
akka

#akka

Table of Contents

About 1

Chapter 1: Getting started with akka 2

Remarks 2

Examples 2

Installation or Setup 2

Chapter 2: Actor DSL 4

Examples 4

Simple Actor DSL 4

Context switching 4

Life-cycle Management 4

Nested Actors 5

Supervision 5

Stash support 5

Chapter 3: Akka HTTP 6

Introduction 6

Examples 6

Akka HTTP server: Hello World (Scala DSL) 6

Chapter 4: Akka Streams 7

Examples 7

Akka Streams: Hello World 7

Akka-Streams: subflows 9

Chapter 5: akka-streams custom shapes 10

Remarks 10

Examples 10

TwoThreeShape 10

Chapter 6: Dispatchers 12

Examples 12

Default Dispatcher 12

Setting the dispatcher for an Actor 12

Chapter 7: Hello world 14

Examples 14

Akka hello world (Scala) 14

Simple Actor Implementation 15

Akka Hello World (Java 8) 16

Chapter 8: Injecting dependencies into an actor 18

Examples 18

Spring-wired actor 18

Chapter 9: Supervision and Monitoring in Akka 21

Remarks 21

Examples 21

What is supervision? 21

Supervision Strategies 23

What is Monitoring? 24

Code Repository 24

Credits 26

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: akka

It is an unofficial and free akka ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official akka.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/akka
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with akka

Remarks

Akka is an open-source toolkit and runtime simplifying the construction of concurrent and
distributed applications on the JVM. It implements the actor model known from Erlang.

It should also mention any large subjects within akka, and link out to the related topics. Since the
Documentation for akka is new, you may need to create initial versions of those related topics.

Examples

Installation or Setup

Install JDK 8 (Windows, Linux) and set the path (Windows).1.
Install Scala (Linux), For Windows visit http://www.scala-lang.org/download/ download and
install binary distribution, set the environment variable for scala in PATH which is in
\scala\bin.

2.

Installing Typesafe activator (It contains Scala, Akka, Play, SBT) + project scaffolding and
templates. For quick start download the mini-package.

3.

Extract the Typesafe activator and set the PATH to activator-x.x.xx-minimal\bin (It includes
the bash and bat scripts to run the activator).

4.

Time to create a sample project and import into your favorite IDE.5.

Type activator new in cmd/terminal.•

You can choose 4 because Hello World example is based on Scala.•
Import the project to your favorite IDE and start with the Hello World example.•
Done !.•

Download akka-2.0.zip distribution of Akka from http://akka.io/downloads/1.

Unzip akka-2.0.zip in any directory. (Example - /home/USERNAME/tools/akka-2.0) You
would like to have Akka installed.

2.

Set the AKKA_HOME3.

https://riptutorial.com/ 2

http://www.riptutorial.com/java/topic/4754/installing-java--standard-edition-
http://www.riptutorial.com/java/topic/4754/installing-java--standard-edition-
http://www.riptutorial.com/java/topic/4754/installing-java--standard-edition-
http://www.riptutorial.com/scala/topic/2921/setting-up-scala
http://www.scala-lang.org/download/
https://www.lightbend.com/activator/download
http://i.stack.imgur.com/toOhR.png
http://www.riptutorial.com/akka/topic/3283/hello-world
http://www.riptutorial.com/akka/topic/3283/hello-world
http://akka.io/downloads/

For Linux.

First got to the installed location
cd /home/USERNAME/tools/akka-2.0

Export the location as AKKA_HOME
export AKKA_HOME=`pwd`

Check if PATH is Exported.
echo $AKKA_HOME
/home/USERNAME/tools/akka-2.0

4.

For Windows

First got to the installed location
C:\USERNAME\akka> cd akka-2.0

Set the location as AKKA_HOME
C:\USERNAME\akka\akka-2.0> set AKKA_HOME=%cd%

Check if PATH is Exported.
C:\USERNAME\akka\akka\akka-2.0> echo %AKKA_HOME%
C:\USERNAME\akka\akka-2.0

5.

