
ActionScript 3

#actionscrip

t-3

Table of Contents

About 1

Chapter 1: Getting started with ActionScript 3 2

Remarks 2

Versions 2

There is a single version of Actionscript 3, named "ActionScript 3.0" 2

Examples 3

Installation Overview 3

Hello World 3

Flash Develop Installation 3

Apache Flex Installation 5

Building Flex or Flash projects at the command line using mxmlc 5

A displayed "Hello World" example 6

Chapter 2: Binary data 7

Examples 7

Reading form ByteArray throught IDataInput interface. 7

Chapter 3: Bitmap Manipulation and Filtering 8

Introduction 8

Examples 8

Threshold (monochrome) effect 8

required: 8

Chapter 4: Display List Lifecycle 10

Remarks 10

Examples 10

Added and removed from stage lifecycle 10

Chapter 5: Drawing Bitmaps 12

Examples 12

Draw a display object into bitmap data 12

Draw a display object with any coordinates of registration point 12

Animating a sprite sheet 13

Chapter 6: Game Development Basics 14

Introduction 14

Examples 14

isometric character animating + movement 14

the concepts used in this Example : 14

Resources : (no permission for using this resources for a commercial purposes) 14

Code and Comments : 14

External References: 19

Chapter 7: Loading External Files 20

Remarks 20

Examples 20

Loading External Images/SWFs With The Loader 20

Loading a text file with FileStream (AIR runtime only) 21

Chapter 8: Object Oriented Programming 22

Examples 22

"Overloaded" Constructor via static method 22

set & get functions 22

Packages 23

Method overriding 24

getter and setter 25

Chapter 9: Optimizing Performance 27

Examples 27

Vector based graphics 27

Text 27

Vector and for each vs arrays and for 27

Fast array item removal 28

Vectors instead of Arrays 29

Reusing and pooling graphics 29

Chapter 10: Random Value Generation 31

Examples 31

Random number between 0 and 1 31

Random number between min and max values 31

Random angle, in degrees 31

Random value from an array 32

Random point inside a circle 32

Random angle, in radians 33

Determining the success of a "percent chance" operation 33

Create a random color 33

Randomly loop through alphabet 34

Randomize An Array 34

Chapter 11: Responsive Application Design 35

Examples 35

Basic Responsive Application 35

Performing lengthy processes and not get unresponsive application 35

Chapter 12: Sending and Receiving Data From Servers 37

Examples 37

Making a request from Flash 37

Adding variables to your request 37

Altering the HTTP method (GET, POST, PUT, etc) 37

My response data is always null, what does "asynchronous" mean? 38

Cross-domain requests 38

Chapter 13: Singleton Pattern 40

Remarks 40

Examples 40

Singleton enforcer via private instance 40

Chapter 14: Types 41

Examples 41

Type Casting 41

The Function type 41

The Class type 41

Annotating types 42

Checking types 42

Typed arrays 44

Chapter 15: Understanding the "Error 1009: Cannot access a property or method of a null ob 46

Introduction 46

Remarks 46

Examples 46

Stage is unavailable 46

Invalid typecast 47

Uninstantiated object 47

Multi-tiered expression 47

Unprocessed function result 47

Forgotten event listener 47

Invalidated reference to a frame-based object 48

Chapter 16: Using the Proxy Class 50

Introduction 50

Examples 50

Implementation 50

Usage 53

Chapter 17: Working with Date and Time 56

Examples 56

Ante meridiem (AM) or Post meridiem (PM) for 12-hour clock 56

Number of days in the specified month 56

Whether the specified year is leap year 56

Whether daylight savings time is currently observed 56

Today's start date, at midnight 56

Chapter 18: Working With Display Objects 58

Syntax 58

Remarks 58

Examples 58

Introduction To The Display List 58

Z-Order / Layering 59

Removing Display Objects 60

Events 60

Adobe Animate / Flash Professional 60

Layering 61

Remove all objects from the display list 61

Transiting from frames to manual content switching 61

Chapter 19: Working with Events 63

Remarks 63

Examples 63

Custom events with event data 63

Event handling off the display list 64

Basic event handling 64

Add your own events 65

Simple Mouse Event Structure 65

Chapter 20: Working with Geometry 67

Examples 67

Getting the angle between two points 67

Getting the distance between two points 67

Converting radians to degrees 67

Converting degrees to radians 67

The value of a circle in degrees and radians 68

Moving a point along an angle 68

Determine if a point is inside a rectangle area 68

Chapter 21: Working with numerical values 70

Examples 70

Whether a number is an even value 70

Whether a number is an odd value 70

Rounding to nearest X 70

Roundoff errors of floating point numbers 71

Displaying numbers with required precision 71

Chapter 22: Working with Sound 72

Syntax 72

Examples 72

Stop Playing a Sound 72

Infinite looping a sound 72

Load and play an external sound 73

Chapter 23: Working with Timeline 74

Examples 74

Referencing the main timeline or document class from within other MovieClips 74

Chapter 24: Working with Timers 75

Examples 75

Countdown timer example 75

Intervals and timeouts 76

Random timer example 77

Chapter 25: Working with Video 79

Examples 79

Load and play external video file 79

With NetStatusEvent 79

Credits 81

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: actionscript-3

It is an unofficial and free ActionScript 3 ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official ActionScript 3.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/actionscript-3
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with ActionScript 3

Remarks

ActionScript 3 is the programming language for the Adobe Flash Player and Adobe AIR runtime
environments. It is object-oriented ECMAScript based language used primary for native
application development on desktop (Windows/Mac) and mobile (iOS/Android) devices.

Adobe learning resources: http://www.adobe.com/devnet/actionscript/learning.html

History and more details: https://en.wikipedia.org/wiki/ActionScript

Online documentation on classes and reference:
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/package-detail.html

Versions

There is a single version of Actionscript 3,
named "ActionScript 3.0"

Flash
Version

Codename Changes and Improvements
Release
Date

Flash
Player 9.x

Zaphod initial release
2006-06-
22

Flash
Player
10.0

Astro
introduced the Vector.<T> type, the Adobe Pixel
Bender shader filters in flash.filters.ShaderFilter
class, and its hardware support on multiple CPUs.

2008-10-
15

Flash
Player
10.1

Argo
introduced flash.events.TouchEvent class to work with
multitouch devices, and other support of mobile device
hardware, such as accelerometer.

2010-06-
10

Flash
Player
10.2

Spicy
introduced flash.media.StageVideo class and the
general framework to work with stage video playback
in AS3.

2011-02-
08

Flash
Player 11

Serrano
adds H.264 support to video streaming over NetStream
objects in both directions. Also it adds SSL/TLS
support for Flash connection with SecureSocket class.

2011-10-
04

Flash
Player

introduced flash.system.Worker class and the ability to
delegate asynchronous work to other threads on the

Brannan
2012-08-
10

https://riptutorial.com/ 2

http://www.adobe.com/devnet/actionscript/learning.html
https://en.wikipedia.org/wiki/ActionScript
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/package-detail.html

Flash
Version

Codename Changes and Improvements
Release
Date

11.4 client.

Flash
Player
11.8

Harrison
removed hardware support (JIT compilation) for Adobe
Pixel Bender shader filters, drastically reducing
performance of any PB shader filter execution.

2013-05-
09

Examples

Installation Overview

ActionScript 3 can be used by installing the Adobe AIR SDK or Apache Flex SDK or as part
Adobe's Animate CC product (formerly known as Flash Professional).

Adobe Animate CC is a professional software solution that can be used to create AS3 projects
using visual tools - once installed, no further steps are necessary to begin creating AS3 projects.

The AIR SDK and Flex SDK can be used with command line tools or with various third party IDEs.

In addition to Adobe Animate CC, there are four other popular IDEs capable of working with AS3.
These IDEs have their own instructions on how to get started.

Flash Builder (By Adobe - based on Eclipse)•
IntelliJ IDEA (By Jetbrains)•
FlashDevelop•
FDT (Eclipse Plugin)•

Hello World

An example document class that prints “Hello, World” to the debug console when instantiated.

import flash.display.Sprite;

public class Main extends Sprite {

 public function Main() {
 super();

 trace("Hello, World");
 }

}

Flash Develop Installation

FlashDevelop is a multi-platform open source IDE created in 2005 for Flash developers. With no
cost, it's a very popular way to get started developing with AS3.

https://riptutorial.com/ 3

http://www.adobe.com/devnet/air/air-sdk-download.html
http://flex.apache.org/installer.html
http://www.adobe.com/products/animate/features.html
http://www.adobe.com/ca/products/flash-builder.html
https://www.jetbrains.com/idea/
http://www.flashdevelop.org/
http://fdt.powerflasher.com/
http://www.flashdevelop.org/

To Install FlashDevelop:

Download The Installation File and run the installer1.
Once installation is complete, run FlashDevelop. On the first launch, the App Man window
should appear asking you to pick what SDK's and tools to install.

2.

If the AppMan doesn't open automatically, or you want to add something later, open it by choosing
'Install Software' on the 'Tools' menu.

Check the AIR SDK+ ACS 2.0 item (in the 'Compiler' section) and the Flash Player (SA) item in
the 'Runtimes' section (plus anything else you'd like to install). Click the install button.

Once the SDK is installed, let's test is by creating a hello world project. Start by creating a
new project (from the Project menu)

3.

Choose AIR AS3 Projector from the list, and give it a name/location.4.

In the project manager panel (choose 'Project Manager' from the view menu if not already
visible), expand the src folder, and open the Main.as file.

5.

https://riptutorial.com/ 4

http://www.flashdevelop.org/community/viewforum.php?f=11
http://i.stack.imgur.com/VySuK.jpg

In the Main.as file, you can now create a first example program like Hello World6.

Run your project by clicking the play icon, or pressing F5, or Ctrl+Enter. The project will
compile and when finished a blank window should appear (this is your application). In the
FlashDevelop output window, you should see the words: Hello World.

7.

You are now ready to start developing AS3 applications with FlashDevelop!

Apache Flex Installation

from http://flex.apache.org/doc-getstarted.html

Download the SDK installer1.

Run the SDK installer. The first question you will be asked is the installation directory.

on a Mac, use /Applications/Adobe Flash Builder 4.7/sdks/4.14.0/•
on a PC, use C:\Program Files(x86)\Adobe Flash Builder 4.7\sdks\4.14.0•

You will need to create the 4.14.0 folders. Press Next. Accept SDK Licenses and Install.

2.

IDE Specific Instructions for Apache Flex setup:

Flash Builder•
IntelliJ IDEA•
FlashDevelop•
FDT•

Building Flex or Flash projects at the command line using mxmlc

The Flex compiler (mxmlc) is one of the most important parts of the Flex SDK. You can edit AS3
code in any text editor you like. Create a main class file that extends from DisplayObject.

You can trigger builds at the command line as follows:

mxmlc -source-path="." -default-size [width in pixels] [height in pixels] -default-frame-rate
[fps] -o "outputPath.swf" "mainClass.as"

If you need to compile a Flash project (as opposed to Flex) you can add a reference to the Flash
library as follows (you'll need to have the Adobe Animate IDE installed):

mxmlc -source-path="." -library-path+="/Applications/Adobe Animate CC 2015.2/Adobe Animate CC
2015.2.app/Contents/Common/Configuration/ActionScript 3.0/libs" -static-link-runtime-shared-
libraries=true -default-size [width in pixels] [height in pixels] -default-frame-rate [fps] -o
"outputPath.swf" "mainClass.as"

Or on Windows:

mxmlc -source-path="." -library-path+="C:\Program Files\Adobe\Adobe Animate CC
2015.2\Common\Configuration\ActionScript 3.0\libs" -static-link-runtime-shared-libraries=true

https://riptutorial.com/ 5

http://stackoverflow.com/documentation/actionscript-3/1171/hello-world#t=201607212033163242702
http://flex.apache.org/doc-getstarted.html
http://flex.apache.org/installer.html
http://flex.apache.org/doc-getstarted.html#setupFlashBuilder
http://flex.apache.org/doc-getstarted.html#setupIDEA
http://flex.apache.org/doc-getstarted.html#setupFD
http://flex.apache.org/doc-getstarted.html#setupFDT

-default-size [width in pixels] [height in pixels] -default-frame-rate [fps] -o
"outputPath.swf" "mainClass.as"

A displayed "Hello World" example

package {
 import flash.text.TextField;
 import flash.display.Sprite;

 public class TextHello extends Sprite {
 public function TextHello() {
 var tf:TextField = new TextField();
 tf.text = "Hello World!"
 tf.x = 50;
 tf.y = 40;
 addChild(tf);
 }
 }
}

This class uses the TextField class to display the text.

Read Getting started with ActionScript 3 online: https://riptutorial.com/actionscript-
3/topic/1065/getting-started-with-actionscript-3

https://riptutorial.com/ 6

https://riptutorial.com/actionscript-3/topic/1065/getting-started-with-actionscript-3
https://riptutorial.com/actionscript-3/topic/1065/getting-started-with-actionscript-3

Chapter 2: Binary data

Examples

Reading form ByteArray throught IDataInput interface.

Animation below shows what is happening when you use IDataInput interface methods to access
data form ByteArray and other classes which implement this interface.

Read Binary data online: https://riptutorial.com/actionscript-3/topic/9464/binary-data

https://riptutorial.com/ 7

http://help.adobe.com/pl_PL/FlashPlatform/reference/actionscript/3/flash/utils/IDataInput.html
http://help.adobe.com/pl_PL/FlashPlatform/reference/actionscript/3/flash/utils/ByteArray.html
https://i.stack.imgur.com/zDcR3.gif
https://riptutorial.com/actionscript-3/topic/9464/binary-data

Chapter 3: Bitmap Manipulation and Filtering

Introduction

In this topic you can learn a bit about manipulating bitmapdata and visual processing, working
with pixels and getting started with effects filters.

Examples

Threshold (monochrome) effect

required:

understanding Bitmap and Bitmap data1.

what is threshold

This adjustment takes all the pixels in an image and…pushes them to either pure white
or pure black

what we have to do

here is a Live Demo of this example with some additional changes like using a UI to
changing threshold level in runtime.

threshold in action script 3 from as3 official documentation

Tests pixel values in an image against a specified threshold and sets pixels that pass

https://riptutorial.com/ 8

http://www.fastswf.com/inDKZD8
https://i.stack.imgur.com/4ZgER.png
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/BitmapData.html#threshold()

the test to new color values. Using the threshold() method, you can isolate and replace
color ranges in an image and perform other logical operations on image pixels.

The threshold() method's test logic is as follows:

If ((pixelValue & mask) operation (threshold & mask)), then set the pixel to color;1.
Otherwise, if copySource == true, then set the pixel to corresponding pixel value
from sourceBitmap.

