
acumatica

#acumatica



Table of Contents

About 1

Chapter 1: Getting started with acumatica 2

Remarks 2

Examples 2

Installation or Setup 2

Chapter 2: Acumatica BQL Reference 3

Examples 3

BQL Parse and Verify 3

Parse 3

Verify 3

Conclusion 4

Chapter 3: Acumatica Platform Attributes Reference 5

Examples 5

PXFormula Attribute 5

General Description 5

Modes of Usage 5

PXFormulaAttribute Properties and Constructor Parameters 6

Usage 6

Order of Fields 7

Formula Context and Its Modifiers 7

Current<TRecord.field> and Current2<TRecord.field> 8

Parent<TParent.field> 8

IsTableEmpty<TRecord> 9

Selector<KeyField, ForeignOperand> 9

Fetches a PXSelectorAttribute defined on the foreign key field (KeyField) of the current D 9

Fetches the foreign data record currently referenced by the selector. 9

Calculates and returns an expression on that data record as defined by ForeignOperand. 9

Using Formulas on Unbound Fields 10

List of Built-In Common Formulas 10



Direct and Mediated Circular References in Formulas 10

Control Flow in Conditional Formulas 10

Using Multiple Formulas on One Field 10

PXRestrictor Attribute 10

Introduction 10

Details 11

Options 11

Overriding Inherited Restrictors 12

Global Caching 12

Recommendations for Using 12

Use Restrictor Conditions Only 12

Chapter 4: Adding Attribute Support to out-of-box Sales Order Entity 14

Introduction 14

Remarks 14

Examples 14

This article provides how-to guide to add Acumatica ERP Attribute support to out-of-box Sa 14

Chapter 5: Changing caption dynamically using readonly DAC fields. 17

Introduction 17

Examples 17

How-To 17

Chapter 6: Changing Size of Selector Drop-Down Window 20

Introduction 20

Examples 20

Changing default size ranges for selector drop-down window 20

To expand drop-down window width of the Customer selector 20

Chapter 7: Conditionally Hiding Tabs 23

Introduction 23

Examples 23

VisibleExp Property of the PXTab Control in Aspx 23

To hide Activities tab for Leads with New status 23



AllowSelect Property on Data Views 24

To hide Cross-Reference tab for Stock Items that can not be sold 26

To hide Attributes tab for inactive Stock Items 28

Chapter 8: Creating Date and Time Fields in Acumatica 32

Introduction 32

Examples 32

The PX(DB)DateAndTime Attribute 32

The PXDBTime Attribute 33

The PX(DB)DateAttribute Attribute 34

The PXDBTimeSpan Attribute 34

The PXTimeList Attribute 35

Chapter 9: Customization Mechanisms 37

Examples 37

Using CacheAttached to Override DAC Attributes in the Graph 37

Replacing All Attributes 37

Appending a New Attribute to the DAC Field 37

Overriding a Single Property of an Attribute 38

Replacing an Attribute with Another Attribute 39

Application Order of the Attribute-Customizing Attributes 39

Chapter 10: Displaying an Error Requiring to Enter Entity Data 40

Examples 40

Displaying an Error Requiring the User to Enter Entity Data 40

Chapter 11: Downloading Files Attached to a Detail Entity Using Contract-Based API 42

Introduction 42

Remarks 42

Examples 42

HTTP Cookie Header from a SOAP Response Shared by SOAP and REST Clients 42

Chapter 12: Exporting Records via REST Contract-Based API 45

Introduction 45

Remarks 45

Examples 47



Data Export in a Single REST Call 47

To export all stock items in a single REST call: 47

To export all sales order of the IN type in a single REST call: 48

Implementing Pagination on Multiple REST Requests 48

To export stock items in batches of 10 records with multiple REST calls: 48

To export all sales orders in batches of 100 records with multiple REST calls: 49

Chapter 13: Exporting Records via Screen-Based API 51

Introduction 51

Remarks 51

Examples 51

Data Export from an Entry Form with a Single Primary Key 51

To export all stock items in a single web service call: 52

To export stock items in batches of 10 records: 53

Data Export from an Entry Form with a Composite Primary Key 54

To request all types of existing orders: 55

To export records of each type independently in batches: 56

To export records of a specific type: 57

Chapter 14: Extending List of Entities Supported by Tasks, Events and Activities 59

Introduction 59

Examples 59

Adding Test Work Orders to the Related Entity Description Field 59

Chapter 15: Filtering with multiple value with only one selector 65

Introduction 65

Examples 65

Retrieving Sales Order for multilple customer 65

Chapter 16: Freight Calculation 68

Introduction 68

Examples 68

Overriding Freight Amount in Shipment and Invoice 68

FreightCalculator 68



Sales Orders 68

Shipments 69

Overriding Freight Amount 69

Understanding implementation of the FreightCalculatorCst class in the sample above 70

Chapter 17: Modifications to Base Data Views 72

Introduction 72

Examples 72

APInvoiceEntry BLC: add additional restriction to poReceiptLinesSelection data view 72

Chapter 18: Modifications to Contact and Address Info through Code 75

Introduction 75

Examples 75

Specify Contact and Address information for a new Employee 75

Override Bill-To Contact and Bill-To Address Info for a Customer 75

Override Bill-To Contact and Bill-To Address Info for a Sales Order 77

Chapter 19: Modifying Items in a Dropdown List 79

Introduction 79

Remarks 79

Examples 79

Modifying Marital Statuses 79

To add new items to the PXStringListAttribute successor 80

To remove items declared in the PXStringListAttribute successor 81

To replace items declared in the PXStringListAttribute successor 82

Chapter 20: Populating report with data through code 85

Examples 85

This article covers example showing how to create report using memory records: 85

Chapter 21: Publishing skipped already applied customization content 91

Introduction 91

Examples 91

Publish with cleanup from the customization screen 91

Publish with clean up from inside a customization project 92

Chapter 22: Replacing Images on the Login Page 94



Introduction 94

Examples 94

Using customization to replace images on the login page 94

Chapter 23: Significant API Changes Between Versions 99

Examples 99

PXSelectGroupBy and Bit Values in Acumatica 5.1 and 5.2+ 99

Acumatica Framework 5.2 and Later 99

Acumatica Framework 5.1 and Earlier 99

Explanation 100

Chapter 24: User Interface Techniques 101

Examples 101

Creating a Dropdown Menu for a Screen 101

Option 1: Creating a Dropdown Menu in ASPX 101

Option 2: Creating a Menu in the Graph 102

Chapter 25: Using Customization Plug-In to Make Changes in Multiple Companies 104

Introduction 104

Examples 104

Implementation of a customization plug-in to update multiple companies 104

Credits 108



About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version 
from: acumatica

It is an unofficial and free acumatica ebook created for educational purposes. All the content is 
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at 
Stack Overflow. It is neither affiliated with Stack Overflow nor official acumatica.

The content is released under Creative Commons BY-SA, and the list of contributors to each 
chapter are provided in the credits section at the end of this book. Images may be copyright of 
their respective owners unless otherwise specified. All trademarks and registered trademarks are 
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor 
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/acumatica
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com


Chapter 1: Getting started with acumatica

Remarks

This section provides an overview of what acumatica is, and why a developer might want to use it.

It should also mention any large subjects within acumatica, and link out to the related topics. Since 
the Documentation for acumatica is new, you may need to create initial versions of those related 
topics.

Examples

Installation or Setup

Detailed instructions on getting acumatica set up or installed.

Read Getting started with acumatica online: https://riptutorial.com/acumatica/topic/7152/getting-
started-with-acumatica

https://riptutorial.com/ 2

https://riptutorial.com/acumatica/topic/7152/getting-started-with-acumatica
https://riptutorial.com/acumatica/topic/7152/getting-started-with-acumatica


Chapter 2: Acumatica BQL Reference

Examples

BQL Parse and Verify

Any Acumatica application developer spends a great deal of their time writing BQL code. At the 
same time, not everybody knows the underlying details of how BQL types work under the hood.

At the heart of BQL lay two key methods: Parse() and Verify(), declared by the IBqlCreator 
interface. Most of the commonly used BQL types, such as Where<>, And<>, Or<> etc., derive from this 
interface.

It should be admitted that the names these methods historically stuck with are not very descriptive. 
Arguably better alternative names for them would be PrepareCommandText and Evaluate.

Parse

public void Parse( 
    PXGraph graph, 
    List<IBqlParameter> pars, 
    List<Type> tables, 
    List<Type> fields, 
    List<IBqlSortColumn> sortColumns, 
    StringBuilder text, 
    BqlCommand.Selection selection)

The only purpose of Parse() is to translate BQL into an SQL command to be sent into DBMS. 
Therefore, this method accepts a StringBuilder parameter representing the SQL command 
currently being constructed, to which the BQL creator appends the SQL text representation of 
itself.

For example, the And<> predicate's Parse() method will append " AND " to the command text, and 
recursively request translation of all nested BQL creators.

In particular, And<ARRegister.docType, Equal<ARDocType.invoice>> will translate into something like 
"AND "ARRegister.DocType = 'AR'".

Verify

public void Verify( 
    PXCache cache, 
    object item, 
    List<object> pars, 
    ref bool? result, 
    ref object value)

https://riptutorial.com/ 3



In contrast to Parse(), Verify() operates purely at the application level.

Given a record (e.g. an ARRegister object), it can be used to calculate expressions on it, including 
calculating formulas and evaluating conditions.

The result parameter is used to store the boolean condition evaluation result. It is mostly used by 
predicate BQL creators such as Where<>.

The value parameter is used to store the expression calculation result. For example, the value of a 
BQL Constant<string> is the string representation of that constant.

Most of the time, BQL creators will either affect the result or the value, but rarely both of them.

One notable usage of the Verify() method is in the static BqlCommand.Meet() method, used by 
PXCache to determine if a given item satisfies the BQL command:

public bool Meet(PXCache cache, object item, params object[] parameters) 
{ 
    List<object> pars = new List<object>(parameters); 
    bool? result = null; 
    object value = null; 
    try { 
        Verify(cache, item, pars, ref result, ref value); 
    } 
    catch (SystemException ex) { 
        throw new PXException(String.Format("BQL verification failed! {0}", this.ToString()), 
ex); 
    } 
    return result == null || result == true; 
}

Conclusion

The real power and beauty of BQL creators lies in that most of them can be used at both the 
database and application level, enabling Acumatica's cache merging mechanism and providing a 
great opportunity for code reusability.

For instance, when you select records from the database, the Where<> clause of the BQL 
command:

Will provide Parse() to translate itself into SQL text during command preparation.•
Will provide Verify() during cache merging to determine which items already residing in the 
cache Meet() the Where<> clause conditions so as to include such cached items into the result 
set.

•

Read Acumatica BQL Reference online: https://riptutorial.com/acumatica/topic/9690/acumatica-
bql-reference

https://riptutorial.com/ 4

https://riptutorial.com/acumatica/topic/9690/acumatica-bql-reference
https://riptutorial.com/acumatica/topic/9690/acumatica-bql-reference


Chapter 3: Acumatica Platform Attributes 
Reference

Examples

PXFormula Attribute

General Description

A formula in Acumatica is a DAC field that is calculated based on the values of other object fields.

To calculate a formula, Aсumatiсa framework provides a set of various operations and functions 
(such as arithmetical, logical, and comparison operations and string processing functions; see List 
of Built-In Common Formulas). In addition to the field values, a formula can use various constants 
provided by both the core of Acumatica and the application solutions. Moreover, a formula can 
obtain values for the calculation not only from the current record but also from other sources (see 
Formula Context and Its Modifiers).

The beauty of the formulas is that they will automatically recalculate the value at the right time:

On field defaulting (inserting a new row; FieldDefaulting event handler of formula field)•
On updating of dependent fields (FieldUpdated event handler of each dependent field)•
On database selection (only for unbound fields; RowSelecting event handler)•
On database persisting if needed (developer should specify it explicitly; RowPersisted event 
handler)

•

Recalculation of a formula field value on the update of a dependent field raises a FieldUpdated 
event for formula field. This allows you to make a chain of dependent formulas (see Direct and 
Mediated Circular References in Formulas).

Application developers can write their own application-side formulas.

Modes of Usage

A formula can be used in three main modes:

Simply calculating the value and assigning it to formula field (see Basic Usage)•
Calculating the aggregate value from existing values of formula fields and assigning it to 
specified field in the parent object (see Aggregate Usage)

•

Mixed mode: Calculating the formula value, assigning it to the formula field, calculating the 
aggregate value, and assigning it to the field in the parent object (see Combined Usage)

•

There is another auxiliary mode, unbound formulas, that is very similar to mixed mode, but the 

https://riptutorial.com/ 5



calculated values of the formula are not assigned to the formula field. The aggregated value is 
calculated immediately and assigned to the field of the parent object. See Usage of Unbound 
Formulas for more information.

PXFormulaAttribute Properties and Constructor 
Parameters

The formula functionality is implemented by PXFormulaAttribute. The constructor of 
PXFormulaAttribute has the following signatures:

public PXFormulaAttribute(Type formulaType) 
{ 
    // ... 
}

The single parameter formulaType is a type of formula expression to calculate the field value from 
other fields of the same data record. This parameter must meet one of the following conditions:

Must implement the IBqlField interface•
Must be a BQL constant•
Must implement the IBqlCreator interface (see List of Built-In Common Formulas)•

public PXFormulaAttribute(Type formulaType, Type aggregateType) 
{ 
    // ... 
}

The first parameter, formulaType, is the same as in the first constructor. The second parameter, 
aggregateType, is a type of aggregation formula to calculate the parent data record field from the 
child data record fields. An aggregation function can be used, such as SumCalc, CountCalc, 
MinCalc, and MaxCalc. Application developers can create their own aggregation formulas.

An aggregate formula type must be a generic type and must implement IBqlAggregateCalculator 
interface. The first generic parameter of the aggregate formula type must implement the IBqlField 
interface and must have the field type of the parent object.

public virtual bool Persistent { get; set; }

The PXFormulaAttribute.Persistent property indicates whether the attribute recalculates the formula 
after changes are saved to the database. You may need recalculation if the fields the formula 
depends on are updated on the RowPersisting event. By default, the property equals false.

Usage

In most cases, formulas are used for direct calculation of the value of the formula field from other 

https://riptutorial.com/ 6



fields of the same data record.

The simplest example of formula usage:

[PXDBDate] 
[PXFormula(typeof(FADetails.receiptDate))] 
[PXDefault] 
[PXUIField(DisplayName = Messages.PlacedInServiceDate)] 
public virtual DateTime? DepreciateFromDate { get; set; }

In this example, the value of the ReceiptDate field is assigned to the DepreciateFromDate field on 
the insertion of a new record and on the update of the ReceiptDate field.

A slightly more complex example:

[PXCurrency(typeof(APPayment.curyInfoID), typeof(APPayment.unappliedBal))] 
[PXUIField(DisplayName = "Unapplied Balance", Visibility = PXUIVisibility.Visible, Enabled = 
false)] 
[PXFormula(typeof(Sub<APPayment.curyDocBal, APPayment.curyApplAmt>))] 
public virtual Decimal? CuryUnappliedBal { get; set; }

Here, the unapplied balance of the document is calculated as the difference between the balance 
of the document and the applied amount.

Example of multiple choice with a default value:

[PXUIField(DisplayName = "Class Icon", IsReadOnly = true)] 
[PXImage] 
[PXFormula(typeof(Switch< 
    Case<Where<EPActivity.classID, Equal<CRActivityClass.task>>, EPActivity.classIcon.task, 
    Case<Where<EPActivity.classID, Equal<CRActivityClass.events>>, 
EPActivity.classIcon.events, 
    Case<Where<EPActivity.classID, Equal<CRActivityClass.email>, 
        And<EPActivity.isIncome, NotEqual<True>>>, EPActivity.classIcon.email, 
    Case<Where<EPActivity.classID, Equal<CRActivityClass.email>, 
        And<EPActivity.isIncome, Equal<True>>>, EPActivity.classIcon.emailResponse, 
    Case<Where<EPActivity.classID, Equal<CRActivityClass.history>>, 
EPActivity.classIcon.history>>>>>, 
    Selector<Current2<EPActivity.type>, EPActivityType.imageUrl>>))] 
public virtual string ClassIcon { get; set; }

Order of Fields

The order of fields in the DAC is important to correct formula calculation. All source fields (from 
which the formula is calculated) including other formulas must be defined in the DAC before the 
formula field. Otherwise, the field can be calculated incorrectly or can cause a runtime error.

Formula Context and Its Modifiers

By default, the context of the formula calculation is restricted by the current object (record) of the 

https://riptutorial.com/ 7



class containing the formula declaration. It is also allowed to use constants (descendants of the 
Constant<> class).

A formula that uses the fields of its object only:

public partial class Contract : IBqlTable, IAttributeSupport 
{ 
    //... 
    [PXDecimal(4)] 
    [PXDefault(TypeCode.Decimal, "0.0", PersistingCheck = PXPersistingCheck.Nothing)] 
    [PXFormula(typeof(Add<Contract.pendingRecurring, Add<Contract.pendingRenewal, 
Contract.pendingSetup>>))] 
    [PXUIField(DisplayName = "Total Pending", Enabled=false)] 
    public virtual decimal? TotalPending { get; set; } 
    //... 
}

However, it is possible to obtain input values for the formula calculation from other sources:

A current record of any cache in the BLC (if assigned).•
A foreign record specified by PXSelectorAttribute.•
A parent record specified by PXParentAttribute.•

The formula supports the following context modifiers.

Current<TRecord.field> and Current2<TRecord.field>

Fetches the field value from the record stored in the Current property of the TRecord cache.

If the cache's Current property or the field itself contains null:

Current<> forces field defaulting and returns the default field value.•
Current2<> returns null.•

Example:

[PXFormula(typeof(Switch< 
    Case<Where< 
        ARAdjust.adjgDocType, Equal<Current<ARPayment.docType>>, 
        And<ARAdjust.adjgRefNbr, Equal<Current<ARPayment.refNbr>>>>, 
        ARAdjust.classIcon.outgoing>, 
    ARAdjust.classIcon.incoming>))] 
protected virtual void ARAdjust_ClassIcon_CacheAttached(PXCache sender)

Parent<TParent.field>

Fetches the field value from the parent data record as defined by PXParentAttribute residing on 
the current DAC.

public class INTran : IBqlTable 
{ 
    [PXParent(typeof(Select< 
        INRegister, 

https://riptutorial.com/ 8



        Where< 
            INRegister.docType, Equal<Current<INTran.docType>>, 
            And<INRegister.refNbr,Equal<Current<INTran.refNbr>>>>>))] 
    public virtual String RefNbr { ... } 
 
    [PXFormula(typeof(Parent<INRegister.origModule>))] 
    public virtual String OrigModule { ... } 
}

IsTableEmpty<TRecord>

Returns true if the DB table corresponding to the specified DAC contains no records, false 
otherwise.

public class APRegister : IBqlTable 
{ 
    [PXFormula(typeof(Switch< 
        Case<Where< 
            IsTableEmpty<APSetupApproval>, Equal<True>>, 
            True, 
        Case<Where< 
            APRegister.requestApproval, Equal<True>>, 
            False>>, 
        True>))] 
    public virtual bool? DontApprove { get; set; } 
}

Selector<KeyField, ForeignOperand>

Fetches a PXSelectorAttribute defined on the 
foreign key field (KeyField) of the current 
DAC.

Fetches the foreign data record currently 
referenced by the selector.

