
apache-kafka

#apache-

kafka

Table of Contents

About 1

Chapter 1: Getting started with apache-kafka 2

Remarks 2

Examples 2

Installation or Setup 2

Introduction 3

Which means 3

It gets used for two broad classes of application: 3

Installation 4

Create a topic 4

send and receive messages 4

Stop kafka 5

start a multi-broker cluster 5

Create a replicated topic 6

test fault tolerance 6

Clean-up 7

Chapter 2: Consumer Groups and Offset Management 8

Parameters 8

Examples 8

What is a Consumer Group 8

Consumer Offset Management and Fault-Tolerance 9

How to Commit Offsets 9

Semantics of committed offsets 10

Processing guarantees 10

How can I Read Topic From its Beginning 10

Start a new Consumer Group 11

Reuse the same Group ID 11

Reuse the same Group ID and Commit 11

Chapter 3: Custom Serializer/Deserializer 13

Introduction 13

Syntax 13

Parameters 13

Remarks 13

Examples 13

Gson (de)serializer 13

Serializer 13

Code 14

Usage 14

deserializer 14

Code 15

Usage 15

Chapter 4: kafka console tools 17

Introduction 17

Examples 17

kafka-topics 17

kafka-console-producer 18

kafka-console-consumer 18

kafka-simple-consumer-shell 18

kafka-consumer-groups 19

Chapter 5: Producer/Consumer in Java 21

Introduction 21

Examples 21

SimpleConsumer (Kafka >= 0.9.0) 21

Configuration and initialization 21

Consumer creation and topic subscription 22

Basic poll 22

The code 23

Basic example 23

Runnable example 23

SimpleProducer (kafka >= 0.9) 25

Configuration and initialization 25

Sending messages 26

The code 26

Credits 28

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: apache-kafka

It is an unofficial and free apache-kafka ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official apache-kafka.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/apache-kafka
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with apache-kafka

Remarks

Kafka is a high throughput publish-subscribe messaging system implemented as distributed,
partitioned, replicated commit log service.

Taken from official Kafka site

Fast

A single Kafka broker can handle hundreds of megabytes of reads and writes per
second from thousands of clients.

Scalable

Kafka is designed to allow a single cluster to serve as the central data backbone for a
large organization. It can be elastically and transparently expanded without downtime.
Data streams are partitioned and spread over a cluster of machines to allow data
streams larger than the capability of any single machine and to allow clusters of co-
ordinated consumers

Durable

Messages are persisted on disk and replicated within the cluster to prevent data loss.
Each broker can handle terabytes of messages without performance impact.

Distributed by Design

Kafka has a modern cluster-centric design that offers strong durability and fault-
tolerance guarantees.

Examples

Installation or Setup

Step 1. Install Java 7 or 8

Step 2. Download Apache Kafka at: http://kafka.apache.org/downloads.html

For example, we will try download Apache Kafka 0.10.0.0

Step 3. Extract the compressed file.

On Linux:

tar -xzf kafka_2.11-0.10.0.0.tgz

https://riptutorial.com/ 2

http://kafka.apache.org/
http://kafka.apache.org/downloads.html
https://www.apache.org/dyn/closer.cgi?path=/kafka/0.10.0.0/kafka_2.11-0.10.0.0.tgz

On Window: Right click --> Extract here

Step 4. Start Zookeeper

cd kafka_2.11-0.10.0.0

Linux:

bin/zookeeper-server-start.sh config/zookeeper.properties

Windows:

bin/windows/zookeeper-server-start.bat config/zookeeper.properties

Step 5. Start Kafka server

Linux:

bin/kafka-server-start.sh config/server.properties

Windows:

bin/windows/kafka-server-start.bat config/server.properties

Introduction

Apache Kafka™ is a distributed streaming platform.

Which means

1-It lets you publish and subscribe to streams of records. In this respect it is similar to a message
queue or enterprise messaging system.

2-It lets you store streams of records in a fault-tolerant way.

3-It lets you process streams of records as they occur.

It gets used for two broad classes of application:

1-Building real-time streaming data pipelines that reliably get data between systems or
applications

2-Building real-time streaming applications that transform or react to the streams of data

Kafka console scripts are different for Unix-based and Windows platforms. In the
examples, you might need to add the extension according to your platform. Linux:
scripts located in bin/ with .sh extension. Windows: scripts located in bin\windows\ and

https://riptutorial.com/ 3

with .bat extension.

Installation

Step 1: Download the code and untar it:

tar -xzf kafka_2.11-0.10.1.0.tgz
cd kafka_2.11-0.10.1.0

Step 2: start the server.

to be able to delete topics later, open server.properties and set delete.topic.enable to
true.

Kafka relies heavily on zookeeper, so you need to start it first. If you don't have it installed, you
can use the convenience script packaged with kafka to get a quick-and-dirty single-node
ZooKeeper instance.

zookeeper-server-start config/zookeeper.properties
kafka-server-start config/server.properties

Step 3: ensure everything is running

You should now have zookeeper listening to localhost:2181 and a single kafka broker on
localhost:6667.

