
ansible

#ansible

Table of Contents

About 1

Chapter 1: Getting started with ansible 2

Remarks 2

Examples 2

Hello, World 2

Test connection and configuration with ping 3

Inventory 3

Provisioning remote machines with Ansible 3

ansible.cfg 4

Chapter 2: Ansible Architecture 11

Examples 11

Understanding Ansible Architecture 11

Chapter 3: Ansible group variables 13

Examples 13

Group variables with static inventory 13

Chapter 4: Ansible Group Vars 15

Examples 15

Example group_vars/development, and why 15

Chapter 5: Ansible install mysql 16

Introduction 16

Examples 16

How use ansible to install mysql binary file 16

Chapter 6: Ansible: Looping 18

Examples 18

with_items - simple list 18

with_items - predefined list 18

with_items - predefined dictionary 18

with_items - dictionary 19

Nested loops 19

Chapter 7: Ansible: Loops and Conditionals 21

Remarks 21

Examples 21

What kinds of conditionals to use? 21

[When] Condition: `ansible_os_family` Lists 21

Common use 21

All Lists 21

When Condition 22

Basic Usage 22

Conditional Syntax and Logic 23

Single condition 23

Boolean Filter 23

Multiple Conditions 23

Get `ansible_os_family` and `ansible_pkg_mgr` with setup 24

Simple "When" Example(s) 24

Using until for a retry looping alive check 25

Chapter 8: Become (Privilege Escalation) 26

Introduction 26

Syntax 26

Examples 26

Only in a task 26

Run all role tasks as root 26

Run a role as root 26

Chapter 9: Dynamic inventory 27

Remarks 27

Examples 27

Dynamic inventory with login credentials 27

Chapter 10: Galaxy 29

Examples 29

Sharing roles with Ansible Galaxy 29

Chapter 11: Galaxy 30

Examples 30

Basic commands 30

Chapter 12: How To Create A DreamHost Cloud Server From An Ansible Playbook 31

Examples 31

Install Shade library 31

Write a Playbook to Launch a Server 31

Running the Playbook 32

Chapter 13: Installation 33

Introduction 33

Examples 33

Installing Ansible on Ubuntu 33

Installing Ansible on MacOS 33

Installation on Red Hat based systems 33

Installing from source 34

Installation on Amazon Linux from git repo 34

Installing Ansible On Any OS(windows) Machine Using Virtual Box+Vagrant 35

Alternative solution: 36

Chapter 14: Introduction to playbooks 37

Examples 37

Overview 37

Playbook's structure 37

Play's structure 38

Tags 39

Chapter 15: Inventory 40

Parameters 40

Examples 41

Inventory with username and password 41

Inventory with custom private key 41

Inventory with custom SSH port 41

Pass static inventory to ansible-playbook 42

Pass dynamic inventory to ansible-playbook 42

Inventory, Group Vars, and You 42

Hosts file 43

Chapter 16: Loops 45

Examples 45

Copy multiple files in a single task 45

Install multiple packages in a single task 45

Chapter 17: Roles 46

Examples 46

Using roles 46

Role dependencies 47

Separating distribution specific tasks and variables inside a role 48

Chapter 18: Secret encryption 49

Remarks 49

Examples 49

Encrypting sensitive structured data 49

Using lookup pipes to decrypt non-structured vault-encrypted data 49

Using local_action to decrypt vault-encrypted templates 49

Chapter 19: Using Ansible with Amazon Web Services 51

Remarks 51

Examples 51

How to start EC2 instance from official Amazon AMIs, modify it and store it as new AMI 51

How to properly configure Ansible to connect to Amazon Web Services 54

Chapter 20: Using Ansible with OpenStack 56

Introduction 56

Parameters 56

Remarks 56

Examples 56

Check your Ansible version 57

Gather informations from OpenStack GUI to configure Ansible 57

Write the ansible playbook to create the instance 58

Gather informations about our new instance 59

Get your new instance public IP 60

Delete our instance 60

Credits 62

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: ansible

It is an unofficial and free ansible ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official ansible.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/ansible
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with ansible

Remarks

This section provides an overview of what ansible is, and why a developer might want to use it.

It should also mention any large subjects within ansible, and link out to the related topics. Since
the Documentation for ansible is new, you may need to create initial versions of those related
topics.

Examples

Hello, World

Create a directory called ansible-helloworld-playbook

mkdir ansible-helloworld-playbook

Create a file hosts and add remote systems how want to manage. As ansible relies on ssh to
connect the machines, you should make sure they are already accessible to you in ssh from your
computer.

192.168.1.1
192.168.1.2

Test connection to your remote systems using the Ansible ping module.

ansible all -m ping -k

In case of success it should return something like that

192.168.1.1| SUCCESS => {
 "changed": false,
 "ping": "pong"
}
192.168.1.2| SUCCESS => {
 "changed": false,
 "ping": "pong"
}

In case of error it should return

192.168.1.1| UNREACHABLE! => {
 "changed": false,
 "msg": "Failed to connect to the host via ssh.",
 "unreachable": true
}

https://riptutorial.com/ 2

http://docs.ansible.com/ansible/ping_module.html

Test sudo access with

ansible all -m ping -k -b

Test connection and configuration with ping

ansible -i hosts -m ping targethost

-i hosts defines the path to inventory file
targethost is the name of the host in the hosts file

Inventory

Inventory is the Ansible way to track all the systems in your infrastructure. Here is a simple static
inventory file containing a single system and the login credentials for Ansible.

[targethost]
192.168.1.1 ansible_user=mrtuovinen ansible_ssh_pass=PassW0rd

Write these lines for example to hosts file and pass the file to ansible or ansible-playbook command
with -i/--inventory-file flag.

See static inventory and dynamic inventory for more details.

Provisioning remote machines with Ansible

We can provision remote systems with Ansible. You should have an SSH key-pair and you should
take your SSH public key to the machine ~/.ssh/authorized_keys file. The porpuse is you can login
without any authorization.

Prerequisites:

Ansible•

You need an Inventory file (for ex.: development.ini) where you determine the host what you want
to use:

[MACHINE_NAME]
MACHINE_NAME hostname=MACHINE_NAME ansible_ssh_host=IP_ADDRESS ansible_port=SSH_PORT
ansible_connection=ssh ansible_user=USER ansible_ssh_extra_args="-o StrictHostKeyChecking=no -
o UserKnownHostsFile=/dev/null"

hostname - the hostname of the remote machine•
ansible_ssh_host - the ip or domain of the remote host•
ansible_port - the port of the remote host which is usually 22•
ansible_connection - the connection where we set, we want to connect with ssh•
ansible_user - the ssh user•
ansible_ssh_extra_args - extra argumentums what you want to specify for the ssh •

https://riptutorial.com/ 3

http://www.riptutorial.com/ansible/topic/1764/inventory
http://www.riptutorial.com/ansible/topic/1758/dynamic-inventory

connection

Required extra args for ssh:

StrictHostKeyChecking - It can ask a key checking what waiting for a yes or no. The Ansible
can't answer this question then throw an error, the host not available.

•

UserKnownHostsFile - Needed for StrictHostKeyChecking option.•

If you have this inventory file you can write a test playbook.yml:

- hosts: MACHINE_NAME
 tasks:
 - name: Say hello
 debug:
 msg: 'Hello, World'

then you can start the provision:

ansible-playbook -i development.ini playbook.yml

ansible.cfg

This is the default ansible.cfg from Ansible github.

config file for ansible -- http://ansible.com/
==

nearly all parameters can be overridden in ansible-playbook
or with command line flags. ansible will read ANSIBLE_CONFIG,
ansible.cfg in the current working directory, .ansible.cfg in
the home directory or /etc/ansible/ansible.cfg, whichever it
finds first

[defaults]

some basic default values...

#inventory = /etc/ansible/hosts
#library = /usr/share/my_modules/
#remote_tmp = $HOME/.ansible/tmp
#local_tmp = $HOME/.ansible/tmp
#forks = 5
#poll_interval = 15
#sudo_user = root
#ask_sudo_pass = True
#ask_pass = True
#transport = smart
#remote_port = 22
#module_lang = C
#module_set_locale = False

plays will gather facts by default, which contain information about
the remote system.

https://riptutorial.com/ 4

https://github.com/ansible/ansible/blob/devel/examples/ansible.cfg

smart - gather by default, but don't regather if already gathered
implicit - gather by default, turn off with gather_facts: False
explicit - do not gather by default, must say gather_facts: True
#gathering = implicit

by default retrieve all facts subsets
all - gather all subsets
network - gather min and network facts
hardware - gather hardware facts (longest facts to retrieve)
virtual - gather min and virtual facts
facter - import facts from facter
ohai - import facts from ohai
You can combine them using comma (ex: network,virtual)
You can negate them using ! (ex: !hardware,!facter,!ohai)
A minimal set of facts is always gathered.
#gather_subset = all

some hardware related facts are collected
with a maximum timeout of 10 seconds. This
option lets you increase or decrease that
timeout to something more suitable for the
environment.
gather_timeout = 10

additional paths to search for roles in, colon separated
#roles_path = /etc/ansible/roles

uncomment this to disable SSH key host checking
#host_key_checking = False

change the default callback
#stdout_callback = skippy
enable additional callbacks
#callback_whitelist = timer, mail

Determine whether includes in tasks and handlers are "static" by
default. As of 2.0, includes are dynamic by default. Setting these
values to True will make includes behave more like they did in the
1.x versions.
#task_includes_static = True
#handler_includes_static = True

change this for alternative sudo implementations
#sudo_exe = sudo

What flags to pass to sudo
WARNING: leaving out the defaults might create unexpected behaviours
#sudo_flags = -H -S -n

SSH timeout
#timeout = 10

default user to use for playbooks if user is not specified
(/usr/bin/ansible will use current user as default)
#remote_user = root

logging is off by default unless this path is defined
if so defined, consider logrotate
#log_path = /var/log/ansible.log

default module name for /usr/bin/ansible

https://riptutorial.com/ 5

#module_name = command

use this shell for commands executed under sudo
you may need to change this to bin/bash in rare instances
if sudo is constrained
#executable = /bin/sh

if inventory variables overlap, does the higher precedence one win
or are hash values merged together? The default is 'replace' but
this can also be set to 'merge'.
#hash_behaviour = replace

by default, variables from roles will be visible in the global variable
scope. To prevent this, the following option can be enabled, and only
tasks and handlers within the role will see the variables there
#private_role_vars = yes

list any Jinja2 extensions to enable here:
#jinja2_extensions = jinja2.ext.do,jinja2.ext.i18n

if set, always use this private key file for authentication, same as
if passing --private-key to ansible or ansible-playbook
#private_key_file = /path/to/file