Read Getting started with akka online: https://riptutorial.com/akka/topic/2041/getting-started-with-
akka

https://riptutorial.com/ 3

https://riptutorial.com/akka/topic/2041/getting-started-with-akka
https://riptutorial.com/akka/topic/2041/getting-started-with-akka

Chapter 2: Actor DSL

Examples

Simple Actor DSL

To create simple actors without creating a new class, you can use:

import akka.actor.ActorDSL._
import akka.actor.ActorSystem

implicit val system = ActorSystem("demo")

val a = actor(new Act {
 become {
 case "hello" ⇒ sender() ! "hi"
 }
})

Context switching

The two possible ways of issuing a context.become (replacing or adding the new behavior) are
offered separately to enable a clutter-free notation of nested receives:

val a = actor(new Act {
 become { // this will replace the initial (empty) behavior
 case "info" ⇒ sender() ! "A"
 case "switch" ⇒
 becomeStacked { // this will stack upon the "A" behavior
 case "info" ⇒ sender() ! "B"
 case "switch" ⇒ unbecome() // return to the "A" behavior
 }
 case "lobotomize" ⇒ unbecome() // OH NOES: Actor.emptyBehavior
 }
})

Life-cycle Management

Life-cycle hooks are also exposed as DSL elements, where later invocations of the methods
shown below will replace the contents of the respective hooks:

val a = actor(new Act {
 whenStarting { testActor ! "started" }
 whenStopping { testActor ! "stopped" }
})

The above is enough if the logical life-cycle of the actor matches the restart cycles (i.e.
whenStopping is executed before a restart and whenStarting afterwards). If that is not desired, use
the following two hooks:

https://riptutorial.com/ 4

val a = actor(new Act {
 become {
 case "die" ⇒ throw new Exception
 }
 whenFailing { case m @ (cause, msg) ⇒ testActor ! m }
 whenRestarted { cause ⇒ testActor ! cause }
})

Nested Actors

It is also possible to create nested actors, i.e. grand-children, like this:

// here we pass in the ActorRefFactory explicitly as an example
val a = actor(system, "fred")(new Act {
 val b = actor("barney")(new Act {
 whenStarting { context.parent ! ("hello from " + self.path) }
 })
 become {
 case x ⇒ testActor ! x
 }
})

Supervision

It is also possible to assign a supervision strategy to these actors with the following:

superviseWith(OneForOneStrategy() {
 case e: Exception if e.getMessage == "hello" ⇒ Stop
 case _: Exception ⇒ Resume
})

Stash support

Last but not least there is a little bit of convenience magic built-in, which detects if the runtime
class of the statically given actor subtype extends the RequiresMessageQueue trait via the Stash
trait (this is a complicated way of saying that new Act with Stash would not work because its
runtime erased type is just an anonymous subtype of Act). The purpose is to automatically use the
appropriate deque-based mailbox type required by Stash. If you want to use this magic, simply
extend ActWithStash:

val a = actor(new ActWithStash {
 become {
 case 1 ⇒ stash()
 case 2 ⇒
 testActor ! 2; unstashAll(); becomeStacked {
 case 1 ⇒ testActor ! 1; unbecome()
 }
 }
})

Read Actor DSL online: https://riptutorial.com/akka/topic/2392/actor-dsl

https://riptutorial.com/ 5

https://riptutorial.com/akka/topic/2392/actor-dsl

Chapter 3: Akka HTTP

Introduction

Akka HTTP is a light-weight HTTP server and client library, using akka-streams under the hood

Examples

Akka HTTP server: Hello World (Scala DSL)

The following app will start an HTTP server listening on port 8080 that returns Hello world on GET
/hello/world

import akka.actor.ActorSystem
import akka.http.scaladsl.Http
import akka.http.scaladsl.server.Directives._
import akka.http.scaladsl.server._
import akka.stream.ActorMaterializer

import scala.concurrent.Await
import scala.concurrent.duration.Duration

object HelloWorld extends App {

 implicit val system = ActorSystem("ProxySystem")
 implicit val mat = ActorMaterializer()

 val route: Route = get {
 path("hello" / "world") {
 complete("Hello world")
 }
 }

 val bindingFuture = Http().bindAndHandle(Route.handlerFlow(route), "127.0.0.1", port = 8080)

 Await.result(system.whenTerminated, Duration.Inf)

}

Read Akka HTTP online: https://riptutorial.com/akka/topic/10108/akka-http

https://riptutorial.com/ 6

https://riptutorial.com/akka/topic/10108/akka-http

Chapter 4: Akka Streams

Examples

Akka Streams: Hello World

Akka Streams allows you to easily create a stream leveraging the power of the Akka framework
without explicitly defining actor behaviors and messages. Every stream will have at least one
Source (origin of the data) and at least one Sink (destination of the data).

import akka.actor.ActorSystem
import akka.stream.ActorMaterializer
import akka.stream.scaladsl.{Sink, Source}
import java.io.File

val stream = Source(Seq("test1.txt", "test2.txt", "test3.txt"))
 .map(new File(_))
 .filter(_.exists())
 .filter(_.length() != 0)
 .to(Sink.foreach(f => println(s"Absolute path: ${f.getAbsolutePath}")))

In this quick example we have a Seq of filenames that we input into the stream. First we map them
to a File, then we filter out files which don't exist, then files which length is 0. If a file went through
the filters, it gets printed into the stdout.

