
amazon-dynamodb

#amazon-

dynamodb

Table of Contents

About 1

Chapter 1: Getting started with amazon-dynamodb 2

Remarks 2

Examples 2

Installation or Setup 2

Introduction 2

Chapter 2: Batch Operations: Things to know 3

Introduction 3

Remarks 3

Examples 3

How to code the BatchWriteItemRequest and save data 3

How to create WriteRequest 4

Chapter 3: Dynamodb delete data over time 6

Introduction 6

Remarks 6

Examples 6

cleanUpOldData 6

Chapter 4: How to create a DynamoDB Table 8

Remarks 8

Examples 8

Create Table in Java using Document API 8

Create Table in Ruby using AWS SDK v2 9

Chapter 5: How to insert data into table using DynamoDb? 12

Examples 12

Import a CSV file into a DynamoDB table using boto (Python package) 12

Chapter 6: Using AWS DynamoDb with the AWS .NET SDK 14

Remarks 14

The Models 14

Examples 15

Low Level API Example 15

Document Model Example 15

Object Persistence Model Example 15

Credits 17

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: amazon-dynamodb

It is an unofficial and free amazon-dynamodb ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official amazon-
dynamodb.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/amazon-dynamodb
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with amazon-
dynamodb

Remarks

This section provides an overview of what amazon-dynamodb is, and why a developer might want
to use it.

It should also mention any large subjects within amazon-dynamodb, and link out to the related
topics. Since the Documentation for amazon-dynamodb is new, you may need to create initial
versions of those related topics.

Examples

Installation or Setup

DynamoDB is a fully managed service provided by AWS. It does not need to be installed or
configured. AWS is responsible for all administrative burdens of operating, scalling and
backup/restore of the distributed database.

Introduction

DynamoDB is a Distributed NoSQL database, based on key-value architecture, fully managed by
Amazon Web Services. It was designed to provide scalability, redundancy and failover in
predictable performance.

Read Getting started with amazon-dynamodb online: https://riptutorial.com/amazon-
dynamodb/topic/2085/getting-started-with-amazon-dynamodb

https://riptutorial.com/ 2

https://riptutorial.com/amazon-dynamodb/topic/2085/getting-started-with-amazon-dynamodb
https://riptutorial.com/amazon-dynamodb/topic/2085/getting-started-with-amazon-dynamodb

Chapter 2: Batch Operations: Things to know

Introduction

Database is an integral part of any application and performance and persistance are real
challenges faced by any web application. NoSql databases are no different in this matter and need
to be dealt carefully. DynamoDB being one of the NoSQL database that is provided by Amazon
Web Services support batch operations in addition to the CRUD operations. Lets start with Batch
Operations. In this example we will learn how we can make use of Dynamo DB's JAVA SDK to
perform Batch Inserts.

Remarks

Good to know about Batch operations

Batch operation doesn't minimize the HTTP request count, rather it has more features to
handle when we receive a throttling error. To put it simple, each record that we insert into
dynamo db will consume one http request.

1.

Sound implementation of batch operation is to first to cache data temporarily and once we
have the threshold number, ie 25, is the correct time to fire a batch request.

2.

Any request that fails due to throttling will be retried between(500-999) milliseconds, as
recommended by Amazon best practices.

3.

Examples

How to code the BatchWriteItemRequest and save data

private static void saveItem(List<EventTracker> items) {
 List<WriteRequest> wrList = new ArrayList<>();
 try {

 for (EventTracker item : items) {
 WriteRequest wreqItem;
 wreqItem = getWriteRequest(item);
 wrList.add(wreqItem);
 }

 try {

 BatchWriteItemResult batchWriteItemResult = new BatchWriteItemResult();
 do {
 BatchWriteItemRequest batchWriteItemRequest = new BatchWriteItemRequest();
 batchWriteItemRequest.addRequestItemsEntry(forumTableName, wrList);//
setRequestItems(writeRequestitems);
 batchWriteItemResult = amazonDynamoDB.batchWriteItem(batchWriteItemRequest);
 // Check for unprocessed keys which could happen if you
 // exceed
 // provisioned throughput
 Map<String, List<WriteRequest>> unprocessedItems =

https://riptutorial.com/ 3

batchWriteItemResult.getUnprocessedItems();
 if (unprocessedItems.size() == 0) {
 System.out.println("No unprocessed items found");
 } else {
 System.out.println("Sleeping for: " +
ThreadLocalRandom.current().nextInt(500, 999 + 1));
 Thread.sleep(ThreadLocalRandom.current().nextInt(500, 999 + 1));
 wrList = unprocessedItems.get(forumTableName);
 System.out.println("Retrieving the unprocessed items");
 }