2.

i just commented the following code with exactly names as quoted description.

import flash.display.BitmapData;
import flash.display.Bitmap;
import flash.geom.Rectangle;
import flash.geom.Point;

var bmd:BitmapData = new wildcat(); // instantied a bitmapdata from library a wildcat
var bmp:Bitmap = new Bitmap(bmd); // our display object to previewing bitmapdata on stage
addChild(bmp);
monochrome(bmd); // invoking threshold function

/**
 @param bmd, input bitmapData that should be monochromed
*/
function monochrome(bmd:BitmapData):void {
 var bmd_copy:BitmapData = bmd.clone(); // holding a pure copy of bitmapdata for
comparation steps
 // this is our "threshold" in description above, source pixels will be compared with this
value
 var level:uint = 0xFFAAAAAA; // #AARRGGBB. in this case i used RGB(170,170,170) with an
alpha of 1. its not median but standard
 // A rectangle that defines the area of the source image to use as input.
 var rect:Rectangle = new Rectangle(0,0,bmd.width,bmd.height);
 // The point within the destination image (the current BitmapData instance) that
corresponds to the upper-left corner of the source rectangle.
 var dest:Point = new Point();
 // thresholding will be done in two section
 // the last argument is "mask", which exists in both sides of comparation
 // first, modifying pixels which passed comparation and setting them all with "color"
white (0xFFFFFFFF)
 bmd.bitmapData.threshold(bmd_copy, rect, dest, ">", level, 0xFFFFFFFF, 0xFFFFFFFF);
 // then, remaining pixels and make them all with "color" black (0xFF000000)
 bmd.bitmapData.threshold(bmd_copy, rect, dest, "<=", level, 0xFF000000, 0xFFFFFFFF);
 // Note: as we have no alpha channel in our default BitmapData (pixelValue), we left it to
its full value, a white mask (0xffffffff)
}

Read Bitmap Manipulation and Filtering online: https://riptutorial.com/actionscript-
3/topic/8055/bitmap-manipulation-and-filtering

https://riptutorial.com/ 9

https://riptutorial.com/actionscript-3/topic/8055/bitmap-manipulation-and-filtering
https://riptutorial.com/actionscript-3/topic/8055/bitmap-manipulation-and-filtering

Chapter 4: Display List Lifecycle

Remarks

Frame-based animation in Flash and AIR implement the following lifecycle:

Event.ENTER_FRAME is dispatched•
Constructor code of children display objects are executed•
Event.FRAME_CONSTRUCTED is dispatched•
Frame actions in the MovieClip symbol is executed•
Frame actions in children MovieClip symbols are executed•
Event.EXIT_FRAME is dispatched•
Event.RENDER is dispatched•

Examples

Added and removed from stage lifecycle

package {
import flash.display.Sprite;
import flash.events.Event;

public class Viewport extends Sprite {

 /** Constructor */
 public function Viewport() {
 super();

 // Listen for added to stage event
 addEventListener(Event.ADDED_TO_STAGE, addedToStageHandler);
 }

 /** Added to stage handler */
 protected function addedToStageHandler(event:Event):void {
 // Remove added to stage event listener
 removeEventListener(Event.ADDED_TO_STAGE, addedToStageHandler);

 // Listen for removed from stage event
 addEventListener(Event.REMOVED_FROM_STAGE, removedFromStageHandler);
 }

 /** Removed from stage handler */
 protected function removedFromStageHandler(event:Event):void {
 // Remove removed from stage event listener
 removeEventListener(Event.REMOVED_FROM_STAGE, removedFromStageHandler);

 // Listen for added to stage event
 addEventListener(Event.ADDED_TO_STAGE, addedToStageHandler);
 }

 /** Dispose */
 public function dispose():void {

https://riptutorial.com/ 10

 // Remove added to stage event listener
 removeEventListener(Event.ADDED_TO_STAGE, addedToStageHandler);

 // Remove removed from stage event listener
 removeEventListener(Event.REMOVED_FROM_STAGE, removedFromStageHandler);
 }

}
}

Read Display List Lifecycle online: https://riptutorial.com/actionscript-3/topic/1877/display-list-
lifecycle

https://riptutorial.com/ 11

https://riptutorial.com/actionscript-3/topic/1877/display-list-lifecycle
https://riptutorial.com/actionscript-3/topic/1877/display-list-lifecycle

Chapter 5: Drawing Bitmaps

Examples

Draw a display object into bitmap data

A helper function to create a bitmap copy of an object. This can be used to convert vector objects,
text or complex nested Sprite's to a flattened bitmap.

function makeBitmapCopy(displayObj:IBitmapDrawable, transparent:Boolean = false, bgColor:uint
= 0x00000000, smooth:Boolean = true):Bitmap {

 //create an empty bitmap data that matches the width and height of the object you wish to
draw
 var bmd:BitmapData = new BitmapData(displayObj.width, displayObj.height, transparent,
bgColor);

 //draw the object to the bitmap data
 bmd.draw(displayObj, null, null, null, null, smooth);

 //assign that bitmap data to a bitmap object
 var bmp:Bitmap = new Bitmap(bmd, "auto", smooth);

 return bmp;
}

Usage:

var txt:TextField = new TextField();
txt.text = "Hello There";

var bitmap:Bitmap = makeBitmapCopy(txt, true); //second param true to keep transparency
addChild(bitmap);

Draw a display object with any coordinates of registration point

 public function drawDisplayObjectUsingBounds(source:DisplayObject):BitmapData {
 var bitmapData:BitmapData;//declare a BitmapData
 var bounds:Rectangle = source.getBounds(source);//get the source object actual size
 //round bounds to integer pixel values (to aviod 1px stripes left off)
 bounds = new Rectangle(Math.floor(bounds.x), Math.floor(bounds.y),
Math.ceil(bounds.width), Math.ceil(bounds.height));

 //to avoid Invalid BitmapData error which occures if width or height is 0
 //(ArgumentError: Error #2015)
 if((bounds.width>0) && (bounds.height>0)){
 //create a BitmapData
 bitmapData = new BitmapData(bounds.width, bounds.height, true, 0x00000000);

 var matrix:Matrix = new Matrix();//create a transform matrix
 //translate if to fit the upper-left corner of the source
 matrix.translate(-bounds.x, -bounds.y);
 bitmapData.draw(source, matrix);//draw the source

https://riptutorial.com/ 12

 return bitmapData;//return the result (exit point)
 }
 //if no result is created - return an empty BitmapData
 return new BitmapData(1, 1, true, 0x00000000);
 }

A side note: For getBounds() to return valid values the object has to have stage access at least
once, otherwise the values are bogus. A code can be added to ensure that passed source has
stage, and if not, it can be added to stage then removed again.

Animating a sprite sheet

A sprite sheet by definition is a bitmap that contains a certain animation. Old games use grid type
sprite sheet, that is, every frame occupies an equal region, and frames are aligned by the edges to
form a rectangle, probably with some spaces unoccupied. Later, in order to minimize the bitmap
size, sprite sheets start to be "packed" by removing extra whitespace around the rectangle that
contains each frame, but still each frame is a rectangle to simplify copying operations.

In order to animate a sprite sheet, two techniques can be used. First, you can use
BitmapData.copyPixels() to copy a certain region of your sprite sheet to a displayed Bitmap,
producing an animated character. This approach is better if you use a single displayed Bitmap that
hosts the entire picture.

var spriteSheet:BitmapData;
var frames:Vector.<Rectangle>; // regions of spriteSheet that represent frames
function displayFrameAt(frame:int,buffer:BitmapData,position:Point):void {
 buffer.copyPixels(spriteSheet,frames[frame],position,null,null,true);
}

The second technique can be used if you have a lot of Sprites or Bitmaps on the display list, and
they share the same sprite sheet. Here, the target buffer is no longer a single object, but each
object has its own buffer, so the proper strategy is to manipulate the bitmaps' bitmapData property.
Prior to doing this, however, the sprite sheet should be cut apart into individual frames.

public class Stuff extends Bitmap {
 static var spriteSheet:Vector.<BitmapData>;
 function displayFrame(frame:int) {
 this.bitmapData=spriteSheet[frame];
 }
 // ...
}

Read Drawing Bitmaps online: https://riptutorial.com/actionscript-3/topic/2814/drawing-bitmaps

https://riptutorial.com/ 13

https://riptutorial.com/actionscript-3/topic/2814/drawing-bitmaps

Chapter 6: Game Development Basics

Introduction

[![enter image description here][1]][1] basics of game development. ------------------------------- Note,
this set of tutorials/articles contains many concepts which may provided as separated topics
before. we have to refreshing them in the mind and learning a bit of implementing most critical
parts of a video-game via actionscript-3. [1]: https://i.stack.imgur.com/CUIsz.png

Examples

isometric character animating + movement

① the concepts used in this Example :

Class Usage

URLRequest + Loader + Event Loading atlas map (sprite) from external path.

BitmapData + Sprite + beginBitmapFill +
Matrix + stageWidth & stageHeight

drawing loaded resources to bitmapdata,
using tiled bitmaps, drawing with transformation.

MovieClip + scrollRect + Bitmap + Rectangle
creating and cliping character movieclip
using Bitmap as timeline.

KeyboardEvent detecting user inputs

Event.EXIT_FRAME implementing game Loop function

② Resources : (no permission for using this resources for a commercial
purposes)

③ Code and Comments :

https://riptutorial.com/ 14

https://i.stack.imgur.com/B7ztZ.png
https://i.stack.imgur.com/sjJFS.png

Note: FPS 15 Used for this tutorial, its recommended, but if need more, you must
modify some part of code by your self.

at first we must download our resources from external urls.

const src_grass_tile_url:String = "https://i.stack.imgur.com/sjJFS.png";
const src_character_atlas_url:String = "https://i.stack.imgur.com/B7ztZ.png";

var loader:Loader = new Loader();
loader.contentLoaderInfo.addEventListener(Event.COMPLETE, setGround);
loader.load(new URLRequest(src_grass_tile_url));

setGround will be caled once src_grass_tile_url is loaded and ready for use. in follow
implementing setGround to get resource and draw it as the game background

function setGround(e:Event):void {
 /* drawing ground */
 /* loader is a displayObject, so we can simply draw it into the bitmap data*/
 /* create an instance of Bitmapdata with same width and height as our window*/
 /* (also set transparent to false because grass image, does not contains any transparent
pixel) */
 var grass_bmd:BitmapData = new BitmapData(loader.width, loader.height, false, 0x0);
 /* time to draw */
 grass_bmd.draw(loader); // drawing loader into the bitmapData
 /* now we have to draw a tiled version of grass_bmd inside a displayObject Sprite to
displaying
 BitmapData on stage */
 var grass_sprite:Sprite = new Sprite();
 // for drawing a bitmap inside sprite, we must use <beginBitmapFill> with graphic property
of the sprite
 // then draw a full size rectangle with that Fill-Data
 // there is a repeat mode argument with true default value so we dont set it true again.
 // use a matrix for scalling grass Image during draw to be more cute!
 var mx:Matrix = new Matrix();
 mx.scale(2, 2);
 grass_sprite.graphics.beginBitmapFill(grass_bmd, mx);
 grass_sprite.graphics.drawRect(0, 0, stage.stageWidth, stage.stageHeight);
 // now add sprite to displayobjectcontainer to be displayed
 stage.addChild(grass_sprite);

 // well done, ground is ready, now we must initialize our character
 // first, load its data, i just re-use my loader for loading new image, but with another
complete handler (setCharacter)
 // so remove existing handler, then add new one
 loader.contentLoaderInfo.removeEventListener(Event.COMPLETE, setGround);
 loader.contentLoaderInfo.addEventListener(Event.COMPLETE, setCharacter);
 loader.load(new URLRequest(src_character_atlas_url));
}

the code is well damn commented, after we have done with ground, its time to implementing
character. character also contains a resource which must be loaded with same way. so at the end
of setGround we are heading to the setCharacter which is another complete call back.

function setCharacter(e:Event):void {
 // let assuming that what is really character!
 // a set of images inside a single image!

https://riptutorial.com/ 15

 // that images are frames of our character (also provides movement for different
directions)
 // first load this
 var character_bmd:BitmapData = new BitmapData(loader.width, loader.height, true, 0x0); //
note character is transparent
 character_bmd.draw(loader);
 // take a look at sprite sheet, how many frames you see?
 // 42 frames, so we can get width of a single frame
 const frame_width:uint = character_bmd.width / 42; // 41 pixels
 // as i show you above, to displaying a BitmapData, we have to draw it using a
DisplayObject,
 // another way is creating a Bitmap and setting its bitmapdata
 var character_bmp:Bitmap = new Bitmap(character_bmd);
 // but its not enough yet, a movieClip is necessary to cliping and animating this bitmap
(as a child of itself)
 var character_mc:MovieClip = new MovieClip();
 character_mc.addChild(character_bmp);
 character_bmp.name = "sprite_sheet"; // setting a name to character_bmp, for future
accessing
 character_mc.scrollRect = new Rectangle(0, 0, frame_width, character_bmd.height); //
cliping movieclip, to dusplaying only one frame
 character_mc.name = "character"; // setting a name to character_mc, for future accessing
 stage.addChild(character_mc); // adding it to stage.
 // well done, we have a character, but its static yet! 2 steps remaining. 1 controlling 2
animating
 // at first setting a control handler for moving character in 8 directions.
 stage.addEventListener(KeyboardEvent.KEY_DOWN, keyDown);
 stage.addEventListener(KeyboardEvent.KEY_UP, keyUp);
}

now character is ready to controll. its displayed well and ready for controlling. so keyboard events
attached and listening for arrow keys as following code :

// we storing key stats inside <keys> Object
var keys:Object = {u:false, d:false, l:false, r:false};
function keyDown(e:KeyboardEvent):void {
 switch (e.keyCode) {
 case 38: //up
 keys.u = true;
 break;
 case 40: //down
 keys.d = true;
 break;
 case 37: //left
 keys.l = true;
 break;
 case 39: //right
 keys.r = true;
 break;
 }
}
function keyUp(e:KeyboardEvent):void {
 switch (e.keyCode) {
 case 38: //up
 keys.u = false;
 break;
 case 40: //down
 keys.d = false;
 break;
 case 37: //left

https://riptutorial.com/ 16

 keys.l = false;
 break;
 case 39: //right
 keys.r = false;
 break;
 }
}

keys:Object stores 4's boolean variable per each arrow key, moving proccess must be done inside
the update (Loop) function of the game, so we must pass keyboard stats to it. lets implementing
Loop function.

