
Xcode

#xcode

Table of Contents

About 1

Chapter 1: Getting started with Xcode 2

Remarks 2

Versions 2

Examples 3

Get Started 3

Use multiple versions of Xcode 4

Changing The Color Scheme 6

Pro Tip 8

Chapter 2: Certificates, Provisioning Profiles, & Code Signing 10

Examples 10

Choose the right code signing approach 10

Using Xcode's code signing feature 10

Xcode 7 and lower 10

Xcode 8 and up 10

Manually 11

Using fastlane match 11

Chapter 3: Command Line Tools 12

Examples 12

Running Tests 12

List available targets, schemes and build configurations 12

Compile and sign schema 13

Access any command line tool in Xcode app bundle (xcrun) 14

Switching command line tools with xcode-select 14

Chapter 4: Creating Custom Controls in Interface Builder with @IBDesignable 16

Remarks 16

Examples 16

A Live-Rendered Rounded View 16

Chapter 5: Cross-Platform Development 19

Examples 19

TargetConditionals 19

Chapter 6: Customizing Xcode IDE 21

Introduction 21

Examples 21

Open Terminal in current Xcode project folder 21

Clear derived data with hotkey 24

Chapter 7: Debugging 26

Examples 26

Breakpoints 26

Wireless Debugging in Xcode-9 29

Chapter 8: Playgrounds 31

Examples 31

Getting Started with Playground 31

Latest Value, Value History and Graph 32

Adding Images, Static Data, Sounds, etc. to a Playground 33

Chapter 9: Projects & Workspaces 34

Examples 34

Projects overview 34

Create a project 34

Working with projects 34

Build, Run, Profile, Test, and Analyze your project 36

Adjust workspace to your needs and freely navigate it 37

Chapter 10: Xcode 8 features 39

Remarks 39

Examples 39

Color and image literals 39

Chapter 11: Xcode Tips 40

Examples 40

Reuse code snippets in Xcode 40

Install Plugins on Xcode 7 41

Installation 41

Recommendations 41

Usage 42

Hide strange unwanted and extra Xcode 8 logs. 43

Credits 45

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: xcode

It is an unofficial and free Xcode ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official Xcode.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/xcode
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Xcode

Remarks

Xcode is an integrated development environment for macOS which supports the development of
native apps for macOS, iOS, watchOS, and tvOS. Xcode is the successor to NeXT's Project
Builder and PBX. (In fact, Xcode's project manifest files are still named with the .pbxproj
extension.)

Xcode releases include stable versions of the clang C/C++/Obj-C compiler, the Swift compiler, the
LLDB debugger, and iOS/watchOS/tvOS simulators. Xcode also includes Interface Builder, as well
as tools for viewing and editing 3D models and scenes, image assets, and more.

Versions

Version Release Date

1.0 2003-09-28

2.0 2005-04-04

3.0 2007-10-26

4.0 2011-03-14

5.0 2013-09-18

6.0 2014-09-17

7.0 2015-09-16

7.1.1 2015-11-09

7.2 2015-12-08

7.2.1 2016-02-03

7.3 2016-03-21

7.3.1 2016-05-03

8.0 2016-09-13

https://riptutorial.com/ 2

https://developer.apple.com/xcode/
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Project_Builder
https://en.wikipedia.org/wiki/Project_Builder
http://clang.llvm.org/
http://www.riptutorial.com/swift/topic/202/getting-started-with-swift-language
http://lldb.llvm.org/
https://developer.apple.com/xcode/interface-builder/

Version Release Date

8.1 2016-10-27

8.2 2016-12-12

8.2.1 2016-12-19

8.3 2017-03-27

8.3.1 2017-04-06

8.3.2 2017-04-18

8.3.3 2017-06-05

Examples

Get Started

Download Xcode from the Mac App Store.•

Click to create a new project or playground: •

https://riptutorial.com/ 3

https://developer.apple.com/xcode/download/

Use multiple versions of Xcode

You can have multiple versions of Xcode installed at the same time (including beta versions). Si

Note: Installing Xcode from the App Store will tend to overwrite

https://riptutorial.com/ 4

an existing version on your machine. You can also install Xcode from a direct download to get
more control over which versions you have.

Each copy of Xcode includes command line tools (clang, xcodebuild, etc.). You can choose which
ones are invoked by the commands in /usr/bin.