 } while (batchWriteItemResult.getUnprocessedItems().size() > 0);

 } catch (Exception e) {
 System.err.println("Failed to retrieve items: ");
 e.printStackTrace(System.err);
 }

 } catch (Exception e) {

 }
}

This is what we need to know if we want to make use of batch operations to put data to a dynamo
db table. Lets see the steps that need to be followed to accomplish this. In this example, we are
trying to persist a list of EventTracker data, which is my POJO.

For each record to be inserted, we need to create a PUT Request.1.
Each PUT Request is wrapped to a Write Request.2.
All Write Request are bundled into a List.3.
The WriteRequest List is then added to the BatchWriteItemRequest and executed.4.

The below code will show how we create write requests.

How to create WriteRequest

private static WriteRequest getWriteRequest(EventTracker event) {

 WriteRequest wreq = null;// = new WriteRequest();

 if (event != null) {
 Map<String, AttributeValue> attributeMap = new HashMap<String, AttributeValue>();

 addAttribute(attributeMap, "event_id", event.getEventId());
 addAttribute(attributeMap, "created_datetime", event.getCreatedDatetime());
 addAttribute(attributeMap, "event", event.getEvent());
 addAttribute(attributeMap, "event_type", event.getEventType());
 addAttribute(attributeMap, "response_id", "NULL");

 wreq = new WriteRequest(new PutRequest(attributeMap));
 }
 return wreq;
}

private static void addAttribute(Map<String, AttributeValue> item, String attributeName,
String value) {
 AttributeValue attributeValue = new AttributeValue(value);

https://riptutorial.com/ 4

 item.put(attributeName, attributeValue);
}

Read Batch Operations: Things to know online: https://riptutorial.com/amazon-
dynamodb/topic/8675/batch-operations--things-to-know

https://riptutorial.com/ 5

https://riptutorial.com/amazon-dynamodb/topic/8675/batch-operations--things-to-know
https://riptutorial.com/amazon-dynamodb/topic/8675/batch-operations--things-to-know

Chapter 3: Dynamodb delete data over time

Introduction

Removing old data from dynamodb using a date attribute.

Remarks

My use case: removing old data from dynamodb using a date attribute.

Important things to know:

You can't query a table with using only range key attribute (date for example).•
You can only query a table using hash or hash+range key.•
You can't query a table using a hash key with '<' / '>' operations, only '='.•

Possible Solutions:

Scanning the whole table - this could be very costly•
My chosen solution - Defining an index with range key for the date and with a hash key that
would be pretty decent such as the day of year.

•

Eventually batch delete the result set.

Notes: Building the entity I was using the amazon dynamo annotations. I was using
DynamoDBQueryExpression to query, getting the result page with the defined Class object.

Examples

cleanUpOldData

public static void cleanUpOldData(AmazonDynamoDB amazonDynamoDB, String dynamoDBTablesPrefix,
String tableName,
 String dateRangeField, String dateHashKey, String dateIndex,
Class clazz) {
 log.info(String.format("Cleaning old data from table: %s", tableName));

 long cleanUpDateInMillis = (new Date()).getTime() - CLEAN_UP_TIME_MILLIS;
 SimpleDateFormat dateFormatter = new SimpleDateFormat(DYNAMO_DATE_FORMAT);
 final TimeZone utcTimeZone = TimeZone.getTimeZone("UTC");
 dateFormatter.setTimeZone(utcTimeZone);
 String cleanUpDate = dateFormatter.format(cleanUpDateInMillis);