// initialize game Loop function for updating game objects
addEventListener(Event.EXIT_FRAME, loop);

// speed of character movement
const speed:Number = 5;
// this function will be called on each frame, with same rate as your project fps
function loop(e:Event):void {
 if (keys.u) stage.getChildByName("character").y -= speed;
 else if (keys.d) stage.getChildByName("character").y += speed;
 if (keys.l) stage.getChildByName("character").x -= speed;
 else if (keys.r) stage.getChildByName("character").x += speed;
}

speed is a helper constant, defines velocity of character. above code presents a simple 8 direction
movement with this priority low: Up > Down Left > Right. so if up and down arrow are pressed in
same time, the character only moves to up (not freezing).

well Done!!! only one step remaining, animation, the most important part of this tutorial

what is really animation? a set of keyframes which contains atleast one frame
lets creating our keyframs Object, which contains name of keyframes
and also some data about starting and ending frame of this keyframe
Note, in isometric games, each keyframe contains 8 direction (can be reduced to 5 with use of
flipping)

var keyframs:Object = {
 idle: {up:[0,0], up_right:[1,1], right:[2,2], down_right:[3,3], down:[4,4]}, // [2,2]
means start frame is 2 and end frame is 2
 run: {up:[5,10], up_right:[11,16], right:[17,22], down_right:[23,28], down:[29,34]}
};

we should ignore remaining frames, this example only provides idle and run animation
for example the start frame of idle animation with direction right, is: <keyframs.idle.right[0]>
now lets implementing Animator function

var current_frame:uint;
function animate(keyframe:Array):void {
 // how it works
 // just called with a keyframe with direction (each frame),
 // if keyframe is what is already playing, its just moved to next frame and got updated

https://riptutorial.com/ 17

(or begning frame for loop)
 // other wise, just moved to begining frame of new keyframe
 if (current_frame >= keyframe[0] && current_frame <= keyframe[1]) { // check if in bound
 current_frame++;
 if (current_frame > keyframe[1]) // play back if reached
 current_frame = keyframe[0];
 } else {
 current_frame = keyframe[0]; // start new keyframe from begining
 }
 // moving Bitmap inside character MovieClip
 var character:MovieClip = stage.getChildByName("character") as MovieClip;
 var sprite_sheet:Bitmap = character.getChildByName("sprite_sheet") as Bitmap;
 sprite_sheet.x = -1 * current_frame * character.width;
}

read comments of above function, however main job of this function is moving sprite_sheet Bitmap
inside character MovieClip.

we know that every update should be done inside the Loop function, so we will invoke this function
from Loop with related keyframes. this is the updated Loop function :

// speed of character movement
const speed:Number = 8;
var last_keyStat:Object = {u:false, d:false, l:false, r:false}; // used to getting a backup of
previous keyboard stat for detecting correct idle direction
// this function will be called on each frame, with same rate as your project fps
function loop(e:Event):void {
 if (keys.u) stage.getChildByName("character").y -= speed;
 else if (keys.d) stage.getChildByName("character").y += speed;
 if (keys.l) stage.getChildByName("character").x -= speed;
 else if (keys.r) stage.getChildByName("character").x += speed;

 // animation detection
 if (keys.u && keys.l) { animate(keyframs.run.up_right); flip(true); }
 else if (keys.u && keys.r) { animate(keyframs.run.up_right); flip(false); }
 else if (keys.d && keys.l) { animate(keyframs.run.down_right); flip(true); }
 else if (keys.d && keys.r) { animate(keyframs.run.down_right); flip(false); }
 else if (keys.u) { animate(keyframs.run.up); flip(false); }
 else if (keys.d) { animate(keyframs.run.down); flip(false); }
 else if (keys.l) { animate(keyframs.run.right); flip(true); }
 else if (keys.r) { animate(keyframs.run.right); flip(false); }
 else {
 // if character dont move, so play idle animation
 // what is the best practice to detecting idle direction?
 // my suggestion is to sotring previous keyboard stats to determining which idle
direction is correct
 // do any better thing if possible (absolutely is possible)
 // i just simply copy it from above, and replaced (keys) with (last_keyStat) and (run)
with (idle)
 if (last_keyStat.u && last_keyStat.l) { animate(keyframs.idle.up_right); flip(true); }
 else if (last_keyStat.u && last_keyStat.r) { animate(keyframs.idle.up_right);
flip(false); }
 else if (last_keyStat.d && last_keyStat.l) { animate(keyframs.idle.down_right);
flip(true); }
 else if (last_keyStat.d && last_keyStat.r) { animate(keyframs.idle.down_right);
flip(false); }
 else if (last_keyStat.u) { animate(keyframs.idle.up); flip(false); }
 else if (last_keyStat.d) { animate(keyframs.idle.down); flip(false); }
 else if (last_keyStat.l) { animate(keyframs.idle.right); flip(true); }

https://riptutorial.com/ 18

 else if (last_keyStat.r) { animate(keyframs.idle.right); flip(false); }
 }
 // update last_keyStat backup
 last_keyStat.u = keys.u;
 last_keyStat.d = keys.d;
 last_keyStat.l = keys.l;
 last_keyStat.r = keys.r;
}

read comments, we just simply detecting a true keyframe through keyboard stats. then also do
same thing for detecting idle animation. for idle animations we have no key input to using for
detecting which direction character is on, so a simle helper variable could be handy to storing
previous state of keyboard (last_keyStat).

also there is a new function flip which is another helper function used for simulating missing
animations (left + up_left + down_left) also this funcion do some fixes which is commented below:

// usage of flip function is because of Movieclip registration point, its a fix
// as the registration point of MovieClip is not placed in center, when flipping animation
(for non existing directions inside spritesheet)
// character location changes with an unwanted value equal its width, so we have to prevent
this and push it back or forward during flip
function flip(left:Boolean):void {
 var character:MovieClip = stage.getChildByName("character") as MovieClip;
 if (left) {
 if (character.scaleX != -1) {
 character.scaleX = -1;
 character.x += character.width; // comment this line to see what happen without
this fix
 }
 } else {
 if (character.scaleX != 1) {
 character.scaleX = 1;
 character.x -= character.width; // comment this line to see what happen without
this fix
 }
 }
}

our work is ending here. special thanks for Editor's which making this tutorial more
undrestandable. also Here is a Live demo of this tutorial plus an external link of complete
code.

④ External References:

full code•
Live Demo•

Read Game Development Basics online: https://riptutorial.com/actionscript-3/topic/8237/game-
development-basics

https://riptutorial.com/ 19

https://gist.github.com/payamsbr/4575067be0f51bdd6a2a5211f4000f31
http://www.fastswf.com/I3apID8
https://riptutorial.com/actionscript-3/topic/8237/game-development-basics
https://riptutorial.com/actionscript-3/topic/8237/game-development-basics

Chapter 7: Loading External Files

Remarks

There are some cases where your application cannot manipulate the contents of assets loaded
from an external resource (e.g. transform images). I can't remember for certain what they are, but I
am fairly sure it's related to cross domain content loading.

Examples

Loading External Images/SWFs With The Loader

Create a Loader object:

var loader:Loader = new Loader(); //import

1.

Add listeners on the loader. Standard ones are complete and io/security errors

loader.contentLoaderInfo.addEventListener(Event.COMPLETE, loadComplete); //when the
loader is done loading, call this function
loader.contentLoaderInfo.addEventListener(IOErrorEvent.IO_ERROR, loadIOError); //if the
file isn't found
loader.contentLoaderInfo.addEventListener(SecurityErrorEvent.SECURITY_ERROR,
loadSecurityError); //if the file isn't allowed to be loaded

2.

Load the desired file:

 loader.load(new URLRequest("image.png"));

3.

Create Your Event Handlers:

 function loadComplete(e:Event):void {
 //load complete
 //the loader is actually a display object itself, so you can just add it to the
display list
 addChild(loader)
 //or addChild(loader.content) to add the root content of what was loaded;
 }

 function loadIOError(e:IOErrorEvent):void {
 //the file failed to load,
 }

 function loadSecurityError(e:SecurityError):void {
 //the file wasn't allowed to load
 }

4.

Loading with the Loader class is asynchronous. This means after you call loader.load
the application will continue running while the file loads. Your loader content isn't

https://riptutorial.com/ 20

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Loader.html

available until the loader dispatches the Event.COMPLETE event.

imports needed:

import flash.display.Loader;
import flash.events.Event;
import flash.events.IOErrorEvent;
import flash.events.SecurityErrorEvent;
import flash.net.URLRequest;

Loading a text file with FileStream (AIR runtime only)

A simple example on how to read a UTF text file synchronously.

import flash.filesystem.File;
import flash.filesystem.FileMode;
import flash.filesystem.FileStream;

//First, get a reference to the file you want to load
var myFile:File = File.documentsDirectory.resolvePath("lifestory.txt");

//Create a FileStream object
fileStream = new FileStream();

//open the file
fileStream.open(myFile, FileMode.READ);

//read the data and assign it to a local variable
var fileText:String = fileStream.readUTF();

//close the current filestream
fileStream.close();

Read Loading External Files online: https://riptutorial.com/actionscript-3/topic/1694/loading-
external-files

https://riptutorial.com/ 21

https://riptutorial.com/actionscript-3/topic/1694/loading-external-files
https://riptutorial.com/actionscript-3/topic/1694/loading-external-files

Chapter 8: Object Oriented Programming

Examples

"Overloaded" Constructor via static method

Constructor overloading is not available in As3.

In order to provide a different way to retrieve an instance of a class, a public static method can
be provided to serve as an alternative "constructor".

An example for that is flash.geom.Point, which represents a 2D point object. The coordinates to
define the point can be

cartesian in the regular constructor

public function Point(x:Number = 0, y:Number = 0)

example usage:

var point:Point = new Point(2, -.5);

•

polar in a static method

public static function polar(len:Number, angle:Number):Point

example usage:

var point:Point = Point.polar(12, .7 * Math.PI);

Because it is not an actual constructor, there's no new keyword.

•

set & get functions

To ensure encapsulation, member variables of a class should be private and only be accessible to
public via public get/set access methods. It is a common practice to prefix private fields with _

public class Person
{
 private var _name:String = "";

 public function get name():String{
 return _name;
 //or return some other value depending on the inner logic of the class
 }

 public function set name(value:String):void{

https://riptutorial.com/ 22

 //here you may check if the new value is valid
 //or maybe dispatch some update events or whatever else
 _name = value;
 }

Sometimes you don't even need to create a private field for a get/set pair.
For example in a control like a custom radio group you need to know which radio button is
selected, however outside the class you need just a way to get/set only the selected value:

public function get selectedValue():String {
 //just the data from the element
 return _selected ? _selected.data : null;
}
public function set selectedValue(value:String):void {
 //find the element with that data
 for (var i:int = 0; i < _elems.length; i++) {
 if (_elems[i].data == value) {
 _selected = _elems[i];//set it
 processRadio();//redraw
 return;
 }
 }
}

Packages

Packages are bundles of classes. Every class must be declared within a package using the
package statement. The package statement is followed by the name of your package, or followed by
nothing in the case of adding classes to the top-level package. Sub-packages are created using
dot (.) delimitation. The package statement is followed by a block which will contain a single class
definition. Examples:

package {
 // The top level package.
}

package world {
 // A package named world.
}

package world.monsters {
 // A package named monsters within a package named world.
}

Packages should correlate to the file structure of the classes relative to the source root. Assuming
you have a source root folder named src, the above could be correctly represented in the
filesystem as:

src
 TopLevelClass.as

 world
 ClassInWorldPackage.as
 AnotherClassInWorldPackage.as

https://riptutorial.com/ 23

 monsters
 Zombie.as

Method overriding

When you extend a class, you can override methods that the inherited class defines using the
override keyword:

public class Example {
 public function test():void {
 trace('It works!');
 }
}

public class AnotherExample extends Example {
 public override function test():void {
 trace('It still works!');
 }
}

Example:

var example:Example = new Example();
var another:AnotherExample = new AnotherExample();

example.test(); // Output: It works!
another.test(); // Output: It still works!

You can use the super keyword to reference the original method from the class being inherited. For
example, we could change the body of AnotherExample.test() to:

public override function test():void {
 super.test();
 trace('Extra content.');
}

Resulting in:

another.test(); // Output: It works!
 // Extra content.

Overriding class constructors is a little bit different. The override keyword is omitted and accessing
the inherited constructor is done simply with super():

public class AnotherClass extends Example {
 public function AnotherClass() {
 super(); // Call the constructor in the inherited class.
 }
}

You can also override get and set methods.

https://riptutorial.com/ 24

getter and setter

Getters and setters are methods that are behaved like properties. it means they have function
structure but when used, they are used same as properties:

Structure of getter functions:

they should have get keyword after function keyword and before function name, with no argument,
a return type specified and must return a value:

public function get myValue():Type{
 //anything here
 return _desiredValue;
}

Syntax:

to get the value from a getter,the syntax is the same as getting a value from a property(no parens
() are used).

trace(myValue);

Structure of setter functions:

they should have set keyword after function keyword and before function name, with one
argument, and no value return.

public function set myValue(value:Type):void{
 //anything here
 _desiredProperty=value;
}

Syntax:

to set the value of a setter,the syntax is the same as setting a value to a property(using equal sign
= then value).

myValue=desiredValue;

setting a getter and setter for one value:

Note: if you create only getter or only setter with a name, that property would be read-
only or set-only.

to make a property both readable and setable, should create a getter and a setter with:

1.the same name.
2.the same type(type of return value for the getter and type of input value(argument) for the setter,

Note: getters and setters should not have a name same as other properties or methods

https://riptutorial.com/ 25

.

Usage of getters and setters:

Using getters and setters rather than normal properties has many pros:

1.making read-only or set-only properties:
for example number of children in a display object. it can't be setable.

2.accessing private properties:
an example:

private var _private:Type=new Type();
//note that function name "private" is not same as variable name "_private"
public function get private():Type{
 return _private;
}

3.when some change is required after setting a value:
in this example, changing this property must be notified:

public static function set val:(input:Type):void{
 _desiredProperty=input;
 notifyValueChanged();
}

and many other usages

Read Object Oriented Programming online: https://riptutorial.com/actionscript-3/topic/2042/object-
oriented-programming

https://riptutorial.com/ 26

https://riptutorial.com/actionscript-3/topic/2042/object-oriented-programming
https://riptutorial.com/actionscript-3/topic/2042/object-oriented-programming

Chapter 9: Optimizing Performance

Examples

Vector based graphics

Vector based graphics are represented by a plethora of data that must be computed by the CPU
(vector points, arcs, colors, etc). Anything other than simple shapes with minimal points and
straight lines will consume vast amounts of CPU resource.

There is a "Cache as Bitmap" flag that can be turned on. This flag stores the result of drawing the
vector based DisplayObject for much faster redraws. The pitfall of this is that if there are any
transformations applied to the object, the entire thing needs to be redrawn and re-cached. This
can be slower than not turning it on at all if there are frame-by-frame transformations applied
(rotation, scaling, etc).

Generally, rendering graphics using bitmaps is far more performant than using vector graphics.
Libraries such as flixel take advantage of this for rendering sprites on a "canvas" without reducing
framerate.

Text

Rendering text consumes a lot of CPU. Fonts are rendered in a fashion similar to vector graphics
and contain many vector points for every character. Altering text frame-by-frame will degrade
performance. The "Cache as bitmap" flag is extremely useful if used correctly, meaning you must
avoid:

Altering the text frequently.•
Transforming the text field (rotating, scaling).•

Simple techniques like wrapping text updates in an if statement will make a major difference:

if (currentScore !== oldScore) {
 field.text = currentScore;
}

Text can be rendered using the anti-aliased renderer built into Flash, or using "device fonts". Using
"device fonts" makes text render much faster, although it makes text appear jagged (aliased).
Also, device fonts requires the font to be pre-installed by your end user, or the text may
"disappear" on the user's PC although it appears fine on yours.

field.embedFonts = false; // uses "device fonts"

Vector and for each vs arrays and for

Using the Vector.<T> type and the for each loop is more performant than a conventional array and

https://riptutorial.com/ 27

for loop:

Good:

var list:Vector.<Sprite> = new <Sprite>[];

for each(var sprite:Sprite in list) {
 sprite.x += 1;
}

Bad:

var list:Array = [];

for (var i:int = 0; i < list.length; i++) {
 var sprite:Sprite = list[i];

 sprite.x += 1;
}

Fast array item removal

If you do not require an array to be in any particular order, a little trick with pop() will afford you
enormous performance gains compared to splice().

When you splice() an array, the index of subsequent elements in that array needs to be reduced
by 1. This process can consume a large chunk of time if the array is large and the object you are
removing is nearer the beginning of that array.

If you do not care about the order of the elements in the array, you can instead replace the item
you want to remove with an item that you pop() from the end of the array. This way, the indexes of
all the other items in the array remains the same and the process does not degrade in
performance as the length of your array grows.

Example:

function slowRemove(list:Array, item:*):void {
 var index:int = list.indexOf(item);

 if (index >= 0) list.splice(index, 1);
}

function fastRemove(list:Array, item:*):void {
 var index:int = list.indexOf(item);

 if (index >= 0) {
 if (index === list.length - 1) list.pop();

 else {
 // Replace item to delete with last item.
 list[index] = list.pop();
 }
 }
}

https://riptutorial.com/ 28

Vectors instead of Arrays

Flash Player 10 introduced the Vector.<*> generic list type that was faster than the Array.
However, this is not entirely true. Only the following Vector types are faster than the Array
counterparts, due to the way they are implemented in Flash Player.

