
apache-spark

#apache-

spark

Table of Contents

About 1

Chapter 1: Getting started with apache-spark 2

Remarks 2

Versions 2

Examples 3

Introduction 3

Transformation vs Action 4

Check Spark version 5

Chapter 2: Calling scala jobs from pyspark 7

Introduction 7

Examples 7

Creating a Scala functions that receives a python RDD 7

Serialize and Send python RDD to scala code 7

How to call spark-submit 7

Chapter 3: Client mode and Cluster Mode 9

Examples 9

Spark Client and Cluster mode explained 9

Chapter 4: Configuration: Apache Spark SQL 10

Introduction 10

Examples 10

Controlling Spark SQL Shuffle Partitions 10

Chapter 5: Error message 'sparkR' is not recognized as an internal or external command or 12

Introduction 12

Remarks 12

Examples 12

details for set up Spark for R 12

Chapter 6: Handling JSON in Spark 14

Examples 14

Mapping JSON to a Custom Class with Gson 14

Chapter 7: How to ask Apache Spark related question? 15

Introduction 15

Examples 15

Environment details: 15

Example data and code 15

Example Data 15

Code 16

Diagnostic information 16

Debugging questions. 16

Performance questions. 16

Before you ask 16

Chapter 8: Introduction to Apache Spark DataFrames 18

Examples 18

Spark DataFrames with JAVA 18

Spark Dataframe explained 19

Chapter 9: Joins 21

Remarks 21

Examples 21

Broadcast Hash Join in Spark 21

Chapter 10: Migrating from Spark 1.6 to Spark 2.0 24

Introduction 24

Examples 24

Update build.sbt file 24

Update ML Vector libraries 24

Chapter 11: Partitions 25

Remarks 25

Examples 25

Partitions Intro 25

Partitions of an RDD 26

Repartition an RDD 27

Rule of Thumb about number of partitions 27

Show RDD contents 28

Chapter 12: Shared Variables 29

Examples 29

Broadcast variables 29

Accumulators 29

User Defined Accumulator in Scala 30

User Defined Accumulator in Python 30

Chapter 13: Spark DataFrame 31

Introduction 31

Examples 31

Creating DataFrames in Scala 31

Using toDF 31

Using createDataFrame 31

Reading from sources 32

Chapter 14: Spark Launcher 33

Remarks 33

Examples 33

SparkLauncher 33

Chapter 15: Stateful operations in Spark Streaming 35

Examples 35

PairDStreamFunctions.updateStateByKey 35

PairDStreamFunctions.mapWithState 36

Chapter 16: Text files and operations in Scala 38

Introduction 38

Examples 38

Example usage 38

Join two files read with textFile() 38

Chapter 17: Unit tests 40

Examples 40

Word count unit test (Scala + JUnit) 40

Chapter 18: Window Functions in Spark SQL 41

Examples 41

Introduction 41

Moving Average 42

Cumulative Sum 43

Window functions - Sort, Lead, Lag , Rank , Trend Analysis 43

Credits 48

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: apache-spark

It is an unofficial and free apache-spark ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official apache-spark.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/apache-spark
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with apache-spark

Remarks

Apache Spark is an open source big data processing framework built around speed, ease of use,
and sophisticated analytics. A developer should use it when (s)he handles large amount of data,
which usually imply memory limitations and/or prohibitive processing time.

It should also mention any large subjects within apache-spark, and link out to the related topics.
Since the Documentation for apache-spark is new, you may need to create initial versions of those
related topics.

Versions

Version Release Date

2.2.0 2017-07-11

2.1.1 2017-05-02

2.1.0 2016-12-28

2.0.1 2016-10-03

2.0.0 2016-07-26

1.6.0 2016-01-04

1.5.0 2015-09-09

1.4.0 2015-06-11

1.3.0 2015-03-13

1.2.0 2014-12-18

1.1.0 2014-09-11

1.0.0 2014-05-30

0.9.0 2014-02-02

0.8.0 2013-09-25

0.7.0 2013-02-27

0.6.0 2012-10-15

https://riptutorial.com/ 2

https://spark.apache.org/releases/spark-release-2-2-0.html
http://spark.apache.org/news/spark-2-1-1-released.html
http://spark.apache.org/news/spark-2-1-0-released.html
http://spark.apache.org/news/spark-2-0-1-released.html
https://spark.apache.org/releases/spark-release-2-0-0.html
https://spark.apache.org/news/spark-1-6-0-released.html
https://spark.apache.org/news/spark-1-5-0-released.html
https://spark.apache.org/news/spark-1-4-0-released.html
https://spark.apache.org/news/spark-1-3-0-released.html
https://spark.apache.org/news/spark-1-2-0-released.html
https://spark.apache.org/news/spark-1-1-0-released.html
https://spark.apache.org/news/spark-1-0-0-released.html
https://spark.apache.org/news/spark-0-9-0-released.html
https://spark.apache.org/news/spark-0-8-0-released.html
https://spark.apache.org/news/spark-0-7-0-released.html
https://spark.apache.org/news/spark-version-0-6-0-released.html

Examples

Introduction

Prototype:

aggregate(zeroValue, seqOp, combOp)

Description:

aggregate() lets you take an RDD and generate a single value that is of a different type than what
was stored in the original RDD.

Parameters:

zeroValue: The initialization value, for your result, in the desired format.1.
seqOp: The operation you want to apply to RDD records. Runs once for every record in a
partition.

2.

combOp: Defines how the resulted objects (one for every partition), gets combined.3.

Example:

Compute the sum of a list and the length of that list. Return the result in a pair of (sum,
length).

In a Spark shell, create a list with 4 elements, with 2 partitions:

listRDD = sc.parallelize([1,2,3,4], 2)

Then define seqOp:

seqOp = (lambda local_result, list_element: (local_result[0] + list_element, local_result[1] +
1))

Then define combOp:

combOp = (lambda some_local_result, another_local_result: (some_local_result[0] +
another_local_result[0], some_local_result[1] + another_local_result[1]))

Then aggregated:

listRDD.aggregate((0, 0), seqOp, combOp)
Out[8]: (10, 4)

The first partition has the sublist [1, 2]. This applies the seqOp to each element of that list, which
produces a local result - A pair of (sum, length) that will reflect the result locally, only in that first
partition.

local_result gets initialized to the zeroValue parameter aggregate() was provided with. For

https://riptutorial.com/ 3

example, (0, 0) and list_element is the first element of the list:

0 + 1 = 1
0 + 1 = 1

The local result is (1, 1), which means the sum is 1 and the length 1 for the 1st partition after
processing only the first element. local_result gets updated from (0, 0), to (1, 1).