 Calendar calendar = Calendar.getInstance(utcTimeZone);
 calendar.setTimeInMillis(cleanUpDateInMillis);

 final String dailyHashKey = String.format("%s_%s", calendar.get(Calendar.YEAR),
calendar.get(Calendar.DAY_OF_YEAR));
 final String pastDayHashKey = String.format("%s_%s", calendar.get(Calendar.YEAR),

https://riptutorial.com/ 6

calendar.get(Calendar.DAY_OF_YEAR)-1);

 final String fullTableName = dynamoDBTablesPrefix + "_" + tableName;
 final DynamoDBMapperConfig dbMapperConfig = new DynamoDBMapperConfig(new
DynamoDBMapperConfig.TableNameOverride(fullTableName));
 DynamoDBMapper mapper = new DynamoDBMapper(amazonDynamoDB, dbMapperConfig);
 DynamoDBTableMapper dbTableMapper = mapper.newTableMapper(clazz);

 final QueryResultPage dailyResultPage = getDailyQueryResultPage(dateRangeField,
dateHashKey, dateIndex, cleanUpDate, dailyHashKey, dbTableMapper);
 final QueryResultPage pastDayResultPage = getDailyQueryResultPage(dateRangeField,
dateHashKey, dateIndex, cleanUpDate, pastDayHashKey, dbTableMapper);

 deleteOldData(dbTableMapper, dailyResultPage, pastDayResultPage);

 log.info(String.format("Completed cleaning old data from table: %s, %s items were
deleted", tableName,
 dailyResultPage.getCount() + pastDayResultPage.getCount()));
}

private static QueryResultPage getDailyQueryResultPage(String dateRangeField, String
dateHashKey, String dateIndex,
 String cleanUpDate, String dayHashKey,
DynamoDBTableMapper dbTableMapper) {
 HashMap<String, String > nameMap = new HashMap<>();
 nameMap.put("#date", dateRangeField);
 nameMap.put("#day", dateHashKey);
 HashMap<String, AttributeValue> valueMap = new HashMap<>();
 valueMap.put(":date", new AttributeValue().withS(cleanUpDate)) ;
 valueMap.put(":day", new AttributeValue().withS(dayHashKey));

 final DynamoDBQueryExpression dbQueryExpression = new DynamoDBQueryExpression()
 .withIndexName(dateIndex)
 .withConsistentRead(false)
 .withKeyConditionExpression("#day = :day and #date < :date")
 .withExpressionAttributeNames(nameMap)
 .withExpressionAttributeValues(valueMap);
 return dbTableMapper.query(dbQueryExpression);
}

private static void deleteOldData(DynamoDBTableMapper dbTableMapper, QueryResultPage
dailyResultPage, QueryResultPage pastDayResultPage) {
 if (dailyResultPage.getCount() > 0) {
 dbTableMapper.batchDelete(dailyResultPage.getResults());
 }
 if (pastDayResultPage.getCount() > 0) {
 dbTableMapper.batchDelete(pastDayResultPage.getResults());
 }
}

Read Dynamodb delete data over time online: https://riptutorial.com/amazon-
dynamodb/topic/10889/dynamodb-delete-data-over-time

https://riptutorial.com/ 7

https://riptutorial.com/amazon-dynamodb/topic/10889/dynamodb-delete-data-over-time
https://riptutorial.com/amazon-dynamodb/topic/10889/dynamodb-delete-data-over-time

Chapter 4: How to create a DynamoDB Table

Remarks

When creating tables make sure to pay attention to the choice of attributes for the partition and
sort keys. See the published guidelines for working with tables.

Examples

Create Table in Java using Document API

In the following example we will be creating a table called Membership using the AWS Java SDK for
DynamoDB. The table will consist of items that represent team assignments. The table will be
partitioned by TeamID. Each team will have multiple members, identified by the MemberID (as a
sort key).