Akka streams also allows you to do streams in a modular way. You can create Flows with the
partial modules of your stream. If we take the same example we could also do:

import akka.actor.ActorSystem
import akka.stream.ActorMaterializer
import akka.stream.scaladsl.{Sink, Source}
import java.io.File

implicit val actorSystem = ActorSystem("system")
implicit val actorMaterializer = ActorMaterializer()

val source = Source(List("test1.txt", "test2.txt", "test3.txt"))
val mapper = Flow[String].map(new File(_))
val existsFilter = Flow[File].filter(_.exists())
val lengthZeroFilter = Flow[File].filter(_.length() != 0)
val sink = Sink.foreach[File](f => println(s"Absolute path: ${f.getAbsolutePath}"))

val stream = source
 .via(mapper)
 .via(existsFilter)
 .via(lengthZeroFilter)
 .to(sink)

stream.run()

In this second version we can see that mapper, existsFilter, lengthZeroFilter are Flows. You can
compose them in stream by using the method via. This capability would allow you to reuse your

https://riptutorial.com/ 7

pieces of code. One important thing to mention is that Flows can be stateless or stateful. In the
case of stateful, you need to be careful when reusing them.

You can also think about streams as Graphs. Akka Streams also provides a powerful GraphDSL to
define complicated streams in a simple way. Following with the same example we could do:

import java.io.File
import akka.actor.ActorSystem
import akka.stream.{ActorMaterializer, ClosedShape}
import akka.stream.scaladsl.{Flow, GraphDSL, RunnableGraph, Sink, Source}

implicit val actorSystem = ActorSystem("system")
implicit val actorMaterializer = ActorMaterializer()

val graph = RunnableGraph.fromGraph(GraphDSL.create() { implicit b =>
 import GraphDSL.Implicits._

 val source = Source(List("test1.txt", "test2.txt", "test3.txt"))
 val mapper = Flow[String].map(new File(_))
 val existsFilter = Flow[File].filter(_.exists())
 val lengthZeroFilter = Flow[File].filter(_.length() != 0)
 val sink = Sink.foreach[File](f => println(s"Absolute path: ${f.getAbsolutePath}"))

 source ~> mapper ~> existsFilter ~> lengthZeroFilter ~> sink

 ClosedShape
})

graph.run()

It is also possible to create aggregated flow using the GraphDSL. For example, if we would like to
combine the mapper and two filters in one we could do:

val combinedFlow = Flow.fromGraph(GraphDSL.create() { implicit builder =>
 import GraphDSL.Implicits._

 val mapper = builder.add(Flow[String].map(new File(_)))
 val existsFilter = builder.add(Flow[File].filter(_.exists()))
 val lengthZeroFilter = builder.add(Flow[File].filter(_.length() != 0))

 mapper ~> existsFilter ~> lengthZeroFilter

 FlowShape(mapper.in, lengthZeroFilter.out)
})

And then use it as a individual block. combinedFlow would be a FlowShape or a PartialGraph. We can
us for example with via:

val stream = source
 .via(combinedFlow)
 .to(sink)

stream.run()

Or using the GraphDSL:

https://riptutorial.com/ 8

val graph = RunnableGraph.fromGraph(GraphDSL.create() { implicit b =>
 import GraphDSL.Implicits._

 val source = Source(List("test1.txt", "test2.txt", "test3.txt"))
 val sink = Sink.foreach[File](f => println(s"Absolute path: ${f.getAbsolutePath}"))

 source ~> combinedFlow ~> sink

 ClosedShape
})

graph.run()

Akka-Streams: subflows

You can dynamically fork a flow in multiple subflows using groupBy. The continuing stages are
applied to each subflow until you merge them back using mergeSubstreams.