If set, configures the path to the Vault password file as an alternative to
specifying --vault-password-file on the command line.
#vault_password_file = /path/to/vault_password_file

format of string {{ ansible_managed }} available within Jinja2
templates indicates to users editing templates files will be replaced.
replacing {file}, {host} and {uid} and strftime codes with proper values.
#ansible_managed = Ansible managed: {file} modified on %Y-%m-%d %H:%M:%S by {uid} on {host}
This short version is better used in templates as it won't flag the file as changed every
run.
#ansible_managed = Ansible managed: {file} on {host}

by default, ansible-playbook will display "Skipping [host]" if it determines a task
should not be run on a host. Set this to "False" if you don't want to see these "Skipping"
messages. NOTE: the task header will still be shown regardless of whether or not the
task is skipped.
#display_skipped_hosts = True

by default, if a task in a playbook does not include a name: field then
ansible-playbook will construct a header that includes the task's action but
not the task's args. This is a security feature because ansible cannot know
if the *module* considers an argument to be no_log at the time that the
header is printed. If your environment doesn't have a problem securing
stdout from ansible-playbook (or you have manually specified no_log in your
playbook on all of the tasks where you have secret information) then you can
safely set this to True to get more informative messages.
#display_args_to_stdout = False

by default (as of 1.3), Ansible will raise errors when attempting to dereference
Jinja2 variables that are not set in templates or action lines. Uncomment this line
to revert the behavior to pre-1.3.
#error_on_undefined_vars = False

by default (as of 1.6), Ansible may display warnings based on the configuration of the
system running ansible itself. This may include warnings about 3rd party packages or
other conditions that should be resolved if possible.
to disable these warnings, set the following value to False:

https://riptutorial.com/ 6

#system_warnings = True

by default (as of 1.4), Ansible may display deprecation warnings for language
features that should no longer be used and will be removed in future versions.
to disable these warnings, set the following value to False:
#deprecation_warnings = True

(as of 1.8), Ansible can optionally warn when usage of the shell and
command module appear to be simplified by using a default Ansible module
instead. These warnings can be silenced by adjusting the following
setting or adding warn=yes or warn=no to the end of the command line
parameter string. This will for example suggest using the git module
instead of shelling out to the git command.
command_warnings = False

set plugin path directories here, separate with colons
#action_plugins = /usr/share/ansible/plugins/action
#cache_plugins = /usr/share/ansible/plugins/cache
#callback_plugins = /usr/share/ansible/plugins/callback
#connection_plugins = /usr/share/ansible/plugins/connection
#lookup_plugins = /usr/share/ansible/plugins/lookup
#inventory_plugins = /usr/share/ansible/plugins/inventory
#vars_plugins = /usr/share/ansible/plugins/vars
#filter_plugins = /usr/share/ansible/plugins/filter
#test_plugins = /usr/share/ansible/plugins/test
#strategy_plugins = /usr/share/ansible/plugins/strategy

by default callbacks are not loaded for /bin/ansible, enable this if you
want, for example, a notification or logging callback to also apply to
/bin/ansible runs
#bin_ansible_callbacks = False

don't like cows? that's unfortunate.
set to 1 if you don't want cowsay support or export ANSIBLE_NOCOWS=1
#nocows = 1

set which cowsay stencil you'd like to use by default. When set to 'random',
a random stencil will be selected for each task. The selection will be filtered
against the `cow_whitelist` option below.
#cow_selection = default
#cow_selection = random

when using the 'random' option for cowsay, stencils will be restricted to this list.
it should be formatted as a comma-separated list with no spaces between names.
NOTE: line continuations here are for formatting purposes only, as the INI parser
in python does not support them.
#cow_whitelist=bud-frogs,bunny,cheese,daemon,default,dragon,elephant-in-snake,elephant,eyes,\
hellokitty,kitty,luke-
koala,meow,milk,moofasa,moose,ren,sheep,small,stegosaurus,\
stimpy,supermilker,three-eyes,turkey,turtle,tux,udder,vader-koala,vader,www

don't like colors either?
set to 1 if you don't want colors, or export ANSIBLE_NOCOLOR=1
#nocolor = 1

if set to a persistent type (not 'memory', for example 'redis') fact values
from previous runs in Ansible will be stored. This may be useful when
wanting to use, for example, IP information from one group of servers
without having to talk to them in the same playbook run to get their

https://riptutorial.com/ 7

current IP information.
#fact_caching = memory

retry files
When a playbook fails by default a .retry file will be created in ~/
You can disable this feature by setting retry_files_enabled to False
and you can change the location of the files by setting retry_files_save_path

#retry_files_enabled = False
#retry_files_save_path = ~/.ansible-retry

squash actions
Ansible can optimise actions that call modules with list parameters
when looping. Instead of calling the module once per with_ item, the
module is called once with all items at once. Currently this only works
under limited circumstances, and only with parameters named 'name'.
#squash_actions = apk,apt,dnf,package,pacman,pkgng,yum,zypper

prevents logging of task data, off by default
#no_log = False

prevents logging of tasks, but only on the targets, data is still logged on the
master/controller
#no_target_syslog = False

controls whether Ansible will raise an error or warning if a task has no
choice but to create world readable temporary files to execute a module on
the remote machine. This option is False by default for security. Users may
turn this on to have behaviour more like Ansible prior to 2.1.x. See
https://docs.ansible.com/ansible/become.html#becoming-an-unprivileged-user
for more secure ways to fix this than enabling this option.
#allow_world_readable_tmpfiles = False

controls the compression level of variables sent to
worker processes. At the default of 0, no compression
is used. This value must be an integer from 0 to 9.
#var_compression_level = 9

controls what compression method is used for new-style ansible modules when
they are sent to the remote system. The compression types depend on having
support compiled into both the controller's python and the client's python.
The names should match with the python Zipfile compression types:
* ZIP_STORED (no compression. available everywhere)
* ZIP_DEFLATED (uses zlib, the default)
These values may be set per host via the ansible_module_compression inventory
variable
#module_compression = 'ZIP_DEFLATED'

This controls the cutoff point (in bytes) on --diff for files
set to 0 for unlimited (RAM may suffer!).
#max_diff_size = 1048576

[privilege_escalation]
#become=True
#become_method=sudo
#become_user=root
#become_ask_pass=False

[paramiko_connection]

https://riptutorial.com/ 8

uncomment this line to cause the paramiko connection plugin to not record new host
keys encountered. Increases performance on new host additions. Setting works independently
of the
host key checking setting above.
#record_host_keys=False

by default, Ansible requests a pseudo-terminal for commands executed under sudo. Uncomment
this
line to disable this behaviour.
#pty=False

[ssh_connection]

ssh arguments to use
Leaving off ControlPersist will result in poor performance, so use
paramiko on older platforms rather than removing it, -C controls compression use
#ssh_args = -C -o ControlMaster=auto -o ControlPersist=60s

The path to use for the ControlPath sockets. This defaults to
"%(directory)s/ansible-ssh-%%h-%%p-%%r", however on some systems with
very long hostnames or very long path names (caused by long user names or
deeply nested home directories) this can exceed the character limit on
file socket names (108 characters for most platforms). In that case, you
may wish to shorten the string below.

Example:
control_path = %(directory)s/%%h-%%r
#control_path = %(directory)s/ansible-ssh-%%h-%%p-%%r

Enabling pipelining reduces the number of SSH operations required to
execute a module on the remote server. This can result in a significant
performance improvement when enabled, however when using "sudo:" you must
first disable 'requiretty' in /etc/sudoers

By default, this option is disabled to preserve compatibility with
sudoers configurations that have requiretty (the default on many distros).

#pipelining = False

if True, make ansible use scp if the connection type is ssh
(default is sftp)
#scp_if_ssh = True

if False, sftp will not use batch mode to transfer files. This may cause some
types of file transfer failures impossible to catch however, and should
only be disabled if your sftp version has problems with batch mode
#sftp_batch_mode = False

[accelerate]
#accelerate_port = 5099
#accelerate_timeout = 30
#accelerate_connect_timeout = 5.0

The daemon timeout is measured in minutes. This time is measured
from the last activity to the accelerate daemon.
#accelerate_daemon_timeout = 30

If set to yes, accelerate_multi_key will allow multiple
private keys to be uploaded to it, though each user must
have access to the system via SSH to add a new key. The default
is "no".

https://riptutorial.com/ 9

#accelerate_multi_key = yes

[selinux]
file systems that require special treatment when dealing with security context
the default behaviour that copies the existing context or uses the user default
needs to be changed to use the file system dependent context.
#special_context_filesystems=nfs,vboxsf,fuse,ramfs

Set this to yes to allow libvirt_lxc connections to work without SELinux.
#libvirt_lxc_noseclabel = yes

[colors]
#highlight = white
#verbose = blue
#warn = bright purple
#error = red
#debug = dark gray
#deprecate = purple
#skip = cyan
#unreachable = red
#ok = green
#changed = yellow
#diff_add = green
#diff_remove = red
#diff_lines = cyan

Put this configuration in the root of your role directories to change the behavior of Ansible when
using that role. For example, you can set it to stop create playbook.retry on failed playbook runs or
to point to secret vars that you don't want in your git repo.

Read Getting started with ansible online: https://riptutorial.com/ansible/topic/826/getting-started-
with-ansible

https://riptutorial.com/ 10

https://riptutorial.com/ansible/topic/826/getting-started-with-ansible
https://riptutorial.com/ansible/topic/826/getting-started-with-ansible

Chapter 2: Ansible Architecture

Examples

Understanding Ansible Architecture

The idea is to have one or more control machines from where you can issue ad-hoc commands to
remote machines (via ansible tool) or run a sequenced instruction set via playbooks (via ansible-
playbook tool).

Basically, we use Ansible control machine, this will typically be your desktop, laptop or server.
Then from there, you use Ansible to push configuration changes out, via ssh.

The host inventory file determines the target machines where these plays will be executed. The
Ansible configuration file can be customized to reflect the settings in your environment.

https://riptutorial.com/ 11

https://i.stack.imgur.com/Mm0ci.png

Read Ansible Architecture online: https://riptutorial.com/ansible/topic/7659/ansible-architecture

https://riptutorial.com/ 12

https://riptutorial.com/ansible/topic/7659/ansible-architecture

Chapter 3: Ansible group variables

Examples

Group variables with static inventory

It is suggested that you define groups based on purpose of the host (roles) and also geography or
datacenter location (if applicable):

File inventory/production

[rogue-server]
192.168.1.1

[atlanta-webservers]
www-atl-1.example.com
www-atl-2.example.com

[boston-webservers]
www-bos-1.example.com
www-bos-2.example.com

[atlanta-dbservers]
db-atl-1.example.com
db-atl-2.example.com

[boston-dbservers]
db-bos-1.example.com

webservers in all geos
[webservers:children]
atlanta-webservers
boston-webservers

dbservers in all geos
[dbservers:children]
atlanta-dbservers
boston-dbservers

everything in the atlanta geo
[atlanta:children]
atlanta-webservers
atlanta-dbservers

everything in the boston geo
[boston:children]
boston-webservers
boston-dbservers

File group_vars/all

apache_port: 80

https://riptutorial.com/ 13

File group_vars/atlanta-webservers

apache_port: 1080

File group_vars/boston-webservers

apache_port: 8080

File host_vars/www-bos-2.example.com

apache_port: 8111

After running ansible-playbook -i inventory/hosts install-apache.yml (hosts in the playbook would
be hosts: all)

The ports would be

Address Port

192.168.1.1 80

www-atl-1.example.com 1080

www-atl-2.example.com 1080

www-bos-1.example.com 8080

www-bos-2.example.com 8111

Read Ansible group variables online: https://riptutorial.com/ansible/topic/6544/ansible-group-
variables

https://riptutorial.com/ 14

https://riptutorial.com/ansible/topic/6544/ansible-group-variables
https://riptutorial.com/ansible/topic/6544/ansible-group-variables

Chapter 4: Ansible Group Vars

Examples

Example group_vars/development, and why

Project structure

project/
 group_vars/
 development
 inventory.development
 playbook.yaml

These variables will be applied to hosts under the development group due to the filename.