AWSCredentials credentials = new BasicAWSCredentials("access_key", "secret_key");
DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(credentials));

try {
 // every DynamoDB table must have basic schema that determines
 // which attributes are to be used as partition key (and optionally sort key)
 List<KeySchemaElement> keySchema = new ArrayList<~>();
 // required: specify the partition key (also called hash key)
 keySchema.add(new KeySchemaElement()
 .withAttributeName("TeamID")
 .withKeyType(KeyType.HASH));
 // optionally: add a sort key (also called a range key)
 keySchema.add(new KeySchemaElement()
 .withAttributeName("MemberID")
 .withKeyType(KeyType.RANGE));

 // after defining the key schema - the attributes that will be used as partition and
range key
 // we need to specify these attributes' type
 List<AttributeDefinition> attrDefinitions = new ArrayList<~>();
 // we must specify the type for the TeamID attribute; suppose it's a string
 attrDefinitions.add(new AttributeDefinition()
 .withAttributeName("TeamID")
 .withAttributeType("S"));
 // if using a sort key we need to specify its type; suppose that it's numeric
 attrDefinitions.add(new AttributeDefinition()
 .withAttributeName("MemberID")
 .withAttributeType("N"));

 // after defining the attributes making up the schema and their type
 // we build a request, specifying the table name and the provisioned capacity
 CreateTableRequest request = new CreateTableRequest()
 .withTableName("Membership")
 .withKeySchema(keySchema)
 .withAttributeDefinitions(attrDefinitions)
 .withProvisionedThroughput(new ProvisionedThroughput()

https://riptutorial.com/ 8

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForTables.html

 .withReadCapacityUnits(30L)
 .withWriteCapacityUnits(10L));

 // now submit the request to create the table in DynamoDB
 Table table = dynamoDB.createTable(request);

 // creating a table is an asynchronous operation
 // we can wait for the table to be created
 table.waitForActive();

 // the table is now ready and can be used

} catch (Exception e) {
 // the table creation failed.
 // the reason for failure may be determined from the exception
}

Create Table in Ruby using AWS SDK v2

In following example we will create table movies with AWS Ruby SDK v2. Here, each Movie as one
unique Partition Key as id, and Range Key year. Apart from this we want to be able to query
movies with their name, hence we will create a Global Secondary Index (GSI) name-year-index with
name as Hash Key and year as Range Key. Movie can have other attributes such as released,
created_at, actor and actress. Schema for the table is shown below:

Table Name: movies

Partition
Key

Range
Key

Global Secondary
Index

Attributes

id year name
released , created_at, actor,
actress

it's better to initialize client as global variable in initializer
$ddb ||= Aws::DynamoDB::Client.new({
 access_key_id: ENV["AWS_ACCESS_KEY_ID"],
 secret_access_key: ENV["AWS_SECRET_ACCESS_KEY"]
})

create table API
$ddb.create_table({

 # array of attributes name and their type that describe schema for the Table and Indexes
 attribute_definitions: [
 {
 attribute_name: "id",
 attribute_type: "N"
 }
 {
 attribute_name: "name",
 attribute_type: "S",
 },
 {
 attribute_name: "year",
 attribute_type: "N",

https://riptutorial.com/ 9

 }
],

 # key_schema specifies the attributes that make up the primary key for a table
 # HASH - specifies Partition Key
 # RANGE - specifies Range Key
 # key_type can be either HASH or RANGE
 key_schema: [
 {
 attribute_name: "id",
 key_type: "HASH",
 },
 {
 attribute_name: "year",
 key_type: "RANGE",
 }
],

 # global_secondary_indexes array specifies one or more keys that makes up index, with name
of index and provisioned throughput for global secondary indexes
 global_secondary_indexes: [

 index_name: "name-year-index",
 key_schema: [
 {
 attribute_name: "name",
 key_type: "HASH"
 },
 {
 attribute_name: "year",
 key_type: "RANGE"
 }
],

 # Projection - Specifies attributes that are copied (projected) from the table into the
index.
 # Allowed values are - ALL, INCLUDE, KEYS_ONLY
 # KEYS_ONLY - only the index and primary keys are projected into the index.
 # ALL - All of the table attributes are projected into the index.
 # INCLUDE - Only the specified table attributes are projected into the index. The list of
projected attributes are then needs to be specified in non_key_attributes array
 projection: {
 projection_type: "ALL"
 },

 # Represents the provisioned throughput settings for specified index.
 provisioned_throughput: {
 read_capacity_units: 1,
 write_capacity_units: 1
 }
],

