
aframe

#aframe

Table of Contents

About 1

Chapter 1: Getting started with aframe 2

Remarks 2

Versions 2

A-Frame 0.x 2

Legacy Versions 2

Examples 2

Getting started 2

Include the JS Build 3

Install from npm 3

Features 3

VR Made Simple 3

Declarative HTML 3

Cross-Platform VR 4

Entity-Component Architecture 4

Performance 4

Tool Agnostic 4

Visual Inspector 4

Registry 5

Components 5

Getting started for AR 5

Chapter 2: Animation 7

Introduction 7

Remarks 7

Attributes 7

EVENTS 9

Examples 9

Example Animations 10

Animating Different Types of Properties 10

vec3 Properties 10

Boolean Properties 10

Numeric Properties 10

Color Properties 11

Component Properties 11

Chapter 3: Asset Management System 12

Introduction 12

Remarks 12

Events 12

h31 12

Load Progress on Individual Assets 12

<a-asset-item> 12

 12

HTMLMediaElement 13

Examples 13

Example usage of assets 13

Cross-Origin Resource Sharing (CORS) 14

Preloading Audio and Video 14

Setting a Timeout 14

Specifying Response Type 15

How It Works Internally 15

Accessing the FileLoader and Cache 15

Chapter 4: blend-model (component) 16

Introduction 16

Syntax 16

Remarks 16

VALUES 16

EVENTS 16

Examples 16

Example usage of `blend-model` 16

Chapter 5: Camera 18

Introduction 18

Syntax 18

Parameters 18

Remarks 18

Examples 19

Default camera 19

Changing the Active Camera 19

Fixing Entities to the Camera 19

a-camera primitive 19

Manually Positioning the Camera 19

Chapter 6: Components 21

Introduction 21

Remarks 21

Definition Lifecycle Handler Methods 21

Overview of Methods 21

Component Prototype Properties 22

METHODS 22

COMPONENT PROTOTYPE METHODS 26

Examples 26

Register a custom A-Frame component 26

AFRAME.registerComponent (name, definition) 26

Registering component in foo in your js file e.g foo-component.js 26

Usage of foo component in your scene 27

Component HTML Form 27

Single-Property Component 27

Multi-Property Component 27

Defining compnent schema object 28

Single-Property Schema 28

A-Frame's component schema property types 28

Accessing a Component’s Members and Methods 30

Chapter 7: Controls (component) 31

Introduction 31

Remarks 31

Examples 31

Wasd controls 31

Look controls 31

Caveats 31

Adding gaze to cursor 32

Hand controls 32

Tracked controls 33

3Dof and 6Dof controllers 34

Adding 3DoF Controllers 34

Daydream controllers 34

GearVR-controllers 34

Adding 6DoF Controllers 34

Vive controllers 35

Oculus touch controllers 35

Mouse control 35

Chapter 8: cursors 36

Introduction 36

Syntax 36

Parameters 36

Remarks 36

Events 36

Examples 37

Default cursor 37

Gaze-Based Interactions with cursor Component 37

a-cursor primitive 38

Fuse-Based Cursor 38

Configuring the Cursor through the Raycaster Component 38

Adding Visual Feedback 39

Mouse cursor 39

Chapter 9: Entities 40

Introduction 40

Syntax 40

Parameters 40

Remarks 40

METHODS 40

EVENTS 45

EVENT DETAILS 45

Examples 46

Listening for Component Changes 46

Listening for Child Elements Being Attached and Detached 46

Entity Multi-Property Component Data (setAttribute) 46

Updating Multi-Property Component Data 46

Updating Multi-Property Component Data 47

Retrieving an Entity 47

Retrieving an Entity components 47

Chapter 10: gltf-model (component) 49

Introduction 49

Syntax 49

Parameters 49

Examples 49

Loading a glTF model via URL 49

Loading a gltf-model via the asset system 49

Chapter 11: light (component) 50

Introduction 50

Syntax 50

Parameters 50

Examples 50

Ambient 50

Directional 50

Hemisphere 51

Point 51

Spot 51

Default lighting 52

Chapter 12: Mixins 53

Introduction 53

Examples 53

Example usage of mixins 53

Merging Component Properties 53

Order and Precedence 54

Chapter 13: Primitives 55

Introduction 55

Remarks 55

Under the Hood 55

Examples 55

Registering a Primitive 55

Chapter 14: Raycasters (component) 57

Introduction 57

Parameters 57

Remarks 57

Events 57

Member 58

Methode 58

Examples 58

Setting the Origin and Direction of the Raycaster 58

Whitelisting Entities to Test for Intersection 59

Chapter 15: Scene 60

Introduction 60

Parameters 60

Remarks 60

METHODS 60

EVENTS 61

Examples 61

Attaching Scene Components 61

Using embedded scenes 61

Debug 62

Component-to-DOM Serialization 62

Manually Serializing to DOM 63

Running Content Scripts on the Scene 63

Chapter 16: System 65

Introduction 65

Parameters 65

Remarks 65

METHODS 65

Examples 65

Registering a System 65

Accessing a System 66

Separation of Logic and Data 66

Gathering All Components of a System 66

Credits 68

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: aframe

It is an unofficial and free aframe ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official aframe.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/aframe
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with aframe

Remarks

This section provides an overview of what aframe is, and why a developer might want to use it.

It should also mention any large subjects within aframe, and link out to the related topics. Since
the Documentation for aframe is new, you may need to create initial versions of those related
topics.

Versions

A-Frame 0.x

Version Release Date

0.6 2017-05-25

0.5 2017-02-10

0.4 2016-12-17

0.3 2016-08-18

Legacy Versions

Version Release Date

0.2 2016-03-26

0.1 2015-12-17

Examples

Getting started

A-Frame can be developed from a plain HTML file without having to install anything! A great way
to try out A-Frame to remix the starter example on Glitch, an online code editor that instantly hosts
and deploys for free. Or create an .html file and include A-Frame in the head:

<html>
 <head>
 <script src="https://aframe.io/releases/0.5.0/aframe.min.js"></script>

https://riptutorial.com/ 2

https://github.com/aframevr/aframe/milestone/5
https://github.com/aframevr/aframe/releases/tag/v0.5.0
https://github.com/aframevr/aframe/releases/tag/v0.4.0
https://github.com/aframevr/aframe/releases/tag/v0.3.0
https://github.com/aframevr/aframe/releases/tag/v0.2.0
https://github.com/aframevr/aframe/releases/tag/v0.1.0

 </head>
 <body>
 <a-scene>
 <a-box position="-1 0.5 -3" rotation="0 45 0" color="#4CC3D9"></a-box>
 <a-sphere position="0 1.25 -5" radius="1.25" color="#EF2D5E"></a-sphere>
 <a-cylinder position="1 0.75 -3" radius="0.5" height="1.5" color="#FFC65D"></a-cylinder>
 <a-plane position="0 0 -4" rotation="-90 0 0" width="4" height="4" color="#7BC8A4"></a-
plane>
 <a-sky color="#ECECEC"></a-sky>
 </a-scene>
 </body>
</html>

Include the JS Build

To include A-Frame into an HTML file, we drop a script tag pointing to the CDN build:

<head>
 <script src="https://aframe.io/releases/0.5.0/aframe.min.js"></script>
</head>

Install from npm

We can also install A-Frame through npm:

$ npm install aframe

Then we can bundle A-Frame into our application. For example, with Browserify or Webpack:

require('aframe');

If you use npm, you can use angle, a command line interface for A-Frame. angle can initialize a
scene template with a single command:

npm install -g angle && angle initscene

Features

VR Made Simple

Just drop in a script tag and a-scene. A-Frame will handle 3D boilerplate, VR setup, and default
controls. Nothing to install, no build steps.

Declarative HTML

https://riptutorial.com/ 3

HTML is easy to read, understand, and copy-and-paste. Being based on top of HTML, A-Frame is
accessible to everyone: web developers, VR enthusiasts, artists, designers, educators, makers,
kids.

Cross-Platform VR

Build VR applications for Vive, Rift, Daydream, GearVR, and Cardboard with support for all
respective controllers. Don’t have a headset or controllers? No problem! A-Frame still works on
standard desktop and smartphones.

Entity-Component Architecture

A-Frame is a powerful three.js framework, providing a declarative, composable, reusable entity-
component structure.js. HTML is just the tip of the iceberg; developers have unlimited access to
JavaScript, DOM APIs, three.js, WebVR, and WebGL.

Performance

A-Frame is optimized from the ground up for WebVR. While A-Frame uses the DOM, its elements
don’t touch the browser layout engine. 3D object updates are all done in memory with little
overhead under a single requestAnimationFrame call. For reference, see A-Painter, a Tilt Brush
clone built in A-Frame that runs like native (90+ FPS).

Tool Agnostic

Since the Web was built on the notion of the HTML, A-Frame is compatible with most libraries,
frameworks, and tools including React, Preact, Vue.js, Angular, d3.js, Ember.js, jQuery.

Visual Inspector

A-Frame provides a handy built-in visual 3D inspector. Open up any A-Frame scene, hit ctrl + alt
+ i, and fly around to peek behind the hood!

https://riptutorial.com/ 4

Registry

Take powerful components that developers have published and plug them in straight from HTML.
Similar to the Unity Asset Store, the A-Frame Registry collects and curates these components for
easy discovery.

Components

Hit the ground running with A-Frame’s core components such as geometries, materials, lights,
animations, models, raycasters, shadows, positional audio, text, and Vive / Touch / Daydream /
GearVR / Cardboard controls. Get even further with community components such as particle
systems, physics, multiuser, oceans, mountains, speech recognition, motion capture, teleportation,
super hands, and augmented reality.

Getting started for AR

https://riptutorial.com/ 5

https://i.stack.imgur.com/fUH4K.png

To create AR applications on the web, you need to add a new library named AR.js. First you load
A-frame followed by AR.js.

Newt you must setup you scene using the A-frames a-scene-tag with the artoolkit-attribute added.
The sourceType must be your webcam. The font-camera of your smartphone is also supported
using this.

the a-marker-camera-tag marks an image inside the recorded screen that represents an image. In
this case it's marker.png. When the camera detects this marker the box will be displayed on the
marker.

Below you could find the example code:

<script src="https://aframe.io/releases/0.5.0/aframe.min.js"></script>
<script src="https://rawgit.com/jeromeetienne/ar.js/master/aframe/build/aframe-
ar.js"></script>
<script>
 THREEx.ArToolkitContext.baseURL =
'https://rawgit.com/jeromeetienne/ar.js/master/three.js/'
</script>
<body>

 <a-scene artoolkit='sourceType: webcam;'>
 <a-box position='0 0 0.5' material='opacity: 0.5;'></a-box>
 <a-marker-camera preset='marker.png'></a-marker-camera>
 </a-scene>

</body>

Read Getting started with aframe online: https://riptutorial.com/aframe/topic/10017/getting-started-
with-aframe

https://riptutorial.com/ 6

https://github.com/jeromeetienne/AR.js
https://riptutorial.com/aframe/topic/10017/getting-started-with-aframe
https://riptutorial.com/aframe/topic/10017/getting-started-with-aframe

Chapter 2: Animation

Introduction

Animations and transitions in A-Frame are defined using the <a-animation> element as a child. The
system is roughly based after the Web Animations specification. A-Frame uses tween.js internally.

Remarks

Attributes

Here is an overview of animation attributes. We'll go into more detail below.

Attribute Description
Default
Value

attribute
Attribute to animate. To specify a component attribute, use
componentName.property syntax (e.g., light.intensity).

rotation

begin Event name to wait on before beginning animation. ''

delay
Delay (in milliseconds) or event name to wait on before beginning
animation.

0

direction
Direction of the animation (between from and to). One of alternate,
alternateReverse, normal, reverse.

normal

dur Duration in (milliseconds) of the animation. 1000

easing
Easing function of the animation. There are very many to choose
from.

ease

end Event name to wait on before stopping animation. ''

fill
Determines effect of animation when not actively in play. One of
backwards, both, forwards, none.

forwards

from Starting value.
Current
value.

repeat Repeat count or indefinite. 0

to Ending value. Must be specified. None

Begin

https://riptutorial.com/ 7

The begin attribute defines when the animation should start playing.

This can either be a number, representing milliseconds to wait, or an event name to wait for. For
example, we can define an animation that waits 2 seconds before scaling an entity.

<a-entity>
 <a-animation attribute="scale" begin="2000" to="2 2 2"></a-animation>
</a-entity>

Or we can define an animation that waits for the parent element to trigger an event named fade
before fading an entity.

