393/liamh
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/7509720/sivaprasath-vadivel
https://riptutorial.com/contributor/3555025/tomas-zubiri
https://riptutorial.com/contributor/2832561/blackhawk

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Data Types and Limits

Date Time Manipulation

Declaring and assigning
strings

Declaring Variables

Error Handling

Events

Flow control structures

Frequently used string
manipulation

Interfaces

Macro security and signing
of VBA-projects/-modules

Measuring the length of
strings

Naming Conventions
Non-Latin Characters
Object-Oriented VBA
Operators

Passing Arguments ByRef
or ByVval

Procedure Calls

Reading 2GB+ files in
binary in VBA and File
Hashes

Recursion

Comintern, FreeMan, Neil Mussett, StackzOfZtuff,
Stephen Leppik, ThunderFrame

Comintern, FreeMan, Thomas G

Comintern, ThunderFrame

Comintern, dadde, Dave, Franck Dernoncourt, Jeeped,
Kaz, Ifrandom, litelite, Macro Man, Mark.R, Mat's Mug,
Neil Mussett, RubberDuck, Shawn V. Wilson, SWa,
Thierry Dalon, ThunderFrame, Tom, Victor Moraes, Zaider

Comintern, Logan Reed, Mat's Mug
Mat's Mug

Benno Grimm, Comintern, Kelly Tessena Keck, Leviathan,
litelite, Macro Man, Martin, Mat's Mug, Roland, Siva,
ThunderFrame

pashute

Neil Mussett

Oma3r

Steve Rindsberg, ThunderFrame

FreeMan, Kaz, Mat's Mug, Victor Moraes

Neil Mussett

IvenBach, Mat's Mug

Comintern, Macro Man

Branislav Kollar, Comintern, Mat's Mug, R3uK,
RamenChef, ZygD

Macro Man, Mat's Mug, Neil Mussett, Sam Johnson

Patrick

Mat's Mug, ThunderFrame

https://riptutorial.com/

243

https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/2344413/freeman
https://riptutorial.com/contributor/2103496/neil-mussett
https://riptutorial.com/contributor/4247268/stackzofztuff
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/2344413/freeman
https://riptutorial.com/contributor/4197505/thomas-g
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/2808645/dadde
https://riptutorial.com/contributor/6255978/dave
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/4039065/jeeped
https://riptutorial.com/contributor/4169411/kaz
https://riptutorial.com/contributor/1760495/lfrandom
https://riptutorial.com/contributor/3072566/litelite
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/5773890/mark-r
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/2103496/neil-mussett
https://riptutorial.com/contributor/3198973/rubberduck
https://riptutorial.com/contributor/2821274/shawn-v--wilson
https://riptutorial.com/contributor/1240154/swa
https://riptutorial.com/contributor/2043349/thierry-dalon
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/4583203/tom
https://riptutorial.com/contributor/6352151/victor-moraes
https://riptutorial.com/contributor/1359794/zaider
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/6563468/logan-reed
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/6476653/benno-grimm
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/2077432/kelly-tessena-keck
https://riptutorial.com/contributor/6216216/leviathan
https://riptutorial.com/contributor/3072566/litelite
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/6627047/martin
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/2485248/roland
https://riptutorial.com/contributor/5773692/siva
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/141947/pashute
https://riptutorial.com/contributor/2103496/neil-mussett
https://riptutorial.com/contributor/4539709/0m3r
https://riptutorial.com/contributor/1667023/steve-rindsberg
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/2344413/freeman
https://riptutorial.com/contributor/4169411/kaz
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/6352151/victor-moraes
https://riptutorial.com/contributor/2103496/neil-mussett
https://riptutorial.com/contributor/7420518/ivenbach
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/4636801/branislav-kollar
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/4628637/r3uk
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2753501/zygd
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/2103496/neil-mussett
https://riptutorial.com/contributor/28627/sam-johnson
https://riptutorial.com/contributor/2636247/patrick
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/5757159/thunderframe

36

37

38

39

40

41

42

43

44

45

46

Scripting.Dictionary object

Scripting.FileSystemObject

Searching within strings
for the presence of
substrings

Sorting

String Literals - Escaping,
non-printable characters
and line-continuations

Substrings

User Forms

VBA Option Keyword

VBA Run-Time Errors
Working with ADO

Working With Files and
Directories Without Using
FileSystemObject

Comintern, Jeeped, Kyle, RamenChef, Tim, Wolf, Zev
Spitz

Comintern, Dave, Macro Man, Mikegrann, RubberDuck,
Siva, Steve Rindsberg, ThunderFrame

