
android-gradle

#android-

gradle

Table of Contents

About 1

Chapter 1: Getting started with android-gradle 2

Remarks 2

What is android-gradle 2

Main features 2

Overview 2

Project Structure 2

android-gradle Plugin 3

Modules 4

Basic Android application Configuration 4

The Gradle Wrapper 5

External Links: 6

Examples 6

Initial Setup with Android Studio 6

Android Plugin for Gradle 6

Gradle wrapper 7

Chapter 2: Configure Build Types 8

Parameters 8

Remarks 9

Official Documentation: 9

Examples 9

How to configure build types in the build.gradle 9

Chapter 3: Configure Product Flavors 11

Remarks 11

Examples 11

How to configure the build.gradle file 11

Flavor Constants and Resources in build.gradle 11

Using Flavor Dimension 12

Add dependencies for flavors 13

Develop and Production Product Flavors Example 14

Chapter 4: Configure Signing Settings 15

Examples 15

Configure the build.gradle with signing configuration 15

Define the signing configuration in an external file 15

Define the signing configuration setting environment variables 16

Define signing configuration in a separate gradle file 17

Chapter 5: Configure Your Build with Gradle 18

Remarks 18

Official Documentation 18

Examples 18

Why are there two build.gradle files in an Android Studio project? 18

Top Level File example 19

The module file example 20

Use archivesBaseName to change the apk name 22

Chapter 6: Declare Dependencies 23

Examples 23

How to add dependencies 23

How to add a repository 23

Module dependencies 23

Local binary dependencies 24

Remote binary dependencies 24

Declare Dependencies for Configurations 25

Declare dependencies for flavors 25

Declare dependencies for build types 25

Chapter 7: Gradle - Information of Tags 27

Examples 27

Gradle - Information of Tags 27

Chapter 8: How to include aar files in a project in Android 29

Examples 29

How to add .aar dependency in a module? 29

The aar file doesn't include the transitive dependencies 29

Chapter 9: Shrink Code and Resources 30

Remarks 30

Examples 30

Shrink the code with ProGuard 30

Shrink the resources 30

Remove unused alternative resources 31

Credits 32

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: android-gradle

It is an unofficial and free android-gradle ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official android-gradle.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/android-gradle
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with android-
gradle

Remarks

What is android-gradle

android-gradle is a gradle plugin officially maintained by Google Tools developer team and is the
official build tool since the announcement in May 16, 2013 at the Google I/O.

Learn the basic by reading Configure your build with Gradle.

Main features

The main features of the Android Gradle Plugin are:

Dependency management•
Modular Projects with libraries•
Variants through Flavors and Build Types•
IDE independent builds•

Overview

Download and install Android Studio1.
open it and create a new project with all default settings2.

In theory you can install gradle directly, build the configuration files and directory
structure by yourself. In practice no-one does that.

Project Structure

A project folder structure typically look like this:

https://riptutorial.com/ 2

http://www.riptutorial.com/gradle/topic/1900/gradle-plugins
http://www.riptutorial.com/gradle/topic/1900/gradle-plugins
http://www.riptutorial.com/android-gradle/topic/2161/configure-your-build-with-gradle
http://www.riptutorial.com/android-gradle/topic/3289/declare-dependencies
http://www.riptutorial.com/android-gradle/topic/2929/configure-product-flavors
http://www.riptutorial.com/android-gradle/topic/3281/configure-build-types
https://developer.android.com/studio/index.html

android-gradle Plugin

A gradle project is usually divided in sub-project or modules each containing a dedicated build
script.

The plugin dependency is usually declared in the main / top level build.gradle file:

buildscript {
 // maven repositories for dependencies
 repositories {
 jcenter()
 }
 // build script dependencies
 dependencies {
 // this is the dependency to the android build tools
 classpath 'com.android.tools.build:gradle:2.1.2'
 }
}

https://riptutorial.com/ 3

http://i.stack.imgur.com/9WQxyl.png

allprojects {
 // maven repositories for all sub-project / modules
 repositories {
 jcenter()
 }
}

In this example the android-gradle plugin version is 2.1.2 as you can see from this line:

classpath 'com.android.tools.build:gradle:2.1.2'

Modules

The Project is divided into modules each containing a dedicated build.gradle script. The
settings.gradle file list these modules:

include ':app'

The colon : is used somewhat as a folder delimiter.

To use the plugin it has to be applied at the top of the build.gradle file of each module (app in the
example).

For an Android Application:

apply plugin: 'com.android.application'

For an Android Library:

apply plugin: 'com.android.library'

And then configured in it's android tag:

android {
 // gradle-android plugin configuration
}

Basic Android application Configuration

The build.gradle generated by Android Studio for an application looks like this:

apply plugin: 'com.android.application'

android {
 // setup which version of the SDK to build against and
 // with what version of the build tools
 compileSdkVersion 23

https://riptutorial.com/ 4

 buildToolsVersion "23.0.2"

 // default app configurations
 defaultConfig {
 // this is your app unique ID
 applicationId "com.example.myapp"

 // devices with lower SDK version can't install the app
 minSdkVersion 14
 // target SDK version, should be the last available one and
 // match the compile one
 targetSdkVersion 23

 // integer and string version of your app
 versionCode 1
 versionName "1.0"
 }

 // default build types are "debug" and "release"
 buildTypes {
 release {
 // enable / disable proguard optimization
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
 }
 }
}

// app dependencies
dependencies {
 // any jar file in the libs folder
 compile fileTree(dir: 'libs', include: ['*.jar'])
 // test dependency
 testCompile 'junit:junit:4.12'
 // runtime dependency on the support library
 compile 'com.android.support:appcompat-v7:24.0.0'
}

Configure your build with Gradle teach you more advanced Android Gradle Plugin settings and
options and go deeper in the meaning of this setting.