<a-entity id="fading-cube" geometry="primitive: box" material="opacity: 1">
 <a-animation attribute="material.opacity" begin="fade" to="0"></a-animation>
</a-entity>

// Trigger an event to begin fading.
document.querySelector('#fading-cube').emit('fade');

Direction

The direction attribute defines which way to animate between the starting value and the final
value.

When we define an alternating direction, the animation will go back and forth between the from and
to values like a yo-yo. Alternating directions only take affect when we repeat the animation.

Value Description

alternate
On even-numbered cycles, animate from from to to. On odd-numbered
cycles, animation from to to from

alternate-
reverse

On odd-numbered cycles, animate from from to to. On even-numbered
cycles, animation from to to from

normal Animate from from to to.

reverse Animate from to to from.

Easing

The easing attribute defines the easing function of the animation, which defaults to ease. There are
too many easing functions to list, but we can implicitly explain them.

One possible value is linear. And the basic easing functions are ease, ease-in, ease-out, and ease-
in-out.

Then there are more groups of easing functions. The above basic easing functions prefix each

https://riptutorial.com/ 8

group of easing functions. The groups of easing functions are cubic, quad, quart, quint, sine, expo,
circ, elastic, back, and bounce.

For example, the cubic group of easing functions would consist of ease-cubic, ease-in-cubic, ease-
out-cubic, ease-in-out-cubic.

Fill

The fill attribute defines the effect of animation when not actively in play. Think of fill as what
values the animation sets on the entity before and/or after each animation cycle. Below are the
possible values for fill and their effects.

Value Description

backwards Before the animation starts, set the starting value to the from value.

both Combine the effects of both backwards fill and forwards fill.

forwards
After the animation finishes, the final value will stay at the to value. The default
fill.

none
Before the animation starts, set the starting value to the initial value. After the
animation finishes, reset the value to the initial value.

Repeat

The repeat attribute defines how often the animation repeats. We call each repeat of the animation
a cycle. Repeat can either be a number that counts down on each animation cycle until it reaches
0 at which point the animation will end, or we can set repeat to indefinite and the animation will
loop continuously until the animation is manually removed or stopped.

EVENTS

The <a-animation> element emits a couple of events.

Event Name Description

animationend
Emitted when the animation finishes. In case of repeats, emitted when the
repeat count reaches 0. Not emitted for indefinite repeats.

animationstart Emitted immediately when the animation begins playing.

Examples

https://riptutorial.com/ 9

Example Animations

As an introductory example, to define a 5-meter orbit on an entity about the Y-axis that takes 10
seconds, we can offset the position and animate the rotation. This animation starts with the initial
rotation about the Y-axis of 0 degrees, and goes around 360 degrees. It’s defined with a duration
of 10000 milliseconds, maintains the final value on each cycle of the animation, and loops
infinitely.

<a-entity position="5 0 0" rotation="0 0 0">
 <a-animation attribute="rotation"
 to="0 360 0"
 dur="10000"
 fill="forwards"
 repeat="indefinite"></a-animation>
</a-entity>

Animating Different Types of Properties

A-Frame's animation system can animate different types of properties.

vec3 Properties

A-Frame has standard vec3 components (i.e., position, rotation, and scale). These components
consist of three factors: X, Y, and Z. We can pass three space-delimited numbers to the from and
to attributes just as we would define them on an entity. In this case, the animation system will
assume we are animating a vec3 value.

For example, if we want to animate an entity going from one spot to another, we can animate the
position component.

<a-entity>
 <a-animation attribute="position" from="1 1 1" to="2 4 -8"></a-animation>
</a-entity>

Boolean Properties

A-Frame has standard components that accept a single boolean value. Boolean values can be
"animated" as well by flipping the boolean at the end of each animation cycle.

For example, we can define an animation that toggles off the visibility of an entity after 5 seconds.

<a-entity>
 <a-animation attribute="visible" dur="5000" to="false" repeat="indefinite"></a-animation>
</a-entity>

Numeric Properties

We can animate numeric attributes as well. For example, we can animate the intensity of the light
primitive.

https://riptutorial.com/ 10

<a-light intensity="1">
 <a-animation attribute="intensity" to="3"></a-animation>
</a-light>

Color Properties

We can animate any component property that has a color type. For example, we can animate a
box from white to red.

<a-entity id="blushing-cube" geometry="primitive: box">
 <a-animation attribute="material.color" from="white" to="red" dur="1000"></a-animation>
</a-entity>

Component Properties

We can animate a certain property of a multi-property component. To do so, we select the
component property using the dot syntax: componentName.propertyName.

For example, to animate a cone's top radius, we can select the radiusTop value with
geometry.radiusTop.

<a-entity geometry="primitive: cone; radiusTop: 1">
 <a-animation attribute="geometry.radiusTop" to="0.5"></a-animation>
</a-entity>

Read Animation online: https://riptutorial.com/aframe/topic/10071/animation---a-animation-

https://riptutorial.com/ 11

https://riptutorial.com/aframe/topic/10071/animation---a-animation-

Chapter 3: Asset Management System

Introduction

A-Frame has an asset management system that allows us to place our assets in one place and to
preload and cache assets for better performance.

Games and rich 3D experiences traditionally preload their assets, such as models or textures,
before rendering their scenes. This makes sure that assets aren’t missing visually, and this is
beneficial for performance to ensure scenes don’t try to fetch assets while rendering.

Remarks

Events

Since <a-assets> and <a-asset-item> are nodes in A-Frame, they will emit the loaded event when
they say they have finished loading.

Event Name Description

loaded All assets were loaded, or assets timed out.

timeout Assets timed out.

Load Progress on Individual Assets

<a-asset-item>

<a-asset-item> invokes the three.js FileLoader. We can use <a-asset-item> for any file type. When
finished, it will set its data member with the text response.

Event
Name

Description

error Fetch error. Event detail contains xhr with XMLHttpRequest instance.

progress
Emitted on progress. Event detail contains xhr with XMLHttpRequest instance,
loadedBytes, and totalBytes.

loaded Asset pointed to by src was loaded.

Images are a standard DOM element so we can listen to the standard DOM events.

https://riptutorial.com/ 12

https://threejs.org/docs/#Reference/Loaders/FileLoader

Event Name Description

load Image was loaded.

HTMLMediaElement

Audio and video assets are HTMLMediaElements. The browser triggers particular events on these
elements; noted here for convenience:

Event Name Description

error There was an error loading the asset.

loadeddata Progress.

progress Progress.

A-Frame uses these progress events, comparing how much time the browser buffered with the
duration of the asset, to detect when the asset becomes loaded.

Examples

Example usage of assets

We place assets within <a-assets>, and we place <a-assets> within <a-scene>. Assets include:

<a-asset-item> - Miscellaneous assets such as 3D models and materials•
<audio> - Sound files•
 - Image textures•
<video> - Video textures•

The scene won't render or initialize until the browser fetches (or errors out) all the assets or the
asset system reaches the timeout.

We can define our assets in <a-assets> and point to those assets from our entities using selectors:

<a-scene>
 <!-- Asset management system. -->
 <a-assets>
 <a-asset-item id="horse-obj" src="horse.obj"></a-asset-item>
 <a-asset-item id="horse-mtl" src="horse.mtl"></a-asset-item>
 <a-mixin id="giant" scale="5 5 5"></a-mixin>
 <audio id="neigh" src="neigh.mp3"></audio>

 <video id="kentucky-derby" src="derby.mp4"></video>
 </a-assets>

 <!-- Scene. -->
 <a-plane src="advertisement"></a-plane>
 <a-sound src="#neigh"></a-sound>
 <a-entity geometry="primitive: plane" material="src: #kentucky-derby"></a-entity>

https://riptutorial.com/ 13

https://developer.mozilla.org/docs/Web/API/HTMLMediaElement

 <a-entity mixin="giant" obj-model="obj: #horse-obj; mtl: #horse-mtl"></a-entity>
</a-scene>

The scene and its entities will wait for every asset (up until the timeout) before initializing and
rendering.

Cross-Origin Resource Sharing (CORS)

Since A-Frame fetches assets using XHRs, browser security requires the browser to serve assets
with cross-origin resource sharing (CORS) headers if the asset is on a different domain.
Otherwise, we'd have to host assets on the same origin as the scene.

For some options, GitHub Pages serves everything with CORS headers. We recommend GitHub
Pages as a simple deployment platform. Or you could also upload assets using the A-Frame +
Uploadcare Uploader, a service that serves files with CORS headers set.

Given that CORS headers are set, <a-assets> will automatically set crossorigin attributes on media
elements (e.g., <audio>, , <video>) if it detects the resource is on a different domain.

Preloading Audio and Video

Audio and video assets will only block the scene if we set autoplay or if we set preload="auto":

<a-scene>
 <a-assets>
 <!-- These will not block. -->
 <audio src="blockus.mp3"></audio>
 <video src="loadofblocks.mp4"></video>

 <!-- These will block. -->
 <audio src="blocky.mp3" autoplay></audio>
 <video src="blockiscooking.mp4" preload="auto"></video>
 </a-assets>
</a-scene>

Setting a Timeout

We can set a timeout that when reached, the scene will begin rendering and entities will begin
initializing regardless of whether all the assets have loaded. The default timeout is 3 seconds. To
set a different timeout, we just pass in the number of milliseconds to the timeout attribute:

If some assets are taking a long time to load, we may want to set an appropriate timeout such that
the user isn't waiting all day in case their network is slow.

<a-scene>
 <a-assets timeout="10000">
 <!-- You got until the count of 10 to load else the show will go on without you. -->

 </a-asset>
</a-scene>

https://riptutorial.com/ 14

https://developer.mozilla.org/docs/Web/API/XMLHttpRequest
https://wikipedia.org/wiki/Cross-origin_resource_sharing
https://pages.github.com/
https://cdn.aframe.io
https://cdn.aframe.io
https://developer.mozilla.org/docs/Web/HTML/CORS_enabled_image

Specifying Response Type

Content fetched by <a-asset-item> will be returned as plain text. If we want to use a different
response type such as arraybuffer, use <a-asset-item>'s response-type attribute:

<a-asset-item response-type="arraybuffer" src="model.gltf"></a-asset-item>

How It Works Internally

Every element in A-Frame inherits from <a-node>, the AFRAME.ANode prototype. ANode controls load
and initialization order. For an element to initialize (whether it be <a-assets>, <a-asset-item>, <a-
scene>, or <a-entity>), its children must have already initialized. Nodes initialize bottom up.

<a-assets> is an ANode, and it waits for its children to load before it loads. And since <a-assets> is a
child of <a-scene>, the scene effectively must wait for all assets to load. We also added extra load
logic to <a-entity> such that they explicitly wait for <a-assets> to load if we have defined <a-assets>.

<a-asset-item> uses THREE.FileLoader to fetch files. three.js stores the returned data in THREE.Cache.
Every three.js loader inherits from THREE.FileLoader, whether they are a ColladaLoader, OBJLoader,
ImageLoader, etc. And they all have access and are aware of the central THREE.Cache. If A-Frame
already fetched a file, A-Frame won't try to fetch it again.

Thus, since we block entity initialization on assets, by the time entities load, all assets will have
been already fetched. As long as we define <a-asset-item>s, and the entity is fetching files using
some form THREE.FileLoader, then caching will automatically work.

Accessing the FileLoader and Cache

To access the three.js FileLoader if we want to listen more closely:

console.log(document.querySelector('a-assets').fileLoader);

To access the cache that stores XHR responses:

console.log(THREE.Cache);

Read Asset Management System online: https://riptutorial.com/aframe/topic/10070/asset-
management-system

https://riptutorial.com/ 15

https://riptutorial.com/aframe/topic/10070/asset-management-system
https://riptutorial.com/aframe/topic/10070/asset-management-system

Chapter 4: blend-model (component)

Introduction

blend-model component Loads a three.js format JSON model containing skeletal animation
blending using THREE.BlendCharacter. This is mainly used to represent the hand and Vive
controllers.

Syntax

<a-entity blend-model="#a-asset-item-selector"></a-entity>•

Remarks

VALUES

Type Description

selector Selector to an <a-asset-item>

string url()-enclosed path to a JSON file

EVENTS

Event Name Description

model-loaded JSON model was loaded into the scene.

