" LEARNING
amazon-web-services

Free unaffiliated eBook created from
Stack Overflow contributors. #amazon-

web-

Table of Contents

A OUL . .. 1
Chapter 1: Getting started with amazon-web-services.............................. i 2
REMIAIKS . . 2
Y4157 0] I P 2
= 1] 0] [T 2
Before LIS 100 Iate. oo 2
Chapter 2: Amazon COgNItO. ... 4
= 10] 0] [4
User Identity management using Amazon COgNItO.t 4
Chapter 3: Amazon DynamoDB. 7
= 1] 0] [T 7
DynamoDB basic Crud Operation using NOGEJSo e 7
Chapter 4: AWS CloudFOormation........... ... 8
= 1] 0] [T 8
CloudFormation sample script to create an EC2 instance along with a Security Group to asso.................... 8
AWS CloudFormer in VP C . .. e 9
Chapter 5: AWS Lambda. 19
I OTUCTION. ... e e e 19
REMIAIKS . . 19

E XM S . ..o 19
BasiC Gradle JAava PrOJECT.ottt e e 19
Basic Lambda COOE IN JAVA.ottt 19
Basic Lambda code in JavaScript (NOAEJIS).ttt e e e e e e e e 20
Creating AWS Lambda using the web GUI (Java)........ ..ot e 20
Testing the Basic Lambda COe. 20
Adding AWS APL GateWay tHgger . . .ottt et e e et e e et e et e 21
Chapter 6: Deploy a docker container image Using ECS............................ . 22
REMIAIKS . . 22
B S . ..o 22

EXAMPIE-TASK S ON . . . 22

Deploy a sample application on AWS ECS service as a proof of concept.............ooiiiiiiiiiiiiiiiiinaa.. 23

Follow following steps to try out a sample application on AWS ECS service as a proofofco.............. 23
Chapter 7: Elastic BeanstalK. 28
RIS . ..o 28
B S . ..o 28
Introduction to Elastic Beanstalk. 28
Blue/Green Deployments on Elastic Beanstalk. 29
Chapter 8: ROOt Class. 31
G 1 11] o [TP 31
Amazon api root class is as follOWINg. 31
BUSINESS ClaSS . . . ottt 36

(04 (=7 [(- 39

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: amazon-web-services

It is an unofficial and free amazon-web-services ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking

individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official amazon-web-
services.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/

http://riptutorial.com/ebook/amazon-web-services
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

C_hapter 1: Getting started with amazon-web-
services

Remarks

This section provides an overview of what amazon-web-services is, and why a developer might
want to use it.

It should also mention any large subjects within amazon-web-services, and link out to the related
topics. Since the Documentation for amazon-web-services is new, you may need to create initial
versions of those related topics.

Versions

Version | Release Date

1.0.0 2017-01-10

Examples

Before it is too late

Tips & Tricks to avoid nasty situations
EC2 Instances and EBS
» Set IAM Roles.

Unlike tags, the IAM Role is set once and for all on EC2 instanciation (even after 4 years) ! Try
to identify and categorize beforehand your instances so you can give an them appropriate IAM
roles. IAM Roles are a nice way to identify your machines, it will let amazon automatically store
Instance Profile credentials safely in your machines, and you will be easily able to give extra
privileges.

Consider the following situation where you have Database servers, and you realize you want to
monitor memory/disk usage. Amazon CloudWatch does not provide this metric out-of-the-box, and
You'll need to set up extra privileges to send custom data to CloudWatch. If you have an IAM
"Database” Role, you can easily attach new policies to your existing Database instances to let
them send Memory reports to CloudWatch. No IAM Roles ? You have to recreate your Database
instances, or give them permission individually.

» Beware of snapshot integrity

Amazon lets you snapshot EBS volumes, however in case you use several volumes on the same

https://riptutorial.com/ 2

https://forums.aws.amazon.com/thread.jspa?threadID=97487

machine (in RAID configuration, multiple EBS volumes for your database), it is impossible to
guarantee the integrity of those snapshots, which may happen at different times on the different
EBS volumes.

Always ensure no data is written (stop the VM, or use application specific code (eg db. fsyncLock ())
to ensure no data is written during the snapshot.

CloudWatch
» Use Amazon Cloudwatch + SNS alerts on top of your application error notifiers

Create alerts for anormal behavior of your machines, and configure to send notifications via
Amazon SNS (eg email addresses) in case of problems. Having exception notifiers on your
application won't help if your server cannot even be pinged. On the other hand, apart from 500
error codes Amazon has little information on your application and how it is supposed to work, you
should consider adding application-specific health monitoring.

Read Getting started with amazon-web-services online: https://riptutorial.com/amazon-web-
services/topic/798/getting-started-with-amazon-web-services

https://riptutorial.com/

https://riptutorial.com/amazon-web-services/topic/798/getting-started-with-amazon-web-services
https://riptutorial.com/amazon-web-services/topic/798/getting-started-with-amazon-web-services

C_hapter 2: Amazon Cognito

Examples
User Identity management using Amazon Cognito

var app = {};

app.signUp = function () {

app.userName = S ('"#userName') .val () ;
app.password = S ('#password') .val();
app.email = S ('#form-email') .val();
app . phoneNumber = S ('#form-phone') .val();

app.emailRegex =
I CCIA<>ONININ ., e \Ns@N" T+ (N [A<> O NININ ., 5 s Ns@\N"T+H) *) [(N".4\")) @ ((["<>() ININ., 7 :\s@\"]+\.)+["<>() [\]\

/*
Put the User input validation logic here.

*/

if (!app.userName) {
alert ("Please provide a user name");
return;

if (!app.password) {
alert ("Please provide a password");
return;

if (lapp.email) {
alert ("Please provide an Email address");
return;

if (!app.emailRegex.test (app.email)) {
alert ("Please provide a valid Email address");
return;

if (!app.phoneNumber) {
alert ("Please provide a Phone Number");
return;

AWS.config.region = 'us-east-1'; // Region
AWS.config.credentials = new AWS.CognitoIdentityCredentials ({
IdentityPoolId: '...' // your identity pool id here

1)

AWSCognito.config.region = 'us-east-1"';

AWSCognito.config.credentials = new AWS.CognitoIdentityCredentials ({
IdentityPoolId: '...' // your identity pool id here

1)

// Need to provide placeholder keys unless unauthorised user access is enabled for user pool

https://riptutorial.com/ 4

AWSCognito.config.update ({accessKeyId: 'anything', secretAccessKey: 'anything'})

var poolData = {
UserPoolId : APP_CONSTANT.USER_POOL_ID,
ClientId : APP_CONSTANT.CLIENT_ID

bi
userPool = new AWSCognito.CognitoIdentityServiceProvider.CognitoUserPool (poolData) ;

var attributelist = [];

var dataEmail = {

Name : 'email',

Value : app.email //Email Id where the confirmation code would be sent.
bi
var dataPhoneNumber = {

Name : 'phone_number',

Value : app.phoneNumber
bi
var attributeEmail = new
AWSCognito.CognitoIdentityServiceProvider.CognitoUserAttribute (dataEmail) ;
//Uncomment below once the phone number format is confirmed
/*var attributePhoneNumber = new
AWSCognito.CognitoIdentityServiceProvider.CognitoUserAttribute (dataPhoneNumber) ; */

attributelist.push(attributeEmail) ;
/* attributelist.push (attributePhoneNumber) ; */

// Put the user id and password collected from user below for signup
userPool.signUp (app.userName, app.password, attributelist, null, function(err, result) {

if (err) {

alert (err);
return;

}

cognitoUser = result.user;
// Return the user name once the user signed up, still need to confirm with confirmation code
send to mail.
S("#form-confirmCode") .css ("display", "block");

alert ('user name is ' + cognitoUser.getUsername());
// Now since the user is signed up and pending for confirmaion, disable all the pervious input
but confirmation code.
S ("#userName") .prop ("readonly", true);
S ("#password") .prop ("readonly", true);
S("#form-email") .prop ("readonly", true);
S ("#form-phone") .prop ("readonly", true);
$("#signUpBtn") .hide () ;
S ("#confirm-block") .show () ;

var confirmationCode = prompt ("Hello "+cognitoUser.getUsername+" Enter the confirmation code
sent to your email address.","Confirmation code here");
cognitoUser.confirmRegistration (confirmationCode, true, function (err, result) {
if (err) {
alert (err);
return;
}
console.log('Call Result: '+result);
1)

return;