Calculates and returns an expression on that 
data record as defined by ForeignOperand.

public class APVendorPrice : IBqlTable 
{ 
    // Note: inventory attribute is an 
    // aggregate containing a PXSelectorAttribute 
    // inside, which is also valid for Selector<>. 

https://riptutorial.com/ 9



    // - 
    [Inventory(DisplayName = "Inventory ID")] 
    public virtual int? InventoryID 
 
    [PXFormula(typeof(Selector< 
        APVendorPrice.inventoryID, 
        InventoryItem.purchaseUnit>))] 
    public virtual string UOM { get; set; } 
}

Using Formulas on Unbound Fields

If the formula field is an unbound field marked with one of the PXFieldAttribute descendants (such 
as PXIntAttribute or PXStringAttribute), then its calculation is additionally triggered during 
RowSelecting event.

List of Built-In Common Formulas

TBD

Direct and Mediated Circular References in 
Formulas

TBD

Control Flow in Conditional Formulas

TBD

Using Multiple Formulas on One Field

TBD

PXRestrictor Attribute

Introduction

The PXSelectorAttribute attribute (also referred to as the selector), while vital and frequently used, 
has however two major drawbacks:

It gives an uninformative message "<object_name> cannot be found in the system" if no items •

https://riptutorial.com/ 10



are found to satisfy the selector condition.
The produces the same error message if you update other fields of the record but the object 
referenced by the selector has already changed and no longer meets its condition. This 
behaviour is clearly wrong because the law must not be retroactive.

•

The PXRestrictorAttribute (also referred to as the restrictor) can be used to solve these problems.

Details

PXRestrictorAttribute does not work alone; it should always be paired with a PXSelectorAttribute. 
Using the restrictor without the selector will have no effect.

The restrictor finds the selector on the same field, injecting into it an additional condition and the 
corresponding error message. The restrictor condition is appended to the selector condition via a 
boolean AND, and an appropriate error message is generated if the referenced object violates the 
restrictor constraint. Also, if the referenced object has changed and no longer meets the restrictor 
condition, no error messages are produced when you change any other fields of the referencing 
object.

General usage:

[PXDBInt] 
[PXSelector(typeof(Search<FAClass.assetID, Where<FAClass.recordType, 
Equal<FARecordType.classType>>>), 
    typeof(FAClass.assetCD), typeof(FAClass.assetTypeID), typeof(FAClass.description), 
typeof(FAClass.usefulLife), 
    SubstituteKey = typeof(FAClass.assetCD), 
    DescriptionField = typeof(FAClass.description), CacheGlobal = true)] 
[PXRestrictor(typeof(Where<FAClass.active, Equal<True>>), Messages.InactiveFAClass, 
typeof(FAClass.assetCD))] 
[PXUIField(DisplayName = "Asset Class", Visibility = PXUIVisibility.Visible)] 
public virtual int? ClassID { get; set; }

Multiple restrictors can be used with one selector attribute. In this case, all additional restrictor 
conditions are applied in a non-determined order. Once any condition is violated, the appropriate 
error message is generated.

The Where<> condition of the selector itself is applied after all restrictor conditions.

[PXDefault] 
//  An aggregate attribute containing the selector inside. 
// - 
[ContractTemplate(Required = true)] 
[PXRestrictor(typeof(Where<ContractTemplate.status, Equal<Contract.status.active>>), 
Messages.TemplateIsNotActivated, typeof(ContractTemplate.contractCD))] 
[PXRestrictor(typeof(Where<ContractTemplate.effectiveFrom, 
LessEqual<Current<AccessInfo.businessDate>>, 
    Or<ContractTemplate.effectiveFrom, IsNull>>), Messages.TemplateIsNotStarted)] 
[PXRestrictor(typeof(Where<ContractTemplate.discontinueAfter, 
GreaterEqual<Current<AccessInfo.businessDate>>, 
    Or<ContractTemplate.discontinueAfter, IsNull>>), Messages.TemplateIsExpired)] 
public virtual int? TemplateID { get; set; }

https://riptutorial.com/ 11



Options

The constructor of PXRestrictorAttribute takes three parameters:

The restrictor's additional condition. This BQL type must implement the IBqlWhere interface.1. 
The appropriate error message. The message can contain format elements (curly brackets) 
to show context. The message must be a string constant defined in a localizable static class 
(such as PX.Objects.GL.Messages).

2. 

An array of field types. These fields must belong to the current object and must implement 
the IBqlField interface. The values of the fields will be used for error message formatting.

3. 

Also, there are several options that specify the restrictor behavior.

Overriding Inherited Restrictors

The ReplaceInherited property indicates whether the current restrictor should override the inherited 
restrictors. If this property is set to true, then all inherited restrictors (placed on any aggregate 
attributes or base attribute) will be replaced.

Replacing inherited restrictors:

 [CustomerActive(Visibility = PXUIVisibility.SelectorVisible, Filterable = true, TabOrder = 
2)] 
 [PXRestrictor(typeof(Where<Customer.status, Equal<CR.BAccount.status.active>, 
    Or<Customer.status, Equal<CR.BAccount.status.oneTime>, 
    Or<Customer.status, Equal<CR.BAccount.status.hold>, 
    Or<Customer.status, Equal<CR.BAccount.status.creditHold>>>>>), 
Messages.CustomerIsInStatus, typeof(Customer.status), 
    ReplaceInherited = true)] // Replaced all restrictors from CustomerActiveAttribute 
[PXUIField(DisplayName = "Customer")] 
[PXDefault()] 
public override int? CustomerID { get; set; }

Please note that we do not advise that you use the ReplaceInherited property in application code 
when reasonable alternatives exist. This property is primarily intended to be used in 
customizations.

Global Caching

CacheGlobal supports global dictionary functionality in the same way as in PXSelectorAttribute.

Recommendations for Using

Use Restrictor Conditions Only

When restrictors and a selector are used together, the latter should not contain the IBqlWhere 

https://riptutorial.com/ 12



clause. Ideally, all conditions should be moved into restrictors. This approach provides more user-
friendly error messages and eliminates unnecessary retroactive errors.

An ideal example:

[PXDBString(5, IsFixed = true, IsUnicode = false)] 
[PXUIField(DisplayName = "Type", Required = true)] 
[PXSelector(typeof(EPActivityType.type), DescriptionField = 
typeof(EPActivityType.description))] 
[PXRestrictor(typeof(Where<EPActivityType.active, Equal<True>>), 
Messages.InactiveActivityType, typeof(EPActivityType.type))] 
[PXRestrictor(typeof(Where<EPActivityType.isInternal, Equal<True>>), 
Messages.ExternalActivityType, typeof(EPActivityType.type))] 
public virtual string Type { get; set; }

Possible retroactive errors:

[PXDBInt] 
[PXUIField(DisplayName = "Contract")] 
[PXSelector(typeof(Search2<Contract.contractID, 
    LeftJoin<ContractBillingSchedule, On<Contract.contractID, 
Equal<ContractBillingSchedule.contractID>>>, 
    Where<Contract.isTemplate, NotEqual<True>, 
        And<Contract.baseType, Equal<Contract.ContractBaseType>, 
        And<Where<Current<CRCase.customerID>, IsNull, 
            Or2<Where<Contract.customerID, Equal<Current<CRCase.customerID>>, 
                And<Current<CRCase.locationID>, IsNull>>, 
            Or2<Where<ContractBillingSchedule.accountID, Equal<Current<CRCase.customerID>>, 
                And<Current<CRCase.locationID>, IsNull>>, 
            Or2<Where<Contract.customerID, Equal<Current<CRCase.customerID>>, 
                And<Contract.locationID, Equal<Current<CRCase.locationID>>>>, 
            Or<Where<ContractBillingSchedule.accountID, Equal<Current<CRCase.customerID>>, 
                And<ContractBillingSchedule.locationID, 
Equal<Current<CRCase.locationID>>>>>>>>>>>>, 
    OrderBy<Desc<Contract.contractCD>>>), 
    DescriptionField = typeof(Contract.description), 
    SubstituteKey = typeof(Contract.contractCD), Filterable = true)] 
[PXRestrictor(typeof(Where<Contract.status, Equal<Contract.status.active>>), 
Messages.ContractIsNotActive)] 
[PXRestrictor(typeof(Where<Current<AccessInfo.businessDate>, LessEqual<Contract.graceDate>, 
Or<Contract.expireDate, IsNull>>), Messages.ContractExpired)] 
[PXRestrictor(typeof(Where<Current<AccessInfo.businessDate>, 
GreaterEqual<Contract.startDate>>), Messages.ContractActivationDateInFuture, 
typeof(Contract.startDate))] 
[PXFormula(typeof(Default<CRCase.customerID>))] 
[PXDefault(PersistingCheck = PXPersistingCheck.Nothing)] 
public virtual int? ContractID { get; set; }

Read Acumatica Platform Attributes Reference online: 
https://riptutorial.com/acumatica/topic/8853/acumatica-platform-attributes-reference

https://riptutorial.com/ 13

https://riptutorial.com/acumatica/topic/8853/acumatica-platform-attributes-reference


Chapter 4: Adding Attribute Support to out-
of-box Sales Order Entity

Introduction

Acumatica ERP lets you define attributes for flexible, meaningful classification of an Entity (Lead, 
Stock/Non-Stock Items Etc.) as required for your company’s specific needs. An attribute is a 
property that enables you to specify additional information for objects in the system. Attributes are 
defined in the context of a class which is a grouping of the business accounts (including leads, 
opportunities, customers, and cases), Stock and Non-Stock items by one or more of their 
properties.

Remarks

This example is applicable to Acumatica 6.0 series

Examples

This article provides how-to guide to add Acumatica ERP Attribute support to 
out-of-box Sales Order Entity

At the very core, your entity main DAC must have GUID column (NoteID) to reference CSAnswers 
table and must have field that identify the class of the Entity.

We will make use of Order Type to define list of attributes to gather particular order type-specific 
information.

Create a Graph Extension for SOOrderTypeMaint Graph and declare data view to define list of 
attributes for a particular order type. We will be using out-of-box 
CSAttributeGroupList<TEntityClass, TEntity>

public class SOOrderTypeMaintPXExt : PXGraphExtension<SOOrderTypeMaint> 
{ 
    [PXViewName(PX.Objects.CR.Messages.Attributes)] 
    public CSAttributeGroupList<SOOrderType, SOOrder> Mapping; 
}

Create a Graph Extension for SOOrderEntry Graph and declare data view for attributes specific to 
current order type.

public class SOOrderEntryPXExt : PXGraphExtension<SOOrderEntry> 
{ 
    public CRAttributeList<SOOrder> Answers; 
}

https://riptutorial.com/ 14



Create DAC Extension for SOOrder DAC and declare user defined field decorated with 
CRAttributesField attribute and specify the ClassID field – in our case it is OrderType.

public class SOOrderPXExt : PXCacheExtension<SOOrder> 
{ 
    #region UsrAttributes 
 
    public abstract class usrAttributes : IBqlField { } 
 
    [CRAttributesField(typeof(SOOrder.orderType))] 
    public virtual string[] UsrAttributes { get; set; } 
 
    #endregion 
}

Modify Order Types page (SO201000) as below using Customization Engine

<px:PXTabItem Text="Attributes"> 
  <Template> 
    <px:PXGrid runat="server" BorderWidth="0px" Height="150px" SkinID="Details" Width="100%" 
ID="AttributesGrid" 
                MatrixMode="True" DataSourceID="ds"> 
        <AutoSize Enabled="True" Container="Window" MinHeight="150" /> 
        <Levels> 
            <px:PXGridLevel DataMember="Mapping"> 
                <RowTemplate> 
                    <px:PXSelector runat="server" DataField="AttributeID" 
FilterByAllFields="True" AllowEdit="True" 
                                    CommitChanges="True" ID="edAttributeID" /></RowTemplate> 
                <Columns> 
                    <px:PXGridColumn DataField="AttributeID" Width="81px" AutoCallBack="True" 
LinkCommand="ShowDetails" /> 
                    <px:PXGridColumn DataField="Description" Width="351px" AllowNull="False" 
/> 
                    <px:PXGridColumn DataField="SortOrder" TextAlign="Right" Width="81px" /> 
                    <px:PXGridColumn DataField="Required" Type="CheckBox" TextAlign="Center" 
AllowNull="False" /> 
                    <px:PXGridColumn DataField="CSAttribute__IsInternal" Type="CheckBox" 
TextAlign="Center" AllowNull="True" /> 
                    <px:PXGridColumn DataField="ControlType" Type="DropDownList" Width="81px" 
AllowNull="False" /> 
                    <px:PXGridColumn DataField="DefaultValue" RenderEditorText="False" 
Width="100px" AllowNull="True" /> 
                </Columns> 
            </px:PXGridLevel> 
        </Levels> 
    </px:PXGrid> 
  </Template> 
</px:PXTabItem>

Modify Sales Orders page (SO301000) as below using Customization Engine

<px:PXTabItem Text="Attributes"> 
  <Template> 
    <px:PXGrid runat="server" ID="PXGridAnswers" Height="200px" SkinID="Inquire" 
                Width="100%" MatrixMode="True" DataSourceID="ds"> 
        <AutoSize Enabled="True" MinHeight="200" /> 
        <ActionBar> 

https://riptutorial.com/ 15



            <Actions> 
                <Search Enabled="False" /> 
            </Actions> 
        </ActionBar> 
        <Mode AllowAddNew="False" AllowDelete="False" AllowColMoving="False" /> 
        <Levels> 
            <px:PXGridLevel DataMember="Answers"> 
                <Columns> 
                    <px:PXGridColumn TextAlign="Left" DataField="AttributeID" 
TextField="AttributeID_description" 
                                        Width="250px" AllowShowHide="False" /> 
                    <px:PXGridColumn Type="CheckBox" TextAlign="Center" DataField="isRequired" 
Width="80px" /> 
                    <px:PXGridColumn DataField="Value" Width="300px" AllowSort="False" 
AllowShowHide="False" /> 
                </Columns> 
            </px:PXGridLevel> 
        </Levels> 
    </px:PXGrid> 
  </Template> 
</px:PXTabItem>

Download deployment package

Read Adding Attribute Support to out-of-box Sales Order Entity online: 
https://riptutorial.com/acumatica/topic/8666/adding-attribute-support-to-out-of-box-sales-order-
entity

https://riptutorial.com/ 16

https://github.com/Acumatica/PXSOAttributeSupportExtPkg
https://riptutorial.com/acumatica/topic/8666/adding-attribute-support-to-out-of-box-sales-order-entity
https://riptutorial.com/acumatica/topic/8666/adding-attribute-support-to-out-of-box-sales-order-entity


Chapter 5: Changing caption dynamically 
using readonly DAC fields.

Introduction

This example shows how to change dynamically the Caption/Label of Customer Name field on 
Customer ScreenID AR303000 on Acumatica ERP, depending on current Customer ID selected 
on the same form. We could:

Examples

How-To

Add new unbound field to the DAC. (as readonly)

  [PXString(60, IsUnicode = true)] 
  [PXUIField(Enabled = false, IsReadOnly = true)] 
  public virtual string UsrReadOnlyAcctName{get;set;} 
  public abstract class usrReadOnlyAcctName : IBqlField{}

Modify its value depending on conditions using handlers. (On Customer cycle ID Selected)

public class CustomerMaint_Extension:PXGraphExtension<CustomerMaint> 
  { 
    protected void Customer_RowSelected(PXCache sender, PXRowSelectedEventArgs e) 
      { 
          var customer = (BAccount)e.Row; 
          var customerExt = customer.GetExtension<BAccountExt>(); 
          if (customerExt != null) 
          { 
              customerExt.UsrReadOnlyAcctName = customer.AcctName; 
          } 
      } 
  }

SuppressLabel(true) for both new unbound fields and existing fields whose label will be 
replace.

https://riptutorial.com/ 17



Place the added unbound field before the existing field.

Results:

https://riptutorial.com/ 18

https://i.stack.imgur.com/rljEm.png
https://i.stack.imgur.com/2B3Hm.png


Read Changing caption dynamically using readonly DAC fields. online: 
https://riptutorial.com/acumatica/topic/8858/changing-caption-dynamically-using-readonly-dac-
fields-

https://riptutorial.com/ 19

https://riptutorial.com/acumatica/topic/8858/changing-caption-dynamically-using-readonly-dac-fields-
https://riptutorial.com/acumatica/topic/8858/changing-caption-dynamically-using-readonly-dac-fields-


Chapter 6: Changing Size of Selector Drop-
Down Window

Introduction

In this topic you will learn how to change size of the selector drop-down window. Each selector 
control in Acumatica has a button indicated with a magnifier icon. By clicking this button, users can 
open a drop-down window showing a list of objects available for selection.

Examples

Changing default size ranges for selector drop-down window

The following 4 properties are available for PXSelector and PXSegmentMask input controls to 
define size range for a drop-down window:

MinDropWidth: gets or sets the minimum drop-down control width•
MinDropHeight: gets or sets the minimum drop-down control height•
MaxDropWidth: gets or sets the maximum drop-down control width•
MaxDropHeight: gets or sets the maximum drop-down control height•

Please be advised, the 4 properties listed above are hidden from the Properties window and won't 
be suggested to you by IntelliSense while editing Aspx pages in Visual Studio.

To expand drop-down window width of the 
Customer selector

Default 13-column layout defined for the Customer selector on the Sales Orders screen 
(SO.30.10.00) doesn't quite fit the default size range specified for selector drop-down window. To 
help users explore as much information as possible and save their time on scrolling horizontally to 
see all of the columns, you need to increase the maximum drop-down control width by assigning a 
bigger number to the MaxDropWidth property of for the Customer selector.

To set value for the MaxDropWidth property in Layout Editor, uncheck Hide Advanced 
Properties radio button as shown on the screenshot below:

https://riptutorial.com/ 20



After publishing the customization, users can enjoy the new layout of Customer selector, now 
expanded upon entire working frame:

https://riptutorial.com/ 21

https://i.stack.imgur.com/KM1vi.png


Read Changing Size of Selector Drop-Down Window online: 
https://riptutorial.com/acumatica/topic/9524/changing-size-of-selector-drop-down-window

https://riptutorial.com/ 22

https://i.stack.imgur.com/iKGsy.png
https://riptutorial.com/acumatica/topic/9524/changing-size-of-selector-drop-down-window


Chapter 7: Conditionally Hiding Tabs

Introduction

In this topic you will explore two approaches to conditionally hiding tabs on data entry screens in 
Acumatica.

Examples

VisibleExp Property of the PXTab Control in Aspx

The VisibleExp property is a boolean expression, that determines if given tab is visible (when 
logical expression is TRUE) or hidden. You specify VisibleExp property for PXTab controls in 
Aspx page:

<px:PXTabItem Text="Credit Card Processing Info" BindingContext="form" 
    VisibleExp="DataControls[&quot;chkIsCCPayment&quot;].Value = 1">

VisibleExp is composed of input controls placed within the container with ID specified in the 
BindingContext property of PXTab control. You are not allowed to use input controls from more 
than one container. Access to a specific input control is provided through the DataControls 
dictionary by its ID, not the name of a DAC field.

