
ada

#ada

Table of Contents

About 1

Chapter 1: Getting started with ada 2

Remarks 2

Versions 2

Examples 2

Installation or Setup 2

Hello World 3

Version 3

Libraries 4

Chapter 2: Attribute Image 5

Introduction 5

Syntax 5

Remarks 5

Examples 5

Print out float using the Image attribute 5

Result 6

Print out integer using the Image attribute 6

Result 6

Print out enumeration using the Image attribute 6

Result 6

Print out Enumeration using attribute Image 7

Result 7

Print out Integer using attribute Image 7

Result 7

Print out Float using attribute Image 7

Result 7

As Inverses 7

Result 8

Chapter 3: Enumeration 9

Syntax 9

Examples 9

Iterating literals 9

Result 9

Using package Enumeration_IO 9

Result 10

First character upper case rest lower case literals 10

Result 10

Title Case, Using Enumeration_IO, For a Subrange 10

Result 11

Chapter 4: Files and I/O streams 12

Remarks 12

Examples 12

Create and write to file 12

Resulting file file.txt 12

Create And Write To A Stream 12

Resulting File 13

Open And Read From Stream File 13

Chapter 5: Genericity in Ada 15

Examples 15

Generic Subprograms 15

Generic Packages 15

Generic Parameters 15

Chapter 6: Implementing the producer-consumer pattern 16

Introduction 16

Syntax 16

Remarks 16

Examples 16

Using a synchronized buffer 16

Producer-Consumer pattern using the Ada Rendezvous mechanism 17

Producer-Consumer with a sampling consumer 18

Multiple Producers and Consumers Sharing the same buffer 19

Chapter 7: Outputting numbers 21

Introduction 21

Remarks 21

Examples 21

Print integers, generously using space 21

Result 21

Print Integers, Using Base 16 (Hexadecimal) 22

Result 22

Print Decimal Fixed Point Numbers, aka Money 22

Result 23

Print Multiple Items On One Line 23

Result 24

Chapter 8: package Ada.Text_IO 25

Introduction 25

Examples 25

Put_Line 25

Result 25

Chapter 9: Packages 26

Syntax 26

Remarks 26

Examples 26

More on Packages 26

Parent-Child Relationship 27

Chapter 10: Parameterized Types 29

Introduction 29

Examples 29

Discriminated record types 29

Variant Record Structures 29

Chapter 11: Scalar Types 31

Introduction 31

Syntax 31

Parameters 31

Remarks 31

Examples 31

Enumeration 31

Singed Integer 32

Modular Integer 32

Floating Point 32

Fixed Point (Ordinary) 32

Fixed Point (Decimal) 32

Chapter 12: Task 34

Syntax 34

Examples 34

One simple task 34

Result 34

One simple task and one loop 34

Result 34

One simple task and two loops 35

Result 35

Two simple task and two loops 35

Result 36

A task that increment a number after entry 36

Interrupt Handling 37

Credits 40

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: ada

It is an unofficial and free ada ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official ada.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/ada
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with ada

Remarks

Ada is an internationally standardized, high-level, object-oriented computer programming
language that supports strong typing and structured programming. More information may be found
here.

Versions

Version Release Date

Ada 2012(TC-1) 2016-04-01

Ada 2012 2012-12-10

Ada 2005 2007-01-01

Ada 95 1995-12-10

Ada 83 1983-01-01

Examples

Installation or Setup

Ada is a programming language for which there exists multiple compilers.

One of these compilers, and perhaps the most used, is GNAT. It is part of the GCC
toolchain. It can be installed from several sources:

The yearly GPL release done by AdaCore, available for free on libre site. This version
has undergone all internal testing that AdaCore does for its pro releases, is available
on a large number of platforms. The compiler and its runtime are released under the
GPL license, and, unless you are using no runtime, any executables you distribute will
also be covered by this license. For academics and projects in their initial stages, this
is not a problem.

○

The FSF gcc receives the same patches regularly. The version of GNAT might not be
always up-to-date, but catches up regularly.

○

A number of contributors are packaging that FSF version for various Linux distributions
(Debian-based systems, among others) and binaries for Mac OS X. Using the package
manager from your distribution might be the simplest way to install GNAT. Such
versions come with the standard GCC license, and allow you to write closed source

○

•

https://riptutorial.com/ 2

http://stackoverflow.com/tags/ada/info
https://libre.adacore.com
https://gcc.gnu.org
https://sourceforge.net/projects/gnuada/

code.

AdaCore also provides GNAT Pro, which comes with the standard GCC license which
allows you to write closed source code. More importantly perhaps, it comes with
support, should you have questions on the use of the language, tools, how to best
implement something, and of course bug reports and enhancement requests.

○

Another number of compilers are listed in the Ada WikiBook, together with installation instructions.
Getadanow.com features editions of FSF GNAT, ready-made for various operating systems on
several types of hardware, or virtual machines. The site also collects resources for learning and
sharing Ada.

Hello World

with Ada.Text_IO;

procedure Hello_World is
begin
 Ada.Text_IO.Put_Line ("Hello World");
end Hello_World;

Alternatively, after importing the package Ada.Text_IO, you can say use Ada.Text_IO; in order to be
able to use Put_Line without explicitly declaring what package it should come from, as such:

with Ada.Text_IO; use Ada.Text_IO;

procedure Hello_World is
begin
 Put_Line ("Hello World");
end Hello_World;

If you are using the gnat compiler, this simple program can be compiled with

gnatmake hello_world

This will generate a number of files, including a hello_world (or hello_world.exe on Windows) that
you can execute to see the famous message. The name of the executable is computed
automatically from the name of the main Ada subprogram. In Ada a main subprogram can have
any name. It only has to be a parameter-less procedure, that you give as an argument to gnatmake.

Other compilers have similar requirements, although of course the build command is different.

Version

The standard Ada programming language is defined in the Ada Reference Manual. Interim version
changes and release notes are discussed in the corresponding rationale documents.
Implementations typically document their compliance with the standard in the form of a user guide
and/or reference manual, for example.

Ada 2012•

https://riptutorial.com/ 3

https://www.adacore.com
https://en.wikibooks.org/wiki/Ada_Programming/Installing
https://en.wikibooks.org/wiki/Ada_Programming
http://getadanow.com
http://www.riptutorial.com/ada/topic/8839/package-ada-text-io
http://www.riptutorial.com/ada/example/27532/put-line
http://www.ada-auth.org/arm.html
http://www.riptutorial.com/ada/example/13580/installation-or-setup

Ada 2012 Language Reference Manual○

Rationale for Ada 2012○

Ada 2005

Ada 2005 Language Reference Manual○

Rationale for Ada 2005○

•

Ada 95

Ada 95 Language Reference Manual○

Rationale for Ada 95○

•

Ada 83

Ada 83 Language Reference Manual○

Ada 83 Rationale for the Design of the Ada® Programming Language○

•

Libraries

As for any programming language, Ada comes with extensive libraries to accomplish various
tasks. Here are some pointers to some of them, although searching on github will lead some more.