1 + 2 = 3
1 + 1 = 2

The local result is now (3, 2), which will be the final result from the 1st partition, since they are no
other elements in the sublist of the 1st partition. Doing the same for 2nd partition returns (7, 2).

Apply combOp to each local result to form the final, global result:

(3,2) + (7,2) = (10, 4)

Example described in 'figure':

 (0, 0) <-- zeroValue

[1, 2] [3, 4]

0 + 1 = 1 0 + 3 = 3
0 + 1 = 1 0 + 1 = 1

1 + 2 = 3 3 + 4 = 7
1 + 1 = 2 1 + 1 = 2
 | |
 v v
 (3, 2) (7, 2)
 \ /
 \ /
 \ /
 \ /
 \ /
 \ /

 | combOp |

 |
 v
 (10, 4)

Transformation vs Action

Spark uses lazy evaluation; that means it will not do any work, unless it really has to. That
approach allows us to avoid unnecessary memory usage, thus making us able to work with big
data.

A transformation is lazy evaluated and the actual work happens, when an action occurs.

https://riptutorial.com/ 4

Example:

In [1]: lines = sc.textFile(file) // will run instantly, regardless file's size
In [2]: errors = lines.filter(lambda line: line.startsWith("error")) // run instantly
In [3]: errorCount = errors.count() // an action occurred, let the party start!
Out[3]: 0 // no line with 'error', in this example

So, in [1] we told Spark to read a file into an RDD, named lines. Spark heard us and told us: "Yes
I will do it", but in fact it didn't yet read the file.

In [2], we are filtering the lines of the file, assuming that its contents contain lines with errors that
are marked with an error in their start. So we tell Spark to create a new RDD, called errors, which
will have the elements of the RDD lines, that had the word error at their start.

Now in [3], we ask Spark to count the errors, i.e. count the number of elements the RDD called
errors has. count() is an action, which leave no choice to Spark, but to actually make the
operation, so that it can find the result of count(), which will be an integer.

As a result, when [3] is reached, [1] and [2] will actually being performed, i.e. that when we reach
[3], then and only then:

the file is going to be read in textFile() (because of [1])1.

lines will be filter()'ed (because of [2])2.

count() will execute, because of [3]3.

Debug tip: Since Spark won't do any real work until [3] is reached, it is important to understand
that if an error exist in [1] and/or [2], it won't appear, until the action in [3] triggers Spark to do
actual work. For example if your data in the file do not support the startsWith() I used, then [2] is
going to be properly accepted by Spark and it won't raise any error, but when [3] is submitted, and
Spark actually evaluates both [1] and [2], then and only then it will understand that something is
not correct with [2] and produce a descriptive error.

As a result, an error may be triggered when [3] is executed, but that doesn't mean that the error
must lie in the statement of [3]!

Note, neither lines nor errors will be stored in memory after [3]. They will continue to exist only as
a set of processing instructions. If there will be multiple actions performed on either of these
RDDs, spark will read and filter the data multiple times. To avoid duplicating operations when
performing multiple actions on a single RDD, it is often useful to store data into memory using
cache.

You can see more transformations/actions in Spark docs.

Check Spark version

In spark-shell:

https://riptutorial.com/ 5

http://spark.apache.org/docs/latest/programming-guide.html#transformations

sc.version

Generally in a program:

SparkContext.version

Using spark-submit:

 spark-submit --version

Read Getting started with apache-spark online: https://riptutorial.com/apache-
spark/topic/833/getting-started-with-apache-spark

https://riptutorial.com/ 6

https://riptutorial.com/apache-spark/topic/833/getting-started-with-apache-spark
https://riptutorial.com/apache-spark/topic/833/getting-started-with-apache-spark

Chapter 2: Calling scala jobs from pyspark

Introduction

This document will show you how to call Scala jobs from a pyspark application.

This approach can be useful when the Python API is missing some existing features from the
Scala API or even to cope with performance issues using python.

In some use cases, using Python is inevitable e.g you are building models with scikit-learn.

Examples

Creating a Scala functions that receives a python RDD

Creating a Scala function that receives an python RDD is easy. What you need to build is a
function that get a JavaRDD[Any]

import org.apache.spark.api.java.JavaRDD

def doSomethingByPythonRDD(rdd :JavaRDD[Any]) = {
 //do something
 rdd.map { x => ??? }
}

Serialize and Send python RDD to scala code

This part of development you should serialize the python RDD to the JVM. This process uses the
main development of Spark to call the jar function.

from pyspark.serializers import PickleSerializer, AutoBatchedSerializer

rdd = sc.parallelize(range(10000))
reserialized_rdd = rdd._reserialize(AutoBatchedSerializer(PickleSerializer()))
rdd_java = rdd.ctx._jvm.SerDe.pythonToJava(rdd._jrdd, True)

_jvm = sc._jvm #This will call the py4j gateway to the JVM.
_jvm.myclass.apps.etc.doSomethingByPythonRDD(rdd_java)

How to call spark-submit

To call this code you should create the jar of your scala code. Than you have to call your spark
submit like this:

spark-submit --master yarn-client --jars ./my-scala-code.jar --driver-class-path ./my-scala-
code.jar main.py

https://riptutorial.com/ 7

This will allow you to call any kind of scala code that you need in your pySpark jobs

Read Calling scala jobs from pyspark online: https://riptutorial.com/apache-
spark/topic/9180/calling-scala-jobs-from-pyspark

https://riptutorial.com/ 8

https://riptutorial.com/apache-spark/topic/9180/calling-scala-jobs-from-pyspark
https://riptutorial.com/apache-spark/topic/9180/calling-scala-jobs-from-pyspark

Chapter 3: Client mode and Cluster Mode

Examples

Spark Client and Cluster mode explained

Let's try to look at the differences between client and cluster mode of Spark.

Client: When running Spark in the client mode, the SparkContext and Driver program run external
to the cluster; for example, from your laptop. Local mode is only for the case when you do not
want to use a cluster and instead want to run everything on a single machine. So Driver
Application and Spark Application are both on the same machine as the user. Driver runs on a
dedicated server (Master node) inside a dedicated process. This means it has all available
resources at it's disposal to execute work. Because the Master node has dedicated resources of
it's own, you don't need to "spend" worker resources for the Driver program. If the driver process
dies, you need an external monitoring system to reset it's execution.