)i
bi

Read Amazon Cognito online: https://riptutorial.com/amazon-web-services/topic/3425/amazon-

https://riptutorial.com/

https://riptutorial.com/amazon-web-services/topic/3425/amazon-cognito

cognito

https://riptutorial.com/

https://riptutorial.com/amazon-web-services/topic/3425/amazon-cognito

C_hapter 3: Amazon DynamoDB

Examples

DynamoDB basic Crud Operation using NodeJS

let doc = require ('dynamodb-doc');
let dynamo = new doc.DynamoDB() ;
var tblName = "MyTable";

exports.handler = (event, context, callback) => {
readOperation (context) ;

function readOperation (cnxt) {
var params = {
TableName: tblName,
Key: {
"id": "2013",
"topic": "Turn It Down, Or Else!"
by
AttributesToGet: [
"id", "client_name", "info"
I
ConsistentRead: false
}i
dynamo.getItem(params, function(err, data) {

if (err) console.log("Error: "+err); // an error occurred
else {
var JjsonDoc = JSON.parse (data.Item.info); // successful response

cnxt.succeed (jsonDoc) ;

Read Amazon DynamoDB online: https://riptutorial.com/amazon-web-services/topic/6429/amazon-
dynamodb

https://riptutorial.com/ 7

https://riptutorial.com/amazon-web-services/topic/6429/amazon-dynamodb
https://riptutorial.com/amazon-web-services/topic/6429/amazon-dynamodb

C_hapter 4: AWS CloudFormation

Examples

CloudFormation sample script to create an EC2 instance along with a Security
Group to associate with.

This example will create an EC2 instance of t2.micro type in N.Virginia region running Amazon
Linux. During the execution, it will ask to select the KeyPair to use and an I.P. CIDR from where
you can SSH to the instance, use default to make SSH open to the internet

"AWSTemplateFormatVersion" : "2010-09-09",

"Description" : "AWS CloudFormation Sample Template EC2InstanceWithSecurityGroupSample:
Create an Amazon EC2 instance running the Amazon Linux AMI. This example creates an EC2
security group for the instance to give you SSH access. ",

"Parameters" : {

"KeyName": {
"Description" : "Name of an existing EC2 KeyPair to enable SSH access to the instance",
"Type": "AWS::EC2::KeyPair: :KeyName",
"ConstraintDescription" : "must be the name of an existing EC2 KeyPair."
}y
"SSHLocation" : {
"Description" : "The IP address range that can be used to SSH to the EC2 instances",
"Type": "String",
"MinLength": "9",
"MaxLength": "18",
"Default": "0.0.0.0/0",
"AllowedPattern": " (\\d{1,3})\\. (\\d{1,3})\\. (\\d{1,3})\\. (\\d{1,3})/ (\\d{1,2})",
"ConstraintDescription": "must be a valid IP CIDR range of the form x.x.x.x/x."
}
}y
"Resources" : {
"EC2Instance" : {
"Type" : "AWS::EC2::Instance",
"Properties" : ({
"InstanceType" : “t2.micro”,
"SecurityGroups" : [{ "Ref" : "InstanceSecurityGroup" } 1,
"KeyName" : { "Ref" : "KeyName" },
"ImageId" : “ami-6869%aa05”
}
}y
"InstanceSecurityGroup" : {
"Type" : "AWS::EC2::SecurityGroup",
"Properties" : ({
"GroupDescription" : "Enable SSH access via port 22",
"SecurityGroupIngress" : [{
"IpProtocol" : "tcp",
"FromPort" : "22",
"ToPort" : "22",

https://riptutorial.com/

"CidrIp" : { "Ref" : "SSHLocation"}
bl

}
by

"Outputs" : {

"InstanceId" : {
"Description" : "InstanceId of the newly created EC2 instance",
"Value" : { "Ref" : "EC2Instance" }

b

"AZ" ¢ |
"Description" : "Availability Zone of the newly created EC2 instance",
"Value" : { "Fn::GetAtt" : ["EC2Instance", "AvailabilityZone"] }

b

"PublicDNS" : {
"Description" : "Public DNSName of the newly created EC2 instance",
"Value" : { "Fn::GetAtt" : ["EC2Instance", "PublicDnsName"] }

b

"PublicIP" : {
"Description" : "Public IP address of the newly created EC2 instance",
"Value" : { "Fn::GetAtt" : ["EC2Instance", "PublicIp"] }

AWS CloudFormer in VPC

CloudFormer template translates the existing AWS entities to a generate new CloudFormation
template to accelerate the time to recreate the environment. The CloudFormer launches in a
default VPC which might not be suitable in the cases where the default VPC is deleted. This code
base is fork from the original CloudFormer which would be launched inside a new VPC.

"AWSTemplateFormatVersion" : "2010-09-09",

"Description" : "A custom CloudFormer template forked from AWS provided to extend the
capability to provide the ability to specify the VPC. Creates a Separate Stand-Alone VPC,
Subnet - 10.0.0.0/16 to launch the CloudFormer Instance. AWS CloudFormer Beta - template
creation prototype application. This tool allows you to create an AWS CloudFormation template
from the AWS resources in your AWS account. **Warning** This template creates a single EC2
instance in your account to run the application - you will be billed for the instance at
normal AWS EC2 rates.",

"Parameters" : {
"Username" : {
"Description" : "Username to log in to CloudFormer",
"Type" : "String"
br
"Password" : {
"Description" : "Password to log in to CloudFormer",
"Type" : "String",
"NoEcho" : "true"
br
"CommonNameTag" : {
"Description" : "Common Identifier / Friendly Name for the Stack",
"Type" : "String",

https://riptutorial.com/

https://aws.amazon.com/developertools/6460180344805680

"Default"

by

"Mappings" : {
"NetworkValues" : {
"vpC" {"CIDR"
"Subnet"
by

"Region2Examples"
"us—-east-1"
east-1" 1},

"us-west-2"
examples-us-west-2" },
"us-west-1"
examples—-us-west-1" },
"eu-west-1"
examples—-eu-west-1" },

"eu-central-1"

examples—eu-central-1" 1},

"ap-southeast-1"

{"CIDR"

{

"10.0.0.0/16"},
"10.0.10.0/16"}

"Examples"

"Examples"

"Examples"

"Examples"

"Examples"

"Examples"

"CloudFormer - Non Default VPC"

"https://s3.amazonaws

"https://s3-us-west-2

"https://s3-us-west-1

"https://s3-eu-west-1

1.amazonaws.com/cloudformation-examples—ap—-southeast-1" },

"ap-northeast-1"

{

"Examples"

1.amazonaws.com/cloudformation-examples—ap—-northeast-1" },

"ap-southeast-2"

{

"Examples"

2 .amazonaws.com/cloudformation—-examples—ap—-southeast-2" 1},

"ap-northeast-2"

{

"Examples"

2 .amazonaws.com/cloudformation—examples—ap—northeast-2" 1},

"sa-east-1"
examples—-sa-east-1" },
"cn-north-1"

{

{

"Examples"

"Examples"

1.amazonaws.com.cn/cloudformation-examples—cn-north-1" }

by

"Region2Principal"
"us—east-1"
"opsworks.amazonaws.com"
"us-west-2"
"opsworks.amazonaws.com"
"us-west-1"
"opsworks.amazonaws.com"
"eu-west-1"
"opsworks.amazonaws.com"
"ap-southeast-1"
"opsworks.amazonaws.com"
"ap-northeast-1"
"opsworks.amazonaws.com"
"ap-southeast-2"
"opsworks.amazonaws.com"
"ap-northeast-2"
"opsworks.amazonaws.com"
"sa—-east-1"
"opsworks.amazonaws.com"
"cn-north-1"

"opsworks.amazonaws.com.cn"

"eu-central-1"
"opsworks.amazonaws.com"

by

{
}

"AWSInstanceType2Arch"

"EC2Principal"

"EC2Principal"

"EC2Principal"

"EC2Principal"

"EC2Principal"

"EC2Principal"

"EC2Principal"

"EC2Principal"

"EC2Principal"

"EC2Principal"

by
"EC2Principal"

"ec2.