The Ada runtime itself, distributed will all compilers, includes an extensive set of packages
and annexes, ranging from data structures and containers, to input/output, string
manipulation, time manipulation, files, numeric computations, multi-tasking, command line
switches, random numbers,...

•

The GNAT compiler comes with its own extended runtime, with new packages in the GNAT
hierarchy, that provide support for regular expressions, sorting, searching, unicode, CRC,
time input/output, ...

•

gnatcoll is a library that is available from AdaCore's libre site, and includes an extensive
logging framework, extending applications with python, mmap, an extensive framework to
interface with file systems, parsing email messages and mailboxes, an extensive framework
to interact with databases in a type-safe manner, interface to various libraries like icon,
readline, terminal colors, support for reference counted types for automatic memory
management, JSON files,...

•

XML/Ada is a library to parse and validate XML documents•

GtkAda is a full binding to the gtk+ library, that let's you write portable user interfaces on
Unix, Windows and OSX.

•

AWS is a framework to create web servers in Ada, with full support for various protocols like
HTTP, Websockets,... and its own template system.

•

Read Getting started with ada online: https://riptutorial.com/ada/topic/3900/getting-started-with-
ada

https://riptutorial.com/ 4

http://www.ada-auth.org/standards/12rm/html/RM-TOC.html
http://www.ada-auth.org/standards/12rat/html/Rat12-TOC.html
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-TOC.html
http://www.adaic.org/resources/add_content/standards/05rat/html/Rat-TOC.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-TOC.html
http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-TOC.html
http://www.adaic.org/resources/add_content/standards/95rat/rat95html/rat95-contents.html
http://archive.adaic.com/standards/83lrm/html/
http://archive.adaic.com/standards/83lrm/html/
http://archive.adaic.com/standards/83rat/html/
http://docs.adacore.com/gnatcoll-docs/
https://libre.adacore.com/
http://docs.adacore.com/xmlada-docs/
http://docs.adacore.com/gtkada-docs/gtkada_rm/gtkada_rm/
https://libre.adacore.com/
https://riptutorial.com/ada/topic/3900/getting-started-with-ada
https://riptutorial.com/ada/topic/3900/getting-started-with-ada

Chapter 2: Attribute Image

Introduction

Subtype attributes 'Image and 'Value will take, respectively, a scalar value and a string and they
return, respectively, a string and a scalar value. The result of 'Image can be input to 'Value to get
the original value. The converse is also true.

The __Scalar_Object__'Image attribute can be used directly on objects (since Ada 2012-TC-1).

Syntax

function Scalar'Image (Argument : Scalar'Base) return String;•
function Discrete'Image (Argument : Discrete'Base) return String;•
function Integer'Image (Argument : Integer'Base) return String;•
function Enumeration'Image (Argument : Enumeration'Base) return String;•
function Real'Image (Argument : Real'Base) return String;•
function Numeric'Image (Argument : Numeric'Base) return String;•
function Scalar'Value (Argument : String) return Scalar'Base;•
function Discrete'Value (Argument : String) return Discrete'Base;•
function Integer'Value (Argument : String) return Integer'Base;•
function Enumeration'Value (Argument : String) return Enumeration'Base;•
function Real'Value (Argument : String) return Real'Base;•
function Scalar_Object'Image return String;•

Remarks

Note that 'Image can incur implementation defined results (RM 3.5), namely when some graphic
characters needed for the String result are not defined in Character. Consider the larger repertoires
of 'Wide_Image and 'Wide_Wide_Image.

Ada 2012(TC-1)

The permission to use the attribute __Scalar_Object__'Image directly on an object was added in Ada
2012-TC-1 (April 2016).

Examples

Print out float using the Image attribute

Ada 2012(TC-1)

with Ada.Text_IO;

procedure Main is

https://riptutorial.com/ 5

 type Some_Float digits 8 range 0.0 .. 10.0;
 X : Some_Float := 2.71;
begin
 Ada.Text_IO.Put_Line (X'Image);
end Main;

Result

2.71000E+00

Print out integer using the Image attribute

Ada 2012(TC-1)

with Ada.Text_IO;

procedure Main is
 type Some_Integer is range -42 .. 42;
 X : Some_Integer := 17;
begin
 Ada.Text_IO.Put_Line (X'Image);
end Main;

Result

17

Print out enumeration using the Image attribute

Ada 2012(TC-1)

with Ada.Text_IO;

procedure Main is
 type Fruit is (Banana, Orange, Pear);
 X : Fruit := Orange;
begin
 Ada.Text_IO.Put_Line (X'Image);
 Ada.Text_IO.Put_Line (Pear'Image);
end Main;

Result

ORANGE
PEAR

https://riptutorial.com/ 6

Print out Enumeration using attribute Image

with Ada.Text_IO;

procedure Main is
 type Fruit is (Banana, Orange, Pear);
 X : Fruit := Orange;
begin
 Ada.Text_IO.Put_Line (Fruit'Image (X));
end Main;

Result

ORANGE

Print out Integer using attribute Image

with Ada.Text_IO;

procedure Main is
 X : Integer := 17;
begin
 Ada.Text_IO.Put_Line (Integer'Image (X));
end Main;

Result

17

Print out Float using attribute Image

with Ada.Text_IO;

procedure Main is
 X : Float := 2.71;
begin
 Ada.Text_IO.Put_Line (Float'Image (X));
end Main;

Result

2.71000E+00

As Inverses

https://riptutorial.com/ 7

with Ada.Text_IO;

procedure Image_And_Value is
 type Fruit is (Banana, Orange, Pear);
 X : Fruit := Orange;
begin
 Ada.Text_IO.Put_Line (Boolean'Image
 (Fruit'Value (Fruit'Image (X)) = X
 and
 Fruit'Image (Fruit'Value ("ORANGE")) = "ORANGE"));
end Image_And_Value;

Result

TRUE

Read Attribute Image online: https://riptutorial.com/ada/topic/4290/attribute-image

https://riptutorial.com/ 8

https://riptutorial.com/ada/topic/4290/attribute-image

Chapter 3: Enumeration

Syntax

function Enumeration'Image (Argument : Enumeration'Base) return String;•
function Enumeration'Img return String; -- GNAT•
function Enumeration'Val (Argument : Universal_Integer) return Enumeration'Base;•
function Enumeration'Pos (Argument : Enumeration'Base) return Universal_Integer;•
function Enumeration'Enum_Rep (Argument : Enumeration'Base) return Universal_Integer;•
function Literal'Enum_Rep return Universal_Integer; -- GNAT•
function Literal'Address return System.Address;•
for Enumeration use (Literal_1 => Universal_Integer, Literal_n => Universal_Integer);•
(Literal in Enumeration) return Boolean;•