In Xcode's preferences, under the Locations tab, choose a version of Xcode:

Or you can manage versions from the command line using xcode-select:

https://riptutorial.com/ 5

https://developer.apple.com/downloads/
http://i.stack.imgur.com/ls5PC.png
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/xcode-select.1.html

Print the currently selected version
$ xcode-select --print-path
/Applications/Xcode.app/Contents/Developer

$ clang --version
Apple LLVM version 7.3.0 (clang-703.0.29)
Target: x86_64-apple-darwin15.4.0
Thread model: posix
InstalledDir:
/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin

Find all installed versions using Spotlight
$ mdfind 'kMDItemCFBundleIdentifier = "com.apple.dt.Xcode"'
/Applications/Xcode.app
/Applications/Xcode72.app

Check their version numbers
$ mdfind 'kMDItemCFBundleIdentifier = "com.apple.dt.Xcode"' | xargs mdls -name kMDItemVersion
kMDItemVersion = "7.3"
kMDItemVersion = "7.2.1"

Switch to a different version
$ sudo xcode-select --switch /Applications/Xcode72.app

$ clang --version
Apple LLVM version 7.0.2 (clang-700.1.81)
Target: x86_64-apple-darwin15.4.0
Thread model: posix

Changing The Color Scheme

Many developers like to customize the font, text, and background color of their IDE's. You can do
this in Xcode by opening the app preference pane, either by going to XCODE->Preferences, or by
pressing ','

With the preference pane open you can click on the 'Fonts and Colors' tab.

https://riptutorial.com/ 6

http://i.stack.imgur.com/oBOn5.png

From here you can change the source AND console background and font colors. There are many
pre-made color and font schemes provided with Xcode. You choose these from the list on the left
(Basic, Chalkboard, etc). You can find and download more online (like here for example).

To further customize any theme, you can customize any of the types listed in the right pane (Plain
Text, Comments, Documentation Markup, etc). For example, say I really want my 'Numbers' to
show up in my code. So I change the font to 'American Typewriter' at 24 px, the color to a greenish
color, and set the line highlighting to red:

https://riptutorial.com/ 7

http://i.stack.imgur.com/g1xI9.png
https://github.com/hdoria/xcode-themes

Now in my text editing, I can really see my numbers:

Now you can customize the look and feel of the 'Source Editor' and 'Console' to your hearts
delight!

Pro Tip

Many developers like to theme their IDS dark (light text, dark background). In Xcode, you can only
do this for the 'Source Editor' and the 'Console'. However, the Navigation (left side), Debug
(bottom), and Utility (far right) sections are non-customizable. There are two work arounds to this.

https://riptutorial.com/ 8

http://i.stack.imgur.com/qR3ap.png
http://i.stack.imgur.com/WXNjG.png

First (kind of tricky, is to leave the IDE light themed (Light background, dark text) then invert the
screen colors all together. This will make everything dark, but colors in the simulator and in the
rest of the system are now wonky. The second work around is to hide The Navigation, Debug, and
Utility areas when not in use. You can toggle these areas quickly using the following commands:

Navigator : 0

Debug Area : Y

Utility : 0

Read Getting started with Xcode online: https://riptutorial.com/xcode/topic/294/getting-started-with-
xcode

https://riptutorial.com/ 9

https://riptutorial.com/xcode/topic/294/getting-started-with-xcode
https://riptutorial.com/xcode/topic/294/getting-started-with-xcode

Chapter 2: Certificates, Provisioning Profiles,
& Code Signing

Examples

Choose the right code signing approach

If you are just starting a new project, it's important to think about how you want to handle code
signing.

If you are new to code signing, check out the WWDC session that describes the fundamentals of
code signing in Xcode.

To properly code-sign your app, you have to have the following resources on your local machine:

The private key (.p12 file)•
The certificate (.cer file), matching the private key•
The provisioning profile (.mobileprovision file), matching the certificate and private key
installed locally

•

On the Apple Developer Portal it's also required to have a valid App ID associated with your
provisioning profile.

Using Xcode's code signing feature

Occasionally the Automatic setting as the provisioning profile doesn't work reliably as it will just
select the most recently updated provisioning profile, no matter if the certificate is installed.

That's why it is recommended to specify a specific provisioning profile somehow:

Xcode 7 and lower

You should avoid clicking the Fix Issue button (There is an Xcode plugin that disables the button),
as it sometimes revokes existing certificates, and with it the provisioning profiles.

Unfortunately you can't specify the name of the provisioning profile in Xcode 7. Instead you can
specify the UUID of the profile, which changes every time the profile gets re-generated (e.g. when
you add a new device).

To work around this issue, check out XcodeProject.md on how to pass a provisioning profile to
Xcode when building your app.

Xcode 8 and up

https://riptutorial.com/ 10

https://developer.apple.com/videos/play/wwdc2016/401/
https://github.com/neonichu/FixCode#readme
https://github.com/fastlane/fastlane/blob/master/fastlane/docs/Codesigning/XcodeProject.md

Apple improved code signing a lot with the release of Xcode 8, the following has changed:

No more Fix Issue button, instead all code signing processes run in the background and
show the log right in Xcode

•

You can now specify the provisioning profile by name, instead of the UUID (Check out
XcodeProject.md for more information)

•

Improved error messages when something goes wrong. If you run into code signing errors
you should always try building and signing with Xcode to get more detailed error information.
(Check out Troubleshooting.md for more information)

•

Manually

You can always manually create and manage your certificates and provisioning profiles using the
Apple Developer Portal. Make sure to store the private key (.p12) of your certificates in a safe
place, as they can't be restored if you lose them.