ThunderFrame

Neil Mussett

Comintern, ThunderFrame

Mat's Mug, ThunderFrame
Mat's Mug

Jeeped, Maarten van Stam, Macro Man, Mat's Mug,
RamenChef, RubberDuck, Stefan Pinnow, Thomas G,
ThunderFrame

Branislav Kollar, Macro Man, Mat's Mug

Comintern, SandPiper, Tazaf

Comintern, Macro Man, SandPiper

https://riptutorial.com/

244

https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/4039065/jeeped
https://riptutorial.com/contributor/4043845/kyle
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5094258/tim
https://riptutorial.com/contributor/2932052/wolf
https://riptutorial.com/contributor/111794/zev-spitz
https://riptutorial.com/contributor/111794/zev-spitz
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/6255978/dave
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/3397613/mikegrann
https://riptutorial.com/contributor/3198973/rubberduck
https://riptutorial.com/contributor/5773692/siva
https://riptutorial.com/contributor/1667023/steve-rindsberg
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/2103496/neil-mussett
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/4039065/jeeped
https://riptutorial.com/contributor/5793786/maarten-van-stam
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3198973/rubberduck
https://riptutorial.com/contributor/5776000/stefan-pinnow
https://riptutorial.com/contributor/4197505/thomas-g
https://riptutorial.com/contributor/5757159/thunderframe
https://riptutorial.com/contributor/4636801/branislav-kollar
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/6186333/sandpiper
https://riptutorial.com/contributor/4687028/tazaf
https://riptutorial.com/contributor/4088852/comintern
https://riptutorial.com/contributor/4240221/macro-man
https://riptutorial.com/contributor/6186333/sandpiper

	About
	Chapter 1: Getting started with VBA
	Remarks
	Versions
	Examples
	Accessing the Visual Basic Editor in Microsoft Office
	First Module and Hello World
	Debugging

	Run code step by step
	Watches window
	Immediate Window
	Debugging best practices
	Chapter 2: API Calls
	Introduction
	Remarks
	Examples
	API declaration and usage
	Windows API - Dedicated Module (1 of 2)
	Windows API - Dedicated Module (2 of 2)
	Mac APIs
	Get total monitors and screen resolution
	FTP and Regional APIs

	Chapter 3: Arrays
	Examples
	Declaring an Array in VBA

	Accessing Elements
	Array Indexing
	Specific Index
	Dynamic Declaration
	Use of Split to create an array from a string
	Iterating elements of an array

	For...Next
	For Each...Next
	Dynamic Arrays (Array Resizing and Dynamic Handling)

	Dynamic Arrays
	Adding Values Dynamically
	Removing Values Dynamically
	Resetting an Array and Reusing Dynamically
	Jagged Arrays (Arrays of Arrays)

	Jagged Arrays NOT Multidimensional Arrays
	Creating a Jagged Array
	Dynamically Creating and Reading Jagged Arrays
	Multidimensional Arrays

	Multidimensional Arrays
	Two-Dimension Array
	Three-Dimension Array

	Chapter 4: Assigning strings with repeated characters
	Remarks
	Examples
	Use the String function to assign a string with n repeated characters
	Use the String and Space functions to assign an n-character string

	Chapter 5: Attributes
	Syntax
	Examples
	VB_Name
	VB_GlobalNameSpace
	VB_Createable
	VB_PredeclaredId

	Declaration
	Call
	VB_Exposed
	VB_Description
	VB_[Var]UserMemId

	Specifying the default member of a class
	Making a class iteratable with a For Each loop construct
	Chapter 6: Automation or Using other applications Libraries
	Introduction
	Syntax
	Remarks
	Examples
	VBScript Regular Expressions

	Code
	Scripting File System Object
	Scripting Dictionary object
	Internet Explorer Object

	Internet Explorer Objec Basic Members
	Web Scraping
	Click
	Microsoft HTML Object Library or IE Best friend
	IE Main issues

	Chapter 7: Collections
	Remarks
	Feature Comparison with Arrays and Dictionaries
	Examples
	Adding Items to a Collection
	Removing Items From a Collection
	Getting the Item Count of a Collection
	Retrieving Items From a Collection
	Determining if a Key or Item Exists in a Collection

	Keys
	Items
	Clearing All Items From a Collection

	Chapter 8: Comments
	Remarks
	Examples
	Apostrophe Comments
	REM Comments

	Chapter 9: Concatenating strings
	Remarks
	Examples
	Concatenate strings using the & operator
	Concatenate an array of strings using the Join function

	Chapter 10: Conditional Compilation
	Examples
	Changing code behavior at compile time
	Using Declare Imports that work on all versions of Office