Cluster: Driver runs on one of the cluster's Worker nodes.It runs as a dedicated, standalone
process inside the Worker. When working in Cluster mode, all JARs related to the execution of
your application need to be publicly available to all the workers. This means you can either
manually place them in a shared place or in a folder for each of the workers. Each application gets
its own executor processes, which stay up for the duration of the whole application and run tasks
in multiple threads. This has the benefit of isolating applications from each other, on both the
scheduling side (each driver schedules its own tasks) and executor side (tasks from different
applications run in different JVMs

Cluster Manager Types

Apache Mesos – a general cluster manager that can also run Hadoop MapReduce and service
applications. Hadoop YARN – the resource manager in Hadoop.
Kubernetes- container-centric infrastructure.it is experimental yet.

Read Client mode and Cluster Mode online: https://riptutorial.com/apache-
spark/topic/10808/client-mode--and-cluster-mode

https://riptutorial.com/ 9

https://riptutorial.com/apache-spark/topic/10808/client-mode--and-cluster-mode
https://riptutorial.com/apache-spark/topic/10808/client-mode--and-cluster-mode

Chapter 4: Configuration: Apache Spark SQL

Introduction

In this topic Spark Users can find different configurations of Spark SQL, which is the most used
component of Apache Spark framework.

Examples

Controlling Spark SQL Shuffle Partitions

In Apache Spark while doing shuffle operations like join and cogroup a lot of data gets transferred
across network. Now, to control the number of partitions over which shuffle happens can be
controlled by configurations given in Spark SQL. That configuration is as follows:

spark.sql.shuffle.partitions

Using this configuration we can control the number of partitions of shuffle operations. By default,
its value is 200. But, 200 partitions does not make any sense if we have files of few GB(s). So, we
should change them according to the amount of data we need to process via Spark SQL. Like as
follows:

In this scenario we have two tables to be joined employee and department. Both tables contains only
few records only, but we need to join them to get to know the department of each employee. So,
we join them using Spark DataFrames like this:

val conf = new SparkConf().setAppName("sample").setMaster("local")
val sc = new SparkContext(conf)

val employee = sc.parallelize(List("Bob", "Alice")).toDF("name")
val department = sc.parallelize(List(("Bob", "Accounts"), ("Alice", "Sales"))).toDF("name",
"department")

employeeDF.join(departmentDF, "employeeName").show()

Now, the number of partitions that gets created while doing join are 200 by default which is of
course too much for this much amount of data.

So, lets change this value so that we can reduce the number of shuffle operations.

val conf = new
SparkConf().setAppName("sample").setMaster("local").set("spark.sql.shuffle.partitions", 2)
val sc = new SparkContext(conf)

val employee = sc.parallelize(List("Bob", "Alice")).toDF("name")
val department = sc.parallelize(List(("Bob", "Accounts"), ("Alice", "Sales"))).toDF("name",
"department")

https://riptutorial.com/ 10

employeeDF.join(departmentDF, "employeeName").show()

Now, the number of shuffle partitions are reduced to only 2, which will not only reduce the number
of shuffling operations but also reduce the time taken to join the DataFrames from 0.878505 s to
0.077847 s.

So, always configure the number of partitions for shuffle operations according to the data being
processed.

Read Configuration: Apache Spark SQL online: https://riptutorial.com/apache-
spark/topic/8169/configuration--apache-spark-sql

https://riptutorial.com/ 11

https://riptutorial.com/apache-spark/topic/8169/configuration--apache-spark-sql
https://riptutorial.com/apache-spark/topic/8169/configuration--apache-spark-sql

Chapter 5: Error message 'sparkR' is not
recognized as an internal or external
command or '.binsparkR' is not recognized
as an internal or external command

Introduction

This post is for those who were having trouble installing Spark in their windows machine. Mostly
using sparkR function for R session.

Remarks

Used reference from r-bloggers

Examples

details for set up Spark for R

Use below URL to get steps for download and install- https://www.r-bloggers.com/installing-and-
starting-sparkr-locally-on-windows-os-and-rstudio-2/ Add the environment variable path for your
'Spark/bin', 'spark/bin' , R and Rstudio path. I have added below path (initials will vary based on
where you have downloaded files) C:\spark-2.0.1 C:\spark-2.0.1\bin C:\spark-2.0.1\sbin
C:\Program Files\R\R-3.3.1\bin\x64 C:\Program Files\RStudio\bin\x64

To set the environment variable please follow below steps: Windows 10 and Windows 8 In Search,
search for and then select: System (Control Panel) Click the Advanced system settings link. Click
on Advanced tab under Sytem Properties Click Environment Variables. In the section System
Variables, find the PATH environment variable and select it. Click Edit. If the PATH environment
variable does not exist, click New. In the Edit System Variable (or New System Variable) window,
specify the value of the PATH environment variable. Click OK. Close all remaining windows by
clicking OK. Reopen Command prompt window, and run sparkR (no need to change directory).

Windows 7 From the desktop, right click the Computer icon. Choose Properties from the context
menu. Click the Advanced system settings link. Click Environment Variables. In the section
System Variables, find the PATH environment variable and select it. Click Edit. If the PATH
environment variable does not exist, click New. In the Edit System Variable (or New System
Variable) window, specify the value of the PATH environment variable. Click OK. Close all
remaining windows by clicking OK. Reopen Command prompt window, and run sparkR (no need
to change directory).

Read Error message 'sparkR' is not recognized as an internal or external command or '.binsparkR'

https://riptutorial.com/ 12

https://www.r-bloggers.com/installing-and-starting-sparkr-locally-on-windows-os-and-rstudio-2/
https://www.r-bloggers.com/installing-and-starting-sparkr-locally-on-windows-os-and-rstudio-2/

is not recognized as an internal or external command online: https://riptutorial.com/apache-
spark/topic/9649/error-message--sparkr--is-not-recognized-as-an-internal-or-external-command-
or---binsparkr--is-not-recognized-as-an-internal-or-external-command

https://riptutorial.com/ 13

https://riptutorial.com/apache-spark/topic/9649/error-message--sparkr--is-not-recognized-as-an-internal-or-external-command-or---binsparkr--is-not-recognized-as-an-internal-or-external-command
https://riptutorial.com/apache-spark/topic/9649/error-message--sparkr--is-not-recognized-as-an-internal-or-external-command-or---binsparkr--is-not-recognized-as-an-internal-or-external-command
https://riptutorial.com/apache-spark/topic/9649/error-message--sparkr--is-not-recognized-as-an-internal-or-external-command-or---binsparkr--is-not-recognized-as-an-internal-or-external-command

Chapter 6: Handling JSON in Spark

Examples

Mapping JSON to a Custom Class with Gson

With Gson, you can read JSON dataset and map them to a custom class MyClass.

