
angularjs-directive

#angularjs-

directive

Table of Contents

About 1

Chapter 1: Getting started with angularjs-directive 2

Remarks 2

Examples 2

Installation or Setup 2

Building a reusable component 2

Your first directive 3

Success/Error pop-up message using simple link function 4

Chapter 2: Commonly Used Directives 6

Examples 6

ngConfirmClick: Confirm before evaluating expression. 6

Credits 7

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: angularjs-directive

It is an unofficial and free angularjs-directive ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official angularjs-
directive.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/angularjs-directive
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with angularjs-
directive

Remarks

AngularJS Directives are custom elements in HTML (such as an attribute, element name,
comment or CSS class) that tell AngularJS to attach a specified behavior to that DOM element, or
even to transform the DOM element and its children. In short, when we create a directive,
AngularJS will treat that element differently.

Examples

Installation or Setup

Directives comes with the AngularJS library itself. A sample directive can be created as:

angular.module('simpleDirective', [])
.directive('helloData', function() {
 return {
 template: 'Hello, {{data}}'
 };
});

And can be used as:

JS:

angular.module('app', ['simpleDirective'])
.controller('Controller', ['$scope', function($scope) {
 $scope.data = 'World';
}])

HTML

<div ng-controller="Controller">
 <div hello-data></div>
</div>

Will be compiled as:

Hello, World

Building a reusable component

Directives can be used to build reusable components. Here is an example of a "user box"
component:

https://riptutorial.com/ 2

userBox.js

angular.module('simpleDirective', []).directive('userBox', function() {
 return {
 scope: {
 username: '=username',
 reputation: '=reputation'
 },
 templateUrl: '/path/to/app/directives/user-box.html'
 };
});

Controller.js

var myApp = angular.module('myApp', ['simpleDirective']);

myApp.controller('Controller', function($scope) {
 $scope.user = "John Doe";
 $scope.rep = 1250;
});

myPage.js

<html lang="en" ng-app="myApp">
 <head>
 <script src="/path/to/app/angular.min.js"></script>
 <script src="/path/to/app/controllers/Controller.js"></script>
 <script src="/path/to/app/directives/userBox.js"></script>
 </head>

 <body>

 <div ng-controller="Controller">
 <user-box username="user" reputation="rep"></user-box>
 </div>

 </body>
</html>

user-box.html

<div>{{username}}</div>
<div>{{reputation}} reputation</div>

Your first directive

Our first element directive will not do much: it will just calculate 2+2 and will be called in html like
this:

<my-calculator></my-calculator>

Notice the name of the directive is myCalculator (in CamelCase), but in html it's used as my-
calculator (in lisp-case).

https://riptutorial.com/ 3

Since we want our directive to be used as html element, we will use restrict: 'E'.

Every directive has the template which will be compiled and inserted. Our directive is very simple,
so we will insert our html as string into a template parameter.

// directives/my-calculator.js

angular.module('exampleApp', [])
.directive('myCalculator', function() {
 return {
 restrict: 'E',
 template: ' My directive can calculate 2+2: {{2+2}} '
 };
});

HTML

<!DOCTYPE html>
<html ng-app="exampleApp">

 <head>
 <script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.5.6/angular.min.js"></script>
 <script src="my-calculator.js"></script>
 </head>

 <body>
 Here is my first directive:
 <my-calculator></my-calculator>
 </body>

</html>

The result will look like this:

Here is my first directive: My directive can calculate 2+2: 4

If you want to play with the live example, go to plunkr.

Success/Error pop-up message using simple link function

Link function is best way in custom directives to manipulate DOM. It takes three attributes as input
(scope, element, attribute) in sequence

scope: its local scope object of directive.

element: html element on which directive is used.

attribute: it gives access to all attributes used in element refered.