The defaultConfig is called like that because it can be overridden with Product Flavors.

The buildTypes tag allow you to setup how to build your app enabling optimization (like proguard),
you can learn more reading Build Types. It can also be used to setup signing of your app.

You should also learn more on how to Declare Dependencies. As you see the dependencies tag is
outside the android one: this means it's not defined by the Android plugin but it's standard gradle.

The Gradle Wrapper

Android Studio will also, by default, install a gradle wrapper. This is a tool you can execute directly
from the command line and it will download a local specific version of gradle the first time you
execute it.

https://riptutorial.com/ 5

http://www.riptutorial.com/android-gradle/topic/2161/configure-your-build-with-gradle
http://www.riptutorial.com/android-gradle/topic/2929/configure-product-flavors
http://www.riptutorial.com/android-gradle/topic/3281/configure-build-types
http://www.riptutorial.com/android-gradle/topic/3289/declare-dependencies
http://www.riptutorial.com/gradle/topic/2524/dependencies
http://www.riptutorial.com/gradle/topic/2524/dependencies
https://docs.gradle.org/current/userguide/gradle_wrapper.html

To launch compile the app you can then launch the gradle wrapper

Linux / Mac:

./gradlew assemble

Windows:

gradlew assemble

The script launch the wrapper, contained in a gradle folder in the root directory of your project:

gradle-wrapper.jar: the code of the wrapper to download gradle and execute it•
gradle-wrapper.properties define which gradle version the wrapper should download•

External Links:

Official Android Build Tools documentation•
Official Android Gradle Plugin documentation•
Stackoverflow gradle documentation•
Official gradle documentation•

Examples

Initial Setup with Android Studio

To setup for using Android Gradle Plugin you need many things:

java•
gradle•
the Android project folder structure•
an Android Manifest•
initial plugin setup•

The easiest way to get all of them is to follow these steps:

Donwload and Install Java OpenJDK version 6 or 7 (you can use 8 with additional settings of
the gradle plugin)

1.

Download and Install Android Studio2.
Create a new project (if you need help see Creating a New Project)3.

Check Remarks section for more informations.

Android Plugin for Gradle

https://riptutorial.com/ 6

https://developer.android.com/studio/build/index.html
http://tools.android.com/tech-docs/new-build-system/user-guide
http://www.riptutorial.com/gradle/topic/894/getting-started-with-gradle
https://gradle.org/documentation/
http://openjdk.java.net/install/
https://developer.android.com/studio/index.html
http://www.riptutorial.com/android/example/537/creating-a-new-project

As described in the remarks section the Android build system uses the Android Plugin for Gradle
to support building Android applications with Gradle.

You can specify the Android Plugin for Gradle version in the top-level build.gradle file. The plugin
version applies to all modules built in that Android Studio project.

buildscript {
 ...
 dependencies {
 classpath 'com.android.tools.build:gradle:2.2.0'
 }
}

Gradle wrapper

As described in the remarks section you can specify the Gradle version used by each project
editing the Gradle distribution reference in the gradle/wrapper/gradle-wrapper.properties file.

For example:

...
distributionUrl = https\://services.gradle.org/distributions/gradle-2.14.1-all.zip
...

Read Getting started with android-gradle online: https://riptutorial.com/android-
gradle/topic/2092/getting-started-with-android-gradle

https://riptutorial.com/ 7

https://riptutorial.com/android-gradle/topic/2092/getting-started-with-android-gradle
https://riptutorial.com/android-gradle/topic/2092/getting-started-with-android-gradle

Chapter 2: Configure Build Types

Parameters

Parameter Detail

applicationIdSuffix Application id suffix applied to this base config

consumerProguardFiles
ProGuard rule files to be included in the published
AAR

debuggable
Whether this build type should generate a
debuggable apk

embedMicroApp
Whether a linked Android Wear app should be
embedded in variant using this build type

jniDebuggable
Whether this build type is configured to generate an
APK with debuggable native code

manifestPlaceholders The manifest placeholders

minifyEnabled Whether Minify is enabled for this build type

multiDexEnabled Whether Multi-Dex is enabled for this variant

name Name of this build type

proguardFiles Returns ProGuard configuration files to be used

pseudoLocalesEnabled Whether to generate pseudo locale in the APK

renderscriptDebuggable
Whether the build type is configured to generate an
apk with debuggable RenderScript code

renderscriptOptimLevel
Optimization level to use by the renderscript
compiler

shrinkResources
Whether shrinking of unused resources is enabled.
Default is false

