
android-espresso

#android-

espresso

Table of Contents

About 1

Chapter 1: Getting started with android-espresso 2

Remarks 2

Examples 2

Espresso setup instructions 2

Checking an Options Menu items (using Spoon to taake screenshots) 5

View test 5

Find some view by ID 5

Find view by the text 5

Hello World Espresso Example 6

Chapter 2: How to Create Custom Matchers? 9

Examples 9

Example of Custom matcher for testing TextView error message 9

Credits 10

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: android-espresso

It is an unofficial and free android-espresso ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official android-
espresso.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/android-espresso
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with android-
espresso

Remarks

This section provides an overview of what android-espresso is, and why a developer might want to
use it.

It should also mention any large subjects within android-espresso, and link out to the related
topics. Since the Documentation for android-espresso is new, you may need to create initial
versions of those related topics.

Examples

Espresso setup instructions

Setup your test environment•
Download Espresso•
Set the instrumentation runner•
Example build.gradle file•
Analytics•
Add the first test•
Running tests This guide covers installing Espresso using the SDK Manager and building it
using Gradle. Android Studio is recommended.

•

Setup your test environment

To avoid flakiness, we highly recommend that you turn off system animations on the virtual or
physical device(s) used for testing.

On your device, under Settings->Developer options disable the following 3 settings:

Window animation scale•
Transition animation scale•
Animator duration scale•

Download Espresso

Make sure you have installed the latest Android Support Repository under Extras (see
instructions).

•

Open your app’s build.gradle file. This is usually not the top-level build.gradle file but
app/build.gradle.

•

Add the following lines inside dependencies:•

https://riptutorial.com/ 2

androidTestCompile 'com.android.support.test.espresso:espresso-core:2.2.2'
androidTestCompile 'com.android.support.test:runner:0.5'

See the downloads section for more artifacts (espresso-contrib, espresso-web, etc.)•

Set the instrumentation runner•

Add to the same build.gradle file the following line in android.defaultConfig:
testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner" Example build.gradle
file

apply plugin: 'com.android.application'

 android {
 compileSdkVersion 22
 buildToolsVersion "22"

 defaultConfig {
 applicationId "com.my.awesome.app"
 minSdkVersion 10
 targetSdkVersion 22.0.1
 versionCode 1
 versionName "1.0"

 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
 }
 }

dependencies {
 // App's dependencies, including test
 compile 'com.android.support:support-annotations:22.2.0'

 // Testing-only dependencies
 androidTestCompile 'com.android.support.test:runner:0.5'
 androidTestCompile 'com.android.support.test.espresso:espresso-core:2.2.2'
}

Analytics

In order to make sure we are on the right track with each new release, the test runner collects
analytics. More specifically, it uploads a hash of the package name of the application under test for
each invocation. This allows us to measure both the count of unique packages using Espresso as
well as the volume of usage.

If you do not wish to upload this data, you can opt out by passing the following argument to the
test runner: disableAnalytics "true" (see how to pass custom arguments).

Add the first test

Android Studio creates tests by default in src/androidTest/java/com.example.package/

Example JUnit4 test using Rules:

@RunWith(AndroidJUnit4.class)

https://riptutorial.com/ 3

@LargeTest
public class HelloWorldEspressoTest {

 @Rule
 public ActivityTestRule<MainActivity> mActivityRule = new
ActivityTestRule(MainActivity.class);

 @Test
 public void listGoesOverTheFold() {
 onView(withText("Hello world!")).check(matches(isDisplayed()));
 }
}

Running tests

In Android Studio

Create a test configuration

In Android Studio:

Open Run menu -> Edit Configurations•

Add a new Android Tests configuration•

Choose a module•

Add a specific instrumentation runner:

android.support.test.runner.AndroidJUnitRunner

•

Run the newly created configuration.

From command-line via Gradle

Execute

./gradlew connectedAndroidTest

Espresso has basically three components:

ViewMatchers - allows to find view in the current view hierarchy1.

ViewActions - allows to perform actions on the views2.

ViewAssertions - allows to assert state of a view3.