"ec2.

"ec2.

"ec2.

"ec2.

"ec2.

"ec2.

"ec2.

"ec2.

"ec2.

"ec2.

amazonaws.

amazonaws

amazonaws.

amazonaws.

amazonaws

amazonaws.

amazonaws.

amazonaws.

amazonaws.

amazonaws.

amazonaws.

"https://s3-ap-southeast-

"https://s3-ap-northeast-

"https://s3-ap-southeast-

"https://s3-ap-northeast-

"https://s3.cn—-north-

.com/cloudformation—examples—us—

.amazonaws.com/cloudformation-—

.amazonaws.com/cloudformation-—

.amazonaws.com/cloudformation-—

"https://s3-sa-east—-1.amazonaws.com/cloudformation—

com", "OpsWorksPrincipal"
.com", "OpsWorksPrincipal"
com", "OpsWorksPrincipal"
com", "OpsWorksPrincipal"
.com", "OpsWorksPrincipal"
com", "OpsWorksPrincipal"
com", "OpsWorksPrincipal"
com", "OpsWorksPrincipal"
com", "OpsWorksPrincipal"
com.cn", "OpsWorksPrincipal"
com", "OpsWorksPrincipal"

"https://s3-eu-central-1.amazonaws.com/cloudformation—

https://riptutorial.com/

10

by

.micro"
.nano"
.micro"
.small"
.medium"
.large"
.small"
.medium"
.large"
.xlarge"
.xlarge"
.2xlarge"
.4xlarge"
.medium"
.large"
.xlarge"
.2xlarge"
.large"
.xlarge"
.2xlarge"
.4xlarge"
.10xlarge"
.medium"
.xlarge"
.large"
.xlarge"
.2xlarge"
.4xlarge"
.8xlarge"
.large"
.xlarge"
.2xlarge"
.4xlarge"
.8xlarge"
.2xlarge"
.8xlarge"
.large"
.xlarge"
.2xlarge"
.4xlarge"
.8xlarge"
.xlarge"
.2xlarge"
.4xlarge"
.8xlarge"
.xlarge"
.2xlarge"
.4xlarge"
.8xlarge"

.4xlarge"
.8xlarge"
.8xlarge"
.8xlarge"

e T T e T T T T T e T T e e N N T T T e e T T T e T T T = = T e T T SN SN

"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"
"Arch"

"AWSInstanceType2NATArch"

"tl
WE2 o
"t2
WE2 o
"t2

.micro"

nano"

.micro"

small"

.medium"

{

N

"Arch"
"Arch"
"Arch"
"Arch"
"Arch"

"pyeE4" ',
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"pyE4" ',
"pyE4" ',
"pyE4" ',
"pyE4" ',
"pyE4" ',
"pyE4" ',
"pyE4" ',
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"pyE4 " ',
"pyeE4n ',
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HUMG2" },
"HUMG2" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64" },
"HVM64")
"NATPV64"
"NATHVM64"
"NATHVM64"
"NATHVM64"
"NATHVM64"

by
by
by
by
by

https://riptutorial.com/

11

"t2.large" { "Arch" "NATHVM64" 1},
"ml.small" { "Arch" "NATPV64" P
"ml . medium" { "Arch" "NATPV64" },
"ml.large" { "Arch" "NATPVG64" },
"ml.xlarge" { "Arch" "NATPVG64" },
"m2.xlarge" { "Arch" "NATPVG64" },
"m2.2xlarge" { "Arch" "NATPVG64" },
"m2.4xlarge" { "Arch" "NATPV64" P
"m3.medium" { "Arch" "NATHVMG64" },
"m3.large" { "Arch" "NATHVM64" },
"m3.xlarge" { "Arch" "NATHVM64" 1},
"m3.2xlarge" { "Arch" "NATHVM64" 1},
"m4.large" { "Arch" "NATHVM64" 1},
"m4.xlarge" { "Arch" "NATHVM64" 1},
"m4.2xlarge" { "Arch" "NATHVM64" 1},
"m4.4xlarge" { "Arch" "NATHVM64" 1},
"m4.10xlarge" { "Arch" "NATHVM64" 1},
"cl.medium" { "Arch" "NATPV64" },
"cl.xlarge" { "Arch" "NATPVG64" },
"c3.large" { "Arch" "NATHVM64" 1},
"c3.xlarge" { "Arch" "NATHVM64" 1},
"c3.2xlarge" { "Arch" "NATHVM64" 1},
"c3.4xlarge" { "Arch" "NATHVM64" 1},
"c3.8xlarge" { "Arch" "NATHVM64" },
"c4.large" { "Arch" "NATHVM64" 1},
"cd.xlarge" { "Arch" "NATHVMG64" },
"c4.2xlarge" { "Arch" "NATHVM64" 1},
"cd4.4xlarge" { "Arch" "NATHVM64" 1},
"c4.8xlarge" { "Arch" "NATHVMG64" },
"g2.2xlarge" { "Arch" "NATHVMG2" },
"g2.8xlarge" { "Arch" "NATHVMG2" },
"r3.large" { "Arch" "NATHVM64" },
"r3.xlarge" { "Arch" "NATHVM64" },
"r3.2xlarge" { "Arch" "NATHVM64" },
"r3.4xlarge" { "Arch" "NATHVM64" },
"r3.8xlarge" { "Arch" "NATHVM64" },
"i2.xlarge" { "Arch" "NATHVM64" 1},
"i2.2xlarge" { "Arch" "NATHVM64" 1},
"i2.4xlarge" { "Arch" "NATHVM64" 1},
"i2.8xlarge" { "Arch" "NATHVM64" 1},
"d2.xlarge" { "Arch" "NATHVMG64" },
"d2.2xlarge" { "Arch" "NATHVM64" 1},
"d2.4xlarge" { "Arch" "NATHVM64" 1},
"d2.8xlarge" { "Arch" "NATHVMG64" 1},
"hil.4xlarge" { "Arch" "NATHVM64" 1},
"hsl.8xlarge" { "Arch" "NATHVM64" },
"crl.8xlarge" { "Arch" "NATHVMG64" },
"cc2.8xlarge" { "Arch" "NATHVMG64" }
by
"AWSRegionArch2AMI" {
"us-east-1" {"PV64" "ami-d4f7ddbe", "HVM64" "ami-2df5df47", "HVMG2" "ami-
95f7c0ff"},
"us-west-2" {"PV64" "ami-a9aedec9", "HVM64" "ami-42b15122", "HVMG2" "ami-
83a744e3"},
"us-west-1" {"PV64" "ami-14£68074", "HVM64" "ami-£7£58397", "HVMG2" "ami-
ee62138e"},
"eu-west-1" {"PV64" "ami-a93484da", "HVM64" "ami-3c38884f", "HVMG2" "ami-
25d76556"},
"eu-central-1" {"PV64" "ami-e8233884", "HVM64" "ami-d8203bb4", "HVMG2" "ami-
8fadb6e3"},
https://riptutorial.com/ 12