Create a topic

We only have one broker, so we create a topic with no replication factor and just one partition:

kafka-topics --zookeeper localhost:2181 \
 --create \
 --replication-factor 1 \
 --partitions 1 \
 --topic test-topic

Check your topic:

kafka-topics --zookeeper localhost:2181 --list
test-topic

kafka-topics --zookeeper localhost:2181 --describe --topic test-topic
Topic:test-topic PartitionCount:1 ReplicationFactor:1 Configs:
Topic: test-topic Partition: 0 Leader: 0 Replicas: 0 Isr: 0

send and receive messages

https://riptutorial.com/ 4

https://www.apache.org/dyn/closer.cgi?path=/kafka/0.10.1.0/kafka_2.11-0.10.1.0.tgz

Launch a consumer:

kafka-console-consumer --bootstrap-server localhost:9092 --topic test-topic

On another terminal, launch a producer and send some messages. By default, the tool send each
line as a separate message to the broker, without special encoding. Write some lines and exit with
CTRL+D or CTRL+C:

kafka-console-producer --broker-list localhost:9092 --topic test-topic
a message
another message
^D

The messages should appear in the consumer therminal.

Stop kafka

kafka-server-stop

start a multi-broker cluster

The above examples use only one broker. To setup a real cluster, we just need to start more than
one kafka server. They will automatically coordinate themselves.

Step 1: to avoid collision, we create a server.properties file for each broker and change the id,
port and logfile configuration properties.

Copy:

cp config/server.properties config/server-1.properties
cp config/server.properties config/server-2.properties

Edit properties for each file, for example:

vim config/server-1.properties
broker.id=1
listeners=PLAINTEXT://:9093
log.dirs=/usr/local/var/lib/kafka-logs-1

vim config/server-2.properties
broker.id=2
listeners=PLAINTEXT://:9094
log.dirs=/usr/local/var/lib/kafka-logs-2

Step 2: start the three brokers:

 kafka-server-start config/server.properties &

https://riptutorial.com/ 5

 kafka-server-start config/server-1.properties &
 kafka-server-start config/server-2.properties &

Create a replicated topic

kafka-topics --zookeeper localhost:2181 --create --replication-factor 3 --partitions 1 --topic
replicated-topic

kafka-topics --zookeeper localhost:2181 --describe --topic replicated-topic
Topic:replicated-topic PartitionCount:1 ReplicationFactor:3 Configs:
Topic: replicated-topic Partition: 0 Leader: 1 Replicas: 1,2,0 Isr: 1,2,0

This time, there are more information:

"leader" is the node responsible for all reads and writes for the given partition. Each node will
be the leader for a randomly selected portion of the partitions.

•

"replicas" is the list of nodes that replicate the log for this partition regardless of whether they
are the leader or even if they are currently alive.

•

"isr" is the set of "in-sync" replicas. This is the subset of the replicas list that is currently alive
and caught-up to the leader.

•

Note that the previously created topic is left unchanged.

test fault tolerance

Publish some message to the new topic:

kafka-console-producer --broker-list localhost:9092 --topic replicated-topic
hello 1
hello 2
^C

Kill the leader (1 in our example). On Linux:

ps aux | grep server-1.properties
kill -9 <PID>

On Windows:

wmic process get processid,caption,commandline | find "java.exe" | find "server-1.properties"
taskkill /pid <PID> /f

See what happened:

kafka-topics --zookeeper localhost:2181 --describe --topic replicated-topic
Topic:replicated-topic PartitionCount:1 ReplicationFactor:3 Configs:
Topic: replicated-topic Partition: 0 Leader: 2 Replicas: 1,2,0 Isr: 2,0

https://riptutorial.com/ 6

The leadership has switched to broker 2 and "1" in not in-sync anymore. But the messages are still
there (use the consumer to check out by yourself).

Clean-up

Delete the two topics using:

kafka-topics --zookeeper localhost:2181 --delete --topic test-topic
kafka-topics --zookeeper localhost:2181 --delete --topic replicated-topic

Read Getting started with apache-kafka online: https://riptutorial.com/apache-
kafka/topic/1986/getting-started-with-apache-kafka

https://riptutorial.com/ 7

https://riptutorial.com/apache-kafka/topic/1986/getting-started-with-apache-kafka
https://riptutorial.com/apache-kafka/topic/1986/getting-started-with-apache-kafka

Chapter 2: Consumer Groups and Offset
Management

Parameters

Parameter Description

group.id The name of the Consumer Group.

enable.auto.commit Automatically commit offsets; default: true.

auto.commit.interval.ms
The minimum delay in milliseconds between to commits (requires
enable.auto.commit=true); default: 5000.

auto.offset.reset
What to do when there is no valid committed offset found; default:
latest.(+)

(+) Possible Values Description

earliest Automatically reset the offset to the earliest offset.

latest Automatically reset the offset to the latest offset.

none
Throw exception to the consumer if no previous offset is found for
the consumer's group.

anything else Throw exception to the consumer.

Examples

What is a Consumer Group

As of Kafka 0.9, the new high level KafkaConsumer client is availalbe. It exploits a new built-in
Kafka protocol that allows to combine multiple consumers in a so-called Consumer Group. A
Consumer Group can be describes as a single logical consumer that subscribes to a set of topics.
The partions over all topics are assigend to the physical consumers within the group, such that
each patition is assigned to exaclty one consumer (a single consumer can get multiple partitons
assigned). The indiviual consumers belonging to the same group can run on different hosts in a
distributed manner.