Vector.<int> - Vector of 32-bit integers•
Vector.<uint> - Vector of 32-bit unsigned integers•
Vector.<Double> - Vector of 64-bit floats•

In all other cases, using an Array will be more performant than using Vectors, for all operations
(creation, manipulation, etc). However, if you wish to "strongly type" your code then you can use
Vectors despite the slowdown. FlashDevelop has a syntax that enables code completion drop-
downs to work even for Arrays, by using /*ObjectType*/Array.

var wheels:Vector.<Wheel> // strongly typed, but slow

var wheels:/*Wheel*/Array // weakly typed, but faster

Reusing and pooling graphics

Creating and configuring Sprite and TextField objects at runtime can be costly if you are creating
hundreds of thousands of these on a single frame. Therefore a common trick is "pooling" these
objects for later reuse. Remember we are not just trying to optimize the creation time (new Sprite()
) but also the configuration (setting of default properties).

Lets say we were building a list component using hundreds of TextField objects. When you need
to create a new object, check if an existing object can be reused.

var pool:Array = [];

if (pool.length > 0){

 // reuse an existing TextField
 var label = pool.pop();

}else{
 // create a new TextField
 label = new TextField();

 // initialize your TextField over here
 label.setDefaultTextFormat(...);
 label.multiline = false;
 label.selectable = false;
}

// add the TextField into the holder so it appears on-screen
// you will need to layout it and set its "text" and other stuff seperately
holder.addChild(label);

Later, when you are destroying your component (or removing it from screen), remember to add
unused labels back into the pool.

https://riptutorial.com/ 29

foreach (var label in allLabels){
 label.parent.removeChild(label); // remove from parent Sprite
 pool.push(label); // add to pool
}

In most cases it is best to create a pool per usage instead of a global pool. Disadvantages to a
creating a global pool is you need to re-initialize the object everytime to retrieve it from the pool, to
negate the settings done by other functions. This is equally costly and pretty much negates the
performance boost of using pooling in the first place.

Read Optimizing Performance online: https://riptutorial.com/actionscript-3/topic/2215/optimizing-
performance

https://riptutorial.com/ 30

https://riptutorial.com/actionscript-3/topic/2215/optimizing-performance
https://riptutorial.com/actionscript-3/topic/2215/optimizing-performance

Chapter 10: Random Value Generation

Examples

Random number between 0 and 1

Math.random();

produces an evenly distributed random number between 0 (inclusive) and 1 (exclusive)

Example output:

0.22282187035307288•
0.3948539895936847•
0.9987191134132445•

Random number between min and max values

function randomMinMax(min:Number, max:Number):Number {
 return (min + (Math.random() * Math.abs(max - min)));
}

This function is called by passing a range of minimum and maximum values.

Example:

randomMinMax(1, 10);

Example outputs:

1.661770915146917•
2.5521070677787066•
9.436270965728909•

Random angle, in degrees

function randomAngle():Number {
 return (Math.random() * 360);
}

Example outputs:

31.554428357630968•
230.4078639484942•
312.7964010089636•

https://riptutorial.com/ 31

Random value from an array

Assuming we have an array myArray:

var value:* = myArray[int(Math.random() * myArray.length)];

Note we use int to cast the result of Math.random() to an int because values like 2.4539543 would
not be a valid array index.

Random point inside a circle

First define the circle radius and its center:

var radius:Number = 100;
var center:Point = new Point(35, 70);

Then generate a random angle in radians from the center:

var angle:Number = Math.random() * Math.PI * 2;

Then generate an effective radius of the returned point, so it'll be inside given radius. A simple
Math.random()*radius won't do, because with this distribution the produces points will end up in the
inner circle of half radius half of the time, but the square of that circle is a quarter of original. To
create a proper distribution, the function should be like this:

var rad:Number=(Math.random()+Math.random())*radius; // yes, two separate calls to random
if (rad>radius) { rad=2*radius-rad; }

This function produces a value that has its probability function linearly increasing from 0 at zero to
maximum at radius. It happens because a sum of random values has a probability density function
equal to convolution of all the random values' individual density functions. This is some extended
maths for an average grade person, but a kind GIF is presented to draw a graph of convolution
function of two uniformed distribution density functions explained as "box signals". The if operator
folds the resultant function over its maximum, leaving only a sawtooth-shaped graph.

This function is selected because the square of a circle strip located between radius=r and
radius=r+dr increases linearly with increasing r and very small constant dr so that dr*dr<<r.
Therefore, the amount of points generated close at the center is smaller than the amount of points
generated at the edge of the circle by the same margin as the radius of center area is smaller than
the radius of the whole circle. So overall, points are evenly distributed across the entire circle.

Now, get your random position:

var result:Point = new Point(
 center.x + Math.cos(angle) * rad,
 center.y + Math.sin(angle) * rad
);

https://riptutorial.com/ 32

https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif

To get a random point ON the circle (on the edge of the circle of a given radius), use radius
instead of rad.

PS: The example ended up being overloaded by explanation of maths.

Random angle, in radians

function randomAngleRadians():Number
{
 return Math.random() * Math.PI * 2;
}

Example outputs:

5.490068569213088•
3.1984284719180205•
4.581117863808207•

Determining the success of a "percent chance" operation

If you need to roll for a true or false in an "x% chance" situation, use:

function roll(chance:Number):Boolean {
 return Math.random() >= chance;
}

Used like:

var success:Boolean = roll(0.5); // True 50% of the time.
var again:Boolean = roll(0.25); // True 25% of the time.

Create a random color

To get any random color:

function randomColor():uint
{
 return Math.random() * 0xFFFFFF;
}

If you need more control over the red, green and blue channels:

var r:uint = Math.random() * 0xFF;
var g:uint = Math.random() * 0xFF;
var b:uint = Math.random() * 0xFF;

var color:uint = r << 16 | g << 8 | b;

Here you can specify your own range for r, g and b (this example is from 0-255).

https://riptutorial.com/ 33

Randomly loop through alphabet

var alphabet:Vector.<String> = new <String>["A", "B", "C", "D", "E", "F", "G",
 "H", "I", "J", "K", "L", "M", "N",
 "O", "P", "Q", "R", "S", "T", "U",
 "V", "W", "X", "Y", "Z"];

while (alphabet.length > 0)
{
 var letter:String = alphabet.splice(int(Math.random() *
 alphabet.length), 1)[0];
 trace(letter);
}

Example output:

V, M, F, E, D, U, S, L, X, K, Q, H, A, I, W, N, P, Y, J, C, T, O, R, G, B, Z

Randomize An Array

var alphabet:Array = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N",
"O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"];

for (var i:int=alphabet.length-1;i>0;i--) {
 var j:int=Math.floor(Math.random()*(i+1));
 var swap=alphabet[j];
 alphabet[j]=alphabet[i];
 alphabet[i]=swap;
}
trace(alphabet);

Example output

B,Z,D,R,U,N,O,M,I,L,C,J,P,H,W,S,Q,E,K,T,F,V,X,Y,G,A

This method is known as Fisher-Yates array shuffle.

Read Random Value Generation online: https://riptutorial.com/actionscript-3/topic/1441/random-
value-generation

https://riptutorial.com/ 34

https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
https://riptutorial.com/actionscript-3/topic/1441/random-value-generation
https://riptutorial.com/actionscript-3/topic/1441/random-value-generation

Chapter 11: Responsive Application Design

Examples

Basic Responsive Application

package
{
 import flash.display.Sprite;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import flash.events.Event;

 public class Main extends Sprite
 {
 //Document Class Main Constructor
 public function Main()
 {
 //Sometimes stage isn't available yet, so if not, wait for it before proceeding
 if (!stage) {
 addEventListener(Event.ADDED_TO_STAGE, stageReady);
 }else {
 stageReady();
 }
 }

 protected function stageReady(e:Event = null):void {
 //align the stage to the top left corner of the window/container
 stage.align = StageAlign.TOP_LEFT;
 //don't scale the content when the window resizes
 stage.scaleMode = StageScaleMode.NO_SCALE;

 //listen for when the window is resized
 stage.addEventListener(Event.RESIZE, stageResized);
 }

 protected function stageResized(e:Event):void {
 //use stage.stageWdith & stage.stageHeight to repostion and resize items
 }
 }
}

Performing lengthy processes and not get unresponsive application

There are situations when you need to calculate something really large in your Flash application,
while not interrupting the user's experience. For this, you need to devise your lengthy process as a
multi-step process with saved state between iterations. For example, you need to perform a
background update of a lot of internal objects, but if you desire to update them all at once with a
simple for each (var o in objects) { o.update(); }, Flash briefly (or not as briefly) becomes
unresponsive to the user. So, you need to perform one or several updates per frame.

private var processing:Boolean; // are we in the middle of processing
private var lastIndex:int; // where did we finish last time

https://riptutorial.com/ 35

var objects:Vector.<UpdatingObject>; // the total list of objects to update
function startProcess():Boolean {
 if (processing) return false; // already processing - please wait
 startProcessing=true;
 lastIndex=0;
 if (!hasEventListener(Event.ENTER_FRAME,iterate))
 addEventListener(Event.ENTER_FRAME,iterate); // enable iterating via listener
}
private function iterate(e:Event):void {
 if (!processing) return; // not processing - skip listener
 objects[lastIndex].update(); // perform a quantum of the big process
 lastIndex++; // advance in the big process
 if (lastIndex==objects.length) {
 processing=false; // finished, clear flag
 }
}

Advanced processing can include using getTimer() to check elapsed time and allowing another
iteration if time didn't run out, splitting update() into several functions if updating is too long,
displaying progress elsewhere, adjusting iteration process to adapt to changes of the list of objects
to process, and many more.

Read Responsive Application Design online: https://riptutorial.com/actionscript-
3/topic/1615/responsive-application-design

https://riptutorial.com/ 36

https://riptutorial.com/actionscript-3/topic/1615/responsive-application-design
https://riptutorial.com/actionscript-3/topic/1615/responsive-application-design

Chapter 12: Sending and Receiving Data
From Servers

Examples

Making a request from Flash

The URLRequest and URLLoader classes work together to make requests from Flash to external
resources. The URLRequest defines information about the request e.g. the request body and the
request method type, and the URLLoader references this to perform the actual request and provide a
means of being notified when a response is received from the resource.

Example:

var request:URLRequest = new URLRequest('http://stackoverflow.com');
var loader:URLLoader = new URLLoader();

loader.addEventListener(Event.COMPLETE, responseReceived);
loader.load(request);

function responseReceived(event:Event):void {
 trace(event.target.data); // or loader.data if you have reference to it in
 // this scope.
}

Adding variables to your request

The URLVariables class allows you to define data to be sent along with a URLRequest.

Example:

var variables:URLVariables = new URLVariables();

variables.prop = "hello";
variables.anotherProp = 10;

var request:URLRequest = new URLRequest('http://someservice.com');
request.data = variables;

You can either send the request via a URLLoader or open the request URL with the variables
attached in the querystring using navigateToURL.

Altering the HTTP method (GET, POST, PUT, etc)

The URLRequestMethod class contains constants for the various request types you can make. These
constants are to be allocated to URLRequest's method property:

var request:URLRequest = new URLRequest('http://someservice.com');

https://riptutorial.com/ 37

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/URLRequest.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/URLLoader.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/URLVariables.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/package.html#navigateToURL()
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/URLRequestMethod.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/URLRequest.html#method

request.method = URLRequestMethod.POST;

Note that only GET and POST are available outside the AIR runtime.

My response data is always null, what does "asynchronous" mean?

When Flash makes a request for data from an external source, that operation is asynchronous.
The most basic explanation of what this means is that the data loads "in the background" and
triggers the event handler you allocate to Event.COMPLETE when it is received. This can happen at
any point in the lifetime of your application.

Your data WILL NOT be available immediately after calling load() on your URLLoader. You must
attach an event listener for Event.COMPLETE and interact with the response there.

var request:URLRequest = new URLRequest('http://someservice.com');
var loader:URLLoader = new URLLoader();

loader.addEventListener(Event.COMPLETE, responseReceived);
loader.load(request);

trace(loader.data); // Will be null.

function responseReceived(event:Event):void {
 trace(loader.data); // Will be populated with the server response.
}

trace(loader.data); // Will still be null.

You cannot get around this with any little tricks like using setTimeout or similar:

setTimeout(function() {
 trace(loader.data); // Will be null if the data hasn't finished loading
 // after 1000ms (which you can't guarantee).
}, 1000);

Cross-domain requests

Flash will not load data from a domain other than the one your application is running on unless
that domain has an XML crossdomain policy either in the root of the domain (e.g.
http://somedomain.com/crossdomain.xml) or somewhere that you can target with
Security.loadPolicyFile(). The crossdomain.xml file is where you can specify domains that are
able to ask your server for data from a Flash application.

Example of the most permissive crossdomain.xml:

<?xml version="1.0" ?>
<cross-domain-policy>
 <allow-access-from domain="*"/>
 <allow-http-request-headers-from domain="*" headers="*"/>
</cross-domain-policy>

https://riptutorial.com/ 38

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/system/Security.html#loadPolicyFile()

Note this example should not be used in production environments, use a more
restrictive instance.

A more restrictive specific crossdomain.xml will look like this for example:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy SYSTEM "http://www.macromedia.com/xml/dtds/cross-domain-
policy.dtd">
<cross-domain-policy>
 <site-control permitted-cross-domain-policies="master-only" />

 <allow-access-from domain="*.domain.com" to-ports="80,843,8011" />
 <allow-access-from domain="123.123.123.123" to-ports="80,843,8011" />
</cross-domain-policy>

Resources:

The crossdomain policy file specification.•

Read Sending and Receiving Data From Servers online: https://riptutorial.com/actionscript-
3/topic/1893/sending-and-receiving-data-from-servers

https://riptutorial.com/ 39

http://www.adobe.com/devnet-docs/acrobatetk/tools/AppSec/CrossDomain_PolicyFile_Specification.pdf
https://riptutorial.com/actionscript-3/topic/1893/sending-and-receiving-data-from-servers
https://riptutorial.com/actionscript-3/topic/1893/sending-and-receiving-data-from-servers

Chapter 13: Singleton Pattern

Remarks

The singleton pattern has the goal to allow only one instance of a class to exists at any given time.

Preventing the direct instantiation via constructor is usually prevent by making it private. However,
this is not possible in As3 and thus other ways to control the number of instances have to be used.

Examples

Singleton enforcer via private instance

In this approach, the single is accessed via the static method:

Singleton.getInstance();

To enforce only one instance of the singleton, a private static variable retains the instance, while
any additional attempts to instantiate an instance are enforced within the constructor.

package {

public class Singleton {

 /** Singleton instance */
 private static var _instance: Singleton = new Singleton();

 /** Return singleton instance. */
 public static function getInstance():Singleton {
 return _instance;
 }

 /** Constructor as singleton enforcer. */
 public function Singleton() {
 if (_instance)
 throw new Error("Singleton is a singleton and can only be accessed through
Singleton.getInstance()");
 }

}
}

Read Singleton Pattern online: https://riptutorial.com/actionscript-3/topic/1437/singleton-pattern

https://riptutorial.com/ 40

https://riptutorial.com/actionscript-3/topic/1437/singleton-pattern

Chapter 14: Types

Examples

Type Casting

Type casting is done with either the as operator:

var chair:Chair = furniture as Chair;

Or by wrapping the value in Type():

var chair:Chair = Chair(furniture);

If the cast fails with as, the result of that cast is null. If the cast fails by wrapping in Type(), a
TypeError is thrown.