	Chapter 11: Converting other types to strings
	Remarks
	Examples
	Use CStr to convert a numeric type to a string
	Use Format to convert and format a numeric type as a string
	Use StrConv to convert a byte-array of single-byte characters to a string
	Implicitly convert a byte array of multi-byte-characters to a string

	Chapter 12: Copying, returning and passing arrays
	Examples
	Copying Arrays

	Copying Arrays of Objects
	Variants Containing an Array
	Returning Arrays from Functions

	Outputting an Array via an output argument
	Outputting to a fixed array
	Outputting an Array from a Class method
	Passing Arrays to Proceedures

	Chapter 13: CreateObject vs. GetObject
	Remarks
	Examples
	Demonstrating GetObject and CreateObject

	Chapter 14: Creating a Custom Class
	Remarks
	Examples
	Adding a Property to a Class
	Adding Functionality to a Class
	Class module scope, instancing and re-use

	Chapter 15: Creating a procedure
	Examples
	Introduction to procedures

	Returning a value
	Function With Examples

	Chapter 16: Data Structures
	Introduction
	Examples
	Linked List
	Binary Tree

	Chapter 17: Data Types and Limits
	Examples
	Byte
	Integer
	Boolean
	Long
	Single
	Double
	Currency
	Date
	String

	Variable length
	Fixed length
	LongLong
	Variant
	LongPtr
	Decimal

	Chapter 18: Date Time Manipulation
	Examples
	Calendar

	Example
	Base functions

	Retrieve System DateTime
	Timer Function
	IsDate()
	Extraction functions

	DatePart() Function
	Calculation functions

	DateDiff()
	DateAdd()
	Conversion and Creation

	CDate()
	DateSerial()

	Chapter 19: Declaring and assigning strings
	Remarks
	Examples
	Declare a string constant
	Declare a variable-width string variable
	Declare and assign a fixed-width string
	Declare and assign a string array
	Assign specific characters within a string using Mid statement
	Assignment to and from a byte array

	Chapter 20: Declaring Variables
	Examples
	Implicit And Explicit Declaration
	Variables

	Scope
	Local variables
	Static variables
	Fields
	Instance Fields
	Encapsulating fields
	Constants (Const)
	Access Modifiers

	Option Private Module
	Type Hints

	String-returning built-in functions
	Declaring Fixed-Length Strings
	When to use a Static variable

	Chapter 21: Error Handling
	Examples
	Avoiding error conditions
	On Error statement

	Error Handling Strategies
	Line numbers
	Resume keyword

	On Error Resume Next
	Custom Errors

	Raising your own runtime errors
	Chapter 22: Events
	Syntax
	Remarks
	Examples
	Sources and Handlers

	What are events?
	Handlers
	Sources
	Passing data back to the event source

	Using parameters passed by reference
	Using mutable objects
	Chapter 23: Flow control structures
	Examples
	Select Case
	For Each loop

	Syntax
	Do loop
	While loop
	For loop

	Chapter 24: Frequently used string manipulation
	Introduction
	Examples
	String manipulation frequently used examples

	Chapter 25: Interfaces
	Introduction
	Examples
	Simple Interface - Flyable
	Multiple Interfaces in One Class - Flyable and Swimable

	Chapter 26: Macro security and signing of VBA-projects/-modules
	Examples
	Create a valid digital self-signed certificate SELFCERT.EXE

	Chapter 27: Measuring the length of strings
	Remarks
	Examples
	Use the Len function to determine the number of characters in a string
	Use the LenB function to determine the number of bytes in a string
	Prefer `If Len(myString) = 0 Then` over `If myString = "" Then`

	Chapter 28: Naming Conventions
	Examples
	Variable Names

	Hungarian Notation
	Procedure Names

	Chapter 29: Non-Latin Characters
	Introduction
	Examples
	Non-Latin Text in VBA Code
	Non-Latin Identifiers and Language Coverage

	Chapter 30: Object-Oriented VBA
	Examples
	Abstraction
	Abstraction levels help determine when to split things up.
	Encapsulation
	Encapsulation hides implementation details from client code.
	Using interfaces to enforce immutability
	Using a Factory Method to simulate a constructor
	Polymorphism
	Polymorphism is the ability to present the same interface for different underlying implementations.
	Testable code depends on abstractions

	Chapter 31: Operators
	Remarks
	Examples
	Mathematical Operators
	Concatenation Operators
	Comparison Operators

	Notes
	Bitwise \ Logical Operators

	Chapter 32: Passing Arguments ByRef or ByVal
	Introduction
	Remarks
	Passing arrays
	Examples
	Passing Simple Variables ByRef And ByVal
	ByRef

	Default modifier
	Passing by reference

	Forcing ByVal at call site
	ByVal
	Passing by value

	Chapter 33: Procedure Calls
	Syntax
	Parameters
	Remarks
	Examples
	Implicit Call Syntax

	Edge case
	Return Values
	This is confusing. Why not just always use parentheses?