val sumByKey: Flow[(String, Int), Int, NotUsed] =
 Flow[(String, Int)].
 groupBy(Int.maxValue, _._1). //forks the flow
 map(_._2). //this is applied to each subflow
 fold(0)(_ + _).
 mergeSubstreams //the subflow outputs are merged back together

Read Akka Streams online: https://riptutorial.com/akka/topic/7394/akka-streams

https://riptutorial.com/ 9

https://riptutorial.com/akka/topic/7394/akka-streams

Chapter 5: akka-streams custom shapes

Remarks

akka provides some pre-defined shapes, that should probably fit 99.9% of your usage. creating a
new shape should only be done in some very rare cases. the pre-defined shapes are:

Source - 1 outlet, no inlets•
Sink - 1 inlet, no outlets•
Flow - 1 inlet, 1 outlet•
BidiFlow - 2 inlets, 2 outlets•
Closed - no inlets, no outlets•
FanInN - N inlets (N <= 22), 1 outlet•
FanOutN - N outlets (N <= 22), 1 inlet•
UniformFanIn - any number of inlets of the same type, 1 outlet•
UniformFanOut - any number of outlets of the same type, 1 inlet•
Amorphous - any number of inlets or outlets, but untyped.•

Examples

TwoThreeShape

a simple example of how to define a custom shape with 2 inlets and 3 outlets.

case class TwoThreeShape[-In1, -In2, +Out1, +Out2, +Out3](
 in1: Inlet[In1@uncheckedVariance],
 in2: Inlet[In2@uncheckedVariance],
 out1: Outlet[Out1@uncheckedVariance],
 out2: Outlet[Out2@uncheckedVariance],
 out3: Outlet[Out3@uncheckedVariance]) extends Shape {

 override val inlets: immutable.Seq[Inlet[_]] = List(in1, in2)
 override val outlets: immutable.Seq[Outlet[_]] = List(out1, out2, out3)

 override def deepCopy(): TwoThreeShape[In1, In2, Out1, Out2, Out3] =
 TwoThreeShape(in1.carbonCopy(),
 in2.carbonCopy(),
 out1.carbonCopy(),
 out2.carbonCopy(),
 out3.carbonCopy())

 override def copyFromPorts(inlets: immutable.Seq[Inlet[_]], outlets:
immutable.Seq[Outlet[_]]): Shape = {
 require(inlets.size == 2, s"proposed inlets [${inlets.mkString(", ")}] do not fit
TwoThreeShape")
 require(outlets.size == 3, s"proposed outlets [${outlets.mkString(", ")}] do not fit
TwoThreeShape")
 TwoThreeShape(inlets(0), inlets(1), outlets(0), outlets(1), outlets(2))
 }
}

https://riptutorial.com/ 10

an example usage for this weird shape: a stage that will pass through elements of 2 flows, while
keeping a ratio of how many elements passed in the flows:

def ratioCount[X,Y]: Graph[TwoThreeShape[X,Y,X,Y,(Int,Int)],NotUsed] = {
 GraphDSL.create() { implicit b =>
 import GraphDSL.Implicits._

 val x = b.add(Broadcast[X](2))
 val y = b.add(Broadcast[Y](2))
 val z = b.add(Zip[Int,Int])

 x.out(1).conflateWithSeed(_ => 1)((count,_) => count + 1) ~> z.in0
 y.out(1).conflateWithSeed(_ => 1)((count,_) => count + 1) ~> z.in1

 TwoThreeShape(x.in,y.in,x.out(0),y.out(0),z.out)
 }
}

Read akka-streams custom shapes online: https://riptutorial.com/akka/topic/3282/akka-streams-
custom-shapes

https://riptutorial.com/ 11

https://riptutorial.com/akka/topic/3282/akka-streams-custom-shapes
https://riptutorial.com/akka/topic/3282/akka-streams-custom-shapes

Chapter 6: Dispatchers

Examples

Default Dispatcher

An Akka MessageDispatcher is what makes Akka Actors "tick", it is the engine of the machine so
to speak. All MessageDispatcher implementations are also an ExecutionContext, which means
that they can be used to execute arbitrary code, for instance Futures.

Every ActorSystem will have a default dispatcher that will be used in case nothing else is
configured for an Actor. The default dispatcher can be configured, and is by default a Dispatcher
with the specified default-executor. If an ActorSystem is created with an ExecutionContext passed
in, this ExecutionContext will be used as the default executor for all dispatchers in this
ActorSystem. If no ExecutionContext is given, it will fallback to the executor specified in
akka.actor.default-dispatcher.default-executor.fallback. By default this is a fork-join-executor,
which gives excellent performance in most cases.