signingConfig The signing configuration

testCoverageEnabled Whether test coverage is enabled for this build type

versionNameSuffix Version name suffix

zipAlignEnabled Whether zipalign is enabled for this build type

https://riptutorial.com/ 8

Parameter Detail

------ --------

Method Detail

buildConfigField(type, name, value) Adds a new field to the generated BuildConfig class

consumerProguardFile(proguardFile)
Adds a proguard rule file to be included in the
published AAR

consumerProguardFiles(proguardFiles)
Adds proguard rule files to be included in the
published AAR

proguardFile(proguardFile) Adds a new ProGuard configuration file

proguardFiles(proguardFiles) Adds new ProGuard configuration files

resValue(type, name, value) Adds a new generated resource

resValue(type, name, value) Adds a new generated resource

setProguardFiles(proguardFileIterable) Sets the ProGuard configuration files

shrinkResources(flag)
Whether shrinking of unused resources is enabled.
Default is false

Remarks

By default, the Android plugin for gradle automatically sets up the project to build both a debug
and a release version of the application.

This configuration is done through an object called a BuildType

Official Documentation:

http://google.github.io/android-gradle-
dsl/current/com.android.build.gradle.internal.dsl.BuildType.html

Examples

How to configure build types in the build.gradle

You can create and configure build types in the module-level build.gradle file inside the android {}
block.

 android {
 ...

https://riptutorial.com/ 9

http://google.github.io/android-gradle-dsl/current/com.android.build.gradle.internal.dsl.BuildType.html
http://google.github.io/android-gradle-dsl/current/com.android.build.gradle.internal.dsl.BuildType.html

 defaultConfig {...}

 buildTypes {
 release {
 minifyEnabled true
 proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-
rules.pro'
 }

 debug {
 applicationIdSuffix ".debug"
 }
 }
 }

Read Configure Build Types online: https://riptutorial.com/android-gradle/topic/3281/configure-
build-types

https://riptutorial.com/ 10

https://riptutorial.com/android-gradle/topic/3281/configure-build-types
https://riptutorial.com/android-gradle/topic/3281/configure-build-types

Chapter 3: Configure Product Flavors

Remarks

The product flavors support the same properties as defaultConfig this is because defaultConfig
actually belongs to the ProductFlavor class. This means you can provide the base configuration
for all flavors in the defaultConfig {} block, and each flavor can override any of these default
values, such as the applicationId.

Examples

How to configure the build.gradle file

android {
 ...
 defaultConfig {...}
 buildTypes {...}
 productFlavors {
 demo {
 applicationId "com.example.myapp.demo"
 versionName "1.0-demo"
 }
 full {
 applicationId "com.example.myapp.full"
 versionName "1.0-full"
 }
 }
}

Flavor Constants and Resources in build.gradle

You can use gradle to have BuildConfig constants and res values on a per flavor basis. Just add
the value to the flavor you want to support.

android {
 defaultConfig {
 resValue "string", "app_name", "Full App"
 buildConfigField "boolean", "isDemo", "false"
 }
 productFlavors {
 demo {
 resValue "String", "app_name", "Demo App"
 buildConfigField "boolean", "isDemo", "true"
 }
 full {
 // use default values
 }
 }
}

Gradle will do all the merging / overriding for you. The generated code will also allow you to see

https://riptutorial.com/ 11

where the values come from, e.g.

<!-- Values from default config. -->
<string name="app_name" translatable="false">Default Name</string>

and

public final class BuildConfig {
 public static final String VERSION_NAME = "1.0";
 // Fields from product flavor: demo
 public static final boolean isDemo = true;
}

Using Flavor Dimension

When the app is based on more than one criteria, instead of creating a lot of flavors you can
define flavor dimensions.

The flavor dimensions define the cartesian product that will be used to produce variants.

Example:

flavorDimensions("dimA", "dimB")

productFlavors {

 row1 {
 ...
 dimension = "dimA"
 }
 row2 {
 ...
 dimension = "dimA"
 }
 row3 {
 ...
 dimension = "dimA"
 }

 col1 {
 ...
 dimension = "dimB"
 }
 col2 {
 ...
 dimension = "dimB"
 }
 col3 {
 ...
 dimension = "dimB"
 }
}

This config will produce 18 (332) variants (if you have the 2 standard build types : debug and
release). The following build variants will be created:

https://riptutorial.com/ 12

row1-col1-debug
row1-col2-debug
row1-col3-debug
row1-col1-release
row1-col2-release
row1-col3-release

row2-col1-debug
row2-col2-debug
row2-col3-debug
row2-col1-release
row2-col2-release
row2-col3-release

row3-col1-debug
row3-col2-debug
row3-col3-debug
row3-col1-release
row3-col2-release
row3-col3-release

The order of the dimension is defined by android.flavorDimensions and drives which flavor
override the other, which is important for resources when a value in a flavor replaces a value
defined in a lower priority flavor.

The flavor dimension is defined with higher priority first. So in this case:

dimA > dimB > defaultConfig

There is also a "flavor combination" source folder available when more than one flavor dimension
is used. For instance src/flavor1Flavor2/.