Examples

Iterating literals

A literal inside a enumeration is a discrete type so we can use attribute Image to find out which
literal it is as text form. Notice that this prints out the same word as in the code (but in upper case).

with Ada.Text_IO; use Ada.Text_IO;

procedure Main is
 type Fruit is (Banana, Pear, Orange, Melon);
begin
 for I in Fruit loop
 Put (Fruit'Image (I));
 New_Line;
 end loop;
end;

Result

BANANA
PEAR
ORANGE
MELON

Using package Enumeration_IO

Instead of attribute Image and Ada.Text_IO.Put on enumeration literals we can only use the generic
package Ada.Text_IO.Enumeration_IO to print out the literals.

with Ada.Text_IO; use Ada.Text_IO;

https://riptutorial.com/ 9

http://www.riptutorial.com/ada/topic/4290/attribute-image
http://stackoverflow.com/documentation/ada/4267/attribute-img#t=201609071920229535023
http://www.riptutorial.com/ada/topic/4290/attribute-image
http://www.riptutorial.com/ada/topic/4290/attribute-image
http://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-10-1.html
http://www.adaic.org/resources/add_content/standards/05aarm/html/AA-A-10-10.html

procedure Main is
 type Fruit is (Banana, Pear, Orange, Melon);
 package Fruit_IO is new Enumeration_IO (Fruit); use Fruit_IO;
begin
 for I in Fruit loop
 Put (I);
 New_Line;
 end loop;
end;

Result

BANANA
PEAR
ORANGE
MELON

First character upper case rest lower case literals

Attribute Image capitalizes all characters of enumeration literals. The function Case_Rule_For_Names
applies upper case for the first character and makes the rest lower case.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Strings.Maps.Constants; use Ada.Strings.Maps.Constants;
with Ada.Strings.Fixed; use Ada.Strings.Fixed;

procedure Main is
 type Fruit is (Banana, Pear, Orange, Melon);
 function Case_Rule_For_Names (Item : String) return String is
 begin
 return Translate (Item (Item'First .. Item'First), Upper_Case_Map) & Translate (Item
(Item'First + 1 .. Item'Last), Lower_Case_Map);
 end;
begin
 for I in Fruit loop
 Put (Case_Rule_For_Names (Fruit'Image (I)));
 New_Line;
 end loop;
end;

Result

Banana
Pear
Orange
Melon

Title Case, Using Enumeration_IO, For a Subrange

https://riptutorial.com/ 10

http://www.riptutorial.com/ada/topic/4290/attribute-image

Combining change of character case with Enumeration_IO and using a text buffer for the image.
The first character is manipulated in place.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Characters.Handling; use Ada.Characters.Handling;

procedure Main is
 type Fruit is (Banana, Pear, Orange, Melon);
 package Fruit_IO is new Enumeration_IO (Fruit);
 Buffer : String (1 .. Fruit'Width);
begin
 for I in Fruit range Pear .. Fruit'Last loop
 Fruit_IO.Put (To => Buffer,
 Item => I,
 Set => Lower_Case);
 Buffer (Buffer'First) := To_Upper (Buffer (Buffer'First));
 Put_Line (Buffer);
 end loop;
end;

Result

Pear
Orange
Melon

Read Enumeration online: https://riptutorial.com/ada/topic/5930/enumeration

https://riptutorial.com/ 11

http://www.riptutorial.com/ada/example/20809/first-character-upper-case-rest-lower-case-literals
http://www.riptutorial.com/ada/example/20808/using-package-enumeration-io
https://riptutorial.com/ada/topic/5930/enumeration

Chapter 4: Files and I/O streams

Remarks

The Ada standard library provides for I/O of traditional files of text or binary data, as well as I/O of
streamed files. Files of binary data will be sequences of values of a type, while stream files can be
sequences of values of possibly different types.

To read and write elements of different types from/to stream files, Ada uses subprograms denoted
by types' attributes, namely 'Read, 'Write, 'Input, and 'Output. The latter two will read and write
array bounds, record discriminants, and type tags, in addition to the bare input and output that Read
and 'Write will perform.

Examples

Create and write to file

The procedures Create, Put_Line, Close from the package Ada.Text_IO is used to create and write to
the file file.txt.

with Ada.Text_IO;

procedure Main is
 use Ada.Text_IO;
 F : File_Type;
begin
 Create (F, Out_File, "file.txt");
 Put_Line (F, "This string will be written to the file file.txt");
 Close (F);
end;

Resulting file file.txt

This string will be written to the file.txt

Create And Write To A Stream

The subtypes' stream-oriented attributes are called to write objects to a file, bare and using binary
default representations.

with Ada.Streams.Stream_IO;

procedure Main is
 type Fruit is (Banana, Orange, Pear);
 type Color_Value is range 0 .. 255;
 type Color is record

https://riptutorial.com/ 12

http://www.riptutorial.com/ada/example/27532/put-line
http://www.riptutorial.com/ada/topic/8839/package-ada-text-io

 R, G, B : Color_Value;
 end record;

 Fruit_Colors : constant array (Fruit) of Color :=
 (Banana => Color'(R => 243, G => 227, B => 18),
 Orange => Color'(R => 251, G => 130, B => 51),
 Pear => Color'(R => 158, G => 181, B => 94));

 use Ada.Streams.Stream_IO;

 F : File_Type;

begin
 Create (F, Name => "file.bin");
 for C in Fruit_Colors'Range loop
 Fruit'Write (Stream (F), C);
 Color'Write (Stream (F), Fruit_Colors (C));
 end loop;
 Close (F);
end Main;

Resulting File

00000000 00 2e f3 00 e3 00 12 00 01 2e fb 00 82 00 33 00
00000010 02 2e 9e 00 b5 00 5e 00

Open And Read From Stream File

Read the data of Create And Write To A Stream back into a program.

with Ada.Streams.Stream_IO;

procedure Main is
 --
 -- ... same type definitions as in referenced example
 --
 Fruit_Colors : array (Fruit) of Color;

 use Ada.Streams.Stream_IO;