You can always download the certificate (.cer) and provisioning profile (.mobileprovision) from the
Apple Developer Portal.

If you revoke your certificate or it expires, all associated provisioning profiles will be invalid.

Using fastlane match

The concept of match is described in the codesigning guide and is the recommended code signing
approach if you use fastlane

With match you store your private keys and certificates in a git repo to sync them across
machines. This makes it easy to onboard new team-members and set up new Mac machines. This
approach is secure and uses technology you already use.

Getting started with match requires you to revoke your existing certificates.

Read Certificates, Provisioning Profiles, & Code Signing online:
https://riptutorial.com/xcode/topic/3711/certificates--provisioning-profiles----code-signing

https://riptutorial.com/ 11

https://github.com/fastlane/fastlane/blob/master/fastlane/docs/Codesigning/XcodeProject.md
https://github.com/fastlane/fastlane/blob/master/fastlane/docs/Codesigning/Troubleshooting.md
https://fastlane.tools/match
https://fastlane.tools/match
https://codesigning.guide
https://fastlane.tools
https://fastlane.tools/match
https://github.com/fastlane/fastlane/tree/master/match#is-this-secure
https://fastlane.tools/match
https://riptutorial.com/xcode/topic/3711/certificates--provisioning-profiles----code-signing

Chapter 3: Command Line Tools

Examples

Running Tests

To run your unit tests in the simulator using xcodebuild use

If you have a workspace (e.g. when using CocoaPods)

xcodebuild \
 -workspace MyApp.xcworkspace \
 -scheme "MyScheme" \
 -sdk iphonesimulator \
 -destination 'platform=iOS Simulator,name=iPhone 6,OS=9.1' \
 test

If you have a project file

xcodebuild \
 -project MyApp.xcproj \
 -scheme "MyScheme" \
 -sdk iphonesimulator \
 -destination 'platform=iOS Simulator,name=iPhone 6,OS=9.1' \
 test

Alternative destination values are

 -destination 'platform=iOS,id=REAL_DEVICE_UDID'
 -destination 'platform=iOS,name=IPHONE NAME'

List available targets, schemes and build configurations

To list all available schemes for the project in your current directory

xcodebuild -list

Optionally you can pass a path to a project or workspace file

xcodebuild -list -workspace ./MyApp.xcworkspace
xcodebuild -list -project ./MyApp.xcodeproj

Example output

Information about project "Themoji":
 Targets:
 Themoji
 ThemojiUITests

https://riptutorial.com/ 12

https://cocoapods.org

 Unit

 Build Configurations:
 Debug
 Release

 If no build configuration is specified and -scheme is not passed then "Release" is used.

 Schemes:
 Themoji
 ThemojiUITests
 Units

Compile and sign schema

Cleaning and compiling code for iPhone, on project MyProject for schema Qa:

xcrun xcodebuild clean \
 -workspace "MyProject.xcworkspace" \
 -scheme "YourScheme" \
 -sdk iphoneos \
 -configuration Debug \
 archive \
 -archivePath builds/MyProject.xcarchive

Configuration can be either Debug or Release.

Signing the previously compiled code:

xcrun xcodebuild -exportArchive \
 -archivePath builds/MyProject-Qa.xcarchive \
 -exportOptionsPlist config.plist \
 -exportPath builds

config.plist contains the information about how to package and sign the application, for
development builds use:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-
1.0.dtd">
<plist version="1.0">
<dict>
 <key>method</key>
 <string>development</string>
 <key>uploadSymbols</key>
 <true/>
</dict>
</plist>

An App Store release plist should contain something like:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-
1.0.dtd">

https://riptutorial.com/ 13

<plist version="1.0">
<dict>
 <key>teamID</key>
 <string>xxxxxxxxxxx</string>
 <key>method</key>
 <string>app-store</string>
 <key>uploadSymbols</key>
 <true/>
</dict>
</plist>

Where the Team ID can be obtained from your keychain.

All available parameters

compileBitcode•
embedOnDemandResourcesAssetPacksInBundle•
iCloudContainerEnvironment•
manifest•
method•
onDemandResourcesAssetPacksBaseURL•
teamID•
thinning•
uploadBitcode•
uploadSymbols•

To get a more information about each of the parameters run xcodebuild --help

Access any command line tool in Xcode app bundle (xcrun)

xcrun uses the system default Xcode version (set via xcode-select) to locate and execute
command line tools from the Xcode application bundle, e.g., llvm-cov.