Examples

Example usage of `blend-model`

We can load the model by pointing using the ID to an that specifies the src to a file:

<a-scene>
 <a-assets>
 <!-- At first we load skeletal animation blending JSON as asset -->
 <a-asset-item id="hand" src="/path/to/hand.json"></a-asset-item>
 </a-assets>
 <!-- Now we can use that asset with blend-model-->
 <a-entity blend-model="#hand"></a-entity>
</a-scene>

https://riptutorial.com/ 16

Read blend-model (component) online: https://riptutorial.com/aframe/topic/10073/blend-model--
component-

https://riptutorial.com/ 17

https://riptutorial.com/aframe/topic/10073/blend-model--component-
https://riptutorial.com/aframe/topic/10073/blend-model--component-

Chapter 5: Camera

Introduction

The camera component defines from which perspective the user views the scene. The camera is
commonly paired with controls components that allow input devices to move and rotate the
camera.

Syntax

<a-entity camera></a-entity>•
<a-camera></a-camera>•

Parameters

Property Description

active
Whether the camera is the active camera in a scene with more than one
camera.

far Camera frustum far clipping plane.

fov Field of view (in degrees).

near Camera frustum near clipping plane.

userHeight
How much height to add to the camera when not in VR mode. The default
camera has this set to 1.6 (meters, to represent average eye level.).

zoom Zoom factor of the camera.

Remarks

When not in VR mode, userHeight translates the camera up to approximate average height of
human eye level. The injected camera has this set to 1.6 (meters). When entering VR, this height
offset is removed such that we used absolute position returned from the VR headset. The offset is
convenient for experiences that work both in and out of VR, as well as making experiences look
decent from a desktop screen as opposed to clipping the ground if the headset was resting on the
ground.

When exiting VR, the camera will restore its rotation to its rotation before it entered VR. This is so
when we exit VR, the rotation of the camera is back to normal for a desktop screen.

https://riptutorial.com/ 18

Examples

Default camera

A camera situated at the average height of human eye level (1.6 meters or 1.75 yard or 5.25 feet).

<a-entity camera="userHeight: 1.6" look-controls></a-entity>

Changing the Active Camera

When the active property gets toggled, the component will notify the camera system to change the
current camera used by the renderer:

var secondCameraEl = document.querySelector('#second-camera');
secondCameraEl.setAttribute('camera', 'active', true);

Fixing Entities to the Camera

To fix entities onto the camera such that they stay within view no matter where the user looks, you
can attach those entities as a child of the camera. Use cases might be a heads-up display (HUD).

<a-entity camera look-controls>
 <a-entity geometry="primitive: plane; height: 0.2; width: 0.2" position="0 0 -1"
 material="color: gray; opacity: 0.5"></a-entity>
</a-entity>

Note that you should use HUDs sparingly as they cause irritation and eye strain in VR. Consider
integrating menus into the fabric of the world itself. If you do create a HUD, make sure that the
HUD is more in the center of the field of view such that the user does not have to strain their eyes
to read it.

a-camera primitive

The camera primitive determines what the user sees. We can change the viewport by modifying
the camera entity’s position and rotation.

Note that by default, the camera origin will be at 0 1.6 0 in desktop mode and 0 0 0 in VR mode.
Read about the camera.userHeight property.

<a-scene>
 <a-box></a-box>
 <a-camera></a-camera>
</a-scene>

Manually Positioning the Camera

To position the camera, set the position on a wrapper . Don’t set the position directly on the

https://riptutorial.com/ 19

camera primitive because controls will quickly override the set position:

<a-entity position="0 0 5">
 <a-camera></a-camera>
</a-entity>

Read Camera online: https://riptutorial.com/aframe/topic/10181/camera

https://riptutorial.com/ 20

https://riptutorial.com/aframe/topic/10181/camera

Chapter 6: Components

Introduction

In the entity-component-system pattern, a component is a reusable and modular chunk of data
that we plug into an entity to add appearance, behavior, and/or functionality.

In A-Frame, components modify entities which are 3D objects in the scene. We mix and compose
components together to build complex objects. They let us encapsulate three.js and JavaScript
code into modules that we can use declaratively from HTML. Components are roughly analogous
to CSS.

Remarks

Definition Lifecycle Handler Methods

With the schema being the anatomy, the lifecycle methods are the physiology; the schema defines
the shape of the data, the lifecycle handler methods use the data to modify the entity. The
handlers will usually interact with the Entity API.

Overview of Methods

Method Description

init
Called once when the component is initialized. Used to set up initial state
and instantiate variables.

update
Called both when the component is initialized and whenever any of the
component's properties is updated (e.g, via setAttribute). Used to modify the
entity.

remove
Called when the component is removed from the entity (e.g., via
removeAttribute) or when the entity is detached from the scene. Used to
undo all previous modifications to the entity.

tick
Called on each render loop or tick of the scene. Used for continuous
changes or checks.

play
Called whenever the scene or entity plays to add any background or
dynamic behavior. Also called once when the component is initialized. Used
to start or resume behavior.

pause

Called whenever the scene or entity pauses to remove any background or
dynamic behavior. Also called when the component is removed from the
entity or when the entity is detached from the scene. Used to pause
behavior.

https://riptutorial.com/ 21

Method Description

updateSchema
Called whenever any of the component's properties is updated. Can be
used to dynamically modify the schema.

Component Prototype Properties

Within the methods, we have access to the component prototype via this:

Property Description

this.data
Parsed component properties computed from the schema default values,
mixins, and the entity's attributes.

this.el Reference to the [entity][entity] as an HTML element.

this.el.sceneEl Reference to the [scene][scene] as an HTML element.

this.id
If the component can have [multiple instances][multiple], the ID of the
individual instance of the component (e.g., foo from sound__foo).

METHODS

.init ()

.init () is called once at the beginning of the component's lifecycle. An entity can call the
component's init handler:

When the component is statically set on the entity in the HTML file and the page is loaded.•
When the component is set on an attached entity via setAttribute.•
When the component is set on an unattached entity, and the entity is then attached to the
scene via appendChild.

•

The init handler is often used to:

Set up initial state and variables•
Bind methods•
Attach event listeners•

For example, a cursor component's init would set state variables, bind methods, and add event
listeners:

AFRAME.registerComponent('cursor', {
 // ...
 init: function () {
 // Set up initial state and variables.
 this.intersection = null;
 // Bind methods.

https://riptutorial.com/ 22

 this.onIntersection = AFRAME.utils.bind(this.onIntersection, this);
 // Attach event listener.
 this.el.addEventListener('raycaster-intersection', this.onIntersection);
 }
 // ...
});

.update (oldData)

.update (oldData) is called whenever the component's properties change, including at the
beginning of the component's lifecycle. An entity can call a component's update handler:

After init () is called, at the beginning of component's lifecycle.•
When the component's properties are updated with .setAttribute.•

The update handler is often used to:

Do most of the work in making modifications to the entity, using this.data.•
Modify the entity whenever one or more component properties change.•

Granular modifications to the entity can be done by [diffing][diff] the current dataset (this.data)
with the previous dataset before the update (oldData).

A-Frame calls .update() both at the beginning of a component's lifecycle and every time a
component's data changes (e.g., as a result of setAttribute). The update handler often uses
this.data to modify the entity. The update handler has access to the previous state of a
component's data via its first argument. We can use the previous data of a component to tell
exactly which properties changed to do granular updates.

For example, the visible component's update sets the visibility of the entity.

AFRAME.registerComponent('visible', {
 /**
 * this.el is the entity element.
 * this.el.object3D is the three.js object of the entity.
 * this.data is the component's property or properties.
 */
 update: function (oldData) {
 this.el.object3D.visible = this.data;
 }
 // ...
});

.remove ()

.remove () is called whenever the component is detached from the entity. An entity can call a
component's remove handler:

When the component is removed from the entity via removeAttribute.•
When the entity is detached from the scene (e.g., removeChild).•

https://riptutorial.com/ 23

The remove handler is often used to:

Remove, undo, or clean up all of the component's modifications to the entity.•
Detach event listeners.•

For example, when the [light component][light] is removed, the light component will remove the
light object that it had previously set on the entity, thus removing it from the scene.

AFRAME.registerComponent('light', {
 // ...
 remove: function () {
 this.el.removeObject3D('light');
 }
 // ...
});

.tick (time, timeDelta)

.tick () is called on each tick or frame of the scene's render loop. The scene will call a
component's tick handler:

On each frame of the render loop.•
On the order of 60 to 120 times per second.•
If the entity or scene is not paused (e.g., the Inspector is open).•
If the entity is still attached to the scene.•

The tick handler is often used to:

Continuously modify the entity on each frame or on an interval.•
Poll for conditions.•

The tick handler is provided the global uptime of the scene in milliseconds (time) and the time
difference in milliseconds since the last frame (timeDelta). These can be used for interpolation or
to only run parts of the tick handler on a set interval.

For example, the tracked controls component will progress the controller's animations, update
the controller's position and rotation, and check for button presses.

AFRAME.registerComponent('tracked-controls', {
 // ...
 tick: function (time, timeDelta) {
 this.updateMeshAnimation();
 this.updatePose();
 this.updateButtons();
 }
 // ...
});

.pause ()

.pause () is called when the entity or scene pauses. The entity can call a component's pause

https://riptutorial.com/ 24

handler:

Before the component is removed, before the remove handler is called.•
When the entity is paused with Entity.pause ().•
When the scene is paused with Scene.pause () (e.g., the Inspector is opened).•

The pause handler is often used to:

Remove event listeners.•
Remove any chances of dynamic behavior.•

For example, the sound component will pause the sound and remove an event listener that
would have played a sound on an event:

AFRAME.registerComponent('sound', {
 // ...
 pause: function () {
 this.pauseSound();
 this.removeEventListener();
 }
 // ...
});

.play ()

.play () is called when the entity or scene resumes. The entity can call a component's play
handler:

When the component is first attached, after the update handler is called.•
When the entity was paused but then resumed with Entity.play ().•
When the scene was paused but then resumed with Scene.play ().•

The play handler is often use to:

Add event listeners.•

For example, the sound component will play the sound and update the event listener that would
play a sound on an event:

AFRAME.registerComponent('sound', {
 // ...
 play: function () {
 if (this.data.autoplay) { this.playSound(); }
 this.updateEventListener();
 }
 // ...
});

.updateSchema (data)

.updateSchema (), if defined, is called on every update in order to check if the schema needs to be

https://riptutorial.com/ 25

dynamically modified.

The updateSchema handler is often used to:

Dynamically update or extend the schema, usually depending on the value of a property.•

For example, the geometry component checks if the primitive property changed to determine
whether to update the schema for a different type of geometry:

AFRAME.registerComponent('geometry', {
 // ...
 updateSchema: (newData) {
 if (newData.primitive !== this.data.primitive) {
 this.extendSchema(GEOMETRIES[newData.primitive].schema);
 }
 }
 // ...
});

COMPONENT PROTOTYPE METHODS

.flushToDOM ()

To save on CPU time on stringification, A-Frame will only update in debug mode the component’s
serialized representation in the actual DOM. Calling flushToDOM () will manually serialize the
component’s data and update the DOM:

document.querySelector('[geometry]').components.geometry.flushToDOM();

Examples

Register a custom A-Frame component

AFRAME.registerComponent (name,
definition)

Register an A-Frame component. We must register components before we use them anywhere in
. Meaning from an HTML file, components should come in order before .

{string} name - Component name. The component’s public API as represented through an
HTML attribute name.

•

{Object} definition - Component definition. Contains schema and lifecycle handler methods.•

Registering component in foo in your js file e.g foo-

https://riptutorial.com/ 26

component.js

AFRAME.registerComponent('foo', {
 schema: {},
 init: function () {},
 update: function () {},
 tick: function () {},
 remove: function () {},
 pause: function () {},
 play: function () {}
});

Usage of foo component in your scene

<html>
 <head>
 <script src="aframe.min.js"></script>
 <script src="foo-component.js"></script>
 </head>
 <body>
 <a-scene>
 <a-entity foo></a-entity>
 </a-scene>
 </body>
</html>

Component HTML Form

A component holds a bucket of data in the form of one or more component properties.
Components use this data to modify entities. Consider an engine component, we might define
properties such as horsepower or cylinders.

HTML attributes represent component names and the value of those attributes represent
component data.