The Function type

Functions are of the type Function:

function example():void { }
trace(example is Function); // true

They can be referenced by other variables with the type Function:

var ref:Function = example;
ref(); // ref.call(), ref.apply(), etc.

And they can be passed in as arguments for parameters whose type is Function:

function test(callback:Function):void {
 callback();
}

test(function() {
 trace('It works!');
}); // Output: It works!

The Class type

References to class declarations are typed Class:

var spriteClass:Class = Sprite;

You can use variables typed Class to instantiate instances of that class:

https://riptutorial.com/ 41

var sprite:Sprite = new spriteClass();

This can be useful for passing an argument of type Class to a function that might create and
instance of the provided class:

function create(type:Class, x:int, y:int):* {
 var thing:* = new type();

 thing.x = x;
 thing.y = y;

 return thing;
}

var sprite:Sprite = create(Sprite, 100, 100);

Annotating types

You can tell the compiler the type of a value by annotating it with :Type:

var value:int = 10; // A property "value" of type "int".

Function parameters and return types can also be annotated:

// This function accepts two ints and returns an int.
function sum(a:int, b:int):int {
 return a + b;
}

Attempting to assign a value with a mismatching type will result in a TypeError:

var sprite:Sprite = 10; // 10 is not a Sprite.

Checking types

You can use the is operator to validate whether a value is of a certain type:

var sprite:Sprite = new Sprite();

trace(sprite is Sprite); // true
trace(sprite is DisplayObject); // true, Sprite inherits DisplayObject
trace(sprite is IBitmapDrawable); // true, DisplayObject implements IBitmapDrawable
trace(sprite is Number); // false
trace(sprite is Bitmap); // false, Bitmap inherits DisplayObject
 // but is not inherited by Sprite.

There is also an instanceof operator (deprecated) which works almost identical to is except that it
returns false when checking for implemented interfaces and int/uint types.

The as operator can also by used just like is operator. This is especially usefull if you use some
smart IDE like FlashDevelop which will give you a list of all possible properties of explicit object

https://riptutorial.com/ 42

type. Example:

for (var i:int = 0; i < a.length; i++){
 var d:DisplayObject = a[i] as DisplayObject;
 if (!d) continue;
 d.//get hints here
 stage.addChild(d);
}

To get the same effect with is you would write (sligthly less convenient):

for (var i:int = 0; i < a.length; i++){
 if (a[i] is DisplayObject != true) continue;
 var d:DisplayObject = a[i] as DisplayObject;
 stage.addChild(d);
}

Just keep in mind that when checking coditions with as operator, given value will be fist converted
to specified type and then result of that operation will be checked if not false, so be careful when
using it with possible false/NaN values:

if(false as Boolean) trace("This will not be executed");
if(false as Boolean != null) trace("But this will be");

Below table shows some basic values and types with result of type operators. Green cells will
evaluate to true, red to false and greay will cause compile/runtime errors.

https://riptutorial.com/ 43

Typed arrays

Unfortunately ActionScript 3 does not have a concept of generics, so it follows that there is no way
A simpler way to look at is is as though every class you define automatically had a companion cla

With that said, there are still huge advantages to the Vector.<T> type over a conventional array:

There is a performance increase when working with Vector.<T> vs arrays1.•

https://riptutorial.com/ 44

http://i.stack.imgur.com/k8hrE.png

You receive compile-type TypeErrors if you attempt to insert non-T values into the collection.•
IDEs provide useful type hinting information for the objects inside a Vector.<T> instance.•

Examples of creating a Vector.<T>:

var strings:Vector.<String> = new Vector.<String>(); // or
var numbers:Vector.<Number> = new <Number>[];

1 Vectors actually only provide notable performance improvements over arrays when working with
primitive types (String, int, uint, Number, etc).

Read Types online: https://riptutorial.com/actionscript-3/topic/2803/types

https://riptutorial.com/ 45

https://riptutorial.com/actionscript-3/topic/2803/types

Chapter 15: Understanding the "Error 1009:
Cannot access a property or method of a null
object reference"

Introduction

An error 1009 is a general error that arises when you are trying to receive a value out of a variable
or property that has a value of null. The examples provided expose various cases where this error
arises, together with some recommendations on how to mitigate the error.

Remarks

The dreaded and often asked "Error 1009: Cannot access a property or method of a null object
reference" is a signal that some of the data appears null, but is tried to be used as a populated
object. There are pretty many types of issues that can cause this behavior, and each one should
be tested against the code where the error arised.

Examples

Stage is unavailable

Sometimes developers write some code that desires access to stage, or Flash stage, to add
listeners. It can work for the first time, then all of a sudden fail to work and produce the error 1009.
The code in question can even be on the timeline, as it's the first initiative to add code there, and
many tutorials that still exist use timeline code layer to place the code.

public class Main extends MovieClip {
 public function Main() {
 stage.addEventListener(Event.ENTER_FRAME,update); // here

The reason this code doesn't work is simple: A display object is first instantiated, then added to the
display list, and while it's off the display list, stage is null.

Worse if the code like this:

stage.addEventListener(Event.ENTER_FRAME,update); // here

is placed on the timeline. It can even work for some time, while the Main object is slapped to stage
via GUI. Then, their SWF is loaded from another SWF, and all of a sudden the code breaks. This
happens because the Main's frames are constructed in a different way when the SWF is loaded
directly by the player and when the loading is processed asynchronously. The solution is to use
Event.ADDED_TO_STAGE listener, and put all code that addresses stage in it, and put the listener itself

https://riptutorial.com/ 46

into an AS file instead of the timeline.

Invalid typecast

function listener(e:Event):void {
 var m:MovieClip=e.target as MovieClip;
 m.x++;
}

If such a listener is attached to an object that's not a MovieClip descendant (for example, a Sprite),
the typecast will fail, and any subsequent operations with its result will throw the 1009 error.

Uninstantiated object

var a:Object;
trace(a); // null
trace(a.b); // Error 1009

Here, an object reference is declared, but is never assigned a value, be it with new or assignment
of a non-null value. Requesting its properties or method results in a 1009 error.

Multi-tiered expression

x=anObject.aProperty.anotherProperty.getSomething().data;

Here, any object before the dot can end up being null, and using methods that return complex
objects only increases the complication to debug the null error. Worst case if the method is prone
to extraneous failures, say retrieving data over the network.

Unprocessed function result

s=this.getChildByName("garbage");
if (s.parent==this) {...}

getChildByName() is one of the many functions that can return null if an error occurred when
processing its input. Therefore, if you are receiving an object from any function that can possibly
return null, check for null first. Here, a property is instantly queried without first checking if s is null,
this will generate the 1009 error.

Forgotten event listener

addEventListener(Event.ENTER_FRAME,moveChild);
function moveChild(e:Event):void {
 childMC.x++;
 if (childMC.x>1000) {
 gotoAndStop(2);
 }
}

https://riptutorial.com/ 47

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/DisplayObjectContainer.html#getChildByName%28%29

This example will move the childMC (added to Main at design time) but will instantly throw a 1009 as
soon as gotoAndStop() is invoked, if that childMC does not exist on frame 2. The primary reason for
this is that whenever a playhead passes a key frame (a frame which doesn't inherit the previous
frame's object set), either by using gotoAndStop(), gotoAndPlay() with destination frame being
separated from the current frame by a keyframe, or by normal play if the SWF is an animation, the
current frame's contents are destroyed and the new contents are created using the data stored
from GUI. So, if the new frame does not have a child named childMC, the property request will
return null and 1009 will be thrown.

The same principle applies if you add two event listeners, but remove only one, or add a listener to
one object, but try removing from another. The removeEventListener call won't warn you if the object
did not have a respective event listener attached, so read the code that adds and removes event
listeners carefully.

Note also: Using Timer objects, calling setInterval() and setTimeout() also creates event listeners,
and these should also be cleared properly.

Invalidated reference to a frame-based object

Sometimes gotoAndStop() is called in the middle of the code that refers some frame-based
properties. But, right after the frame is changed all links to properties that existed on the current
frame are invalidated, so any processing that involves them should be immediately terminated.

There are two general scenarios of such processing to occur: First, a loop doesn't end after
gotoAndStop() call, like here:

for each (bullet in bullets) {
 if (player.hitTestObject(bullet)) gotoAndStop("gameOver");
}

Here, a 1009 error means that the player MC was destroyed while processing gotoAndStop() call,
but the loop continues, and refers the now-null link to get hitTestObject() from. If the condition
would say if (bullet.hitTestObject(player)) instead, the error would be #2007 "Parameter
hitTestObject must not be null". The solution is to put a return statement right after calling
gotoAndStop().

Second case is multiple event listeners on the same event. Like this:

stage.addEventListener(Event.ENTER_FRAME,func1);
stage.addEventListener(Event.ENTER_FRAME,func2);
function func1(e:Event):void {
 if (condition()) {
 gotoAndStop(2);
 }
}

Here, if condition() is true, the first listener would perform gotoAndStop(), but the second listener
would still be executed, and if that one references objects on the frame, a 1009 error will be
thrown. The solution is to avoid multiple listeners on a single event, in a single object, it's better to

https://riptutorial.com/ 48

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/utils/package-detail.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/utils/package-detail.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/utils/package-detail.html

have one listener that handles all situations on that event and can properly terminate if a frame
change is needed.

Read Understanding the "Error 1009: Cannot access a property or method of a null object
reference" online: https://riptutorial.com/actionscript-3/topic/2098/understanding-the--error-1009--
cannot-access-a-property-or-method-of-a-null-object-reference-

https://riptutorial.com/ 49

https://riptutorial.com/actionscript-3/topic/2098/understanding-the--error-1009--cannot-access-a-property-or-method-of-a-null-object-reference-
https://riptutorial.com/actionscript-3/topic/2098/understanding-the--error-1009--cannot-access-a-property-or-method-of-a-null-object-reference-

Chapter 16: Using the Proxy Class

Introduction

First, I have to say. There is a reason this Proxy thing, despite its seeming usefulness, is not
highlighted enough on the Internet.

You cannot use it to watch a random property of a random class/instance. You are only allowed to
use this technique by subclassing the Proxy class.

Some operations do not expect exceptions so you need to completely understand what are you
doing and why are you doing it, and your code must be absolutely clean and error-less.

Examples

Implementation

The other thing about Proxy class, and why it is not so popular, is that it is rather difficult to fathom
a problem that exactly needs a dynamic class with a controllable access to its dynamic properties
and methods as a most appropriate solution. Every time I tried to use Proxy, I have ended up
resorting to something else, simpler and more controllable.

However, let us not be discouraged. I like the idea of addressing the last array elements by [-1], [-
2], etc indices in Python. Might be not a big feat, but it feels nice to use that rather than long and
clumsy someArray[someArray.length - 1]. Lets see what we can do about it.

package
{
 import flash.utils.Proxy;
 import flash.utils.flash_proxy;

 /**
 * Pyaray the Tentacled Whisperer of Impossible Secrets.
 */

 dynamic public class PyArray extends Proxy
 {
 private var data:Array;

 public function PyArray(...args:Array)
 {
 if (args.length == 0)
 {
 data = new Array;
 }
 else if ((args.length == 1) && (args[0] is Array))
 {
 data = args[0];
 }
 else
 {

https://riptutorial.com/ 50

 data = args;
 }
 }

 // This is a getter proxy to all the available Array
 // elements and properties and, sometimes, methods.
 override flash_proxy function getProperty(name:*):*
 {
 var anIndex:int = name;

 // Handle the int indices of the Array elements.
 if (anIndex == name)
 {
 // Handle the -1, -2, etc indexing.
 if (anIndex < 0) anIndex += data.length;

 if (anIndex >= data.length) return null;
 if (anIndex < 0) return null;

 return data[anIndex];
 }

 // Handle the existing public Array properties.
 if (data.hasOwnProperty(name)) return data[name];

 // Handle the Array methods addressed via ["member"] access.
 try
 {
 if (data[name] is Function) return data[name];
 else throw new Error;
 }
 catch (fail:Error)
 {
 trace("[PyArray] is unable to resolve property \"" + name + "\".");
 }

 return null;
 }

 // This will set either elements, or settable properties.
 override flash_proxy function setProperty(name:*, value:*):void
 {
 var anIndex:int = name;

 // Handle the int indices of the Array elements.
 if (anIndex == name)
 {
 // Handle the -1, -2, etc indexing.
 if (anIndex < 0) anIndex += data.length;

 // In case the element index is out of range,
 // the PyArray will extend its data Array.
 // if (anIndex >= data.length) return;
 if (anIndex < 0) return;

 data[anIndex] = value;

 return;
 }

 // Handle the existing (or dynamic) public Array properties.

https://riptutorial.com/ 51

 try
 {
 data[name] = value;
 }
 catch (fail:Error)
 {
 trace("[PyArray] is unable to set property \"" + name + "\".");
 }

 return;
 }

 // This allows to delete PyArray elements with "delete" operator.
 override flash_proxy function deleteProperty(name:*):Boolean
 {
 var anIndex:int = name;

 // Handle the int indices of the Array elements.
 if (anIndex == name)
 {
 // Handle the -1, -2, etc indexing.
 if (anIndex < 0) anIndex += data.length;

 if (anIndex >= data.length) return false;
 if (anIndex < 0) return false;

 data.splice(anIndex, 1);

 return true;
 }

 // Handle the dynamic public Array properties.
 try
 {
 delete data[name];
 return true;
 }
 catch (fail:Error)
 {
 trace("[PyArray] is unable to delete the \"" + name + "\" property.");
 }

 return false;
 }

 // This proxies any attempt to call a method on PyArray directly to data Array, thus
 // all Array methods (including "toString" method called through trace) are available.
 override flash_proxy function callProperty(name:*, ...rest):*
 {
 try
 {
 return (data[name] as Function).apply(data, rest);
 }
 catch (fail:Error)
 {
 trace("[PyArray] is unable to resolve method \"" + name + "\".");
 return null;
 }
 }

 // This allows PyArray to handle for..in and for..each..in loops.

https://riptutorial.com/ 52

 // The initial call starts with zero, so we need to do this +1 -1 magic
 // in order for enumeration to work correctly. I'm not happy with this either.
 override flash_proxy function nextNameIndex(index:int):int
 {
 if (index >= data.length) return 0;
 else return index + 1;
 }

 // This method handles the for..in loop.
 override flash_proxy function nextName(index:int):String
 {
 return (index - 1).toString();
 }

 // This method handles the for..each..in loop.
 override flash_proxy function nextValue(index:int):*
 {
 return data[index - 1];
 }
 }
}

Usage

package
{
 import flash.display.Sprite;

 /**
 * Daemonette of Slaanesh.
 *
 * It is minor female demon, vaguely human-like, but with crab-like pincers instead of
hands.
 * She wears a rather indecent skimpy leather bikini, moves quickly and casts deadly
spells!
 */

 public class Slaanesh extends Sprite
 {
 public function Slaanesh()
 {
 // Lets initialize the PyArray.
 var PA:PyArray = new PyArray(1,2,3,4,5,4,3,2,1,"Foo");

 // Basic check: get the last element.
 trace(PA[-1]);
 // output:
 // Foo

 // This will map to the 0-based third element.
 trace(PA[2.0]);
 // output:
 // 3

 // This should not get us anywhere.
 trace(PA[2.1]);
 // output:
 // [PyArray] is unable to resolve property "2.1".
 // null

https://riptutorial.com/ 53

 // This should return the length of the data Array.
 trace(PA["length"]);
 // output:
 // 10

 // This should return the length of the data Array.
 // This will not compile unless PyArray class is marked "dynamic".
 trace(PA.length);
 // output:
 // 10

 // This will map to indexOf method of data Array via getProperty method.
 trace(PA["indexOf"]);
 // output:
 // function Function() {}

 // This will map to indexOf method of data Array via getProperty method.
 // This will not compile unless PyArray class is marked "dynamic".
 trace(PA.indexOf);
 // output:
 // function Function() {}

 // This is a try to access a non-existent property.
 // This will not compile unless PyArray class is marked "dynamic".
 trace(PA.P124);
 // output:
 // [PyArray] is unable to resolve property "P124".
 // null

 // This is a try to call a non-existent method via callProperty method.
 // This will not compile unless PyArray class is marked "dynamic".
 trace(PA.P124());
 // output:
 // [PyArray] is unable to resolve method "P124".
 // null

 // Basic check: calling a proxied method via callProperty method.
 trace(PA.indexOf(5));
 // output:
 // 4

 // An attempt to replace an Array method with a random value.
 // This will not compile unless PyArray class is marked "dynamic".
 PA.indexOf = 123;
 // output:
 // [PyArray] is unable to set property "indexOf".