Note that this is for all combinations of all dimensions.•
Its priority is higher than single-flavor sourcesets, but lower than build-types.•

Add dependencies for flavors

You can add different dependencies for a specific product flavor.

Just use the <flavorName>Compile 'group:name:x.y.z' syntax:

android {
 ...
 productFlavors {
 flavor1 {
 //.....
 }
 flavor2 {
 //.....
 }
 }
}

...
dependencies {

https://riptutorial.com/ 13

 compile 'com.android.support:appcompat-v7:24.2.0'

 // Add a dependency only for flavor1
 flavor1Compile 'group:name:x.y.z'

 // Add a dependency only for flavor2
 flavor2Compile 'group:name:x.y.z'
}

Develop and Production Product Flavors Example

productFlavors {
 // Define separate dev and prod product flavors.
 dev {
 // dev utilizes minSDKVersion = 21 to allow the Android gradle plugin
 // to pre-dex each module and produce an APK that can be tested on
 // Android Lollipop without time consuming dex merging processes.
 minSdkVersion 21
 }
 prod {
 // The actual minSdkVersion for the application.
 minSdkVersion 15
 }
 }

Read Configure Product Flavors online: https://riptutorial.com/android-gradle/topic/2929/configure-
product-flavors

https://riptutorial.com/ 14

https://riptutorial.com/android-gradle/topic/2929/configure-product-flavors
https://riptutorial.com/android-gradle/topic/2929/configure-product-flavors

Chapter 4: Configure Signing Settings

Examples

Configure the build.gradle with signing configuration

You can define the signing configuration to sign the apk in the build.gradle file.

You can define:

storeFile : the keystore file•
storePassword: the keystore password•
keyAlias: a key alias name•
keyPassword: A key alias password•

You have to define the signingConfigs block to create a signing configuration:

android {
 signingConfigs {

 myConfig {
 storeFile file("myFile.keystore")
 storePassword "myPasswork"
 keyAlias "aKeyAlias"
 keyPassword "myAliasPassword"
 }
 }
 //....
}

Then you can assign it to one or more build types.

android {

 buildTypes {
 release {
 signingConfig signingConfigs.myConfig
 }
 }
}

Define the signing configuration in an external file

You can define the signing configuration in an external file as a signing.properties in the root
directory of your project.

For example you can define these keys (you can use your favorite names):

STORE_FILE=myStoreFileLocation
STORE_PASSWORD=myStorePassword

https://riptutorial.com/ 15

KEY_ALIAS=myKeyAlias
KEY_PASSWORD=mykeyPassword

Then in your build.gradle file:

android {

 signingConfigs {
 release
 }

 buildTypes {
 release {
 signingConfig signingConfigs.release
 }
 }
}

Then you can introduce some checks to avoid gradle issues in the build process.

//--
// Signing
//--
def Properties props = new Properties()
def propFile = file('../signing.properties')
if (propFile.canRead()) {

 if (props != null && props.containsKey('STORE_FILE') &&
props.containsKey('STORE_PASSWORD') &&
 props.containsKey('KEY_ALIAS') && props.containsKey('KEY_PASSWORD')) {

 android.signingConfigs.release.storeFile = file(props['STORE_FILE'])
 android.signingConfigs.release.storePassword = props['STORE_PASSWORD']
 android.signingConfigs.release.keyAlias = props['KEY_ALIAS']
 android.signingConfigs.release.keyPassword = props['KEY_PASSWORD']
 } else {
 android.buildTypes.release.signingConfig = null
 }
} else {
 android.buildTypes.release.signingConfig = null
}

Define the signing configuration setting environment variables

You can store the signing information setting environment variables.
These values can be accessed with System.getenv("<VAR-NAME>")

In your build.gradle you can define:

signingConfigs {
 release {
 storeFile file(System.getenv("KEYSTORE"))
 storePassword System.getenv("KEYSTORE_PASSWORD")
 keyAlias System.getenv("KEY_ALIAS")
 keyPassword System.getenv("KEY_PASSWORD")
 }

https://riptutorial.com/ 16

}

Define signing configuration in a separate gradle file

The simplest and cleanest way to add an external configuration is through a separate Gradle file

build.gradle

apply from: './keystore.gradle'
android{
 signingConfigs {
 release {
 storeFile file(keystore.storeFile)
 storePassword keystore.storePassword
 keyAlias keystore.keyAlias
 keyPassword keystore.keyPassword
 }
 }
}

keystore.gradle

ext.keystore = [
 storeFile : "/path/to/your/file",
 storePassword: 'password of the store',
 keyAlias : 'alias_of_the_key',
 keyPassword : 'password_of_the_key'
]

The keystore.gradle file can exist anywhere in your file system, you can specify its location inside
the apply from: '' at the top of your gradle file or at the end of your main project build.gradle file.

Typically its a good idea to ignore this file from version control system such as git if its located
inside your repo.

It is also a good idea to provide a sample keystore.gradle.sample which developers entering the
project would rename and populate on their development machine. This file would always be
contained inside the repo at the correct location.