Application
app_name: app
app_url: app.io
web_url: cdn.io
app_friendly: New App
env_type: production
app_debug: false

SSL
ssl: true
ev_ssl: false

Database
database_host: 127.0.0.1
database_name: app
database_user: sql

Elasticsearch
elasticsearch_host: 127.0.0.1

Read Ansible Group Vars online: https://riptutorial.com/ansible/topic/6226/ansible-group-vars

https://riptutorial.com/ 15

https://riptutorial.com/ansible/topic/6226/ansible-group-vars

Chapter 5: Ansible install mysql

Introduction

How use ansible to install mysql binary file

Examples

How use ansible to install mysql binary file

hosts: mysql tasks:

name: Add mysql user user: name: mysql shell: /sbin/nologin○

name: install the latest version of libselinux-python yum: name: libselinux-python state:
latest

○

name: install perl yum: name: perl state: latest○

name: remove the mysql-libs package yum: name: mysql-libs state: absent○

•

- name: download and unarchive tar
 unarchive:
 src=/tmp/mysql-5.6.35-linux-glibc2.5-x86_64.tar.gz
 dest=/tmp
 copy=yes

- name: Move mysql paceage to specified directory
 command: creates="/usr/local/mysql" mv /tmp/mysql-5.6.35-linux-glibc2.5-x86_64
/usr/local/mysql

- name: chown mysql mysql /usr/local/mysql
 file: path=/usr/local/mysql owner=mysql group=mysql recurse=yes

- name: Add lib to ld.so.conf
 lineinfile: dest=/etc/ld.so.conf line="/usr/local/mysql/lib/"

- name: ldconfig
 command: /sbin/ldconfig

- name: Mkdir mysql_data_dir
 file: path=/data/mysql/3306/{{ item }} state=directory owner=mysql group=mysql
 with_items:
 - data
 - logs
 - tmp

- name: Copy mysql my.cnf
 copy: src=/etc/my.cnf dest=/etc/my.cnf

https://riptutorial.com/ 16

- name: Copy mysql my.cnf
 copy: src=/etc/my.cnf dest=/usr/local/mysql/my.cnf

- name: Init mysql db
 command: /usr/local/mysql/scripts/mysql_install_db \
 --user=mysql \
 --basedir=/usr/local/mysql \
 --datadir=/data/mysql/3306/data

- name: Add mysql bin to profile
 lineinfile: dest=/etc/profile line="export PATH=$PATH:/usr/local/mysql/bin/"

- name: Source profile
 shell: executable=/bin/bash source /etc/profile

- name: Copy mysqld to init when system start
 command: cp -f /usr/local/mysql/support-files/mysql.server /etc/init.d/mysqld

- name: Add mysqld to system start
 command: /sbin/chkconfig --add mysqld

- name: Add mysql to system start when init 345
 command: /sbin/chkconfig --level 345 mysqld on

- name: Retart mysql
 service: name=mysqld state=restarted

Read Ansible install mysql online: https://riptutorial.com/ansible/topic/10920/ansible-install-mysql

https://riptutorial.com/ 17

https://riptutorial.com/ansible/topic/10920/ansible-install-mysql

Chapter 6: Ansible: Looping

Examples

with_items - simple list

A with_items loop in ansible can be used to easily loop over values.

- name: Add lines to this file
 lineinfile: dest=/etc/file line={{ item }} state=present
 with_items:
 - Line 1
 - Line 2
 - Line 3

with_items - predefined list

You can also loop over a variable list.

From vars:

favorite_snacks:
 - hotdog
 - ice cream
 - chips

and then the loop:

- name: create directories for storing my snacks
 file: path=/etc/snacks/{{ item }} state=directory
 with_items: '{{ favorite_snacks }}'

If you are using Ansible 2.0+ you must use quotes around the call to the variable.

with_items - predefined dictionary

It is possible to create more complex loops with dictionaries.

From vars:

packages:
 - present: tree
 - present: nmap
 - absent: apache2

then the loop:

- name: manage packages

https://riptutorial.com/ 18

 package: name={{ item.value }} state={{ item.key }}
 with_items: '{{ packages }}'

Or, if you don't like to use the key value:

vars:

packages:
 - name: tree
 state: present
 - name: nmap
 state: present
 - name: apache2
 state: absent

then the loop:

- name: manage packages
 package: name={{ item.name }} state={{ item.state }}
 with_items: '{{ packages }}'

with_items - dictionary

You can use a dictionary for a slightly more complex loop.

- name: manage packages
 package: name={{ item.name }} state={{ item.state }}
 with_items:
 - { name: tree, state: present }
 - { name: nmap, state: present }
 - { name: apache2, state: absent }

Nested loops

You can create nested loops using with_nested.

from vars:

keys:
 - key1
 - key2
 - key3
 - key4

then the loop:

- name: Distribute SSH keys among multiple users
 lineinfile: dest=/home/{{ item[0] }}/.ssh/authorized_keys line={{ item[1] }} state=present
 with_nested:
 - ['calvin', 'josh', 'alice']
 - '{{ keys }}'

https://riptutorial.com/ 19

This task will loop over each user and populate their authorized_keys file with the 4 keys defined in
the list.

Read Ansible: Looping online: https://riptutorial.com/ansible/topic/6414/ansible--looping

https://riptutorial.com/ 20

https://riptutorial.com/ansible/topic/6414/ansible--looping

Chapter 7: Ansible: Loops and Conditionals

Remarks

Official docs explains playbook conditionals.

http://docs.ansible.com/ansible/playbooks_conditionals.html•

Ansible (github)

https://github.com/marxwang/ansible-learn-resources•

Examples

What kinds of conditionals to use?

Use Conditionals via (syntax is in [brackets]):

when [when:]

Task:
 - name: run if operating system is debian
 command: echo "I am a Debian Computer"
 when: ansible_os_family == "Debian"

•

loops [with_items:]•

loops [with_dicts:]•

Custom Facts [when: my_custom_facts == '1234']•

Conditional imports•

Select files and Templates based on variables•

[When] Condition: `ansible_os_family` Lists

Common use

when: ansible_os_family == "CentOS"•
when: ansible_os_family == "Redhat"•
when: ansible_os_family == "Darwin"•
when: ansible_os_family == "Debian"•
when: ansible_os_family == "Windows"•

https://riptutorial.com/ 21

http://docs.ansible.com/ansible/playbooks_conditionals.html
https://github.com/marxwang/ansible-learn-resources

All Lists

based on discuss here http://comments.gmane.org/gmane.comp.sysutils.ansible/4685

OS_FAMILY = dict(
 RedHat = 'RedHat',
 Fedora = 'RedHat',
 CentOS = 'RedHat',
 Scientific = 'RedHat',
 SLC = 'RedHat',
 Ascendos = 'RedHat',
 CloudLinux = 'RedHat',
 PSBM = 'RedHat',
 OracleLinux = 'RedHat',
 OVS = 'RedHat',
 OEL = 'RedHat',
 Amazon = 'RedHat',
 XenServer = 'RedHat',
 Ubuntu = 'Debian',
 Debian = 'Debian',
 SLES = 'Suse',
 SLED = 'Suse',
 OpenSuSE = 'Suse',
 SuSE = 'Suse',
 Gentoo = 'Gentoo',
 Archlinux = 'Archlinux',
 Mandriva = 'Mandrake',
 Mandrake = 'Mandrake',
 Solaris = 'Solaris',
 Nexenta = 'Solaris',
 OmniOS = 'Solaris',
 OpenIndiana = 'Solaris',
 SmartOS = 'Solaris',
 AIX = 'AIX',
 Alpine = 'Alpine',
 MacOSX = 'Darwin',
 FreeBSD = 'FreeBSD',
 HPUX = 'HP-UX'
)

When Condition

Basic Usage

Use the when condition to control whether a task or role runs or is skipped. This is normally used
to change play behavior based on facts from the destination system. Consider this playbook:

- hosts: all
 tasks:
 - include: Ubuntu.yml
 when: ansible_os_family == "Ubuntu"

 - include: RHEL.yml
 when: ansible_os_family == "RedHat"

https://riptutorial.com/ 22

http://comments.gmane.org/gmane.comp.sysutils.ansible/4685

Where Ubuntu.yml and RHEL.yml include some distribution-specific logic.

Another common usage is to limit results to those in certain Ansible inventory groups. Consider
this inventory file:

[dbs]
mydb01

[webservers]
myweb01

And this playbook:

- hosts: all
 tasks:
 - name: Restart Apache on webservers
 become: yes
 service:
 name: apache2
 state: restarted
 when: webservers in group_names

This is using the group_names magic variable.

Conditional Syntax and Logic

Single condition

Syntax

when: (condition)

Example

when: ansible_os_family == "Debian"•
when: ansible_pkg_mgr == "apt"•
when: myvariablename is defined•

Boolean Filter

Example

when: result|failed

Multiple Conditions

Syntax

When: condition1 and/or condition2

https://riptutorial.com/ 23

http://docs.ansible.com/ansible/playbooks_variables.html#magic-variables-and-how-to-access-information-about-other-hosts

Example (simple)

when: ansible_os_family == "Debian" and ansible_pkg_mgr == "apt"

Example (complex)

Use parentheses for clarity or to control precedence. "AND" has a higher precedence than "OR".

Clauses can span lines:

when:
 ansible_distribution in ['RedHat', 'CentOS', 'ScientificLinux'] and
 (ansible_distribution_version|version_compare('7', '<') or
 ansible_distribution_version|version_compare('8', '>='))
 or
 ansible_distribution == 'Fedora'
 or
 ansible_distribution == 'Ubuntu' and
 ansible_distribution_version|version_compare('15.04', '>=')

Note the use of parentheses to group the "or" in the first distribution check.

Get `ansible_os_family` and `ansible_pkg_mgr` with setup

We can get facts (ansible_os_family, ansible_pkg_mgr) with Ad-Hoc command of setup module and
filter.

ansible_os_family:

 $ ansible all -m setup -a 'filter=ansible_os_family'
 ra.local | SUCCESS => {
 "ansible_facts": {
 "ansible_os_family": "Debian"
 },
 "changed": false
 }

•

ansible_pkg_mgr:

 $ ansible all -m setup -a 'filter=ansible_pkg_mgr'
 debian.local | SUCCESS => {
 "ansible_facts": {
 "ansible_pkg_mgr": "apt"
 },
 "changed": false
 }

•

Simple "When" Example(s)

Given:

variable_name: True

https://riptutorial.com/ 24

Then, these tasks with always run.

- name: This is a conditional task
 module: src=/example/ dest=/example
 when: variable_name

- name: This is a conditional task
 module: src=/example/ dest=/example
 when: True

This task will never run.