"ap-northeast-1" : {"PV64" : "ami-c8aca8a6", "HVM64" : "ami-eeabaf80", "HVMG2" "ami-
71le6e01f"},
"ap-northeast-2" : {"PV64" : "NOT_SUPPORTED", "HVM64" : "ami-431fd12d", "HVMG2"
"NOT_SUPPORTED"},
"ap-southeast-1" : {"PV64" : "ami-6702cc04", "HVM64" : "ami-8504cae6", "HVMG2" "ami-
le7ab47d"},
"ap-southeast-2" : {"PV64" : "ami-4f04232c", "HVM64" : "ami-a30126cO", "HVMG2" "ami-
68al1860b"},
"sa-east-1" : {"PV64" : "ami-daf477b6", "HVM64" : "ami-e2f4778e", "HVMG2"
"NOT_SUPPORTED"},
"cn-north-1" : {"PV64" : "ami-0534fc68", "HVM64" : "ami-3f36feb52", "HVMG2"
"NOT_SUPPORTED" }
}
by
"Resources" : {
"VPC" : {
"Type" : "AWS::EC2::VPC",
"Properties" : {
"CidrBlock" : { "Fn::FindInMap" : ["NetworkValues", "VPC", "CIDR"] },
"EnableDnsHostnames" : "true",
"Tags" : [
{"Key": "Name", "Value": {"Ref":"CommonNameTag"} }
]
}
by
"Subnet" : {
"Type" : "AWS::EC2::Subnet",
"Properties" : {
"VpcId" : { "Ref" : "VPC" },
"CidrBlock" : { "Fn::FindInMap" : ["NetworkValues", "Subnet", "CIDR"] },
"MapPublicIpOnLaunch" : "true",
"Tags" : [
{"Key": "Name", "Value": {"Ref":"CommonNameTag"} }
]
}
by
"RouteTable" : {
"Type" : "AWS::EC2::RouteTable",
"Properties" : {
"VpcId" : { "Ref" : "VPC" }
}
by
"InternetGateway" : {
"Type" : "AWS::EC2::InternetGateway",
"Properties" : {
"Tags" : [
{"Key": "Name", "Value": {"Ref":"CommonNameTag"} }
]
}
by
"InternetGatewayAttachment" : {
"Type" : "AWS::EC2::VPCGatewayAttachment",
"Properties" : {
"InternetGatewayId" : { "Ref" : "InternetGateway"},
"VpcId" : { "Ref" : "VPC"}
}
https://riptutorial.com/ 13

by

"Route" : {

"Type" : "AWS::EC2::Route",
"Properties" : {
"DestinationCidrBlock" : "0.0.0.0/0",
"GatewayId" : { "Ref" : "InternetGateway" },
"RouteTableId" : { "Ref" : "RouteTable" }
}
by
"SubnetRouteTableAttachment" : {
"Type" : "AWS::EC2::SubnetRouteTableAssociation",
"Properties" : {
"RouteTableId" : { "Ref" : "RouteTable" },
"SubnetId" : { "Ref" : "Subnet" }

by

"CFNRole": {
"Type": "AWS::IAM::Role",
"Properties": {
"AssumeRolePolicyDocument": {
"Statement": [{
"Effect": "Allow",
"Principal": { "Service": { "Fn::FindInMap" : ["Region2Principal", {"Ref"
"AWS::Region"}, "EC2Principal"]}},
"Action": ["sts:AssumeRole"]
}]
by
TRaihTg @/

by

"CFNRolePolicy": {

"Type": "AWS::IAM::Policy",
"Properties": {
"PolicyName": "CloudFormerPolicy",
"PolicyDocument": {
"Statement": [{
"Effect": "Allow",
"Action" : [

"autoscaling:Describe*",
"cloudformation:Describe*",
"cloudformation:List*",
"cloudfront:List*",
"cloudFront:Get*",
"cloudtrail:Describe*",
"cloudtrail:Get*",
"cloudwatch:Describe*",
"dynamodb:List*",
"dynamodb:Describe*",
"elasticbeanstalk:Describe*",
"ec2:Describe*",
"elasticloadbalancing:Describe*",
"elasticache:Describe*",
"rds:Describe*",

"rds:List*",

"routeb53:List*",
"route53:Get*",

"s3:List*",

https://riptutorial.com/

"s3:Get*",
"s3:PutObject",

"sdb:
"sdb:
"sns:
"sns:
"sgs:
"sgs:

Get*",
List*",
Get*",
List*",
Get*",
List*",

"opsworks:Describe*",

"redshift:Describe*",

"kinesis:Describe*",

"kinesis:List*"

I

"Resource": "x"

bl
b
"Roles": [

by

{ "Ref": "CFNRole" }]

"CFNInstanceProfile": {

"Type": "AWS::IAM::InstanceProfile",
"Properties": {
"Path": "/",
"Roles": [{ "Ref": "CFNRole" }]
}
by
"WebServer": {
"Type": "AWS::EC2::Instance",
"Metadata" {
"AWS::CloudFormation::Init" : {
"configSets" : {
"full_install" : ["base", "cloudformer"]
by
"base" {
"packages" : {
"yum" {
"gcc" 7
"gcc-cH+" 7
"make"

"libxml2-devel"
"libxslt-devel"
"sglite-devel"
"patch"
"readline"
"readline-devel"
"z1lib"
"zlib-devel"
"libyaml-devel"
"libffi-devel”
"openssl-devel"
"bzip2"
"autoconf"
"automake"
"libtool"
"bison"
"ruby-devel"

by

https://riptutorial.com/

15

"cloudformer" : {
"sources" : {
"/home/ec2-user/cloudformer" : {"Fn::Join" : ["/", [
{"Fn::FindInMap" : ["Region2Examples", {"Ref"
"AWS::Region"}, "Examples"]},
"AWSCloudFormer041l.zip" 1]}
by

"files" : {
"/home/ec2-user/setup_cloudformer" : {
"content" : { "Fn::Join" : ["", [

"#1/usr/bin/env bash\n",

"cd /home/ec2-user/cloudformer\n",
"# Setup the CloudFormer service\n",
"mkdir -p vendor/bundle\n",

"gem install --local /home/ec2-user/cloudformer/vendor/cache/rake-
10.4.2.gem\n",

"gem install —--local /home/ec2-user/cloudformer/vendor/cache/bundler—
1.7.11.gem\n",

"gem install --local /home/ec2-user/cloudformer/vendor/cache/bundle-

0.0.1.gem\n",

"/usr/local/bin/bundle install --local --path /home/ec2-
user/cloudformer/vendor/bundle\n",

"/usr/local/bin/rake RAILS_ENV=production db:migrate\n",

"gem install --local /home/ec2-user/cloudformer/vendor/cache/rack-
1.6.0.gem\n",

"gem install --local /home/ec2-user/cloudformer/vendor/cache/eventmachine-
1.0.4.gem\n",

"gem install --local /home/ec2-user/cloudformer/vendor/cache/daemons—
1.1.9.gem\n",

"gem install --local /home/ec2-user/cloudformer/vendor/cache/thin-

1.6.3.gem\n",

"# Create certificate and private key for SSL\n",

"mkdir -p /home/ec2-user/cloudformer/.ssl\n",

"cd /home/ec2-user/cloudformer/.ssl\n",

"openssl genrsa -des3 -passout pass:\"" , { "Ref" : "Password" }, "\" -out
server.pass.key 1024\n",

"openssl rsa -passin pass:\"", { "Ref" : "Password" }, "\" -in
server.pass.key -out server.key\n",

"openssl reg -new —-key server.key -out server.csr -subj
\"/C=US/ST=Washington/L=Seattle/O=Amazon Web Services/OU=CloudFormer\"\n",

"openssl x509 -req -days 365 -in server.csr -signkey server.key -out
server.crt\n",

"rm server.pass.key server.csr\n"

11},

"mode" : "000755",
"owner" : "root",
"group" : "root"
b
"/home/ec2-user/cloudformer/config/initializers/user.rb" : {
"content" : { "Fn::Join" : ["", [
"USER_NAME = \"", { "Ref" : "Username" }, "\"\n",
"PASSWORD = \"", { "Ref" : "Password" }, "\"\n"
11},
"mode" : "000400",
"owner" : "root",
"group" : "root"
b
"/usr/bin/cloudformer" : {
"content" : { "Fn::Join" : ["", [

"#1/usr/bin/env bash\n",

"cd /home/ec2-user/cloudformer\n",

https://riptutorial.com/

16

"/usr/local/bin/thin start —-p 443 -e production -d —--ssl —--ssl-key-file
/home/ec2-user/cloudformer/.ssl/server.key —-ssl-cert-file /home/ec2-
user/cloudformer/.ssl/server.crt\n"