Since Gson is not serializable, each executor needs its own Gson object. Also, MyClass must be
serializable in order to pass it between executors.

Note that the file(s) that is offered as a json file is not a typical JSON file. Each line must contain a
separate, self-contained valid JSON object. As a consequence, a regular multi-line JSON file will
most often fail.

val sc: org.apache.spark.SparkContext // An existing SparkContext

// A JSON dataset is pointed to by path.
// The path can be either a single text file or a directory storing text files.
val path = "path/to/my_class.json"
val linesRdd: RDD[String] = sc.textFile(path)

// Mapping json to MyClass
val myClassRdd: RDD[MyClass] = linesRdd.map{ l =>
 val gson = new com.google.gson.Gson()
 gson.fromJson(l, classOf[MyClass])
}

If creation of Gson object becomes too costly, mapPartitions method can be used to optimize it. With
it, there will be one Gson per partition instead of per line:

val myClassRdd: RDD[MyClass] = linesRdd.mapPartitions{p =>
 val gson = new com.google.gson.Gson()
 p.map(l => gson.fromJson(l, classOf[MyClass]))
}

Read Handling JSON in Spark online: https://riptutorial.com/apache-spark/topic/2799/handling-
json-in-spark

https://riptutorial.com/ 14

https://github.com/google/gson/blob/master/UserGuide.md
https://github.com/google/gson/blob/master/gson/src/main/java/com/google/gson/Gson.java#L103
https://google.github.io/gson/apidocs/com/google/gson/Gson.html
https://google.github.io/gson/apidocs/com/google/gson/Gson.html
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.rdd.RDD
https://google.github.io/gson/apidocs/com/google/gson/Gson.html
https://riptutorial.com/apache-spark/topic/2799/handling-json-in-spark
https://riptutorial.com/apache-spark/topic/2799/handling-json-in-spark

Chapter 7: How to ask Apache Spark related
question?

Introduction

The goal of this topic is to document best practices when asking Apache Spark related questions.

Examples

Environment details:

When asking Apache Spark related questions please include following information

Apache Spark version used by the client and Spark deployment if applicable. For API related
questions major (1.6, 2.0, 2.1 etc.) is typically sufficient, for questions concerning possible
bugs always use full version information.

•

Scala version used to build Spark binaries.•
JDK version (java -version).•
If you use guest language (Python, R) please provide information about the language
version. In Python use tags: python-2.x, python-3.x or more specific ones to distinguish
between language variants.

•

Build definition (build.sbt, pom.xml) if applicable or external dependency versions (Python, R)
when applicable.

•

Cluster manager (local[n], Spark standalone, Yarn, Mesos), mode (client, cluster) and
other submit options if applicable.

•

Example data and code

Example Data

Please try to provide a minimal example input data in a format that can be directly used by the
answers without tedious and time consuming parsing for example input file or local collection with
all code required to create distributed data structures.

When applicable always include type information:

In RDD based API use type annotations when necessary.•
In DataFrame based API provide schema information as a StrucType or output from
Dataset.printSchema.

•

Output from Dataset.show or print can look good but doesn't tell us anything about underlying
types.

If particular problem occurs only at scale use random data generators (Spark provides some

https://riptutorial.com/ 15

/questions/tagged/python-2.x
/questions/tagged/python-3.x

useful utilities in org.apache.spark.mllib.random.RandomRDDs and
org.apache.spark.graphx.util.GraphGenerators

Code

Please use type annotations when possible. While your compiler can easily keep track of the types
it is not so easy for mere mortals. For example:

val lines: RDD[String] = rdd.map(someFunction)

or

def f(x: String): Int = ???

are better than:

val lines = rdd.map(someFunction)

and

def f(x: String) = ???

respectively.

Diagnostic information

Debugging questions.

When question is related to debugging specific exception always provide relevant traceback.
While it is advisable to remove duplicated outputs (from different executors or attempts) don't cut
tracebacks to a single line or exception class only.

Performance questions.

Depending on the context try to provide details like:

RDD.debugString / Dataset.explain.•
Output from Spark UI with DAG diagram if applicable in particular case.•
Relevant log messages.•
Diagnostic information collected by external tools (Ganglia, VisualVM).•

Before you ask

Search Stack Overflow for duplicate questions. There common class of problems which have
been already extensively documented.

•

Read How do I ask a good question?.•

https://riptutorial.com/ 16

https://stackoverflow.com/help/how-to-ask

Read What topics can I ask about here?•
Apache Spark Community resources•

Read How to ask Apache Spark related question? online: https://riptutorial.com/apache-
spark/topic/8815/how-to-ask-apache-spark-related-question-

https://riptutorial.com/ 17

https://stackoverflow.com/help/on-topic
https://spark.apache.org/community.html
https://riptutorial.com/apache-spark/topic/8815/how-to-ask-apache-spark-related-question-
https://riptutorial.com/apache-spark/topic/8815/how-to-ask-apache-spark-related-question-

Chapter 8: Introduction to Apache Spark
DataFrames

Examples

Spark DataFrames with JAVA

A DataFrame is a distributed collection of data organized into named columns. It is conceptually
equivalent to a table in a relational database. DataFrames can be constructed from a wide array of
sources such as: structured data files, tables in Hive, external databases, or existing RDDs.