Single-Property Component

If a component is a single-property component, meaning its data consists of a single value, then in
HTML, the component value looks like a normal HTML attribute:

<!-- `position` is the name of the position component. -->
<!-- `1 2 3` is the data of the position component. -->
<a-entity position="1 2 3"></a-entity>

Multi-Property Component

If a component is a multi-property component, meaning the data is consists of multiple properties
and values, then in HTML, the component value resembles inline CSS styles:

https://riptutorial.com/ 27

<!-- `light` is the name of the light component. -->
<!-- The `type` property of the light is set to `point`. -->
<!-- The `color` property of the light is set to `crimson`. -->
<a-entity light="type: point; color: crimson"></a-entity>

Defining compnent schema object

The schema is an object that defines and describes the property or properties of the component.
The schema’s keys are the names of the property, and the schema’s values define the types and
values of the property (in case of a multi-property component):

Defining schema in your component

AFRAME.registerComponent('bar', {
 schema: {
 color: {default: '#FFF'},
 size: {type: 'int', default: 5}
 }
}

Override defined schema defaults

<a-scene>
 <a-entity bar="color: red; size: 20"></a-entity>
</a-scene>

Single-Property Schema

A component can either be a single-property component (consisting of one anonymous value) or a
multi-property component (consisting of multiple named values). A-Frame will infer whether a
component is single-property vs. multi-property based on the structure of the schema.

A single-property component's schema contains type and/or default keys, and the schema's
values are plain values rather than objects:

AFRAME.registerComponent('foo', {
 schema: {type: 'int', default: 5}
});

<a-scene>
 <a-entity foo="20"></a-entity>
</a-scene>

A-Frame's component schema property types

Property types primarily define how the schema parses incoming data from the DOM for each
property. The parsed data will then be available via the data property on the component's
prototype. Below are A-Frame's built-in property types:

https://riptutorial.com/ 28

Property
Type

Description
Default
Value

array
Parses comma-separated values to array (i.e., "1, 2, 3" to ['1',
'2', '3']).

[]

asset

For URLs pointing to general assets. Can parse URL out of a string
in the form of url(<url>). If the value is an element ID selector
(e.g., #texture), this property type will call getElementById and
getAttribute('src') to return a URL. The asset property type may
or may not change to handle XHRs or return MediaElements
directly (e.g., elements).

''

audio
Same parsing as the asset property type. Will possibly be used by
the A-Frame Inspector to present audio assets.

''

boolean
Parses string to boolean (i.e., "false" to false, everything else
truthy).

false

color
Currently doesn't do any parsing. Primarily used by the A-Frame
Inspector to present a color picker. Also, it is required to use color
type for color animations to work.

#FFF

int Calls parseInt (e.g., "124.5" to 124). 0

map
Same parsing as the asset property type. Will possibly be used bt
the A-Frame Inspector to present texture assets.

''

model
Same parsing as the asset property type. Will possibly be used bt
the A-Frame Inspector to present model assets.

''

number Calls parseFloat (e.g., '124.5' to '124.5'). 0

selector Calls querySelector (e.g., "#box" to <a-entity id="box">). null

selectorAll
Calls querySelectorAll and converts NodeList to Array (e.g., ".boxes"
to [<a-entity class="boxes", ...]),

null

string Doesn't do any parsing. ''

vec2
Parses two numbers into an {x, y} object (e.g., 1 -2 to {x: 1, y: -
2}.

{x: 0, y:
0}

vec3
Parses three numbers into an {x, y, z} object (e.g., 1 -2 3 to {x:
1, y: -2, z: 3}.

{x: 0, y:
0, z: 0}

vec4
Parses four numbers into an {x, y, z, w} object (e.g., 1 -2 3 -4.5
to {x: 1, y: -2, z: 3, w: -4.5}.

{x: 0, y:
0, z: 0,
w: 0}

Property Type Inference

https://riptutorial.com/ 29

The schema will try to infer a property type given only a default value:

schema: {default: 10} // type: "number"
schema: {default: "foo"} // type: "string"
schema: {default: [1, 2, 3]} // type: "array"

The schema will set a default value if not provided, given the property type:

schema: {type: 'number'} // default: 0
schema: {type: 'string'} // default: ''
schema: {type: 'vec3'} // default: {x: 0, y: 0, z: 0}

Custom Property Type

We can also define our own property type or parser by providing a parse function in place of a type:

schema: {
 // Parse slash-delimited string to an array
 // (e.g., `foo="myProperty: a/b"` to `['a', 'b']`).
 myProperty: {
 default: [],
 parse: function (value) {
 return value.split('/');
 }
 }
}

Accessing a Component’s Members and Methods

A component’s members and methods can be accessed through the entity from the .components
object. Look up the component from the entity’s map of components, and we’ll have access to the
component’s internals. Consider this example component:

AFRAME.registerComponent('foo', {
 init: function () {
 this.bar = 'baz';
 },
 qux: function () {
 // ...
 }
});

Let’s access the bar member and qux method:

var fooComponent = document.querySelector('[foo]').components.foo;
console.log(fooComponent.bar);
fooComponent.qux();

Read Components online: https://riptutorial.com/aframe/topic/10068/components

https://riptutorial.com/ 30

https://riptutorial.com/aframe/topic/10068/components

Chapter 7: Controls (component)

Introduction

Controllers are vital for immersing people into a VR application. The potential of VR is not met
without them, namely controllers that provide six degrees of freedom (6DoF). With controllers,
people can reach out and around the scene and interact with objects with their hands.

A-Frame provides components for controllers across the spectrum as supported by their
respective WebVR browsers through the Gamepad Web API. There are components for Vive,
Oculus Touch, Daydream, and GearVR controllers.

Remarks

It's possible that you must enable gamepadextentions. You could do that using this steps:

On Chrome: browse to chrome://flags•
On Firefox: browse to about:config•
On IE: Go to Group Policy Editor on your desktop•
On Opera: browse to opera:config•
On Edge: browse to about:flags•

Examples

Wasd controls

The wasd-controls component controls an entity with the W, A, S and D or arrow keyboard keys. The
wasd-controls component is commonly attached to an entity with the camera component.

<a-entity camera look-controls wasd-controls></a-entity>

For azerty keyboards, you could use Z, Q, S and D keys

Look controls

The look-controls component:

Rotates the entity when we rotate a VR head-mounted display (HMD).•
Rotates the entity when we click-drag mouse.•
Rotates the entity when we touch-drag the touchscreen.•

The look-controls component is usually used alongside the camera component.

<a-entity camera look-controls></a-entity>

https://riptutorial.com/ 31

Caveats

If you want to create your own component for look controls, you will have to copy and paste the
HMD-tracking bits into your component. In the future, we may have a system for people to more
easily create their controls.

Adding gaze to cursor

For this you need to add a cursor component to your camera

<a-scene>
 <a-camera>
 <a-cursor></a-cursor>
 <!-- Or <a-entity cursor></a-entity> -->
 </a-camera>
</a-scene>

More information you could find on the cursor (component) topic.

Hand controls

A-Frame 0.x0.3

A-Frame provides an implementation for supporting multiple types of 6DoF controllers (Vive,
Oculus Touch) via the hand-controls component. The hand-controls component is primarily for
6DoF controllers since it’s geared towards room scale interactions such as grabbing objects. The
hand-controls component works on top of both Vive and Oculus Touch controllers by:

Setting both the vive-controls and oculus-touch-controls component•

Overriding the controller models with a simple hand model•

Mapping Vive-specific and Oculus Touch-specific events to hand events and gestures (e.g.,
gripdown and triggerdown to thumbup)

•

To add the hand-controls component:

<a-entity hand-controls="left"></a-entity>
<a-entity hand-controls="right"></a-entity>

Unfortunately, there is not yet a 3DoF controller component that abstracts well all the types of
3DoF controllers (i.e., Daydream, GearVR). We could create a custom controller that works with
both controllers. It would be fairly easy to cover since 3DoF controllers do not offer much potential
for interaction (i.e., only rotational tracking with a touchpad).

The hand-controls gives tracked hands (using a prescribed model) with animated gestures. hand-
controls wraps the vive-controls and oculus-touch-controls components, which in turn wrap the

https://riptutorial.com/ 32

https://stackoverflow.com/documentation/aframe/topic-requests/24457

tracked-controls component. The component gives extra events and handles hand animations and
poses.

<a-entity hand-controls="left"></a-entity>
<a-entity hand-controls="right"></a-entity>

Tracked controls

A-Frame 0.x0.3

The tracked-controls component is A-Frame’s base controller component that provides the
foundation for all of A-Frame’s controller components. The tracked-controls component:

Grabs a Gamepad object from the Gamepad API given an ID or prefix.•

Applies pose (position and orientation) from the Gamepad API to read controller motion.•

Looks for changes in the Gamepad object’s button values to provide events when buttons
are pressed or touched and when axis and touchpads are changed (i.e. axischanged,
buttonchanged, buttondown, buttonup, touchstart, touchend).

•

All of A-Frame’s controller components build on top of the tracked-controls component by:

Setting the tracked-controls component on the entity with the appropriate Gamepad ID (e.g.,
Oculus Touch (Right)). For example, the vive-controls component does

el.setAttribute('tracked-controls', {idPrefix: 'OpenVR'})

tracked-controls will then connect to the appropriate Gamepad object to provide pose and
events for the entity.

•

Abstracting the events provided by tracked-controls. tracked-controls events are low-level;
it’d difficult for us to tell which buttons were pressed based off of those events alone because
we’d have to know the button mappings beforehand. Controller components can know the
mappings beforehand for their respective controllers and provide more semantic events such
as triggerdown or xbuttonup.

•

Providing a model. tracked-controls alone does not provide any appearance. Controller
components can provide a model that shows visual feedback, gestures, and animations
when buttons are pressed or touched. The controller components following are only
activated if they detect the controller is found and seen as connected in the Gamepad API.

•

The tracked-controls component interfaces with tracked controllers. tracked-controls uses the
Gamepad API to handle tracked controllers, and is abstracted by the hand-controls component as
well as the vive-controls and oculus-touch-controls components. This component elects the
appropriate controller, applies pose to the entity, observes buttons state and emits appropriate
events.

Note that due to recent browser-specific changes, Vive controllers may be returned by the

https://riptutorial.com/ 33

Gamepad API with id values of either "OpenVR Gamepad" or "OpenVR Controller", so using
idPrefix for Vive / OpenVR controllers is recommended.

<a-entity tracked-controls="controller: 0; idPrefix: OpenVR"></a-entity>

3Dof and 6Dof controllers

Adding 3DoF Controllers

Controllers with 3 degrees of freedom (3DoF) are limited to rotational tracking. 3DoF controllers
have no positional tracking meaning we can’t reach out nor move our hand back-and-forth or up-
and-down. Having a controller with only 3DoF is like having a hand and wrist without an arm. Read
more about degrees of freedom for VR.

The 3DoF controller components provide rotational tracking, a default model matching the real-life
hardware, and events to abstract the button mappings. The controllers for Google Daydream and
Samsung GearVR have 3DoF, and both support only one controller for one hand.

A-Frame 0.x0.6

Daydream controllers

The daydream-controls component interfaces with the Google Daydream controllers. It wraps the
tracked-controls component while adding button mappings, events, and a Daydream controller
model that highlights the touched and/or pressed buttons (trackpad).

Match Daydream controller if present, regardless of hand.

<a-entity daydream-controls></a-entity>

Match Daydream controller if present and for specified hand.

<a-entity daydream-controls="hand: left"></a-entity>
<a-entity daydream-controls="hand: right"></a-entity>

GearVR-controllers

The gearvr-controls component interfaces with the Samsung/Oculus Gear VR controllers. It wraps
the tracked-controls component while adding button mappings, events, and a Gear VR controller
model that highlights the touched and/or pressed buttons (trackpad, trigger).

<!-- Match Gear VR controller if present, regardless of hand. -->
<a-entity gearvr-controls></a-entity>
<!-- Match Gear VR controller if present and for specified hand. -->
<a-entity gearvr-controls="hand: left"></a-entity>
<a-entity gearvr-controls="hand: right"></a-entity>

https://riptutorial.com/ 34

Adding 6DoF Controllers

Controllers with 6 degrees of freedom (6DoF) have both rotational and positional tracking. Unlike
controllers with 3DoF which are constrained to orientation, controllers with 6DoF are able to move
freely in 3D space. 6DoF allows us to reach forward, behind our backs, move our hands across
our body or close to our face. Having 6DoF is like reality where we have both hands and arms.
6DoF also applies to the headset and additional trackers (e.g., feet, props). Having 6DoF is a
minimum for providing a truly immersive VR experience.

The 6DoF controller components provide full tracking, a default model matching the real-life
hardware, and events to abstract the button mappings. HTC Vive and Oculus Rift with Touch
provide 6DoF and controllers for both hands. HTC Vive also provides trackers for tracking
additional objects in the real world into VR.