11},

"mode" : "000755",
"owner" : "root",
"group" : "root"
}
b
"commands" : {
"0l_install_cloudformer" : {
"command" : "/home/ec2-user/setup_cloudformer &>
/var/log/setup_cloudformer.log",
"cwd" : "/home/ec2-user/cloudformer"
b
"02_setup_boot" : {
"command" : "echo '/usr/bin/cloudformer' >> /etc/rc.local",
"cwd" : "/"
}
}
}
}
b
"Properties": {
"ImageId" : { "Fn::FindInMap" : ["AWSRegionArch2AMI", { "Ref" : "AWS::Region" },
{ "Fn::FindInMap" : ["AWSInstanceType2Arch", "t2.medium", "Arch"
L
"InstanceType" : "t2.medium",
"SecurityGroupIds" : [{"Ref" : "WebServerSecurityGroup"} 1,
"SubnetId" : { "Ref" : "Subnet" },
"TamInstanceProfile" : { "Ref" : "CFNInstanceProfile" },
"UserData" : { "Fn::Base64" : { "Fn::Join" : ["", [

"#!/bin/bash -xe\n",
"yum update -y aws-cfn-bootstrap\n",

"/opt/aws/bin/cfn-init -v ",

" —-—-stack ", { "Ref" : "AWS::StackId" },

" ——resource WebServer ",

" —-—configsets full_install ",

" —--region ", { "Ref" : "AWS::Region" }, "\n",

"/opt/aws/bin/cfn-signal -e $? ",
" -—-stack ", { "Ref" : "AWS::StackId" 1},

" ——resource WebServer ",

o ——-region ", { "Ref" : "AWS::Region" }, "\n"
111}
by
"CreationPolicy" : {
"ResourceSignal" : {
"Timeout" : "PT30M"
}
}
by
"WebServerSecurityGroup" : {
"Type" : "AWS::EC2::SecurityGroup",
"Properties" : {
"GroupDescription" : "Enable HTTPS access via port 443",
"VpcId" : { "Ref" : "VPC" 1},

"SecurityGroupIngress" : [

{"IpProtocol" : "tcp", "FromPort" : "443", "ToPort" : "443", "CidrIp" : "0.0.0.0/0"}

https://riptutorial.com/

17

}
by

"Outputs" : {

"WebsiteURL" : {
"Value" : { "Fn::Join" : ["", ["https://", { "Fn::GetAtt" : ["WebServer",
"PublicDnsName" 1} 11 1},
"Description" : "URL for CloudFormer"

Read AWS CloudFormation online: https://riptutorial.com/amazon-web-services/topic/6988/aws-
cloudformation

https://riptutorial.com/

18

https://riptutorial.com/amazon-web-services/topic/6988/aws-cloudformation
https://riptutorial.com/amazon-web-services/topic/6988/aws-cloudformation

C_hapter 5. AWS Lambda

Introduction

AWS Lambda is a service that lets you run back-end code without the need to provision or
manage servers. AWS Lambda takes care of scaling and high availability. The cost directly
depends on how often and how long your code executes.

You will find examples of how to create and deploy AWS Lambda functions in different languages.

Remarks

« AWS Lambda code must be written in a stateless manner. While the instance of a lambda
might be retained and re-used, you must never expect this.

Examples

Basic Gradle Java project

To deploy Java code to AWS Lambda, you have to create a distribution zip file that contains all
dependencies that are needed during the runtime. Example project in Gradle:

apply plugin: 'java'

repositories {
mavenCentral ()

}

dependencies {
compile 'com.amazonaws:aws—lambda-java-core:1.1.0"'

}

task buildZip (type: Zip) {
from compileJava
from processResources
into('lib') {
from configurations.runtime
}
}

build.dependsOn buildZip

Running gradie build Will create a zip file with all dependencies bundled with your code, ready to
deploy.

Basic Lambda Code in Java

A lambda needs a handler, which will serve as the entry point to your application. Every handler
needs to implement interface requestuandier<1, o> where 1 is the input type and o is the output

https://riptutorial.com/ 19

type. The input type is then passed to the handierequest () method and the method returns the
output type.

A simple example could look like this:

package com.example.lambda;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public class HelloNumber implements RequestHandler<Integer, String> {

@Override
public String handleRequest (Integer input, Context context) {
return "You sent " + input;

}

Basic Lambda code in JavaScript (NodeJs)

A lambda needs a handler, which will serve as the entry point to your application. In the simplest
case, you get your input from the context and pass the result using the caiivack () function:

exports.handler = (event, context, callback) => { callback(null, "You sent ' + event.number); };
Creating AWS Lambda using the web GUI (Java)

To create a Java lambda using the GUI, first make sure you have your distribution zip ready. You
will also need an AWS account that can create lambdas.

» Switch to the AWS Lambda, dismiss the introduction screen (or read the Get Started
documentation) and press the button create a Lambda Function.

» Select an appropriate blueprint. A blueprint is an example template that can help you create
your lambda. For now, start with @ B1ank Function.

» For now, don't worry about triggers and skip that screen.

» Name your function and upload the zip file.

» On the same configuration screen, type in your Handler name as fully qualified Java class
with package, optionally with the method that will handle the requests. If you have used the
Java interface from Basic Lambda Code example, the class name is enough.

* On the same screen, select create a new role from template(s) and name your role. The role
is used to give your lambda access to other AWS resources. In this case, leave it empty as
we don't need any other resources.

» Select the lowest available memory (128MB). The memory influnces cost as well. Save your
function.

Testing the Basic Lambda code

If you have successfully deployed the Lambda, you can also test it directly in the GUI. When you
click the blue Ttest button for the first time, it presents you with a creation of a new test event.

https://riptutorial.com/ 20

If you are testing the Java code from the Basic Lambda code in Java example, delete the whole
body and simply add a number 1.

If you are testing the Javascript code from the Basic Lambda code in Javascript (Node) example,
create a json that looks like this:

"number": "1"

Run the test. You should see the result:

"You sent 1"

Adding AWS API Gateway trigger

Probably the most common way to invoke a Lambda is to use API Gateway, which maps a REST
call to the lambda code. You can add multiple triggers to your Lambda during at any time,
including when creating a new lambda.

If you are familiar with APl Gateway, you can associate any method with a deployed lambda.
Simply create a new method with Integration type set to Lambda function and point to your
lambda. You can map both REST inputs to lambda inputs and outputs to REST outputs.

TODO: Decide whether to describe API Gateway here or reference another part of documentation.

Read AWS Lambda online: https://riptutorial.com/amazon-web-services/topic/8918/aws-lambda

https://riptutorial.com/ 21

https://riptutorial.com/amazon-web-services/topic/8918/aws-lambda

C_hapter 6. Deploy a docker container image
using ECS

Remarks

Before you can add ECS instances to a cluster you must first go to the EC2 Management Console
and create ecs-optimized instances with an IAM role that has the
AmazonEC2ContainerServiceforEC2Role p0|lcy attached.

1.
2.

Go to your EC2 Dashboard, and click the raunch 1nstance button.
Under community amrs, Search for ecs-optimized, and select the one that best fits your project
needs. Any will work. Click next.

. When you get to configure Instance Details, click on the create new 1aM role 1ink and create

a new role called ecstnstancerole.

. Attach the amazonEc2containerserviceforEC2Role pOllcy to that role.
. By default, your container instance launches into your defau1t cluster. If you want to launch

into your own cluster instead of the default, choose the advanced petaiis list and paste the
following script into the user data field, replacing your_ciuster_name With the name of your
cluster.

#!/bin/bash
echo ECS_CLUSTER=your_cluster_name >> /etc/ecs/ecs.config

6.

Then, finish configuring your ECS Instance.

NOTE: If you a creating a web server you will want to create a securitycroup to allow access to

port 80.
7. Create a Repository: aws ecr create-repository —--repository-name example-repository
8. Authenticate your Docker client to your registry: aws ecr get-login —-region us-east-1 | sh
9. Build your Docker image: docker build -t example-image .

10.

11.

12.

13.