Usually VisibleExp property is used to compose fairly simple boolean expressions with hardcoded 
input control values, that are unlikely to change with time. For instance, the following expression is 
used on the Sales Orders screen (SO.30.10.00) to hide Payment Setting tab for orders of the 
Transfer type:

<px:PXTabItem Text="Payment Settings" 
    VisibleExp="DataControls[&quot;edOrderType&quot;].Value!=TR" BindingContext="form">

To hide Activities tab for Leads with New 
status

To hide Activities tab from the Leads screen (CR.30.10.00), set BindingContext property to 
form (top-level Lead Summary form holds form ID) and define VisibleExp to return FALSE if lead 
status is Open (Status dropdown holds edStatus ID):

<px:PXTabItem Text="Activities" LoadOnDemand="True" 
    BindingContext="form" VisibleExp="DataControls[&quot;edStatus&quot;].Value != H">

https://riptutorial.com/ 23



AllowSelect Property on Data Views

Unlike the VisibleExp property, defined in Aspx, you manipulate AllowSelect property of a data 
view though BLC or BLC extension code. The AllowSelect property makes it possible to use more 
complex boolean expressions (in comparison to the VisibleExp property) and, if necessary, 
retrieve additional information from database or other sources not available on a web page.

Below are 3 most common scenarios to work with the AllowSelect property:

RowSelected event handler for top-level entity to hide Applications tab for invoices of 
Cash Sale and Cash Return types:

•

https://riptutorial.com/ 24

https://i.stack.imgur.com/qlAkg.png


 public class SOInvoiceEntry : ARInvoiceEntry 
 { 
     ... 
     protected override void ARInvoice_RowSelected(PXCache cache, PXRowSelectedEventArgs 
e) 
     { 
         ... 
 
         Adjustments.AllowSelect = 
             doc.DocType != ARDocType.CashSale && 
             doc.DocType != ARDocType.CashReturn; 
     } 
     ... 
 }

BLC constructor to show Subitem Replenishment Info tab on the Item warehouse Details 
screen only when both Inventory Replenishment and Inventory Subitems features are 
activated:

 public class INItemSiteMaint : PXGraph<INItemSiteMaint, INItemSite> 
 { 
     ... 
     public INItemSiteMaint() 
     { 
         ... 
 
         bool enableSubItemReplenishment = 
PXAccess.FeatureInstalled<FeaturesSet.replenishment>() && 
PXAccess.FeatureInstalled<FeaturesSet.subItem>(); 
         subitemrecords.AllowSelect = enableSubItemReplenishment; 
     } 
     ... 
 }

•

RowSelected handler for top-level entity to hide Depreciation History tab unless current 
asset is depreciable and Depreciation History View is set to Side by Side in the Fixed 
Assets Preferences:

 public class AssetMaint : PXGraph<AssetMaint, FixedAsset> 
 { 
     ... 
     protected virtual void FixedAsset_RowSelected(PXCache sender, PXRowSelectedEventArgs 
e) 
     { 
         ... 
 
         AssetHistory.AllowSelect = asset.Depreciable == true && 
fasetup.Current.DeprHistoryView == FASetup.deprHistoryView.SideBySide; 
     } 
     ... 
 }

•

Every time AllowSelect property is used to conditionally change tab visibility though BLC or BLC 
extension code, you must set RepaintOnDemand property to false in Aspx for the corresponding 
PXTab container:

https://riptutorial.com/ 25



<px:PXTabItem Text="Depreciation History" RepaintOnDemand="false">

The RepaintOnDemand property is true by default. This property controls the initialization of 
PXTab container: when set to true, PXTab will not be initialized until it was selected by a user. 
Obviously you need RepaintOnDemand set to false to guarantee proper behavior of the given 
PXTab container despite whether it was selected or not.

To hide Cross-Reference tab for Stock Items 
that can not be sold

To hide Cross-Reference tab from the Stock Items screen (IN.20.25.00) for items with No Sales 
status, proceed as follows:

implement InventoryItem_RowSelected handler in the InventoryItemMaint BLC extension 
to set AllowSelect property to false for the itemxrefrecords data view if Item Status was set 
to No Sales:

public class InventoryItemMaintExt : PXGraphExtension<InventoryItemMaint> 
{ 
    protected void InventoryItem_RowSelected(PXCache sender, PXRowSelectedEventArgs e) 
    { 
        InventoryItem item = (InventoryItem)e.Row; 
        if (item == null) return; 
 
        Base.itemxrefrecords.AllowSelect = (item.ItemStatus != 
InventoryItemStatus.NoSales); 
    } 
}

1. 

in Customization manager, set RepaintOnDemand property to false for the Cross-
Reference tab and publish customization: 

2. 

https://riptutorial.com/ 26



After you completed 2 quite simple steps above, the Cross-Reference tab should not be 
accessible for Stock Items with No Sales status:

https://riptutorial.com/ 27

https://i.stack.imgur.com/d5YjC.png


To hide Attributes tab for inactive Stock 
Items

To conditionally hide ** Attributes** tab from the Stock Items screen (IN.20.25.00), proceed as 
follows:

implement InventoryItem_RowSelected handler in the InventoryItemMaint BLC extension 
to set AllowSelect property to false for the Answers and Category data views if Item Status 
was set to Inactive. Also notice Visible property set to false for PXUIFieldAttribute added on 
the InventoryItem.ImageUrl field by CacheAttached handler:

1. 

https://riptutorial.com/ 28

https://i.stack.imgur.com/M5wdG.png


public class InventoryItemMaintExt : PXGraphExtension<InventoryItemMaint> 
{ 
    protected void InventoryItem_RowSelected(PXCache sender, PXRowSelectedEventArgs e) 
    { 
        InventoryItem item = (InventoryItem)e.Row; 
        if (item == null) return; 
 
        bool showAttributesTab = item.ItemStatus != InventoryItemStatus.Inactive; 
        Base.Answers.AllowSelect = Base.Category.AllowSelect = showAttributesTab; 
        PXUIFieldAttribute.SetVisible<InventoryItem.imageUrl>(sender, item, 
showAttributesTab); 
    } 
 
    [PXMergeAttributes(Method = MergeMethod.Append)] 
    [PXUIField(DisplayName = "Image")] 
    protected void InventoryItem_ImageURL_CacheAttached(PXCache sender) 
    { } 
}

in Customization manager, set RepaintOnDemand property to false for the Attributes tab 
and publish customization: 

2. 

https://riptutorial.com/ 29



After you completed 2 steps above, the Attributes tab should not be accessible for Stock Items 
with Inactive status:

https://riptutorial.com/ 30

https://i.stack.imgur.com/QAhmT.png


Read Conditionally Hiding Tabs online: https://riptutorial.com/acumatica/topic/9506/conditionally-
hiding-tabs

https://riptutorial.com/ 31

https://i.stack.imgur.com/hY7v0.png
https://riptutorial.com/acumatica/topic/9506/conditionally-hiding-tabs
https://riptutorial.com/acumatica/topic/9506/conditionally-hiding-tabs


Chapter 8: Creating Date and Time Fields in 
Acumatica

Introduction

This topic will walk you through different options available in the Acumatica Framework to create 
date and time fields in a data access class (DAC).

Examples

The PX(DB)DateAndTime Attribute

The PXDBDateAndTime attribute and the PXDateAndTime attribute are designed to work with a 
DAC field of the Nullable<DateTime> (DateTime?) type and store both date and time value parts 
inside a single field:

#region UsrDateAndTime 
public abstract class usrDateAndTimeAttribute : IBqlField 
{ } 
 
[PXDBDateAndTime( 
    DisplayNameDate = "Date Value Part", 
    DisplayNameTime = "Time Value Part")] 
public DateTime? UsrDateAndTime { get; set; } 
#endregion

From the UI perspective, for a field decorated with PXDBDateAndTimeAttribute or 
PXDateAndTimeAttribute, one is expected to create either separate input controls for date and 
time value parts:

<px:PXDateTimeEdit runat="server" ID="edUsrDate" DataField="UsrDateAndTime_Date" /> 
<px:PXDateTimeEdit runat="server" ID="edUsrTime" DataField="UsrDateAndTime_Time" 
TimeMode="True" />

or separate grid columns to enter and display date and time values:

<Columns> 
    ... 
    <px:PXGridColumn DataField="UsrDateAndTime_Date" Width="90px" /> 

https://riptutorial.com/ 32

https://i.stack.imgur.com/G7YuA.png
https://i.stack.imgur.com/F35eW.png


    <px:PXGridColumn DataField="UsrDateAndTime_Time" Width="90px" TimeMode="True" /> 
    ... 
</Columns>

The PXDBTime Attribute

The PXDBTime attribute is designed to work with a DAC field of the Nullable<DateTime> (DateTime?) 
type and store only the time part without date inside a DAC field:

#region UsrTime 
public abstract class usrTime : IBqlField 
{ } 
 
[PXDBTime(DisplayMask = "t", InputMask = "t")] 
[PXUIField(DisplayName = "Time Only Value")] 
public DateTime? UsrTime { get; set; } 
#endregion

In the UI, for a field decorated with PXDBTimeAttribute the system creates an input control 
accepting only time values both on a form:

<px:PXDateTimeEdit runat="server" ID="edUsrTime" DataField="UsrTime" TimeMode="True" />

and within a grid cell:

<Columns> 
    ... 
    <px:PXGridColumn DataField="UsrTime" Width="120px" TimeMode="True" /> 
    ... 
</Columns>

https://riptutorial.com/ 33

https://i.stack.imgur.com/CmqAb.png
https://i.stack.imgur.com/G3BKA.png


The PX(DB)DateAttribute Attribute

The PXDBDate attribute and the PXDate attribute are designed to work with a DAC field of the 
Nullable<DateTime> (DateTime?) type and store date value with an optional time part inside a single 
field. Wheather PX(DB)DateAttribute should save time in addition to date in a DAC field is 
defined by the PreserveTime property: when PreserveTime is set to True, the time part of a field 
value is preserved, otherwise only the date part is saved in a DAC field:

#region UsrDateTime 
public abstract class usrDateTime : IBqlField 
{ } 
 
[PXDBDate(PreserveTime = true, InputMask = "g")] 
[PXUIField(DisplayName = "DateTime Value")] 
public DateTime? UsrDateTime { get; set; } 
#endregion 
 
#region UsrDate 
public abstract class usrDate : IBqlField 
{ } 
 
[PXDBDate] 
[PXUIField(DisplayName = "Date Value")] 
public DateTime? UsrDate { get; set; } 
#endregion

In the UI, for a field decorated with PXDBDateAttribute or PXDateAttribute the system creates 
an input control accepting either only date values or both date and time values depending on the 
value of PreserveTime property. This concept works exactly the same on a form:

<px:PXDateTimeEdit runat="server" ID="edUsrDateTime" DataField="UsrDateTime" Size="SM" /> 
<px:PXDateTimeEdit runat="server" ID="edUsrDate" DataField="UsrDate" />

and within a grid cell:

<Columns> 
    ... 
    <px:PXGridColumn DataField="UsrDateTime" Width="130px" /> 
    <px:PXGridColumn DataField="UsrDate" Width="90px" /> 
    ... 
</Columns>

The PXDBTimeSpan Attribute

https://riptutorial.com/ 34

https://i.stack.imgur.com/fVzhH.png
https://i.stack.imgur.com/LrAdV.png


The PXDBTimeSpan attribute is designed to work with a DAC field of the Nullable<int> (int?) type 
and store time value inside a DAC field as the number of minutes passed since midnight:

#region UsrTimeInt 
public abstract class usrTimeInt : IBqlField 
{ } 
 
[PXDBTimeSpan(DisplayMask = "t", InputMask = "t")] 
[PXUIField(DisplayName = "Time Value")] 
public int? UsrTimeInt { get; set; } 
#endregion

In the UI, for a field decorated with PXDBTimeSpanAttribute the system creates a drop-down 
with half hour interval values both on a form:

and within a grid cell:

<px:PXDateTimeEdit runat="server" ID="edUsrTimeInt" DataField="UsrTimeInt" TimeMode="true" />

<px:PXGridColumn DataField="UsrTimeInt" Width="90px" TimeMode="true" />

The PXTimeList Attribute

The PXTimeList attribute is designed to work with a DAC field of the Nullable<int> (int?) type and 
store time span value inside a DAC field as a number of minutes:

#region UsrTimeSpan 
public abstract class usrTimeSpan : IBqlField 
{ } 
 
[PXDBInt] 
[PXTimeList] 

https://riptutorial.com/ 35

https://i.stack.imgur.com/vOgIa.png
https://i.stack.imgur.com/OUp3x.png


[PXUIField(DisplayName = "Time Span")] 
public int? UsrTimeSpan { get; set; } 
#endregion

In the UI, for a field decorated with PXTimeListAttribute the system creates a drop-down with 30-
minute interval values both on a form:

<px:PXTimeSpan ID="edUsrTimeSpan" runat="server" DataField="UsrTimeSpan" InputMask="hh:mm" />

and within a grid cell:

<RowTemplate> 
    ... 
    <px:PXTimeSpan ID="edgUsrTimeSpan" runat="server" DataField="UsrTimeSpan" 
InputMask="hh:mm" /> 
    ... 
</RowTemplate> 
<Columns> 
... 
    <px:PXGridColumn DataField="UsrTimeSpan" Width="90px" RenderEditorText="True" /> 
... 
</Columns>

Read Creating Date and Time Fields in Acumatica online: 
https://riptutorial.com/acumatica/topic/10783/creating-date-and-time-fields-in-acumatica

https://riptutorial.com/ 36

https://i.stack.imgur.com/0ZhYh.png
https://i.stack.imgur.com/oKEnE.png
https://riptutorial.com/acumatica/topic/10783/creating-date-and-time-fields-in-acumatica


Chapter 9: Customization Mechanisms

Examples

Using CacheAttached to Override DAC Attributes in the Graph

Sometimes, you need to override one or more attributes of a particular Data Access Class (DAC) 
field just for a particular screen, without changing the existing behavior for other screens.

Replacing All Attributes

Suppose the original DAC field attributes are declared as shown below:

public class ARInvoice : IBqlTable 
{ 
    [PXDBDecimal(4)] 
    [PXDefault(TypeCode.Decimal, "0.0")] 
    [PXUIField(DisplayName = "Commission Amount")] 
    public virtual Decimal? CommnAmt 
    { 
        get; 
        set; 
    } 
}

The basic way to override the field's attributes in the graph is to declare a CacheAttached event 
handler in the graph that follows the standard convention for naming graph events (note the 
absence of the EventArgs argument). The body of the event handler will not be executed, but any 
attributes that you place on the handler will replace the attributes on the corresponding DAC field:

[PXDBDecimal(4)] 
[PXDefault(TypeCode.Decimal, "0.0")] 
[PXUIField(DisplayName = "Commission Amount")] 
[PXAdditionalAttribute(NecessaryProperty = true)] 
protected virtual void ARInvoice_CommnAmt_CacheAttached(PXCache sender) { }

Appending a New Attribute to the DAC Field

The set of attributes placed on the CacheAttached handler will redefine the whole set of the 
attributes placed on the field in the DAC. This is almost always overkill; note how in the previous 
example, in order to add just a single attribute to the field, you had to copy all other attribute 
declarations from the DAC. This leads to undesired code duplication, as well as the possibility of 
DAC and the graph going out of sync. It is very easy to imagine a situation when someone 
changes the defaulting logic of, for instance, PXDefaultAttribute in the DAC, but forgets to update 
all the corresponding attributes placed on the CacheAttached handlers in various graphs.

https://riptutorial.com/ 37



To remedy this problem, the Acumatica Framework provides a special attribute called 
PXMergeAttributesAttribute. When this attribute is placed on a CacheAttached handler, you can 
reuse the existing attributes defined in the DAC.

Appending an attribute using PXMergeAttributesAttribute:

[PXMergeAttributes(Method = MergeMethod.Append)] 
[PXAdditionalAttribute(NecessaryProperty = true)] 
protected virtual void ARInvoice_CommnAmt_CacheAttached(PXCache sender) { }

In the above example, the whole set of attributes from the original DAC will be reused, appended 
by any attributes that you have declared on the CacheAttached event handler.

PXMergeAttributesAttribute has other merge behaviours, according to the following possible values 
for the Method property:

MergeMethod.Replace replaces the DAC's attributes completely (equivalent to the absence of 
PXMergeAttributesAttribute).

•

MergeMethod.Append appends the attributes from the CacheAttached handler to the original DAC 
attributes.

•

MergeMethod.Merge is similar to Append; however, it also checks whether there are any 
conflicting attributes between the handler attributes and the DAC field attributes. If there is a 
conflict, the CacheAttached attribute takes precedence and the corresponding DAC attribute is 
discarded.

•

Overriding a Single Property of an Attribute

A very common application development scenario occurs when you have to redefine just a single 
property of a DAC's attribute for a particular screen; consider the situation when you have to 
define the DisplayName property of the PXUIFieldAttribute.

For that purpose, you can use yet another special attribute provided by the Acumatica Framework: 
PXCustomizeBaseAttributeAttribute. Its constructor accepts three values:

The type of the DAC attribute whose property needs to be overridden•
The name of the attribute's property to override (use the nameof operator in C# 6.0 for code 
maintainability)

•

The new value for the specified property.•

Suppose that there is a requirement to change the UI display name from Commission Amount to 
Base Currency Commission for only one screen. The following code example demonstrates how 
to implement the desired behavior.

[PXMergeAttributes(Method = MergeMethod.Append)] 
[PXCustomizeBaseAttribute(typeof(PXUIFieldAttribute), nameof(PXUIFieldAttribute.DisplayName), 
"Base Currency Commission")] 
protected virtual void ARInvoice_CommnAmt_CacheAttached(PXCache sender) { }

https://riptutorial.com/ 38



In this example, PXMergeAttributes ensures that the original DAC attributes are preserved, and 
PXCustomizeBaseAttribute allows the software engineer to override the UI field's display name for 
the graph in question.

Replacing an Attribute with Another Attribute

Suppose that there is a requirement to replace a DAC field's PXDefaultAttribute with 
PXDBDefaultAttribute for only one screen.

This can be achieved in the following manner:

[PXMergeAttributes(Method = MergeMethod.Append)] 
[PXRemoveBaseAttribute(typeof(PXDefaultAttribute))] 
[PXDBDefault(typeof(SOShipment.siteID), PersistingCheck = PXPersistingCheck.Nothing)] 
protected void SOOrderShipment_SiteID_CacheAttached(PXCache sender) { }

Application Order of the Attribute-
Customizing Attributes

PXCustomizeBaseAttribute1. 
PXRemoveBaseAttribute2. 
PXMergeAttributes3. 

Read Customization Mechanisms online: 
https://riptutorial.com/acumatica/topic/9751/customization-mechanisms

https://riptutorial.com/ 39

https://riptutorial.com/acumatica/topic/9751/customization-mechanisms


Chapter 10: Displaying an Error Requiring to 
Enter Entity Data

Examples

Displaying an Error Requiring the User to Enter Entity Data

Users often turn up in a situation when a business process cannot be finished because the user 
has not entered all the necessary information.

An example of this situation is when a user tries to create a drop-ship order with missing customer 
address.

According to UX best practices, the system should be friendly to the user and not only inform the 
user about the situation, but also guide him to the resolution of his issue. As we know, the system 
already has a similar mechanism activated by PXSetup<TSetup>.Current when there are no records 
in the TSetup table. It is internally implemented by throwing a PXSetupNotEnteredException.

Recently, a new functionality has been added to this exception, which allows an application 
developer to throw an error with a link to the entity which must be re-configured:

INSite erroneousSite = PXSelect< 
    INSite, 
    Where< 
        INSite.siteID, Equal<Current<SOCreateFilter.siteID>>, 
        And<INSite.active, Equal<True>, 
        And<Where<INSite.addressID, IsNull, Or<INSite.contactID, IsNull>>>>>> 
    .SelectSingleBound(this, new object[] { e.Row }); 
 
if (erroneousSite != null) 
{ 
    throw new PXSetupNotEnteredException<INSite, INSite.siteCD>( 
        Messages.WarehouseWithoutAddressAndContact, 
        erroneousSite.SiteCDlnk, 
        erroneousSite.SiteCDinf); 
}

The result is displayed to the user like this:

https://riptutorial.com/ 40



As a first type parameter, PXSetupNotEnteredException accepts the type of the entity to which 
the default graph link will be generated.