Generate code coverage reports via llvm-cov
/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin
xcrun llvm-cov [parameters]

Execute xcodebuild
/Applications/Xcode.app/Contents/Developer/usr/bin
xcrun xcodebuild [parameters]

Use Xcode's version of git, e.g., if you have installed a newer version
/Applications/Xcode.app/Contents/Developer/usr/bin
xcrun git [parameters]

Switching command line tools with xcode-select

Print the path to the active developer directory (selected Xcode)

xcode-select -p

Select a different version of Xcode, e.g. Beta

sudo xcode-select -s /Applications/Xcode-beta.app

https://riptutorial.com/ 14

Reset to the default version of Xcode

sudo xcode-select -r

This is equivalent to running sudo xcode-select -s /Applications/Xcode.app

For more details: man xcode-select

Read Command Line Tools online: https://riptutorial.com/xcode/topic/2158/command-line-tools

https://riptutorial.com/ 15

https://riptutorial.com/xcode/topic/2158/command-line-tools

Chapter 4: Creating Custom Controls in
Interface Builder with @IBDesignable

Remarks

It became much easier to create custom controls in Interface Builder with the introduction of the
@IBDesignable and @IBInspectable directives in Swift. Developers can now build rich, complex, fully
animated controls using just a few extra lines of code. I'm surprised by how many developers have
yet to fully embrace this feature, and I frequently find that adding just a few of lines of code to
existing classes can make them so much easier to work with.

Note that these features are also available in Objective-C and are a great way of breathing life into
old classes. The syntactic equivalents in Objective-C are IB_DESIGNABLE and IBInspectable, but
for now I'll be concentrating on examples in Swift.

Examples

A Live-Rendered Rounded View

This is such a common requirement in iOS development, and it was always something that had to
be done purely in code (or using images - yuck!). Now it's incredibly easy to preview his kind of
thing in Interface Builder, there's absolutely no excuse for not using it.

Here's the code:-

import UIKit

@IBDesignable
class MyRoundedView: UIView {

 @IBInspectable var radius: CGFloat = 8 {
 didSet {
 self.layer.cornerRadius = radius
 }
 }

 override func awakeFromNib() {
 self.layer.cornerRadius = self.radius
 self.layer.masksToBounds = true
 }
}

To use this class, add it to your project and then open the storyboard in IB and create a normal
UIView of a decent size. Give it a background colour so you can see it, then navigate to the
Identity Inspector in the right-hand Utilities panel and change the class type in the drop-down to
MyRoundedView.

https://riptutorial.com/ 16

When you do this you should see a third label appear beneath "Class" and "Module" that says
"Designables", and it should say "Updating" for a moment before changing to "Up to date". This
means that Xcode has recompiled your code for MyRoundedView successfully.

Now you can open the Attributes Inspector and you should see (maybe after a short pause) a new
section at the top of the pane with the heading "My Rounded View" and a new attribute labelled
"Radius" with the value 8 (because that is the initial value we set in the code). This has appeared
in the Attributes Inspector because we marked it as @IBInspectable.

You can now change this to another number and you should see the rounded view's corner radius
update in real-time!

https://riptutorial.com/ 17

http://i.stack.imgur.com/MXBYU.jpg

Read Creating Custom Controls in Interface Builder with @IBDesignable online:
https://riptutorial.com/xcode/topic/6193/creating-custom-controls-in-interface-builder-with--
ibdesignable

https://riptutorial.com/ 18

http://i.stack.imgur.com/Sx0pz.jpg
https://riptutorial.com/xcode/topic/6193/creating-custom-controls-in-interface-builder-with--ibdesignable
https://riptutorial.com/xcode/topic/6193/creating-custom-controls-in-interface-builder-with--ibdesignable

Chapter 5: Cross-Platform Development

Examples

TargetConditionals

The system header TargetConditionals.h defines several macros which you can use from C and
Objective-C to determine which platform you're using.

#import <TargetConditionals.h> // imported automatically with Foundation

- (void)doSomethingPlatformSpecific {
#if TARGET_OS_IOS
 // code that is compiled for iPhone / iPhone Simulator
#elif TARGET_OS_MAC && !TARGET_OS_IPHONE
 // code that is compiled for OS X only
#else
 // code that is compiled for other platforms
#endif
}

The values of the macros are:

7.0

When using the iOS 9.1, tvOS 9.0, watchOS 2.0, OS X 10.11 or newer SDKs:

Macro Mac iOS
iOS
simulator

Watch
Watch
simulator

TV
TV
simulator

TARGET_OS_MAC 1 1 1 1 1 1 1

TARGET_OS_IPHONE 0 1 1 1 1 1 1

TARGET_OS_IOS 0 1 1 0 0 0 0

TARGET_OS_WATCH 0 0 0 1 1 0 0

TARGET_OS_TV 0 0 0 0 0 1 1

TARGET_OS_SIMULATOR 0 0 1 0 1 0 1

TARGET_OS_EMBEDDED 0 1 0 1 0 1 0

TARGET_IPHONE_SIMULATOR 0 0 1 0 1 0 1

7.0

When using the iOS 8.4, OS X 10.10, or older SDKs:

https://riptutorial.com/ 19

Macro Mac iOS iOS simulator

TARGET_OS_MAC 1 1 1

TARGET_OS_IPHONE 0 1 1

TARGET_OS_EMBEDDED 0 1 0

TARGET_IPHONE_SIMULATOR 0 0 1

Read Cross-Platform Development online: https://riptutorial.com/xcode/topic/358/cross-platform-
development

https://riptutorial.com/ 20

https://riptutorial.com/xcode/topic/358/cross-platform-development
https://riptutorial.com/xcode/topic/358/cross-platform-development

Chapter 6: Customizing Xcode IDE

Introduction

This is collection of different tips and tricks, to customize and improve your Xcode IDE

Examples

Open Terminal in current Xcode project folder

Xcode have ability to run any script with hotkey.