Setting the dispatcher for an Actor

So in case you want to give your Actor a different dispatcher than the default, you need to do two
things, of which the first is to configure the dispatcher in your application.conf:

my-dispatcher {
 # Dispatcher is the name of the event-based dispatcher
 type = Dispatcher
 # What kind of ExecutionService to use
 executor = "fork-join-executor"
 # Configuration for the fork join pool
 fork-join-executor {
 # Min number of threads to cap factor-based parallelism number to
 parallelism-min = 2
 # Parallelism (threads) ... ceil(available processors * factor)
 parallelism-factor = 2.0
 # Max number of threads to cap factor-based parallelism number to
 parallelism-max = 10
 }
 # Throughput defines the maximum number of messages to be
 # processed per actor before the thread jumps to the next actor.
 # Set to 1 for as fair as possible.
 throughput = 100
}

And here's another example that uses the "thread-pool-executor":

my-thread-pool-dispatcher {
 # Dispatcher is the name of the event-based dispatcher
 type = Dispatcher
 # What kind of ExecutionService to use
 executor = "thread-pool-executor"

https://riptutorial.com/ 12

 # Configuration for the thread pool
 thread-pool-executor {
 # minimum number of threads to cap factor-based core number to
 core-pool-size-min = 2
 # No of core threads ... ceil(available processors * factor)
 core-pool-size-factor = 2.0
 # maximum number of threads to cap factor-based number to
 core-pool-size-max = 10
 }
 # Throughput defines the maximum number of messages to be
 # processed per actor before the thread jumps to the next actor.
 # Set to 1 for as fair as possible.
 throughput = 100
}

You can then define the dispatcher to use for your actor inside you config, e.g.

akka.actor.deployment {
 /myactor {
 dispatcher = my-dispatcher
 }
}

and create this actor with the name specified in the config:

import akka.actor.Props
val myActor = context.actorOf(Props[MyActor], "myactor")

Or you can lookup your dispatcher with:

import akka.actor.Props
val myActor =
 context.actorOf(Props[MyActor].withDispatcher("my-dispatcher"), "myactor1")

Read Dispatchers online: https://riptutorial.com/akka/topic/3228/dispatchers

https://riptutorial.com/ 13

https://riptutorial.com/akka/topic/3228/dispatchers

Chapter 7: Hello world

Examples

Akka hello world (Scala)

Add akka-actor dependency (SBT example)1.

libraryDependencies += "com.typesafe.akka" % "akka-actor_2.11" % "2.4.8"

Create actor classes:2.

Actor for string output:

class OutputActor extends Actor {
 override def receive: Receive = {
 case message => println(message)
 }
}

Actor for string modifying:

class AppendActor(outputActor: ActorRef) extends Actor {
 override def receive: Receive = {
 case message: String =>
 val changed = s"Hello, $message!"
 outputActor ! changed

 case unknown =>
 println(s"unknown message: $unknown")
 }
}

Create actor systems and send message3.

object HelloWorld extends App {
 val system = ActorSystem("HelloWorld")
 val outputActor = system.actorOf(Props[OutputActor], name = "output")
 val appendActor = system.actorOf(Props(classOf[AppendActor], outputActor), name =
"appender")

 appendActor ! "Akka" // send test message
 Thread.sleep(500) // wait for async evaluation
 system.terminate() // terminate actors system
}

Program output:

Hello, Akka!

https://riptutorial.com/ 14

Simple Actor Implementation

Consider a communication happening between a Employee and its HR Department.

Broadly these are explained in the following six steps when a message is passed to the actor:

Employee creates something called an ActorSystem.1.

It uses the ActorSystem to create something called as ActorRef. The message(MSG) is sent 2.

https://riptutorial.com/ 15

http://i.stack.imgur.com/7xZNq.jpg

to the ActorRef (a proxy to HR Actor).

Actor ref passes the message along to a Message Dispatcher.3.

The Dispatcher enqueues the message in the target Actor’s MailBox.4.

The Dispatcher then puts the Mailbox on a Thread (more on that in the next section).5.

The MailBox dequeues a message and eventually delegates that to the actual HR Actor’s
receive method.

6.