•

The second type parameter denotes the key field of the record to be used to generate the 
link. In the above example, navigation to the warehouse entity is made by the CD key.

•

The first constructor argument is the format string for the error message. The numbering of 
its internal placeholders should start with 1: i.e. The Multiple Warehouses feature and the 
Transfer order type are activated in the system, in this case an address and a contact must 
be configured for the '{1}' warehouse.

•

The second constructor argument is the value of the key field specified as the second 
generic parameter. In the example, the link that would be generated is 
/IN204000.aspx?siteCD=erroneousSite.SiteCDlnk.

•

The third constructor argument is the human-readable value to be displayed in the error 
message: ...in this case an address and a contact must be configured for the 
'erroneousSite.SiteCDinf' warehouse.

•

Read Displaying an Error Requiring to Enter Entity Data online: 
https://riptutorial.com/acumatica/topic/9274/displaying-an-error-requiring-to-enter-entity-data

https://riptutorial.com/ 41

https://i.stack.imgur.com/Cgbmv.png
https://riptutorial.com/acumatica/topic/9274/displaying-an-error-requiring-to-enter-entity-data


Chapter 11: Downloading Files Attached to a 
Detail Entity Using Contract-Based API

Introduction

This topic will demonstrate how to download files attached to a detail entity inside Acumatica ERP 
by using the Contract-Based API.

Remarks

The code snippet above was created using the Json.NET framework (Newtonsoft.Json.dll).

To obtain HTTP cookie header from a SOAP response, add a reference to the .Net framework 
System.ServiceModel and System.ServiceModel.Web assemblies and the following 2 using 
directives in your code file:

using System.ServiceModel; 
using System.ServiceModel.Web;

Examples

HTTP Cookie Header from a SOAP Response Shared by SOAP and REST 
Clients

There is a limitation in Acumatica's SOAP Contract-Based API allowing to download attachments 
only for a top-level entity. Any attempt to use the GetFiles() method to get the attachments of a 
detail entity will, unfortunately, result in the error "Entity without screen binding cannot be used 
as top level entity." telling us it can only be used with a top-level entity defined in the web service 
endpoint.

Another limitation with the GetFiles() method is that it always returns the content of all files 
attached to an entity. There is no option to first retrieve only file names and then decide what 
particular file(s) to download from Acumatica.

Thankfully, there is a better and more controllable way to work with attachments provided with the 
Contract-Based REST API. The files array returned as part of every entity exported by the 
Contract-Based REST API contains only:

file names (the filename property)•
file identifiers (the id property)•
hypertext references (the href property), which can be used later to download file content•

For an example of obtaining a list of files attached to any entity from the web service endpoint and 
retrieving particular file content though the Contract-Based REST API, please check Acumatica 

https://riptutorial.com/ 42

http://www.newtonsoft.com/json
https://help.acumatica.com/?ScreenId=ShowWiki&pageid=f8b87bde-8af9-48ef-9474-56adabfa1e5e
https://help.acumatica.com/?ScreenId=ShowWiki&pageid=f8b87bde-8af9-48ef-9474-56adabfa1e5e
https://help.acumatica.com/?ScreenId=ShowWiki&pageid=b1bc82ee-ae6b-442a-a369-863d98f14630


Product Help

How can one download the files attached to a detail entity if the entire integration project was 
developed with the SOAP Contract-Based API? As shown in the code snippet below, it is possible 
to pass HTTP cookie header from a SOAP response into the REST API client exclusively used to 
work with the attachments:

using (var soapClient = new DefaultSoapClient()) 
{ 
    var address = new Uri("http://localhost/AcumaticaERP/entity/Default/6.00.001/"); 
    CookieContainer cookieContainer; 
    using (new OperationContextScope(soapClient.InnerChannel)) 
    { 
        soapClient.Login(login, password, null, null, null); 
        string sharedCookie = WebOperationContext.Current.IncomingResponse.Headers["Set-
Cookie"]; 
        cookieContainer = new CookieContainer(); 
        cookieContainer.SetCookies(address, sharedCookie); 
    } 
    try 
    { 
        var shipment = new Shipment() 
        { 
            ShipmentNbr = new StringSearch { Value = "001301" }, 
            ReturnBehavior = ReturnBehavior.OnlySpecified 
        }; 
        shipment = soapClient.Get(shipment) as Shipment; 
 
        var restClient = new HttpClient( 
            new HttpClientHandler 
            { 
                UseCookies = true, 
                CookieContainer = cookieContainer 
            }); 
        restClient.BaseAddress = address;// new 
Uri("http://localhost/059678/entity/Default/6.00.001/"); 
 
        var res = restClient.GetAsync("Shipment/" + shipment.ID + "?$expand=Packages") 
            .Result.EnsureSuccessStatusCode(); 
        var shipmentWithPackages = res.Content.ReadAsStringAsync().Result; 
 
        JObject jShipment = JObject.Parse(shipmentWithPackages); 
        JArray jPackages = jShipment.Value<JArray>("Packages"); 
        foreach (var jPackage in jPackages) 
        { 
            JArray jFiles = jPackage.Value<JArray>("files"); 
            string outputDirectory = ".\\Output\\"; 
            if (!Directory.Exists(outputDirectory)) 
            { 
                Directory.CreateDirectory(outputDirectory); 
            } 
 
            foreach (var jFile in jFiles) 
            { 
                string fullFileName = jFile.Value<string>("filename"); 
                string fileName = Path.GetFileName(fullFileName); 
                string href = jFile.Value<string>("href"); 
 
                res = restClient.GetAsync(href).Result.EnsureSuccessStatusCode(); 

https://riptutorial.com/ 43

https://help.acumatica.com/?ScreenId=ShowWiki&pageid=b1bc82ee-ae6b-442a-a369-863d98f14630


                byte[] file = res.Content.ReadAsByteArrayAsync().Result; 
                System.IO.File.WriteAllBytes(outputDirectory + fileName, file); 
            } 
        } 
    } 
    finally 
    { 
        soapClient.Logout(); 
    } 
}

Read Downloading Files Attached to a Detail Entity Using Contract-Based API online: 
https://riptutorial.com/acumatica/topic/10692/downloading-files-attached-to-a-detail-entity-using-
contract-based-api

https://riptutorial.com/ 44

https://riptutorial.com/acumatica/topic/10692/downloading-files-attached-to-a-detail-entity-using-contract-based-api
https://riptutorial.com/acumatica/topic/10692/downloading-files-attached-to-a-detail-entity-using-contract-based-api


Chapter 12: Exporting Records via REST 
Contract-Based API

Introduction

This topic will demonstrate how to export records from Acumatica ERP via the REST Contract-
Based API. In contrast to the Screen-Based API of Acumatica ERP, the Contract-Based API 
provides both SOAP and REST interfaces. For more information on the Contract-Based API, see 
Acumatica ERP Documentation

Remarks

To communicate with the REST Contract-Based API of Acumatica ERP your client application 
must always perform the following 3 steps:

log into Acumatica ERP instance and get cookie with user session information1. 

interact with one of Contract-Based API endpoints available on Acumatica ERP instance2. 

log out from Acumatica ERP to close user session3. 

All samples provided in this topic were built with the Default endpoint, always deployed as part of 
the standard Acumatica ERP installation process. On the Web Service Endpoints screen 
(SM.20.70.60) you can view the details of existing endpoints or configure your custom endpoints 
of the Acumatica ERP contract-based web services:

https://riptutorial.com/ 45

https://docref.acumatica.com/wiki/ShowWiki.aspx?pageid=91dda8ed-5e92-48a5-a176-9a255506d0d6


For your reference, below is implementation of the RestService class used in all samples above 
to interact with the Contract-Based web service of Acumatica ERP:

public class RestService : IDisposable 
{ 
    private readonly HttpClient _httpClient; 
    private readonly string _acumaticaBaseUrl; 
    private readonly string _acumaticaEndpointUrl; 
 
    public RestService(string acumaticaBaseUrl, string endpoint, 
        string userName, string password, 
        string company, string branch) 
    { 
        _acumaticaBaseUrl = acumaticaBaseUrl; 
        _acumaticaEndpointUrl = _acumaticaBaseUrl + "/entity/" + endpoint + "/"; 
        _httpClient = new HttpClient( 
            new HttpClientHandler 
            { 
                UseCookies = true, 
                CookieContainer = new CookieContainer() 
            }) 
        { 
            BaseAddress = new Uri(_acumaticaEndpointUrl), 
            DefaultRequestHeaders = 
            { 
                Accept = {MediaTypeWithQualityHeaderValue.Parse("text/json")} 
            } 
        }; 
 

https://riptutorial.com/ 46

https://i.stack.imgur.com/T1UFJ.png


        var str = new StringContent( 
            new JavaScriptSerializer() 
                .Serialize( 
                    new 
                    { 
                        name = userName, 
                        password = password, 
                        company = company, 
                        branch = branch 
                    }), 
                    Encoding.UTF8, "application/json"); 
 
        _httpClient.PostAsync(acumaticaBaseUrl + "/entity/auth/login", str) 
            .Result.EnsureSuccessStatusCode(); 
    } 
 
    void IDisposable.Dispose() 
    { 
        _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout", 
            new ByteArrayContent(new byte[0])).Wait(); 
        _httpClient.Dispose(); 
    } 
 
    public string GetList(string entityName) 
    { 
        var res = _httpClient.GetAsync(_acumaticaEndpointUrl + entityName) 
            .Result.EnsureSuccessStatusCode(); 
 
        return res.Content.ReadAsStringAsync().Result; 
    } 
 
    public string GetList(string entityName, string parameters) 
    { 
        var res = _httpClient.GetAsync(_acumaticaEndpointUrl + entityName + "?" + parameters) 
            .Result.EnsureSuccessStatusCode(); 
 
        return res.Content.ReadAsStringAsync().Result; 
    } 
}

Examples

Data Export in a Single REST Call

In this example you will explore how to export the following data from Acumatica ERP in a single 
call via the REST Contract-Based API:

all stock items existing in the application•
all sales order of the IN type•

If you need to export records from Acumatica ERP, use the following URL: http://<Acumatica ERP 
instance URL>/entity/<Endpoint name>/<Endpoint version>/<Top-level entity>

<Top-level entity> is the name of the entity which you are going to export

https://riptutorial.com/ 47



To export all stock items in a single REST 
call:

To export stock item records from a local AcumaticaERP instance by using the Default endpoint of 
version 6.00.001, you should use the following URL: 
http://localhost/AcumaticaERP/entity/Default/6.00.001/StockItem

Below is the sample code written in C# to export all stock items by sending a single REST call to 
the Default endpoint of version 6.00.001:

using (RestService rs = new RestService( 
    @"http://localhost/AcumaticaERP/", "Default/6.00.001", 
    username, password, company, branch)) 
{ 
    string stockItems = rs.GetList("StockItem"); 
}

To export all sales order of the IN type in a 
single REST call:

To export sales orders of the IN type from a local AcumaticaERP instance by using the Default 
endpoint of version 6.00.001, you should use the following URL: 
http://localhost/AcumaticaERP/entity/Default/6.00.001/SalesOrder?$filter=OrderType eq 'IN'

Below is the sample code written in C# to export all sales orders of the IN type by sending a single 
REST call to the Default endpoint of version 6.00.001:

using (RestService rs = new RestService( 
    @"http://localhost/StackOverflow/", "Default/6.00.001", 
    username, password, company, branch)) 
{ 
    var parameters = "$filter=OrderType eq 'IN'"; 
    string inSalesOrders = rs.GetList("SalesOrder", parameters); 
}

Implementing Pagination on Multiple REST Requests

In this example you will explore how to export the following data from Acumatica ERP in batches 
via the REST Contract-Based API:

stock items existing in the application in batches of 10 records•
all sales orders in batches of 100 records•

To export stock items in batches of 10 

https://riptutorial.com/ 48



records with multiple REST calls:

To export first 10 stock items from a local AcumaticaERP instance by using the Default endpoint of 
version 6.00.001, you should use the following URL: 
http://localhost/AcumaticaERP/entity/Default/6.00.001/StockItem?$top=10

Accordingly, to request stock items from 10 to 20, you simply extend the URL above with filter 
parameter: 
http://localhost/AcumaticaERP/entity/Default/6.00.001/StockItem?$top=10&$filter=InventoryID gt 
'<InventoryID>'

<InventoryID> is the ID of the last stock item exported with a previous REST call

Below is the sample code written in C# to export all stock items in batches of 10 records by 
sending multiple REST calls to the Default endpoint of version 6.00.001:

using (RestService rs = new RestService( 
    @"http://localhost/StackOverflow/", "Default/6.00.001", 
    username, password, company, branch)) 
{ 
    var json = new JavaScriptSerializer(); 
    string parameters = "$top=10"; 
    string items = rs.GetList("StockItem", parameters); 
    var records = json.Deserialize<List<Dictionary<string, object>>>(items); 
 
    while (records.Count == 10) 
    { 
        var inventoryID = records[records.Count - 1]["InventoryID"] as Dictionary<string, 
object>; 
        var inventoryIDValue = inventoryID.Values.First(); 
        string nextParameters = parameters + "&" + 
            "$filter=" + string.Format("InventoryID gt '{0}'", inventoryIDValue); 
        items = rs.GetList("StockItem", nextParameters); 
        records = json.Deserialize<List<Dictionary<string, object>>>(items); 
    } 
}

To export all sales orders in batches of 100 
records with multiple REST calls:

To export first 100 sales orders from a local AcumaticaERP instance by using the Default endpoint of 
version 6.00.001, you should use the following URL: 
http://localhost/AcumaticaERP/entity/Default/6.00.001/SalesOrder?$top=100

Since the primary key of the Sales Order entity is composed by the Order Type and the Order 
Number, in this example you will be using a combination of filter parameters for the Order Type 
and Order Number fields:

to request sales orders from 100 to 200 of the SO type, you should use the following URL: 
http://localhost/AcumaticaERP/entity/Default/6.00.001/SalesOrder?$top=100&$filter=OrderType 
eq 'SO' and OrderNbr gt '<OrderNbr>'

•

https://riptutorial.com/ 49



<OrderNbr> is the number of the last sales order exported with a previous REST call

accordingly, to request first 100 sales orders of the next to SO type, you should use the 
following URL: 
http://localhost/AcumaticaERP/entity/Default/6.00.001/SalesOrder?$top=100&$filter=OrderType 
gt 'SO' and OrderNbr gt ''

•

Below is the sample code written in C# to export all sales orders in batches of 100 records with 
multiple REST calls to the Default endpoint of version 6.00.001:

using (RestService rs = new RestService( 
    @"http://localhost/StackOverflow/", "Default/6.00.001", 
    username, password, company, branch)) 
{ 
    var json = new JavaScriptSerializer(); 
    string parameters = "$top=100"; 
    string items = rs.GetList("SalesOrder", parameters); 
    var records = json.Deserialize<List<Dictionary<string, object>>>(items); 
 
    bool sameOrderType = true; 
    while (records.Count > 0 && (records.Count == 100 || !sameOrderType)) 
    { 
        var orderType = records[records.Count - 1]["OrderType"] as Dictionary<string, object>; 
        var orderTypeValue = orderType.Values.First(); 
        var orderNbr = records[records.Count - 1]["OrderNbr"] as Dictionary<string, object>; 
        var orderNbrValue = orderNbr.Values.First(); 
 
        string nextParameters = parameters + "&" + "$filter=" + 
            string.Format("OrderType {0} '{1}'", sameOrderType ? "eq" : "gt", orderTypeValue) 
+ " and " + 
            string.Format("OrderNbr gt '{0}'", sameOrderType ? orderNbrValue : "''" ); 
        items = rs.GetList("SalesOrder", nextParameters); 
        records = json.Deserialize<List<Dictionary<string, object>>>(items); 
        sameOrderType = records.Count == 100; 
    } 
}

Read Exporting Records via REST Contract-Based API online: 
https://riptutorial.com/acumatica/topic/9298/exporting-records-via-rest-contract-based-api

https://riptutorial.com/ 50

https://riptutorial.com/acumatica/topic/9298/exporting-records-via-rest-contract-based-api


Chapter 13: Exporting Records via Screen-
Based API

Introduction

This topic will demonstrate how to export records from Acumatica ERP via the Screen-Based API. 
The Screen-Based API of Acumatica ERP provides only the SOAP interface. If your development 
platform has limited support for SOAP web services, consider the Contract-Based API providing 
both SOAP and REST interfaces. For more information on the Screen-Based API, see Acumatica 
ERP Documentation

Remarks

All sample provided in this topic were created with the Screen-Based API Wrapper. If you want 
your client application to not depend on the UI changes in the Acumatica ERP application, you 
should use the screen-based API wrapper, which is described in Acumatica ERP Documentation

Examples

Data Export from an Entry Form with a Single Primary Key

The Stock Items screen (IN.20.25.00) is one of the most often used data entry forms of 
Acumatica ERP to export data. Inventory ID is the only primary key on the Stock Items screen: 

https://riptutorial.com/ 51

https://docref.acumatica.com/wiki/ShowWiki.aspx?pageid=c8806b6b-af5c-4c29-9112-b611bd08257e
https://docref.acumatica.com/wiki/ShowWiki.aspx?pageid=c8806b6b-af5c-4c29-9112-b611bd08257e
https://docref.acumatica.com/Wiki/ShowWiki.aspx?pageid=37c6db0a-8233-4f07-b496-d84a0e00fcfc


To export records from a data entry form, your SOAP request must always begin with the 
ServiceCommands.Every[Key] command, where [Key] is to be replaced with primary key name.

To export all stock items in a single web 
service call:

Screen context = new Screen(); 
context.CookieContainer = new System.Net.CookieContainer(); 
context.Url = "http://localhost/AcumaticaERP/Soap/IN202500.asmx"; 
context.Login(username, password); 
try 

https://riptutorial.com/ 52

https://i.stack.imgur.com/4nWDU.png


{ 
    Content stockItemsSchema = PX.Soap.Helper.GetSchema<Content>(context); 
    Field lastModifiedField = new Field 
    { 
        ObjectName = stockItemsSchema.StockItemSummary.InventoryID.ObjectName, 
        FieldName = "LastModifiedDateTime" 
    }; 
    var commands = new Command[] 
    { 
        stockItemsSchema.StockItemSummary.ServiceCommands.EveryInventoryID, 
        stockItemsSchema.StockItemSummary.InventoryID, 
        stockItemsSchema.StockItemSummary.Description, 
        stockItemsSchema.GeneralSettingsItemDefaults.ItemClass, 
        stockItemsSchema.GeneralSettingsUnitOfMeasureBaseUnit.BaseUnit, 
        lastModifiedField 
    }; 
    var items = context.Export(commands, null, 0, false, false); 
} 
finally 
{ 
    context.Logout(); 
}

With time amount of data in any ERP application tends to grow in size. If you will be exporting all 
records from your Acumatica ERP instance in a single web service call, very soon you might 
notice timeout errors. Increasing timeout is a possible one-time, but not very good long-term 
solution. Your best option to address this challenge is to export stock items in batches of several 
records.