Here is example how to assign hotkey �+�+⌃+�+T to open Terminal app in current project folder.

Create bash script and save it in some folder1.

#!/bin/bash

Project Name: $XcodeProject
Project Dir: $XcodeProjectPath
Workspace Dir: $XcodeWorkspacePath

open -a Terminal "$(dirname $XcodeProjectPath)"

Make script executable: open Terminal at script folder and run chmod +x your_script_name.sh2.

Open Xcode Preferences at Behaviors tab3.

Add new custom behavior by tapping + in the bottom left corner4.

Check Run action at the right 5.

https://riptutorial.com/ 21

Choose script, which you create previously by clicking at the Choose Script... twice.6.

If your script is grayed, be sure, that you run chmod +x on your script file

https://riptutorial.com/ 22

https://i.stack.imgur.com/3whQR.png

Assign hotkey (for example �+�+⌃+�+T) to your behavior and rename it 7.

https://riptutorial.com/ 23

https://i.stack.imgur.com/FozZ7.png

Now you can open terminal in project folder with one hotkey.

This is only one example of using Xcode behaviors, but you can create any script and launch any
app with it.

Bash script author: http://mattorb.com/xcode-behaviors-for-fun-and-profit/

Clear derived data with hotkey

In the same way as in Open Terminal in current Xcode project folder example, you can add clear
of derived data folder with hotkey.

Create custom behavior (follow the steps in Open Terminal in current Xcode project folder). But
use another script.

Script text:

#!/bin/bash

rm -rf $HOME"/Library/Developer/Xcode/DerivedData/"

https://riptutorial.com/ 24

https://i.stack.imgur.com/c6TjC.png
http://mattorb.com/xcode-behaviors-for-fun-and-profit/
http://www.riptutorial.com/xcode/example/26538/open-terminal-in-current-xcode-project-folder

Read Customizing Xcode IDE online: https://riptutorial.com/xcode/topic/8260/customizing-xcode-
ide

https://riptutorial.com/ 25

https://riptutorial.com/xcode/topic/8260/customizing-xcode-ide
https://riptutorial.com/xcode/topic/8260/customizing-xcode-ide

Chapter 7: Debugging

Examples

Breakpoints

In xcode developers can pause/break the execution of running app and can examine the state of
program.

Here's how to pause running programs:
Just open any file in which we want to put breakpoint and click on the line on gutter at left side
where we want to pause execution.

https://riptutorial.com/ 26

So here we placed breakpoints on line no 21 and 38; when execution reaches at line 38 Xcode

https://riptutorial.com/ 27

https://i.stack.imgur.com/wePJs.png

paused execution and shown green line on that line.

Debug Gauges gives us an glimpse of CPU usage, Memory usage and at bottom the execution
stack with Threads and function names. We can know which stack or sequence of functions lead
execution to this line of break.

Variables View gives all the details of states and values of all variables in the scope of breaded
line. We can see their values, memory addresses, properties of instances and their details.

Console can be used to print value of any variable that is in scope. Using PO command we can
achieve this.

Debug Bar has controls for breakpoints.

First button is to enable/disable paused breakpoint.•
Second button used to pause/resume the execution of programs•
Third one is Step-Over button used to execute to next line•
Fourth button in Step-In used to enter inside currently executing function•
Fifth one is Step-Out button for coming out of current function•

Configure Breakpoint:
We can even have more control on breakpoints.

Delete are Disable straightforward functions.

https://riptutorial.com/ 28

https://i.stack.imgur.com/T14yn.png

Reveal in Navigator takes us to Breakpoint navigator where all the breakpoints from project are
listed as File Navigator.
Edit Breakpoint is something we should used more often for detailed debugging. We can configure
breakpoints using this function. We can conditions and actions to breakpoints as:

As shown in image, that breakpoint will be paused only if path != nil. If this condition is true then
po _routeStartLocation action is executed and mentioned earlier po will print value of
_routeStartLocation on console.

Form detailed explanation, follow this detailed link.

Wireless Debugging in Xcode-9

As recently Apple rolled out iOS11 and Xcode-9, we can now debug apps on devices without
connecting devices to Xcode through USB.
We can take advantage of wireless debugging feature added to this Xcode-9.