- name: This is a conditional task
 module: src=/example/ dest=/example
 when: False

Using until for a retry looping alive check

This is an example of using until/retries/delay to implement an alive check for a webapp that is
starting up. It assumes that there will be some period of time (up to 3 minutes) where the webapp
is refusing socket connections. After that, it checks the /alive page for the word "OK". It also
delegates the retrieval of the URL to the localhost running ansible. This makes sense as the final
task in a deployment playbook.

- hosts: my-hosts
 tasks:
 - action: uri url=http://{{ ansible_all_ipv4_addresses }}:8080/alive return_content=yes
 delegate_to: localhost
 register: result
 until: "'failed' not in result and result.content.find('OK') != -1"
 retries: 18
 delay: 10

The until retry pattern can be used with any action; Ansible documentation provides an example of
waiting until a certain shell command returns a desired result:
http://docs.ansible.com/ansible/playbooks_loops.html#do-until-loops.

Read Ansible: Loops and Conditionals online: https://riptutorial.com/ansible/topic/3555/ansible--
loops-and-conditionals

https://riptutorial.com/ 25

http://docs.ansible.com/ansible/playbooks_loops.html#do-until-loops
https://riptutorial.com/ansible/topic/3555/ansible--loops-and-conditionals
https://riptutorial.com/ansible/topic/3555/ansible--loops-and-conditionals

Chapter 8: Become (Privilege Escalation)

Introduction

Often you need to execute commands under a different user or get root privileges. Those options
allow you to become another user in the guest system.

Syntax

become: can be set to true or yes and triggers the user escalation settings.•
become_user: set to the desired user in the remote host.•
become_method: specify the command used to make login and change user.•
become_flags: change login parameters. Mostly used when you want to change to a system
user without shell privileges.

•

Examples

Only in a task

- name: Run script as foo user
 command: bash.sh
 become: true
 become_user: foo

Run all role tasks as root

- hosts: all
 become: true

- name: Start apache
 service: apache2
 state: started

Run a role as root

- hosts: all
 roles:
 - { role: myrole, become: yes }
 - myrole2

Read Become (Privilege Escalation) online: https://riptutorial.com/ansible/topic/8328/become--
privilege-escalation-

https://riptutorial.com/ 26

https://riptutorial.com/ansible/topic/8328/become--privilege-escalation-
https://riptutorial.com/ansible/topic/8328/become--privilege-escalation-

Chapter 9: Dynamic inventory

Remarks

Environment variables in dynamic inventory won't work, f.e.

"ansible_ssh_private_key_file": $HOME/.ssh/key.pem"

If the dynamic inventory server side passes $HOME for example, replace the variable in the client
code (Python):

json_input.replace("$HOME", os.environ.get("HOME"))

Examples

Dynamic inventory with login credentials

Pass dynamic inventory to ansible-playbook:

ansible-playbook -i inventory/dyn.py -l targethost my_playbook.yml

python inventory/dyn.py should print out something like this:

{
 "_meta": {
 "hostvars": {
 "10.1.0.10": {
 "ansible_user": "vagrant",
 "ansible_ssh_private_key_file": "/home/mrtuovinen/.ssh/id_rsa",
 "ansible_port": 22
 },
 "10.1.0.11": {
 "ansible_user": "ubuntu",
 "ansible_ssh_private_key_file": "/home/mrtuovinen/.ssh/id_rsa",
 "ansible_port": 22
 },
 "10.1.0.12": {
 "ansible_user": "steve",
 "ansible_ssh_private_key_file": "/home/mrtuovinen/.ssh/key.pem",
 "ansible_port": 2222
 }
 }
 },
 "vagrantbox": [
 "10.1.0.10"
],
 "ubuntubox": [
 "10.1.0.11"
],
 "osxbox": [

https://riptutorial.com/ 27

 "10.1.0.12"
]
}

Read Dynamic inventory online: https://riptutorial.com/ansible/topic/1758/dynamic-inventory

https://riptutorial.com/ 28

https://riptutorial.com/ansible/topic/1758/dynamic-inventory

Chapter 10: Galaxy

Examples

Sharing roles with Ansible Galaxy

It's also possible to easily share roles with the community or download roles that have been
created by other members of the community with Ansible Galaxy.

Ansible ships with a command line tool called ansible-galaxy that can be used to install roles in the
role directory defined in the ansible.cfg file:

ansible-galaxy install username.rolename

You can also use the Ansible Galaxy tool to download roles from other locations such as GitHub
by creating a text file with the location defined as src:

- src: https://github.com/username/rolename

And then install the roles in the text file like so:

ansible-galaxy install -r requirements.txt

You can also use the ansible-galaxy tool to create role "scaffolding":

ansible-galaxy init rolename

Once you've created a role and uploaded it to GitHub you can share it on Ansible Galaxy by
linking to your GitHub repo in Ansible Galaxy after signing in.

More examples under Galaxy topic.

Read Galaxy online: https://riptutorial.com/ansible/topic/6599/galaxy

https://riptutorial.com/ 29

https://galaxy.ansible.com
http://stackoverflow.com/documentation/ansible/-1/galaxy#t=201607281134173943327
https://riptutorial.com/ansible/topic/6599/galaxy

Chapter 11: Galaxy

Examples

Basic commands

Search role in Ansible Galaxy

ansible-galaxy search role_name

Install role from Ansible Galaxy

ansible-galaxy install role_name

More help

ansible-galaxy --help

Read Galaxy online: https://riptutorial.com/ansible/topic/6656/galaxy

https://riptutorial.com/ 30

https://riptutorial.com/ansible/topic/6656/galaxy

Chapter 12: How To Create A DreamHost
Cloud Server From An Ansible Playbook

Examples

Install Shade library

Shade is a library developed by OpenStack to simplify interactions with OpenStack clouds, like
DreamHost.

$ pip install shade

Write a Playbook to Launch a Server

Create a file named launch-server.yaml, that will be our playbook.

The first part of the playbook is a list of hosts that your playbook will run on, we only have one,
localhost.

- hosts: localhost

Then we need to define a list of tasks to perform in this playbook. We will only have one that
launches an Ubuntu Xenial server on DreamCompute.

tasks:
 - name: launch an Ubuntu server

Next part of the playbook uses the os_server (OpenStack Server) module. This defines what the
server has to look like in DreamCompute.

os_server:

First step is to authenticate to DreamCompute; substitute {username} with your DreamCompute
username, {password} with your DreamCompute password, and {project} with your
DreamCompute project. You'll find those in the OpenStack RC file.

 auth:
 auth_url: https://iad2.dream.io:5000
 username: {username}
 password: {password}
 project_name: {project}

Next lines define some elements of the new server.

 state: present

https://riptutorial.com/ 31

https://iad2.dreamcompute.com/project/access_and_security/api_access/openrc/

 name: ansible-vm1
 image: Ubuntu-16.04
 key_name: {keyname}
 flavor: 50
 network: public
 wait: yes

Lets break down the previous few lines:

state is the state of the server, possible values are present or absent•
name is the name of the server to create; can be any value•
image is the image to boot the server from; possible values are visible on DreamHost Cloud
web panel; the variable accepts either image name or UUID

•

key_name is the name of the public key to add to the server once it is created; this can be any
key has already been added to DreamCompute.

•

flavor is the flavor of server to boot; this defines how much RAM and CPU your server will
have; the variable accepts either the name of a flavor (gp1.semisonic) or the ID (50, 100,
200, etc)

•

network is the network to put your server on. In DreamHost Cloud case it is the public
network.

•

wait set to yes forces the playbook to wait for the server to be created before continuing.•

Running the Playbook

Run the Ansible playbook:

$ ansible-playbook launch-server.yaml

You should see output like

PLAY [localhost]

TASK [setup]

ok: [localhost]

TASK [launch an Ubuntu server]

changed: [localhost]

PLAY RECAP

localhost : ok=2 changed=1 unreachable=0 failed=0

Now if you check the DreamHost Cloud dashboard you should see a new instance named
“ansible-vm1”

Read How To Create A DreamHost Cloud Server From An Ansible Playbook online:
https://riptutorial.com/ansible/topic/4689/how-to-create-a-dreamhost-cloud-server-from-an-ansible-
playbook

https://riptutorial.com/ 32

https://iad2.dreamcompute.com/project/images/
https://iad2.dreamcompute.com/project/images/
https://iad2.dreamcompute.com/project/instances/
https://riptutorial.com/ansible/topic/4689/how-to-create-a-dreamhost-cloud-server-from-an-ansible-playbook
https://riptutorial.com/ansible/topic/4689/how-to-create-a-dreamhost-cloud-server-from-an-ansible-playbook

Chapter 13: Installation

Introduction

Installing Ansible in any OS, including Windows using Virtual Box and Vagrant. An alternate
solution is also available if you just want to practice ansible ad-hoc commands and playbooks and
do not wish to set up the local environment.

Examples

Installing Ansible on Ubuntu

Ansible maintains a PPA repository that can be used to install the Ansible binaries:

sudo apt-add-repository ppa:ansible/ansible -y
sudo apt-get update && sudo apt-get install ansible -y

To install a specific version, use pip. The PPA may be out of date.

Installing Ansible on MacOS

There are two main ways way to install Ansible on OS X, either using the Homebrew or Pip
package manager.

If you have homebrew, the latest Ansible can be installed using the following command:

brew install ansible

To install Ansible 1.9.X branch use following command:

brew install homebrew/versions/ansible19

To install Ansible 2.0.X branch use following command:

brew install homebrew/versions/ansible20

To install using pip, use the following command: pip install ansible.

To install a specific version, use pip install ansible=<required version>.

Installation on Red Hat based systems

Ansible can be installed on CentOS or other Red Hat based systems. Firstly you should install the
prerequisites:

https://riptutorial.com/ 33

http://brew.sh

sudo yum -y update
sudo yum -y install gcc libffi-devel openssl-devel python-pip python-devel

then install Ansible with pip:

sudo pip install ansible

I can recommend for you to upgrade the setuptools after the installation:

sudo pip install --upgrade setuptools

You can also use the local Package Manager as well:

yum install ansible

Installing from source

Ansible is best used from a checkout.

It runs as you (not root) and it has minimal python dependencies.

Python pip dependency install with pip:

sudo pip install paramiko PyYAML Jinja2 httplib2 six

Next, clone the Ansible repo from GitHub:

cd ~/Documents
git clone git://github.com/ansible/ansible.git --recursive
cd ansible

Finally, add the ansible initialization script line to your ~/.bashrc or ~/.zshrc :

source ~/Documents/ansible/hacking/env-setup

Restart your terminal session, and test with

ansible --version

Installation on Amazon Linux from git repo

Amazon Linux is a RHEL variant, so the Red Hat instructions should work for the most part. There
is, however, at least one discrepancy.

There was an instance where the python27-devel package, as opposed to python-devel, was
explicitly necessary.

Here, we will install from source.

https://riptutorial.com/ 34

https://github.com/ansible/ansible

sudo yum -y update
sudo yum -y install python27 python27-devel openssl-devel libffi-devel gcc git

git clone https://github.com/ansible/ansible/<search the github for a preferable branch>

cd ansible
sudo python setup.py build
sudo python setup.py install

Installing Ansible On Any OS(windows) Machine Using Virtual Box+Vagrant

My laptop is having Windows 10. Here i am giving steps that you can follow to test and learn
Ansible.