Tag your image so you can push the image to this repository: docker tag example-

image:latest example-namespace/example—image:latest

Push this image to your newly created AWS repository: docker push example-

namespace/example-image:latest

Register an ECS Task Definition: aws ecs register-task-definition —-cli-input-json example-—
task.json

Run the task: aws ecs run-task --task-definition example-task

Examples

example-task.json

"family": "example-task",

https://riptutorial.com/ 22

https://console.aws.amazon.com/ec2/

"containerDefinitions": [

{

"environment": [],
"name": "example-container",
"image": "example-namespace/example-image:latest",
"cpu": 10,
"memory": 500,
"portMappings": [

{

"containerPort": 8080,

"hostPort": 80
}

1/
"entryPoint": [],
"essential": true

Deploy a sample application on AWS ECS service as a proof of concept

Follow following steps to try out a sample application on
AWS ECS service as a proof of concept.

1. Login to AWS management console and go to AWS service catalog - > Compute - > Ec2
2. Create a VM(EC2 instance) using amazon linux 64 bit OS, this we will use to configure
docker, git, AWS ECS agent tool and other tools. We will also use the same VM as a node in
ECS cluster to deploy container based applications. Follow below steps to create a VM.
a) Follow usual steps to create a EC2 instance, give special embhasic on subsequent steps
during EC2 instance creation.
b) Select a IAM role with least following permissions —
AmazonEC2ContainerServiceforEC2Role
c) Make sure java is installed on the VM

3. Installing docker [execute below commands]
first update the yum package repository

sudo yum update -y

now to install docker execute yum install

sudo yum install -y docker

4. Start docker service

https://riptutorial.com/ 23

https://i.stack.imgur.com/92vtR.png

sudo service docker start

5. Add the ec2-user to the docker group so you can execute Docker commands without using
sudo.

sudo usermod —-a -G docker ec2-user

6. Log out from the EC2 and log back in again to pick up the new docker group permissions.
7. Verify that the ec2-user can run Docker commands without sudo.

docker info

8. Installing Git

sudo yum install -y git

9. Clone the sample PHP application on the Ec2 instance from git. We will use this application

for our POC.

git clone https://github.com/awslabs/ecs—demo-php-simple-app

cd ecs-demo-php-simple-app
verify that Dockerfile exists by listing the directory contents
1s

10. Go to AWS service catalog -> Compute -> Ec2 Container Service
11. Click on Get Started

Get started

12. Click on cancel

13. Click repositories from Repositories menu in left

| Clusters
Task Definitions

Repositories

14. Click on Get Started

https://riptutorial.com/

24

https://i.stack.imgur.com/O4y5J.png
https://i.stack.imgur.com/4hW1c.png
https://i.stack.imgur.com/dfbIw.png

Welcome to Amazon EC2 Container Registry

ntaimer Registry (ECR) is a fully-managed Docker container registry that makes] easy

15. Enter repository name and click next

Rrquires anca m
16. Configure Ec2 tools

aws configure

provide AWS Access Key ID, Secret Access key, default region name as per your account

17. Build, tag, and push Docker image
a) Retrieve the docker login command that you can use to authenticate your Docker client to
your registry:

aws ecr get-login --region us-east-1

b) Run the command return as output of previous step

18. Build the Docker image from your Dockerfile. (Recall Step 9, where you downloaded a
sample docker app)
a)

docker build -t amazon-ecs—-sample .

(Note the “.” stands for current directory)
b) Run docker images to verify that the image was created correctly and that the image name
contains a repository that you can push your changes to the docker image

docker images

rimple—-app] ¥ docker im

ITMAGE TID

9431571817d8

¢) Run the newly built image. The -p 80:80 option maps the exposed port 80 on the container to

https://riptutorial.com/ 25

https://i.stack.imgur.com/MQ6Kx.png
https://i.stack.imgur.com/LCdU5.png
https://i.stack.imgur.com/nL6rv.png

port 80 on the host system(Ec2 instance in this case).

docker run -p 80:80 amazon-ecs-sample

Ignore the warning “apache?2: Could not reliably determine the server's fully qualified domain
name, using 172.17.0.2 for ServerName”

19. Try to access the sample application webpage on browser, make sure port 80 is open in
security groups associated with the instance

http://<ec2-instance-dns—-address>

Simple PHP App

Congratulations

na PHP ven

20. Press ctrl + ¢ key, this will stop the docker image. The sample application should not be
accessible.

21. Now after successfully verifying our sample docker application, we will try to configure a
cluster to run the sample application automatically. Also, for the demo purpose we will try to
use the existing ec2 instance as a node in the cluster. This can be achieved by installing a
agent program on the ec2 instance.

22. Installing Amazon ECS Container Agent on the ec2 instance
a)

sudo yum install -y ecs-init
b) Restart the docker daemon

sudo service docker restart

c) Start the ecs-init upstart job

sudo start ecs

d) (Optional) You can verify that the agent is running and see some information on your new
container instance with the agent introspection APl. Make sure the port 51678 is open in security

group.

curl http://localhost:51678/vl/metadata

23. Go to AWS service catalog -> Compute -> Ec2 Container Service -> Cluster and verify a
default cluster is created

https://riptutorial.com/ 26

https://i.stack.imgur.com/zk5Ra.png

default x

Registerad Container Instances ;1
Pending tasks 0
Running tasks |0

24. Now we proceed with creating a task group and adding our docker image as task to run on
the cluster
a) Examine the simple-app-task-def.json file in the ecs-demo-php-simple-app folder.
b) Edit the simple-app-task-def.json and redue the momeory, so that it can run on free tier
eligible instance(i assume one is using free tier eligible ec2 instance for this POC, otherwise
no need to reduce the memory limit)
¢) Update memory=250 in all the occurrence on the simple-app-task-def.json file
d) Register a task definition with the simple-app-task-def.json file.

aws ecs register-task-definition --cli-input-json file://simple—-app-task-def. json

e) Go to task definition in ec2 container service page, you Il find the registered task definition

f) Use the following AWS CLI command to run a task with the console-sample-app task definition.

aws ecs run-task --task-definition console-sample-app

g) Open the sample web app in browser, it should be accessible(refer step 19)
Thanks for reading, do share your comments and queries for follow up discussion.

Read Deploy a docker container image using ECS online: https://riptutorial.com/amazon-web-
services/topic/7711/deploy-a-docker-container-image-using-ecs

https://riptutorial.com/ 27

https://i.stack.imgur.com/lTp8x.png
https://riptutorial.com/amazon-web-services/topic/7711/deploy-a-docker-container-image-using-ecs
https://riptutorial.com/amazon-web-services/topic/7711/deploy-a-docker-container-image-using-ecs

C_hapter /. Elastic Beanstalk

Remarks

Current Limitations (As of 2016-10-03)

» Environment Tags cannot be changed once the Environment is created, so choose wisely.
» Autoscaling in Elastic Beanstalk is limited to Simple and Scheduled, so if you wish to use
Step-Scaling, re-consider if Elastic Beanstalk is a good fit.

Automation with Jenkins

There is a great AWSEB Deployment Plugin for Jenkins that will plug-n-play for deployment to
Elastic Beanstalk (blue/green deployments with automatic idle termination is just a checkbox
away).

Examples

Introduction to Elastic Beanstalk

Elastic Beanstalk (EB) is essentially a hybrid between Golden AMIs and CloudFormation, while
vastly simplifying the learning curve of Puppet or Chef.

An Elastic Beanstalk deployment is broken down into two components: Application and
Environment.

Application

Consider this your top-level grouping, your application itself. For example, a single application
("MyWebApp") may have multiple Environments ("Production” and "Staging").

Environment

Each environment will consist of a complete architecture deployment (EC2 Instances, Elastic Load
Balancer, Autoscaling Group, and Cloudwatch Alarms). The entire environment configuration is
setup and maintained for your automatically.

Deploying an Application

Your application deployment is as simple as uploading a zip file containing your code. Each zip file
(called Application Version) you upload is associated to an Application, so you can upload once
and deploy to multiple Environments.

Customizing the Environment

https://riptutorial.com/ 28

https://wiki.jenkins-ci.org/display/JENKINS/AWSEB+Deployment+Plugin
https://aws.amazon.com/cloudformation/
https://puppet.com/
https://www.chef.io/chef/
https://aws.amazon.com/ec2/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/cloudwatch/

By default, Elastic Beanstalk will deploy "stock™ Amazon-Maintained AMIs. For most applications,
this is sufficient, but there may be environmental tweaks that you want to make (eg. changing the
timezone, adding packages/dependencies not present in the code, etc).