To export stock items in batches of 10 
records:

Screen context = new Screen(); 
context.CookieContainer = new System.Net.CookieContainer(); 
context.Url = "http://localhost/AcumaticaERP/Soap/IN202500.asmx"; 
context.Login(username, password); 
try 
{ 
    Content stockItemsSchema = PX.Soap.Helper.GetSchema<Content>(context); 
    Field lastModifiedField = new Field 
    { 
        ObjectName = stockItemsSchema.StockItemSummary.InventoryID.ObjectName, 
        FieldName = "LastModifiedDateTime" 
    }; 
    var commands = new Command[] 
    { 
        stockItemsSchema.StockItemSummary.ServiceCommands.EveryInventoryID, 
        stockItemsSchema.StockItemSummary.InventoryID, 
        stockItemsSchema.StockItemSummary.Description, 
        stockItemsSchema.GeneralSettingsItemDefaults.ItemClass, 
        stockItemsSchema.GeneralSettingsUnitOfMeasureBaseUnit.BaseUnit, 
        lastModifiedField 
    }; 
    var items = context.Export(commands, null, 10, false, false); 
 

https://riptutorial.com/ 53



    while (items.Length == 10) 
    { 
        var filters = new Filter[] 
        { 
            new Filter 
            { 
                Field = stockItemsSchema.StockItemSummary.InventoryID, 
                Condition = FilterCondition.Greater, 
                Value = items[items.Length - 1][0] 
            } 
        }; 
        items = context.Export(commands, filters, 10, false, false); 
    } 
} 
finally 
{ 
    context.Logout(); 
}

There are 2 main differences between the single call approach and the export in batches:

topCount parameter of the Export command was always set to 0 in the single call approach•

when exporting records in batches, size of a batch is configured though the topCount 
parameter supplemented by the Filter array to request the next result set

•

Data Export from an Entry Form with a Composite Primary Key

The Sales Orders screen (SO.30.10.00) is a perfect example of a data entry form with a 
composite primary key. The primary key on the Sales Orders screen is composed by the Order 
Type and the Order Number: 

https://riptutorial.com/ 54



The recommended 2-step strategy to export data from the Sales Orders screen or any other data 
entry form with a composite primary key via the Screen-Based API:

on step 1 you request all types of orders previously created in your Acumatica ERP 
application

•

2nd step is to export orders of each type independently either in a single call or in batches•

To request all types of existing orders:

Screen context = new Screen(); 
context.CookieContainer = new System.Net.CookieContainer(); 
context.Url = "http://localhost/AcumaticaERP/Soap/SO301000.asmx"; 
context.Login(username, password); 
try 
{ 
    Content orderSchema = PX.Soap.Helper.GetSchema<Content>(context); 
    var commands = new Command[] 
    { 
        orderSchema.OrderSummary.ServiceCommands.EveryOrderType, 
        orderSchema.OrderSummary.OrderType, 
    }; 
 
    var types = context.Export(commands, null, 1, false, false); 
} 

https://riptutorial.com/ 55

https://i.stack.imgur.com/Ecn8a.png


finally 
{ 
    context.Logout(); 
}

In the SOAP call above, notice topCount parameter of the Export command set to 1. The 
purpose of this request is only to get all types of orders previously created in your Acumatica ERP 
application, not to export data.

To export records of each type independently 
in batches:

Screen context = new Screen(); 
context.CookieContainer = new System.Net.CookieContainer(); 
context.Url = "http://localhost/AcumaticaERP/Soap/SO301000.asmx"; 
context.Login(username, password); 
try 
{ 
    Content orderSchema = PX.Soap.Helper.GetSchema<Content>(context); 
    var commands = new Command[] 
    { 
        orderSchema.OrderSummary.ServiceCommands.EveryOrderType, 
        orderSchema.OrderSummary.OrderType, 
    }; 
    var types = context.Export(commands, null, 1, false, false); 
 
    for (int i = 0; i < types.Length; i++) 
    { 
        commands = new Command[] 
        { 
            new Value 
            { 
                LinkedCommand = orderSchema.OrderSummary.OrderType, 
                Value = types[i][0] 
            }, 
            orderSchema.OrderSummary.ServiceCommands.EveryOrderNbr, 
            orderSchema.OrderSummary.OrderType, 
            orderSchema.OrderSummary.OrderNbr, 
            orderSchema.OrderSummary.Customer, 
            orderSchema.OrderSummary.CustomerOrder, 
            orderSchema.OrderSummary.Date, 
            orderSchema.OrderSummary.OrderedQty, 
            orderSchema.OrderSummary.OrderTotal 
        }; 
        var orders = context.Export(commands, null, 100, false, false); 
        while (orders.Length == 100) 
        { 
            var filters = new Filter[] 
            { 
                new Filter 
                { 
                    Field = orderSchema.OrderSummary.OrderNbr, 
                    Condition = FilterCondition.Greater, 
                    Value = orders[orders.Length - 1][1] 
                } 

https://riptutorial.com/ 56



            }; 
            orders = context.Export(commands, filters, 100, false, false); 
        } 
    } 
} 
finally 
{ 
    context.Logout(); 
}

The sample above demonstrates how to export all sales orders from Acumatica ERP in batches of 
100 records. To export sales order of each type independently, your SOAP request must always 
begin with the Value command, which determines the type of orders to be exported. After the 
Value command used to set first key value goes the ServiceCommands.Every[Key] command, where 
[Key] is to be replaced with name of the second key.

To export records of a specific type:

In case you need to export sales orders of a specific type, it's possible to explicitly define the type 
of orders with the Value command in the beginning of your SOAP request followed by the single 
call approach or the export in batches.

To export all sales order of the IN type in one call:

Screen context = new Screen(); 
context.CookieContainer = new System.Net.CookieContainer(); 
context.Url = "http://localhost/AcumaticaERP/Soap/SO301000.asmx"; 
context.Login(username, password); 
try 
{ 
    Content orderSchema = PX.Soap.Helper.GetSchema<Content>(context); 
    var commands = new Command[] 
    { 
        new Value 
        { 
            LinkedCommand = orderSchema.OrderSummary.OrderType, 
            Value = "IN" 
        }, 
        orderSchema.OrderSummary.ServiceCommands.EveryOrderNbr, 
        orderSchema.OrderSummary.OrderType, 
        orderSchema.OrderSummary.OrderNbr, 
        orderSchema.OrderSummary.Customer, 
        orderSchema.OrderSummary.CustomerOrder, 
        orderSchema.OrderSummary.Date, 
        orderSchema.OrderSummary.OrderedQty, 
        orderSchema.OrderSummary.OrderTotal 
    }; 
    var orders = context.Export(commands, null, 0, false, false); 
} 
finally 
{ 
    context.Logout(); 
}

https://riptutorial.com/ 57



Read Exporting Records via Screen-Based API online: 
https://riptutorial.com/acumatica/topic/9288/exporting-records-via-screen-based-api

https://riptutorial.com/ 58

https://riptutorial.com/acumatica/topic/9288/exporting-records-via-screen-based-api


Chapter 14: Extending List of Entities 
Supported by Tasks, Events and Activities

Introduction

In this topic you will learn how to extend the Related Entity Description field with a custom entity 
for Tasks, Events and Activities.

Examples

Adding Test Work Orders to the Related Entity Description Field

Let's say you have already created the custom Test Work Orders screen to manage test work 
orders in your Acumatica ERP application:

There is already NoteID field declared in the TestWorkOrder DAC, managed on the Test Work 
Orders screen:

[Serializable] 
public class TestWorkOrder : IBqlTable 
{ 
    ... 
 
    #region NoteID 
    public abstract class noteID : IBqlField { } 
    [PXNote] 
    public virtual Guid? NoteID { get; set; } 
    #endregion 
 

https://riptutorial.com/ 59

https://i.stack.imgur.com/br7c7.png


 
    ... 
}

and ActivityIndicator property is set to True for the top-level PXForm container:

<px:PXFormView ID="form" runat="server" ActivityIndicator="true" DataSourceID="ds" Style="z-
index: 100" DataMember="ITWO" Width="100%" >

However, when new task, event or activity is created for a test work order, the Related Entity 
Description control is always empty:

https://riptutorial.com/ 60



To add the Test Work Order entity to the Related Entity Description selector, you should 
complete the following steps:

For the PXNoteAttribute on TestWorkOrder.NoteID field, set ShowInReferenceSelector 
property to True and define BQL expression to select data records displayed in the Entity 
lookup:

[PXNote( 

1. 

https://riptutorial.com/ 61

https://i.stack.imgur.com/QoEQC.png


    ShowInReferenceSelector = true, 
    Selector = typeof(Search<TestWorkOrder.orderNbr>))] 
public virtual Guid? NoteID { get; set; }

Decorate the TestWorkOrder DAC with the PXCacheNameAttribute and the 
PXPrimaryGraphAttribute:

[PXLocalizable] 
public static class Messages 
{ 
    public const string Opportunity = "Test Work Order"; 
} 
 
[Serializable] 
[PXCacheName(Messages.Opportunity)] 
[PXPrimaryGraph(typeof(TestWorkOrderEntry))] 
public class TestWorkOrder : IBqlTable 
{ 
    ... 
}

The PXCacheName attribute defines user-friendly name for the TestWorkOrder DAC (Test Work 
Order in this case), which will be available in the Type dropdown. The PXPrimaryGraph 
attribute determines the entry page where a user is redirected for editing a test work order, 
which is the Test Work Orders screen in the given example.

2. 

Decorate some TestWorkOrder fields with the PXFieldDescriptionAttribute. Those field values 
will be concatenated into a single text label, representing the referenced test work order 
inside the Related Entity Description field:

... 
[PXFieldDescription] 
public virtual string OrderNbr { get; set; } 
 
... 
[PXFieldDescription] 
public virtual String Status { get; set; } 
 
... 
[PXFieldDescription] 
public virtual string POOrderNbr { get; set; }

3. 

Define the list of columns displayed in the Entity lookup by choosing one of the approaches 
below:

a. Use the PXNoteAttribute.FieldList property (gets the highest priority):

public abstract class noteID : IBqlField { } 
[PXNote( 
    ShowInReferenceSelector = true, 
    Selector = typeof(Search<TestWorkOrder.orderNbr>), 
    FieldList = new Type[] 
    { 
        typeof(TestWorkOrder.orderNbr), 

4. 

https://riptutorial.com/ 62



        typeof(TestWorkOrder.orderDate), 
        typeof(TestWorkOrder.status), 
        typeof(TestWorkOrder.poOrderNbr) 
    })] 
public virtual Guid? NoteID { get; set; }

b. Borrow the list of columns defined for the OrderNbr lookup:

public abstract class orderNbr : IBqlField { } 
[PXDBString(15, IsKey = true, IsUnicode = true, InputMask = ">CCCCCCCCCCCCCCC")] 
[PXDefault()] 
[PXUIField(DisplayName = "ITWO Nbr.", Visibility = PXUIVisibility.SelectorVisible)] 
[PXSelector(typeof(Search<TestWorkOrder.orderNbr>), 
    typeof(TestWorkOrder.orderNbr), 
    typeof(TestWorkOrder.orderDate), 
    typeof(TestWorkOrder.status), 
    typeof(TestWorkOrder.poOrderNbr))] 
[PXFieldDescription] 
public virtual string OrderNbr { get; set; }

c. Show all TestWorkOrder fields with Visibility set to PXUIVisibility.SelectorVisible:

... 
[PXUIField(DisplayName = "ITWO Nbr.", Visibility = PXUIVisibility.SelectorVisible)] 
public virtual string OrderNbr { get; set; } 
 
... 
[PXUIField(DisplayName = "Order Date", Visibility = PXUIVisibility.SelectorVisible)] 
public virtual DateTime? OrderDate { get; set; } 
 
... 
[PXUIField(DisplayName = "Status", Visibility = PXUIVisibility.SelectorVisible)] 
public virtual String Status { get; set; } 
 
... 
[PXUIField(DisplayName = "Purchase Order", Visibility = PXUIVisibility.SelectorVisible)] 
public virtual string POOrderNbr { get; set; }

After you completed the 4 steps above, Test Work Orders should be fully supported by the 
Related Entity Description field on Tasks, Events and Activities

https://riptutorial.com/ 63



Read Extending List of Entities Supported by Tasks, Events and Activities online: 
https://riptutorial.com/acumatica/topic/9342/extending-list-of-entities-supported-by-tasks--events-
and-activities

https://riptutorial.com/ 64

https://i.stack.imgur.com/DVy78.png
https://riptutorial.com/acumatica/topic/9342/extending-list-of-entities-supported-by-tasks--events-and-activities
https://riptutorial.com/acumatica/topic/9342/extending-list-of-entities-supported-by-tasks--events-and-activities


Chapter 15: Filtering with multiple value with 
only one selector

Introduction

Here is a way of having multiple value inside of a selector in order to filter a grid.

Examples

Retrieving Sales Order for multilple customer

When trying to filter some record using multiple value in a selector. First you must use the 
px:PXMultiSelector in the aspx page instead of the normal px:PXSelector. Then after you must 
create yourself a graph containing at least three views and a view delegate. you will also need at 
least a basic unbound DAC.

Here is an sample page with the px:PXMultiSelector:

<%@ Page Language="C#" MasterPageFile="~/MasterPages/FormDetail.master" AutoEventWireup="true" 
ValidateRequest="false" CodeFile="TT000000.aspx.cs" Inherits="Page_TT000000" Title="Untitled 
Page" %> 
 
<%@ MasterType VirtualPath="~/MasterPages/FormDetail.master" %> 
 
<asp:Content ID="cont1" ContentPlaceHolderID="phDS" runat="Server"> 
<px:PXDataSource ID="ds" runat="server" Visible="True" Width="100%" 
    TypeName="MultiSelector.MultiInquiry" 
    PrimaryView="MasterView"> 
    <CallbackCommands> 
    </CallbackCommands> 
</px:PXDataSource> 
</asp:Content> 
<asp:Content ID="cont2" ContentPlaceHolderID="phF" runat="Server"> 
<px:PXFormView ID="form" runat="server" DataSourceID="ds" DataMember="MasterView" Width="100%" 
Height="100px" AllowAutoHide="false"> 
    <Template> 
        <px:PXMultiSelector ID="edInventoryID" runat="server" Width="100%" DataSourceID="ds" 
DataField="Customer" CommitChanges="True"></px:PXMultiSelector> 
    </Template> 
</px:PXFormView> 
</asp:Content> 
<asp:Content ID="cont3" ContentPlaceHolderID="phG" runat="Server"> 
<px:PXGrid ID="grid" runat="server" DataSourceID="ds" Width="100%" Height="150px" 
SkinID="Details" AllowAutoHide="false"> 
    <Levels> 
        <px:PXGridLevel DataMember="DetailsView"> 
            <Columns> 
                <px:PXGridColumn DataField="OrderType" Width="70"></px:PXGridColumn> 
                <px:PXGridColumn DataField="OrderNbr" Width="200"></px:PXGridColumn> 
                <px:PXGridColumn DataField="OrderDesc" Width="100"></px:PXGridColumn> 
                <px:PXGridColumn DataField="CustomerOrderNbr" Width="100"></px:PXGridColumn> 

https://riptutorial.com/ 65



                <px:PXGridColumn DataField="Status" Width="100"></px:PXGridColumn> 
                <px:PXGridColumn DataField="RequestDate" Width="100"></px:PXGridColumn> 
                <px:PXGridColumn DataField="ShipDate" Width="100"></px:PXGridColumn> 
                <px:PXGridColumn DataField="CustomerID" Width="100"></px:PXGridColumn> 
            </Columns> 
        </px:PXGridLevel> 
    </Levels> 
    <AutoSize Container="Window" Enabled="True" MinHeight="150" /> 
    <ActionBar> 
    </ActionBar> 
</px:PXGrid> 
</asp:Content>

Here is the sample graph with the views and the delegate.

public class MultiInquiry : PXGraph<MultiInquiry> 
{ 
    public PXCancel<MasterTable> Cancel; 
    public PXFilter<MasterTable> MasterView; 
    public PXSelect<SOOrder> DetailsView; 
 
    public PXSelectJoin<SOOrder, LeftJoin<BAccount, On<SOOrder.customerID, 
Equal<BAccount.bAccountID>>>, Where<BAccount.acctCD, In<Required<BAccount.acctCD>>>> Orders2; 
 
    protected virtual IEnumerable detailsView() 
    { 
        var list = new List<SOOrder>(); 
        var customers = MasterView.Current.Customer; 
        if (customers != null) 
        { 
            List<string> customerList = new List<string>(); 
            customerList.AddRange(customers.Split(new string[] { "; " }, 
StringSplitOptions.None)); 
            object[] val = new object[] { customerList.ToArray() }; 
 
            foreach (PXResult<SOOrder> res in Orders2.Select(val)) 
            { 
                SOOrder order = res; 
                list.Add(order); 
            } 
        } 
        return list; 
    } 
}

To this we add the DAC containing the definition for the field used in the MultiSelector and the 
constant for only selecting customer accounts.

    [Serializable] 
    public class MasterTable : IBqlTable 
    { 
        #region InventoryID 
        public abstract class customer : IBqlField { } 
        [PXString()] 
        [PXUIField(DisplayName = "Customer")] 
        [PXSelector(typeof(Search<BAccount.acctCD, Where<BAccount.type, 
Equal<CustomerType>>>), ValidateValue = false)] 
        public virtual string Customer { get; set; } 

https://riptutorial.com/ 66



        #endregion 
 
    } 
 
    public class CustomerType : Constant<string> { public CustomerType() : base("CU") { } }

And the result for this example could be something like this : 

Read Filtering with multiple value with only one selector online: 
https://riptutorial.com/acumatica/topic/10707/filtering-with-multiple-value-with-only-one-selector

https://riptutorial.com/ 67

https://i.stack.imgur.com/h7Ryc.jpg
https://riptutorial.com/acumatica/topic/10707/filtering-with-multiple-value-with-only-one-selector


Chapter 16: Freight Calculation

Introduction

Acumatica ERP enables you to manage freight to better control any additional costs and revenues 
on sales transactions. The freight amount you charge your customers may include not only the 
freight your company is charged by carriers, but also insurance, handling and packaging fees 
defined by your shipping terms and premium freight.

Examples

Overriding Freight Amount in Shipment and Invoice

Out of the box Acumatica allows to create and maintain the list of shipping terms in the system. 
Shipping terms are used to define the shipping, packaging and handling costs, depending on the 
shipment amount.

In this example I will show how to calculate freight amount for a shipment based on sales order 
amount, which would allow users to create multiple shipments per sales order with same shipping 
terms automatically applied to all shipments.

FreightCalculator

The FreightCalculator class is responsible for calculation of Freight Cost and Freight Terms. For 
the purpose of this example, our interest will be only around the GetFreightTerms method:

public class FreightCalculator 
{ 
    ... 
 
    protected virtual ShipTermsDetail GetFreightTerms(string shipTermsID, decimal? lineTotal) 
    { 
        return PXSelect<ShipTermsDetail, 
            Where<ShipTermsDetail.shipTermsID, Equal<Required<SOOrder.shipTermsID>>, 
            And<ShipTermsDetail.breakAmount, LessEqual<Required<SOOrder.lineTotal>>>>, 
            OrderBy<Desc<ShipTermsDetail.breakAmount>>>.Select(graph, shipTermsID, lineTotal); 
    } 
 
    ... 
}

Both the Sales Orders and the Shipments screens utilize FreightCalculator class to calculate 
freight amount based on sales order's and shipment's amount respectively:

Sales Orders

https://riptutorial.com/ 68



public class SOOrderEntry : PXGraph<SOOrderEntry, SOOrder>, PXImportAttribute.IPXPrepareItems 
{ 
    ... 
 
    public virtual FreightCalculator CreateFreightCalculator() 
    { 
        return new FreightCalculator(this); 
    } 
 
    ... 
 
    protected virtual void SOOrder_RowUpdated(PXCache sender, PXRowUpdatedEventArgs e) 
    { 
        ... 
 