SOME THEORY

For Ansible you need a Control Machine and a host(or hosts) to run the Playbook.

Control Machine should be Linux based or MacOS(windows not allowed) and need Python
(2.6 or higher version). Here Ansible will be installed.

•

Target machine (host/node) can be Linux/MacOS/windows. This needs only Python to be
installed. No agent software required.

•

SETUP

Step 1: Install Virtual Box

Virtual box is a software to create virtual computers of different OS. It is like having multiple
computers each or different OS and different versions.

Download Virtual Box according to the OS in your system and install it.

Step 2: Install Vagrant

Vagrant is Command Line Interface to create virtual machines in virtual box. This makes things
easy. You need to learn basic Vagrant commands.

Step 3: Create a folder where you want your virtual machine

Step 4: Create Virtual Machine using Vagrant

Open terminal and go to the path where you created folder, and run the following two commands.

You need to select Virtual Box. I am installing Ubuntu for example. You can choose anything from
the list. You need to run these two commands under "virtual box" category: vagrant init
ubuntu/trusty64 and vagrant up --provider virtualbox. Other categories might be: hyperv,
vmware_desktop etc. (this will take some time, as it will download the necessary files)

Step 4: Install Ansible

For UbuntuOS: sudo apt-get install ansible

https://riptutorial.com/ 35

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html
http://vagrantcloud.com

Alternative solution:

You can use Katacoda to practice ansible. No need to install or setup anything. Run two
commands given in step 2 and after that, you are good to go.

Read Installation online: https://riptutorial.com/ansible/topic/4906/installation

https://riptutorial.com/ 36

https://www.katacoda.com/jonatanblue/scenarios/1
https://riptutorial.com/ansible/topic/4906/installation

Chapter 14: Introduction to playbooks

Examples

Overview

In Ansible, a playbook is is a YAML file containing the definition of how a server should look. In a
playbook you define what actions Ansible should take to get the server in the state you want. Only
what you define gets done.

This is a basic Ansible playbook that installs git on every host belonging to the web group:

- name: Git installation
 hosts: web
 remote_user: root
 tasks:
 - name: Install Git
 apt: name=git state=present

Playbook's structure

The format of a playbook is quite straightforward, but strict in terms of spacing and layout. A
playbook consists of plays. A play is a combination of targets hosts and the tasks we want to apply
on these hosts, so a drawing of a playbook is this:

https://riptutorial.com/ 37

To execute this playbook, we simply run:

ansible-playbook -i hosts my_playbook.yml

Play's structure

Here’s a simple play:

- name: Configure webserver with git
 hosts: webserver
 become: true
 vars:
 package: git
 tasks:
 - name: install git
 apt: name={{ package }} state=present

As we said earlier, every play must contain:

A set of hosts to configure•

A list of tasks to be executed on those hosts•

Think of a play as the thing that connects hosts to tasks. In addition to specifying hosts and tasks,
plays also support a number of optional settings. Two common ones are:

name: a comment that describes what the play is about. Ansible will print this out when the •

https://riptutorial.com/ 38

http://i.stack.imgur.com/5nHuP.jpg

play starts to run
vars: a list of variables and values•

Tags

Play contains several tasks, which can be tagged:

- name: Install applications
 hosts: all
 become: true
 tasks:
 - name: Install vim
 apt: name=vim state=present
 tags:
 - vim
 - name: Install screen
 apt: name=screen state=present
 tags:
 - screen

Task with tag 'vim' will run when 'vim' is specified in tags. You can specify as many tags as you
want. It is useful to use tags like 'install' or 'config'. Then you can run playbook with specifying tags
or skip-tags. For

ansible-playbook my_playbook.yml --tags "tag1,tag2"
ansible-playbook my_playbook.yml --tags "tag2"
ansible-playbook my_playbook.yml --skip-tags "tag1"

By default Ansible run all tags

Read Introduction to playbooks online: https://riptutorial.com/ansible/topic/3343/introduction-to-
playbooks

https://riptutorial.com/ 39

https://riptutorial.com/ansible/topic/3343/introduction-to-playbooks
https://riptutorial.com/ansible/topic/3343/introduction-to-playbooks

Chapter 15: Inventory

Parameters

Parameter Explanation

ansible_connection

Connection type to the host. This can be the name of any of
ansible’s connection plugins. SSH protocol types are smart,
ssh or paramiko. The default is smart. Non-SSH based types
are described in the next section.

ansible_host
The name of the host to connect to, if different from the alias
you wish to give to it.

ansible_port The ssh port number, if not 22

ansible_user The default ssh user name to use.

ansible_ssh_pass
The ssh password to use (this is insecure, we strongly
recommend using --ask-pass or SSH keys)

ansible_ssh_private_key_file
Private key file used by ssh. Useful if using multiple keys and
you don’t want to use SSH agent.

ansible_ssh_common_args
This setting is always appended to the default command line
for sftp, scp, and ssh. Useful to configure a ProxyCommand for a
certain host (or group).

ansible_sftp_extra_args
This setting is always appended to the default sftp command
line.

ansible_scp_extra_args
This setting is always appended to the default scp command
line.

ansible_ssh_extra_args
This setting is always appended to the default ssh command
line.

ansible_ssh_pipelining
Determines whether or not to use SSH pipelining. This can
override the pipelining setting in ansible.cfg.

ansible_become
Equivalent to ansible_sudo or ansible_su, allows to force
privilege escalation

ansible_become_method Allows to set privilege escalation method

ansible_become_user
Equivalent to ansible_sudo_user or ansible_su_user, allows to
set the user you become through privilege escalation

https://riptutorial.com/ 40

Parameter Explanation

ansible_become_pass
Equivalent to ansible_sudo_pass or ansible_su_pass, allows you
to set the privilege escalation password

ansible_shell_type

The shell type of the target system. You should not use this
setting unless you have set the ansible_shell_executable to a
non-Bourne (sh) compatible shell. By default commands are
formatted using sh-style syntax. Setting this to csh or fish will
cause commands executed on target systems to follow those
shell’s syntax instead.

ansible_python_interpreter

The target host python path. This is useful for systems with
more than one Python or not located at /usr/bin/python such
as *BSD, or where /usr/bin/python is not a 2.X series
Python. We do not use the /usr/bin/env mechanism as that
requires the remote user’s path to be set right and also
assumes the python executable is named python, where the
executable might be named something like python2.6.

ansible_*_interpreter
Works for anything such as ruby or perl and works just like
ansible_python_interpreter. This replaces shebang of modules
which will run on that host.

ansible_shell_executable

This sets the shell the ansible controller will use on the target
machine, overrides executable in ansible.cfg which defaults to
/bin/sh. You should really only change it if is not possible to
use /bin/sh (i.e. /bin/sh is not installed on the target machine
or cannot be run from sudo.). New in version 2.1.

Examples

Inventory with username and password

Inventory is the Ansible way to track all the systems in your infrastructure. Here is a simple
inventory file containing a single system and the login credentials for Ansible.

[targethost]
192.168.1.1 ansible_user=mrtuovinen ansible_ssh_pass=PassW0rd

Inventory with custom private key

[targethost]
192.168.1.1 ansible_user=mrtuovinen ssh_private_key_file=~/.ssh/custom_key

Inventory with custom SSH port

https://riptutorial.com/ 41

[targethost]
192.168.1.1 ansible_user=mrtuovinen ansible_port=2222

Pass static inventory to ansible-playbook

ansible-playbook -i path/to/static-inventory-file -l myhost myplaybook.yml

Pass dynamic inventory to ansible-playbook

ansible-playbook -i path/to/dynamic-inventory-script.py -l myhost myplaybook.yml

See dynamic inventory for more details.

Inventory, Group Vars, and You

project structure (ansible best practice).

project/
 group_vars/
 development
 inventory.development
 playbook.yaml

it all starts with inventory.development

[development]
dev.fakename.io

[development:vars]
ansible_host: 192.168.0.1
ansible_user: dev
ansible_pass: pass
ansible_port: 2232

[api:children]
development

which lets you link to group_vars. Hold data 'specific' to that environment ...

app_name: NewApp_Dev
app_url: https://dev.fakename.io
app_key: f2390f23f01233f23f

that lets one run the following playbook AGAINST the inventory file:

- name: Install api.
 hosts: api
 gather_facts: true
 sudo: true

https://riptutorial.com/ 42

http://www.riptutorial.com/ansible/topic/1758/dynamic-inventory

 tags:
 - api
 roles:
 - { role: api, tags: ["api"] }

with the following runline:

ansible-playbook playbook.yaml -i inventory.development

Hosts file

The host file is used to store connections for Anisble playbooks. There are options to define
connection parameters:

ansible_host is the hostname or IP address

ansible_port is the port the machine uses for SSH

ansible_user is the remote user to connect as

ansible_ssh_pass if using a password to SSH

ansible_ssh_private_key_file if you need to use multiple keys that are specific to hosts

These are the most commonly used options. More can be found in the Ansible official
documentation.

Here is an example hosts file:

Consolidation of all groups
[hosts:children]
web-servers
offsite
onsite
backup-servers

[web-servers]
server1 ansible_host=192.168.0.1 ansible_port=1600
server2 ansible_host=192.168.0.2 ansible_port=1800

[offsite]
server3 ansible_host=10.160.40.1 ansible_port=22 ansible_user=root
server4 ansible_host=10.160.40.2 ansible_port=4300 ansible_user=root

You can make groups of groups
[offsite:children]
backup-servers

[onsite]
server5 ansible_host=10.150.70.1 ansible_ssh_pass=password

[backup-servers]
server6 ansible_host=10.160.40.3 ansible_port=77

https://riptutorial.com/ 43

http://docs.ansible.com/ansible/intro_inventory.html#list-of-behavioral-inventory-parameters
http://docs.ansible.com/ansible/intro_inventory.html#list-of-behavioral-inventory-parameters

Read Inventory online: https://riptutorial.com/ansible/topic/1764/inventory

https://riptutorial.com/ 44

https://riptutorial.com/ansible/topic/1764/inventory

Chapter 16: Loops

Examples

Copy multiple files in a single task

- name: copy ssl key/cert/ssl_include files
 copy: src=files/ssl/{{ item }} dest=/etc/apache2/ssl/
 with_items:
 - g_chain.crt
 - server.crt
 - server.key
 - ssl_vhost.inc

Install multiple packages in a single task

- name: Installing Oracle Java and support libs
 apt: pkg={{ item }}
 with_items:
 - python-software-properties
 - oracle-java8-installer
 - oracle-java8-set-default
 - libjna-java

Read Loops online: https://riptutorial.com/ansible/topic/6095/loops

https://riptutorial.com/ 45

https://riptutorial.com/ansible/topic/6095/loops

Chapter 17: Roles

Examples

Using roles

Ansible uses the concept of roles to better allow modular code and avoid repeating yourself.