 /** The Main Program consider it as a Employee Actor that is sending the requests **/

 object EmployeeActorApp extends App{
 //Initialize the ActorSystem
 val actorSystem=ActorSystem("HrMessageingSystem")

 //construct the HR Actor Ref
 val hrActorRef=actorSystem.actorOf(Props[HrActor])

 //send a message to the HR Actor
 hrActorRef!Message

 //Let's wait for a couple of seconds before we shut down the system
 Thread.sleep (2000)

 //Shut down the ActorSystem.
 actorSystem.shutdown()

 }

 /** The HRActor reads the message sent to it and performs action based on the message Type
**/
 class HRActor extends Actor {
 def receive = {
 case s: String if(s.equalsIgnoreCase(“SICK”)) => println("Sick Leave applied”)
 case s: String if(s.equalsIgnoreCase(“PTO”)) => println("PTO applied “)
}

}

Akka Hello World (Java 8)

Add this dependency to your project POM:

<dependency>
 <groupId>com.typesafe.akka</groupId>
 <artifactId>akka-actor_2.11</artifactId>
 <version>2.4.4</version>
</dependency>

Create an Actor

public class HelloWorldActor extends AbstractActor {

https://riptutorial.com/ 16

 public HelloActor() {
 receive(ReceiveBuilder
 .match(SayHello.class, this::sayHello)
 .match(SayBye.class, this::sayBye)
 .build());
 }

 private void sayHello(final SayHello message) {
 System.out.println("Hello World");
 }

 private void sayHello(final SayBye message) {
 System.out.println("Bye World");
 }

 public static Props props() {
 return Props.create(HelloWorldActor.class);
 }
}

Create a Junit test for the actor

public class HelloActorTest {

 private ActorSystem actorSystem;

 @org.junit.Before
 public void setUp() throws Exception {
 actorSystem = ActorSystem.create();
 }

 @After
 public void tearDown() throws Exception {
 JavaTestKit.shutdownActorSystem(actorSystem);
 }

 @Test
 public void testSayHello() throws Exception {
 new JavaTestKit(actorSystem) {
 {
 ActorRef helloActorRef = actorSystem.actorOf(HelloWorldActor.props());
 helloActorRef.tell(new SayHello(), ActorRef.noSender());
 helloActorRef.tell(new SayBye(), ActorRef.noSender());
 }
 };
 }
 }

Read Hello world online: https://riptutorial.com/akka/topic/3283/hello-world

https://riptutorial.com/ 17

https://riptutorial.com/akka/topic/3283/hello-world

Chapter 8: Injecting dependencies into an
actor

Examples

Spring-wired actor

Due to very specific way of actor instantiation, injecting dependencies into an actor instance is not
trivial. In order to intervene in actor instantiation and allow Spring to inject dependencies one
should implement a couple of akka extensions. First of those is an IndirectActorProducer:

import akka.actor.Actor;
import akka.actor.IndirectActorProducer;
import java.lang.reflect.Constructor;
import java.util.Arrays;
import org.springframework.beans.factory.config.AutowireCapableBeanFactory;
import org.springframework.context.ApplicationContext;

/**
 * An actor producer that lets Spring autowire dependencies into created actors.
 */
public class SpringWiredActorProducer implements IndirectActorProducer {

 private final ApplicationContext applicationContext;
 private final Class<? extends Actor> actorBeanClass;
 private final Object[] args;

 public SpringWiredActorProducer(ApplicationContext applicationContext, Class<? extends
Actor> actorBeanClass, Object... args) {
 this.applicationContext = applicationContext;
 this.actorBeanClass = actorBeanClass;
 this.args = args;
 }

 @Override
 public Actor produce() {
 Class[] argsTypes = new Class[args.length];
 for (int i = 0; i < args.length; i++) {
 if (args[i] == null) {
 argsTypes[i] = null;
 } else {
 argsTypes[i] = args[i].getClass();
 }
 }
 Actor result = null;
 try {
 if (args.length == 0) {
 result = (Actor) actorBeanClass.newInstance();
 } else {
 try {
 result = (Actor)
actorBeanClass.getConstructor(argsTypes).newInstance(args);
 } catch (NoSuchMethodException ex) {
 // if types of constructor don't match exactly, try to find appropriate

https://riptutorial.com/ 18

constructor
 for (Constructor<?> c : actorBeanClass.getConstructors()) {
 if (c.getParameterCount() == args.length) {
 boolean match = true;
 for (int i = 0; match && i < argsTypes.length; i++) {
 if (argsTypes[i] != null) {
 match =
c.getParameters()[i].getType().isAssignableFrom(argsTypes[i]);
 }
 }
 if (match) {
 result = (Actor) c.newInstance(args);
 break;
 }
 }
 }
 }
 }
 if (result == null) {
 throw new RuntimeException(String.format("Cannot find appropriate constructor
for %s and types (%s)", actorBeanClass.getName(), Arrays.toString(argsTypes)));
 } else {