Base Espresso Test

onView(ViewMatcher) -- 1
 .perform(ViewAction) -- 2
 .check(ViewAssertion); -- 3

https://riptutorial.com/ 4

Finds the view1.
Performs an action on the view2.
Validates a assertioin3.

Checking an Options Menu items (using Spoon to taake screenshots)

/**
 * @author piotrek1543
 *
 * This example provides a specific UI testing problem and how it is already solved
 * with Google's Espresso. Notice that I used also Spoon framework, as Espresso
 * lacks of taking screenshots functionality.
 */

@RunWith(AndroidJUnit4.class)
public class MainActivityAndroidTest {
 @Rule
 public ActivityTestRule<MainActivity> mRule = new ActivityTestRule<>(MainActivity.class);

 @Test
 public void checkIfSettingsMenuItemsAreVisible() throws InterruptedException {
 //open OptionsMenu to see available items
 openActionBarOverflowOrOptionsMenu(mRule.getActivity());
 //create a screenshot with 'options_menu' TAG
 Spoon.screenshot(mRule.getActivity(), "options_menu");
 //check if Settings item is Visible
 onView(withText(R.string.action_settings)).check(matches(isDisplayed()));
 //check if `Sort` item is Visible
 onView(withText(R.string.action_sort)).check(matches(isDisplayed()));
 //perform click on `Sort` OptionsMenu item
 onView(withText(R.string.action_sort)).perform(click());
 //create a screenshot with 'options_menu_sort' TAG
 Spoon.screenshot(mRule.getActivity(), "options_menu_sort");
 //check if `Sort -> By Value id` item is Visible
 onView(withText(R.string.menu_sort_length)).check(matches(isDisplayed()));
 //check if `Sort -> By Joke length` item is Visible
 onView(withText(R.string.menu_sort_a_z)).check(matches(isDisplayed()));
 }
}

View test

onView(withId(R.id.greet_button)) // withId(R.id.my_view) is a ViewMatcher
.perform(click()) // click() is a ViewAction
.check(matches(not(isEnabled())); // matches(isEnabled()) is a ViewAssertion

Find some view by ID

onView(withId(R.id.pay))

Find view by the text

onView(withText("Pay"))

https://riptutorial.com/ 5

onView(withText(R.string.pay))

Hello World Espresso Example

This is a tutorial to create a hello world example: Used for this example: Android Studio 2.3;

To Start use Android Studio to create a new Project with an empty activity. Then we add some
simple functionality to the App that we can test: We add a button which when clicks displays "Hello
World" in a textview.

The activity code looks like this:

package com.example.testing.helloworld;

import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.view.View;
import android.widget.TextView;

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 final TextView textView = (TextView) findViewById(R.id.textView);

 findViewById(R.id.button).setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 textView.setText("Hello World!");
 }
 });
 }
}

And the activity_main layout for this activity looks like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <TextView
 android:id="@+id/textView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="" />

 <Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Say Hello" />

https://riptutorial.com/ 6

</LinearLayout>

Now we want to test the behaviour of this new created app by using espresso. Generally the code
for your app itself is within the main package, Unit Tests are inside test and the espresso
instrumentation tests are inside the androidTest package. If you create a new empty activity project
with Android Studio, it should already have created those packages and classes and it should look
like this:

To start with espresso we have to make sure that the espresso-core dependency is included in the
build.gradle file (note that it is not annotated with the compile keyword but instead with
androidTestCompile). The dependencies in the build.gradle file created by Android studio should
look like this:

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 androidTestCompile('com.android.support.test.espresso:espresso-core:2.2.2', {
 exclude group: 'com.android.support', module: 'support-annotations'
 })
 compile 'com.android.support:appcompat-v7:25.2.0'
 compile 'com.android.support.constraint:constraint-layout:1.0.2'
 testCompile 'junit:junit:4.12'
}

Now that all is set up we can start with the actual test: Open the ExampleInstrumentationTest file
and you see that there is already one generated useAppContext test inside. We will change this test
class and create a test to check our app behaviour:

@RunWith(AndroidJUnit4.class)
public class ExampleInstrumentedTest {

 @Rule
 public ActivityTestRule<MainActivity> mActivityRule = new ActivityTestRule<>(
 MainActivity.class, false, true);

 @Test
 public void checkHelloWorld() throws Exception {
 onView(withId(R.id.textView)).check(matches(withText("")));

https://riptutorial.com/ 7

https://i.stack.imgur.com/KcjES.png

 onView(withId(R.id.button)).perform(click());
 onView(withId(R.id.textView)).check(matches(withText("Hello World!")));
 }
}

Start the test by running the ExampleInstrumentedTest class. This test then does three things:

It checks if the textview contains an empty string ("")1.
It clicks the button in our layout2.
It again checks the text of the textview if it contains "Hello World!"3.