A-Frame 0.x0.3

Vive controllers

The vive-controls component interfaces with the HTC Vive controllers/wands. It wraps the tracked-
controls component while adding button mappings, events, and a Vive controller model that
highlights the pressed buttons (trigger, grip, menu, system) and trackpad.

<a-entity vive-controls="hand: left"></a-entity>
<a-entity vive-controls="hand: right"></a-entity>

A-Frame 0.x0.5

Oculus touch controllers

The oculus-touch-controls component interfaces with the Oculus Touch controllers. It wraps the
tracked-controls component while adding button mappings, events, and a Touch controller model.

<a-entity oculus-touch-controls="hand: left"></a-entity>
<a-entity oculus-touch-controls="hand: right"></a-entity>

Mouse control

Mouse controls are only supported outside the VR modus and could be use for games without a
HMD. For more information about mouse controls, you could find in the mouse cursor example.

<a-scene>
 <a-entity camera look-controls mouse-cursor>
</a-scene>

Read Controls (component) online: https://riptutorial.com/aframe/topic/10112/controls--
component-

https://riptutorial.com/ 35

http://www.riptutorial.com/aframe/topic/10180/cursors
https://riptutorial.com/aframe/topic/10112/controls--component-
https://riptutorial.com/aframe/topic/10112/controls--component-

Chapter 8: cursors

Introduction

The cursor component lets us interact with entities through clicking and gazing.

Syntax

<a-entity cursor=""></a-cursor>•
<a-cursor></a-cursor>•

Parameters

Property Description

fuse Whether cursor is fuse-based. Default value: false on desktop, true on mobile

fuseTimeout
How long to wait (in milliseconds) before triggering a fuse-based click event.
Default value: 1500

Remarks

The cursor is a specific application of the raycaster component in that it

Listens for mouse clicks and gaze-based fuses•
Captures only the first intersected entity•
Emits special mouse and hover events (e.g., relating to mouse down/up/enter/leave)•
Has more states for hovering.•

When the mouse clicks, the closest visible entity intersecting the cursor, if any, will emit a click
event. Note the cursor component only applies the raycasting behavior. To provide a shape or
appearance to the cursor, you could apply the geometry and material components.

Events

Event Description

click
Emitted on both cursor and intersected entity if a currently intersected entity is
clicked (whether by mouse or by fuse).

fusing
Emitted on both cursor and intersected entity when fuse-based cursor starts
counting down.

https://riptutorial.com/ 36

http://www.riptutorial.com/aframe/topic/10036/raycasters--component-

Event Description

mousedown
Emitted on both cursor and intersected entity (if any) on mousedown on the
canvas element.

mouseenter
Emitted on both cursor and intersected entity (if any) when cursor intersects
with an entity.

mouseleave
Emitted on both cursor and intersected entity (if any) when cursor no longer
intersects with previously intersected entity.

mouseup
Emitted on both cursor and intersected entity (if any) on mouseup on the
canvas element.

Examples

Default cursor

For example, we can create a ring-shaped cursor fixed to the center of the screen. To fix the
cursor to the screen so the cursor is always present no matter where we look, we place it as a
child of the active camera entity. We pull it in front of the camera by placing it on the negative Z
axis. When the cursor clicks on the box, we can listen to the click event.

<a-entity camera>
 <a-entity cursor="fuse: true; fuseTimeout: 500"
 position="0 0 -1"
 geometry="primitive: ring; radiusInner: 0.02; radiusOuter: 0.03"
 material="color: black; shader: flat">
 </a-entity>
</a-entity>

<a-entity id="box" cursor-listener geometry="primitive: box" material="color: blue">
</a-entity>

// Component to change to random color on click.
AFRAME.registerComponent('cursor-listener', {
 init: function () {
 var COLORS = ['red', 'green', 'blue'];
 this.el.addEventListener('click', function (evt) {
 var randomIndex = Math.floor(Math.random() * COLORS.length);
 this.setAttribute('material', 'color', COLORS[randomIndex]);
 console.log('I was clicked at: ', evt.detail.intersection.point);
 });
 }
});

Gaze-Based Interactions with cursor Component

We’ll first go over gaze-based interactions. Gaze-based interactions rely on rotating our heads and
looking at objects to interact with them. This type of interaction is for headsets without a controller.
Even with a rotation-only controller (Daydream, GearVR), the interaction is still similar. Since A-

https://riptutorial.com/ 37

Frame provides mouse-drag controls by default, gaze-based can sort of be used on desktop to
preview the interaction by dragging the camera rotation.

To add gaze-based interaction, we need to add or implement a component. A-Frame comes with a
cursor component that provides gaze-based interaction if attached to the camera:

Explicitly define entity. Previously, A-Frame was providing the default camera.1.
Add a-cursor entity as a child element underneath the camera entity.2.
Optionally, configure the raycaster used by the cursor.3.

<a-scene>
 <a-camera>
 <a-cursor></a-cursor>
 <!-- Or <a-entity cursor></a-entity> -->
 </a-camera>
</a-scene>

a-cursor primitive

The cursor primitive is a reticle that allows for clicking and basic interactivity with a scene on
devices that do not have a hand controller. The default appearance is a ring geometry. The cursor
is usually placed as a child of the camera.

<a-scene>
 <a-camera>
 <a-cursor></a-cursor>
 </a-camera>
 <a-box></a-box>
</a-scene>

Fuse-Based Cursor

Also known as gaze-based cursor. If we set the cursor to be fuse-based, the cursor will trigger a
click if the user gazes at an entity for a set amount of time. Imagine a laser strapped to the user’s
head, and the laser extends out into the scene. If the user stares at an entity long enough (i.e., the
fuseTimeout), then the cursor will trigger a click.

The advantage of fuse-based interactions for VR is that it does not require extra input devices
other than the headset. The fuse-based cursor is primarily intended for Google Cardboard
applications. The disadvantage of fuse-based interactions is that it requires the user to turn their
head a lot.

Configuring the Cursor through the Raycaster Component

The cursor builds on top of and depends on the raycaster component. If we want to customize the
raycasting pieces of the cursor, we can do by changing the raycaster component properties. Say
we want set a max distance, check for intersections less frequently, and set which objects are
clickable:

https://riptutorial.com/ 38

<a-entity cursor raycaster="far: 20; interval: 1000; objects: .clickable"></a-entity>

Adding Visual Feedback

To add visual feedback to the cursor to show when the cursor is clicking or fusing, we can use the
animation system. When the cursor intersects the entity, it will emit an event, and the animation
system will pick up event with the begin attribute:

<a-entity cursor="fuse: true; fuseTimeout: 500"
 position="0 0 -1"
 geometry="primitive: ring"
 material="color: black; shader: flat">
 <a-animation begin="click" easing="ease-in" attribute="scale"
 fill="backwards" from="0.1 0.1 0.1" to="1 1 1"></a-animation>
 <a-animation begin="cursor-fusing" easing="ease-in" attribute="scale"
 fill="forwards" from="1 1 1" to="0.1 0.1 0.1"></a-animation>
</a-entity>

Mouse cursor

Note: For this example you need to add an external npm package.

If you want to use a mouse cursor of your computer, you need to add aframe-mouse-cursor-
component. After if you must include the script using this code:

import 'aframe';
import 'aframe-mouse-cursor-component';

// or this

require('aframe');
require('aframe-mouse-cursor-component');

And on your camera you need to add the mouse-cursor component.

<a-scene>
 <a-entity camera look-controls mouse-cursor>
</a-scene>

Read cursors online: https://riptutorial.com/aframe/topic/10180/cursors

https://riptutorial.com/ 39

https://github.com/mayognaise/aframe-mouse-cursor-component
https://github.com/mayognaise/aframe-mouse-cursor-component
https://riptutorial.com/aframe/topic/10180/cursors

Chapter 9: Entities

Introduction

A-Frame represents an entity via the <a-entity> element. As defined in the entity-component-
system pattern, entities are placeholder objects to which we plug in components to provide them
appearance, behavior, and functionality.

Syntax

<a-entity> // Consider the entity below. By itself, it has no appearance, behavior, or
functionality. It does nothing:

•

<a-entity geometry="primitive: box" material="color: red"> // We can attach components to
it to make it render something or do something. To give it shape and appearance, we can
attach the geometry and material components:

•

<a-entity geometry="primitive: box" material="color: red" light="type: point; intensity:
2.0"> // Or to make it emit light, we can further attach the light component:

•

Parameters

Parameter Details

components
<a-entity>.components is an object of components attached to the entity. This
gives us access to the entity’s components including each component’s data,
state, and methods.

isPlaying
Whether the entity is active and playing. If we pause the entity, then isPlaying
becomes false.

object3D

<a-entity>.object3D is a reference to the entity’s three.js Object3D
representation. More specifically, object3D will be a THREE.Group object that
may contain different types of THREE.Object3Ds such as cameras, meshes,
lights, or sounds:

object3DMap
An entity’s object3DMap is an object that gives access to the different types
of THREE.Object3Ds (e.g., camera, meshes, lights, sounds) that components
have set.

sceneEl An entity has a reference to its scene element.

Remarks

METHODS

https://riptutorial.com/ 40

addState (stateName)

addState will push a state onto the entity. This will emit the stateadded event, and we can check
the state can for existence using .is:

entity.addEventListener('stateadded', function (evt) {
 if (evt.detail.state === 'selected') {
 console.log('Entity now selected!');
 }
});
entity.addState('selected');
entity.is('selected'); // >> true

emit (name, detail, bubbles)

emit emits a custom DOM event on the entity. For example, we can emit an event to trigger an
animation:

<a-entity>
 <a-animation attribute="rotation" begin="rotate" to="0 360 0"></a-animation>
</a-entity>

entity.emit('rotate');

We can also pass event detail or data as the second argument:

entity.emit('collide', { target: collidingEntity });

The event will bubble by default. we can tell it not to bubble by passing false for bubble:

entity.emit('sink', null, false);

flushToDOM (recursive)

flushToDOM will manually serialize an entity’s components’ data and update the DOM.

getAttribute (componentName)

getAttribute retrieves parsed component data (including mixins and defaults).

// <a-entity geometry="primitive: box; width: 3">
entity.getAttribute('geometry');
// >> {primitive: "box", depth: 2, height: 2, translate: "0 0 0", width: 3, ...}
entity.getAttribute('geometry').primitive;
// >> "box"
entity.getAttribute('geometry').height;
// >> 2
entity.getAttribute('position');
// >> {x: 0, y: 0, z: 0}

https://riptutorial.com/ 41

If componentName is not the name of a registered component, getAttribute will behave as it
normally would:

// <a-entity data-position="0 1 1">
entity.getAttribute('data-position');
// >> "0 1 1"

getDOMAttribute (componentName)

getDOMAttribute retrieves only parsed component data that is explicitly defined in the DOM or
via setAttribute. If componentName is the name of a registered component, getDOMAttribute
will return only the component data defined in the HTML as a parsed object. getDOMAttribute for
components is the partial form of getAttribute since the returned component data does not
include applied mixins or default values:

Compare the output of the above example of getAttribute:

// <a-entity geometry="primitive: box; width: 3">
entity.getDOMAttribute('geometry');
// >> { primitive: "box", width: 3 }
entity.getDOMAttribute('geometry').primitive;
// >> "box"
entity.getDOMAttribute('geometry').height;
// >> undefined
entity.getDOMAttribute('position');
// >> undefined

getObject3D (type)

getObject3D looks up a child THREE.Object3D referenced by type on object3DMap.

AFRAME.registerComponent('example-mesh', {
 init: function () {
 var el = this.el;
 el.getOrCreateObject3D('mesh', THREE.Mesh);
 el.getObject3D('mesh'); // Returns THREE.Mesh that was just created.
 }
});

getOrCreateObject3D (type, Constructor)

If the entity does not have a THREE.Object3D registered under type, getOrCreateObject3D will
register an instantiated THREE.Object3D using the passed Constructor. If the entity does have
an THREE.Object3D registered under type, getOrCreateObject3D will act as getObject3D:

AFRAME.registerComponent('example-geometry', {
 update: function () {
 var mesh = this.el.getOrCreateObject3D('mesh', THREE.Mesh);
 mesh.geometry = new THREE.Geometry();
 }

https://riptutorial.com/ 42

});

pause ()

pause() will stop any dynamic behavior as defined by animations and components. When we
pause an entity, it will stop its animations and call Component.pause() on each of its
components. The components decide to implement what happens on pause, which is often
removing event listeners. An entity will call pause() on its child entities when we pause an entity.