	Run-time
	Compile-time
	Explicit Call Syntax
	Optional Arguments

	Chapter 34: Reading 2GB+ files in binary in VBA and File Hashes
	Introduction
	Remarks
	METHODS FOR THE CLASS BY MICROSOFT
	PROPERTIES OF THE CLASS BY MICROSOFT
	NORMAL MODULE
	Examples
	This have to be in a Class module, examples later referred as "Random"
	Code for Calculating File Hash in a Standard module
	Calculating all Files Hash from a root Folder

	Example of Worksheet:
	Code

	Chapter 35: Recursion
	Introduction
	Remarks
	Examples
	Factorials
	Folder Recursion

	Chapter 36: Scripting.Dictionary object
	Remarks
	Examples
	Properties and Methods
	Aggregating data with Scripting.Dictionary (Maximum, Count)
	Getting unique values with Scripting.Dictionary

	Chapter 37: Scripting.FileSystemObject
	Examples
	Creating a FileSystemObject
	Reading a text file using a FileSystemObject
	Creating a text file with FileSystemObject
	Writing to an existing file with FileSystemObject
	Enumerate files in a directory using FileSystemObject
	Recursively enumerate folders and files
	Strip file extension from a file name
	Retrieve just the extension from a file name
	Retrieve only the path from a file path
	Using FSO.BuildPath to build a Full Path from folder path and file name

	Chapter 38: Searching within strings for the presence of substrings
	Remarks
	Examples
	Use InStr to determine if a string contains a substring
	Use InStr to find the position of the first instance of a substring
	Use InStrRev to find the position of the last instance of a substring

	Chapter 39: Sorting
	Introduction
	Examples
	Algorithm Implementation - Quick Sort on a One-Dimensional Array
	Using the Excel Library to Sort a One-Dimensional Array

	Chapter 40: String Literals - Escaping, non-printable characters and line-continuations
	Remarks
	Examples
	Escaping the " character
	Assigning long string literals
	Using VBA string constants

	Chapter 41: Substrings
	Remarks
	Examples
	Use Left or Left$ to get the 3 left-most characters in a string
	Use Right or Right$ to get the 3 right-most characters in a string
	Use Mid or Mid$ to get specific characters from within a string
	Use Trim to get a copy of the string without any leading or trailing spaces

	Chapter 42: User Forms
	Examples
	Best Practices
	Work with a new instance every time.
	Implement the logic elsewhere.
	Caller shouldn't be bothered with controls.
	Handle the QueryClose event.
	Hide, don't close.
	Name things.
	Handling QueryClose

	A Cancellable UserForm

	Chapter 43: VBA Option Keyword
	Syntax
	Parameters
	Remarks
	Examples
	Option Explicit
	Option Compare {Binary | Text | Database}

	Option Compare Binary
	Option Compare Text
	Option Compare Database
	Option Base {0 | 1}

	Example in Base 0 :
	Same Example with Base 1
	The correct code with Base 1 is :

	Chapter 44: VBA Run-Time Errors
	Introduction
	Examples
	Run-time error '3': Return without GoSub

	Incorrect Code
	Why doesn't this work?

	Correct Code
	Why does this work?

	Other notes
	Run-time error '6': Overflow

	Incorrect code
	Why doesn't this work?

	Correct code
	Why does this work?

	Other notes
	Run-time error '9': Subscript out of range

	Incorrect code
	Why doesn't this work?

	Correct code
	Why does this work?

	Other notes
	Run-time error '13': Type mismatch

	Incorrect code
	Why doesn't this work?

	Correct code
	Why does this work?
	Run-time error '91': Object variable or With block variable not set

	Incorrect code
	Why doesn't this work?

	Correct code
	Why does this work?

	Other notes
	Run-time error '20': Resume without error

	Incorrect code
	Why doesn't this work?

	Correct Code
	Why does this work?

	Other notes

	Chapter 45: Working with ADO
	Remarks
	Examples
	Making a connection to a data source
	Retrieving records with a query
	Executing non-scalar functions
	Creating parameterized commands

	Chapter 46: Working With Files and Directories Without Using FileSystemObject
	Remarks
	Examples
	Determining If Folders and Files Exist
	Creating and Deleting File Folders

	Credits