Reading a Oracle RDBMS table into spark data frame::

SparkConf sparkConf = new SparkConf().setAppName("SparkConsumer");

sparkConf.registerKryoClasses(new Class<?>[]{
 Class.forName("org.apache.hadoop.io.Text"),
 Class.forName("packageName.className")
});

JavaSparkContext sparkContext=new JavaSparkContext(sparkConf);
SQLContext sqlcontext= new SQLContext(sparkContext);

Map<String, String> options = new HashMap();
options.put("driver", "oracle.jdbc.driver.OracleDriver");
options.put("url", "jdbc:oracle:thin:username/password@host:port:orcl"); //oracle url to
connect
options.put("dbtable", "DbName.tableName");
DataFrame df=sqlcontext.load("jdbc", options);
df.show(); //this will print content into tablular format

We can also convert this data frame back to rdd if need be :

JavaRDD<Row> rdd=df.javaRDD();

Create a dataframe from a file:

public class LoadSaveTextFile {

 //static schema class
 public static class Schema implements Serializable {

 public String getTimestamp() {
 return timestamp;
 }
 public void setTimestamp(String timestamp) {
 this.timestamp = timestamp;
 }
 public String getMachId() {
 return machId;
 }

https://riptutorial.com/ 18

 public void setMachId(String machId) {
 this.machId = machId;
 }
 public String getSensorType() {
 return sensorType;
 }
 public void setSensorType(String sensorType) {
 this.sensorType = sensorType;
 }

 //instance variables
 private String timestamp;
 private String machId;
 private String sensorType;
 }

 public static void main(String[] args) throws ClassNotFoundException {

 SparkConf sparkConf = new SparkConf().setAppName("SparkConsumer");

 sparkConf.registerKryoClasses(new Class<?>[]{
 Class.forName("org.apache.hadoop.io.Text"),
 Class.forName("oracle.table.join.LoadSaveTextFile")
 });

 JavaSparkContext sparkContext=new JavaSparkContext(sparkConf);
 SQLContext sqlcontext= new SQLContext(sparkContext);

 //we have a file which ";" separated
 String filePath=args[0];

 JavaRDD<Schema> schemaRdd = sparkContext.textFile(filePath).map(
 new Function<String, Schema>() {
 public Schema call(String line) throws Exception {
 String[] tokens=line.split(";");
 Schema schema = new Schema();
 schema.setMachId(tokens[0]);
 schema.setSensorType(tokens[1]);
 schema.setTimestamp(tokens[2]);
 return schema;
 }
 });

 DataFrame df = sqlcontext.createDataFrame(schemaRdd, Schema.class);
 df.show();
 }
}

Now we have data frame from oracle as well from a file. Similarly we can read a table from hive as
well. On data frame we can fetch any column as we do in rdbms. Like get a min value for a column
or max value. Can calculate a mean/avg for a column. Some other functions like select,filter,agg,
groupBy are also available.

Spark Dataframe explained

In Spark, a DataFrame is a distributed collection of data organized into named columns. It is
conceptually equivalent to a table in a relational database or a data frame in R/Python, but with
richer optimizations under the hood. DataFrames can be constructed from a wide array of sources

https://riptutorial.com/ 19

such as structured data files, tables in Hive, external databases, or existing RDDs.

Ways of creating Dataframe

val data= spark.read.json("path to json")

val df = spark.read.format("com.databricks.spark.csv").load("test.txt") in the options field, you
can provide header, delimiter, charset and much more

you can also create Dataframe from an RDD

val rdd = sc.parallelize(
 Seq(
 ("first", Array(2.0, 1.0, 2.1, 5.4)),
 ("test", Array(1.5, 0.5, 0.9, 3.7)),
 ("choose", Array(8.0, 2.9, 9.1, 2.5))
)
)

val dfWithoutSchema = spark.createDataFrame(rdd)

If you want to create df with schema

def createDataFrame(rowRDD: RDD[Row], schema: StructType): DataFrame

Why we need Dataframe if Spark has provided RDD

An RDD is merely a Resilient Distributed Dataset that is more of a blackbox of data that cannot be
optimized as the operations that can be performed against it, are not as constrained.

No inbuilt optimization engine: When working with structured data, RDDs cannot take advantages
of Spark’s advanced optimizers including catalyst optimizer and Tungsten execution engine.
Developers need to optimize each RDD based on its attributes. Handling structured data: Unlike
Dataframe and datasets, RDDs don’t infer the schema of the ingested data and requires the user
to specify it.

DataFrames in Spark have their execution automatically optimized by a query optimizer. Before
any computation on a DataFrame starts, the Catalyst optimizer compiles the operations that were
used to build the DataFrame into a physical plan for execution. Because the optimizer
understands the semantics of operations and structure of the data, it can make intelligent
decisions to speed up computation.

Limitation of DataFrame

Compile-time type safety: Dataframe API does not support compile time safety which limits you
from manipulating data when the structure is not known.

Read Introduction to Apache Spark DataFrames online: https://riptutorial.com/apache-
spark/topic/6514/introduction-to-apache-spark-dataframes

https://riptutorial.com/ 20

https://riptutorial.com/apache-spark/topic/6514/introduction-to-apache-spark-dataframes
https://riptutorial.com/apache-spark/topic/6514/introduction-to-apache-spark-dataframes

Chapter 9: Joins

Remarks

One thing to note is your resources versus the size of data you are joining. This is where your
Spark Join code might fail giving you memory errors. For this reason make sure you configure
your Spark jobs really well depending on the size of data. Following is an example of a
configuration for a join of 1.5 million to 200 million.

Using Spark-Shell

spark-shell --executor-memory 32G --num-executors 80 --driver-memory 10g --executor-cores
10

Using Spark Submit

spark-submit --executor-memory 32G --num-executors 80 --driver-memory 10g --executor-
cores 10 code.jar

Examples

Broadcast Hash Join in Spark

A broadcast join copies the small data to the worker nodes which leads to a highly efficient and
super-fast join. When we are joining two datasets and one of the datasets is much smaller than
the other (e.g when the small dataset can fit into memory), then we should use a Broadcast Hash
Join.

The following image visualizes a Broadcast Hash Join whre the the small dataset is broadcasted
to each partition of the Large Dataset.

https://riptutorial.com/ 21

Following is code sample which you can easily implement if you have a similar scenario of a large
and small dataset join.

case class SmallData(col1: String, col2:String, col3:String, col4:Int, col5:Int)

val small = sc.textFile("/datasource")

https://riptutorial.com/ 22

https://i.stack.imgur.com/wOo4T.jpg

val df1 = sm_data.map(_.split("\\|")).map(attr => SmallData(attr(0).toString,
attr(1).toString, attr(2).toString, attr(3).toInt, attr(4).toInt)).toDF()

val lg_data = sc.textFile("/datasource")

case class LargeData(col1: Int, col2: String, col3: Int)

val LargeDataFrame = lg_data.map(_.split("\\|")).map(attr => LargeData(attr(0).toInt,
attr(2).toString, attr(3).toInt)).toDF()

val joinDF = LargeDataFrame.join(broadcast(smallDataFrame), "key")

Read Joins online: https://riptutorial.com/apache-spark/topic/7828/joins

https://riptutorial.com/ 23

https://riptutorial.com/apache-spark/topic/7828/joins

Chapter 10: Migrating from Spark 1.6 to Spark
2.0

Introduction

Spark 2.0 has been released and contains many enhancements and new features. If you are
using Spark 1.6 and now you want to upgrade your application to use Spark 2.0, you have to take
into account some changes in the API. Below are some of the changes to the code that need to be
made.