To enable wireless debugging, we have to configure some steps in Xcode.
1 First connect the device running iOS11 to the Xcode-9.
2 Go to Window > Devices and Simulators in Xcode menus and under Devices tab connected
device will be listed.
3 Then check the checkbox named Connect vis network as in this picture:

https://riptutorial.com/ 29

https://i.stack.imgur.com/j3IMu.png
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/debugging_with_xcode/chapters/quickstart.html#//apple_ref/doc/uid/TP40015022-CH7-SW3

(Image courtesy: Surjeets' SO post)

4 Then disconnect your device from USB cord, make sure iPhone/iPad/iPod device and Mac
running Xcode are in same wireless network.
5 In Xcode you will see this devices listed and you can directly run your app on that device.

We can perform all the operations with Xcode on that device same as if it is connected using USB;
except that we can not see logs if app is run using Xcode, put it in background and suspended in
background state and we launch it again. This is possible with USB debugging.

NOTES:
1 We have to use Xcode-9, iOS 11 running on device
2 Both device and Mac should on same wireless network

Read Debugging online: https://riptutorial.com/xcode/topic/10459/debugging

https://riptutorial.com/ 30

https://i.stack.imgur.com/ewhQi.png
https://stackoverflow.com/a/44383502/5546312
https://riptutorial.com/xcode/topic/10459/debugging

Chapter 8: Playgrounds

Examples

Getting Started with Playground

Create a new playground file:

First option: From Xcode welcome screen, select the first option (Get started with a
playground).

•

Second option: From menu select File → New → Playground (N).•

1.

Name your playground and select the platform (iOS/macOS/tvOS), then click Next.2.

https://riptutorial.com/ 31

https://i.stack.imgur.com/rR4b4.png

On the next screen, choose where you want to save your playground, then click Create.3.

Latest Value, Value History and Graph

Using Playground it is easy to see that happens inside loops or objects while the change is
happening.

For example, in the code below, the value of x will change from 1 to 4.

import UIKit
for x in [1, 2, 3, 4] {
 x
}

(1) Clicking on the eye symbol on the right will give us a quick look.

(2) Clicking on the circle next to it will open show the Latest Value below the line.

(3) Right click on the view added will show a drop down menu with Latest Value, Value History
and Graph

https://riptutorial.com/ 32

https://i.stack.imgur.com/V9vkP.png

Adding Images, Static Data, Sounds, etc. to a Playground

Images, static data, sounds, etc. are resources in a Playground.

If the Project Navigator is hidden, choose View > Navigators > Show Project Navigator (1)1.
There are several ways to add files

Drag your resources to the Resources folder or•
Select the Resources folder and choose File > Add Files to "Resources" or•
control-click the Resources folder and choose Add Files to "Resources"•

2.

Use your resource. For example let i = UIImage(named: "tacos.jpg")3.

Read Playgrounds online: https://riptutorial.com/xcode/topic/1236/playgrounds

https://riptutorial.com/ 33

http://i.stack.imgur.com/VdnB8.png
https://riptutorial.com/xcode/topic/1236/playgrounds

Chapter 9: Projects & Workspaces

Examples

Projects overview

Xcode projects are used to organize source files, library dependencies, and other resources, as
well as the settings and steps required to build the project's products. Workspaces are groups of
projects and other files.

Create a project

You can create a New Project (N) from a number of built-in templates:

Working with projects

An Xcode project window includes:

https://riptutorial.com/ 34

https://developer.apple.com/library/ios/featuredarticles/XcodeConcepts/Concept-Projects.html#//apple_ref/doc/uid/TP40009328-CH5-SW1
https://developer.apple.com/library/ios/featuredarticles/XcodeConcepts/Concept-Workspace.html
http://i.stack.imgur.com/EZhSi.png

Toolbar (top)1.
Navigator (left)2.
Editor (center)3.
Inspector (right)4.
Variables View (lower-middle left)5.
Console output (lower-middle right)6.
Library (lower right)7.

https://riptutorial.com/ 35

Build, Run, Profile, Test, and Analyze your project

Click the Run button in the toolbar (or press R) to build & run your project. Click Stop (or press

https://riptutorial.com/ 36

http://i.stack.imgur.com/X4c4F.png

.) to stop execution.

Click & hold to see the other actions, Test (U), Profile (I), and Analyze (B). Hold down modifier
keys � option, � shift, and ⌃ control for more variants.

The same actions are available in the Product menu:

Adjust workspace to your needs and freely navigate it

https://riptutorial.com/ 37

One of the things that can really boost your productivity while writing the code is effectively
navigating the workspace. This also means making it comfortable for the moment. It's possible to
achieve this by adjusting which areas of workspaces you see.

The buttons on the top of the navigation and assistant areas are not that big and are a bit hard to
click with the mouse pointer. That's why there are helpful and easy to remember shortcuts that let
you switch between different tabs or hide the area altogether.