 F : File_Type;
 X : Fruit;
begin
 Open (F, Mode => In_File, Name => "file.bin");
 loop
 Fruit'Read (Stream (F), X);
 Color'Read (Stream (F), Fruit_Colors (X));
 end loop;
exception
 when End_Error =>
 Close (F);
 pragma Assert -- check data are the same
 (Fruit_Colors (Banana) = Color'(R => 243, G => 227, B => 18) and
 Fruit_Colors (Orange) = Color'(R => 251, G => 130, B => 51) and
 Fruit_Colors (Pear) = Color'(R => 158, G => 181, B => 94));
end Main;

https://riptutorial.com/ 13

http://www.riptutorial.com/ada/example/27909/create-and-write-to-a-stream

Read Files and I/O streams online: https://riptutorial.com/ada/topic/8865/files-and-i-o-streams

https://riptutorial.com/ 14

https://riptutorial.com/ada/topic/8865/files-and-i-o-streams

Chapter 5: Genericity in Ada

Examples

Generic Subprograms

Generic subprograms are usefull to create a subprograms that have the same structure for several
types. For example, to swap two objects:

generic
 type A_Type is private;
procedure Swap (Left, Right : in out A_Type) is
 Temp : A_Type := Left;
begin
 Left := Right;
 Right := Temp;
end Swap;

Generic Packages

In Ada generic package, upon instantiation, data are duplicated; that is, if they contain global
variables, each instance will have its own copy of the variable, properly typed and independent
from the others.

generic
 type T is private;
package Gen is
 type C is tagged record
 V : T;
 end record;
 G : Integer;
end Gen;

Generic Parameters

Ada offers a wide variety of generic parameters which is difficult to translate into other languages.
The parameters used during instantiation and as a consequence those on which the generic unit
may rely on may be variables, types, subprograms, or package instances, with certain properties.
For example, the following provides a sort algorithm for any kind of array:

generic
 type Component is private;
 type Index is (<>);
 with function "<" (Left, Right : Component) return Boolean;
 type Array_Type is array (Index range <>) of Component;
procedure Sort (A : in out Array_Type);

Read Genericity in Ada online: https://riptutorial.com/ada/topic/9322/genericity-in-ada

https://riptutorial.com/ 15

https://riptutorial.com/ada/topic/9322/genericity-in-ada

Chapter 6: Implementing the producer-
consumer pattern

Introduction

A demonstration of how the producer-consumer pattern is implemented in Ada.

Syntax

function Scalar'Image (Argument : Scalar'Base) return String;•
task Task_Name;•
task Task_Name is Entries end;•
task body Task_Name is Declarations begin Code end;•
entry Entry_Name;•
accept Entry_Name;•
exit;•

Remarks

The examples should all ensure proper task termination.

Examples

Using a synchronized buffer

with Ada.Containers.Synchronized_Queue_Interfaces;
with Ada.Containers.Unbounded_Synchronized_Queues;
with Ada.Text_IO;

procedure Producer_Consumer_V1 is
 type Work_Item is range 1 .. 100;

 package Work_Item_Queue_Interfaces is
 new Ada.Containers.Synchronized_Queue_Interfaces
 (Element_Type => Work_Item);

 package Work_Item_Queues is
 new Ada.Containers.Unbounded_Synchronized_Queues
 (Queue_Interfaces => Work_Item_Queue_Interfaces);

 Queue : Work_Item_Queues.Queue;

 task type Producer;
 task type Consumer;

 Producers : array (1 .. 1) of Producer;
 Consumers : array (1 .. 10) of Consumer;

https://riptutorial.com/ 16

http://www.riptutorial.com/ada/topic/4290/attribute-image
http://www.riptutorial.com/ada/topic/7345/task
http://www.riptutorial.com/ada/topic/7345/task
http://www.riptutorial.com/ada/topic/7345/task

 task body Producer is
 begin
 for Item in Work_Item loop
 Queue.Enqueue (New_Item => Item);
 end loop;
 end Producer;

 task body Consumer is
 Item : Work_Item;
 begin
 loop
 Queue.Dequeue (Element => Item);
 Ada.Text_IO.Put_Line (Work_Item'Image (Item));
 end loop;
 end Consumer;

begin
 null;
end Producer_Consumer_V1;

Notice that I've been lazy here: There is no proper termination of the consumer tasks, once all
work items are consumed.

Producer-Consumer pattern using the Ada Rendezvous mechanism

A synchronous producer-consumer solution ensures that the consumer reads every data item
written by the producer exactly one time. Asynchronous solutions allow the consumer to sample
the output of the producer. Either the consumer consumes the data faster than it is produced, or
the consumer consumes the data slower than it is produced. Sampling allows the consumer to
handle the currently available data. That data may be only a sampling of the data produced, or it
may be already consumed data.

--
-- synchronous PC using Rendezvous --
--
with Ada.Text_IO; use Ada.Text_IO;

procedure PC_Rendezvous is
 task Producer;
 task Consumer is
 entry Buf(Item : in Integer);
 end Consumer;
 task body Producer is
 begin
 for I in 1..10 loop
 Put_Line("Producer writing" & Integer'Image(I));
 Consumer.Buf(I);
 end loop;
 end Producer;
 task body Consumer is
 Temp : Integer;
 begin
 loop
 select
 accept Buf(Item : in Integer) do
 temp := Item;
 end;

https://riptutorial.com/ 17

 Put_Line("Consumer read" & Integer'Image(Temp));
 or
 terminate;
 end select;
 end loop;
 end Consumer;

begin
 null;
end PC_Rendezvous;

Producer-Consumer with a sampling consumer

This example uses the main procedure as the producer task. In Ada the main procedure always
runs in a task separate from all other tasks in the program, see minimal example.

--
-- Sampling Consumer --
--
with Ada.Text_IO; use Ada.Text_IO;

procedure Sampling_PC is
 protected Buf is
 procedure Write(Item : in Integer);
 function Read return Integer;
 procedure Set_Done;
 function Get_Done return Boolean;
 private
 Value : Integer := Integer'First;
 Is_Done : Boolean := False;
 end Buf;
 protected body Buf is
 procedure Write(Item : in Integer) is
 begin
 Value := Item;
 end Write;
 function Read return Integer is
 begin
 return Value;
 end Read;
 procedure Set_Done is
 begin
 Is_Done := True;
 end Set_Done;
 function Get_Done return Boolean is
 begin
 return Is_Done;
 end Get_Done;
 end Buf;

 task Consumer;
 task body Consumer is
 begin
 while not Buf.Get_Done loop
 Put_Line("Consumer read" & Integer'Image(Buf.Read));
 end loop;
 end Consumer;

begin

https://riptutorial.com/ 18

http://www.riptutorial.com/ada/example/24379/one-simple-task-and-two-loops

 for I in 1..10 loop
 Put_Line("Producer writing" & Integer'Image(I));
 Buf.Write(I);
 end loop;
 Buf.Set_Done;
end Sampling_PC;

Multiple Producers and Consumers Sharing the same buffer

This example shows multiple producers and consumers sharing the same buffer. Protected entries
in Ada implement a queue to handle waiting tasks. The default queuing policy is First In First Out.