Consumer Groups are identified via their group.id. To make a specific client instance member of a
Consumer Group, it is sufficient to assign the groups group.id to this client, via the client's
configuration:

https://riptutorial.com/ 8

http://docs.confluent.io/3.0.0/clients/consumer.html
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+0.9+Consumer+Rewrite+Design
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+0.9+Consumer+Rewrite+Design
http://docs.confluent.io/3.0.0/clients/consumer.html#concepts

Properties props = new Properties();
props.put("group.id", "groupName");
// ...some more properties required
new KafkaConsumer<K, V>(config);

Thus, all consumers that connect to the same Kafka cluster and use the same group.id form a
Consumer Group. Consumers can leave a group at any time and new consumers can join a group
at any time. For both cases, a so-called rebalance is triggered and partitions get reassigned with
the Consumer Group to ensure that each partition is processed by exaclty one consumer within
the group.

Pay attention, that even a single KafkaConsumer forms a Consumer Group with itself as single
member.

Consumer Offset Management and Fault-Tolerance

KafkaConsumers request messages from a Kafka broker via a call to poll() and their progress is
tracked via offsets. Each message within each partition of each topic, has a so-called offset
assigned—its logical sequence number within the partition. A KafkaConsumer tracks its current offset
for each partition that is assigned to it. Pay attention, that the Kafka brokers are not aware of the
current offsets of the consumers. Thus, on poll() the consumer needs to send its current offsets
to the broker, such that the broker can return the corresponding messages, i.e,. messages with a
larger consecutive offset. For example, let us assume we have a single partition topic and a single
consumer with current offset 5. On poll() the consumer sends if offset to the broker and the
broker return messages for offsets 6,7,8,...

Because consumers track their offsets themselves, this information could get lost if a consumer
fails. Thus, offsets must be stored reliably, such that on restart, a consumer can pick up its old
offset and resumer where it left of. In Kafka, there is built-in support for this via offset commits. The
new KafkaConsumer can commit its current offset to Kafka and Kafka stores those offsets in a
special topic called __consumer_offsets. Storing the offsets within a Kafka topic is not just fault-
tolerant, but allows to reassign partitions to other consumers during a rebalance, too. Because all
consumers of a Consumer Group can access all committed offsets of all partitions, on rebalance,
a consumer that gets a new partition assigned just reads the committed offset of this partition from
the __consumer_offsets topic and resumes where the old consumer left of.

How to Commit Offsets

KafkaConsumers can commit offsets automatically in the background (configuration parameter
enable.auto.commit = true) what is the default setting. Those auto commits are done within poll() (
which is typically called in a loop). How frequently offsets should be committed, can be configured
via auto.commit.interval.ms. Because, auto commits are embedded in poll() and poll() is called
by the user code, this parameter defines a lower bound for the inter-commit-interval.

As an alternative to auto commit, offsets can also be managed manually. For this, auto commit
should be disabled (enable.auto.commit = false). For manual committing KafkaConsumers offers two
methods, namely commitSync() and commitAsync(). As the name indicates, commitSync() is a
blocking call, that does return after offsets got committed successfully, while commitAsync() returns

https://riptutorial.com/ 9

http://docs.confluent.io/3.0.0/clients/consumer.html
http://docs.confluent.io/current/clients/consumer.html
http://docs.confluent.io/current/clients/consumer.html#basic-poll-loop
http://docs.confluent.io/current/clients/consumer.html#synchronous-commits
http://docs.confluent.io/current/clients/consumer.html#asynchronous-commits

immediately. If you want to know if a commit was successful or not, you can provide a call back
handler (OffsetCommitCallback) a method parameter. Pay attention, that in both commit calls, the
consumer commits the offsets of the latest poll() call. For example. let us assume a single
partition topic with a single consumer and the last call to poll() return messages with offsets 4,5,6.
On commit, offset 6 will be committed because this is the latest offset tracked by the consumer
client. At the same time, both commitSync() and commitAsync() allow for more control what offset you
want to commit: if you use the corresponding overloads that allow you to specify a
Map<TopicPartition, OffsetAndMetadata> the consumer will commit only the specified offsets (ie, the
map can contain any subset of assigned partitions, and the specified offset can have any value).

Semantics of committed offsets

A committed offset indicates, that all messages up to this offset got already processed. Thus, as
offsets are consecutive numbers, committing offset X implicitly commits all offsets smaller than X.
Therefore, it is not necessary to commit each offset individually, and committing multiple offsets at
once, happens but just committing the largest offset.

Pay attention, that by design it is also possible to commit a smaller offset than the last committed
offset. This can be done, if messages should be read a second time.

Processing guarantees

Using auto commit provides at-least-once processing semantics. The underlying assumption is,
that poll() is only called after all previously delivered messages got processed successfully. This
ensures, that no message get lost because a commit happens after processing. If a consumer fails
before a commit, all messages after the last commit are received from Kafka and processed again.
However, this retry might result in duplicates, as some message from the last poll() call might
have been processed but the failure happened right before the auto commit call.

If at-most-once processing semantics are required, auto commit must be disabled and a manual
commitSync() directly after poll() should be done. Afterward, messages get processed. This
ensure, that messages are committed before there are processed and thus never read a second
time. Of course, some message might get lost in case of failure.