Read Configure Signing Settings online: https://riptutorial.com/android-
gradle/topic/5249/configure-signing-settings

https://riptutorial.com/ 17

https://riptutorial.com/android-gradle/topic/5249/configure-signing-settings
https://riptutorial.com/android-gradle/topic/5249/configure-signing-settings

Chapter 5: Configure Your Build with Gradle

Remarks

The Android build system compiles app resources and source code, and packages them into
APKs that you can test, deploy, sign, and distribute. Android Studio uses Gradle, an advanced
build toolkit, to automate and manage the build process, while allowing you to define flexible
custom build configurations.

Official Documentation

https://developer.android.com/studio/build/index.html

Examples

Why are there two build.gradle files in an Android Studio project?

<PROJECT_ROOT>\app\build.gradle is specific for app module.

<PROJECT_ROOT>\build.gradle is a "Top-level build file" where you can add configuration options
common to all sub-projects/modules.

If you use another module in your project, as a local library you would have another build.gradle
file: <PROJECT_ROOT>\module\build.gradle

The Top-level Build File

The top-level build.gradle file, located in the root project directory, defines build configurations that
apply to all modules in your project. By default, the top-level build file uses the buildscript {}
block to define the Gradle repositories and dependencies that are common to all modules in the
project. The following code sample describes the default settings and DSL elements you can find
in the top-level build.gradle after creating a new project.

buildscript {
 repositories {
 mavenCentral()
 }

 dependencies {
 classpath 'com.android.tools.build:gradle:2.2.0'
 classpath 'com.google.gms:google-services:3.0.0'
 }
}

ext {
 compileSdkVersion = 23
 buildToolsVersion = "23.0.1"
}

https://riptutorial.com/ 18

https://developer.android.com/studio/build/index.html

The Module-level Build File

The module-level build.gradle file, located in each <project>/<module>/ directory, allows you to
configure build settings for the specific module it is located in. Configuring these build settings
allows you to provide custom packaging options, such as additional build types and product
flavors, and override settings in the main/ app manifest or top-level build.gradle file.

apply plugin: 'com.android.application'

android {
 compileSdkVersion rootProject.ext.compileSdkVersion
 buildToolsVersion rootProject.ext.buildToolsVersion
}

dependencies {
 //.....
}

Top Level File example

/**
 * The buildscript {} block is where you configure the repositories and
 * dependencies for Gradle itself--meaning, you should not include dependencies
 * for your modules here. For example, this block includes the Android plugin for
 * Gradle as a dependency because it provides the additional instructions Gradle
 * needs to build Android app modules.
 */

buildscript {

 /**
 * The repositories {} block configures the repositories Gradle uses to
 * search or download the dependencies. Gradle pre-configures support for remote
 * repositories such as JCenter, Maven Central, and Ivy. You can also use local
 * repositories or define your own remote repositories. The code below defines
 * JCenter as the repository Gradle should use to look for its dependencies.
 */

 repositories {
 jcenter()
 }

 /**
 * The dependencies {} block configures the dependencies Gradle needs to use
 * to build your project. The following line adds Android Plugin for Gradle
 * version 2.0.0 as a classpath dependency.
 */

 dependencies {
 classpath 'com.android.tools.build:gradle:2.0.0'
 }
}

/**
 * The allprojects {} block is where you configure the repositories and
 * dependencies used by all modules in your project, such as third-party plugins

https://riptutorial.com/ 19

 * or libraries. Dependencies that are not required by all the modules in the
 * project should be configured in module-level build.gradle files. For new
 * projects, Android Studio configures JCenter as the default repository, but it
 * does not configure any dependencies.
 */

allprojects {
 repositories {
 jcenter()
 }
}

The module file example

/**
 * The first line in the build configuration applies the Android plugin for
 * Gradle to this build and makes the android {} block available to specify
 * Android-specific build options.
 */

apply plugin: 'com.android.application'

/**
 * The android {} block is where you configure all your Android-specific
 * build options.
 */

android {

 /**
 * compileSdkVersion specifies the Android API level Gradle should use to
 * compile your app. This means your app can use the API features included in
 * this API level and lower.
 *
 * buildToolsVersion specifies the version of the SDK build tools, command-line
 * utilities, and compiler that Gradle should use to build your app. You need to
 * download the build tools using the SDK Manager.
 */

 compileSdkVersion 23
 buildToolsVersion "23.0.3"

 /**
 * The defaultConfig {} block encapsulates default settings and entries for all
 * build variants, and can override some attributes in main/AndroidManifest.xml
 * dynamically from the build system. You can configure product flavors to override
 * these values for different versions of your app.
 */

 defaultConfig {

 /**
 * applicationId uniquely identifies the package for publishing.
 * However, your source code should still reference the package name
 * defined by the package attribute in the main/AndroidManifest.xml file.
 */

 applicationId 'com.example.myapp'

https://riptutorial.com/ 20

 // Defines the minimum API level required to run the app.
 minSdkVersion 14

 // Specifies the API level used to test the app.
 targetSdkVersion 23

 // Defines the version number of your app.
 versionCode 1

 // Defines a user-friendly version name for your app.
 versionName "1.0"
 }

 /**
 * The buildTypes {} block is where you can configure multiple build types.
 * By default, the build system defines two build types: debug and release. The
 * debug build type is not explicitly shown in the default build configuration,
 * but it includes debugging tools and is signed with the debug key. The release
 * build type applies Proguard settings and is not signed by default.
 */

 buildTypes {

 /**
 * By default, Android Studio configures the release build type to enable code
 * shrinking, using minifyEnabled, and specifies the Proguard settings file.
 */

 release {
 minifyEnabled true // Enables code shrinking for the release build type.
 proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
 }
 }