--
-- Multiple producers and consumers sharing the same buffer --
--
with Ada.Text_IO; use Ada.Text_Io;

procedure N_Prod_Con is
 protected Buffer is
 Entry Write(Item : in Integer);
 Entry Read(Item : Out Integer);
 private
 Value : Integer := Integer'Last;
 Is_New : Boolean := False;
 end Buffer;
 protected body Buffer is
 Entry Write(Item : in Integer) when not Is_New is
 begin
 Value := Item;
 Is_New := True;
 end Write;
 Entry Read(Item : out Integer) when Is_New is
 begin
 Item := Value;
 Is_New := False;
 end Read;
 end Buffer;

 task type Producers(Id : Positive) is
 Entry Stop;
 end Producers;
 task body Producers is
 Num : Positive := 1;
 begin
 loop
 select
 accept Stop;
 exit;
 or
 delay 0.0001;
 end select;
 Put_Line("Producer" & Integer'Image(Id) & " writing" & Integer'Image(Num));
 Buffer.Write(Num);
 Num := Num + 1;
 end loop;
 end Producers;

 task type Consumers(Id : Positive) is
 Entry Stop;

https://riptutorial.com/ 19

 end Consumers;

 task body Consumers is
 Num : Integer;
 begin
 loop
 select
 accept stop;
 exit;
 or
 delay 0.0001;
 end select;
 Buffer.Read(Num);
 Put_Line("Consumer" & Integer'Image(ID) & " read" & Integer'Image(Num));
 end loop;
 end Consumers;
 P1 : Producers(1);
 P2 : Producers(2);
 P3 : Producers(3);
 C1 : Consumers(1);
 C2 : Consumers(2);
 C3 : Consumers(3);
begin
 delay 0.2;
 P1.Stop;
 P2.Stop;
 P3.Stop;
 C1.Stop;
 C2.Stop;
 C3.Stop;
end N_Prod_Con;

Read Implementing the producer-consumer pattern online:
https://riptutorial.com/ada/topic/8632/implementing-the-producer-consumer-pattern

https://riptutorial.com/ 20

https://riptutorial.com/ada/topic/8632/implementing-the-producer-consumer-pattern

Chapter 7: Outputting numbers

Introduction

Ada's standard packages provide for output of all numeric types. The format of output can be
adjusted in many ways.

Remarks

Note how each time a generic package is instantiated with a numeric type. Also, there are both
defaults to be set for the whole instance, and also ways to override Width, say, when calling Put
with this parameter.

Examples

Print integers, generously using space

Instances of Integer_IO have a settings variable Default_Width which the number of characters that
each output number will take.

with Ada.Text_IO; use Ada.Text_IO;

procedure Print_Integer is
 subtype Count is Integer range -1_000_000 .. 1_000_000;

 package Count_IO is new Integer_IO (Count);
 X : Count;
begin
 Count_IO.Default_Width := 12;

 X := Count'First;
 while X < Count'Last loop
 Count_IO.Put (X);
 Count_IO.Put (X + 1);
 New_Line;

 X := X + 500_000;
 end loop;
end Print_Integer;

Result

 -1000000
 -500000
 0
 500000

https://riptutorial.com/ 21

Print Integers, Using Base 16 (Hexadecimal)

A settings variable Default_Base is set on the instance of Ada.Text_IO.Integer_IO; also,
Default_Width is set so that output cannot have leading space.

with Ada.Text_IO; use Ada.Text_IO;

procedure Print_Hex is
 subtype Count is Integer range -1_000_000 .. 1_000_000;

 package Count_IO is new Integer_IO (Count);
 X : Count;
begin
 Count_IO.Default_Width := 1;
 Count_IO.Default_Base := 16;

 X := Count'First;
 while X < Count'Last loop
 Count_IO.Put (X);
 New_Line;

 X := X + 500_000;
 end loop;
end Print_Hex;

Result

-16#F4240#
-16#7A120#
16#0#
16#7A120#

Print Decimal Fixed Point Numbers, aka Money

Ada.Text_IO.Editing offers formatting decimal fixed point values using “picture strings”. These
describe output using “magical” characters for separators, currency signs, etc.

with Ada.Text_IO.Editing; use Ada.Text_IO;

procedure Print_Value is

 Max_Count : constant := 1_000_000;

 type Fruit is (Banana, Orange, Pear);
 subtype Count is Integer range -Max_Count .. +Max_Count;

 type Money is delta 0.001 digits 10;

 package Fruit_IO is new Enumeration_IO (Fruit);
 package Money_IO is new Editing.Decimal_Output
 (Money,
 Default_Currency => "CHF",
 Default_Separator => ''');

https://riptutorial.com/ 22

 Inventory : constant array (Fruit) of Count :=
 (Banana => +27_420,
 Orange => +140_600,
 Pear => -10_000);

 Price_List : constant array (Fruit) of Money :=
 (Banana => 0.07,
 Orange => 0.085,
 Pear => 0.21);

 Format : constant Editing.Picture :=
 Editing.To_Picture ("<###BZ_ZZZ_ZZ9.99>");
begin
 Fruit_IO.Default_Width := 12;

 for F in Inventory'Range loop
 Fruit_IO.Put (F);
 Put (" | ");
 Money_IO.Put (Item => Inventory (F) * Price_List (F),
 Pic => Format);
 New_Line;
 end loop;
end Print_Value;

Result

BANANA | CHF 1'919.40
ORANGE | CHF 11'951.00
PEAR | (CHF 2'100.00)

Print Multiple Items On One Line

Combine the instances of the _IO packages, use the right one with its numeric type.

with Ada.Text_IO; use Ada.Text_IO;

procedure Print_Inventory is
 type Fruit is (Banana, Orange, Pear);
 subtype Count is Integer range -1_000_000 .. 1_000_000;

 package Fruit_IO is new Enumeration_IO (Fruit);
 package Count_IO is new Integer_IO (Count);

 Inventory : constant array (Fruit) of Count :=
 (Banana => 27_420,
 Orange => 140_600,
 Pear => -10_000);

begin
 Fruit_IO.Default_Width := 12;

 for F in Inventory'Range loop
 Fruit_IO.Put (F);
 Put (" | ");
 Count_IO.Put (Inventory (F));

https://riptutorial.com/ 23

 New_Line;
 end loop;
end Print_Inventory;

Result

BANANA | 27420
ORANGE | 140600
PEAR | -10000

Read Outputting numbers online: https://riptutorial.com/ada/topic/8940/outputting-numbers

https://riptutorial.com/ 24

https://riptutorial.com/ada/topic/8940/outputting-numbers

Chapter 8: package Ada.Text_IO

Introduction

Package Ada.Text_IO is used for putting text or getting text from files or console.