        PXResultset<SOLine> res = Transactions.Select(); 
        FreightCalculator fc = CreateFreightCalculator(); 
        fc.CalcFreight<SOOrder, SOOrder.curyFreightCost, SOOrder.curyFreightAmt>(sender, 
(SOOrder)e.Row, res.Count); 
 
        ... 
    } 
 
    ... 
}

Shipments

public class SOShipmentEntry : PXGraph<SOShipmentEntry, SOShipment> 
{ 
    ... 
 
    protected virtual FreightCalculator CreateFreightCalculator() 
    { 
        return new FreightCalculator(this); 
    } 
 
    ... 
 
    protected virtual void SOShipment_RowUpdated(PXCache sender, PXRowUpdatedEventArgs e) 
    { 
        ... 
 
        PXResultset<SOShipLine> res = Transactions.Select(); 
        ... 
        FreightCalculator fc = CreateFreightCalculator(); 
        fc.CalcFreight<SOShipment, SOShipment.curyFreightCost, 
SOShipment.curyFreightAmt>(sender, (SOShipment)e.Row, res.Count); 
 
        ... 
    } 
 
    ... 
}

Overriding Freight Amount

https://riptutorial.com/ 69



To customize how Acumatica calculates freight amount on the Shipments screen I will declare 
FreightCalculatorCst class inherited from FreightCalculator and override GetFreightTerms method:

public class FreightCalculatorCst : FreightCalculator 
{ 
    public FreightCalculatorCst(PXGraph graph) 
        : base(graph) 
    { 
    } 
 
    protected override ShipTermsDetail GetFreightTerms(string shipTermsID, decimal? lineTotal) 
    { 
        if (graph is SOShipmentEntry) 
        { 
            var shipmentEntry = graph as SOShipmentEntry; 
            int orderCount = 0; 
            decimal? lineTotalTemp = null; 
 
            foreach (PXResult<SOOrderShipment, SOOrder, CurrencyInfo, SOAddress, SOContact, 
SOOrderType> orderRec in 
                shipmentEntry.OrderList.SelectWindowed(0, 2)) 
            { 
                orderCount++; 
                SOOrder order = (SOOrder)orderRec; 
                if (orderCount == 1) 
                    lineTotalTemp = order.LineTotal; 
                else 
                    break; 
            } 
 
            if (orderCount == 1) 
            { 
                lineTotal = lineTotalTemp; 
            } 
        } 
 
        return base.GetFreightTerms(shipTermsID, lineTotal); 
    } 
}

After that I will implement an extension for the SOShipmentEntry BLC and override 
CreateFreightCalculator method to replace FreightCalculator with my custom FreightCalculatorCst 
class on the Shipments screen:

public class SOShipmentEntryExt : PXGraphExtension<SOShipmentEntry> 
{ 
    [PXOverride] 
    public FreightCalculator CreateFreightCalculator() 
    { 
        return new FreightCalculatorCst(Base); 
    } 
}

Understanding implementation of the 

https://riptutorial.com/ 70



FreightCalculatorCst class in the sample 
above

In the overridden GetFreightTerms method I will use amount from sales order instead of shipment 
amount to invoke base GetFreightTerms method and receive shipping terms:

foreach (PXResult<SOOrderShipment, SOOrder, CurrencyInfo, SOAddress, SOContact, SOOrderType> 
orderRec in 
    shipmentEntry.OrderList.SelectWindowed(0, 2)) 
{ 
    orderCount++; 
    SOOrder order = (SOOrder)orderRec; 
    if (orderCount == 1) 
        lineTotalTemp = order.LineTotal; 
    else 
        break; 
} 
 
if (orderCount == 1) 
{ 
    lineTotal = lineTotalTemp; 
}

Obviously, it's only possible to use sales order amount to calculate freight amount for shipments, 
which fulfill only 1 order. If one shipment fulfills several orders, we'd have to follow base product 
behavior and calculate freight amount based on shipment amount. To check the number of orders 
shipment fulfills, I used SelectWindowed method on the OrderList data view and requested first 2 
orders fulfilled by the current shipment. I could have requested all orders fulfilled by the shipment, 
but this would take significantly more time to execute and return way to many records than needed 
to verify if sales order amount can be used instead of shipment amount to calculate freight.

Read Freight Calculation online: https://riptutorial.com/acumatica/topic/9044/freight-calculation

https://riptutorial.com/ 71

https://riptutorial.com/acumatica/topic/9044/freight-calculation


Chapter 17: Modifications to Base Data Views

Introduction

This topic is intended to demonstrate various patterns and practices available to modify base data 
views in Acumatica.

Examples

APInvoiceEntry BLC: add additional restriction to poReceiptLinesSelection 
data view

To add additional restriction to the poReceiptLinesSelection data view, you should invoke Select 
method on base view and inspect each item in returned PXResultSet independently to decide if it 
complies with additional restriction(s):

public class APInvoiceEntryExt : PXGraphExtension<APInvoiceEntry> 
{ 
    [PXCopyPasteHiddenView] 
    public PXSelect<APInvoiceEntry.POReceiptLineAdd> poReceiptLinesSelection; 
 
    public virtual IEnumerable POReceiptLinesSelection() 
    { 
        foreach (var record in Base.poReceiptLinesSelection.Select()) 
        { 
            // Additional restriction goes here 
            if (true == true) 
            { 
                yield return record; 
            } 
        } 
    } 
}

This approach perfectly works with the poReceiptLinesSelection data view, due to lack of paging 
and aggregation in the implementation of base view. To compose result set, 
poReceiptLinesSelection view requests necessary data from database and performs all 
calculations on the application side.

public class APInvoiceEntry : APDataEntryGraph<APInvoiceEntry, APInvoice>, 
PXImportAttribute.IPXPrepareItems 
{ 
    ... 
 
    [PXCopyPasteHiddenView] 
    public PXSelect<POReceiptLineAdd> poReceiptLinesSelection; 
 
    public virtual IEnumerable POReceiptLinesSelection() 
    { 
        APInvoice doc = this.Document.Current; 
        if (doc == null || doc.VendorID == null || doc.VendorLocationID == null) yield break; 

https://riptutorial.com/ 72



        if (doc.DocType != APDocType.Invoice && doc.DocType != APDocType.DebitAdj) 
            yield break; 
 
        string poReceiptType = (doc.DocType == APDocType.Invoice) ? POReceiptType.POReceipt : 
POReceiptType.POReturn; 
 
        HashSet<APTran> usedRecceiptLine = new HashSet<APTran>(new POReceiptLineComparer()); 
        HashSet<APTran> unusedReceiptLine = new HashSet<APTran>(new POReceiptLineComparer()); 
 
        foreach (APTran aPTran in Transactions.Cache.Inserted) 
        { 
            if (aPTran.ReceiptNbr != null && aPTran.ReceiptType != null && 
aPTran.ReceiptLineNbr != null) 
                usedRecceiptLine.Add(aPTran); 
        } 
 
        foreach (APTran aPTran in Transactions.Cache.Deleted) 
        { 
            if (aPTran.ReceiptNbr != null && aPTran.ReceiptType != null && 
aPTran.ReceiptLineNbr != null && Transactions.Cache.GetStatus(aPTran) != 
PXEntryStatus.InsertedDeleted) 
                if (!usedRecceiptLine.Remove(aPTran)) 
                    unusedReceiptLine.Add(aPTran); 
        } 
 
        foreach (APTran aPTran in Transactions.Cache.Updated) 
        { 
            APTran originAPTran = new APTran(); 
            originAPTran.ReceiptNbr = 
(String)Transactions.Cache.GetValueOriginal<APTran.receiptNbr>(aPTran); 
            originAPTran.ReceiptType = 
(String)Transactions.Cache.GetValueOriginal<APTran.receiptType>(aPTran); 
            originAPTran.ReceiptLineNbr = 
(Int32?)Transactions.Cache.GetValueOriginal<APTran.receiptLineNbr>(aPTran); 
 
            if (originAPTran.ReceiptNbr != null && originAPTran.ReceiptType != null && 
originAPTran.ReceiptLineNbr != null) 
            { 
                if (!usedRecceiptLine.Remove(originAPTran)) 
                    unusedReceiptLine.Add(originAPTran); 
            } 
 
            if (aPTran.ReceiptNbr != null && aPTran.ReceiptType != null && 
aPTran.ReceiptLineNbr != null) 
            { 
                if (!unusedReceiptLine.Remove(aPTran)) 
                    usedRecceiptLine.Add(aPTran); 
            } 
        } 
 
        foreach (LinkLineReceipt item in PXSelect<LinkLineReceipt, 
            Where<LinkLineReceipt.vendorID, Equal<Current<APInvoice.vendorID>>, 
            And<LinkLineReceipt.vendorLocationID, Equal<Current<APInvoice.vendorLocationID>>, 
            And<LinkLineReceipt.receiptCuryID, Equal<Current<APInvoice.curyID>>, 
            And<LinkLineReceipt.receiptType, Equal<Required<POReceipt.receiptType>>, 
            And<Where<LinkLineReceipt.orderNbr, Equal<Current<POReceiptFilter.orderNbr>>, 
Or<Current<POReceiptFilter.orderNbr>, IsNull>>> 
            >>>>>.SelectMultiBound(this, new object[] { doc }, poReceiptType)) 
        { 
            APTran aPTran = new APTran(); 
            aPTran.ReceiptType = item.ReceiptType; 

https://riptutorial.com/ 73



            aPTran.ReceiptNbr = item.ReceiptNbr; 
            aPTran.ReceiptLineNbr = item.ReceiptLineNbr; 
            if (!usedRecceiptLine.Contains(aPTran)) 
                yield return (PXResult<POReceiptLineAdd, 
POReceipt>)ReceipLineAdd.Select(item.ReceiptNbr, item.ReceiptType, item.ReceiptLineNbr); 
        } 
 
        foreach (APTran item in unusedReceiptLine) 
        { 
            yield return (PXResult<POReceiptLineAdd, 
POReceipt>)ReceipLineAdd.Select(item.ReceiptNbr, item.ReceiptType, item.ReceiptLineNbr); 
        } 
 
    } 
 
    ... 
}

Read Modifications to Base Data Views online: 
https://riptutorial.com/acumatica/topic/9101/modifications-to-base-data-views

https://riptutorial.com/ 74

https://riptutorial.com/acumatica/topic/9101/modifications-to-base-data-views


Chapter 18: Modifications to Contact and 
Address Info through Code

Introduction

In this topic, you will learn how to modify Contact and Address information through code on 
different screens inside Acumatica.

Examples

Specify Contact and Address information for a new Employee

To specify Contact and Address info for an Employee, you should always invoke Select() method 
on the Contact and Address data views prior to assigning any field values. It is also 
recommended to assign the result of Select() method to the Contact and Address data views' 
Current property to guarantee that your code modifies the current record in Contact and Address 
PXCache respectively.

EmployeeMaint employeeMaintGraph = PXGraph.CreateInstance<EmployeeMaint>(); 
EPEmployee epEmployeeRow = new EPEmployee(); 
epEmployeeRow.AcctCD = "EMPLOYEE1"; 
epEmployeeRow = employeeMaintGraph.Employee.Insert(epEmployeeRow); 
 
Contact contactRow = employeeMaintGraph.Contact.Current = employeeMaintGraph.Contact.Select(); 
contactRow.FirstName = "John"; 
contactRow.LastName = "Green"; 
employeeMaintGraph.Contact.Update(contactRow); 
 
Address addressRow = employeeMaintGraph.Address.Current = employeeMaintGraph.Address.Select(); 
addressRow.CountryID = "US"; 
addressRow = employeeMaintGraph.Address.Update(addressRow); 
addressRow.State = "DC"; 
employeeMaintGraph.Address.Update(addressRow); 
 
epEmployeeRow.VendorClassID = "EMPSTAND"; 
epEmployeeRow.DepartmentID = "FINANCE"; 
employeeMaintGraph.Employee.Update(epEmployeeRow); 
 
employeeMaintGraph.Actions.PressSave();

When inserting a new Employee, employeeMaintGraph.Contact.Current will always return the main 
contact record as the contact record gets automatically inserted into the cache and therefore 
becomes available via the Current property of PXCache/Data View. The use of Select() method is 
a little more generic since it will work in all possible scenarios, whether you need to insert new 
Employee or update an existing one.

Override Bill-To Contact and Bill-To Address Info for a Customer

https://riptutorial.com/ 75



When you need to override Bill-To Contact and Bill-To Address info for a Customer, the very first 
step is to set correct values for the IsBillContSameAsMain and IsBillSameAsMain properties of 
the Customer DAC. Don't forget to invoke Update() method on the Customer cache right after you 
updated IsBillContSameAsMain or IsBillSameAsMain property to commit the current Same as 
Main field value into the cache.

Your next step is to invoke Select() method on the BillContact and BillAddress data views prior 
to assigning any field values. It is also recommended to assign the result of Select() method to the 
BillContact and BillAddress data views' Current property to guarantee that your code modifies 
the current record in Contact and Address PXCache respectively.

public class CustomerMaintExt : PXGraphExtension<CustomerMaint> 
{ 
    public PXAction<Customer> UpdateBillingAddress; 
    [PXButton(CommitChanges = true)] 
    [PXUIField(DisplayName = "Update Bill-To Info")] 
    protected void updateBillingAddress() 
    { 
        Customer currentCustomer = Base.BAccount.Current; 
 
        if (currentCustomer.IsBillContSameAsMain != true) 
        { 
            currentCustomer.IsBillContSameAsMain = true; 
            Base.BAccount.Update(currentCustomer); 
        } 
        else 
        { 
            currentCustomer.IsBillContSameAsMain = false; 
            Base.BAccount.Update(currentCustomer); 
 
            Contact billContact = Base.BillContact.Current = Base.BillContact.Select(); 
            billContact.FullName = "ABC Holdings Inc"; 
            billContact.Phone1 = "+1 (212) 532-9574"; 
            Base.BillContact.Update(billContact); 
        } 
 
        if (currentCustomer.IsBillSameAsMain != true) 
        { 
            currentCustomer.IsBillSameAsMain = true; 
            Base.CurrentCustomer.Update(currentCustomer); 
        } 
        else 
        { 
            currentCustomer.IsBillSameAsMain = false; 
            Base.CurrentCustomer.Update(currentCustomer); 
 
            Address billAddress = Base.BillAddress.Current = Base.BillAddress.Select(); 
            billAddress.AddressLine1 = "65 Broadway"; 
            billAddress.AddressLine2 = "Office Suite 187"; 
            billAddress.City = "New York"; 
            billAddress.CountryID = "US"; 
            billAddress = Base.BillAddress.Update(billAddress); 
            billAddress.State = "NY"; 
            billAddress.PostalCode = "10004"; 
            Base.BillAddress.Update(billAddress); 
        } 
 
        Base.Actions.PressSave(); 

https://riptutorial.com/ 76



    } 
}

Override Bill-To Contact and Bill-To Address Info for a Sales Order

To specify Bill-To Contact and Bill-To Address info for a Sales Order, you should always first 
invoke Select() method on the Billing_Contact and Billing_Address data views prior to 
assigning any field values. It is also recommended to assign the result of Select() method to the 
Billing_Contact and Billing_Address data views' Current property to guarantee that your code 
modifies the current record in SOBillingContact and SOBillingAddress PXCache respectively.

When you need to override Bill-To Contact and Address info for a Sales Order, set correct values 
for the OverrideContact and OverrideAddress properties on the SOBillingContact DAC and the 
SOBillingAddress DAC. Don't forget to invoke Update() method on the SOBillingContact and 
SOBillingAddress caches right after you updated OverrideContact and OverrideAddress 
properties to commit the changes. Once that's done, you can go ahead and specify Bill-To Contact 
and Address info for a Sales Order.

public class SOOrderEntryExt : PXGraphExtension<SOOrderEntry> 
{ 
    public PXAction<SOOrder> UpdateBillingAddress; 
    [PXButton(CommitChanges = true)] 
    [PXUIField(DisplayName = "Update Bill-To Info")] 
    protected void updateBillingAddress() 
    { 
        SOBillingContact contact = Base.Billing_Contact.Current = 
Base.Billing_Contact.Select(); 
        if (contact.OverrideContact == true) 
        { 
            contact.OverrideContact = false; 
            Base.Billing_Contact.Update(contact); 
        } 
        else 
        { 
            contact.OverrideContact = true; 
            contact = Base.Billing_Contact.Update(contact); 
            if (contact == null) 
            { 
                contact = Base.Billing_Contact.Current; 
            } 
 
            contact.Phone1 = "+1 (908) 643-0281"; 
            contact.Email = "sales@usabartend.con"; 
            Base.Billing_Contact.Update(contact); 
        } 
 
        SOBillingAddress address = Base.Billing_Address.Current = 
Base.Billing_Address.Select(); 
        if (address.OverrideAddress == true) 
        { 
            address.OverrideAddress = false; 
            Base.Billing_Address.Update(address); 
        } 
        else 
        { 
            address.OverrideAddress = true; 

https://riptutorial.com/ 77



            address = Base.Billing_Address.Update(address); 
            if (address == null) 
            { 
                address = Base.Billing_Address.Current; 
            } 
 
            address.AddressLine1 = "201 Lower Notch Rd"; 
            address.AddressLine2 = "Office Suite 1936"; 
            address.City = "Little Falls"; 
            address.CountryID = "US"; 
            address = Base.Billing_Address.Update(address); 
            address.State = "NJ"; 
            address.PostalCode = "07425"; 
            Base.Billing_Address.Update(address); 
        } 
 
        Base.Actions.PressSave(); 
    } 
}

Read Modifications to Contact and Address Info through Code online: 
https://riptutorial.com/acumatica/topic/10617/modifications-to-contact-and-address-info-through-
code

https://riptutorial.com/ 78

https://riptutorial.com/acumatica/topic/10617/modifications-to-contact-and-address-info-through-code
https://riptutorial.com/acumatica/topic/10617/modifications-to-contact-and-address-info-through-code


Chapter 19: Modifying Items in a Dropdown 
List

Introduction

In this topic you will learn how to modify field attributes inherited from the PXStringList or PXIntList 
attributes. The demonstrated approach will make sure to not break functionality of the base 
Acumatica ERP product and require minimal maintenance, if any, while upgrading your 
customizations to a newer version of Acumatica.