// <a-entity id="spinning-jumping-ball">
entity.pause();

For example, the look-controls component on pause will remove event handlers that listen for
input.

play ()

play() will start any dynamic behavior as defined by animations and components. This is
automatically called when the DOM attaches an entity. When an entity play(), the entity calls
play() on its child entities.

entity.pause();
entity.play();

For example, the sound component on play will begin playing the sound.

setAttribute (componentName, value, [propertyValue | clobber])

If componentName is not the name of a registered component or the component is a single-
property component, setAttribute behaves as it normally would:

entity.setAttribute('visible', false);

Though if componentName is the name of a registered component, it may handle special parsing
for the value. For example, the position component is a single-property component, but its
property type parser allows it to take an object:

entity.setAttribute('position', { x: 1, y: 2, z: 3 });

setObject3D (type, obj)

setObject3D will register the passed obj, a THREE.Object3D, as type under the entity’s
object3DMap. A-Frame adds obj as a child of the entity’s root object3D.

AFRAME.registerComponent('example-orthogonal-camera', {

https://riptutorial.com/ 43

 update: function () {
 this.el.setObject3D('camera', new THREE.OrthogonalCamera());
 }
});

removeAttribute (componentName, propertyName)

If componentName is the name of a registered component, along with removing the attribute from
the DOM, removeAttribute will also detach the component from the entity, invoking the
component’s remove lifecycle method.

entity.removeAttribute('goemetry'); // Detach the geometry component.
entity.removeAttribute('sound'); // Detach the sound component.

If propertyName is given, removeAttribute will reset the property value of that property specified
by propertyName to the property’s default value:

entity.setAttribute('material', 'color', 'blue'); // The color is blue.
entity.removeAttribute('material', 'color'); // Reset the color to the default value, white.

removeObject3D (type)

removeObject3D removes the object specified by type from the entity’s THREE.Group and thus
from the scene. This will update the entity’s object3DMap, setting the value of the type key to null
. This is generally called from a component, often within the remove handler:

AFRAME.registerComponent('example-light', {
 update: function () {
 this.el.setObject3D('light', new THREE.Light());
 // Light is now part of the scene.
 // object3DMap.light is now a THREE.Light() object.
 },
 remove: function () {
 this.el.removeObject3D('light');
 // Light is now removed from the scene.
 // object3DMap.light is now null.
 }
});

removeState (stateName)

removeState will pop a state from the entity. This will emit the stateremoved event, and we can
check the state its removal using .is:

entity.addEventListener('stateremoved', function (evt) {
 if (evt.detail.state === 'selected') {
 console.log('Entity no longer selected.');
 }
});
entity.addState('selected');

https://riptutorial.com/ 44

entity.is('selected'); // >> true
entity.removeState('selected');
entity.is('selected'); // >> false

EVENTS

Event Name Description

child-attached A child entity was attached to the entity.

child-detached A child entity was detached from the entity.

componentchanged One of the entity’s components was modified.

componentinit One of the entity’s components was initialized.

componentremoved One of the entity’s components was removed.

loaded The entity has attached and initialized its components.

object3dset
THREE.Object3D was set on entity using setObject3D(name). Event
detail will contain name used to set on the object3DMap.

pause The entity is now inactive and paused in terms of dynamic behavior.

play The entity is now active and playing in terms of dynamic behavior.

stateadded The entity received a new state.

stateremoved The entity no longer has a certain state.

schemachanged The schema of a component was changed.

EVENT DETAILS

Below is what the event detail contains for each event:

Event Name Property Description

child-attached el Reference to the attached child element.

componentchanged name Name of component that had its data modified.

id ID of component that had its data modified.

newData Component’s new data, after it was modified.

https://riptutorial.com/ 45

Event Name Property Description

oldData Component’s previous data, before it was modified.

componentinitialized name Name of component that was initialized.

id ID of component that had its data modified.

data Component data.

componentremoved name Name of component that was removed.

id ID of component that was removed.

stateadded state The state that was attached (string).

stateremoved state The state that was detached (string).

schemachanged component Name of component that had it’s schema changed.

Examples

Listening for Component Changes

We can use the componentchanged event to listen for changes to the entity:

entity.addEventListener('componentchanged', function (evt) {
 if (evt.detail.name === 'position') {
 console.log('Entity has moved from',
 evt.detail.oldData, 'to', evt.detail.newData, '!');
 }
});

Listening for Child Elements Being Attached and Detached

We can use the child-attached and child-detached events to listen for when the scene attaches
or detaches an entity:

entity.addEventListener('child-attached', function (evt) {
 if (evt.detail.el.tagName.toLowerCase() === 'a-box') {
 console.log('a box element has been attached');
 };
});

Entity Multi-Property Component Data (setAttribute)

Updating Multi-Property Component Data

To update component data for a multi-property component, we can pass the name of a registered

https://riptutorial.com/ 46

component as the componentName, and pass an object of properties as the value. A string is
also acceptable (e.g., type: spot; distance: 30), but objects will save A-Frame some work in
parsing:

// Only the properties passed in the object will be overwritten.
entity.setAttribute('light', {
 type: 'spot',
 distance: 30,
 intensity: 2.0
});

Or to update individual properties for a multi-property component, we can pass the name of
registered component as the componentName, a property name as the second argument, and
the property value to set as the third argument:

// All previous properties for the material component (besides the color) will be unaffected.
entity.setAttribute('material', 'color', 'crimson');

Note that array property types behave uniquely:

Arrays are mutable. They are assigned by reference so changes to arrays will be visible by
the component.

•

Updates to array type properties will not trigger the component’s update method nor emit
events.

•

Updating Multi-Property Component Data

If true is passed as the third argument to .setAttribute, then non-specified properties will be reset
and clobbered:

// All previous properties for the light component will be removed and overwritten.
entity.setAttribute('light', {
 type: 'spot',
 distance: 30,
 intensity: 2.0
}, true);

Retrieving an Entity

We can simply retrieve an entity using DOM APIs.

<a-entity id="mario"></a-entity>

var el = document.querySelector('#mario');

Retrieving an Entity components

For example, if we wanted to grab an entity’s three.js camera object or material object, we could

https://riptutorial.com/ 47

reach into its components

var camera = document.querySelector('a-entity[camera]').components.camera.camera;
var material = document.querySelector('a-entity[material]').components.material.material;

Or if a component exposes an API, we can call its methods:

document.querySelector('a-entity[sound]').components.sound.pause();

Read Entities online: https://riptutorial.com/aframe/topic/10066/entities--a-entity-

https://riptutorial.com/ 48

https://riptutorial.com/aframe/topic/10066/entities--a-entity-

Chapter 10: gltf-model (component)

Introduction

The gltf-model component allows to use 3D models in the glTF format with A-Frame. glTF is a
Khronos standard for efficient, full-scene 3D models and is optimised for usage on the web.

Syntax

<a-entity gltf-model="url(https://cdn.rawgit.com/KhronosGroup/glTF-Sample-
Models/9176d098/1.0/Duck/glTF/Duck.gltf)"></a-entity>

•

<a-entity gltf-model="#duck"></a-entity>•

Parameters

Parameter Details

url(...) will load the glTF model wrapped from the URL wrapped in url()

#example will load the <a-asset-item> with the ID example

Examples

Loading a glTF model via URL

<a-scene>
 <a-entity gltf-model="url(https://cdn.rawgit.com/KhronosGroup/glTF-Sample-
Models/9176d098/1.0/Duck/glTF/Duck.gltf)" position="0 0 -5"></a-entity>
</a-scene>

Loading a gltf-model via the asset system

<a-scene>
 <a-assets>
 <a-asset-item id="duck" src="https://cdn.rawgit.com/KhronosGroup/glTF-Sample-
Models/9176d098/1.0/Duck/glTF/Duck.gltf"></a-asset-item>
 </a-assets>

 <a-entity gltf-model="#duck" position="0 0 -5"></a-entity>
</a-scene>

Read gltf-model (component) online: https://riptutorial.com/aframe/topic/10758/gltf-model--
component-

https://riptutorial.com/ 49

https://riptutorial.com/aframe/topic/10758/gltf-model--component-
https://riptutorial.com/aframe/topic/10758/gltf-model--component-

Chapter 11: light (component)

Introduction

The light component defines the entity as a source of light. Light affects all materials that have not
specified a flat shading model with shader: flat. Note that lights are computationally expensive we
should limit number of lights in a scene.

Syntax

<a-entity light="color: #AFA; intensity: 1.5" position="-1 1 0"></a-entity>•
<a-light type="point" color="blue" position="0 5 0"></a-light>•

Parameters

Parameters Details

type One of ambient, directional, hemisphere, point, spot.

color Light color.

intensity Light strength.

Examples

Ambient

Ambient lights globally affect all entities in the scene. The color and intensity properties define
ambient lights. Additionally, position, rotation, and scale have no effect on ambient lights.

We recommend to have some form of ambient light such that shadowed areas are not fully black
and to mimic indirect lighting.

<a-entity light="type: ambient; color: #CCC"></a-entity>

Directional

Directional lights are like a light source that is infinitely far away, but shining from a specific
direction, like the sun. Thus, absolute position do not have an effect on the intensity of the light on
an entity. We can specify the direction using the position component.

The example below creates a light source shining from the upper-left at a 45-degree angle. Note
that because only the vector matters, position="-100 100 0" and position="-1 1 0" are the same.

https://riptutorial.com/ 50

<a-entity light="type: directional; color: #EEE; intensity: 0.5" position="-1 1 0"></a-entity>

We can specify the direction of the directional light with its orientation by creating a child entity it
targets. For example, pointing down its -Z axis:

<a-light type="directional" position="0 0 0" rotation="-90 0 0" target="#directionaltarget">
 <a-entity id="directionaltarget" position="0 0 -1"></a-entity>
</a-light>

Hemisphere

Hemisphere lights are like an ambient light, but with two different colors, one from above (color)
and one from below (groundColor). This can be useful for scenes with two distinct lighting colors
(e.g., a grassy field under a gray sky).

<a-entity light="type: hemisphere; color: #33C; groundColor: #3C3; intensity: 2"></a-entity>

Property Description Default Value

groundColor Light color from below. #fff

Point

Point lights, unlike directional lights, are omni-directional and affect materials depending on their
position and distance. Point likes are like light bulb. The closer the light bulb gets to an object, the
greater the object is lit.

<a-entity light="type: point; intensity: 0.75; distance: 50; decay: 2"
 position="0 10 10"></a-entity>

Property Description
Default
Value

decay Amount the light dims along the distance of the light. 1.0

distance
Distance where intensity becomes 0. If distance is 0, then the point
light does not decay with distance.

0.0

Spot

Spot lights are like point lights in the sense that they affect materials depending on its position and
distance, but spot lights are not omni-directional. They mainly cast light in one direction, like the
Bat-Signal.

<a-entity light="type: spot; angle: 45"></a-entity>

https://riptutorial.com/ 51

Property Description
Default
Value

angle Maximum extent of spot light from its direction (in degrees). 60

decay Amount the light dims along the distance of the light. 1.0

distance
Distance where intensity becomes 0. If distance is 0, then the point
light does not decay with distance.

0.0

penumbra Percent of the spotlight cone that is attenuated due to penumbra. 0.0

target
element the spot should point to. set to null to transform spotlight
by orientation, pointing to it’s -Z axis.

null

Default lighting

By default, A-Frame scenes inject default lighting, an ambient light and a directional light. These
default lights are visible in the DOM with the data-aframe-default-light attribute. Whenever we add
any lights, A-Frame removes the default lights from the scene.

<!-- Default lighting injected by A-Frame. -->
<a-entity light="type: ambient; color: #BBB"></a-entity>
<a-entity light="type: directional; color: #FFF; intensity: 0.6" position="-0.5 1 1"></a-
entity>

Read light (component) online: https://riptutorial.com/aframe/topic/10078/light--component-

https://riptutorial.com/ 52

https://riptutorial.com/aframe/topic/10078/light--component-

Chapter 12: Mixins

Introduction

Mixins provide a way to compose and reuse commonly-used sets of component properties. They
are defined using the <a-mixin> element and are placed in <a-assets>. Mixins should be set with an
id, and when an entity sets that id as its mixin attribute, the entity will absorb all of the mixin’s
attributes.