Examples

Put_Line

Prints out string with a newline.

with Ada.Text_IO;

procedure Put_Text is
 use Ada.Text_IO;
 S : String := "Hello";
begin
 Put_Line ("Hello");
 Put_Line (Standard_Output, "Hello");
 Put_Line (Standard_Error, "Hello error");
 Put_Line (S & " World");
end;

Result

Hello
Hello
Hello error
Hello World

Read package Ada.Text_IO online: https://riptutorial.com/ada/topic/8839/package-ada-text-io

https://riptutorial.com/ 25

https://riptutorial.com/ada/topic/8839/package-ada-text-io

Chapter 9: Packages

Syntax

with Package_Name_To_Include;•
package New_Package_Name renames Package_To_Rename;•
use Package_Name;•
package Parent_Name.Child_Name is•

Remarks

Package provides:

Code encapsulation•
Separate compilation•
Hide procedures, functions, operators on private types•

Similarities or analogous in other languages:

C++ namespace•
Java packages•

Examples

More on Packages

In the Hello World, you were introduced to the package Ada.Text_IO, and how to use it in order to
perform I/O operations within your program. Packages can be further manipulated to do many
different things.

Renaming: To rename a package, you use the keyword renames in a package declaration, as
such:

package IO renames Ada.Text_IO;

Now, with the new name, you can use the same dotted notation for functions like Put_Line (i.e.
IO.Put_Line), or you can just use it with use IO. Of course, saying use IO or IO.Put_Line will use the
functions from the package Ada.Text_IO.

Visibility & Isolation: In the Hello World example we included the Ada.Text_IO package using a
with clause. But we also declared that we wanted to use Ada.Text_IO on the same line. The use
Ada.Text_IO declaration could have been moved into the declarative part of the procedure:

with Ada.Text_IO;

https://riptutorial.com/ 26

http://www.riptutorial.com/cplusplus/topic/495/namespaces
http://stackoverflow.com/documentation/java/1314/packages#t=201610081137222688227
http://www.riptutorial.com/ada/example/15002/hello-world

procedure hello_world is
 use Ada.Text_IO;
begin
 Put_Line ("Hello, world!");
end hello_world;

In this version, the procedures, functions, and types of Ada.Text_IO are directly available inside the
procedure. Outside the block in which use Ada.Text_IO is declared, we would have to use the
dotted notation to invoke, for example:

with Ada.Text_IO;

procedure hello_world is
begin
 Ada.Text_IO.Put ("Hello, "); -- The Put function is not directly visible here
 declare
 use Ada.Text_IO;
 begin
 Put_Line ("world!"); -- But here Put_Line is, so no Ada.Text_IO. is needed
 end;
end hello_world;

This enables us to isolate the use … declarations to where they are necessary.

Parent-Child Relationship

As a way of subdividing Ada programs, packages may have so-called children. These can be
packages, too. A child package has a special privilege: it can see the declarations in the parent
package's private part. One typical use of this special visibility is when forming a hierarchy of
derived types in object oriented programming.

package Orders is
 type Fruit is (Banana, Orange, Pear);
 type Money is delta 0.01 digits 6;

 type Bill is tagged private;

 procedure Add
 (Slip : in out Bill;
 Kind : in Fruit;
 Amount : in Natural);

 function How_Much (Slip : Bill) return Money;

 procedure Pay
 (Ordered : in out Bill;
 Giving : in Money);

private
 type Bill is tagged record
 -- ...
 Sum : Money := 0.0;
 end record;
end Orders;

https://riptutorial.com/ 27

Any Ada unit that is headed by with Orders; can declare objects of type Bill and then call
operations Add, How_Much, and Pay. It does not, however, see the components of Bill, nor even of
Orders.Bill, since the full type definition is hidden in the private part of Orders. The full definition is
not hidden form child packages, though. This visibility facilitates type extension if needed. If a type
is declared in the child package as derived from Bill, then this inheriting type can manipulate Bill
's components directly.

package Orders.From_Home is
 type Address is new String (1 .. 120);

 type Ordered_By_Phone is new Bill with private;

 procedure Deliver
 (Ordered : in out Ordered_By_Phone;
 Place : in Address);

private
 type Ordered_By_Phone is new Bill with
 record
 Delivered : Boolean := False;
 To : Address;
 end record;
end Orders.From_Home;

Orders.From_Home is a child package of Orders. Type Ordered_By_Phone is derived from Bill and
includes its record component Sum.

Read Packages online: https://riptutorial.com/ada/topic/7322/packages

https://riptutorial.com/ 28

https://riptutorial.com/ada/topic/7322/packages

Chapter 10: Parameterized Types

Introduction

All composite types other than arrays can have discriminants, which are components with special
properties. Discriminants can be of a discrete type or an access type. In the latter case the access
type can be a named access type or it can be anonymous. A discriminant of an anonymous
access type is called an access discriminant by analogy with an access parameter.

Examples

Discriminated record types

In the case of a discriminated record type, some of the components are known as discriminants
and the remaining components can depend upon these. The discriminants can be thought of as
parameterizing the type and the syntax reveals this analogy. In this example we create a type that
provide a square matrix with a positive as parameter :

type Square(X: Positive) is
 record
 S: Matrix(1 .. X, 1 .. X);
 end record;

Then to create a square of 3 by 3, just call yout type Square like this :

Sq: Square(3);

Variant Record Structures

A discriminant of a record type may influence the structure of objects. A choice of components
may exists in an object according as a discriminant had had a particular value when the object
was created. To support this variation, a record type's definition includes a distinction by cases
that depends on the discriminant:

type Fruit is (Banana, Orange, Pear);

type Basket (Kind : Fruit) is
 record
 case Kind is
 when Banana =>
 Bunch_Size : Positive;
 Bunches_Per_Box : Natural;
 when Pear | Orange =>
 Fruits_Per_Box : Natural;
 end case;
 end record;

https://riptutorial.com/ 29

Then to create a box for bananas,

Box : Basket (Banana);

The Box object now has two record components in addition to its discriminant, Kind, namely
Bunch_Size and Bunches_Per_Box.

Read Parameterized Types online: https://riptutorial.com/ada/topic/9311/parameterized-types

https://riptutorial.com/ 30

https://riptutorial.com/ada/topic/9311/parameterized-types

Chapter 11: Scalar Types

Introduction

In Ada's hierarchy of types, elementary types have sets of logically indivisible values. Among
these types are the access types (pointer types) and the scalar types. The scalar types can be
categorised as enumeration, character, and numeric. These types form the subject of this topic. In
addition to the sets of values, types have set of operations applicable to the respective scalars,
such as successor, or "+".

Syntax

type … is …1.

Parameters

Ellipsis What

… (1) to receive the type's name

… (2) to receive the type's characteristics using keywords: delta, digits, range

Remarks

All scalar type definitions except enumeration and modular integers may include a range
constraint.