 // An attempt to assign a random value to a random property.
 // It will succees because Array, as a dynamic class, allows so.
 // This will not compile unless PyArray class is marked "dynamic".
 PA.indexOfz = 123;
 trace(PA.indexOfz);
 // output:
 // 123

 // An attempt to assign an Array element via negative indexing.
 // This trace works fine because toString method is also proxied.
 PA[-3] = "Hello";
 trace(PA);
 // output:

https://riptutorial.com/ 54

 // 1,2,3,4,5,4,3,Hello,1,Foo

 // An attempt to delete Array elements via normal and negative indexing.
 // This operation is mapped via deleteProperty method.
 delete PA[-4]; // deletes "3" before "Hello"
 delete PA[0]; // deletes "1" at the start.
 trace(PA);
 // output:
 // 2,3,4,5,4,Hello,1,Foo

 // An attempt to delete a non-dynamic method reference.
 // There's no error output, AS3 must be handling this internally.
 delete PA.indexOf;
 trace(PA.indexOf);
 // output:
 // function Function() {}

 // An attempt to set an element out of index range.
 PA[10] = "123abc";
 trace(PA);
 // output:
 // 2,3,4,5,4,Hello,1,Foo,,,123abc

 var aText:String;

 // This is a test of for..in loop, Array elements are
 // enumerated via nextName and nextNameIndex methods.
 aText = ""

 for (var aKey:String in PA)
 aText += aKey + ":" + PA[aKey] + " ";

 trace(aText);
 // output:
 // 0:2 1:3 2:4 3:5 4:4 5:Hello 6:1 7:Foo 8:undefined 9:undefined 10:123abc

 // This is a test of for..each..in loop, Array elements are
 // enumerated via nextValue and nextNameIndex methods.
 aText = "";

 for each (var aValue:* in PA)
 aText += aValue + " ";

 trace(aText);
 // output:
 // 2 3 4 5 4 Hello 1 Foo undefined undefined 123abc
 }
 }
}

Read Using the Proxy Class online: https://riptutorial.com/actionscript-3/topic/10631/using-the-
proxy-class

https://riptutorial.com/ 55

https://riptutorial.com/actionscript-3/topic/10631/using-the-proxy-class
https://riptutorial.com/actionscript-3/topic/10631/using-the-proxy-class

Chapter 17: Working with Date and Time

Examples

Ante meridiem (AM) or Post meridiem (PM) for 12-hour clock

function meridiem(d:Date):String {
 return (d.hours > 11) ? "pm" : "am";
}

Number of days in the specified month

/**
 * @param year Full year as int (ex: 2000).
 * @param month Month as int, zero-based (ex: 0=January, 11=December).
 */
function daysInMonth(year:int, month:int):int {
 return (new Date(year, ++month, 0)).date;
}

Whether the specified year is leap year

function isLeapYear(year:int):Boolean {
 return daysInMonth(year, 1) == 29;
}

Whether daylight savings time is currently observed

function isDaylightSavings(d:Date):Boolean {
 var months:uint = 12;
 var offset:uint = d.timezoneOffset;
 var offsetCheck:Number;

 while (months--) {
 offsetCheck = (new Date(d.getFullYear(), months, 1)).timezoneOffset;

 if (offsetCheck != offset)
 return (offsetCheck > offset);
 }

 return false;
}

Today's start date, at midnight

function today(date:Date = null):Date {
 if (date == null)
 date = new Date();

https://riptutorial.com/ 56

 return new Date(date.fullYear, date.month, date.date, 0, 0, 0, 0);
}

Read Working with Date and Time online: https://riptutorial.com/actionscript-3/topic/1926/working-
with-date-and-time

https://riptutorial.com/ 57

https://riptutorial.com/actionscript-3/topic/1926/working-with-date-and-time
https://riptutorial.com/actionscript-3/topic/1926/working-with-date-and-time

Chapter 18: Working With Display Objects

Syntax

addChild(child) - adds a new item to this object's child tree as the topmost element.1.
addChildAt(child, index) - adds a new item to this object's child tree at a specified position.
The bottom-most item has index of 0.

2.

getChildAt(index) - returns a child with given index.3.
getChildIndex(child) returns the index of a direct child of this object. Otherwise an exception
is thrown.

4.

removeChild(child) - removes the specified direct child from this object's child tree. Throws
exception if the supplied child's parent is not equal to this.

5.

removeChildAt(index) - removes a child selected by index instead of reference. Throws
exception if the child tree is not this wide.

6.

removeChildren(beginIndex:int = 0, endIndex:int = 0x7fffffff)) - added in Flash Player 11,
removes a subset of children by index range, or all children if called with no parameters.

7.

setChildIndex(child,index) - changes the child's index to the new value, shifting all children
in between to occupy the released spot.

8.

swapChildren(child1,child2) - swaps the two children's positions in display list, not affecting
positions of other children.

9.

swapChildrenAt(index1,index2) - swaps children located by their indexes.10.

Remarks

The display list is actually a tree, and is visualized with depth first algorithm. Any object listed
earlier will be displayed earlier, and might be obscured by objects listed later. All techniques that
can be used against a tree can be applied to working with display list.

Examples

Introduction To The Display List

In AS3, display assets are not visible until they are added to the Display List.

The AIR/Flash runtime has a hierarchical display structure (parent child relationship where
children can have their own children), with the stage being the top level parent.

To add something to the display list, you use addChild or addChildAt. Here is a basic example of
drawing a circle and adding it to the display list:

var myCircle:Shape = new Shape();

myCircle.graphics.beginFill(0xFF0000); //red
myCircle.graphics.drawCircle(25, 25, 50);
myCircle.graphics.endFill();

https://riptutorial.com/ 58

this.addChild(myCircle); //add the circle as a child of `this`

To see the object in the example above, this (the context of the code) also must be on the display
list, as well any parents it may have. In AS3, the stage is the top most parent.

Display objects can only have one parent. So if a child already has a parent, and you
add it to another object, it will be removed from it's previous parent.

Z-Order / Layering

Let's say you replicated the code from the previous example so you had 3 circles:

var redCircle:Shape = new Shape();
redCircle.graphics.beginFill(0xFF0000); //red
redCircle.graphics.drawCircle(50, 50, 50); //graphics.endFill is not required

var greenCircle:Shape = new Shape();
greenCircle.graphics.beginFill(0x00FF00); //green
greenCircle.graphics.drawCircle(75, 75, 50);

var blueCircle:Shape = new Shape();
blueCircle.graphics.beginFill(0x0000FF); //blue
blueCircle.graphics.drawCircle(100, 100, 50);

this.addChild(redCircle);
this.addChild(greenCircle);
this.addChild(blueCircle);

Since the addChild method adds the child on top of everything else in the same parent, you'll get
this result with the items layered in the same order you use addChild:

If you wanted a child layered different relative to it's siblings, you can use addChildAt. With
addChildAt, you pass in another parameter that indicates the index (z-order) the child should be at.
0 being the bottom most position/layer.

this.addChild(redCircle);
this.addChild(greenCircle);
this.addChildAt(blueCircle,0); //This will add the blue circle at the bottom

https://riptutorial.com/ 59

http://i.stack.imgur.com/VqKme.jpg

Now the blue circle is under it's siblings. If later on, you want to change the index of a child, you
can use the setChildIndex method (on the child's parent).

this.setChildIndex(redCircle, this.numChildren - 1); //since z-index is 0 based, the top most
position is amount of children less 1.

This will rearrange the red circle so it's above everything else. The code above produces the exact
same result as this.addChild(redCircle).

Removing Display Objects

To remove objects, you have the converse removeChild and removeChildAt methods as well as the
removeChildren method.

removeChild(redCircle); //this will take redCircle off the display list

removeChildAt(0); //this will take the bottom most object off the display list

removeChildren(); //this will clear all children from the display list

removeChildren(1); //this would remove all children except the bottom most

removeChildren(1,3); //this would remove the children at indexes 1, 2 & 3

Events

When a child is added to the display list, some events are fired on that child.

Event.ADDED•
Event.ADDED_TO_STAGE•

Conversely, there are also the remove events:

Event.REMOVED•
Event.REMOVED_FROM_STAGE•

Adobe Animate / Flash Professional

When dealing with FlashProfessional/Adobe Animate timelines, adding something to the timeline
handles the display list nuances automatically. They added and removed from the display list

https://riptutorial.com/ 60

http://i.stack.imgur.com/8GtkC.jpg

automatically by the timeline.

However, it's good to keep in mind that:

If you manipulate through code the parentage of a display object created by the
timeline (by using addChild/setChildIndex), that child will no longer be removed
automatically by the timeline and will need to be removed via code.

Layering

There can be situations when you decide that one set of display objects should always be above
another set of objects, for example, arrows over heads, explosions over something that just
exploded, etc. To perform this as simple as possible, you need to designate and create a set of
Sprites, arrange them in order from bottom to top, then just add all objects of "above" set to a
layer above the one used for objects of "below" set.

var monsters:Vector.<Monster>;
var bullets:Vector.<Bullet>; // desired: bullets strictly above monsters
var monsterLayer:Sprite=new Sprite();
var bulletLayer:Sprite=new Sprite();
addChild(monsterLayer);
addChild(bulletLayer);

Then, whenever you add a Monster to the display list, add it to monsterLayer, and whenever you add
a Bullet, add to bulletLayer to achieve the desired effect.

Remove all objects from the display list

If targeting Flash Player 11+, the built-in removeChildren method is the best way to remove all
children:

removeChildren(); //a start and end index can be passed

For legacy applications, the same can be accomplished with a loop:

while (numChildren > 0) {
 removeChildAt(0);
}

Transiting from frames to manual content switching

Early on a Flash developer uses frames, as they are natively available in Flash player, to host
various screens of their application (most often it's a game). Eventually they might stumble upon
an issue that something goes wrong exactly because they have used frames, and overlooked the
difficulties that arise from this, and seek ways to both retain their frame structure but also remove
the obstacle of using frames with its complications. The solution is to use Sprite descendant
classes, or exported frames as MovieClips with a single frame (to those that design in Adobe Flash
CS), and manually switch the contents with addChild() and removeChild().

https://riptutorial.com/ 61

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/DisplayObjectContainer.html#removeChildren%28%29

The manager class should have all of its child frame classes ready, and whenever a transition is
called, a function similar to this can be used:

var frames:Vector.<DisplayObject>; // this holds instances to ALL children
var currentFrame_alt:int; // current frame. Can't use the property
function changeFrame(frame:int):void {
 removeChild(frames[currentFrame_alt]);
 addChild(frames[frame]);
 currentFrame_alt=frame;
}

All children can both dispatch and listen to events with Event.ADDED_TO_STAGE used as an entry point
for whatever happens after gotoAndStop() targetting that frame, and any outgoing transitions can
be coded as events based on strings, which are being listened in Main class, which then performs
the transition.

frames[0].addEventListener("startGame",startGame); // assuming frame 0 is a "Play" button
function startGame(e:Event):void {
 changeFrame(1); // switch to frame 1 - will display frames[1]
}

Of course, the set of strings should be predefined, for example, intro screen could have two
buttons to start the game, "Start game" and "Start muted" for example, and the buttons should
dispatch different events, which will then be handled differently in manager class.

This pattern can go as deep as you need to. If any frame of the project contains a MovieClip with
multiple frames, it can also be decoupled into sprites with this method.

Read Working With Display Objects online: https://riptutorial.com/actionscript-
3/topic/1628/working-with-display-objects

https://riptutorial.com/ 62

https://riptutorial.com/actionscript-3/topic/1628/working-with-display-objects
https://riptutorial.com/actionscript-3/topic/1628/working-with-display-objects

Chapter 19: Working with Events

Remarks

Events are pieces of data that a program can create, exchange and react upon. The
asynchronous event flow is dispatched over display list by Flash engine as a reaction on external
events, such as mouse movements or another frame being displayed. Every other event flow and
all event processing is synchronous, so if a piece of code has generated an event, all reactions on
it are processed before the next line of code is executed, also if there are several listeners of an
event, all of them would have run before the next event could be processed.

There are several major events associated with Flash programming. Event.ENTER_FRAME is
generated before Flash draws another frame, it signals the entire display list to prepare to be
drawn, and can be used as a synchronous timer. MouseEvent.CLICK and its siblings can be used to
receive mouse input from the user, and TouchEvent.TOUCH_TAP is an analogue for touch screens.
KeyboardEvent.KEY_DOWN and KEY_UP provide means to receive user input from the keyboard,
however, their usage in mobile department is almost impossible due to devices having no physical
keyboard. Finally, Event.ADDED_TO_STAGE is dispatched once a display object receives access to
stage, and is included in the global display list that receives the entirety of events that can bubble
up and down the display list.

Most events in Flash are component specific. If you are designing your own component that will
use Flash events, use a flash.events.Event descendant class and its static String properties to
create your component's event set.

Examples

Custom events with event data

package
{
 import flash.events.Event;

 public class CustomEvent extends Event
 {
 public static const START:String = "START";
 public static const STOP:String = "STOP";

 public var data:*;

 public function CustomEvent(type:String, data:*,
 bubbles:Boolean=false, cancelable:Boolean=false)
 {
 super(type, bubbles, cancelable);

 if (data)
 this.data = data;
 }
 }

https://riptutorial.com/ 63

}

To dispatch a custom event:

var dataObject:Object = {name: "Example Data"};

dispatchEvent(new CustomEvent(CustomEvent.START, dataObject))

To listen for custom events:

addEventListener(CustomEvent.STOP, stopHandler);

function stopHandler(event:CustomEvent):void
{
 var dataObject:* = event.data;
}

Event handling off the display list

package {
import flash.events.EventDispatcher;

public class AbstractDispatcher extends EventDispatcher {

 public function AbstractDispatcher(target:IEventDispatcher = null) {
 super(target);
 }

}
}

To dispatch an event on an instance:

var dispatcher:AbstractDispatcher = new AbstractDispatcher();
dispatcher.dispatchEvent(new Event(Event.CHANGE));

To listen for events on an instance:

var dispatcher:AbstractDispatcher = new AbstractDispatcher();
dispatcher.addEventListener(Event.CHANGE, changeHandler);

function changeHandler(event:Event):void
{
}

Basic event handling

Flash dispatches Events for most of its objects. One of the most basic event is ENTER_FRAME, which is
dispatched (at the framerate of the SWF) on every display list object.

import flash.display.Sprite;

https://riptutorial.com/ 64

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/Event.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/Event.html#ENTER_FRAME

import flash.events.Event;

var s:Sprite = new Sprite();
s.addEventListener(Event.ENTER_FRAME, onEnterFrame);

function onEnterFrame(e:Event)
{
 trace("I am called on every frame !");
}

This function will be called asynchronously on every frame. This means the function that you
assign as the onEnterFrame event handler is processed before any other ActionScript code that is
attached to the affected frames.