Examples

Update build.sbt file

Update build.sbt with :

scalaVersion := "2.11.8" // Make sure to have installed Scala 11
sparkVersion := "2.0.0" // Make sure to have installed Spark 2.0

Note that when compiling with sbt package, the .jar will now be created in target/scala-2.11/, and
the .jar name will also be changed, so the spark-submit command need to be updated as well.

Update ML Vector libraries

ML Transformers now generates org.apache.spark.ml.linalg.VectorUDT instead of
org.apache.spark.mllib.linalg.VectorUDT.

They are also mapped locally to subclasses of org.apache.spark.ml.linalg.Vector. These are not
compatible with old MLLib API which is moving towards deprecation in Spark 2.0.0.

//import org.apache.spark.mllib.linalg.{Vector, Vectors} // Depreciated in Spark 2.0
import org.apache.spark.ml.linalg.Vector // Use instead

Read Migrating from Spark 1.6 to Spark 2.0 online: https://riptutorial.com/apache-
spark/topic/6506/migrating-from-spark-1-6-to-spark-2-0

https://riptutorial.com/ 24

http://stackoverflow.com/a/38819323/1575548
http://stackoverflow.com/a/38819323/1575548
https://riptutorial.com/apache-spark/topic/6506/migrating-from-spark-1-6-to-spark-2-0
https://riptutorial.com/apache-spark/topic/6506/migrating-from-spark-1-6-to-spark-2-0

Chapter 11: Partitions

Remarks

The number of partitions is critical for an application's performance and/or successful termination.

A Resilient Distributed Dataset (RDD) is Spark's main abstraction. An RDD is split into partitions,
that means that a partition is a part of the dataset, a slice of it, or in other words, a chunk of it.

The greater the number of partitions is, the smaller the size of each partition is.

However, notice that a large number of partitions puts a lot of pressure on Hadoop Distributed File
System (HDFS), which has to keep a significant amount of metadata.

The number of partitions is related to the memory usage, and a memoryOverhead issue can be
related to this number (personal experience).

A common pitfall for new users is to transform their RDD into an RDD with only one partition,
which usually looks like that:

data = sc.textFile(file)
data = data.coalesce(1)

That's usually a very bad idea, since you are telling Spark to put all the data is just one partition!
Remember that:

A stage in Spark will operate on one partition at a time (and load the data in that
partition into memory).

As a result, you tell Spark to handle all the data at once, which usually results in memory related
errors (Out of Memory for example), or even a null pointer exception.

So, unless you know what you are doing, avoid repartitioning your RDD in just one partition!

Examples

Partitions Intro

How does an RDD gets partitioned?

By default a partition is created for each HDFS partition, which by default is 64MB. Read more
here.

How to balance my data across partitions?

First, take a look at the three ways one can repartition his data:

https://riptutorial.com/ 25

https://gsamaras.wordpress.com/code/memoryoverhead-issue-in-spark/
http://stackoverflow.com/questions/26368362/how-does-partitioning-work-in-spark

Pass a second parameter, the desired minimum number of partitions for your RDD, into
textFile(), but be careful:

In [14]: lines = sc.textFile("data")

In [15]: lines.getNumPartitions() Out[15]: 1000

In [16]: lines = sc.textFile("data", 500)

In [17]: lines.getNumPartitions() Out[17]: 1434

In [18]: lines = sc.textFile("data", 5000)

In [19]: lines.getNumPartitions() Out[19]: 5926

1.

As you can see, [16] doesn't do what one would expect, since the number of partitions the RDD
has, is already greater than the minimum number of partitions we request.

Use repartition(), like this:

In [22]: lines = lines.repartition(10)

In [23]: lines.getNumPartitions() Out[23]: 10

2.

Warning: This will invoke a shuffle and should be used when you want to increase the number of
partitions your RDD has.

From the docs:

The shuffle is Spark’s mechanism for re-distributing data so that it’s grouped differently
across partitions. This typically involves copying data across executors and machines,
making the shuffle a complex and costly operation.

Use coalesce(), like this:

In [25]: lines = lines.coalesce(2)

In [26]: lines.getNumPartitions() Out[26]: 2

3.

Here, Spark knows that you will shrink the RDD and gets advantage of it. Read more about
repartition() vs coalesce().

But will all this guarantee that your data will be perfectly balanced across your partitions? Not
really, as I experienced in How to balance my data across the partitions?

Partitions of an RDD

As mentioned in "Remarks", a partition is a part/slice/chunk of an RDD. Below is a minimal
example on how to request a minimum number of partitions for your RDD:

https://riptutorial.com/ 26

http://spark.apache.org/docs/1.6.2/api/python/pyspark.html?highlight=textfile#pyspark.SparkContext.textFile
http://spark.apache.org/docs/1.6.2/api/python/pyspark.html?highlight=repartition#pyspark.RDD.repartition
http://spark.apache.org/docs/1.6.2/programming-guide.html#shuffle-operations
http://spark.apache.org/docs/1.6.2/api/python/pyspark.html?highlight=coalesce#pyspark.RDD.coalesce
http://stackoverflow.com/questions/31610971/spark-repartition-vs-coalesce
http://stackoverflow.com/questions/38799753/how-to-balance-my-data-across-the-partitions

In [1]: mylistRDD = sc.parallelize([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 2)

In [2]: mylistRDD.getNumPartitions()
Out[2]: 2

Notice in [1] how we passed 2 as a second parameter of parallelize(). That parameter says that
we want our RDD to has at least 2 partitions.

Repartition an RDD

Sometimes we want to repartition an RDD, for example because it comes from a file that wasn't
created by us, and the number of partitions defined from the creator is not the one we want.

The two most known functions to achieve this are:

repartition(numPartitions)

and:

coalesce(numPartitions, shuffle=False)

As a rule of thumb, use the first when you want to repartition your RDD in a greater number of
partitions and the second to reduce your RDD, in a smaller number of partitions. Spark -
repartition() vs coalesce().