 # Represents the provisioned throughput settings for specified table.
 provisioned_throughput: {
 read_capacity_units: 1,
 write_capacity_units: 1,
 },
 table_name: "movies"
})

wait till table is created

https://riptutorial.com/ 10

$ddb.wait_until(:table_exists, {table_name: "movies"})

Read How to create a DynamoDB Table online: https://riptutorial.com/amazon-
dynamodb/topic/7686/how-to-create-a-dynamodb-table

https://riptutorial.com/ 11

https://riptutorial.com/amazon-dynamodb/topic/7686/how-to-create-a-dynamodb-table
https://riptutorial.com/amazon-dynamodb/topic/7686/how-to-create-a-dynamodb-table

Chapter 5: How to insert data into table using
DynamoDb?

Examples

Import a CSV file into a DynamoDB table using boto (Python package)

The Python function import_csv_to_dynamodb(table_name, csv_file_name, colunm_names,
column_types) below imports a CSV file into a DynamoDB table. Column names and column must
be specified. It uses boto. Below is the function as well as a demo (main()) and the CSV file used.

import boto

MY_ACCESS_KEY_ID = 'copy your access key ID here'
MY_SECRET_ACCESS_KEY = 'copy your secrete access key here'

def do_batch_write(items, table_name, dynamodb_table, dynamodb_conn):
 '''
 From https://gist.github.com/griggheo/2698152#file-gistfile1-py-L31
 '''
 batch_list = dynamodb_conn.new_batch_write_list()
 batch_list.add_batch(dynamodb_table, puts=items)
 while True:
 response = dynamodb_conn.batch_write_item(batch_list)
 unprocessed = response.get('UnprocessedItems', None)
 if not unprocessed:
 break
 batch_list = dynamodb_conn.new_batch_write_list()
 unprocessed_list = unprocessed[table_name]
 items = []
 for u in unprocessed_list:
 item_attr = u['PutRequest']['Item']
 item = dynamodb_table.new_item(
 attrs=item_attr
)
 items.append(item)
 batch_list.add_batch(dynamodb_table, puts=items)

def import_csv_to_dynamodb(table_name, csv_file_name, colunm_names, column_types):
 '''
 Import a CSV file to a DynamoDB table
 '''
 dynamodb_conn = boto.connect_dynamodb(aws_access_key_id=MY_ACCESS_KEY_ID,
aws_secret_access_key=MY_SECRET_ACCESS_KEY)
 dynamodb_table = dynamodb_conn.get_table(table_name)
 BATCH_COUNT = 2 # 25 is the maximum batch size for Amazon DynamoDB

 items = []

 count = 0
 csv_file = open(csv_file_name, 'r')
 for cur_line in csv_file:

https://riptutorial.com/ 12

http://docs.pythonboto.org/en/latest/

 count += 1
 cur_line = cur_line.strip().split(',')

 row = {}
 for colunm_number, colunm_name in enumerate(colunm_names):
 row[colunm_name] = column_types[colunm_number](cur_line[colunm_number])

 item = dynamodb_table.new_item(
 attrs=row
)
 items.append(item)

 if count % BATCH_COUNT == 0:
 print 'batch write start ... ',
 do_batch_write(items, table_name, dynamodb_table, dynamodb_conn)
 items = []
 print 'batch done! (row number: ' + str(count) + ')'

 # flush remaining items, if any
 if len(items) > 0:
 do_batch_write(items, table_name, dynamodb_table, dynamodb_conn)

 csv_file.close()

def main():
 '''
 Demonstration of the use of import_csv_to_dynamodb()
 We assume the existence of a table named `test_persons`, with
 - Last_name as primary hash key (type: string)
 - First_name as primary range key (type: string)
 '''
 colunm_names = 'Last_name First_name'.split()
 table_name = 'test_persons'
 csv_file_name = 'test.csv'
 column_types = [str, str]
 import_csv_to_dynamodb(table_name, csv_file_name, colunm_names, column_types)

if __name__ == "__main__":
 main()
 #cProfile.run('main()') # if you want to do some profiling

test.csv's content (must be located in the same folder as the Python script):