A role is simply a folder structure that Ansible knows where to load vars files, tasks and handlers
from. An example might look something like this:

apache/
├── defaults
│ └── main.yml
├── files
│ ├── mod-pagespeed-stable_current_i386.deb
│ ├── mod-pagespeed-stable_current_i386.rpm
│ ├── mod-pagespeed-stable_current_amd64.deb
| └── mod-pagespeed-stable_current_x86_64.rpm
├── tasks
│ ├── debian.yml
│ ├── main.yml
│ └── redhat.yml
├── templates
│ ├── httpd.conf.j2
│ └── sites-available
│ └── virthualhost.conf.j2
└── vars
 ├── debian
 └── redhat

You can then use the role with a basic playbook that just looks like this:

- hosts: webservers
 roles:
 - apache

When you run Ansible against this playbook it will target all the hosts in the webservers group and
run the apache role defined above against it, automatically loading any default variables for the role
and running all the tasks included in tasks/main.yml. Ansible also knows to look for certain types of
files in role friendly locations:

If roles/x/tasks/main.yml exists, tasks listed therein will be added to the play•

If roles/x/handlers/main.yml exists, handlers listed therein will be added to the play•

If roles/x/vars/main.yml exists, variables listed therein will be added to the play•

If roles/x/meta/main.yml exists, any role dependencies listed therein will be added to the list
of roles (1.3 and later)

•

https://riptutorial.com/ 46

http://docs.ansible.com/ansible/playbooks_roles.html

Any copy, script, template or include tasks (in the role) can reference files in
roles/x/{files,templates,tasks}/ (dir depends on task) without having to path them relatively or
absolutely

•

Role dependencies

Roles also enable you to define other roles as a dependency by creating a meta/main.yml file with a
dependencies block:

dependencies:
 - role: common

It's also possible to pass a value to a parameter/variable in the dependent role:

dependencies:
 - { role: common, some_parameter: 3 }

Or even execute the dependent role conditionally:

dependencies:
 - { role: common, some_parameter: 3 }
 - { role: sshd, enable_sshd: false,
 when: environment == 'production' }

Dependent roles are always executed before the roles that depend on them. Also, they are only
executed once. If two roles state the same one as their dependency, it is only executed the first
time.

Imagine the roles role1, role2 and role3 with the folling meta/main.yml's:
role1/meta/main.yml:

dependencies:
 - role: role3

role2/meta/main.yml:

dependencies:
 - role: role3

When executing role1 and role2 in the same playbook (with role1 called before role2), the
execution order would be the following:

role3 -> role1 -> role2

You may override this behaviour by specifying allow_duplicates: yes in meta/main.yml of role1 and
role2. The resulting execution order would the be:

role3 -> role1 -> role3 -> role2

https://riptutorial.com/ 47

Separating distribution specific tasks and variables inside a role

We can easily separate distribution specific tasks and variables into different dedicated .yml files.
Ansible helps us to automatically identify the target hosts distribution via {{ ansible_distribution
}} and {{ ansible_distribution_version }}, so we just have to name the distribution dedicated .yml
files accordingly.

For Ubuntu Xenial the basic role dir tree would then look something like that:

role
├── tasks
│ ├── main.yml
│ └── Ubuntu16.04.yml
└── vars
 └── Ubuntu16.04.yml

Inside the tasks/main.yml we can now automatically include the proper variables and tasks for the
target hosts distribution.

tasks/main.yml

- name: include distribution specific vars
 include_vars: "{{ ansible_distribution }}{{ ansible_distribution_version }}.yml"

- name: include distribution specific install
 include: "{{ ansible_distribution }}{{ ansible_distribution_version }}.yml"

Inside tasks/Ubuntu16.06.yml and vars/Ubuntu16.04.yml we can now define tasks and variables for
Ubuntu Xenial respectively.

Read Roles online: https://riptutorial.com/ansible/topic/3396/roles

https://riptutorial.com/ 48

https://riptutorial.com/ansible/topic/3396/roles

Chapter 18: Secret encryption

Remarks

Ansible offers Vault (not to be mistaken with HashiCorp Vault!) to handle sensitive data encryption.
Vault primarily targets to encrypt any structured data such as variables, tasks, handlers.

Examples

Encrypting sensitive structured data

First, create a key file, e.g., vault_pass_file, which ideally contains a long sequence of random
characters. In linux systems you could use pwgen to create a random password file:

pwgen 256 1 > vault_pass_file

Then, use this file to encrypt sensitive data, e.g., groups_vars/group.yml:

ANSIBLE_VAULT_PASSWORD_FILE=vault_pass_file ansible-vault encrypt group_vars/group.yml

From now on, in order to run a playbook you need the vault_pass_file:

ANSIBLE_VAULT_PASSWORD_FILE=vault_pass_file ansible-playbook -i inventories/nodes my-
playbook.yml

Note, you could also use the flag --vault-password-file vault_pass_file instead of setting the
ANSIBLE_VAULT_PASSWORD_FILE environment variable.

In order to edit or decrypt the secret on disk you can use ansible-vault edit and ansible-vault
decrypt respectively.

Using lookup pipes to decrypt non-structured vault-encrypted data

With Vault you can also encrypt non-structured data, such as private key files and still be able to
decrypt them in your play with the lookup module.

- name: Copy private key to destination
 copy:
 dest=/home/user/.ssh/id_rsa
 mode=0600
 content=lookup('pipe', 'ANSIBLE_VAULT_PASSWORD_FILE=vault_pass_file ansible-vault view
keys/private_key.enc')

Using local_action to decrypt vault-encrypted templates

https://riptutorial.com/ 49

http://docs.ansible.com/ansible/playbooks_vault.html
https://www.vaultproject.io/

You can run a play which relies on vault-encrypted templates by using the local_action module.

- name: Decrypt template
 local_action: "shell {{ view_encrypted_file_cmd }} {{ role_path }}/templates/template.enc >
{{ role_path }}/templates/template"
 changed_when: False

- name: Deploy template
 template:
 src=templates/template
 dest=/home/user/file

- name: Remove decrypted template
 local_action: "file path={{ role_path }}/templates/template state=absent"
 changed_when: False

Please note the changed_when: False. This is important in case you run idempotence tests with your
ansible roles - otherwise each time you run the playbook a change is signaled. In
group_vars/all.yml you could set a global decrypt command for reuse, e.g., as
view_encrypted_file_cmd.

group_vars/all.yml

view_encrypted_file_cmd: "ansible-vault --vault-password-file {{ lookup('env',
'ANSIBLE_VAULT_PASSWORD_FILE') }} view"

Now, when running a play you need to set the ANSIBLE_VAULT_PASSWORD_FILE environment variable to
point to your vault password file (ideally with an absolute path).

Read Secret encryption online: https://riptutorial.com/ansible/topic/3355/secret-encryption

https://riptutorial.com/ 50

https://riptutorial.com/ansible/topic/3355/secret-encryption

Chapter 19: Using Ansible with Amazon Web
Services

Remarks

example-2: This is serves as an example so just don't copy/past it. Instead, to suit your needs, you
should customize its variables; ansible_key, security group rules etc..

example-1: To disable the ssh strict host key checking, a behavior we don't want when automating
tasks, we set it to no in ansible.cfg file. ie: StrictHostKeyChecking=no

The ec2.py file is a python script that executes and returns your AWS ressources based on the
ec2.ini which is the configuration file that you need to customize if you want to limit the scope of
your project to some particular regions, specific tags etc...

Examples

How to start EC2 instance from official Amazon AMIs, modify it and store it as
new AMI

This is a very common workflow when using Ansible for provisioning an AWS EC2 instance. This
post assumes a basic understand of Ansible and most importantly, assumes you've properly
configured it to connect to AWS.

As Ansible official documentation insists, we are going to use four roles:

1- ami_find to get the ami id based on which we will launch our EC2 instance.

2- ec2_ami_creation to effectively launch the EC2 instance.

3- code_deploy for modifying the instance; this could be anything so we will simply transfer a file
to the target machine.

4- build_ami to build our new image based on the running ec2 instance. This post assumes you
are at the top level of your Ansible project: my_ansible_project

The first role: ami_find

cd my_ansible_project/roles && ansible-galaxy init ami_find

In this role we are going to use the ec2_ami_find module and as an example, we will search for
the an Ubuntu machine and get its ami_id (ami-xxxxxxxx). Now edit
my_ansible_project/roles/ami_find/tasks/main.yml file:

https://riptutorial.com/ 51

http://docs.ansible.com/ansible/playbooks_roles.html#roles
http://docs.ansible.com/ansible/ec2_ami_find_module.html

- ec2_ami_find:
 name: "ubuntu/images/hvm-ssd/ubuntu-trusty-14.04-amd64-server-*"
 sort: name
 sort_order: descending
 sort_end: 1
 region: "{{ aws_region }}"
 register: ami_find
- set_fact: ami_ubuntu="{{ ami_find.results[0].ami_id }}"

The second role: ec2_ami_creation

Here, we will use the ami_id we got from the first role and then launch our new instance based on
it:

cd my_ansible_project/roles && ansible-galaxy init ec2_ami_creation

In this role we are going to use most importantly the ec2_module to launch our instance. Now edit
my_ansible_project/roles/ec2_ami_creation/tasks/main.yml file:

- ec2_vpc_subnet_facts:
 region: "{{aws_region}}"
 register: vpc
- name: creation of security group of the ec2 instance
 ec2_group:
 name: example
 description: an example EC2 group
 region: "{{ aws_region }}"
 rules:
 - proto: tcp
 from_port: 22
 to_port: 22
 cidr_ip: 0.0.0.0/0
 state: present
 register: ec2_sg

- name: create instance using Ansible
 ec2:
 key_name: "{{ ansible_key }}"
 group: example
 vpc_subnet_id: "{{vpc.subnets[0].id}}"
 instance_type: "{{ instance_type }}"
 ec2_region: "{{ aws_region }}"
 image: "{{ base_image }}"
 assign_public_ip: yes
 wait: yes
 register: ec2

- set_fact: id={{ec2.instances[0].id}}

- name: adding the newly created instance to a temporary group in order to access it later
from another play
 add_host: name={{ item.public_ip }} groups=just_created
 with_items: ec2.instances

- name: Wait for SSH to come up
 wait_for: host={{ item.public_dns_name }} port=22 delay=10 timeout=640 state=started
 with_items: ec2.instances

https://riptutorial.com/ 52

http://docs.ansible.com/ansible/ec2_module.html

The third role: code_deploy

Here, we will provision this instance, which was added to a group called just_created

cd my_ansible_project/roles && ansible-galaxy init code_deploy

In this role we are going to use the template_module to transfer a file & write the machine
hostname in it. Now edit my_ansible_project/roles/code_deploy/tasks/main.yml file:

- template: src=my_file.txt.j2 dest=/etc/my_file.txt

then move to templates folder inside your role:

cd my_ansible_project/roles/templates and add a file called my_file.txt.j2 containing:

my name is {{ ansible_hostname }}`

The fourth role: build_ami

We will now create an image of the running instance using the ec2_ami module. Move to you
project folder and:

 cd my_ansible_project/roles && ansible-galaxy init build_ami

Now edit my_ansible_project/roles/build_ami/tasks/main.yml file:

- ec2_ami:
 instance_id: "{{ instance_id }}"
 wait: yes
 name: Base_Image

Now, I think you have been wondering how to orchestrate all of these roles. Am I right? If so,
continue reading.