For example:

data = sc.textFile(file)
data = data.coalesce(100) // requested number of #partitions

will decrease the number of partitions of the RDD called 'data' to 100, given that this RDD has
more than 100 partitions when it got read by textFile().

And in a similar way, if you want to have more than the current number of partitions for your RDD,
you could do (given that your RDD is distributed in 200 partitions for example):

data = sc.textFile(file)
data = data.repartition(300) // requested number of #partitions

Rule of Thumb about number of partitions

As rule of thumb, one would want his RDD to have as many partitions as the product of the
number of executors by the number of used cores by 3 (or maybe 4). Of course, that's a heuristic
and it really depends on your application, dataset and cluster configuration.

Example:

In [1]: data = sc.textFile(file)

https://riptutorial.com/ 27

http://stackoverflow.com/questions/31610971/spark-repartition-vs-coalesce
http://stackoverflow.com/questions/31610971/spark-repartition-vs-coalesce

In [2]: total_cores = int(sc._conf.get('spark.executor.instances')) *
int(sc._conf.get('spark.executor.cores'))

In [3]: data = data.coalesce(total_cores * 3)

Show RDD contents

To show contents of an RDD, it have to be printed:

myRDD.foreach(println)

To limit number of rows printed:

myRDD.take(num_of_rows).foreach(println)

Read Partitions online: https://riptutorial.com/apache-spark/topic/5822/partitions

https://riptutorial.com/ 28

https://riptutorial.com/apache-spark/topic/5822/partitions

Chapter 12: Shared Variables

Examples

Broadcast variables

Broadcast variables are read only shared objects which can be created with
SparkContext.broadcast method:

val broadcastVariable = sc.broadcast(Array(1, 2, 3))

and read using value method:

val someRDD = sc.parallelize(Array(1, 2, 3, 4))

someRDD.map(
 i => broadcastVariable.value.apply(i % broadcastVariable.value.size)
)

Accumulators

Accumulators are write-only variables which can be created with SparkContext.accumulator:

val accumulator = sc.accumulator(0, name = "My accumulator") // name is optional

modified with +=:

val someRDD = sc.parallelize(Array(1, 2, 3, 4))
someRDD.foreach(element => accumulator += element)

and accessed with value method:

accumulator.value // 'value' is now equal to 10

Using accumulators is complicated by Spark's run-at-least-once guarantee for transformations. If a
transformation needs to be recomputed for any reason, the accumulator updates during that
transformation will be repeated. This means that accumulator values may be very different than
they would be if tasks had run only once.

Note:

Executors cannot read accumulator's value. Only the driver program can read the
accumulator’s value, using its value method.

1.

It is almost similar to counter in Java/MapReduce. So you can relate accumulators to
counters to understanding it easily

2.

https://riptutorial.com/ 29

User Defined Accumulator in Scala

Define AccumulatorParam

import org.apache.spark.AccumulatorParam

object StringAccumulator extends AccumulatorParam[String] {
 def zero(s: String): String = s
 def addInPlace(s1: String, s2: String)= s1 + s2
}

Use:

val accumulator = sc.accumulator("")(StringAccumulator)
sc.parallelize(Array("a", "b", "c")).foreach(accumulator += _)

User Defined Accumulator in Python

Define AccumulatorParam:

from pyspark import AccumulatorParam

class StringAccumulator(AccumulatorParam):
 def zero(self, s):
 return s
 def addInPlace(self, s1, s2):
 return s1 + s2

accumulator = sc.accumulator("", StringAccumulator())

def add(x):
 global accumulator
 accumulator += x

sc.parallelize(["a", "b", "c"]).foreach(add)

Read Shared Variables online: https://riptutorial.com/apache-spark/topic/1736/shared-variables

https://riptutorial.com/ 30

https://riptutorial.com/apache-spark/topic/1736/shared-variables

Chapter 13: Spark DataFrame

Introduction

A DataFrame is an abstraction of data organized in rows and typed columns. It is similar to the
data found in relational SQL-based databases. Although it has been transformed into just a type
alias for Dataset[Row] in Spark 2.0, it is still widely used and useful for complex processing
pipelines making use of its schema flexibility and SQL-based operations.

Examples

Creating DataFrames in Scala

There are many ways of creating DataFrames. They can be created from local lists, distributed
RDDs or reading from datasources.

Using toDF

By importing spark sql implicits, one can create a DataFrame from a local Seq, Array or RDD, as
long as the contents are of a Product sub-type (tuples and case classes are well-known examples
of Product sub-types). For example:

import sqlContext.implicits._
val df = Seq(
 (1, "First Value", java.sql.Date.valueOf("2010-01-01")),
 (2, "Second Value", java.sql.Date.valueOf("2010-02-01"))
).toDF("int_column", "string_column", "date_column")

Using createDataFrame

Another option is using the createDataFrame method present in SQLcontext. This option also allows
the creation from local lists or RDDs of Product sub-types as with toDF, but the names of the
columns are not set in the same step. For example:

val df1 = sqlContext.createDataFrame(Seq(
 (1, "First Value", java.sql.Date.valueOf("2010-01-01")),
 (2, "Second Value", java.sql.Date.valueOf("2010-02-01"))
))

Additionally, this approach allows creation from RDDs of Row instances, as long as a schema
parameter is passed along for the definition of the resulting DataFrame's schema. Example:

import org.apache.spark.sql.types._
val schema = StructType(List(

https://riptutorial.com/ 31

http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.SQLContext

 StructField("integer_column", IntegerType, nullable = false),
 StructField("string_column", StringType, nullable = true),
 StructField("date_column", DateType, nullable = true)
))

val rdd = sc.parallelize(Seq(
 Row(1, "First Value", java.sql.Date.valueOf("2010-01-01")),
 Row(2, "Second Value", java.sql.Date.valueOf("2010-02-01"))
))

val df = sqlContext.createDataFrame(rdd, schema)

Reading from sources

Maybe the most common way to create DataFrame is from datasources. One can create it from a
parquet file in hdfs, for example:

val df = sqlContext.read.parquet("hdfs:/path/to/file")

Read Spark DataFrame online: https://riptutorial.com/apache-spark/topic/8358/spark-dataframe

https://riptutorial.com/ 32

https://riptutorial.com/apache-spark/topic/8358/spark-dataframe

Chapter 14: Spark Launcher

Remarks

Spark Launcher can help developer to poll status of spark job submitted. There are basically eight
statuses that can be polled.They are listed below with there meaning::