John,Doe
Bob,Smith
Alice,Lee
Foo,Bar
a,b
c,d
e,f
g,h
i,j
j,l

Read How to insert data into table using DynamoDb? online: https://riptutorial.com/amazon-
dynamodb/topic/6354/how-to-insert-data-into-table-using-dynamodb-

https://riptutorial.com/ 13

https://riptutorial.com/amazon-dynamodb/topic/6354/how-to-insert-data-into-table-using-dynamodb-
https://riptutorial.com/amazon-dynamodb/topic/6354/how-to-insert-data-into-table-using-dynamodb-

Chapter 6: Using AWS DynamoDb with the
AWS .NET SDK

Remarks

Amazon DynamoDB is a fast NoSQL database service offered by Amazon Web Services (AWS).
DynamoDB can be invoked from .NET applications by using the AWS SDK for .NET. The SDK
provides three different models for communicating with DynamoDB. This topic is introduces the
various APIs in each model.

The Models

The SDK provides three ways of communicating with DynamoDB. Each one offers tradeoffs
between control and ease of use. See the AWS .NET SDK Reference for details on the APIs
below.

Low-level: Amazon.DynamoDBv2 namespace — This is a thin wrapper over the DynamoDB
service calls. It matches all the service features. You can reference the service
documentation to learn more about each individual operation.

•

Document Model: Amazon.DynamoDBv2.DocumentModel namespace — This is a model that
provides a simpler interface for dealing with data. DynamoDB tables are represented by
Table objects, while individual rows of data are represented by Document objects. Conversion
of .NET objects to DynamoDB data is automatic for basic types.

•

Object Persistence Model: Amazon.DynamoDBv2.DataModel namespace — This set of APIs
allow you to store and load .NET objects in DynamoDB. Objects must be marked up to
configure the target table and the hash/range keys. DynamoDBContext acts on marked up
objects. It is used to store and load DynamoDB data, or to retrieve .NET objects from a
query or scan operation. Basic data types are automatically converted to DynamoDB data
and converters allow arbitrary types to be stored in DynamoDB.

•

The three models provide different approaches to working with the service. While the low-level
approach requires more client-side code — the user must convert .NET types such as numbers
and dates to DynamoDB-supported strings — it provides access to all service features. By
comparison, the Object Persistence Model approach makes it easier to use the service—since the
user is for the most part working with familiar .NET objects—but does not provide all the
functionality. For example, it is not possible to make conditional Put calls with the Object
Persistence Model.

Learn more about working AWS using the .NET SDK in the .NET SDK Developer Guide.

Note: This topic was adapted with permission from a blog post originally published on the AWS
.NET SDK blog.

https://riptutorial.com/ 14

http://aws.amazon.com/dynamodb/
http://aws.amazon.com/sdk-for-net
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/Index.html
http://docs.aws.amazon.com/sdkfornet/latest/apidocs/Index.html?page=NDynamoDBv2_DocumentModel_NET4_5.html&tocid=Amazon_DynamoDBv2_DocumentModel
http://docs.aws.amazon.com/sdkfornet/latest/apidocs/Index.html?page=NDynamoDBv2_DocumentModel_NET4_5.html&tocid=Amazon_DynamoDBv2_DocumentModel
https://docs.aws.amazon.com/AWSSdkDocsNET/V3/DeveloperGuide/welcome.html
https://blogs.aws.amazon.com/net/blog
https://blogs.aws.amazon.com/net/blog

Examples

Low Level API Example

var client = new AmazonDynamoDBClient();

// Store item
client.PutItem(new PutItemRequest
{
 TableName = "Books",
 Item = new Dictionary<string, AttributeValue>
 {
 { "Title", new AttributeValue { S = "Cryptonomicon" } },
 { "Id", new AttributeValue { N = "42" } },
 { "Authors", new AttributeValue {
 SS = new List<string> { "Neal Stephenson" } } },
 { "Price", new AttributeValue { N = "12.95" } }
 }
});

// Get item
Dictionary<string, AttributeValue> book = client.GetItem(new GetItemRequest
{
 TableName = "Books",
 Key = new Dictionary<string, AttributeValue>
 {
 { "Id", new AttributeValue { N = "42" } }
 }
}).Item;