You can switch between different panels in the navigation area by holding the � (Command) button
and pressing on different digit keys from 1 to 8 or 0. The 0 key toggles the presence of the
navigator. Here's a list of shortcuts for your convenience:

�+1 - File navigator;1.
�+2 - Symbol navigator;2.
�+2 - Search (also reachable through �+�+F);3.
�+4 - Warnings, errors and static analysis messages;4.
�+5 - Tests available in the project;5.
�+6 - Debug session panel;6.
�+7 - Breakpoints;7.
�+8 - Report/action history navigator;8.
�+0 - Show/Hide the navigator panel;9.

You can switch between different panels in the inspector area by holding � and � and pressing
different digit keys from 1 to 6 (depending on the currently active editor: whether it's code,
storyboard, xib or other type of resource). Pressing 0 while holding these two buttons will hide the
inspector area.

So if you are editing a storyboard and need more visible space just tap � + 0 and �+�+0 to get extra
pixels for the canvas.

While switching panels on either side mostly depend on the combination of � or � and �, the
bottom search fields are activated by holding � and � and pressing either j for navigation area
search bar or k for library area search bar.

Activating the navigation search area can help you narrow the list of items displayed in navigator
area depending on which navigator is active (filter files in the file navigator, simbols in the symbol
navigator, tests in test navigator, etc).

Activating the inspector panel will help you filter the list of either file templates, code snippets,
objects or media resources. Try using this search field when you have storyboard open and you
quickly need to find a UINavigationItem or UITableViewCell components!

Speaking of library, you can switch between library panels (File templates, code snippets, object
and media libraries) ⌃+�+� and respective digit keys: 1 through 4.

Read Projects & Workspaces online: https://riptutorial.com/xcode/topic/335/projects---workspaces

https://riptutorial.com/ 38

https://riptutorial.com/xcode/topic/335/projects---workspaces

Chapter 10: Xcode 8 features

Remarks

This only works with projects using Swift 3+

Examples

Color and image literals

Xcode 8 will automatically recognize any images you’ve got in an Asset Catalog and offer them up
as a suggestion inside of a UIImage initializer.

So you could basically declare a new variable and then add an asset name that you have added to
your asset catalog. For example let img = dog. img does now contain the image of dog that´s in the
asset catalog.

Under the hood it’s creating code that looks like this: #imageLiteral(resourceName: "dog.png"). But
inline in the source editor, you’ll just see the file name of the image.

So you could do this now imageView.image = img.

Note that you need to click on the instellisense suggestion so that you see a thumbnail of
the image in the code and then the image name.

Read Xcode 8 features online: https://riptutorial.com/xcode/topic/7155/xcode-8-features

https://riptutorial.com/ 39

https://riptutorial.com/xcode/topic/7155/xcode-8-features

Chapter 11: Xcode Tips

Examples

Reuse code snippets in Xcode

You can save your code snippets for use later simply by drag and drop. For eg: if you have an
NSLog statement that used for so many places somewhere else in the project, then you can save
the NSLog statements to code snippets library.

https://riptutorial.com/ 40

Drag the NSLog statement to code snippet library.

Now you can simply reuse the code snippet anywhere else on project. Also you can customise the

Drag and drop this code snippet gives an NSLog with placeholder text.

Install Plugins on Xcode 7

Xcode by itself has quite a few good tools built in, but sometimes you just want to change a specif

Installation
curl -fsSL https://raw.githubusercontent.com/supermarin/Alcatraz/deploy/Scripts/install.sh |

Throw this in a terminal, restart Xcode and you're good to go.

Recommendations
A few popular ones include:

VVDocumenter - Type three / above any method, class, ... declaration to add documentation•

https://riptutorial.com/ 41

http://i.stack.imgur.com/MfU7t.jpg
http://i.stack.imgur.com/MZqut.jpg
http://i.stack.imgur.com/9hgDG.jpg
http://i.stack.imgur.com/7aUUI.jpg
https://github.com/onevcat/VVDocumenter-Xcode

XcodeColors - Colored console logs, e. g. using CocoaLumberjack•
FuzzyAutocomplete - Type "NSog" and still get NSLog autocompleted•
BuildTimeAnalyzer - Set -Xfrontend -debug-time-function-bodies under Other Swift flags in the
build settings and optimize your Swift build time

•

in the build settings and optimize your Swift build time

Of course there are many more and some are so good, Apple already implemented them into
Xcode 8 (FuzzyAutocomplete and VVDocumenter for example)

Usage

Hit � + � + 9 or use this menu to open up the Package manager.

https://riptutorial.com/ 42

https://github.com/robbiehanson/XcodeColors
https://github.com/CocoaLumberjack/CocoaLumberjack
https://github.com/FuzzyAutocomplete/FuzzyAutocompletePlugin
https://github.com/RobertGummesson/BuildTimeAnalyzer-for-Xcode
https://medium.com/@RobertGummesson/regarding-swift-build-time-optimizations-fc92cdd91e31#.hov5rzn7v
https://medium.com/@RobertGummesson/regarding-swift-build-time-optimizations-fc92cdd91e31#.hov5rzn7v
http://i.stack.imgur.com/IVr2H.png

Click install on any package you want installed and afterwards restart Xcode again.