 /**
 * The productFlavors {} block is where you can configure multiple product
 * flavors. This allows you to create different versions of your app that can
 * override defaultConfig {} with their own settings. Product flavors are
 * optional, and the build system does not create them by default. This example
 * creates a free and paid product flavor. Each product flavor then specifies
 * its own application ID, so that they can exist on the Google Play Store, or
 * an Android device, simultaneously.
 */

 productFlavors {
 free {
 applicationId 'com.example.myapp.free'
 }

 paid {
 applicationId 'com.example.myapp.paid'
 }
 }
}

/**
 * The dependencies {} block in the module-level build configuration file
 * only specifies dependencies required to build the module itself.
 */

dependencies {

https://riptutorial.com/ 21

 compile project(":lib")
 compile 'com.android.support:appcompat-v7:24.1.0'
 compile fileTree(dir: 'libs', include: ['*.jar'])
}

Use archivesBaseName to change the apk name

You can use the archivesBaseName to set the name of apk.

For example:

 defaultConfig {

 project.ext.set("archivesBaseName", "MyName-" + defaultConfig.versionName);

 }

You will obtain this output.

MyName-X.X.X-release.apk

Read Configure Your Build with Gradle online: https://riptutorial.com/android-
gradle/topic/2161/configure-your-build-with-gradle

https://riptutorial.com/ 22

https://riptutorial.com/android-gradle/topic/2161/configure-your-build-with-gradle
https://riptutorial.com/android-gradle/topic/2161/configure-your-build-with-gradle

Chapter 6: Declare Dependencies

Examples

How to add dependencies

The example below describes how to declare three different types of direct dependencies in the
app/ module's build.gradle file:

 android {...}
 ...
 dependencies {
 // The 'compile' configuration tells Gradle to add the dependency to the
 // compilation classpath and include it in the final package.

 // Dependency on the "mylibrary" module from this project
 compile project(":mylibrary")

 // Remote binary dependency
 compile 'com.android.support:appcompat-v7:24.1.0'

 // Local binary dependency
 compile fileTree(dir: 'libs', include: ['*.jar'])
 }

How to add a repository

To download dependencies, declare the repository so Gradle can find them. To do this, add a
repositories { ... } to the app/ module's build.gradle in the top-level file.

repositories {
 // Gradle's Java plugin allows the addition of these two repositories via method calls:
 jcenter()
 mavenCentral()

 maven { url "http://repository.of/dependency" }

 maven {
 credentials {
 username 'xxx'
 password 'xxx'
 }

 url 'http://my.maven
 }
}

Module dependencies

In a multi-project gradle build, you can have a dependency with another module in your build.

Example:

https://riptutorial.com/ 23

 dependencies {
 // Dependency on the "mylibrary" module from this project
 compile project(":mylibrary")
 }

The compile project(':mylibrary') line declares a local Android library module named "mylibrary"
as a dependency, and requires the build system to compile and include the local module when
building your app.

Local binary dependencies

You can have a dependency with a single jar or multiple jar files.

With a single jar file you can add:

dependencies {
 compile files('libs/local_dependency.jar')
}

It's possible to add a directory of jars to compile.

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
}

The compile fileTree(dir: 'libs', include: ['*.jar']) line tells the build system to include any
JAR files inside the app/libs/ directory in the compilation classpath and in the final package of
your app.

If you have modules that require local binary dependencies, copy the JAR files for these
dependencies into <moduleName>/libs inside your project.

If you need to add an aar files you can read more details here.

Remote binary dependencies

You can add remote dependencies in Gradle usign this structure:

compile 'group:name:version'

or this alternative syntax:

compile group: 'xxx', name: 'xxxxx', version: 'xxxx'

For example:

compile 'com.android.support:appcompat-v7:24.1.0'

The compile 'com.android.support:appcompat-v7:24.1.0' line declares a dependency on version

https://riptutorial.com/ 24

http://www.riptutorial.com/android-gradle/topic/3037/how-to-include-aar-files-in-a-project-in-android

24.1.0 of the Android Support Library.