Console.WriteLine("Id = {0}", book["Id"].S);
Console.WriteLine("Title = {0}", book["Title"].S);
Console.WriteLine("Authors = {0}",
 string.Join(", ", book["Authors"].SS));

Document Model Example

var client = new AmazonDynamoDBClient();
Table booksTable = Table.LoadTable(client, "Books");

// Store item
Document book = new Document();
book["Title"] = "Cryptonomicon";
book["Id"] = 42;
book["Authors"] = new List<string> { "Neal Stephenson" };
book["Price"] = 12.95;
booksTable.PutItem(book);

// Get item
book = booksTable.GetItem(42);
Console.WriteLine("Id = {0}", book["Id"]);
Console.WriteLine("Title = {0}", book["Title"]);
Console.WriteLine("Authors = {0}",
 string.Join(", ", book["Authors"].AsListOfString()));

Object Persistence Model Example

https://riptutorial.com/ 15

This example consists of two parts: first, we must define our Book type; second, we use it with
DynamoDBContext.

[DynamoDBTable("Books")]
class Book
{
 [DynamoDBHashKey]
 public int Id { get; set; }
 public string Title { get; set; }
 public List<string> Authors { get; set; }
 public double Price { get; set; }
}

Now, use it with DynamoDBContext.

var client = new AmazonDynamoDBClient();
DynamoDBContext context = new DynamoDBContext(client);

// Store item
Book book = new Book
{
 Title = "Cryptonomicon",
 Id = 42,
 Authors = new List<string> { "Neal Stephenson" },
 Price = 12.95
};
context.Save(book);

// Get item
book = context.Load<Book>(42);
Console.WriteLine("Id = {0}", book.Id);
Console.WriteLine("Title = {0}", book.Title);
Console.WriteLine("Authors = {0}", string.Join(", ", book.Authors));

Read Using AWS DynamoDb with the AWS .NET SDK online: https://riptutorial.com/amazon-
dynamodb/topic/5275/using-aws-dynamodb-with-the-aws--net-sdk

https://riptutorial.com/ 16

https://riptutorial.com/amazon-dynamodb/topic/5275/using-aws-dynamodb-with-the-aws--net-sdk
https://riptutorial.com/amazon-dynamodb/topic/5275/using-aws-dynamodb-with-the-aws--net-sdk

Credits

S.
No

Chapters Contributors

1
Getting started with
amazon-dynamodb

Community, Gustavo Tavares

2
Batch Operations:
Things to know

SACHESH A C

3
Dynamodb delete
data over time

Lior

4
How to create a
DynamoDB Table

Mike Dinescu, Parth Modi

5
How to insert data
into table using
DynamoDb?

Franck Dernoncourt

6
Using AWS
DynamoDb with the
AWS .NET SDK

David Hale

https://riptutorial.com/ 17

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6471284/gustavo-tavares
https://riptutorial.com/contributor/7354927/sachesh-a-c
https://riptutorial.com/contributor/5233815/lior
https://riptutorial.com/contributor/63074/mike-dinescu
https://riptutorial.com/contributor/4933185/parth-modi
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/6665424/david-hale

	About
	Chapter 1: Getting started with amazon-dynamodb
	Remarks
	Examples
	Installation or Setup
	Introduction

	Chapter 2: Batch Operations: Things to know
	Introduction
	Remarks
	Examples
	How to code the BatchWriteItemRequest and save data
	How to create WriteRequest

	Chapter 3: Dynamodb delete data over time
	Introduction
	Remarks
	Examples
	cleanUpOldData

	Chapter 4: How to create a DynamoDB Table
	Remarks
	Examples
	Create Table in Java using Document API
	Create Table in Ruby using AWS SDK v2

	Chapter 5: How to insert data into table using DynamoDb?
	Examples
	Import a CSV file into a DynamoDB table using boto (Python package)

	Chapter 6: Using AWS DynamoDb with the AWS .NET SDK
	Remarks
	The Models
	Examples
	Low Level API Example
	Document Model Example
	Object Persistence Model Example

	Credits