Remarks

In all samples above, you made changes to both the _AllowedValues and _AllowedLabels arrays. If 
your task is to modify only label (external value) of a drop-down item, consider using Translation 
Dictionaries. For more information on Translation Dictionaries see Acumatica ERP Documentation

Examples

Modifying Marital Statuses

In this example you will be modifying the Marital Status drop-down list found on the Contacts 
form (CR302000): 

https://riptutorial.com/ 79

https://docref.acumatica.com/Wiki/ShowWiki.aspx?pageid=64819546-2b11-4e87-a7db-3a75b1249cb5


To add new items to the PXStringListAttribute successor

The best way to extend drop-down items hard-coded inside an attribute inherited from the 
PXStringList or PXIntList attribute is by increasing size of the _AllowedValues and _AllowedLabels 
arrays in the constructor of your custom field attribute:

[PXLocalizable(Messages.Prefix)] 
public static class MaritalStatusesMessages 
{ 
    public const string CommonLaw = "Living common law"; 
    public const string Separated = "Separated (not living common law)"; 
    public const string DivorcedNoCommonLaw = "Divorced (not living common law)"; 
    public const string NeverMarried = "Never Married"; 
} 
 
public class MaritalStatusesCst1Attribute : MaritalStatusesAttribute 
{ 
    public const string CommonLaw = "L"; 
    public const string Separated = "P"; 
    public const string NeverMarried = "N"; 

https://riptutorial.com/ 80

https://i.stack.imgur.com/ak0FZ.png


 
    public MaritalStatusesCst1Attribute() 
    { 
        Array.Resize(ref _AllowedValues, _AllowedValues.Length + 3); 
        _AllowedValues[_AllowedValues.Length - 3] = CommonLaw; 
        _AllowedValues[_AllowedValues.Length - 2] = Separated; 
        _AllowedValues[_AllowedValues.Length - 1] = NeverMarried; 
        Array.Resize(ref _AllowedLabels, _AllowedLabels.Length + 3); 
        _AllowedLabels[_AllowedLabels.Length - 3] = MaritalStatusesMessages.CommonLaw; 
        _AllowedLabels[_AllowedLabels.Length - 2] = MaritalStatusesMessages.Separated; 
        _AllowedLabels[_AllowedLabels.Length - 1] = MaritalStatusesMessages.NeverMarried; 
    } 
}

In the sample above, you increased size of the _AllowedValues and _AllowedLabels arrays to add 3 
additional items to the Marital Status drop-down list. Internal values, stored in the _AllowedValues 
array, will be assigned to DAC fields and saved in database, and external values from the 
_AllowedValues array represent internal values in the UI.

To test the results, in the Contact DAC extension, decorate MaritalStatus field with the 
MaritalStatusesCst1Attribute:

public class ContactExt : PXCacheExtension<Contact> 
{ 
    [PXRemoveBaseAttribute(typeof(MaritalStatusesAttribute))] 
    [PXMergeAttributes(Method = MergeMethod.Append)] 
    [MaritalStatusesCst1] 
    public string MaritalStatus { get; set; } 
}

Now there are 7 items in the Marital Status drop-down list:

To remove items declared in the PXStringListAttribute 
successor

https://riptutorial.com/ 81

https://i.stack.imgur.com/gYomam.png


To remove specific drop-down item, that was hard-coded inside an attribute inherited from the 
PXStringList or PXIntList attribute, you need to decrease size of the _AllowedValues and 
_AllowedLabels arrays in the constructor of your custom field attribute:

public class MaritalStatusesCst2Attribute : MaritalStatusesCst1Attribute 
{ 
    public MaritalStatusesCst2Attribute() 
    { 
        string[] allowedValues = new string[_AllowedValues.Length - 1]; 
        string[] allowedLabels = new string[_AllowedLabels.Length - 1]; 
        Array.Copy(_AllowedValues, 1, allowedValues, 0, _AllowedValues.Length - 1); 
        Array.Copy(_AllowedLabels, 1, allowedLabels, 0, _AllowedValues.Length - 1); 
        _AllowedValues = allowedValues; 
        _AllowedLabels = allowedLabels; 
    } 
}

In the sample above, you decreased size of the _AllowedValues and _AllowedLabels arrays to 
remove Single item from the Marital Status drop-down list.

To test the results, in the Contact DAC extension, decorate MaritalStatus field with the 
MaritalStatusesCst2Attribute:

public class ContactExt : PXCacheExtension<Contact> 
{ 
    [PXRemoveBaseAttribute(typeof(MaritalStatusesAttribute))] 
    [PXMergeAttributes(Method = MergeMethod.Append)] 
    [MaritalStatusesCst2] 
    public string MaritalStatus { get; set; } 
}

Now there are only 6 items: 3 original and 3 custom - in the Marital Status drop-down list:

To replace items declared in the PXStringListAttribute 

https://riptutorial.com/ 82

https://i.stack.imgur.com/2DI6Sm.png


successor

To replace specific drop-down item, originally hard-coded inside an attribute inherited from the 
PXStringList or PXIntList attribute, you need to update appropriate value in the _AllowedValues and 
_AllowedLabels arrays in the constructor of your custom field attribute:

public class MaritalStatusesCst3Attribute : MaritalStatusesCst2Attribute 
{ 
    public const string DivorcedNoCommonLaw = "V"; 
 
    public MaritalStatusesCst3Attribute() 
    { 
        _AllowedValues[Array.IndexOf(_AllowedValues, Divorced)] = DivorcedNoCommonLaw; 
        _AllowedLabels[Array.IndexOf(_AllowedLabels, Messages.Divorced)] = 
MaritalStatusesMessages.DivorcedNoCommonLaw; 
    } 
}

In the sample above, you replaced D - Divorced item with V - Divorced (not living common law) 
in the _AllowedValues and _AllowedLabels arrays respectively. By doing so, we replace both internal 
and external values of a drop-down item.

To test the results, in the Contact DAC extension, decorate MaritalStatus field with the 
MaritalStatusesCst3Attribute:

public class ContactExt : PXCacheExtension<Contact> 
{ 
    [PXRemoveBaseAttribute(typeof(MaritalStatusesAttribute))] 
    [PXMergeAttributes(Method = MergeMethod.Append)] 
    [MaritalStatusesCst3] 
    public string MaritalStatus { get; set; } 
}

Now there are only 6 items: 2 original, 3 custom and 1 replaced - in the Marital Status drop-down 
list:

https://riptutorial.com/ 83



Read Modifying Items in a Dropdown List online: 
https://riptutorial.com/acumatica/topic/9392/modifying-items-in-a-dropdown-list

https://riptutorial.com/ 84

https://i.stack.imgur.com/oAKA9m.png
https://riptutorial.com/acumatica/topic/9392/modifying-items-in-a-dropdown-list


Chapter 20: Populating report with data 
through code

Examples

This article covers example showing how to create report using memory 
records:

This example shows how to populate report with data returned by a data view delegate. During the 
exercise, we will develop an inquiry screen showing list of Sales Orders between two dates. Data 
view delegate will be used to populate Sales Order information.

Prerequisites:

We start with declaration of the SOOrderFilter DAC:

[Serializable] 
public class SOOrderFilter : IBqlTable 
{ 
    public abstract class dateFrom : IBqlField 
    { 
    } 
    [PXDate()] 
    [PXUIField(DisplayName = "Date From")] 
    public DateTime? DateFrom { get; set; } 
 
    public abstract class dateTo : IBqlField 
    { 
    } 
    [PXDate()] 
    [PXUIField(DisplayName = "Date To")] 
    public DateTime? DateTo { get; set; } 
}

1. 

Continue with declaration of the SOOrderData DAC:

[Serializable] 
public class SOOrderData : IBqlTable 
{ 
    #region OrderType 
    public abstract class orderType : PX.Data.IBqlField 
    { 
    } 
    [PXString(2, IsKey = true, IsFixed = true)] 
    [PXUIField(DisplayName = "Type")] 
    public virtual string OrderType { get; set; } 
    #endregion 
    #region OrderNbr 
    public abstract class orderNbr : PX.Data.IBqlField 
    { 
    } 

2. 

https://riptutorial.com/ 85



    [PXString(15, IsKey = true, IsUnicode = true, InputMask = ">CCCCCCCCCCCCCCC")] 
    [PXUIField(DisplayName = "Order Nbr.")] 
    public virtual string OrderNbr { get; set; } 
    #endregion 
    #region OrderDate 
    public abstract class orderDate : PX.Data.IBqlField 
    { 
    } 
    [PXDate] 
    [PXUIField(DisplayName = "Date")] 
    public virtual DateTime? OrderDate { get; set; } 
    #endregion 
    #region Status 
    public abstract class status : PX.Data.IBqlField 
    { 
    } 
    [PXString(1, IsFixed = true)] 
    [PXUIField(DisplayName = "Status")] 
    [SOOrderStatus.List()] 
    public virtual string Status { get; set; } 
    #endregion 
    #region OrderDesc 
    public abstract class orderDesc : PX.Data.IBqlField 
    { 
    } 
    [PXString(60, IsUnicode = true)] 
    [PXUIField(DisplayName = "Description", Visibility = PXUIVisibility.SelectorVisible)] 
    public virtual string OrderDesc { get; set; } 
    #endregion 
    #region OrderTotal 
    public abstract class orderTotal : PX.Data.IBqlField 
    { 
    } 
    [PXDecimal(4)] 
    [PXDefault(TypeCode.Decimal, "0.0")] 
    public virtual decimal? OrderTotal { get; set; } 
    #endregion 
    #region DueDate 
    public abstract class dueDate : PX.Data.IBqlField 
    { 
    } 
    [PXDate] 
    [PXUIField(DisplayName = "Due Date")] 
    public virtual DateTime? DueDate { get; set; } 
    #endregion 
}

In PX.Documentation namespace сreate your SOOrderInq BLC using the code snippet 
below to declare Results data view delegate, which will later use to populate report with data:

public class SOOrderInq : PXGraph<SOOrderInq> 
{ 
    public PXCancel<SOOrderFilter> Cancel; 
    public PXFilter<SOOrderFilter> Filter; 
 
    [PXFilterable] 
    public PXSelectOrderBy<SOOrderData, 
        OrderBy<Desc<SOOrderData.orderNbr>>> Result; 
    protected virtual IEnumerable result() 

3. 

https://riptutorial.com/ 86



    { 
        BqlCommand cmd = PXSelect<SOOrder, 
            Where<SOOrder.orderDate, 
                Between<Current<SOOrderFilter.dateFrom>, 
                    Current<SOOrderFilter.dateTo>>>>.GetCommand(); 
        PXView inView = new PXView(this, true, cmd); 
        int startRow = PXView.StartRow; 
        int totalRows = 0; 
        foreach (SOOrder order in inView.Select(PXView.Currents, PXView.Parameters, 
            PXView.Searches, PXView.SortColumns, PXView.Descendings, PXView.Filters, 
            ref startRow, PXView.MaximumRows, ref totalRows)) 
        { 
            yield return new SOOrderData 
            { 
                OrderType = order.OrderType, 
                OrderNbr = order.OrderNbr, 
                OrderDate = order.OrderDate, 
                Status = order.Status, 
                OrderDesc = order.OrderDesc, 
                OrderTotal = order.OrderTotal, 
                DueDate = order.DueDate, 
            }; 
        } 
        PXView.StartRow = 0; 
    } 
 
    public SOOrderInq() 
    { 
        Result.Cache.AllowInsert = false; 
        Result.Cache.AllowUpdate = false; 
        Result.Cache.AllowDelete = false; 
    } 
 
    public PXAction<SOOrderFilter> Report; 
    [PXButton] 
    [PXUIField(DisplayName = "View As Report", MapEnableRights = PXCacheRights.Select, 
MapViewRights = PXCacheRights.Select)] 
    protected virtual void report() 
    { 
        PXReportResultset reportData = new PXReportResultset(typeof(SOOrderData)); 
        foreach (SOOrderData row in Result.Select()) 
        { 
            reportData.Add(row); 
        } 
        throw new PXReportRequiredException(reportData, "SO610501", 
PXBaseRedirectException.WindowMode.NewWindow, "Report"); 
    } 
}

Create SO401090.aspx page by selecting FormDetail template, and set the following 
properties for PXDataSource:

4. 

PrimaryView: Filter•

TypeName: PX.Documentation.SOOrderInq

After that add input control on the Filter header form:

•

https://riptutorial.com/ 87



 <px:PXFormView ID="form" runat="server" DataSourceID="ds" Style="z-index: 100" 
     Width="100%" DataMember="Filter"> 
     <Template> 
         <px:PXLayoutRule runat="server" StartRow="True" Merge="True" LabelsWidth="XS" 
ControlSize="S" /> 
         <px:PXDateTimeEdit ID="edDateFrom" runat="server" CommitChanges="True" 
DataField="DateFrom" /> 
         <px:PXDateTimeEdit ID="edDateTo" runat="server" CommitChanges="True" 
DataField="DateTo" /> 
         <px:PXLayoutRule runat="server" /> 
     </Template> 
 </px:PXFormView>

And create the following columns for the Detail grid:

 <px:PXGrid ID="grid" runat="server" DataSourceID="ds" Style="z-index: 100" 
     Width="100%" Height="150px" SkinID="Inquire" AllowPaging="True" 
AdjustPageSize="Auto"> 
     <Levels> 
         <px:PXGridLevel DataMember="Result"> 
             <Columns> 
                 <px:PXGridColumn DataField="OrderType" /> 
                 <px:PXGridColumn DataField="OrderNbr" Width="90px" /> 
                 <px:PXGridColumn DataField="OrderDate" Width="90px" /> 
                 <px:PXGridColumn DataField="Status" /> 
                 <px:PXGridColumn DataField="OrderDesc" Width="200px" /> 
                 <px:PXGridColumn DataField="DueDate" Width="90px" /> 
             </Columns> 
         </px:PXGridLevel> 
     </Levels> 
     <AutoSize Container="Window" Enabled="True" MinHeight="150" /> 
 </px:PXGrid>

Add created screen to the Site Map5. 

To populate report with data returned by a data view delegate:

Paste SO610501.rpx report file in ReportsCustomized folder of your Acumatica website, then 
add Sales Orders report in the Site Map Hidden folder

1. 

https://riptutorial.com/ 88

https://drive.google.com/file/d/0B5OI3IlOznP8dXVoYkN1aXJlT28/view?usp=sharing


Declare View as Report action in the SOOrderInq BLC to generate and show Sales Orders 
report. The PXReportRequiredException accepts PXReportResultset prepared inside the 
action to populate report with data returned by Result data view delegate:

public class SOOrderInq : PXGraph<SOOrderInq> 
{ 
    ... 
 
    public PXAction<SOOrderFilter> Report; 
    [PXButton] 
    [PXUIField(DisplayName = "View as Report", MapEnableRights = PXCacheRights.Select, 
MapViewRights = PXCacheRights.Select)] 
    protected virtual void report() 
    { 
        PXReportResultset reportData = new PXReportResultset(typeof(SOOrderData)); 
        foreach (SOOrderData row in Result.Select()) 
        { 
            reportData.Add(row); 
        } 
        throw new PXReportRequiredException(reportData, "SO610501", 
PXBaseRedirectException.WindowMode.NewWindow, "Report"); 
    } 
}

2. 

https://riptutorial.com/ 89

https://i.stack.imgur.com/6CVI4.png


Read Populating report with data through code online: 
https://riptutorial.com/acumatica/topic/7700/populating-report-with-data-through-code

https://riptutorial.com/ 90

https://i.stack.imgur.com/zQXj2.png
https://riptutorial.com/acumatica/topic/7700/populating-report-with-data-through-code


Chapter 21: Publishing skipped already 
applied customization content

Introduction

When publishing a customization project, you might see some item being skipped for the reason of 
being already applied. Ex:

EntityEndpoint EntityEndpoint#6.00.001§DefaultPlus(skipped, already applied)

This can happen for any items contained saved in the database. Ex: Generic inquiries, reports, 
site map nodes, DB scripts, system locales, import/export scenarios, shared filters, access rights, 
wikis, web service endpoints and analytical reports.

Examples

Publish with cleanup from the customization screen

You must obviously select the project that you want to publish.1. 
You must click on the small arrow right next to the "Publish" button.2. 
You must click on the "Publish to Multiple Companies" option.3. 

On the smart panel that will appear you must select the companies that you want to publish 
the project(s). Only one company is also a possibility.

4. 

Check the check box indicating "Publish with Cleanup", this will make sure to reapply all item 
present in the customization project replacing the already present one with their newer 
version.

5. 

https://riptutorial.com/ 91

https://i.stack.imgur.com/28g4V.jpg


Publish with clean up from inside a customization project

Open the customization project that you want to publish with this method.1. 
Open the publish menu at the top and select the "Publish with Cleanup" option.2. 

https://riptutorial.com/ 92

https://i.stack.imgur.com/UTwmQ.jpg


*Please take note that all customization project that are selected on the customization screen will 
be republish even if you are inside only a single project.

Read Publishing skipped already applied customization content online: 
https://riptutorial.com/acumatica/topic/10155/publishing-skipped-already-applied-customization-
content

https://riptutorial.com/ 93

https://i.stack.imgur.com/O0j3Z.jpg
https://riptutorial.com/acumatica/topic/10155/publishing-skipped-already-applied-customization-content
https://riptutorial.com/acumatica/topic/10155/publishing-skipped-already-applied-customization-content


Chapter 22: Replacing Images on the Login 
Page

Introduction

In this topic you will learn how to replacing standard Acumatica images on the login page. The 
demonstrated approach will make sure to keep your custom images on login page after the 
upgrade to a newer version and restore original images, provided by Acumatica, if at some point 
your customization appears unpublished.

Examples

Using customization to replace images on the login page

To create a customization package replacing images on the login page, follow the steps below on 
your local Acumatica instance:

Create a new folder in the Acumatica instance folder. For this example I added a folder 
called IconsCustomized in my local LoginImages instance:

1. 

Add your custom images in this folder. For the sake of this example, I used images from 
Acumatica 4.2 login page:

2. 

https://riptutorial.com/ 94

https://i.stack.imgur.com/VZoI2m.png
https://i.stack.imgur.com/RWy0Am.png


Keep in mind, to replace all images on the login page, you have to add at least as many 
custom images in your IconsCustomized folder as the number of the login_bg*.* files 
originally present in the Icons folder of your Acumatica website. It's perfectly fine to use 
same image or images multiple times (by naming the files differently), if the number of your 
custom images is less then what was originally provided by Acumatica.

Now login to your Acumatica application, create new customization project called 
LoginPageImages and open it in Customization Manager.

3. 

In Customization Manager, navigate to the Files section and click the Add New Record 
button to open the Add Files dialog:

4. 

In the Add Files dialog, select all files from your IconsCustomized folder and click Save:

Now you have the custom login page images in the customization project, but you still 
need to edit the path so they correctly replace the standard images.

5. 

In Customization Manager, select Edit Project XML from the File menu:6. 

https://riptutorial.com/ 95

https://i.stack.imgur.com/1AUEXm.png
https://i.stack.imgur.com/CqJrwm.png


For all the File tags, generated for your custom images, charge the AppRelativePath 
attribute to AppRelativePath="Icons..." and set the SystemFile attribute to True for those 
images, that currently present in the Icons folder, then click the Save to Database button 
when done:

While publishing customization, Acumatica will automatically backup files currently present in 
the website folder, which are replaced by files from the customization with SystemFile 
attribute set True.

7. 

If you now proceed with publishing the customization, it's very likely for Some files have 
been modified in the file system. error message to show up. To prevent this quite 
frightening message from appearing, open you project in Customization Manager, navigate 
to the Files section and click Detect Modified Files to open the Modified Files Detected 
dialog, then click the Discard All Changes button:

8. 

https://riptutorial.com/ 96

https://i.stack.imgur.com/RYu7Om.png
https://i.stack.imgur.com/tDvSc.png


Now you can go ahead and publish the customization to enjoy your custom images on the 
login page:

9. 

https://riptutorial.com/ 97

https://i.stack.imgur.com/FszDEm.png


Read Replacing Images on the Login Page online: 
https://riptutorial.com/acumatica/topic/9657/replacing-images-on-the-login-page

https://riptutorial.com/ 98

https://i.stack.imgur.com/mrj0N.jpg
https://riptutorial.com/acumatica/topic/9657/replacing-images-on-the-login-page


Chapter 23: Significant API Changes Between 
Versions

Examples

PXSelectGroupBy and Bit Values in Acumatica 5.1 and 5.2+

The method of SQL generation from BQL PXSelectGroupBy<> data views has been changed in 
Acumatica Framework 5.2.