Add your own events

You can create your own events and dispatch them, by extending the Event class.

import flash.events.Event;

class MyEvent extends Event
{
 var data: String;

 static public var MY_EVENT_TYPE = "my_event_my_event_code";

 public function MyEvent(type: String, data: String)
 {
 this.data = data;
 }

 override public function clone():Event
 {
 return new MyEvent(type, data);
 }
}

You can then dispatch it and listen to it, using an EventDispatcher. Note that most flash objects are
event dispatchers.

import flash.events.EventDispatcher;

var d = new EventDispatcher();
d.addEventListener(MyEvent.MY_EVENT_TYPE, onType);

function onType(e: MyEvent)
{
 trace("I have a string: "+e.data);
}

d.dispatchEvent(new MyEvent(MyEvent.MY_EVENT_TYPE, "Hello events!"));

Note that the clone method is required if you want to redispatch your event.

Simple Mouse Event Structure

https://riptutorial.com/ 65

Through the use of event types you can easily reduce code bloat that often occurs when defining
events for many objects on stage by filtering events in 1 function rather than defining many event
handling functions.

Imagine we have 10 objects on stage named object1, object2 ... object10

You could do the following:

var i: int = 1;
while(getChildByName("object"+i) != null){
 var obj = getChildByName("object"+i)
 obj.addEventListener(MouseEvent.CLICK, ObjectMouseEventHandler);
 obj.addEventListener(MouseEvent.MOUSE_OVER, ObjectMouseEventHandler);
 obj.addEventListener(MouseEvent.MOUSE_OUT, ObjectMouseEventHandler);
 obj.alpha = 0.75;
 i++;
}

function ObjectMouseEventHandler(evt:Event)
{
 if(evt.type == "click")
 {
 trace(evt.currentTarget + " has been clicked");
 }
 else
 {
 evt.currentTarget.alpha = evt.type == "mouseOver" ? 1 : 0.75;
 }
}

Benefits to this method include:

Not needing to specify the quantity of objects to apply events to.1.
Not needing to know specifically what object was interacted with yet still apply functionality.2.
Easily applying events in bulk.3.

Read Working with Events online: https://riptutorial.com/actionscript-3/topic/1925/working-with-
events

https://riptutorial.com/ 66

https://riptutorial.com/actionscript-3/topic/1925/working-with-events
https://riptutorial.com/actionscript-3/topic/1925/working-with-events

Chapter 20: Working with Geometry

Examples

Getting the angle between two points

Using vanilla mathematics:

var from:Point = new Point(100, 50);
var to:Point = new Point(80, 95);

var angle:Number = Math.atan2(to.y - from.y, to.x - from.x);

Using a new vector representing the difference between the first two:

var difference:Point = to.subtract(from);

var angle:Number = Math.atan2(difference.y, difference.x);

Note: atan2() returns radians, not degrees.

Getting the distance between two points

Using vanilla mathematics:

var from:Point = new Point(300, 10);
var to:Point = new Point(75, 40);

var a:Number = to.x - from.x;
var b:Number = to.y - from.y;

var distance:Number = Math.sqrt(a * a + b * b);

Using inbuilt functionality of Point:

var distance:Number = to.subtract(from).length; // or
var distance:Number = Point.distance(to, from);

Converting radians to degrees

var degrees:Number = radians * 180 / Math.PI;

Converting degrees to radians

var radians:Number = degrees / 180 * Math.PI;

https://riptutorial.com/ 67

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/geom/Point.html

The value of a circle in degrees and radians

A whole circle is 360 degrees or Math.PI * 2 radians.•
Half of those values follows to be 180 degrees or Math.PI radians.•
A quarter is then 90 degrees or Math.PI / 2 radians.•

To get a segment as a percentage of a whole circle in radians:

function getSegment(percent:Number):Number {
 return Math.PI * 2 * percent;
}

var tenth:Number = getSegment(0.1); // One tenth of a circle in radians.

Moving a point along an angle

Assuming you have the angle you'd like to move in and an object with x and y values you want to
move:

var position:Point = new Point(10, 10);
var angle:Number = 1.25;

You can move along the x axis with Math.cos:

position.x += Math.cos(angle);

And the y axis with Math.sin:

position.y += Math.sin(angle);

You can of course multiply the result of Math.cos and Math.sin by the distance you want to travel:

var distance:int = 20;

position.x += Math.cos(angle) * distance;
position.y += Math.sin(angle) * distance;

Note: The input angle must be in radians.

Determine if a point is inside a rectangle area

You can test whether a point is inside a rectangle using Rectangle.containsPoint():

var point:Point = new Point(5, 5);
var rectangle:Rectangle = new Rectangle(0, 0, 10, 10);

var contains:Boolean = rectangle.containsPoint(point); // true

Read Working with Geometry online: https://riptutorial.com/actionscript-3/topic/3201/working-with-

https://riptutorial.com/ 68

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/geom/Rectangle.html#containsPoint()
https://riptutorial.com/actionscript-3/topic/3201/working-with-geometry

geometry

https://riptutorial.com/ 69

https://riptutorial.com/actionscript-3/topic/3201/working-with-geometry

Chapter 21: Working with numerical values

Examples

Whether a number is an even value

function isEven(n:Number):Boolean {
 return ((n & 1) == 0);
}

Examples:

isEven(1); // false
isEven(2); // true

isEven(1.1); // false
isEven(1.2); // false
isEven(2.1); // true
isEven(2.2); // true

Whether a number is an odd value

function isOdd(n:Number):Boolean {
 return ((n & 1) == 1);
}

Examples:

isOdd(1); // true
isOdd(2); // false

isOdd(1.1); // true
isOdd(1.2); // true
isOdd(2.1); // false
isOdd(2.2); // false

Rounding to nearest X

To round a value to the nearest multiple of x:

function roundTo(value:Number, to:Number):Number {
 return Math.round(value / to) * to;
}

Example:

roundTo(8, 5); // 10
roundTo(17, 3); // 18

https://riptutorial.com/ 70

Roundoff errors of floating point numbers

/**
 * @param n Number to be rounded.
 * @param precision Decimal places.
 * @return Rounded Number
 */
function roundDecimal(n:Number, precision:Number):Number {
 var factor:int = Math.pow(10, precision);
 return (Math.round(n * factor) / factor);
}

Examples:

trace(0.9 - 1); // -0.09999999999999998

trace(roundDecimal(0.9 - 1, 1)); // -0.1
trace(roundDecimal(0.9 - 1, 2)); // -0.1

trace(roundDecimal(0.9 - 1.123, 1)); // -0.2
trace(roundDecimal(0.9 - 1.123, 2)); // -0.22
trace(roundDecimal(0.9 - 1.123, 3)); // -0.223

Displaying numbers with required precision

var a:Number=0.123456789;
trace(a); // 0.123456789
trace(a.toPrecision(4)); // 0.1235
trace(a.toFixed(4)); // 0.1235
trace(a.toExponential(4)); // 1.2345e-1
trace(a.toString(16)); // 0 - works for integer part only
var b:Number=12345678.9876543; // a bigger number to display rounding
trace(b); // 12345678.9876543
trace(b.toPrecision(4)); // 1.235e+7
trace(b.toFixed(4)); // 12345678.9877
trace(b.toExponential(4)); // 1.2345e+7
trace(b.toString(16)); // bc614e
b=1.0e+16;
trace(b.toString(36)); // 2qgpckvng1s

Read Working with numerical values online: https://riptutorial.com/actionscript-
3/topic/1899/working-with-numerical-values

https://riptutorial.com/ 71

https://riptutorial.com/actionscript-3/topic/1899/working-with-numerical-values
https://riptutorial.com/actionscript-3/topic/1899/working-with-numerical-values

Chapter 22: Working with Sound

Syntax

Sound.play(startTime:Number = 0, loops:int = 0, sndTransform:flash.media:SoundTransform
= null):SoundChannel // Plays a loaded sound, returns a SoundChannel

•

Examples

Stop Playing a Sound

import flash.net.URLRequest;
import flash.media.Sound;
import flash.media.SoundChannel;
import flash.events.Event;

var snd:Sound; = new Sound();
var sndChannel:SoundChannel
var sndTimer:Timer;

snd.addEventListener(Event.COMPLETE, soundLoaded);
snd.load(new URLRequest("soundFile.mp3")); //load after adding the complete event

function soundLoaded(e:Event):void
{
 sndChannel = snd.play();

 //Create a timer to wait 1 second
 sndTimer = new Timer(1000, 1);
 sndTimer.addEventListener(TimerEvent.TIMER, stopSound, false, 0, true);
 sndTimer.start();
}

function stopSound(e:Event = null):void {
 sndChannel.stop(); //Stop the sound
}

Infinite looping a sound

import flash.net.URLRequest;
import flash.media.Sound;
import flash.events.Event;

var req:URLRequest = new URLRequest("filename.mp3");
var snd:Sound = new Sound(req);

snd.addEventListener(Event.COMPLETE, function(e: Event)
{
 snd.play(0, int.MAX_VALUE); // There is no way to put "infinite"
}

You also don't need to wait for sound to load before calling play() function. So this will do the

https://riptutorial.com/ 72

same job:

snd = new Sound(new URLRequest("filename.mp3"));
snd.play(0, int.MAX_VALUE);

And if you really want to loop sound inifinite time for some reason (int.MAX_VALUE will loop 1s sound
for about 68 years, not counting the pause an mp3 causes...) you can write something like this:

var st:SoundChannel = snd.play();
st.addEventListener(Event.SOUND_COMPLETE, repeat);
function repeat(e:Event) {
 st.removeEventListener(Event.SOUND_COMPLETE, repeat);
 (st = snd.play()).addEventListener(Event.SOUND_COMPLETE, repeat);
}

play() function returns new instance of SoundChannel object each time it's called. We assgin it to
variable and listen for its SOUND_COMPLETE event. In the event callback, listener is removed
from current SoundChannel object and new one is created for new SoundChannel object.

Load and play an external sound

import flash.net.URLRequest;
import flash.media.Sound;
import flash.events.Event;

var req:URLRequest = new URLRequest("click.mp3");
var snd:Sound = new Sound(req);

snd.addEventListener(Event.COMPLETE, function(e: Event)
{
 snd.play();
}

Read Working with Sound online: https://riptutorial.com/actionscript-3/topic/2043/working-with-
sound

https://riptutorial.com/ 73

https://riptutorial.com/actionscript-3/topic/2043/working-with-sound
https://riptutorial.com/actionscript-3/topic/2043/working-with-sound

Chapter 23: Working with Timeline

Examples

Referencing the main timeline or document class from within other
MovieClips

In the timeline of any DisplayObject that is attached as a descendant of the display tree, you can
utilise the root property. This property points to the main timeline in the case of no custom
document class, or the document class if you do define one.

Because root is typed DisplayObject, the compiler will not allow you to access custom methods or
properties defined on the main timeline or within your document class as:

root.myCustomProperty = 10;
root.myCustomMethod();

To get around this, you can typecast root to your document class in the case where you have a
document class:

(root as MyDocumentClass).myCustomMethod();

Or MovieClip in the case of no document class:

(root as MovieClip).myCustomMethod();

The reason casting to MovieClip works here is because MovieClip is dynamic. This means that the
compiler allows runtime properties and method to be declared on it, preventing compile-time errors
when attempting to access properties or methods that are not explicitly defined on MovieClip. The
downside to this is that you lose all compile-time type safety. You are much better off declaring a
document class and casting to that.

Read Working with Timeline online: https://riptutorial.com/actionscript-3/topic/2459/working-with-
timeline

https://riptutorial.com/ 74

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/DisplayObject.html#root
http://help.adobe.com/en_US/ActionScript/3.0_ProgrammingAS3/WS5b3ccc516d4fbf351e63e3d118a9b90204-7f89.html
https://riptutorial.com/actionscript-3/topic/2459/working-with-timeline
https://riptutorial.com/actionscript-3/topic/2459/working-with-timeline

Chapter 24: Working with Timers

Examples

Countdown timer example

package {
import flash.events.TimerEvent;
import flash.utils.Timer;

public class CountdownTimer extends Timer {

 public var time:Number = 0;

 public function CountdownTimer(time:Number = Number.NEGATIVE_INFINITY, delay:Number =
1000) {
 super(delay, repeatCount);

 if (!isNaN(time))
 this.time = time;

 repeatCount = Math.ceil(time / delay);

 addEventListener(TimerEvent.TIMER, timerHandler);
 addEventListener(TimerEvent.TIMER_COMPLETE, timerCompleteHandler);
 }

 override public function start():void {
 super.start();
 }

 protected function timerHandler(event:TimerEvent):void {
 time -= delay;
 }

 protected function timerCompleteHandler(event:TimerEvent):void {
 }

 override public function stop():void {
 super.stop();
 }

 public function dispose():void {
 removeEventListener(TimerEvent.TIMER, timerHandler);
 removeEventListener(TimerEvent.TIMER_COMPLETE, timerCompleteHandler);
 }

}
}

This CountdownTimer extends Timer, and is used exactly the same, except that time counts down.

Example usage:

var timer:CountdownTimer = new CountdownTimer(5000);

https://riptutorial.com/ 75

timer.addEventListener(TimerEvent.TIMER, timerHandler);
timer.addEventListener(TimerEvent.TIMER_COMPLETE, completeHandler);
timer.start();

function timerHandler(event:TimerEvent):void {
 trace("Time remaining: " + event.target.time);
}

function completeHandler(event:TimerEvent):void {
 trace("Timer complete");
}

Above example would output:

[trace] Time remaining: 4000
[trace] Time remaining: 3000
[trace] Time remaining: 2000
[trace] Time remaining: 1000
[trace] Time remaining: 0
[trace] Timer complete

Intervals and timeouts

import flash.utils.*;
var intervalId:uint=setInterval(schroedingerCat,1000);
// execute a function once per second and gather interval ID
trace("Cat's been closed in the box.");
function schroedingerCat():void {
 if (Math.random()<0.04) {
 clearInterval(intervalId); // stop repeating by ID
 trace("Cat's dead.");
 return;
 }
 trace("Cat's still alive...");
}

var bombId:uint;
function plantBomb(seconds:Number):uint {
 trace("The bomb has been planted, and will blow in "+seconds.toFixed(3)+" seconds!");
 var id:uint=setTimeout(boom,seconds*1000); // parameter is in milliseconds
 return id;
}
function defuseBomb(id:uint):void {
 clearTimeout(id);
 trace("Bomb with id",id,"defused!");
}
function boom():void {
 trace("BOOM!");
}

setInterval() is used to perform repeated tasks asynchronously as specified intervals. Internal
Timer object is used, the returned value of type uint is its internal ID, by which you can access and
stop the repeating by calling clearInterval(). setTimeout() and clearTimeout() work similarly, but
the call to supplied function is done only once. You can supply additional arguments to both set
functions, these will be passed to the function in order. The number of arguments and their type is
not checked at compile time, so should you supply a weird combination of arguments, or a

https://riptutorial.com/ 76

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/utils/package.html#setInterval%28%29

function that requires them and receives none, an error "Error #1063: Argument count mismatch"
is raised.

You can perform both activities of setInterval and setTimeout with regular Timer objects, by either
using 0 or 1 for repeatCount property, 0 for indefinite repeats, 1 for one.