Declare Dependencies for Configurations

Dependencies can be added for specific configuration like test/androidTest

androidTestCompile 'com.android.support.test.espresso:espresso-core:2.2.1'
testCompile 'junit:junit:3.8.1'

Alternatively create your own configuration

configurations {
 myconfig
}

And then download dependency for this config

myconfig group: 'com.mycompany', name: 'my_artifact', version: '1.0.0'

Declare dependencies for flavors

Dependencies can be added for specific product flavors in a similar fashion as build configurations
.

android {
 ...
 productFlavors {
 flavor1 {
 //...
 }
 flavor2 {
 //...
 }
 }
}

dependencies {
 flavor1Compile 'com.android.support:appcompat-v7:24.1.1'
 flavor1Compile 'com.google.firebase:firebase-crash:9.4.0'

 flavor2Compile 'com.android.support:appcompat-v7:24.1.1'
}

Declare dependencies for build types

Dependencies can be added for specific Build types:

android {
 ...
 buildTypes {
 release {
 //...

https://riptutorial.com/ 25

http://www.riptutorial.com/android-gradle/example/17861/declare-dependencies-for-configurations
http://www.riptutorial.com/android-gradle/topic/3281/configure-build-types

 }

 debug {
 //....
 }
 }
}

dependencies {
 debugCompile 'com.android.support:appcompat-v7:24.1.1'
 releaseCompile 'com.google.firebase:firebase-crash:9.4.0'
}

Read Declare Dependencies online: https://riptutorial.com/android-gradle/topic/3289/declare-
dependencies

https://riptutorial.com/ 26

https://riptutorial.com/android-gradle/topic/3289/declare-dependencies
https://riptutorial.com/android-gradle/topic/3289/declare-dependencies

Chapter 7: Gradle - Information of Tags

Examples

Gradle - Information of Tags

Gradle: It is used to make build for any software, it is a Domain specific language used to
configure and fulfill all plugins, libraries downloaded from repositories.

Use Plugins:

Apply plugin: ‘com.android.application’

Plugin is property in key value form. In above statement plugin denotes to key and right side string
in single coats becomes its value.

Gradle is DSL (Domain specific language):

It contains different blocks:Tags

repositories { }
dependencies {}
android {}

Repositories and dependencies are used to configure requirements for application code. Android
block is used to add android specific code or information into application. We also generate our
custom tags and define our own custom code, library and information.

By using “task” tag :

task genrateTestDb (depends on: ….) {
 }

Gradle files for any application

Build.gradle -These file is working for all project. Settings.gradle – define all sub directories or
projects are included in application.

Build.gradle contains below:

repositories {
mavenCentral()
}

Above repositories tag hold mevenCentral() it means all dependencies are downloaded from
mevenCentral() .we can use jcenter() or any other source too. Dependencies block holds all
compile time dependencies that’s should be downloaded from repositories.

https://riptutorial.com/ 27

dependencies {
compile ‘org.codehous.groovy:groovy-all:2.3.2’
}

Above is meven library : syntax:

org.codehous.groovy - > group id

groovy-all - > order fact id , that’s is a name gradle used to identify library .

2.3.2’ - > version

Settings.gradle – it’s include tag for all sub projects that’s is added into project.

Include ‘googlechart’, ‘chuckgroovy’

Read Gradle - Information of Tags online: https://riptutorial.com/android-gradle/topic/9439/gradle--
-information-of-tags

https://riptutorial.com/ 28

https://riptutorial.com/android-gradle/topic/9439/gradle---information-of-tags
https://riptutorial.com/android-gradle/topic/9439/gradle---information-of-tags

Chapter 8: How to include aar files in a
project in Android

Examples

How to add .aar dependency in a module?

In a module (library or application) where you need the aar file you have to add in your
build.gradle the repository:

repositories {
 flatDir {
 dirs 'libs'
 }
}

and add the dependency:

dependencies {
 compile(name:'nameOfYourAARFileWithoutExtension', ext:'aar')
}

Pay attention to the relative path of the libs folder that you are using in the module.

The aar file doesn't include the transitive dependencies

The aar file doesn't contain the transitive dependencies and doesn't have a pom file which
describes the dependencies used by the library.

It means that, if you are importing a aar file using a flatDir repo you have to specify the
dependencies also in your project.

You should use a maven repository (you have to publish the library in a private or public maven
repo), you will not have the same issue.
In this case, gradle downloads the dependencies using the pom file which will contains the
dependencies list.

This works with aar libraries that are published to a remote or local maven repository, In your case
it sounds like the library will not be published to even a local maven repository. I can't find any
definitive information as to if it will work in your circumstances, but you should give it a shot.

Read How to include aar files in a project in Android online: https://riptutorial.com/android-
gradle/topic/3037/how-to-include-aar-files-in-a-project-in-android

https://riptutorial.com/ 29

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies
https://riptutorial.com/android-gradle/topic/3037/how-to-include-aar-files-in-a-project-in-android
https://riptutorial.com/android-gradle/topic/3037/how-to-include-aar-files-in-a-project-in-android

Chapter 9: Shrink Code and Resources

Remarks

To make your APK file as small as possible, you should enable shrinking to remove unused code
and resources in your release build.