The sections below illustrate the differences using the example of PXSelectGroupBy<FinYear, 
Aggregate<GroupBy<FinYear.finPeriods>>>.Select(graph):

Acumatica Framework 5.2 and Later

SELECT Max([finyear].[year]), 
       Max([finyear].[startdate]), 
       Max([finyear].[enddate]), 
       [finyear].[finperiods], 
       -- Attention! 
       CONVERT (BIT, Max([finyear].[customperiods] + 0)), 
       -- 
       Max([finyear].[begfinyearhist]), 
       Max([finyear].[periodsstartdatehist]), 
       Max([finyear].[noteid]), 
       ( NULL ), 
       ( NULL ), 
       ( NULL ), 
       Max([finyear].[tstamp]), 
       Max([finyear].[createdbyid]), 
       Max([finyear].[createdbyscreenid]), 
       Max([finyear].[createddatetime]), 
       Max([finyear].[lastmodifiedbyid]), 
       Max([finyear].[lastmodifiedbyscreenid]), 
       Max([finyear].[lastmodifieddatetime]) 
FROM   finyear FinYear 
WHERE  ( finyear.companyid = 2 ) 
GROUP  BY [finyear].[finperiods] 
ORDER  BY Max([finyear].[year])

Acumatica Framework 5.1 and Earlier

SELECT Max([finyear].[year]), 
       Max([finyear].[startdate]), 
       Max([finyear].[enddate]), 
       [finyear].[finperiods], 
       -- Attention! 
       ( NULL ), 

https://riptutorial.com/ 99



       -- 
       Max([finyear].[begfinyearhist]), 
       Max([finyear].[periodsstartdatehist]), 
       ( NULL ), 
       ( NULL ), 
       ( NULL ), 
       Max([finyear].[tstamp]), 
       ( NULL ), 
       Max([finyear].[createdbyscreenid]), 
       Max([finyear].[createddatetime]), 
       ( NULL ), 
       Max([finyear].[lastmodifiedbyscreenid]), 
       Max([finyear].[lastmodifieddatetime]) 
FROM   finyear FinYear 
WHERE  ( finyear.companyid = 2 ) 
GROUP  BY [finyear].[finperiods] 
ORDER  BY Max([finyear].[year]) 

Explanation

By default, the Max() aggregate is applied to all fields not explicitly mentioned in a BQL statement.

However, in Acumatica 5.1 and earlier, it excludes the CreatedByID, LastModifiedByID, and bool 
fields. When translated into SQL, these fields will always be null unless you explicitly grouped by.

Starting from version 5.2, Max() will be applied by default for them, too.

Read Significant API Changes Between Versions online: 
https://riptutorial.com/acumatica/topic/9697/significant-api-changes-between-versions

https://riptutorial.com/ 100

https://riptutorial.com/acumatica/topic/9697/significant-api-changes-between-versions


Chapter 24: User Interface Techniques

Examples

Creating a Dropdown Menu for a Screen

Suppose that you need to define a dropdown menu for a particular Acumatica screen, such as the 
Reports menu on the following screenshot.

This can be achieved in three different ways:

By adding a toolbar with a menu item to the screen's ASPX•
By declaring a special "folder" action to the graph and adding menu items in the code•
By using the Automation subsystem of the Acumatica Framework (not covered by this 
example)

•

Option 1: Creating a Dropdown Menu in 
ASPX

First of all, make sure that the ASPX page's PXDataSource element contains all the necessary 
commands corresponding to the graph actions that you would like to perform when clicking on a 
menu item.

<px:PXDataSource 
    ID="ds" runat="server" Visible="True" PrimaryView="TranslHistRecords" 
TypeName="PX.Objects.CM.TranslationHistoryMaint"> 
    <CallbackCommands> 
        ... 
        <px:PXDSCallbackCommand Name="TranslationDetailsReport" Visible="False"/> 
        ... 
    </CallbackCommands> 
</px:PXDataSource>

Next, add a custom toolbar element right after the PXDataSource element. Within it, define a 
PXToolbarButton with the desired dropdown menu items linking to the respective datasource 
commands, as shown in the following code.

<px:PXToolBar ID="toolbar1" runat="server" SkinID="Navigation" BackColor="Transparent" 
CommandSourceID="ds"> 

https://riptutorial.com/ 101

https://i.stack.imgur.com/vBJph.png


    <Items> 
        <px:PXToolBarButton Text="Reports"> 
            <MenuItems> 
                <px:PXMenuItem Text="Translation Details" CommandSourceID="ds" 
CommandName="TranslationDetailsReport"/> 
            </MenuItems> 
        </px:PXToolBarButton> 
    </Items> 
    <Layout ItemsAlign="Left" /> 
</px:PXToolBar>

This option might look tempting due to its simplicity; however, there is one important drawback. If 
you implement such a dropdown on a screen with a processing indicator (such as a document 
release screen or a mass-processing screen), the indicator will appear to the left of your dropdown 
menu, as shown below.

If this is not desirable, consider defining a dropdown menu in the code as described in the Option 
2 section below.

Option 2: Creating a Menu in the Graph

First, in the page's graph, declare a "folder" action that will correspond to the dropdown menu 
button.

public PXAction<TranslationHistory> reportsFolder; 
[PXUIField(DisplayName = "Reports", MapEnableRights = PXCacheRights.Select)] 
[PXButton(SpecialType = PXSpecialButtonType.Report)] 
protected virtual IEnumerable Reportsfolder(PXAdapter adapter) 
{ 
    return adapter.Get(); 
}

Next, in the graph's constructor, indicate that the action is indeed a dropdown menu and add all 
actions that need to be displayed as menu items, as shown below.

https://riptutorial.com/ 102

https://i.stack.imgur.com/XgXEu.png


public TranslationHistoryMaint() 
{ 
    this.reportsFolder.MenuAutoOpen = true; 
    this.reportsFolder.AddMenuAction(this.translationDetailsReport); 
}

If you select this approach, the processing indicator will always appear to the right of your menu, 
which is arguably better UX.

Read User Interface Techniques online: https://riptutorial.com/acumatica/topic/10150/user-
interface-techniques

https://riptutorial.com/ 103

https://riptutorial.com/acumatica/topic/10150/user-interface-techniques
https://riptutorial.com/acumatica/topic/10150/user-interface-techniques


Chapter 25: Using Customization Plug-In to 
Make Changes in Multiple Companies

Introduction

With classes derived from CustomizationPlug you can utilize capabilities of the Acumatica 
Customization Platform and execute custom code after the customization project has been 
published. In this topic you will learn how customization plug-ins can be used to make changes in 
multiple companies.

More information on customization plug-ins is available in Acumatica Customization Guide

Examples

Implementation of a customization plug-in to update multiple companies

To create a customization plugin, you simply create a class derived from CustomizationPlug and 
package it into customization. While the system is publishing customization project, it will execute 
the OnPublished and UpdateDatabase methods implemented in your customization plugin only 
within the current company scope.

With that said, customization plug-in will never make changes to any other than current company, 
unless it uses PXLoginScope to log into all companies, one after the other, available to the 
current user publishing customization.

Below is an example of customization plugin creating MyVerticalSolution user role in all 
companies available to the current user:

public class MyVerticalSolutionInit : CustomizationPlugin 
{ 
    public override void UpdateDatabase() 
    { 
        var companies = PXAccess.GetCompanies(); 
 
        foreach (var company in companies) 
        { 
            using (var loginScope = new PXLoginScope(string.Format("{0}@{1}", 
                PXAccess.GetUserLogin(), company))) 
            { 
                string roleName = "MyVerticalSolution"; 
                RoleAccess graph = PXGraph.CreateInstance<RoleAccess>(); 
 
                Roles existingRole = graph.Roles.Search<Roles.rolename>(roleName); 
                if (existingRole != null) 
                { 
                    WriteLog(string.Format("{0} already exists in company '{1}' - skipped", 
roleName, company)); 
                    continue; 
                } 

https://riptutorial.com/ 104

https://docref.acumatica.com/wiki/ShowWiki.aspx?pageid=c69443fe-4d32-47a9-85aa-b2882aa259ef


 
                var wmsRole = new Roles(); 
                wmsRole.Rolename = roleName; 
                wmsRole.Descr = "User Role for MyVerticalSolution"; 
 
                graph.Roles.Insert(wmsRole); 
                graph.Save.Press(); 
 
                WriteLog(string.Format("{0} was succesfully created in company '{1}'", 
roleName, company)); 
            } 
        } 
    } 
}

To obtain a list of companies available to the current user, you simply invoke static 
PXAccess.GetCompanies() method. Then PXLoginScope is used to log into each of the available 
companies to create MyVerticalSolution user role. Notice instance of the RoleAccess BLC re-
initialized for each company - this is an absolutely mandatory step to making changes to multiple 
companies at a time.

Let's assume there are 2 companies on your Acumatica instance: CompanyA and CompanyB. 
The admin user, that you are going to use to publish customization, has access to both 
companies and MyVerticalSolution role, created by customization plug-in, already exist in 
CompanyA: 

After you published customization (while logged into CompanyA or CompanyB) with earlier 
developed customization plug-in to create MyVerticalSolution role in all companies available to 
the current user, notice MyVerticalSolution role skipped for CompanyA and successfully created 
for CompanyB.

https://riptutorial.com/ 105

https://i.stack.imgur.com/Yr181.png


Next time you publish this customization, MyVerticalSolution role will be skipped for both 
companies in your Acumatica application:

https://riptutorial.com/ 106

https://i.stack.imgur.com/oU3Ud.png


Read Using Customization Plug-In to Make Changes in Multiple Companies online: 
https://riptutorial.com/acumatica/topic/9522/using-customization-plug-in-to-make-changes-in-
multiple-companies

https://riptutorial.com/ 107

https://i.stack.imgur.com/Jvv5h.png
https://riptutorial.com/acumatica/topic/9522/using-customization-plug-in-to-make-changes-in-multiple-companies
https://riptutorial.com/acumatica/topic/9522/using-customization-plug-in-to-make-changes-in-multiple-companies


Credits

S. 
No

Chapters Contributors

1
Getting started with 
acumatica

Community

2
Acumatica BQL 
Reference

wh1t3cat1k

3
Acumatica Platform 
Attributes Reference

wh1t3cat1k

4
Adding Attribute 
Support to out-of-box 
Sales Order Entity

DChhapgar

5
Changing caption 
dynamically using 
readonly DAC fields.

cbetabeta, Simon ML

6
Changing Size of 
Selector Drop-Down 
Window

Gabriel, RuslanDev

7
Conditionally Hiding 
Tabs

RuslanDev

8
Creating Date and 
Time Fields in 
Acumatica

RuslanDev

9
Customization 
Mechanisms

wh1t3cat1k

10
Displaying an Error 
Requiring to Enter 
Entity Data

wh1t3cat1k

11

Downloading Files 
Attached to a Detail 
Entity Using 
Contract-Based API

RuslanDev

Exporting Records 
via REST Contract-

12 RuslanDev

https://riptutorial.com/ 108

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/499206/wh1t3cat1k
https://riptutorial.com/contributor/499206/wh1t3cat1k
https://riptutorial.com/contributor/3973142/dchhapgar
https://riptutorial.com/contributor/7032594/cbetabeta
https://riptutorial.com/contributor/2528023/simon-ml
https://riptutorial.com/contributor/624448/gabriel
https://riptutorial.com/contributor/3929852/ruslandev
https://riptutorial.com/contributor/3929852/ruslandev
https://riptutorial.com/contributor/3929852/ruslandev
https://riptutorial.com/contributor/499206/wh1t3cat1k
https://riptutorial.com/contributor/499206/wh1t3cat1k
https://riptutorial.com/contributor/3929852/ruslandev
https://riptutorial.com/contributor/3929852/ruslandev


Based API

13
Exporting Records 
via Screen-Based 
API

RuslanDev

14

Extending List of 
Entities Supported 
by Tasks, Events 
and Activities

RuslanDev

15
Filtering with multiple 
value with only one 
selector

samol518

16 Freight Calculation RuslanDev

17
Modifications to 
Base Data Views

RuslanDev

18
Modifications to 
Contact and Address 
Info through Code

RuslanDev

19
Modifying Items in a 
Dropdown List

RuslanDev

20
Populating report 
with data through 
code

Gabriel, RuslanDev

21

Publishing skipped 
already applied 
customization 
content

samol518

22
Replacing Images on 
the Login Page

RuslanDev

23
Significant API 
Changes Between 
Versions

wh1t3cat1k

24
User Interface 
Techniques

wh1t3cat1k

25

Using Customization 
Plug-In to Make 
Changes in Multiple 
Companies

RuslanDev

https://riptutorial.com/ 109

https://riptutorial.com/contributor/3929852/ruslandev
https://riptutorial.com/contributor/3929852/ruslandev
https://riptutorial.com/contributor/4787297/samol518
https://riptutorial.com/contributor/3929852/ruslandev
https://riptutorial.com/contributor/3929852/ruslandev
https://riptutorial.com/contributor/3929852/ruslandev
https://riptutorial.com/contributor/3929852/ruslandev
https://riptutorial.com/contributor/624448/gabriel
https://riptutorial.com/contributor/3929852/ruslandev
https://riptutorial.com/contributor/4787297/samol518
https://riptutorial.com/contributor/3929852/ruslandev
https://riptutorial.com/contributor/499206/wh1t3cat1k
https://riptutorial.com/contributor/499206/wh1t3cat1k
https://riptutorial.com/contributor/3929852/ruslandev

	About
	Chapter 1: Getting started with acumatica
	Remarks
	Examples
	Installation or Setup


	Chapter 2: Acumatica BQL Reference
	Examples
	BQL Parse and Verify


	Parse
	Verify
	Conclusion
	Chapter 3: Acumatica Platform Attributes Reference
	Examples
	PXFormula Attribute


	General Description
	Modes of Usage
	PXFormulaAttribute Properties and Constructor Parameters
	Usage
	Order of Fields
	Formula Context and Its Modifiers
	Current<TRecord.field> and Current2<TRecord.field>
	Parent<TParent.field>
	IsTableEmpty<TRecord>
	Selector<KeyField, ForeignOperand>

	Fetches a PXSelectorAttribute defined on the foreign key field (KeyField) of the current DAC.
	Fetches the foreign data record currently referenced by the selector.
	Calculates and returns an expression on that data record as defined by ForeignOperand.
	Using Formulas on Unbound Fields
	List of Built-In Common Formulas
	Direct and Mediated Circular References in Formulas
	Control Flow in Conditional Formulas
	Using Multiple Formulas on One Field
	PXRestrictor Attribute

	Introduction
	Details
	Options
	Overriding Inherited Restrictors
	Global Caching

	Recommendations for Using
	Use Restrictor Conditions Only

	Chapter 4: Adding Attribute Support to out-of-box Sales Order Entity
	Introduction
	Remarks
	Examples
	This article provides how-to guide to add Acumatica ERP Attribute support to out-of-box Sales Order Entity


	Chapter 5: Changing caption dynamically using readonly DAC fields.
	Introduction
	Examples
	How-To


	Chapter 6: Changing Size of Selector Drop-Down Window
	Introduction
	Examples
	Changing default size ranges for selector drop-down window


	To expand drop-down window width of the Customer selector
	Chapter 7: Conditionally Hiding Tabs
	Introduction
	Examples
	VisibleExp Property of the PXTab Control in Aspx


	To hide Activities tab for Leads with New status
	AllowSelect Property on Data Views

	To hide Cross-Reference tab for Stock Items that can not be sold
	To hide Attributes tab for inactive Stock Items
	Chapter 8: Creating Date and Time Fields in Acumatica
	Introduction
	Examples
	The PX(DB)DateAndTime Attribute
	The PXDBTime Attribute
	The PX(DB)DateAttribute Attribute
	The PXDBTimeSpan Attribute
	The PXTimeList Attribute


	Chapter 9: Customization Mechanisms
	Examples
	Using CacheAttached to Override DAC Attributes in the Graph


	Replacing All Attributes
	Appending a New Attribute to the DAC Field
	Overriding a Single Property of an Attribute
	Replacing an Attribute with Another Attribute
	Application Order of the Attribute-Customizing Attributes
	Chapter 10: Displaying an Error Requiring to Enter Entity Data
	Examples
	Displaying an Error Requiring the User to Enter Entity Data


	Chapter 11: Downloading Files Attached to a Detail Entity Using Contract-Based API
	Introduction
	Remarks
	Examples
	HTTP Cookie Header from a SOAP Response Shared by SOAP and REST Clients


	Chapter 12: Exporting Records via REST Contract-Based API
	Introduction
	Remarks
	Examples
	Data Export in a Single REST Call


	To export all stock items in a single REST call:
	To export all sales order of the IN type in a single REST call:
	Implementing Pagination on Multiple REST Requests

	To export stock items in batches of 10 records with multiple REST calls:
	To export all sales orders in batches of 100 records with multiple REST calls:
	Chapter 13: Exporting Records via Screen-Based API
	Introduction
	Remarks
	Examples
	Data Export from an Entry Form with a Single Primary Key


	To export all stock items in a single web service call:
	To export stock items in batches of 10 records:
	Data Export from an Entry Form with a Composite Primary Key

	To request all types of existing orders:
	To export records of each type independently in batches:
	To export records of a specific type:
	Chapter 14: Extending List of Entities Supported by Tasks, Events and Activities
	Introduction
	Examples
	Adding Test Work Orders to the Related Entity Description Field


	Chapter 15: Filtering with multiple value with only one selector
	Introduction
	Examples
	Retrieving Sales Order for multilple customer


	Chapter 16: Freight Calculation
	Introduction
	Examples
	Overriding Freight Amount in Shipment and Invoice


	FreightCalculator
	Sales Orders
	Shipments

	Overriding Freight Amount
	Understanding implementation of the FreightCalculatorCst class in the sample above
	Chapter 17: Modifications to Base Data Views
	Introduction
	Examples
	APInvoiceEntry BLC: add additional restriction to poReceiptLinesSelection data view


	Chapter 18: Modifications to Contact and Address Info through Code
	Introduction
	Examples
	Specify Contact and Address information for a new Employee
	Override Bill-To Contact and Bill-To Address Info for a Customer
	Override Bill-To Contact and Bill-To Address Info for a Sales Order


	Chapter 19: Modifying Items in a Dropdown List
	Introduction
	Remarks
	Examples
	Modifying Marital Statuses

	To add new items to the PXStringListAttribute successor
	To remove items declared in the PXStringListAttribute successor
	To replace items declared in the PXStringListAttribute successor

	Chapter 20: Populating report with data through code
	Examples
	This article covers example showing how to create report using memory records:


	Chapter 21: Publishing skipped already applied customization content
	Introduction
	Examples
	Publish with cleanup from the customization screen
	Publish with clean up from inside a customization project


	Chapter 22: Replacing Images on the Login Page
	Introduction
	Examples
	Using customization to replace images on the login page


	Chapter 23: Significant API Changes Between Versions
	Examples
	PXSelectGroupBy and Bit Values in Acumatica 5.1 and 5.2+


	Acumatica Framework 5.2 and Later
	Acumatica Framework 5.1 and Earlier
	Explanation
	Chapter 24: User Interface Techniques
	Examples
	Creating a Dropdown Menu for a Screen


	Option 1: Creating a Dropdown Menu in ASPX
	Option 2: Creating a Menu in the Graph
	Chapter 25: Using Customization Plug-In to Make Changes in Multiple Companies
	Introduction
	Examples
	Implementation of a customization plug-in to update multiple companies


	Credits