We will write a playbook, composed of three plays: first play applicable on localhost will call our
first two roles, second play applicable on our just_created group. last role will be applicable on
localhost. Why localhost? When we want to manage some AWS ressources, we use our local
machine, as simple as that. Next, we will use a vars file in which we will put our variables:
ansible_key, aws_region, etc...

create infrastructure folder at the top of your project and add a file inside it called aws.yml:

aws_region: ap-southeast-2
ansible_key: ansible
instance_type: t2.small

https://riptutorial.com/ 53

http://docs.ansible.com/ansible/template_module.html
http://docs.ansible.com/ansible/ec2_ami_module.html

So at the top of your project create build_base_image.yml and add this:

 - hosts: localhost
 connection: local
 gather_facts: False
 vars_files:
 - infrastructure/aws.yml
 roles:
 - ami_find
 - { role: ec2_creation, base_image: "{{ ami_ubuntu }}"}

 - hosts: just_created
 connection: ssh
 gather_facts: True
 become: yes
 become_method: sudo
 roles:
 - code_deploy

 - hosts: localhost
 connection: local
 gather_facts: False
 vars_files:
 - infrastructure/aws.yml
 roles:
 - { role: new_image, instance_id: "{{ id }}"}

That's it, Dont forget to delete your ressources after testing this, or why not create a role to delete
the running instance :-)

How to properly configure Ansible to connect to Amazon Web Services

Managing AWS resources that scale up and down runs into the limits of the static inventory host
file, that's why we need something dynamic. And that's what the dynamic inventories are for. Let's
start:

Download these ec2.ini and ec2.py files to the your project folder:

cd my_ansible_project
wget https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/ec2.py
wget https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/ec2.ini

Once done, make the ec2.py file executable:

chmod +x ec2.py

Now, export your AWS Secret and Access key as environnment variables:

export AWS_ACCESS_KEY_ID='ABCDEFGHIJKLM'
export AWS_SECRET_ACCESS_KEY='NOPQRSTUVWXYZ'

To use the ec2.py script we need the Python AWS SDK, boto so you need to install it:

https://riptutorial.com/ 54

http://docs.ansible.com/ansible/intro_dynamic_inventory.html#id6
https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/ec2.ini
https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/ec2.py
http://boto.cloudhackers.com/en/latest/

sudo pip install boto

To test if everything is good, try executing the ec2.py by listing your resources:

./ec2.py --list

you should see something similar to:

{
 "_meta": {
 "hostvars": {}
 }
}

Now we want to use the dynamic inventory along with our static hosts file. First, create a folder
called inventory, add ec2.py, ec2.ini and our hosts file to it then tell Ansible to use that folder as an
inventory file:

mkdir inventory
mv ec2.py inventory/ec2.py
mv ec2.ini inventory/ec2.ini
mv hosts inventory/hosts

Next we should define project level configuration for Ansible by creating an Ansible config file in
your project folder called ansible.cfg and adding this:

[defaults]
hostfile = inventory
[ssh_connection]
pipelining = False
ssh_args = -o ControlMaster=auto -o ControlPersist=30m -o StrictHostKeyChecking=no

Next we need to configure Ansible to use an SSH key to authenticate access to our EC2
instances. Using an SSH agent is the best way to authenticate with resources, as this makes it
easier to manage keys:

ssh-agent bash
ssh-add ~/.ssh/keypair.pem

That's it! If you followed this, you can test it by using the ping module and then, you will see your
running instances that have been configured to use your key responding with pong:

ansible -m ping all
11.22.33.44 | success >> {
 "changed": false,
 "ping": "pong"
}

Read Using Ansible with Amazon Web Services online:
https://riptutorial.com/ansible/topic/3302/using-ansible-with-amazon-web-services

https://riptutorial.com/ 55

http://docs.ansible.com/ansible/ping_module.html
http://docs.ansible.com/ansible/ping_module.html
https://riptutorial.com/ansible/topic/3302/using-ansible-with-amazon-web-services

Chapter 20: Using Ansible with OpenStack

Introduction

OpenStack is an open-source software platform for cloud computing. Linux instances can be
launched/stopped manualy using the graphical web interface or automated thanks to ansible's
openstack cloud module.

Configuring ansible can be tricky, but once well configured using it is really easy and powerfull for
testing and Continuous Integration environment.

Parameters

parameters Comments

hosts: localhost
OpenStack commands are launched from
our localhost

gather_facts: False
We dont need to gather information on our
localhost

auth_url: https://openstack-
identity.mycompany.com/v2.0

use V2.0 URL

state: present
'present' / 'absent' to create/delete the
instance

validate_certs: False usefull if https uses self signed certificates

network: "{{ NetworkName }}" (optional)

auto_ip: yes (optional)

Remarks

We put the authentication URL directly in the playbook, not in a variable. URL used in in vars
must be escaped.

•

Be carefull with authentication URL version use V2.0 instead of V3 in https://openstack-
identity.mycompany.com/v2.0.

•

In yml files, be very carefull when copy/paste from browser. Check twice the spaces as they
are taken into account.

•

More details at: http://docs.ansible.com/ansible/list_of_cloud_modules.html#openstack•

Examples

https://riptutorial.com/ 56

https://openstack-identity.mycompany.com/v2.0
https://openstack-identity.mycompany.com/v2.0
https://openstack-identity.mycompany.com/v2.0
https://openstack-identity.mycompany.com/v2.0
http://docs.ansible.com/ansible/list_of_cloud_modules.html#openstack

Check your Ansible version

Check the right software versions are installed:

ansible >=2.0•
python >=2.6•
shade module for python•

$ansible --version
ansible 2.2.0.0

$python --version
Python 2.7.5

Install 'shade' the python component used to pilot openstack.

$pip install shade

Note : if you use a company proxy, it's always useful to know the right pip synthax

$pip install --proxy proxy_ip:proxy_port shade

Gather informations from OpenStack GUI to configure Ansible

Our openstack tenant is already set:

a virtual lan gives instances private IP•
a virtual router map public IP to private IP•
a security key has been generated•
we have default firewall configuration for ssh and port 80•
we are able to launch an instance thanks to the OpenStack web interface•

Let gather all needed informations from this web interface.

Authentication informations can be found in the openstack.rc file. this file can be downloaded
using the OpenStack webinterface in [access and security/API Access].

$cat openstack.rc
#!/bin/bash

To use an OpenStack cloud you need to authenticate against the Identity
service named keystone, which returns a **Token** and **Service Catalog**.
The catalog contains the endpoints for all services the user/tenant has
access to - such as Compute, Image Service, Identity, Object Storage, Block
Storage, and Networking (code-named nova, glance, keystone, swift,
cinder, and neutron).

NOTE: Using the 2.0 *Identity API* does not necessarily mean any other
OpenStack API is version 2.0. For example, your cloud provider may implement
Image API v1.1, Block Storage API v2, and Compute API v2.0. OS_AUTH_URL is

https://riptutorial.com/ 57

only for the Identity API served through keystone.
export OS_AUTH_URL=https://openstack-identity.mycompany.com/v3

With the addition of Keystone we have standardized on the term **tenant**
as the entity that owns the resources.
export OS_TENANT_ID=1ac99fef77ee40148d7d5ba3e070caae
export OS_TENANT_NAME="TrainingIC"
export OS_PROJECT_NAME="TrainingIC"

In addition to the owning entity (tenant), OpenStack stores the entity
performing the action as the **user**.
export OS_USERNAME="UserTrainingIC"

With Keystone you pass the keystone password.
echo "Please enter your OpenStack Password: "
read -sr OS_PASSWORD_INPUT
export OS_PASSWORD=$OS_PASSWORD_INPUT

If your configuration has multiple regions, we set that information here.
OS_REGION_NAME is optional and only valid in certain environments.
export OS_REGION_NAME="fr"
Don't leave a blank variable, unset it if it was empty
if [-z "$OS_REGION_NAME"]; then unset OS_REGION_NAME; fi

We get OS_AUTH_URL, OS_TENANT_NAME, OS_USERNAME.

Authentication API version : OS_AUTH_URL

Beware of authentication API version. By default v3 is activated, but ansible needs the v2.0. We
get the url and set V2.0 instead of V3 : https://openstack-identity.mycompany.com/v2.0

VM informations

Create an instance using the OpenStack web interface and get the name for image, flavor, key,
network, security group.

Create a ./group_vars/all file with all the needed informations.

$vi ./group_vars/all
Authentication
AuthUserName: UserTrainingIC
AuthPassword: PasswordTrainingIC
TenantName: TrainingIC

VM infos
ImageName: CentOS-7-x86_64-GenericCloud-1607
FlavorName: m1.1cpu.1gb
InfraKey: KeyTrainingIC
NetworkName: NetPrivateTrainingIC
SecurityGroup: default

Write the ansible playbook to create the instance

Let use 'os_server' command from module 'Cloud' [
http://docs.ansible.com/ansible/os_server_module.html]. Variables are defined in ./group_vars/all.

https://riptutorial.com/ 58

https://openstack-identity.mycompany.com/v2.0
http://docs.ansible.com/ansible/os_server_module.html%5D

$vi launch_compute.yml
- name: launch a compute instance
 hosts: localhost
 gather_facts: False
 tasks:
 - name: Create and launch the VM
 os_server:
 auth:
 auth_url: https://openstack-identity.mycompany.com/v2.0
 username: "{{ AuthUserName }}"
 password: "{{ AuthPassword }}"
 project_name: "{{ TenantName }}"
 state: present
 validate_certs: False
 name: "MyOwnPersonalInstance"
 image: "{{ ImageName }}"
 key_name: "{{ InfraKey }}"
 timeout: 200
 flavor: "{{ FlavorName }}"
 security_groups: "{{ SecurityGroup }}"
 network: "{{ NetworkName }}"
 auto_ip: yes

$ ansible-playbook -s launch_compute.yml
[WARNING]: provided hosts list is empty, only localhost is available
PLAY [launch a compute instance] ***
TASK [Create and launch the VM] **
changed: [localhost]
PLAY RECAP ***
localhost : ok=1 changed=1 unreachable=0 failed=0

Gather informations about our new instance

Use the 'os_server_facts' command from module 'Cloud' [
http://docs.ansible.com/ansible/os_server_module.html]. Variables are defined in ./group_vars/all
and the instance name is in server: "MyOwnPersonalInstance".

$vi get_compute_info.yml
- name: Get and print instance IP
 hosts: localhost
 gather_facts: False
 tasks:
 - name: Get VM infos
 os_server_facts:
 auth:
 auth_url: https://openstack-identity.mygroup/v2.0
 username: "{{ AuthUserName }}"
 password: "{{ AuthPassword }}"
 project_name: "{{ TenantName }}"
 validate_certs: False
 server: "MyOwnPersonalInstance"

 - name: Dump all
 debug:
 var: openstack_servers

$ansible-playbook -s get_compute_info.yml

https://riptutorial.com/ 59

http://docs.ansible.com/ansible/os_server_module.html%5D

[WARNING]: provided hosts list is empty, only localhost is available
PLAY [Get and print instance IP] ***
TASK [Get VM IP] ***
ok: [localhost]
TASK [Affichage] ***
ok: [localhost] => {
 "openstack_servers": [
 {
 "OS-DCF:diskConfig": "MANUAL",
 "OS-EXT-AZ:availability_zone": "fr",
 "OS-EXT-STS:power_state": 1,
 "OS-EXT-STS:task_state": null,
[...]
 "volumes": []
 }
]
}

PLAY RECAP ***
localhost : ok=2 changed=0 unreachable=0 failed=0

This is very verbose. Lots of information is displayed. Usually only the IP address is needed to
access the new instance via SSH.