Examples

Shrink the code with ProGuard

To enable code shrinking with ProGuard, add minifyEnabled true to the appropriate build type in
your build.gradle file.

android {
 buildTypes {
 release {
 minifyEnabled true
 proguardFiles getDefaultProguardFile(‘proguard-android.txt'),
 'proguard-rules.pro'
 }
 }
}

where:

minifyEnabled true : enable code shrinking•
The getDefaultProguardFile(‘proguard-android.txt') method gets the default ProGuard
settings from the Android SDK

•

The proguard-rules.pro file is where you can add custom ProGuard rules•

Shrink the resources

To enable resource shrinking, set the shrinkResources property to true in your build.gradle file.

android {
 ...

 buildTypes {
 release {
 minifyEnabled true
 shrinkResources true
 proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
 }
 }
}

Pay attention because resource shrinking works only in conjunction with code shrinking.

https://riptutorial.com/ 30

http://www.riptutorial.com/android-gradle/example/18714/shrink-the-code-with-proguard

You can customize which resources to keep or discard creating an XML file like this:

<?xml version=1.0" encoding="utf-8"?>
<resources xmlns:tools="http://schemas.android.com/tools"
 tools:keep="@layout/mylayout,@layout/custom_*"
 tools:discard="@layout/unused" />

Save this file in res/raw folder.

Remove unused alternative resources

All libraries come with resources that are not necessary useful to your application. For example
Google Play Services comes with translations for languages your own application don’t even
support.

You can configure the build.gradle file to specify which resource you want to keep.
For example:

defaultConfig {
 // ...

 resConfigs "en", "de", "it"
 resConfigs "nodpi", "xhdpi", "xxhdpi", "xxxhdpi"
}

Read Shrink Code and Resources online: https://riptutorial.com/android-gradle/topic/5257/shrink-
code-and-resources

https://riptutorial.com/ 31

https://riptutorial.com/android-gradle/topic/5257/shrink-code-and-resources
https://riptutorial.com/android-gradle/topic/5257/shrink-code-and-resources

Credits

S.
No

Chapters Contributors

1
Getting started with
android-gradle

Community, Daniele Segato, Gabriele Mariotti

2
Configure Build
Types

Gabriele Mariotti

3
Configure Product
Flavors

David Medenjak, Gabriele Mariotti, piotrek1543, Tarek El-Mallah

4
Configure Signing
Settings

DArkO, Gabriele Mariotti

5
Configure Your Build
with Gradle

Gabriele Mariotti

6
Declare
Dependencies

4444, cricket_007, Gabriele Mariotti, jitinsharma

7
Gradle - Information
of Tags

Chetan Joshi

8
How to include aar
files in a project in
Android

Gabriele Mariotti, JBirdVegas

9
Shrink Code and
Resources

Gabriele Mariotti

https://riptutorial.com/ 32

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/902276/daniele-segato
https://riptutorial.com/contributor/2016562/gabriele-mariotti
https://riptutorial.com/contributor/2016562/gabriele-mariotti
https://riptutorial.com/contributor/1837367/david-medenjak
https://riptutorial.com/contributor/2016562/gabriele-mariotti
https://riptutorial.com/contributor/4730812/piotrek1543
https://riptutorial.com/contributor/471499/tarek-el-mallah
https://riptutorial.com/contributor/448192/darko
https://riptutorial.com/contributor/2016562/gabriele-mariotti
https://riptutorial.com/contributor/2016562/gabriele-mariotti
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/2308683/cricket-007
https://riptutorial.com/contributor/2016562/gabriele-mariotti
https://riptutorial.com/contributor/4649515/jitinsharma
https://riptutorial.com/contributor/1189800/chetan-joshi
https://riptutorial.com/contributor/2016562/gabriele-mariotti
https://riptutorial.com/contributor/873237/jbirdvegas
https://riptutorial.com/contributor/2016562/gabriele-mariotti

	About
	Chapter 1: Getting started with android-gradle
	Remarks

	What is android-gradle
	Main features

	Overview
	Project Structure
	android-gradle Plugin
	Modules

	Basic Android application Configuration
	The Gradle Wrapper
	External Links:
	Examples
	Initial Setup with Android Studio
	Android Plugin for Gradle
	Gradle wrapper

	Chapter 2: Configure Build Types
	Parameters
	Remarks
	Official Documentation:
	Examples
	How to configure build types in the build.gradle

	Chapter 3: Configure Product Flavors
	Remarks
	Examples
	How to configure the build.gradle file
	Flavor Constants and Resources in build.gradle
	Using Flavor Dimension
	Add dependencies for flavors
	Develop and Production Product Flavors Example

	Chapter 4: Configure Signing Settings
	Examples
	Configure the build.gradle with signing configuration
	Define the signing configuration in an external file
	Define the signing configuration setting environment variables
	Define signing configuration in a separate gradle file

	Chapter 5: Configure Your Build with Gradle
	Remarks
	Official Documentation
	Examples
	Why are there two build.gradle files in an Android Studio project?
	Top Level File example
	The module file example
	Use archivesBaseName to change the apk name

	Chapter 6: Declare Dependencies
	Examples
	How to add dependencies
	How to add a repository
	Module dependencies
	Local binary dependencies
	Remote binary dependencies
	Declare Dependencies for Configurations
	Declare dependencies for flavors
	Declare dependencies for build types

	Chapter 7: Gradle - Information of Tags
	Examples
	Gradle - Information of Tags

	Chapter 8: How to include aar files in a project in Android
	Examples
	How to add .aar dependency in a module?
	The aar file doesn't include the transitive dependencies

	Chapter 9: Shrink Code and Resources
	Remarks
	Examples
	Shrink the code with ProGuard
	Shrink the resources
	Remove unused alternative resources

	Credits