Random timer example

package {
 import flash.events.TimerEvent;
 import flash.events.TimerEvent;
 import flash.utils.Timer;

 public class RandomTimer extends Timer {

 public var minimumDelay:Number;
 public var maximumDelay:Number;
 private var _count:uint = 0;
 private var _repeatCount:int = 0;

 public function RandomTimer(min:Number, max:Number, repeatCount:int = 0) {
 super(delay, repeatCount);

 minimumDelay = min;
 maximumDelay = max;
 _repeatCount = repeatCount;
 }

 override public function start():void {
 delay = nextDelay();
 addEventListener(TimerEvent.TIMER, timerHandler);
 super.start();
 }

 private function nextDelay():Number {
 return (minimumDelay + (Math.random() * (maximumDelay - minimumDelay)));
 }

 override public function stop():void {
 removeEventListener(TimerEvent.TIMER, timerHandler);
 super.stop();
 }

 protected function timerHandler(event:TimerEvent):void {
 _count++;
 if ((_repeatCount > 0) && (_count >= _repeatCount)) {
 stop();
 dispatchEvent(new TimerEvent(TimerEvent.TIMER_COMPLETE));
 }
 delay = nextDelay();
 }

 override public function reset():void {
 _count = 0;
 super.reset();
 }
 }
}

https://riptutorial.com/ 77

This RandomTimer extends Timer, and is used exactly the same, except that it dispatches at random
intervals.

Example usage, dispatching randomly between 1 and 5-seconds:

var t:int = getTimer();

var timer:RandomTimer = new RandomTimer(1000, 5000);
timer.addEventListener(TimerEvent.TIMER, timerHandler);
timer.start();

function timerHandler(event:TimerEvent):void {
 trace("Time since last dispatch: " + (getTimer() - t));
 t = getTimer();
}

Above example would output:

[trace] Time since last dispatch: 1374
[trace] Time since last dispatch: 2459
[trace] Time since last dispatch: 3582
[trace] Time since last dispatch: 1335
[trace] Time since last dispatch: 4249

Read Working with Timers online: https://riptutorial.com/actionscript-3/topic/2798/working-with-
timers

https://riptutorial.com/ 78

https://riptutorial.com/actionscript-3/topic/2798/working-with-timers
https://riptutorial.com/actionscript-3/topic/2798/working-with-timers

Chapter 25: Working with Video

Examples

Load and play external video file

reference : NetConnection , NetStream , Video

related topics : Working with Sound

Basic example of playing an external video file (FLV, MP4, F4V). Code will also play M4A audio
files.

var nc:NetConnection = new NetConnection();
nc.connect(null);

var ns:NetStream = new NetStream(nc);

var myVideo:Video = new Video();
addChild(myVideo);

myVideo.attachNetStream(ns);

ns.play("http://www.yourwebsite.com/somefile.mp4");

Notice the code used a nc.connect.null? This is because, in this case, there is no need to create a
two-way peer to peer connection (eg: as expected in a video chat app) since we are playing a
stored file.

By setting a nc.connect.null it is required to provide a link to a file that is either on a web server or
one that is local (same location/folder) to the running SWF.

For a web file use : ns.play("http://www.yourwebsite.com/somefile.mp4");•
For a local file use : ns.play("somefile.mp4");•

With NetStatusEvent

package {
 import flash.events.NetStatusEvent;
 import flash.net.NetStream;
 import flash.net.NetConnection;
 import flash.events.Event;
 import flash.media.Video;
 import flash.display.Sprite;
 public class VideoWithNetStatus extends Sprite {
 private var video:Video = new Video();
 private var nc:NetConnection;

https://riptutorial.com/ 79

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/NetConnection.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/NetStream.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/media/Video.html
http://www.riptutorial.com/actionscript-3/topic/2043/working-with-sound
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/NetConnection.html#connect()
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/NetConnection.html#connect()

 private var ns:NetStream;

 public function VideoWithNetStatus() {
 nc = new NetConnection();
 nc.addEventListener(NetStatusEvent.NET_STATUS, onStatus);
 nc.connect(null);//or media server url
 }

 private function onStatus(e:NetStatusEvent):void{
 switch(e.info.code){
 case 'NetConnection.Connect.Success':
 connectStream();
 break;
 default:
 trace(e.info.code);//to see any unhadled events
 }
 }
 private function connectStream():void{
 ns = new NetStream(nc);
 ns.addEventListener(NetStatusEvent.NET_STATUS, onStatus);
 addChild(video);
 video.attachNetStream(ns);
 ns.play('url/to/video.flv');
 }
 }
}

Read Working with Video online: https://riptutorial.com/actionscript-3/topic/2406/working-with-
video

https://riptutorial.com/ 80

https://riptutorial.com/actionscript-3/topic/2406/working-with-video
https://riptutorial.com/actionscript-3/topic/2406/working-with-video

Credits

S.
No

Chapters Contributors

1
Getting started with
ActionScript 3

BadFeelingAboutThis, Community, Jason Sturges, joshtynjala,
Kit Grose, null, Programmer Dancuk, Vesper

2 Binary data Paweł Audionysos

3
Bitmap Manipulation
and Filtering

payam_sbr, VC.One

4 Display List Lifecycle Jason Sturges, mnoronha

5 Drawing Bitmaps BadFeelingAboutThis, Marty, Vesper, www0z0k

6
Game Development
Basics

payam_sbr

7
Loading External
Files

BadFeelingAboutThis, Marty

8
Object Oriented
Programming

HITMAN, Marty, null, www0z0k

9
Optimizing
Performance

Community, Marty

10
Random Value
Generation

alebianco, BadFeelingAboutThis, HITMAN, Jason Sturges,
Marty, mnoronha, null, Vesper, xims

11
Responsive
Application Design

BadFeelingAboutThis, null, Vesper

12
Sending and
Receiving Data From
Servers

Marty, null, xims

13 Singleton Pattern commovere, Jason Sturges, mnoronha, null

14 Types BadFeelingAboutThis, joshtynjala, Marty, Paweł Audionysos

15

Understanding the
"Error 1009: Cannot
access a property or
method of a null
object reference"

Vesper, www0z0k

https://riptutorial.com/ 81

https://riptutorial.com/contributor/1457439/badfeelingaboutthis
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/798448/jason-sturges
https://riptutorial.com/contributor/10768/joshtynjala
https://riptutorial.com/contributor/181495/kit-grose
https://riptutorial.com/contributor/4347580/null
https://riptutorial.com/contributor/5928411/programmer-dancuk
https://riptutorial.com/contributor/1627055/vesper
https://riptutorial.com/contributor/2511919/pawel-audionysos
https://riptutorial.com/contributor/2511919/pawel-audionysos
https://riptutorial.com/contributor/5862335/payam-sbr
https://riptutorial.com/contributor/2057709/vc-one
https://riptutorial.com/contributor/798448/jason-sturges
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/1457439/badfeelingaboutthis
https://riptutorial.com/contributor/699632/marty
https://riptutorial.com/contributor/1627055/vesper
https://riptutorial.com/contributor/481281/www0z0k
https://riptutorial.com/contributor/5862335/payam-sbr
https://riptutorial.com/contributor/1457439/badfeelingaboutthis
https://riptutorial.com/contributor/699632/marty
https://riptutorial.com/contributor/4062979/hitman
https://riptutorial.com/contributor/699632/marty
https://riptutorial.com/contributor/4347580/null
https://riptutorial.com/contributor/481281/www0z0k
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/699632/marty
https://riptutorial.com/contributor/645252/alebianco
https://riptutorial.com/contributor/1457439/badfeelingaboutthis
https://riptutorial.com/contributor/4062979/hitman
https://riptutorial.com/contributor/798448/jason-sturges
https://riptutorial.com/contributor/699632/marty
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/4347580/null
https://riptutorial.com/contributor/1627055/vesper
https://riptutorial.com/contributor/1539384/xims
https://riptutorial.com/contributor/1457439/badfeelingaboutthis
https://riptutorial.com/contributor/4347580/null
https://riptutorial.com/contributor/1627055/vesper
https://riptutorial.com/contributor/699632/marty
https://riptutorial.com/contributor/4347580/null
https://riptutorial.com/contributor/1539384/xims
https://riptutorial.com/contributor/2447197/commovere
https://riptutorial.com/contributor/798448/jason-sturges
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/4347580/null
https://riptutorial.com/contributor/1457439/badfeelingaboutthis
https://riptutorial.com/contributor/10768/joshtynjala
https://riptutorial.com/contributor/699632/marty
https://riptutorial.com/contributor/2511919/pawel-audionysos
https://riptutorial.com/contributor/2511919/pawel-audionysos
https://riptutorial.com/contributor/1627055/vesper
https://riptutorial.com/contributor/481281/www0z0k

16
Using the Proxy
Class

Organis

17
Working with Date
and Time

Jason Sturges, mnoronha

18
Working With
Display Objects

BadFeelingAboutThis, Jason Sturges, Vesper

19 Working with Events blue112, Jason Sturges, mnoronha, null, VC.One, Vesper, Zze

20
Working with
Geometry

Marty, mnoronha, www0z0k

21
Working with
numerical values

Jason Sturges, Jonny Henly, Marty, Vesper

22 Working with Sound BadFeelingAboutThis, blue112, Paweł Audionysos, VC.One

23
Working with
Timeline

Marty

24 Working with Timers Jason Sturges, mnoronha, Vesper, www0z0k

25 Working with Video VC.One, www0z0k

https://riptutorial.com/ 82

https://riptutorial.com/contributor/4687633/organis
https://riptutorial.com/contributor/798448/jason-sturges
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/1457439/badfeelingaboutthis
https://riptutorial.com/contributor/798448/jason-sturges
https://riptutorial.com/contributor/1627055/vesper
https://riptutorial.com/contributor/440564/blue112
https://riptutorial.com/contributor/798448/jason-sturges
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/4347580/null
https://riptutorial.com/contributor/2057709/vc-one
https://riptutorial.com/contributor/1627055/vesper
https://riptutorial.com/contributor/3509591/zze
https://riptutorial.com/contributor/699632/marty
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/481281/www0z0k
https://riptutorial.com/contributor/798448/jason-sturges
https://riptutorial.com/contributor/1241334/jonny-henly
https://riptutorial.com/contributor/699632/marty
https://riptutorial.com/contributor/1627055/vesper
https://riptutorial.com/contributor/1457439/badfeelingaboutthis
https://riptutorial.com/contributor/440564/blue112
https://riptutorial.com/contributor/2511919/pawel-audionysos
https://riptutorial.com/contributor/2511919/pawel-audionysos
https://riptutorial.com/contributor/2057709/vc-one
https://riptutorial.com/contributor/699632/marty
https://riptutorial.com/contributor/798448/jason-sturges
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/1627055/vesper
https://riptutorial.com/contributor/481281/www0z0k
https://riptutorial.com/contributor/2057709/vc-one
https://riptutorial.com/contributor/481281/www0z0k

	About
	Chapter 1: Getting started with ActionScript 3
	Remarks
	Versions

	There is a single version of Actionscript 3, named "ActionScript 3.0"
	Examples
	Installation Overview
	Hello World
	Flash Develop Installation
	Apache Flex Installation
	Building Flex or Flash projects at the command line using mxmlc
	A displayed "Hello World" example

	Chapter 2: Binary data
	Examples
	Reading form ByteArray throught IDataInput interface.

	Chapter 3: Bitmap Manipulation and Filtering
	Introduction
	Examples
	Threshold (monochrome) effect

	required:

	Chapter 4: Display List Lifecycle
	Remarks
	Examples
	Added and removed from stage lifecycle

	Chapter 5: Drawing Bitmaps
	Examples
	Draw a display object into bitmap data
	Draw a display object with any coordinates of registration point
	Animating a sprite sheet

	Chapter 6: Game Development Basics
	Introduction
	Examples
	isometric character animating + movement

	① the concepts used in this Example :
	② Resources : (no permission for using this resources for a commercial purposes)
	③ Code and Comments :
	④ External References:

	Chapter 7: Loading External Files
	Remarks
	Examples
	Loading External Images/SWFs With The Loader
	Loading a text file with FileStream (AIR runtime only)

	Chapter 8: Object Oriented Programming
	Examples
	"Overloaded" Constructor via static method
	set & get functions
	Packages
	Method overriding
	getter and setter

	Chapter 9: Optimizing Performance
	Examples
	Vector based graphics
	Text
	Vector and for each vs arrays and for
	Fast array item removal
	Vectors instead of Arrays
	Reusing and pooling graphics

	Chapter 10: Random Value Generation
	Examples
	Random number between 0 and 1
	Random number between min and max values
	Random angle, in degrees
	Random value from an array
	Random point inside a circle
	Random angle, in radians
	Determining the success of a "percent chance" operation
	Create a random color
	Randomly loop through alphabet
	Randomize An Array

	Chapter 11: Responsive Application Design
	Examples
	Basic Responsive Application
	Performing lengthy processes and not get unresponsive application

	Chapter 12: Sending and Receiving Data From Servers
	Examples
	Making a request from Flash
	Adding variables to your request
	Altering the HTTP method (GET, POST, PUT, etc)
	My response data is always null, what does "asynchronous" mean?
	Cross-domain requests

	Chapter 13: Singleton Pattern
	Remarks
	Examples
	Singleton enforcer via private instance

	Chapter 14: Types
	Examples
	Type Casting
	The Function type
	The Class type
	Annotating types
	Checking types
	Typed arrays

	Chapter 15: Understanding the "Error 1009: Cannot access a property or method of a null object reference"
	Introduction
	Remarks
	Examples
	Stage is unavailable
	Invalid typecast
	Uninstantiated object
	Multi-tiered expression
	Unprocessed function result
	Forgotten event listener
	Invalidated reference to a frame-based object

	Chapter 16: Using the Proxy Class
	Introduction
	Examples
	Implementation
	Usage

	Chapter 17: Working with Date and Time
	Examples
	Ante meridiem (AM) or Post meridiem (PM) for 12-hour clock
	Number of days in the specified month
	Whether the specified year is leap year
	Whether daylight savings time is currently observed
	Today's start date, at midnight

	Chapter 18: Working With Display Objects
	Syntax
	Remarks
	Examples
	Introduction To The Display List

	Z-Order / Layering
	Removing Display Objects
	Events
	Adobe Animate / Flash Professional
	Layering
	Remove all objects from the display list
	Transiting from frames to manual content switching

	Chapter 19: Working with Events
	Remarks
	Examples
	Custom events with event data
	Event handling off the display list
	Basic event handling
	Add your own events
	Simple Mouse Event Structure

	Chapter 20: Working with Geometry
	Examples
	Getting the angle between two points
	Getting the distance between two points
	Converting radians to degrees
	Converting degrees to radians
	The value of a circle in degrees and radians
	Moving a point along an angle
	Determine if a point is inside a rectangle area

	Chapter 21: Working with numerical values
	Examples
	Whether a number is an even value
	Whether a number is an odd value
	Rounding to nearest X
	Roundoff errors of floating point numbers
	Displaying numbers with required precision

	Chapter 22: Working with Sound
	Syntax
	Examples
	Stop Playing a Sound
	Infinite looping a sound
	Load and play an external sound

	Chapter 23: Working with Timeline
	Examples
	Referencing the main timeline or document class from within other MovieClips

	Chapter 24: Working with Timers
	Examples
	Countdown timer example
	Intervals and timeouts
	Random timer example

	Chapter 25: Working with Video
	Examples
	Load and play external video file
	With NetStatusEvent

	Credits