A range constraint specifies a lower bound and an upper bound of the set of values to include in
the type. For fixed point types, specifying a range is mandatory: values of these types will be
understood to be multiples of a small fraction of two, for example, of 1/25. The smaller these
fractions become, the more precise the representation, at the cost of range that can be
represented using the bits available.

Further aspects of type definitions may be given, such as a desired Size in bits and other
representational items. Ada 2012 adds aspects of contract based programming like
Static_Predicate.

Examples

Enumeration

type Fruit is (Banana, Orange, Pear);

https://riptutorial.com/ 31

Choice : Fruit := Banana;

A character type is an enumeration that includes a character literal:

type Roman_Numeral is
 ('I', 'V', 'X', 'L', 'C', 'D', 'M', Unknown);`

Singed Integer

type Grade is range 0 .. 15;

B : Grade := 11;
C : Grade := 8;
Avg : Grade := (B + C) / 2; -- Avg = 9

Modular Integer

These are the “bit fiddling” types. They have logical operators, too, such as xor, and they “wrap
around” at the upper bound, to 0 again.

type Bits is mod 2**24;

L : Bits := 2#00001000_01010000_11001100# or 7;

Floating Point

A floating point type is characterised by its (decimal) digits which state the minimal precision
requested.

type Distance is digits 8;

Earth : Distance := 40_075.017;

Fixed Point (Ordinary)

A fixed point type definition specifies a delta, and a range. Together, they describe how precisely
real values should be approximated as they are represented by powers of two, not using floating
point hardware.

Shoe_Ounce : constant := 2.54 / 64.0;
type Thickness is delta Shoe_Ounce range 0.00 .. 1.00;

Strop : Thickness := 0.1; -- could actually be 0.09375

Fixed Point (Decimal)

Decimal fixed point types are typically used in accounting. They are characterised by both a delta
and a number of decimal digits. Their arithmetical operations reflect the rules of accounting.

https://riptutorial.com/ 32

type Money is delta 0.001 digits 10;

Oil_Price : Money := 56.402;
Loss : Money := 0.002 / 3; -- is 0.000

Read Scalar Types online: https://riptutorial.com/ada/topic/9297/scalar-types

https://riptutorial.com/ 33

https://riptutorial.com/ada/topic/9297/scalar-types

Chapter 12: Task

Syntax

task Task_Name;•
task Task_Name is Entries end;•
task body Task_Name is Declarations begin Code end;•

Examples

One simple task

with Ada.Text_IO; use Ada.Text_IO;

procedure Main is
 task My_Task;
 task body My_Task is
 begin
 Put_Line ("Hello from My_Task");
 end;
begin
 Put_Line ("Hello from Main");
end;

Result

The order of Put_Line can vary.

Hello from My_Task
Hello from Main

One simple task and one loop

with Ada.Text_IO; use Ada.Text_IO;

procedure Main is
 task My_Task;
 task body My_Task is
 begin
 for I in 1 .. 4 loop
 Put_Line ("Hello from My_Task");
 end loop;
 end;
begin
 Put_Line ("Hello from Main");
end;

https://riptutorial.com/ 34

Result

The order of Put_Line can vary.

Hello from My_Task
Hello from Main
Hello from My_Task
Hello from My_Task
Hello from My_Task

One simple task and two loops

with Ada.Text_IO; use Ada.Text_IO;

procedure Main is
 task My_Task;
 task body My_Task is
 begin
 for I in 1 .. 4 loop
 Put_Line ("Hello from My_Task");
 end loop;
 end;
begin
 for I in 1 .. 4 loop
 Put_Line ("Hello from Main");
 end loop;
end;

Result

The order of Put_Line can vary.

Hello from My_Task
Hello from My_Task
Hello from Main
Hello from My_Task
Hello from Main
Hello from My_Task
Hello from Main
Hello from Main

Two simple task and two loops

with Ada.Text_IO; use Ada.Text_IO;

procedure Main is
 task My_Task_1;
 task My_Task_2;

 task body My_Task_1 is
 begin

https://riptutorial.com/ 35

 for I in 1 .. 4 loop
 Put_Line ("Hello from My_Task_1");
 end loop;
 end;

 task body My_Task_2 is
 begin
 for I in 1 .. 4 loop
 Put_Line ("Hello from My_Task_2");
 end loop;
 end;
begin
 null;
end;

Result

The order of Put_Line can vary.

Hello from My_Task_1
Hello from My_Task_1
Hello from My_Task_2
Hello from My_Task_1
Hello from My_Task_2
Hello from My_Task_1
Hello from My_Task_2
Hello from My_Task_2

A task that increment a number after entry

The user can call Incrementor.Increment K number of times by pressing a key within '0' .. '9' and
it's possible to call Incrementor.Increment faster than the task Incrementor can increment I.

with Ada.Text_IO;
with Ada.Integer_Text_IO;

procedure Main is
 use Ada.Text_IO;
 task Incrementor is
 entry Increment;
 end;
 task body Incrementor is
 use Ada.Integer_Text_IO;
 I : Integer := 0;
 begin
 loop
 accept Increment;
 I := I + 1;
 Put (I, 0);
 delay 0.1;
 end loop;
 end;
 K : Character;
begin
 loop

https://riptutorial.com/ 36

 Get_Immediate (K);
 if K in '0' .. '9' then
 for I in 1 .. Natural'Value (K & "") loop
 Incrementor.Increment;
 end loop;
 end if;
 end loop;
end;

Interrupt Handling

Interrupts are handled by a protected procedure with no parameters.

--
-- Interrupt Counting Package --
--
with Ada.Interrupts.Names; use Ada.Interrupts.Names;

package Ctl_C_Handling is

 protected CTL_C_Handler is
 procedure Handle_Int with
 Interrupt_Handler,
 Attach_Handler => SIGINT;
 entry Wait_For_Int;
 private
 Pending_Int_Count : Natural := 0;
 end Ctl_C_Handler;

 task CTL_Reporter is
 entry Stop;
 end CTL_Reporter;

end Ctl_C_Handling;

The package body shows how the protected procedure works. In this case a boolean is not used
in the protected object because interrupts arrive faster than they are handled. The task
CTL_Reporter handles the received interrupts.

with Ada.Text_IO; use Ada.Text_IO;
with Ctl_C_Handling; use CTL_C_Handling;
with Ada.Calendar; use Ada.Calendar;

package body Ctl_C_Handling is

 -- CTL_C_Handler --

 protected body CTL_C_Handler is

 -- Handle_Int --

 procedure Handle_Int is
 begin

https://riptutorial.com/ 37

 Pending_Int_Count := Pending_Int_Count + 1;
 end Handle_Int;

 -- Wait_For_Int --

 entry Wait_For_Int when Pending_Int_Count > 0 is
 begin
 Pending_Int_Count := Pending_Int_Count - 1;
 end Wait_For_Int;

 end CTL_C_Handler;