The ActivityTestRule at the top defines which activity is tested and launches it at the beginning of
the test. (You can also turn of the automatic launch of an activity and instead launch it inside each
test manually)

The test rules are quite simple:

onView(withId(R.id.textView)) looks up a view inside the current screen by the ID of the view
inside our activity_main layout file.

•

.check(matches(withText(""))); then performs a test case on that view.•

.perform(click()) performs an action on a view: This actions could be clicks, long clicks or
swipes or some more.

•

This was a tutorial to start with android espresso Instrumentation tests, I hope it has given you
some insights!

Read Getting started with android-espresso online: https://riptutorial.com/android-
espresso/topic/3651/getting-started-with-android-espresso

https://riptutorial.com/ 8

https://developer.android.com/reference/android/support/test/rule/ActivityTestRule.html
https://riptutorial.com/android-espresso/topic/3651/getting-started-with-android-espresso
https://riptutorial.com/android-espresso/topic/3651/getting-started-with-android-espresso

Chapter 2: How to Create Custom Matchers?

Examples

Example of Custom matcher for testing TextView error message

Create a class name ErrorMatcher inside your test package with below code:1.

public class ErrorMatcher {

 @NonNull
 public static Matcher<View> withError(final String expectedErrorText) {
 Checks.checkNotNull(expectedErrorText);
 return new BoundedMatcher<View, TextView>(TextView.class) {
 @Override
 public void describeTo(final Description description) {
 description.appendText("error text: ");
 stringMatcher.describeTo(description);
 }

 @Override
 public boolean matchesSafely(final TextView textView) {
 return expectedErrorText.equals(textView.getError().toString());
 }
 };
 }
}

Matching logic is to find the TextView element, which error message text is equal to expected error
text value, going through the subset of TextView fields present in the layout hierarchy. describeTo
method is used for debug output.

Then you can use your custom matcher in the test case as shown below:2.

@Test
public void verifiesSignInErrorIsShown() {
 onView(withId(R.id.email_sign_in_button)).perform(click());
 onView(ErrorMatcher.withError("Your error text")).check(matches(isDisplayed()));
}

Read How to Create Custom Matchers? online: https://riptutorial.com/android-
espresso/topic/6748/how-to-create-custom-matchers-

https://riptutorial.com/ 9

https://riptutorial.com/android-espresso/topic/6748/how-to-create-custom-matchers-
https://riptutorial.com/android-espresso/topic/6748/how-to-create-custom-matchers-

Credits

S.
No

Chapters Contributors

1
Getting started with
android-espresso

Ahmad Aghazadeh, anuja jain, Community, piotrek1543,
stamanuel

2
How to Create
Custom Matchers?

anuja jain, denys, piotrek1543

https://riptutorial.com/ 10

https://riptutorial.com/contributor/1770868/ahmad-aghazadeh
https://riptutorial.com/contributor/5820716/anuja-jain
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/4730812/piotrek1543
https://riptutorial.com/contributor/2567799/stamanuel
https://riptutorial.com/contributor/5820716/anuja-jain
https://riptutorial.com/contributor/2980933/denys
https://riptutorial.com/contributor/4730812/piotrek1543

	About
	Chapter 1: Getting started with android-espresso
	Remarks
	Examples
	Espresso setup instructions
	Checking an Options Menu items (using Spoon to taake screenshots)
	View test
	Find some view by ID
	Find view by the text
	Hello World Espresso Example

	Chapter 2: How to Create Custom Matchers?
	Examples
	Example of Custom matcher for testing TextView error message

	Credits