applicationContext.getAutowireCapableBeanFactory().autowireBeanProperties(result,
AutowireCapableBeanFactory.AUTOWIRE_BY_TYPE, true);
 }
 } catch (ReflectiveOperationException e) {
 throw new RuntimeException("Cannot instantiate an action of class " +
actorBeanClass.getName(), e);
 }
 return result;
 }

 @Override
 public Class<? extends Actor> actorClass() {
 return (Class<? extends Actor>) actorBeanClass;
 }

}

This producer instantiates an actor and injects dependencies before returning the actor instance.

We can prepare Props for creation an actor using the SpringWiredActorProducer the following way:

Props.create(SpringWiredActorProducer.class, applicationContext, actorBeanClass, args);

However it would be better to wrap that call into following spring bean:

import akka.actor.Extension;
import akka.actor.Props;
import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;
import org.springframework.stereotype.Component;

/**
 * An Akka Extension to inject dependencies to {@link akka.actor.Actor}s with
 * Spring.

https://riptutorial.com/ 19

 */
@Component
public class SpringProps implements Extension, ApplicationContextAware {

 private volatile ApplicationContext applicationContext;

 /**
 * Creates a Props for the specified actorBeanName using the
 * {@link SpringWiredActorProducer}.
 *
 * @param actorBeanClass The class of the actor bean to create Props for
 * @param args arguments of the actor's constructor
 * @return a Props that will create the named actor bean using Spring
 */
 public Props create(Class actorBeanClass, Object... args) {
 return Props.create(SpringWiredActorProducer.class, applicationContext,
actorBeanClass, args);
 }

 @Override
 public void setApplicationContext(ApplicationContext applicationContext) throws
BeansException {
 this.applicationContext = applicationContext;
 }

}

You can autowire SpringProps anywhere an actor gets created (even in the actor itself) and create
spring-wired actors the following way:

@Autowired
private SpringProps springProps;
//...
actorSystem.actorOf(springProps.create(ActorClass.class), actorName);
//or inside an actor
context().actorOf(springProps.create(ActorClass.class), actorName);

Assuming that ActorClass extends UntypedActor and has properties annotated with @Autowired,
those dependencies will be injected right after instantiation.

Read Injecting dependencies into an actor online: https://riptutorial.com/akka/topic/4717/injecting-
dependencies-into-an-actor

https://riptutorial.com/ 20

https://riptutorial.com/akka/topic/4717/injecting-dependencies-into-an-actor
https://riptutorial.com/akka/topic/4717/injecting-dependencies-into-an-actor

Chapter 9: Supervision and Monitoring in
Akka

Remarks

References: akka.io/docs

Check out my blog: https://blog.knoldus.com/2016/08/07/supervision-and-monitoring-in-akka/

Examples

What is supervision?

Describes a dependency relationship between actors, the parent and child releationship. Parent is
unique because it has created the child actor, so the parent is responsible for reacting when
failures happens in his child.

And parent decides which choice needs to be selected. When a parent receives the failure signal
from it’s child then depending on the nature of failure, the parent decides from following options:

Resume: Parent starts the child actor keeping its internal state.

Restart: Parent starts the child actor by clearing it’s internal state.

Stop: Stop the child permanently.

Escalate: Escalate the failure by failing itself and propagate failure to its parent.

https://riptutorial.com/ 21

http://akka.io/docs/
https://blog.knoldus.com/2016/08/07/supervision-and-monitoring-in-akka/

Akka Life Cycle

It is always important to view a part of supervision hierarchy, which explains the escalate option.
Each supervisor should cover with all possible failure cases.

https://riptutorial.com/ 22

https://i.stack.imgur.com/pwsm7.png

Actor System: Source: doc.akka.io

/user: The User Guardian Actor

Actor created using system.actorOf() are children of user guardian actor. Whenever user guardian
terminates, all user created actors will be terminated too. Top level user created actors are
determined by user guardian actor that how they will be supervised. Root Guardian is the
supervisor of user guardian.

/root: The Root Guardian

The root guardian actor is the father of all actor system. It supervises user guardian actor and
system guardian actor.