 -- CTL_Reporter --

 task body CTL_Reporter is
 type Second_Bin is mod 10;
 type History is array(Second_Bin) of Natural;

 -- Display_History --

 procedure Display_History(Item : History) is
 Sum : Natural := 0;
 begin
 for I in Item'Range loop
 Put_Line("Second: " & Second_Bin'Image(I) & " :" & Natural'Image(Item(I)));
 Sum := Sum + Item(I);
 end loop;
 Put_Line("Total count: " & Natural'Image(Sum));
 New_Line(2);
 end Display_History;

 One_Second_Count : Natural := 0;
 Next_Slot : Second_Bin := 0;
 Next_Second : Time := Clock + 1.0;
 Ten_Second_History : History := (Others => 0);

 begin
 loop
 Select
 Accept Stop;
 exit;
 else
 select
 CTL_C_Handler.Wait_For_Int;
 One_Second_Count := One_Second_Count + 1;
 or
 delay until Next_Second;
 Next_Second := Next_Second + 1.0;
 Ten_Second_History(Next_Slot) := One_Second_Count;
 Display_History(Ten_Second_History);
 Next_Slot := Next_Slot + 1;
 One_Second_Count := 0;
 end Select;
 end Select;
 end loop;

https://riptutorial.com/ 38

 end CTL_Reporter;
end Ctl_C_Handling;

An example main program to exercise this package is:

--
-- Ada2012 Interrupt Handler Example --
--
with Ada.Text_IO; use Ada.Text_IO;
with Ctl_C_Handling; use CTL_C_Handling;

procedure Interrupt01 is
begin
 Delay 40.0;
 CTL_Reporter.Stop;
 Put_Line("Program ended.");
end Interrupt01;

Read Task online: https://riptutorial.com/ada/topic/7345/task

https://riptutorial.com/ 39

https://riptutorial.com/ada/topic/7345/task

Credits

S.
No

Chapters Contributors

1
Getting started with
ada

B98, Community, Jacob Sparre Andersen, Jaken Herman, Jossi
, manuBriot, trashgod

2 Attribute Image B98, Jacob Sparre Andersen, Jossi

3 Enumeration B98, Jossi, Simon Wright

4
Files and I/O
streams

B98, Jossi

5 Genericity in Ada Aznhar, B98

6
Implementing the
producer-consumer
pattern

Jacob Sparre Andersen, Jim Rogers, Jossi

7 Outputting numbers B98

8
package
Ada.Text_IO

Jossi

9 Packages B98, Jaken Herman, Jossi

10
Parameterized
Types

Aznhar, B98

11 Scalar Types B98

12 Task Jim Rogers, Jossi

https://riptutorial.com/ 40

https://riptutorial.com/contributor/4449975/b98
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2458958/jacob-sparre-andersen
https://riptutorial.com/contributor/2752265/jaken-herman
https://riptutorial.com/contributor/1704423/jossi
https://riptutorial.com/contributor/3863614/manubriot
https://riptutorial.com/contributor/230513/trashgod
https://riptutorial.com/contributor/4449975/b98
https://riptutorial.com/contributor/2458958/jacob-sparre-andersen
https://riptutorial.com/contributor/1704423/jossi
https://riptutorial.com/contributor/4449975/b98
https://riptutorial.com/contributor/1704423/jossi
https://riptutorial.com/contributor/40851/simon-wright
https://riptutorial.com/contributor/4449975/b98
https://riptutorial.com/contributor/1704423/jossi
https://riptutorial.com/contributor/5468999/aznhar
https://riptutorial.com/contributor/4449975/b98
https://riptutorial.com/contributor/2458958/jacob-sparre-andersen
https://riptutorial.com/contributor/6854407/jim-rogers
https://riptutorial.com/contributor/1704423/jossi
https://riptutorial.com/contributor/4449975/b98
https://riptutorial.com/contributor/1704423/jossi
https://riptutorial.com/contributor/4449975/b98
https://riptutorial.com/contributor/2752265/jaken-herman
https://riptutorial.com/contributor/1704423/jossi
https://riptutorial.com/contributor/5468999/aznhar
https://riptutorial.com/contributor/4449975/b98
https://riptutorial.com/contributor/4449975/b98
https://riptutorial.com/contributor/6854407/jim-rogers
https://riptutorial.com/contributor/1704423/jossi

	About
	Chapter 1: Getting started with ada
	Remarks
	Versions
	Examples
	Installation or Setup
	Hello World
	Version
	Libraries

	Chapter 2: Attribute Image
	Introduction
	Syntax
	Remarks
	Examples
	Print out float using the Image attribute

	Result
	Print out integer using the Image attribute

	Result
	Print out enumeration using the Image attribute

	Result
	Print out Enumeration using attribute Image

	Result
	Print out Integer using attribute Image

	Result
	Print out Float using attribute Image

	Result
	As Inverses

	Result
	Chapter 3: Enumeration
	Syntax
	Examples
	Iterating literals

	Result
	Using package Enumeration_IO

	Result
	First character upper case rest lower case literals

	Result
	Title Case, Using Enumeration_IO, For a Subrange

	Result
	Chapter 4: Files and I/O streams
	Remarks
	Examples
	Create and write to file

	Resulting file file.txt
	Create And Write To A Stream

	Resulting File
	Open And Read From Stream File

	Chapter 5: Genericity in Ada
	Examples
	Generic Subprograms
	Generic Packages
	Generic Parameters

	Chapter 6: Implementing the producer-consumer pattern
	Introduction
	Syntax
	Remarks
	Examples
	Using a synchronized buffer
	Producer-Consumer pattern using the Ada Rendezvous mechanism
	Producer-Consumer with a sampling consumer
	Multiple Producers and Consumers Sharing the same buffer

	Chapter 7: Outputting numbers
	Introduction
	Remarks
	Examples
	Print integers, generously using space

	Result
	Print Integers, Using Base 16 (Hexadecimal)

	Result
	Print Decimal Fixed Point Numbers, aka Money

	Result
	Print Multiple Items On One Line

	Result
	Chapter 8: package Ada.Text_IO
	Introduction
	Examples
	Put_Line

	Result
	Chapter 9: Packages
	Syntax
	Remarks
	Examples
	More on Packages
	Parent-Child Relationship

	Chapter 10: Parameterized Types
	Introduction
	Examples
	Discriminated record types
	Variant Record Structures

	Chapter 11: Scalar Types
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Enumeration
	Singed Integer
	Modular Integer
	Floating Point
	Fixed Point (Ordinary)
	Fixed Point (Decimal)

	Chapter 12: Task
	Syntax
	Examples
	One simple task

	Result
	One simple task and one loop

	Result
	One simple task and two loops

	Result
	Two simple task and two loops

	Result
	A task that increment a number after entry
	Interrupt Handling

	Credits