// on success call or similarly error, warning, info in controller
 $scope.message={
 text: "Saved Successfully",
 type: "SUCCESS"

https://riptutorial.com/ 4

https://plnkr.co/edit/p9yVSCf7wp8014il4AMb?p=preview

 };

 <user-info msg="message"> </user-info> //in html

 var mainApp = angular.module("mainApp", []);
 mainApp.directive('userInfo', function() {
 var directive = {};
 directive.restrict = 'E';

 directive.scope = {
 message : "=msg"
 },

 directive.link = function(scope, element, attributes) {
 if(scope.message.type==='SUCCESS')
 scope.message.text = 'SUCCESS: '+scope.message.text+' !';
 else if(scope.message.type==='ERROR')
 scope.message.text = 'ERROR: '+scope.message.text+' !';
 else if(scope.message.type==='WARNING')
 scope.message.text = 'WARNING: '+scope.message.text+' !'
 else if(scope.message.type==='INFO')
 scope.message.text = 'INFO: '+scope.message.text+' !'

 element.on('click', function(event) { //on click of div pop-up will smoothly
close
 $(this).fadeOut();
 });
 },
 directive.template = '<div ng-class={{message.type}}>'+ // one can
create different bg-color as per type of message and width/height
 '<div class="message-text">{{message.text}}<div>'+ //message
text will be printed
 '<div>';

 return directive;
 });

Read Getting started with angularjs-directive online: https://riptutorial.com/angularjs-
directive/topic/1855/getting-started-with-angularjs-directive

https://riptutorial.com/ 5

https://riptutorial.com/angularjs-directive/topic/1855/getting-started-with-angularjs-directive
https://riptutorial.com/angularjs-directive/topic/1855/getting-started-with-angularjs-directive

Chapter 2: Commonly Used Directives

Examples

ngConfirmClick: Confirm before evaluating expression.

Description:

Evaluate expression after user's confirmation.

Arguments:

ng-confirm-click:(expression) Expression to evaluate when confirmed.•
ng-confirm-message:(template) Message to be shown in confirm dialog.•

Code:

Directives.directive("ngConfirmClick", ["$parse","$interpolate",function ($parse,$interpolate)
{
 return {
 restrict:"A",
 priority:-1,
 compile:function(ele,attr){
 var fn = $parse(attr.ngConfirmClick, null, true);
 return function ngEventHandler(scope, ele) {
 ele.on('click', function (event) {
 var callback = function () {
 fn(scope, {$event: "confirm"});
 };
 var message = $interpolate(attr.ngConfirmMessage)(scope) || 'Are you
sure?';
 if(confirm(message)) {
 if (scope.$root.$$phase) {
 scope.$evalAsync(callback);
 } else {
 scope.$apply(callback);
 }
 }
 });
 }
 }
 }
}]);

Working Example

Read Commonly Used Directives online: https://riptutorial.com/angularjs-
directive/topic/5099/commonly-used-directives

https://riptutorial.com/ 6

https://plnkr.co/edit/3XKGDhmvJra4KPiavZ6d?p=preview
https://riptutorial.com/angularjs-directive/topic/5099/commonly-used-directives
https://riptutorial.com/angularjs-directive/topic/5099/commonly-used-directives

Credits

S.
No

Chapters Contributors

1
Getting started with
angularjs-directive

Asim K T, Charlie H, Community, Daniel, ganqqwerty, Tjaart
van der Walt, Vishal Singh

2
Commonly Used
Directives

MMhunter

https://riptutorial.com/ 7

https://riptutorial.com/contributor/4015856/asim-k-t
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2444386/daniel
https://riptutorial.com/contributor/420034/ganqqwerty
https://riptutorial.com/contributor/2614988/tjaart-van-der-walt
https://riptutorial.com/contributor/2614988/tjaart-van-der-walt
https://riptutorial.com/contributor/5366388/vishal-singh
https://riptutorial.com/contributor/3621521/mmhunter

	About
	Chapter 1: Getting started with angularjs-directive
	Remarks
	Examples
	Installation or Setup
	Building a reusable component
	Your first directive
	Success/Error pop-up message using simple link function

	Chapter 2: Commonly Used Directives
	Examples
	ngConfirmClick: Confirm before evaluating expression.

	Credits