Examples

Example usage of mixins

<a-scene>
 <a-assets>
 <a-mixin id="red" material="color: red"></a-mixin>
 <a-mixin id="blue" material="color: blue"></a-mixin>
 <a-mixin id="cube" geometry="primitive: box"></a-mixin>
 </a-assets>
 <a-entity mixin="red cube"></a-entity>
 <a-entity mixin="blue cube"></a-entity>
</a-scene>

The entity with red cube will take the properties from the red mixin and the cube mixin in that
order. Likewise with the blue cube. Conceptually, the entities above expand to:

<a-entity material="color: red" geometry="primitive: box"></a-entity>
<a-entity material="color: blue" geometry="primitive: box"></a-entity>

Merging Component Properties

Properties of a multi-property component will merge if defined by multiple mixins and/or the entity.
For example:

<a-scene>
 <a-assets>
 <a-mixin id="box" geometry="primitive: box"></a-mixin>
 <a-mixin id="tall" geometry="height: 10"></a-mixin>
 <a-mixin id="wide" geometry="width: 10"></a-mixin>
 </a-assets>
 <a-entity mixin="wide tall box" geometry="depth: 2"></a-entity>
</a-scene>

All of the geometry component properties will merge since they are included as mixins and defined
on the entity. The entity would then be equivalent to:

<a-entity geometry="primitive: box; height: 10; depth: 2; width: 10"></a-entity>

https://riptutorial.com/ 53

Order and Precedence

When an entity includes multiple mixins that define the same component properties, the right-most
mixin takes precedence. In the example below, the entity includes both red and blue mixins, and
since the blue mixin is included last, the final color of the cube will be blue.

<a-scene>
 <a-assets>
 <a-mixin id="red" material="color: red"></a-mixin>
 <a-mixin id="blue" material="color: blue"></a-mixin>
 <a-mixin id="cube" geometry="primitive: box"></a-mixin>
 </a-assets>

 <a-entity mixin="red blue cube"></a-entity>
</a-scene>

If an entity itself defines a property that is already defined by a mixin, the entity's definition takes
precedence. In the example below, the entity includes both red and blue mixins and also defines a
green color. Since the entity directly defines its own color, the final color of the cube will be green.

<a-scene>
 <a-assets>
 <a-mixin id="red" material="color: red"></a-mixin>
 <a-mixin id="blue" material="color: blue"></a-mixin>
 <a-mixin id="cube" geometry="primitive: box"></a-mixin>
 </a-assets>

 <a-entity mixin="red blue cube" material="color: green"></a-entity>
</a-scene>

Read Mixins online: https://riptutorial.com/aframe/topic/10072/mixins--a-mixin-

https://riptutorial.com/ 54

https://riptutorial.com/aframe/topic/10072/mixins--a-mixin-

Chapter 13: Primitives

Introduction

Primitives are just <a-entity>s under the hood. This means primitives have the same API as
entities such as positioning, rotating, scaling, and attaching components. A-Frame provides a
handful of elements such as <a-box> or <a-sky> called primitives that wrap the entity-component
pattern to make it appealing for beginners. . Developers can create their own primitives as well.

Remarks

Under the Hood

Primitives act as a convenience layer (i.e., syntactic sugar) primarily for newcomers. Keep in mind
for now that primitives are <a-entity>s under the hood that:

Have a semantic name (e.g., <a-box>)•
Have a preset bundle of components with default values•
Map or proxy HTML attributes to [component][component] data•

Primitives are similar to prefabs in Unity. Some literature on the entity-component-system pattern
refer to them as assemblages. They abstract the core entity-component API to:

Pre-compose useful components together with prescribed defaults•
Act as a shorthand for complex-but-common types of entities (e.g., <a-sky>)•
Provide a familiar interface for beginners since A-Frame takes HTML in a new direction•

Under the hood, this <a-box> primitive:

<a-box color="red" width="3"></a-box>

represents this entity-component form:

<a-entity geometry="primitive: box; width: 3" material="color: red"></a-entity>

<a-box> defaults the geometry.primitive property to box. And the primitive maps the HTML width
attribute to the underlying geometry.width property as well as the HTML color attribute to the
underlying material.color property.

Examples

Registering a Primitive

We can register our own primitives (i.e., register an element) using AFRAME.registerPrimitive(name,
definition). definition is a JavaScript object defining these properties:

https://riptutorial.com/ 55

http://docs.unity3d.com/Manual/Prefabs.html
http://vasir.net/blog/game-development/how-to-build-entity-component-system-in-javascript

Property Description

defaultComponents
Object specifying default components of the primitive. The keys are
the components' names and the values are the components' default
data.

mappings

Object specifying mapping between HTML attribute name and
component property names. Whenever the HTML attribute name is
updated, the primitive will update the corresponding component
property. The component property is defined using a dot syntax
${componentName}.${propertyName}.

For example, below is A-Frame's registration for the <a-box> primitive:

var extendDeep = AFRAME.utils.extendDeep;

// The mesh mixin provides common material properties for creating mesh-based primitives.
// This makes the material component a default component and maps all the base material
properties.
var meshMixin = AFRAME.primitives.getMeshMixin();

AFRAME.registerPrimitive('a-box', extendDeep({}, meshMixin, {
 // Preset default components. These components and component properties will be attached to
the entity out-of-the-box.
 defaultComponents: {
 geometry: {primitive: 'box'}
 },

 // Defined mappings from HTML attributes to component properties (using dots as delimiters).
 // If we set `depth="5"` in HTML, then the primitive will automatically set
`geometry="depth: 5"`.
 mappings: {
 depth: 'geometry.depth',
 height: 'geometry.height',
 width: 'geometry.width'
 }
}));

Which we can use then

<a-box depth="1.5" height="1.5" width="1.5"></a-box>

represents this entity-component form:

<a-entity geometry="primitive: box; depth: 1.5; height: 1.5; width:1.5;"></a-entity>

Read Primitives online: https://riptutorial.com/aframe/topic/10074/primitives

https://riptutorial.com/ 56

https://riptutorial.com/aframe/topic/10074/primitives

Chapter 14: Raycasters (component)

Introduction

The raycaster component does general intersection testing with a raycaster. Raycasting is the
method of extending a line from an origin towards a direction, and checking whether that line
intersects with other entites. The raycaster component is a wrapper on top of the three.js
raycaster. It checks for intersections at a certain interval against a list of objects, and will emit
events on the entity when it detects intersections or clearing of intersections (i.e., when the
raycaster is no longer

Parameters

Parameter Details

far
Maximum distance under which resulting entities are returned. Cannot be lower
then near.

interval
Number of milliseconds to wait in between each intersection test. Lower number
is better for faster updates. Higher number is better for performance.

near
Minimum distance over which resuilting entities are returned. Cannot be lower
than 0.

objects
Query selector to pick which objects to test for intersection. If not specified, all
entities will be tested.

recursive
Checks all children of objects if set. Else only checks intersections with root
objects.

Remarks

Events

Name Details

raycaster-
intersected

Emitted on the intersected entity. Entity is intersecting with a raycaster.
Event detail will contain el, the raycasting entity, and intersection, an
object containing detailed data about the intersection.

raycaster-
intersected-
cleared

Emitted on the intersected entity. Entity is no longer intersecting with a
raycaster. Event detail will contain el, the raycasting entity.

https://riptutorial.com/ 57

Name Details

raycaster-
intersection

Emitted on the raycasting entity. Raycaster is intersecting with one or
more entities. Event detail will contain els, an array with the intersected
entities, and intersections, an array of objects containing detailed data
about the intersections.

raycaster-
intersection-
cleared

Emitted on the raycasting entity. Raycaster is no longer intersecting with
an entity. Event detail will contain el, the formerly intersected entity.

Member

Member Description

intersectedEls Entities currently intersecting the raycaster.

objects
three.js objects to test for intersections. Will be scene.children if not objects
property is not specified.

raycaster three.js raycaster object.

Methode

Method Description

refreshObjects
Refreshes the list of objects based off of the objects property to test for
intersection.

Examples

Setting the Origin and Direction of the Raycaster

The raycaster has an origin, where its ray starts, and a direction, where the ray goes.

The origin of the raycaster is at the raycaster entity’s position. We can change the origin of the
raycaster by setting the position component of the raycaster entity (or parent entities of the
raycaster entity).

The direction of the raycaster is in “front” of the raycaster entity (i.e., 0 0 -1, on the negative Z-
axis). We can change the direction of the raycaster by setting the rotation component of the
raycaster entity (or parent entities of the raycaster entity).

For example, here is applying a raycaster along the length of a rotated bullet:

https://riptutorial.com/ 58

<!-- Bullet, rotated to be parallel with the ground. -->
<a-entity id="bullet" geometry="primitive: cylinder; height: 0.1" rotation="-90 0 0">
 <!-- Raycaster, targets enemies, made to be as long as the bullet, positioned to the start
of the bullet, rotated to align with the bullet. -->
 <a-entity raycaster="objects: .enemies; far: 0.1" position="0 -0.5 0" rotation="90 0 0"></a-
entity>
</a-entity>

Whitelisting Entities to Test for Intersection

We usually don’t want to test everything in the scene for intersections (e.g., for collisions or for
clicks). Selective intersections are good for performance to limit the number of entities to test for
intersection since intersection testing is an operation that will run over 60 times per second.

To select or pick the entities we want to test for intersection, we can use the objects property. If
this property is not defined, then the raycaster will test every object in the scene for intersection.
objects takes a query selector value:

<a-entity raycaster="objects: .clickable" cursor></a-entity>
<a-entity class="clickable" geometry="primitive: box" position="1 0 0"></a-entity>
<a-entity class="not-clickable" geometry="primitive: sphere" position="-1 0 0"></a-entity>

Read Raycasters (component) online: https://riptutorial.com/aframe/topic/10036/raycasters--
component-

https://riptutorial.com/ 59

https://riptutorial.com/aframe/topic/10036/raycasters--component-
https://riptutorial.com/aframe/topic/10036/raycasters--component-

Chapter 15: Scene

Introduction

A scene is represented by the <a-scene> element. The scene is the global root object, and all
entities are contained within the scene.

The scene inherits from the Entity class so it inherits all of its properties, its methods, the ability to
attach components, and the behavior to wait for all of its child nodes (e.g., <a-assets> and <a-
entity>) to load before kicking off the render loop.

Parameters

Parameter Details

behaviors Array of components with tick methods that will be run on every frame.

camera Active three.js camera.

canvas Reference to the canvas element.

isMobile Whether or not environment is detected to be mobile.

object3D THREE.Scene object.

renderer Active THREE.WebGLRenderer.

renderStarted Whether scene is rendering.

effect Renderer for VR created by passing active renderer into THREE.VREffect.

systems Instantiated systems.

time Global uptime of scene in seconds.

Remarks

METHODS

Name Description

enterVR
Switch to stereo render and push content to the headset. Needs to be called within
a user-generated event handler like click. the first time a page enters VR.

https://riptutorial.com/ 60

Name Description

exitVR Switch to mono renderer and stops presenting content on the headset.

reload Revert the scene to its original state.

EVENTS

Name Description

enter-vr User has entered VR and headset started presenting content.

exit-vr User has exited VR and headset stopped presenting content.

loaded All nodes have loaded.

renderstart Render loop has started.

Examples

Attaching Scene Components

Components can be attached to the scene as well as entities. A-Frame ships with a few
components to configure the scene:

Component Details

embedded Remove fullscreen styles from the canvas.

fog Add fog.

keyboard-shortcuts Toggle keyboard shortcuts.

inspector Inject the A-Frame Inspector.

stats Toggle performance stats.

vr-mode-ui Toggle UI for entering and exiting VR.

debug Enables component-to-DOM serialization.

Using embedded scenes

If you want to use WebVR content mixed with HTML content, for example when you're making a
extended showcase key content, you could use the embedded tag. When you're using this, it's
possible to look around inside 360° content using the gyroscope of your smartphone or click and

https://riptutorial.com/ 61

drag on computer.