How can I Read Topic From its Beginning

There are multiple strategies to read a topic from its beginning. To explain those, we first need to
understand what happens at consumer startup. On startup of a consumer, the following happens:

join the configured consumer group, which triggers a rebalance and assigns partitions to the
consumer

1.

look for committed offsets (for all partitions that got assigned to the consumer)2.
for all partitions with valid offset, resume from this offset3.
for all partitions with not valid offset, set start offset according to auto.offset.reset
configuration parameter

4.

https://riptutorial.com/ 10

Start a new Consumer Group

If you want to process a topic from its beginning, you can simple start a new consumer group (i.e.,
choose an unused group.id) and set auto.offset.reset = earliest. Because there are no
committed offsets for a new group, auto offset reset will trigger and the topic will be consumed
from its beginning. Pay attention, that on consumer restart, if you use the same group.id again, it
will not read the topic from beginning again, but resume where it left of. Thus, for this strategy, you
will need to assign a new group.id each time you want to read a topic from its beginning.

Reuse the same Group ID

To avoid setting a new group.id each time you want to read a topic from its beginning, you can
disable auto commit (via enable.auto.commit = false) before starting the consumer for the very first
time (using an unused group.id and setting auto.offset.reset = earliest). Additionally, you should
not commit any offsets manually. Because offsets are never committed using this strategy, on
restart, the consumer will read the topic from its beginning again.

However, this strategy has two disadvantages:

it is not fault-tolerant1.
group rebalance does not work as intended2.

(1) Because offsets are never committed, a failing and a stopped consumer are handled the same
way on restart. For both cases, the topic will be consumed from its beginning. (2) Because offset
are never committed, on rebalance newly assigned partitions will be consumer from the very
beginning.

Therefore, this strategy only works for consumer groups with a single consumer and should only
be used for development purpose.

Reuse the same Group ID and Commit

If you want to be fault-tolerant and/or use multiple consumers in your Consumer Group,
committing offsets is mandatory. Thus, if you want to read a topic from its beginning, you need to
manipulate committed offsets at consumer startup. For this, KafkaConsumer provides three methods
seek(), seekToBeginning(), and seekToEnd(). While seek() can be used to set an arbitrary offset, the
second and third method can be use to seek to the beginning or end of a partition, respectively.
Thus, on failure and on consumer restart seeking would be omitted and the consumer can resume
where it left of. For consumer-stop-and-restart-from-beginning, seekToBeginning() would be called
explicitly before you enter your poll() loop. Note, that seekXXX() can only be used after a consumer
joined a group -- thus, it's required to do a "dummy-poll" before using seekXXX(). The overall code
would be something like this:

if (consumer-stop-and-restart-from-beginning) {
 consumer.poll(0); // dummy poll() to join consumer group
 consumer.seekToBeginning(...);
}

https://riptutorial.com/ 11

// now you can start your poll() loop
while (isRunning) {
 for (ConsumerRecord record : consumer.poll(0)) {
 // process a record
 }
}

Read Consumer Groups and Offset Management online: https://riptutorial.com/apache-
kafka/topic/5449/consumer-groups-and-offset-management

https://riptutorial.com/ 12

https://riptutorial.com/apache-kafka/topic/5449/consumer-groups-and-offset-management
https://riptutorial.com/apache-kafka/topic/5449/consumer-groups-and-offset-management

Chapter 3: Custom Serializer/Deserializer

Introduction

Kafka stores and transports byte arrays in its queue. The (de)serializers are responsible for
translating between the byte array provided by Kafka and POJOs.

Syntax

public void configure(Map<String, ?> config, boolean isKey);•
public T deserialize(String topic, byte[] bytes);•
public byte[] serialize(String topic, T obj);•

Parameters

parameters details

config

the configuration properties (Properties) passed to the Producer or Consumer
upon creation, as a map. It contains regular kafka configs, but can also be
augmented with user-defined configuration. It is the best way to pass
arguments to the (de)serializer.

isKey
custom (de)serializers can be used for keys and/or values. This parameter tells
you which of the two this instance will deal with.

topic
the topic of the current message. This lets you define custom logic based on
the source/destination topic.

bytes The raw message to deserialize

obj The message to serialize. Its actual class depends on your serializer.

Remarks

Before version 0.9.0.0 the Kafka Java API used Encoders and Decoders. They have been replaced
by Serializer and Deserializer in the new API.

Examples

Gson (de)serializer

This example uses the gson library to map java objects to json strings. The (de)serializers are
generic, but they don't always need to be !

https://riptutorial.com/ 13

https://github.com/google/gson

Serializer

Code

public class GsonSerializer<T> implements Serializer<T> {

 private Gson gson = new GsonBuilder().create();

 @Override
 public void configure(Map<String, ?> config, boolean isKey) {
 // this is called right after construction
 // use it for initialisation
 }

 @Override
 public byte[] serialize(String s, T t) {
 return gson.toJson(t).getBytes();
 }

 @Override
 public void close() {
 // this is called right before destruction
 }
}

Usage

Serializers are defined through the required key.serializer and value.serializer producer
properties.