There are two ways of customizing the EB AMI that is used: ebextensions or a custom AMI.

ebextensions - A folder, quite literally called '.ebextensions’, that can optionally be placed at the
root of your Application Version (the zip you uploaded containing your code). Within the
ebextensions folder, you can place YAML files defining any custom scripts, dependencies, etc that
you want executed server-side during the deployment process. There are a number of hooking
points available, for the latest information, please check the relevant documentation:
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/ebextensions.html

Gotchas / Things to be aware of

VPC Checkbox - When creating an environment, the option is discretely made available as to
whether or not the environment should be created/placed within a VPC. If you need your
application to communicate with existing resources that you have created, CHECK THIS BOX.
Otherwise, Elastic Beanstalk will create a new security group that is isolated from the rest of your
VPC. While you will be able to manually adjust the security group settings after creation, trying to
essentially 'add' it into a VPC will cause a variety of problems later on.

RDS - When creating an environment, you have the option to create an RDS instance as part of
the environment. It is not recommended to use this, as anytime you need to 'rebuild’ the
environment (eg. blue/green deployments, troubleshooting) it will destroy and recreate the RDS
instance (along with all data).

Blue/Green Deployments on Elastic Beanstalk

Blue/Green deployment is a release technique that reduces downtime and risk by running two
identical production environments (one called "Blue”, the other called "Green"). At any one time,
only one of the environments is serving live traffic, while the other is sitting idle.

When deploying a new version, the code is deployed to the idle environment (eg. Green) and after
confirming a successful deployment, live traffic is switched (eg. Green has new code, traffic from
Blue is now routed to Green). The next code deploy will occur on the new idle environment
(following the example, that would now be Blue).

Example/Visual Aid:

https://riptutorial.com/ 29

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/ebextensions.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/ebextensions.html

EC2 Security Group EC2 Security Group EC2 Security Group

_..i

. Launch Gonfiguration J

\ Launch Configuration J

\ Launch Configuration

N, Ao Scaling Grovp _- N, fuloScalng Growp _- N futo Scaling Gro

Set A is live SetB Set A

image source: https://cloudnative.io/statics/blog/aws-blue-green-deployment.png

When using Elastic Beanstalk (EB), you can easily create multiple environments that are exact
clones of one another for code deployment. After confirming that the new environment is ready to
go live, it is as simple as using the "Swap URLS" function in EB to swap environments.

Step-by-step instructions: http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-
features.CNAMESwap.html

Read Elastic Beanstalk online: https://riptutorial.com/amazon-web-services/topic/7207/elastic-
beanstalk

https://riptutorial.com/ 30

http://i.stack.imgur.com/OLqhQ.png
https://cloudnative.io/statics/blog/aws-blue-green-deployment.png
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.CNAMESwap.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.CNAMESwap.html
https://riptutorial.com/amazon-web-services/topic/7207/elastic-beanstalk
https://riptutorial.com/amazon-web-services/topic/7207/elastic-beanstalk

C_hapter 8: Root Class

Examples
Amazon api root class is as following.

public class AmazonRootobject

{

public Itemsearchresponse ItemSearchResponse { get; set; }

public class Itemsearchresponse

{
public string xmlns { get; set; }
public Operationrequest OperationRequest { get; set; }
public Items Items { get; set; }

public class Operationrequest
{
public Httpheaders HTTPHeaders { get; set; }
public string RequestId { get; set; }
public Arguments Arguments { get; set; }
public string RequestProcessingTime { get; set; }

public class Httpheaders

{
public Header Header { get; set; }

public class Header

{
public string Name { get; set; }
public string Value { get; set; }

public class Arguments

{
public Argument[] Argument { get; set; }

public class Argument

{
public string Name { get; set; }
public object Value { get; set; }

public class Items
{
public Request Request { get; set; }
public string TotalResults { get; set; }
public string TotalPages { get; set; }
public string MoreSearchResultsUrl { get; set; }
public Item[] Item { get; set; }

https://riptutorial.com/

public class Request

{
public string IsValid { get; set; }

public Itemsearchrequest ItemSearchRequest { get;

public class Itemsearchrequest

{
public string Keywords { get; set;

}

public string[] ResponseGroup { get; set

public string SearchIndex { get; set; }

public string Sort { get; set; }

public class Item

{
public string ASIN { get; set; }

public string ParentASIN { get; set; }

public string DetailPageURL { get;

set;

public Itemlinks ItemLinks { get; set; }

public Smallimage SmallImage { get;

public Mediumimage MediumImage { get;

public Largeimage Largelmage { get;

set;

set;

public Imagesets ImageSets { get; set; }
public Itemattributes ItemAttributes { get;

public OfferSummary OfferSummary {
public Offers Offers { get; set; }

public Variationsummary VariationSummary { get;

public class Variationsummary

{
public Highestprice HighestPrice {

public Lowestprice LowestPrice { get;
public Highestsaleprice HighestSalePrice { get;

get;

get;

r

}

}

set;

}

}

}

set;

set;

set;

}

set; }

}

}

public Lowestsaleprice LowestSalePrice { get;

public class Highestprice

{
public string Amount { get; set; }

public string CurrencyCode { get; set; }

public string FormattedPrice { get;

public class Lowestprice

{
public string Amount { get; set; }

set;

public string CurrencyCode { get; set; }

public string FormattedPrice { get;

public class Highestsaleprice

{
public string Amount { get; set; }

set;

public string CurrencyCode { get; set; }

public string FormattedPrice { get;

public class Lowestsaleprice

set;

}

set;

set;

set;

set;

}

}

}

}

https://riptutorial.com/

32

public string Amount { get;
public string CurrencyCode {

set;
get;

}

set; 1}

public string FormattedPrice { get; set;

public class Itemlinks

{
public Itemlink[] ItemLink {

public class Itemlink

{

public string Description {

get;

get;

public string URL { get; set; }

public class Smallimage

{

public string URL { get; set; }

public Height Height { get;

set;

public Width Width { get; set; }

public class Height
{

public string Units { get; set; }

public string text { get; set; }

public class Width
{

public string Units { get; set; }

public string text { get; set; }

public class Mediumimage

{

public string URL { get; set; }

public Heightl Height { get;

set;

public Widthl Width { get; set; }

public class Heightl
{

public string Units { get; set; }

public string text { get; set; }

public class Widthl
{

public string Units { get; set; }

public string text { get; set; }

public class Largeimage

{

public string URL { get; set; }

public Height2 Height { get;

set;

public Width2 Width { get; set; }

set; 1}

set; 1}

}

}

}

}

https://riptutorial.com/

33

public class Height2

{

public string Units { get; set; }

public string text { get; set; }

public class Width2

{

public string Units { get; set; }

public string text { get; set; }

public class Imagesets

{

public object ImageSet { get; set; }

public class Itemattributes

{
public
public
public
public
public
public
public
public

string
string
string
string
string
string
string

Binding { get; set; }
Brand { get; set; }
Color { get; set; }
Model { get; set; }
Manufacturer { get; set;
ProductGroup { get; set;
Title { get; set; }

ListPrice ListPrice { get; set;

public class ListPrice

{

public string Amount { get; set; }

public string CurrencyCode { get; set;

public string FormattedPrice { get;

public class OfferSummary

{
public
public
public
public
public
public
public

Lowestnewprice LowestNewPrice { get;

set;

}

}

set; 1}

Lowestusedprice LowestUsedPrice { get; set;

string
string
string
string

Lowestrefurbishedprice LowestRefurbishedPrice { get;

TotalNew { get; set; }
TotalUsed { get; set; }
TotalCollectible { get;
TotalRefurbished { get;

public class Lowestnewprice

{

public string Amount { get; set; }

public string CurrencyCode { get; set;

public string FormattedPrice { get;

public class Lowestusedprice

{

public string Amount { get; set; }

public string CurrencyCode { get; set;

public string FormattedPrice { get;

set;

set;

set;
set;

}

}

}

}

}
}

}

set;