<script src="https://aframe.io/releases/0.5.0/aframe.min.js"></script>
<div class="vrcontent">
 <a-scene embedded>
 <a-assets>
 <img id="sky" src="https://c1.staticflickr.com/5/4248/34705881091_37b5cf2d28_o.jpg"
alt="" />
 </a-assets>

 <a-sky src="#sky"></a-sky>
 </a-scene>
</div>

<div class="overlay">
 <button class="calltoaction">Click me!</button>
</div>

<div class="content">
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit. Deleniti animi aliquid
architecto quibusdam ipsum, debitis dolor mollitia. Quidem, cumque quos porro doloribus iure
dolore illum, qui rem asperiores unde laboriosam.Dolorum tempora quam eveniet ea recusandae
deserunt, velit similique. Cum sunt rerum beatae officiis qui sed molestiae et ullam quasi,
harum maxime vel, aspernatur quidem molestias. Provident quae illo harum?Sunt expedita,
repellat saepe vel accusamus odio. Alias, obcaecati harum earum inventore asperiores quaerat,
sit autem nostrum. Sunt illo numquam, temporibus pariatur optio nam, expedita necessitatibus
aliquid nemo maxime nisi. Praesentium corporis, ea sunt asperiores, recusandae animi, rem
doloribus, possimus cum laudantium libero. Maiores a, iusto aspernatur reiciendis ratione sunt
nisi, rem, quasi temporibus ullam non. Neque repellat facilis illo.Quibusdam reiciendis sunt
tempora fuga deleniti, molestias temporibus doloremque. Nam sed consequatur consectetur ut
tempora a nesciunt, perspiciatis dolorem reprehenderit modi enim at veritatis, excepturi
voluptate quod, voluptatibus voluptas. Cum.Debitis, nesciunt, repellat voluptatem sapiente
incidunt quidem asperiores reprehenderit vero quisquam placeat sunt voluptatibus velit.
Consectetur atque voluptates, repellendus facere sequi ea totam quia quis non incidunt.
Soluta, aut, provident. Eos sequi itaque dolorem atque ex id maiores dolor eaque libero iste
deserunt ea voluptate minima cum laboriosam, qui animi, fuga suscipit necessitatibus vero,
autem blanditiis, totam nulla. Quo, et. Quisquam commodi voluptatum dolorem aspernatur,
distinctio et ullam laborum laboriosam quo nisi, praesentium quaerat ab excepturi. Illum harum
doloremque, accusantium, beatae culpa assumenda laboriosam, quos mollitia aperiam dolorem
praesentium minus!</p>
</div>

Debug

The debug component enables component-to-DOM serialization.

<a-scene debug></a-scene>

Component-to-DOM Serialization

By default, for performance reasons, A-Frame does not update the DOM with component data. If
we open the browser’s DOM inspector, we will see only the component names (and not the
values) are visible.

https://riptutorial.com/ 62

<a-entity geometry material position rotation></a-entity>

A-Frame stores the component data in memory. Updating the DOM takes CPU time for converting
internal component data to strings. If we want to see the DOM update for debugging purposes, we
can attach the debug component to the scene. Components will check for an enabled debug
component before trying to serialize to the DOM. Then we will be able to view component data in
the DOM:

<a-entity geometry="primitive: box" material="color: red" position="1 2 3" rotation="0 180
0"></a-entity>

Make sure that this component is not active in production.

Manually Serializing to DOM

To manually serialize to DOM, use Entity.flushToDOM or Component.flushToDOM:

document.querySelector('a-entity').components.position.flushToDOM(); // Flush a component.
document.querySelector('a-entity').flushToDOM(); // Flush an entity.
document.querySelector('a-entity').flushToDOM(true); // Flush an entity and its children.
document.querySelector('a-scene').flushToDOM(true); // Flush every entity.

Running Content Scripts on the Scene

The recommended way is to write a component, and attach it to the scene element.
The scene and its children will be initialized before this component.

AFRAME.registerComponent('do-something', {
 init: function () {
 var sceneEl = this.el;
 }
});

<a-scene do-something></a-scene>

If for some particular reason you prefer not to write a dedicated component you need to wait for
the scene to finish initializing and attaching:

var scene = document.querySelector('a-scene');

if (scene.hasLoaded) {
 run();
} else {
 scene.addEventListener('loaded', run);
}

function run () {
 var entity = scene.querySelector('a-entity');
 entity.setAttribute('material', 'color', 'red');
}

https://riptutorial.com/ 63

Read Scene online: https://riptutorial.com/aframe/topic/10069/scene--a-scene-

https://riptutorial.com/ 64

https://riptutorial.com/aframe/topic/10069/scene--a-scene-

Chapter 16: System

Introduction

A system, of the entity-component-system pattern, provides global scope, services, and
management to classes of components. It provides public APIs (methods and properties) for
classes of components. A system can be accessed through the scene element, and can help
components interface with the global scene.

For example, the camera system manages all entities with the camera component, controlling
which camera is the active camera.

Parameters

Parameter Details

data Data provided by the schema available across handlers and methods

el Reference to <a-scene>

schema Behaves the same as component schemas. Parses to data.

Remarks

METHODS

A system, like a component, defines lifecycle handlers. It can also define methods intended to be
public API.

Method Description

init Called once when the system is initialized. Used to initialize.

pause Called when the scene pauses. Used to stop dynamic behavior.

play Called when the scene starts or resumes. Used to start dynamic behavior.

tick If defined, will be called on every tick of the scene's render loop.

Examples

Registering a System

https://riptutorial.com/ 65

A system is registered similarly to a A-Frame component.

If the system name matches a component name, then the component will have a reference to the
system as this.system:

AFRAME.registerSystem('my-component', {
 schema: {}, // System schema. Parses into `this.data`.
 init: function () {
 // Called on scene initialization.
 },
 // Other handlers and methods.
});
AFRAME.registerComponent('my-component', {
 init: function () {
 console.log(this.system);
 }
});

Accessing a System

An instantiated system can be accessed through the scene:

document.querySelector('a-scene').systems[systemName];

Registered system prototypes can be accessed through AFRAME.systems.

Separation of Logic and Data

Systems can help separate logic and behavior from data if desired. We let systems handle the
heavy lifting, and components only worry about managing its data through its lifecycle methods:

AFRAME.registerSystem('my-component', {
 createComplexObject: function (data) {
 // Do calculations and stuff with data.
 return new ComplexObject(data);
 }
});

AFRAME.registerComponent('my-component', {
 init: function () {
 this.myObject = null;
 },

 update: function () {
 // Do stuff with `this.data`.
 this.myObject = this.system.createComplexObject(this.data);
 }
});

Gathering All Components of a System

There is no strict API for defining how systems manage components. A common pattern is to have
components subscribe themselves to the system. The system then has references to all of its

https://riptutorial.com/ 66

components:

AFRAME.registerSystem('my-component', {
 init: function () {
 this.entities = [];
 },

 registerMe: function (el) {
 this.entities.push(el);
 },

 unregisterMe: function (el) {
 var index = this.entities.indexOf(el);
 this.entities.splice(index, 1);
 }
});

AFRAME.registerComponent('my-component', {
 init: function () {
 this.system.registerMe(this.el);
 },

 remove: function () {
 this.system.unregisterMe(this.el);
 }
});

Read System online: https://riptutorial.com/aframe/topic/10067/system

https://riptutorial.com/ 67

https://riptutorial.com/aframe/topic/10067/system

Credits

S.
No

Chapters Contributors

1
Getting started with
aframe

Community, H. Pauwelyn, M.Kungla

2 Animation M.Kungla

3
Asset Management
System

M.Kungla

4
blend-model
(component)

M.Kungla

5 Camera H. Pauwelyn

6 Components M.Kungla

7
Controls
(component)

H. Pauwelyn

8 cursors H. Pauwelyn

9 Entities M.Kungla

10
gltf-model
(component)

geekonaut

11 light (component) H. Pauwelyn

12 Mixins M.Kungla

13 Primitives M.Kungla

14
Raycasters
(component)

H. Pauwelyn, M.Kungla

15 Scene H. Pauwelyn, M.Kungla

16 System M.Kungla

https://riptutorial.com/ 68

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/1318830/m-kungla
https://riptutorial.com/contributor/1318830/m-kungla
https://riptutorial.com/contributor/1318830/m-kungla
https://riptutorial.com/contributor/1318830/m-kungla
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/1318830/m-kungla
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/1318830/m-kungla
https://riptutorial.com/contributor/585967/geekonaut
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/1318830/m-kungla
https://riptutorial.com/contributor/1318830/m-kungla
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/1318830/m-kungla
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/1318830/m-kungla
https://riptutorial.com/contributor/1318830/m-kungla

	About
	Chapter 1: Getting started with aframe
	Remarks
	Versions
	A-Frame 0.x
	Legacy Versions
	Examples
	Getting started

	Include the JS Build
	Install from npm
	Features

	VR Made Simple
	Declarative HTML
	Cross-Platform VR
	Entity-Component Architecture
	Performance
	Tool Agnostic
	Visual Inspector
	Registry
	Components
	Getting started for AR

	Chapter 2: Animation
	Introduction
	Remarks
	Attributes

	EVENTS
	Examples
	Example Animations
	Animating Different Types of Properties
	vec3 Properties
	Boolean Properties
	Numeric Properties
	Color Properties
	Component Properties

	Chapter 3: Asset Management System
	Introduction
	Remarks
	Events
	h31

	Load Progress on Individual Assets
	<a-asset-item>
	
	HTMLMediaElement

	Examples
	Example usage of assets
	Cross-Origin Resource Sharing (CORS)
	Preloading Audio and Video
	Setting a Timeout
	Specifying Response Type
	How It Works Internally

	Accessing the FileLoader and Cache

	Chapter 4: blend-model (component)
	Introduction
	Syntax
	Remarks

	VALUES
	EVENTS
	Examples
	Example usage of `blend-model`

	Chapter 5: Camera
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Default camera
	Changing the Active Camera
	Fixing Entities to the Camera
	a-camera primitive
	Manually Positioning the Camera

	Chapter 6: Components
	Introduction
	Remarks
	Definition Lifecycle Handler Methods
	Overview of Methods
	Component Prototype Properties

	METHODS
	COMPONENT PROTOTYPE METHODS
	Examples
	Register a custom A-Frame component

	AFRAME.registerComponent (name, definition)
	Registering component in foo in your js file e.g foo-component.js
	Usage of foo component in your scene
	Component HTML Form

	Single-Property Component
	Multi-Property Component
	Defining compnent schema object
	Single-Property Schema
	A-Frame's component schema property types
	Accessing a Component’s Members and Methods

	Chapter 7: Controls (component)
	Introduction
	Remarks
	Examples
	Wasd controls
	Look controls

	Caveats
	Adding gaze to cursor
	Hand controls
	Tracked controls
	3Dof and 6Dof controllers

	Adding 3DoF Controllers
	Daydream controllers
	GearVR-controllers

	Adding 6DoF Controllers
	Vive controllers
	Oculus touch controllers
	Mouse control

	Chapter 8: cursors
	Introduction
	Syntax
	Parameters
	Remarks
	Events
	Examples
	Default cursor
	Gaze-Based Interactions with cursor Component
	a-cursor primitive
	Fuse-Based Cursor
	Configuring the Cursor through the Raycaster Component
	Adding Visual Feedback
	Mouse cursor

	Chapter 9: Entities
	Introduction
	Syntax
	Parameters
	Remarks

	METHODS
	EVENTS
	EVENT DETAILS
	Examples
	Listening for Component Changes
	Listening for Child Elements Being Attached and Detached
	Entity Multi-Property Component Data (setAttribute)

	Updating Multi-Property Component Data
	Updating Multi-Property Component Data
	Retrieving an Entity
	Retrieving an Entity components

	Chapter 10: gltf-model (component)
	Introduction
	Syntax
	Parameters
	Examples
	Loading a glTF model via URL
	Loading a gltf-model via the asset system

	Chapter 11: light (component)
	Introduction
	Syntax
	Parameters
	Examples
	Ambient
	Directional
	Hemisphere
	Point
	Spot
	Default lighting

	Chapter 12: Mixins
	Introduction
	Examples
	Example usage of mixins
	Merging Component Properties
	Order and Precedence

	Chapter 13: Primitives
	Introduction
	Remarks
	Under the Hood

	Examples
	Registering a Primitive

	Chapter 14: Raycasters (component)
	Introduction
	Parameters
	Remarks

	Events
	Member
	Methode
	Examples
	Setting the Origin and Direction of the Raycaster
	Whitelisting Entities to Test for Intersection

	Chapter 15: Scene
	Introduction
	Parameters
	Remarks

	METHODS
	EVENTS
	Examples
	Attaching Scene Components
	Using embedded scenes
	Debug

	Component-to-DOM Serialization
	Manually Serializing to DOM
	Running Content Scripts on the Scene

	Chapter 16: System
	Introduction
	Parameters
	Remarks

	METHODS
	Examples
	Registering a System
	Accessing a System
	Separation of Logic and Data
	Gathering All Components of a System

	Credits