Assume we have a POJO class named SensorValue and that we want to produce messages
without any key (keys set to null):

Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
// ... other producer properties ...
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", GsonSerializer.class.getName());

Producer<String, SensorValue> producer = new KafkaProducer<>(properties);
// ... produce messages ...
producer.close();

(key.serializer is a required configuration. Since we don't specify message keys, we keep the
StringSerializer shipped with kafka, which is able to handle null).

deserializer

https://riptutorial.com/ 14

Code

public class GsonDeserializer<T> implements Deserializer<T> {

 public static final String CONFIG_VALUE_CLASS = "value.deserializer.class";
 public static final String CONFIG_KEY_CLASS = "key.deserializer.class";
 private Class<T> cls;

 private Gson gson = new GsonBuilder().create();

 @Override
 public void configure(Map<String, ?> config, boolean isKey) {
 String configKey = isKey ? CONFIG_KEY_CLASS : CONFIG_VALUE_CLASS;
 String clsName = String.valueOf(config.get(configKey));

 try {
 cls = (Class<T>) Class.forName(clsName);
 } catch (ClassNotFoundException e) {
 System.err.printf("Failed to configure GsonDeserializer. " +
 "Did you forget to specify the '%s' property ?%n",
 configKey);
 }
 }

 @Override
 public T deserialize(String topic, byte[] bytes) {
 return (T) gson.fromJson(new String(bytes), cls);
 }

 @Override
 public void close() {}
}

Usage

Deserializers are defined through the required key.deserializer and value.deserializer consumer
properties.

Assume we have a POJO class named SensorValue and that we want to produce messages
without any key (keys set to null):

Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
// ... other consumer properties ...
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", GsonDeserializer.class.getName());
props.put(GsonDeserializer.CONFIG_VALUE_CLASS, SensorValue.class.getName());

try (KafkaConsumer<String, SensorValue> consumer = new KafkaConsumer<>(props)) {
 // ... consume messages ...
}

https://riptutorial.com/ 15

Here, we add a custom property to the consumer configuration, namely CONFIG_VALUE_CLASS. The
GsonDeserializer will use it in the configure() method to determine what POJO class it should
handle (all properties added to props will be passed to the configure method in the form of a map).

Read Custom Serializer/Deserializer online: https://riptutorial.com/apache-
kafka/topic/8992/custom-serializer-deserializer

https://riptutorial.com/ 16

https://riptutorial.com/apache-kafka/topic/8992/custom-serializer-deserializer
https://riptutorial.com/apache-kafka/topic/8992/custom-serializer-deserializer

Chapter 4: kafka console tools

Introduction

Kafka offers command-line tools to manage topics, consumer groups, to consume and publish
messages and so forth.

Important: Kafka console scripts are different for Unix-based and Windows platforms. In the
examples, you might need to add the extension according to your platform.

Linux: scripts located in bin/ with .sh extension.

Windows: scripts located in bin\windows\ and with .bat extension.

Examples

kafka-topics

This tool let you list, create, alter and describe topics.

List topics:

kafka-topics --zookeeper localhost:2181 --list

Create a topic:

kafka-topics --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --
topic test

creates a topic with one partition and no replication.

Describe a topic:

kafka-topics --zookeeper localhost:2181 --describe --topic test

Alter a topic:

change configuration
kafka-topics --zookeeper localhost:2181 --alter --topic test --config
max.message.bytes=128000
add a partition
kafka-topics --zookeeper localhost:2181 --alter --topic test --partitions 2

(Beware: Kafka does not support reducing the number of partitions of a topic) (see this list of
configuration properties)

https://riptutorial.com/ 17

https://kafka.apache.org/documentation/#topic-config
https://kafka.apache.org/documentation/#topic-config

kafka-console-producer

This tool lets you produce messages from the command-line.

Send simple string messages to a topic:

kafka-console-producer --broker-list localhost:9092 --topic test
here is a message
here is another message
^D

(each new line is a new message, type ctrl+D or ctrl+C to stop)

Send messages with keys:

kafka-console-producer --broker-list localhost:9092 --topic test-topic \
 --property parse.key=true \
 --property key.separator=,
key 1, message 1
key 2, message 2
null, message 3
^D

Send messages from a file:

kafka-console-producer --broker-list localhost:9092 --topic test_topic < file.log

kafka-console-consumer

This tool let's you consume messages from a topic.

to use the old consumer implementation, replace --bootstrap-server with --zookeeper.

Display simple messages:

kafka-console-consumer --bootstrap-server localhost:9092 --topic test

Consume old messages:

In order to see older messages, you can use the --from-beginning option.

Display key-value messages:

kafka-console-consumer --bootstrap-server localhost:9092 --topic test-topic \
 --property print.key=true \
 --property key.separator=,

kafka-simple-consumer-shell

This consumer is a low-level tool which allows you to consume messages from specific partitions,

https://riptutorial.com/ 18

offsets and replicas.

Useful parameters:

parition: the specific partition to consume from (default to all)•
offset: the beginning offset. Use -2 to consume messages from the beginning, -1 to
consume from the end.

•

max-messages: number of messages to print•
replica: the replica, default to the broker-leader (-1)•

Exemple:

kafka-simple-consumer-shell \
 --broker-list localhost:9092 \
 --partition 1 \
 --offset 4 \
 --max-messages 3 \
 --topic test-topic

displays 3 messages from partition 1 beginning at offset 4 from topic test-topic.

kafka-consumer-groups

This tool allows you to list, describe, or delete consumer groups. Have a look at this article for
more information about consumer groups.

if you still use the old consumer implementation, replace --bootstrap-server with --
zookeeper.