}

https://riptutorial.com/

34

public class Lowestrefurbishedprice

{
public string Amount { get; set; }
public string CurrencyCode { get; set; }
public string FormattedPrice { get; set; }

public class Offers

{
public string TotalOffers { get; set; }
public string TotalOfferPages { get; set; }
public string MoreOffersUrl { get; set; }
public Offer Offer { get; set; }

public class Offer

{
public Merchant Merchant { get; set; }
public Offerattributes OfferAttributes { get; set; }
public Offerlisting OfferListing { get; set; }

public class Merchant

{
public string Name { get; set; }

public class Offerattributes

{
public string Condition { get; set; }

public class Offerlisting
{
public string OfferListingId { get; set; }
public string PricePerUnit { get; set; }
public Price Price { get; set; }
public string Availability { get; set; }
public Availabilityattributes AvailabilityAttributes { get; set; }
public string IsEligibleForSuperSaverShipping { get; set; }
public string IsEligibleForPrime { get; set; }
public Saleprice SalePrice { get; set; }
public Amountsaved AmountSaved { get; set; }
public string PercentageSaved { get; set; }

public class Price

{
public string Amount { get; set; }
public string CurrencyCode { get; set; }
public string FormattedPrice { get; set; }

public class Availabilityattributes

{
public string AvailabilityType { get; set; }
public string MinimumHours { get; set; }
public string MaximumHours { get; set; }

https://riptutorial.com/

public class Saleprice

{
public string Amount { get; set; }
public string CurrencyCode { get; set;

}

public string FormattedPrice { get; set;

public class Amountsaved

{
public string Amount { get; set; }
public string CurrencyCode { get; set;

}

public string FormattedPrice { get; set;

Business class

using System;

using System.Collections.Generic;

using System.Ling;

using System.Reflection;

using System.Text;

using System.Threading.Tasks;

using System.Xml;

using System.Xml.Ling;

using ApplicationDataServices.SBEntityBox;

namespace ApplicationManagementLayer.Affiliate
{

public class Amazon

{
private int ItemPage { get; set; }
public int TotalNumberOfItem { get; set

public Amazon ()

{
ItemPage = 1;
TotalNumberOfItem = 0;

string XMLURL = string.Empty;

’

public async Task<AmazonRootobject> getProductsByKeywords (string g, Dictionary<string,

string> CategoryNames, int ItemPage, string categorynamebyid)

{
try
{

AWSSignedRequestHelper helper = new AWSSignedRequestHelper ("paral", "para2",

"webservices.amazon.in", "para3");

IDictionary<string, string> rl = new Dictionary<string, String>();
rl["Service"] = "AWSECommerceService";

rl["Operation"] = "ItemSearch";

if (CategoryNames != null && CategoryNames.Any () && CategoryNames.Where (o =>

o.Key.Equals ("AmazonCategoryName")) .Any ())

https://riptutorial.com/

36

rl["SearchIndex"] = CategoryNames.Where (o =>
o.Key.Equals ("AmazonCategoryName")) .First () .Value;
else
rl["SearchIndex"] = "All";

if (!'rl["SearchIndex"].Equals("All") && CategoryNames != null && CategoryNames.Any ()
&& CategoryNames.Where (o => o.Key.Equals ("AmazonReferenceCategoryId")) .Any())
rl["BrowseNode"] = CategoryNames.Where (o =>
o.Key.Equals ("AmazonReferenceCategoryId")) .First () .Value;

if (!string.IsNullOrEmpty (q))
rl["Keywords"] = qg;
else if (!string.IsNullOrEmpty (categorynamebyid))
rl["Keywords"] = categorynamebyid;
else if (CategoryNames != null && CategoryNames.Any () && CategoryNames.Where (o =>
o.Key.Equals ("AmazonCategoryName")) .Any ())
rl["Keywords"] = CategoryNames.Where (o =>
o.Key.Equals ("AmazonCategoryName")) .First () .Value;
else
return null;

rl["ResponseGroup"] = "Images, ItemAttributes,OfferFull,Offers,Variations";
rl["Version"] = "2013-08-01";

rl["ItemPage"] = ItemPage.ToString();

//rl["Sort"] = "salesrank";

string strRequestUrl = helper.Sign(rl);

string output = null;
using (System.Net.Http.HttpClient wc = new System.Net.Http.HttpClient ())
{
var request = new System.Net.Http.HttpRequestMessage ()
{
RequestUri = new Uri (strRequestUrl),
Method = System.Net.Http.HttpMethod.Get,

}i

/*var task =*/

await wc.SendAsync (request)
.ContinueWith ((taskwithmsg) =>
{

var response = taskwithmsg.Result;

var JjsonTask = response.Content.ReadAsStringAsync () ;
jsonTask.Wait () ;
output = jsonTask.Result;
1)
//task.Wait ();

XmlDocument doc = new XmlDocument () ;
doc.LoadXml (output) ;
string outputJdson = XmlToJSON (doc) ;

var pro = new
System.Web.Script.Serialization.JavaScriptSerializer () .Deserialize<AmazonRootobject> (outputdson) ;

TotalNumberOfItem = !string.IsNullOrEmpty (pro.ItemSearchResponse.Items.TotalResults) *?
Convert.ToInt32 (pro.ItemSearchResponse.Items.TotalResults) : O;

return pro;

https://riptutorial.com/ 37

//return "";

}
catch
{

return null;

}

http://stackoverflow.com/documentation/amazon-web—services/drafts/87373#

Read Root Class online: https://riptutorial.com/amazon-web-services/topic/7357/root-class

https://riptutorial.com/

38

https://riptutorial.com/amazon-web-services/topic/7357/root-class

Credits

Chapters

Getting started with
1 amazon-web-
services

2 Amazon Cognito
3 Amazon DynamoDB

AWS
CloudFormation

5 AWS Lambda

Deploy a docker
6 container image
using ECS

7 Elastic Beanstalk

8 Root Class

Contributors

Community, Cyril Duchon-Doris, Karan Shah, Lynn Langit

Jeet
swapnil kadu

Hardeep Singh, Naveen Vijay

jarmod, sm4

mrded, Satish

Lorenzo Aiello

vicky

https://riptutorial.com/

39

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2832282/cyril-duchon-doris
https://riptutorial.com/contributor/1542307/karan-shah
https://riptutorial.com/contributor/1335105/lynn-langit
https://riptutorial.com/contributor/5368667/jeet
https://riptutorial.com/contributor/3069818/swapnil-kadu
https://riptutorial.com/contributor/5599112/hardeep-singh
https://riptutorial.com/contributor/649408/naveen-vijay
https://riptutorial.com/contributor/271415/jarmod
https://riptutorial.com/contributor/1667977/sm4
https://riptutorial.com/contributor/1264409/mrded
https://riptutorial.com/contributor/3192768/satish
https://riptutorial.com/contributor/2518601/lorenzo-aiello
https://riptutorial.com/contributor/1805776/vicky

	About
	Chapter 1: Getting started with amazon-web-services
	Remarks
	Versions
	Examples
	Before it is too late

	Chapter 2: Amazon Cognito
	Examples
	User Identity management using Amazon Cognito

	Chapter 3: Amazon DynamoDB
	Examples
	DynamoDB basic Crud Operation using NodeJS

	Chapter 4: AWS CloudFormation
	Examples
	CloudFormation sample script to create an EC2 instance along with a Security Group to associate with.
	AWS CloudFormer in VPC

	Chapter 5: AWS Lambda
	Introduction
	Remarks
	Examples
	Basic Gradle Java project
	Basic Lambda Code in Java
	Basic Lambda code in JavaScript (NodeJs)
	Creating AWS Lambda using the web GUI (Java)
	Testing the Basic Lambda code
	Adding AWS API Gateway trigger

	Chapter 6: Deploy a docker container image using ECS
	Remarks
	Examples
	example-task.json
	Deploy a sample application on AWS ECS service as a proof of concept

	Follow following steps to try out a sample application on AWS ECS service as a proof of concept.

	Chapter 7: Elastic Beanstalk
	Remarks
	Examples
	Introduction to Elastic Beanstalk
	Blue/Green Deployments on Elastic Beanstalk

	Chapter 8: Root Class
	Examples
	Amazon api root class is as following.
	Business class

	Credits