Hide strange unwanted and extra Xcode 8 logs.

From Xcode menu open: Product > Scheme > Edit Scheme.1.

https://riptutorial.com/ 43

http://i.stack.imgur.com/NUBwk.png

On your Environment Variables set OS_ACTIVITY_MODE = disable2.

Read Xcode Tips online: https://riptutorial.com/xcode/topic/3349/xcode-tips

https://riptutorial.com/ 44

https://i.stack.imgur.com/7SFvn.gif
https://riptutorial.com/xcode/topic/3349/xcode-tips

Credits

S.
No

Chapters Contributors

1
Getting started with
Xcode

Anh Pham, Community, Jbryson, jtbandes, Md. Ibrahim Hassan,
Undo

2
Certificates,
Provisioning Profiles,
& Code Signing

KrauseFx

3
Command Line
Tools

Ali Beadle, David Snabel-Caunt, Fabio, Idan, Jens Meder,
KrauseFx

4

Creating Custom
Controls in Interface
Builder with
@IBDesignable

Echelon

5
Cross-Platform
Development

J F, jtbandes

6
Customizing Xcode
IDE

Vitaliy Gozhenko

7 Debugging D4ttatraya

8 Playgrounds Anh Pham, Idan, Rob Wright

9
Projects &
Workspaces

Eimantas, jtbandes

10 Xcode 8 features Rashwan L, Sharukh Mastan

11 Xcode Tips Anand Prem, Finn Gaida, jtbandes, user459460

https://riptutorial.com/ 45

https://riptutorial.com/contributor/5624053/anh-pham
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/877032/jbryson
https://riptutorial.com/contributor/23649/jtbandes
https://riptutorial.com/contributor/5807290/md--ibrahim-hassan
https://riptutorial.com/contributor/1849664/undo
https://riptutorial.com/contributor/445598/krausefx
https://riptutorial.com/contributor/2466193/ali-beadle
https://riptutorial.com/contributor/80425/david-snabel-caunt
https://riptutorial.com/contributor/2754856/fabio
https://riptutorial.com/contributor/5099208/idan
https://riptutorial.com/contributor/6556246/jens-meder
https://riptutorial.com/contributor/445598/krausefx
https://riptutorial.com/contributor/337392/echelon
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/23649/jtbandes
https://riptutorial.com/contributor/1060785/vitaliy-gozhenko
https://riptutorial.com/contributor/5546312/d4ttatraya
https://riptutorial.com/contributor/5624053/anh-pham
https://riptutorial.com/contributor/5099208/idan
https://riptutorial.com/contributor/40746/rob-wright
https://riptutorial.com/contributor/41761/eimantas
https://riptutorial.com/contributor/23649/jtbandes
https://riptutorial.com/contributor/5576310/rashwan-l
https://riptutorial.com/contributor/4633294/sharukh-mastan
https://riptutorial.com/contributor/5024591/anand-prem
https://riptutorial.com/contributor/1642174/finn-gaida
https://riptutorial.com/contributor/23649/jtbandes
https://riptutorial.com/contributor/6997513/user459460

	About
	Chapter 1: Getting started with Xcode
	Remarks
	Versions
	Examples
	Get Started
	Use multiple versions of Xcode
	Changing The Color Scheme

	Pro Tip

	Chapter 2: Certificates, Provisioning Profiles, & Code Signing
	Examples
	Choose the right code signing approach

	Using Xcode's code signing feature
	Xcode 7 and lower
	Xcode 8 and up

	Manually
	Using fastlane match
	Chapter 3: Command Line Tools
	Examples
	Running Tests
	List available targets, schemes and build configurations
	Compile and sign schema
	Access any command line tool in Xcode app bundle (xcrun)
	Switching command line tools with xcode-select

	Chapter 4: Creating Custom Controls in Interface Builder with @IBDesignable
	Remarks
	Examples
	A Live-Rendered Rounded View

	Chapter 5: Cross-Platform Development
	Examples
	TargetConditionals

	Chapter 6: Customizing Xcode IDE
	Introduction
	Examples
	Open Terminal in current Xcode project folder
	Clear derived data with hotkey

	Chapter 7: Debugging
	Examples
	Breakpoints
	Wireless Debugging in Xcode-9

	Chapter 8: Playgrounds
	Examples
	Getting Started with Playground
	Latest Value, Value History and Graph
	Adding Images, Static Data, Sounds, etc. to a Playground

	Chapter 9: Projects & Workspaces
	Examples
	Projects overview

	Create a project
	Working with projects
	Build, Run, Profile, Test, and Analyze your project
	Adjust workspace to your needs and freely navigate it

	Chapter 10: Xcode 8 features
	Remarks
	Examples
	Color and image literals

	Chapter 11: Xcode Tips
	Examples
	Reuse code snippets in Xcode
	Install Plugins on Xcode 7

	Installation
	Recommendations
	Usage
	Hide strange unwanted and extra Xcode 8 logs.

	Credits