List consumer groups:

kafka-consumer-groups --bootstrap-server localhost:9092 --list
octopus

Describe a consumer-group:

kafka-consumer-groups --bootstrap-server localhost:9092 --describe --group octopus
GROUP TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG OWNER
octopus test-topic 0 15 15 0 octopus-
1/127.0.0.1
octopus test-topic 1 14 15 1 octopus-
2_/127.0.0.1

Remarks: in the output above,

current-offset is the last committed offset of the consumer instance,•
log-end-offset is the highest offset of the partition (hence, summing this column gives you
the total number of messages for the topic)

•

lag is the difference between the current consumer offset and the highest offset, hence how
far behind the consumer is,

•

owner is the client.id of the consumer (if not specified, a default one is displayed).•

https://riptutorial.com/ 19

https://www.opsclarity.com/understanding-kafka-consumer-lag/

Delete a consumer-group:

deletion is only available when the group metadata is stored in zookeeper (old
consumer api). With the new consumer API, the broker handles everything including
metadata deletion: the group is deleted automatically when the last committed offset
for the group expires.

kafka-consumer-groups --bootstrap-server localhost:9092 --delete --group octopus

Read kafka console tools online: https://riptutorial.com/apache-kafka/topic/8990/kafka-console-
tools

https://riptutorial.com/ 20

https://riptutorial.com/apache-kafka/topic/8990/kafka-console-tools
https://riptutorial.com/apache-kafka/topic/8990/kafka-console-tools

Chapter 5: Producer/Consumer in Java

Introduction

This topic shows how to produce and consume records in Java.

Examples

SimpleConsumer (Kafka >= 0.9.0)

The 0.9 release of Kafka introduced a complete redesign of the kafka consumer. If you are
interested in the old SimpleConsumer (0.8.X), have a look at this page. If your Kafka installation is
newer than 0.8.X, the following codes should work out of the box.

Configuration and initialization

Kafka 0.9 no longer supports Java 6 or Scala 2.9. If you are still on Java 6, consider
upgrading to a supported version.

First, create a maven project and add the following dependency in your pom:

<dependencies>
 <dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka-clients</artifactId>
 <version>0.9.0.1</version>
 </dependency>
</dependencies>

Note : don't forget to update the version field for the latest releases (now > 0.10).

The consumer is initialised using a Properties object. There are lots of properties allowing you to
fine-tune the consumer behaviour. Below is the minimal configuration needed:

Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("group.id", "consumer-tutorial");
props.put("key.deserializer", StringDeserializer.class.getName());
props.put("value.deserializer", StringDeserializer.class.getName());

The bootstrap-servers is an initial list of brokers for the consumer to be able discover the rest of
the cluster. This doesn’t need to be all the servers in the cluster: the client will determine the full
set of alive brokers from the brokers in this list.

The deserializer tells the consumer how to interpret/deserialize the message keys and values.
Here, we use the built-in StringDeserializer.

https://riptutorial.com/ 21

https://cwiki.apache.org/confluence/display/KAFKA/0.8.0+SimpleConsumer+Example

Finally, the group.id corresponds to the consumer group of this client. Remember: all consumers
of a consumer group will split messages between them (kafka acting like a message queue), while
consumers from different consumer groups will get the same messages (kafka acting like a
publish-subscribe system).

Other useful properties are:

auto.offset.reset: controls what to do if the offset stored in Zookeeper is either missing or
out-of-range. Possible values are latest and earliest. Anything else will throw an exception;

•

enable.auto.commit: if true (default), the consumer offset is periodically (see
auto.commit.interval.ms) saved in the background. Setting it to false and using
auto.offset.reset=earliest - is to determine where should the consumer start from in case no
committed offset information is found. earliest means from the start of the assigned topic
partition. latest means from the highest number of available committed offset for the
partition. However, Kafka consumer will always resume from the last committed offset as
long as a valid offset record is found (i.e. ignoring auto.offset.reset. The best example is
when a brand new consumer group subscribes to a topic. This is when it uses
auto.offset.reset to determine whether to start from the beginning (earliest) or the end
(latest) of the topic.

•

session.timeout.ms: a session timeout ensures that the lock will be released if the consumer
crashes or if a network partition isolates the consumer from the coordinator. Indeed:

When part of a consumer group, each consumer is assigned a subset of the
partitions from topics it has subscribed to. This is basically a group lock on those
partitions. As long as the lock is held, no other members in the group will be able
to read from them. When your consumer is healthy, this is exactly what you want.
It’s the only way that you can avoid duplicate consumption. But if the consumer
dies due to a machine or application failure, you need that lock to be released so
that the partitions can be assigned to a healthy member. source

•

The full list of properties is available here
http://kafka.apache.org/090/documentation.html#newconsumerconfigs.

Consumer creation and topic subscription

Once we have the properties, creating a consumer is easy:

KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
consumer.subscribe(Collections.singletonList("topic-example"));

After you have subscribed, the consumer can coordinate with the rest of the group to get its
partition assignment. This is all handled automatically when you begin consuming data.