Get your new instance public IP

Instead of printing all the informations, we print only IP address of the first instance whose name is
"MyOwnPersonalInstance". It's usually all we need.

$vi get_compute_ip.yml
- name: Get and print instance IP
 hosts: localhost
 gather_facts: False
 tasks:
 - name: Get VM infos
 os_server_facts:
 auth:
 auth_url: https://openstack-identity.mycompany.com/v2.0
 username: "{{ AuthUserName }}"
 password: "{{ AuthPassword }}"
 project_name: "{{ TenantName }}"
 validate_certs: False
 server: "MyOwnPersonalInstance"

 - name: Dump IP
 debug:
 var: openstack_servers[0].interface_ip

Delete our instance

To delete our instance, reuse the os_server command with all authentication information and
simply replace ' state: present' by ' state: absent'.

$vi stop_compute.yml
- name: launch a compute instance

https://riptutorial.com/ 60

 hosts: localhost
 gather_facts: False
 tasks:
 - name: Create and launch the VM
 os_server:
 auth:
 auth_url: https://openstack-identity.mygroup/v2.0
 username: "{{ AuthUserName }}"
 password: "{{ AuthPassword }}"
 project_name: "{{ ProjectName }}"
 state: absent
 validate_certs: False
 name: "{{ TPUser }}"
 timeout: 200

Read Using Ansible with OpenStack online: https://riptutorial.com/ansible/topic/8712/using-
ansible-with-openstack

https://riptutorial.com/ 61

https://riptutorial.com/ansible/topic/8712/using-ansible-with-openstack
https://riptutorial.com/ansible/topic/8712/using-ansible-with-openstack

Credits

S.
No

Chapters Contributors

1
Getting started with
ansible

activatedgeek, Alex, baptistemm, calvinmclean, Community,
Jake Amey, jasonz, jscott, Michael Duffy, mrtuovinen, Pants,
PumpkinSeed, tedder42, thisguy123, ydaetskcoR

2 Ansible Architecture Jordan Anderson, Yogesh Darji

3
Ansible group
variables

mrtuovinen

4 Ansible Group Vars Nick, Peter Mortensen

5 Ansible install mysql Fernando

6 Ansible: Looping calvinmclean

7
Ansible: Loops and
Conditionals

A K, Chu-Siang Lai, Jordan Anderson, marx, Mike, mrtuovinen,
Nick, Rob H, wolfaviators

8
Become (Privilege
Escalation)

Jordan Anderson, Willian Paixao

9 Dynamic inventory mrtuovinen

10 Galaxy mrtuovinen, ydaetskcoR

11

How To Create A
DreamHost Cloud
Server From An
Ansible Playbook

Stefano Maffulli

12 Installation
ca2longoria, Jake Amey, Michael Duffy, mrtuovinen, Nick,
PumpkinSeed, Raj, tedder42, ydaetskcoR

13
Introduction to
playbooks

32cupo, Abdelaziz Dabebi, ydaetskcoR

14 Inventory calvinmclean, mrtuovinen, Nick

15 Loops marx, mrtuovinen

16 Roles Chu-Siang Lai, fishi, mrtuovinen, winston, ydaetskcoR

17 Secret encryption fishi

https://riptutorial.com/ 62

https://riptutorial.com/contributor/2425365/activatedgeek
https://riptutorial.com/contributor/5398108/alex
https://riptutorial.com/contributor/338011/baptistemm
https://riptutorial.com/contributor/6632698/calvinmclean
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6625089/jake-amey
https://riptutorial.com/contributor/2252015/jasonz
https://riptutorial.com/contributor/260545/jscott
https://riptutorial.com/contributor/998887/michael-duffy
https://riptutorial.com/contributor/5749443/mrtuovinen
https://riptutorial.com/contributor/7328433/pants
https://riptutorial.com/contributor/4383715/pumpkinseed
https://riptutorial.com/contributor/659298/tedder42
https://riptutorial.com/contributor/939963/thisguy123
https://riptutorial.com/contributor/2291321/ydaetskcor
https://riptutorial.com/contributor/1907956/jordan-anderson
https://riptutorial.com/contributor/4883694/yogesh-darji
https://riptutorial.com/contributor/5749443/mrtuovinen
https://riptutorial.com/contributor/6630516/nick
https://riptutorial.com/contributor/63550/peter-mortensen
https://riptutorial.com/contributor/8392353/fernando
https://riptutorial.com/contributor/6632698/calvinmclean
https://riptutorial.com/contributor/5752652/a-k
https://riptutorial.com/contributor/686105/chu-siang-lai
https://riptutorial.com/contributor/1907956/jordan-anderson
https://riptutorial.com/contributor/844219/marx
https://riptutorial.com/contributor/249143/mike
https://riptutorial.com/contributor/5749443/mrtuovinen
https://riptutorial.com/contributor/6630516/nick
https://riptutorial.com/contributor/783524/rob-h
https://riptutorial.com/contributor/3033942/wolfaviators
https://riptutorial.com/contributor/1907956/jordan-anderson
https://riptutorial.com/contributor/2589814/willian-paixao
https://riptutorial.com/contributor/5749443/mrtuovinen
https://riptutorial.com/contributor/5749443/mrtuovinen
https://riptutorial.com/contributor/2291321/ydaetskcor
https://riptutorial.com/contributor/5402294/stefano-maffulli
https://riptutorial.com/contributor/1431787/ca2longoria
https://riptutorial.com/contributor/6625089/jake-amey
https://riptutorial.com/contributor/998887/michael-duffy
https://riptutorial.com/contributor/5749443/mrtuovinen
https://riptutorial.com/contributor/6630516/nick
https://riptutorial.com/contributor/4383715/pumpkinseed
https://riptutorial.com/contributor/6166406/raj
https://riptutorial.com/contributor/659298/tedder42
https://riptutorial.com/contributor/2291321/ydaetskcor
https://riptutorial.com/contributor/4214037/32cupo
https://riptutorial.com/contributor/3342127/abdelaziz-dabebi
https://riptutorial.com/contributor/2291321/ydaetskcor
https://riptutorial.com/contributor/6632698/calvinmclean
https://riptutorial.com/contributor/5749443/mrtuovinen
https://riptutorial.com/contributor/6630516/nick
https://riptutorial.com/contributor/844219/marx
https://riptutorial.com/contributor/5749443/mrtuovinen
https://riptutorial.com/contributor/686105/chu-siang-lai
https://riptutorial.com/contributor/4478420/fishi
https://riptutorial.com/contributor/5749443/mrtuovinen
https://riptutorial.com/contributor/2661021/winston
https://riptutorial.com/contributor/2291321/ydaetskcor
https://riptutorial.com/contributor/4478420/fishi

18
Using Ansible with
Amazon Web
Services

Abdelaziz Dabebi, another geek, ydaetskcoR

19
Using Ansible with
OpenStack

BANANENMANNFRAU, Sebastien Josset

https://riptutorial.com/ 63

https://riptutorial.com/contributor/3342127/abdelaziz-dabebi
https://riptutorial.com/contributor/6062177/another-geek
https://riptutorial.com/contributor/2291321/ydaetskcor
https://riptutorial.com/contributor/3768458/bananenmannfrau
https://riptutorial.com/contributor/6819086/sebastien-josset

	About
	Chapter 1: Getting started with ansible
	Remarks
	Examples
	Hello, World
	Test connection and configuration with ping
	Inventory
	Provisioning remote machines with Ansible
	ansible.cfg

	Chapter 2: Ansible Architecture
	Examples
	Understanding Ansible Architecture

	Chapter 3: Ansible group variables
	Examples
	Group variables with static inventory

	Chapter 4: Ansible Group Vars
	Examples
	Example group_vars/development, and why

	Chapter 5: Ansible install mysql
	Introduction
	Examples
	How use ansible to install mysql binary file

	Chapter 6: Ansible: Looping
	Examples
	with_items - simple list
	with_items - predefined list
	with_items - predefined dictionary
	with_items - dictionary
	Nested loops

	Chapter 7: Ansible: Loops and Conditionals
	Remarks
	Examples
	What kinds of conditionals to use?
	[When] Condition: `ansible_os_family` Lists

	Common use
	All Lists
	When Condition

	Basic Usage
	Conditional Syntax and Logic
	Single condition
	Boolean Filter
	Multiple Conditions
	Get `ansible_os_family` and `ansible_pkg_mgr` with setup
	Simple "When" Example(s)
	Using until for a retry looping alive check

	Chapter 8: Become (Privilege Escalation)
	Introduction
	Syntax
	Examples
	Only in a task
	Run all role tasks as root
	Run a role as root

	Chapter 9: Dynamic inventory
	Remarks
	Examples
	Dynamic inventory with login credentials

	Chapter 10: Galaxy
	Examples
	Sharing roles with Ansible Galaxy

	Chapter 11: Galaxy
	Examples
	Basic commands

	Chapter 12: How To Create A DreamHost Cloud Server From An Ansible Playbook
	Examples
	Install Shade library
	Write a Playbook to Launch a Server
	Running the Playbook

	Chapter 13: Installation
	Introduction
	Examples
	Installing Ansible on Ubuntu
	Installing Ansible on MacOS
	Installation on Red Hat based systems
	Installing from source
	Installation on Amazon Linux from git repo
	Installing Ansible On Any OS(windows) Machine Using Virtual Box+Vagrant

	Alternative solution:

	Chapter 14: Introduction to playbooks
	Examples
	Overview
	Playbook's structure
	Play's structure
	Tags

	Chapter 15: Inventory
	Parameters
	Examples
	Inventory with username and password
	Inventory with custom private key
	Inventory with custom SSH port
	Pass static inventory to ansible-playbook
	Pass dynamic inventory to ansible-playbook
	Inventory, Group Vars, and You
	Hosts file

	Chapter 16: Loops
	Examples
	Copy multiple files in a single task
	Install multiple packages in a single task

	Chapter 17: Roles
	Examples
	Using roles
	Role dependencies
	Separating distribution specific tasks and variables inside a role

	Chapter 18: Secret encryption
	Remarks
	Examples
	Encrypting sensitive structured data
	Using lookup pipes to decrypt non-structured vault-encrypted data
	Using local_action to decrypt vault-encrypted templates

	Chapter 19: Using Ansible with Amazon Web Services
	Remarks
	Examples
	How to start EC2 instance from official Amazon AMIs, modify it and store it as new AMI
	How to properly configure Ansible to connect to Amazon Web Services

	Chapter 20: Using Ansible with OpenStack
	Introduction
	Parameters
	Remarks
	Examples
	Check your Ansible version
	Gather informations from OpenStack GUI to configure Ansible
	Write the ansible playbook to create the instance
	Gather informations about our new instance
	Get your new instance public IP
	Delete our instance

	Credits