Supervision Strategies

There are two type of supervision strategies that we follow to supervise any actor:

https://riptutorial.com/ 23

https://i.stack.imgur.com/LVoEe.png

One-For-One Strategy1.

One-For-All Strategy2.

case object ResumeException extends Exception

case object StopException extends Exception
case object RestartException extends Exception

override val supervisorStrategy =
 OneForOneStrategy(maxNrOfRetries = 10, withinTimeRange = 1 second){
 case ResumeException => Resume
 case RestartException => Restart
 case StopException => Stop
 case _: Exception => Escalate
 }

What is Monitoring?

Lifecycle Monitoring in Akka is usually referred to as DeathWatch.

Monitoring is thus used to tie one actor to another so that it may react to the other actor’s
termination, in contrast to supervision which reacts to failure.

Monitoring

Monitoring is particularly useful if a supervisor cannot simply restart its children and has to
terminate them, e.g. in case of errors during actor initialization. In that case it should monitor those
children and re-create them or schedule itself to retry this at a later time.

Code Repository

https://riptutorial.com/ 24

https://i.stack.imgur.com/j1z5b.png

Supervision and Monitoring

Read Supervision and Monitoring in Akka online:
https://riptutorial.com/akka/topic/7831/supervision-and-monitoring-in-akka

https://riptutorial.com/ 25

https://github.com/knoldus/supervision-monitoring-in-akka
https://riptutorial.com/akka/topic/7831/supervision-and-monitoring-in-akka

Credits

S.
No

Chapters Contributors

1
Getting started with
akka

12Sandy, Community, noelyahan

2 Actor DSL Martin Seeler

3 Akka HTTP Cyrille Corpet, Konrad 'ktoso' Malawski

4 Akka Streams Cyrille Corpet, hveiga

5
akka-streams
custom shapes

gilad hoch

6 Dispatchers Martin Seeler

7 Hello world
12Sandy, Cortwave, Fabien Benoit-Koch, Konrad 'ktoso'
Malawski, tmbo

8
Injecting
dependencies into
an actor

Oleg Kurbatov

9
Supervision and
Monitoring in Akka

Prabhat Kashyap

https://riptutorial.com/ 26

https://riptutorial.com/contributor/3483655/12sandy
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1481716/noelyahan
https://riptutorial.com/contributor/1475346/martin-seeler
https://riptutorial.com/contributor/4482064/cyrille-corpet
https://riptutorial.com/contributor/111024/konrad--ktoso--malawski
https://riptutorial.com/contributor/4482064/cyrille-corpet
https://riptutorial.com/contributor/2209390/hveiga
https://riptutorial.com/contributor/896557/gilad-hoch
https://riptutorial.com/contributor/1475346/martin-seeler
https://riptutorial.com/contributor/3483655/12sandy
https://riptutorial.com/contributor/3830108/cortwave
https://riptutorial.com/contributor/55579/fabien-benoit-koch
https://riptutorial.com/contributor/111024/konrad--ktoso--malawski
https://riptutorial.com/contributor/111024/konrad--ktoso--malawski
https://riptutorial.com/contributor/1906073/tmbo
https://riptutorial.com/contributor/1497060/oleg-kurbatov
https://riptutorial.com/contributor/4870955/prabhat-kashyap

	About
	Chapter 1: Getting started with akka
	Remarks
	Examples
	Installation or Setup

	Chapter 2: Actor DSL
	Examples
	Simple Actor DSL
	Context switching
	Life-cycle Management
	Nested Actors
	Supervision
	Stash support

	Chapter 3: Akka HTTP
	Introduction
	Examples
	Akka HTTP server: Hello World (Scala DSL)

	Chapter 4: Akka Streams
	Examples
	Akka Streams: Hello World
	Akka-Streams: subflows

	Chapter 5: akka-streams custom shapes
	Remarks
	Examples
	TwoThreeShape

	Chapter 6: Dispatchers
	Examples
	Default Dispatcher
	Setting the dispatcher for an Actor

	Chapter 7: Hello world
	Examples
	Akka hello world (Scala)
	Simple Actor Implementation
	Akka Hello World (Java 8)

	Chapter 8: Injecting dependencies into an actor
	Examples
	Spring-wired actor

	Chapter 9: Supervision and Monitoring in Akka
	Remarks
	Examples
	What is supervision?
	Supervision Strategies
	What is Monitoring?
	Code Repository

	Credits