Basic poll

https://riptutorial.com/ 22

https://www.confluent.io/blog/tutorial-getting-started-with-the-new-apache-kafka-0-9-consumer-client/
http://kafka.apache.org/090/documentation.html#newconsumerconfigs

The consumer needs to be able to fetch data in parallel, potentially from many partitions for many
topics likely spread across many brokers. Fortunately, this is all handled automatically when you
begin consuming data. To do that, all you need to do is call poll in a loop and the consumer
handles the rest.

poll returns a (possibly empty) set of messages from the partitions that were assigned.

while(true){
 ConsumerRecords<String, String> records = consumer.poll(100);
 if(!records.isEmpty()){
 StreamSupport.stream(records.spliterator(), false).forEach(System.out::println);
 }
}

The code

Basic example

This is the most basic code you can use to fetch messages from a kafka topic.

public class ConsumerExample09{

 public static void main(String[] args){

 Properties props = new Properties();
 props.put("bootstrap.servers", "localhost:9092");
 props.put("key.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");
 props.put("value.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");
 props.put("auto.offset.reset", "earliest");
 props.put("enable.auto.commit", "false");
 props.put("group.id", "octopus");

 try(KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props)){
 consumer.subscribe(Collections.singletonList("test-topic"));

 while(true){
 // poll with a 100 ms timeout
 ConsumerRecords<String, String> records = consumer.poll(100);
 if(records.isEmpty()) continue;
 StreamSupport.stream(records.spliterator(), false).forEach(
System.out::println);
 }
 }
 }
}

Runnable example

The consumer is designed to be run in its own thread. It is not safe for multithreaded
use without external synchronization and it is probably not a good idea to try.

https://riptutorial.com/ 23

Below is a simple Runnable task which initializes the consumer, subscribes to a list of topics, and
executes the poll loop indefinitely until shutdown externally.

public class ConsumerLoop implements Runnable{
 private final KafkaConsumer<String, String> consumer;
 private final List<String> topics;
 private final int id;

 public ConsumerLoop(int id, String groupId, List<String> topics){
 this.id = id;
 this.topics = topics;
 Properties props = new Properties();
 props.put("bootstrap.servers", "localhost:9092");
 props.put("group.id", groupId);
 props.put("auto.offset.reset", "earliest");
 props.put("key.deserializer", StringDeserializer.class.getName());
 props.put("value.deserializer", StringDeserializer.class.getName());
 this.consumer = new KafkaConsumer<>(props);
 }

 @Override
 public void run(){
 try{
 consumer.subscribe(topics);

 while(true){
 ConsumerRecords<String, String> records = consumer.poll(Long.MAX_VALUE);
 StreamSupport.stream(records.spliterator(), false).forEach(
System.out::println);
 }
 }catch(WakeupException e){
 // ignore for shutdown
 }finally{
 consumer.close();
 }
 }

 public void shutdown(){
 consumer.wakeup();
 }
}

Note that we use a timeout of Long.MAX_VALUE during poll, so it will wait indefinitely for a new
message. To properly close the consumer, it is important to call its shutdown() method before
ending the application.

A driver could use it like this:

public static void main(String[] args){

 int numConsumers = 3;
 String groupId = "octopus";
 List<String> topics = Arrays.asList("test-topic");

 ExecutorService executor = Executors.newFixedThreadPool(numConsumers);
 final List<ConsumerLoop> consumers = new ArrayList<>();

https://riptutorial.com/ 24

 for(int i = 0; i < numConsumers; i++){
 ConsumerLoop consumer = new ConsumerLoop(i, groupId, topics);
 consumers.add(consumer);
 executor.submit(consumer);
 }

 Runtime.getRuntime().addShutdownHook(new Thread(){
 @Override
 public void run(){
 for(ConsumerLoop consumer : consumers){
 consumer.shutdown();
 }
 executor.shutdown();
 try{
 executor.awaitTermination(5000, TimeUnit.MILLISECONDS);
 }catch(InterruptedException e){
 e.printStackTrace();
 }
 }
 });
}

SimpleProducer (kafka >= 0.9)

Configuration and initialization

First, create a maven project and add the following dependency in your pom:

 <dependencies>
 <dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka-clients</artifactId>
 <version>0.9.0.1</version>
 </dependency>
 </dependencies>

The producer is initialized using a Properties object. There are lots of properties allowing you to
fine-tune the producer behavior. Below is the minimal configuration needed:

Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("client.id", "simple-producer-XX");

The bootstrap-servers is an initial list of one or more brokers for the producer to be able discover
the rest of the cluster. The serializer properties tell Kafka how the message key and value should
be encoded. Here, we will send string messages. Although not required, setting a client.id since
is always recommended: this allows you to easily correlate requests on the broker with the client
instance which made it.

Other interesting properties are:

https://riptutorial.com/ 25

props.put("acks", "all");
props.put("retries", 0);
props.put("batch.size", 16384);
props.put("linger.ms", 1);
props.put("buffer.memory", 33554432);

You can control the durability of messages written to Kafka through the acks setting. The default
value of “1” requires an explicit acknowledgement from the partition leader that the write
succeeded. The strongest guarantee that Kafka provides is with acks=all, which guarantees that
not only did the partition leader accept the write, but it was successfully replicated to all of the in-
sync replicas. You can also use a value of “0” to maximize throughput, but you will have no
guarantee that the message was successfully written to the broker’s log since the broker does not
even send a response in this case.

retries (default to >0) determines if the producer try to resend message after a failure. Note that
with retries > 0, message reordering may occur since the retry may occur after a following write
succeeded.

Kafka producers attempt to collect sent messages into batches to improve throughput. With the
Java client, you can use batch.size to control the maximum size in bytes of each message batch.
To give more time for batches to fill, you can use linger.ms to have the producer delay sending.
Finally, compression can be enabled with the compression.type setting.

Use buffer.memory to limit the total memory that is available to the Java client for collecting unsent
messages. When this limit is hit, the producer will block on additional sends for as long as
max.block.ms before raising an exception. Additionally, to avoid keeping records queued
indefinitely, you can set a timeout using request.timeout.ms.

The complete list of properties is available here. I suggest to read this article from Confluent for
more details.

Sending messages

The send() method is asynchronous. When called it adds the record to a buffer of pending record
sends and immediately returns. This allows the producer to batch together individual records for
efficiency.

The result of send is a RecordMetadata specifying the partition the record was sent to and the offset
it was assigned. Since the send call is asynchronous it returns a Future for the RecordMetadata
that will be assigned to this record. To consult the metadata, you can either call get(), which will
block until the request completes or use a callback.

// synchronous call with get()
RecordMetadata recordMetadata = producer.send(message).get();
// callback with a lambda
producer.send(message, (recordMetadata, error) -> System.out.println(recordMetadata));

https://riptutorial.com/ 26

http://kafka.apache.org/documentation/#producerconfigs
http://docs.confluent.io/3.1.2/clients/producer.html

The code

public class SimpleProducer{

 public static void main(String[] args) throws ExecutionException, InterruptedException{
 Properties props = new Properties();

 props.put("bootstrap.servers", "localhost:9092");
 props.put("acks", "all");
 props.put("retries", 0);
 props.put("batch.size", 16384);
 props.put("linger.ms", 1);
 props.put("buffer.memory", 33554432);
 props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
 props.put("value.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
 props.put("client.id", "octopus");

 String topic = "test-topic";

 Producer<String, String> producer = new KafkaProducer<>(props);

 for(int i = 0; i < 10; i++){
 ProducerRecord<String, String> message = new ProducerRecord<>(topic, "this is
message " + i);
 producer.send(message);
 System.out.println("message sent.");
 }

 producer.close(); // don't forget this
 }
}

Read Producer/Consumer in Java online: https://riptutorial.com/apache-kafka/topic/8974/producer-
consumer-in-java

https://riptutorial.com/ 27

https://riptutorial.com/apache-kafka/topic/8974/producer-consumer-in-java
https://riptutorial.com/apache-kafka/topic/8974/producer-consumer-in-java

Credits

S.
No

Chapters Contributors

1
Getting started with
apache-kafka

Ali786, Community, Derlin, Laurel, Mandeep Lohan, Matthias J.
Sax, Mincong Huang, NangSaigon, Vivek

2
Consumer Groups
and Offset
Management

Matthias J. Sax, Sönke Liebau

3
Custom
Serializer/Deserializer

Derlin, G McNicol

4 kafka console tools Derlin

5
Producer/Consumer
in Java

Derlin, ha9u63ar

https://riptutorial.com/ 28

https://riptutorial.com/contributor/3404637/ali786
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2667536/derlin
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/5299999/mandeep-lohan
https://riptutorial.com/contributor/4953079/matthias-j--sax
https://riptutorial.com/contributor/4953079/matthias-j--sax
https://riptutorial.com/contributor/4381330/mincong-huang
https://riptutorial.com/contributor/1550230/nangsaigon
https://riptutorial.com/contributor/1747274/vivek
https://riptutorial.com/contributor/4953079/matthias-j--sax
https://riptutorial.com/contributor/7183757/sonke-liebau
https://riptutorial.com/contributor/2667536/derlin
https://riptutorial.com/contributor/684232/g-mcnicol
https://riptutorial.com/contributor/2667536/derlin
https://riptutorial.com/contributor/2667536/derlin
https://riptutorial.com/contributor/1770601/ha9u63ar

	About
	Chapter 1: Getting started with apache-kafka
	Remarks
	Examples
	Installation or Setup
	Introduction

	Which means
	It gets used for two broad classes of application:

	Installation
	Create a topic
	send and receive messages
	Stop kafka
	start a multi-broker cluster
	Create a replicated topic
	test fault tolerance
	Clean-up
	Chapter 2: Consumer Groups and Offset Management
	Parameters
	Examples
	What is a Consumer Group
	Consumer Offset Management and Fault-Tolerance
	How to Commit Offsets

	Semantics of committed offsets
	Processing guarantees
	How can I Read Topic From its Beginning

	Start a new Consumer Group
	Reuse the same Group ID
	Reuse the same Group ID and Commit

	Chapter 3: Custom Serializer/Deserializer
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Gson (de)serializer

	Serializer
	Code
	Usage

	deserializer
	Code
	Usage

	Chapter 4: kafka console tools
	Introduction
	Examples
	kafka-topics
	kafka-console-producer
	kafka-console-consumer
	kafka-simple-consumer-shell
	kafka-consumer-groups

	Chapter 5: Producer/Consumer in Java
	Introduction
	Examples
	SimpleConsumer (Kafka >= 0.9.0)

	Configuration and initialization
	Consumer creation and topic subscription
	Basic poll
	The code
	Basic example
	Runnable example
	SimpleProducer (kafka >= 0.9)

	Configuration and initialization

	Sending messages
	The code
	Credits