/** The application has not reported back yet. */
UNKNOWN(false),
/** The application has connected to the handle. */
CONNECTED(false),
/** The application has been submitted to the cluster. */
SUBMITTED(false),
/** The application is running. */
RUNNING(false),
/** The application finished with a successful status. */
FINISHED(true),
/** The application finished with a failed status. */
FAILED(true),
/** The application was killed. */
KILLED(true),
/** The Spark Submit JVM exited with a unknown status. */
LOST(true);

Examples

SparkLauncher

Below code is basic example of spark launcher.This can be used if spark job has to be launched
through some application.

val sparkLauncher = new SparkLauncher
//Set Spark properties.only Basic ones are shown here.It will be overridden if properties are
set in Main class.
sparkLauncher.setSparkHome("/path/to/SPARK_HOME")
 .setAppResource("/path/to/jar/to/be/executed")
 .setMainClass("MainClassName")
 .setMaster("MasterType like yarn or local[*]")
 .setDeployMode("set deploy mode like cluster")
 .setConf("spark.executor.cores","2")

// Lauch spark application
val sparkLauncher1 = sparkLauncher.startApplication()

//get jobId
val jobAppId = sparkLauncher1.getAppId

//Get status of job launched.THis loop will continuely show statuses like RUNNING,SUBMITED
etc.
while (true) {
 println(sparkLauncher1.getState().toString)
}

https://riptutorial.com/ 33

Read Spark Launcher online: https://riptutorial.com/apache-spark/topic/8026/spark-launcher

https://riptutorial.com/ 34

https://riptutorial.com/apache-spark/topic/8026/spark-launcher

Chapter 15: Stateful operations in Spark
Streaming

Examples

PairDStreamFunctions.updateStateByKey

updateState by key can be used to create a stateful DStream based on upcoming data. It requires a
function:

object UpdateStateFunctions {
 def updateState(current: Seq[Double], previous: Option[StatCounter]) = {
 previous.map(s => s.merge(current)).orElse(Some(StatCounter(current)))
 }
}

which takes a sequence of the current values, an Option of previous state and returns an Option of
the updated state. Putting this all together:

import org.apache.spark._
import org.apache.spark.streaming.dstream.DStream
import scala.collection.mutable.Queue
import org.apache.spark.util.StatCounter
import org.apache.spark.streaming._

object UpdateStateByKeyApp {
 def main(args: Array[String]) {

 val sc = new SparkContext("local", "updateStateByKey", new SparkConf())
 val ssc = new StreamingContext(sc, Seconds(10))
 ssc.checkpoint("/tmp/chk")

 val queue = Queue(
 sc.parallelize(Seq(("foo", 5.0), ("bar", 1.0))),
 sc.parallelize(Seq(("foo", 1.0), ("foo", 99.0))),
 sc.parallelize(Seq(("bar", 22.0), ("foo", 1.0))),
 sc.emptyRDD[(String, Double)],
 sc.emptyRDD[(String, Double)],
 sc.emptyRDD[(String, Double)],
 sc.parallelize(Seq(("foo", 1.0), ("bar", 1.0)))
)

 val inputStream: DStream[(String, Double)] = ssc.queueStream(queue)

 inputStream.updateStateByKey(UpdateStateFunctions.updateState _).print()

 ssc.start()
 ssc.awaitTermination()
 ssc.stop()
 }
}

https://riptutorial.com/ 35

PairDStreamFunctions.mapWithState

mapWithState, similarly to updateState, can be used to create a stateful DStream based on
upcoming data. It requires StateSpec:

import org.apache.spark.streaming._

object StatefulStats {
 val state = StateSpec.function(
 (key: String, current: Option[Double], state: State[StatCounter]) => {
 (current, state.getOption) match {
 case (Some(x), Some(cnt)) => state.update(cnt.merge(x))
 case (Some(x), None) => state.update(StatCounter(x))
 case (None, None) => state.update(StatCounter())
 case _ =>
 }

 (key, state.get)
 }
)
}

which takes key key, current value and accumulated State and returns new state. Putting this all
together:

import org.apache.spark._
import org.apache.spark.streaming.dstream.DStream
import scala.collection.mutable.Queue
import org.apache.spark.util.StatCounter

object MapStateByKeyApp {
 def main(args: Array[String]) {
 val sc = new SparkContext("local", "mapWithState", new SparkConf())

 val ssc = new StreamingContext(sc, Seconds(10))
 ssc.checkpoint("/tmp/chk")

 val queue = Queue(
 sc.parallelize(Seq(("foo", 5.0), ("bar", 1.0))),
 sc.parallelize(Seq(("foo", 1.0), ("foo", 99.0))),
 sc.parallelize(Seq(("bar", 22.0), ("foo", 1.0))),
 sc.emptyRDD[(String, Double)],
 sc.parallelize(Seq(("foo", 1.0), ("bar", 1.0)))
)

 val inputStream: DStream[(String, Double)] = ssc.queueStream(queue)

 inputStream.mapWithState(StatefulStats.state).print()

 ssc.start()
 ssc.awaitTermination()
 ssc.stop()
 }
}

Finally expected output:

https://riptutorial.com/ 36

Time: 1469923280000 ms

(foo,(count: 1, mean: 5.000000, stdev: 0.000000, max: 5.000000, min: 5.000000))
(bar,(count: 1, mean: 1.000000, stdev: 0.000000, max: 1.000000, min: 1.000000))

Time: 1469923290000 ms

(foo,(count: 3, mean: 35.000000, stdev: 45.284287, max: 99.000000, min: 1.000000))
(foo,(count: 3, mean: 35.000000, stdev: 45.284287, max: 99.000000, min: 1.000000))

Time: 1469923300000 ms

(bar,(count: 2, mean: 11.500000, stdev: 10.500000, max: 22.000000, min: 1.000000))
(foo,(count: 4, mean: 26.500000, stdev: 41.889736, max: 99.000000, min: 1.000000))

Time: 1469923310000 ms

Time: 1469923320000 ms

(foo,(count: 5, mean: 21.400000, stdev: 38.830916, max: 99.000000, min: 1.000000))
(bar,(count: 3, mean: 8.000000, stdev: 9.899495, max: 22.000000, min: 1.000000))

Read Stateful operations in Spark Streaming online: https://riptutorial.com/apache-
spark/topic/1924/stateful-operations-in-spark-streaming

https://riptutorial.com/ 37

https://riptutorial.com/apache-spark/topic/1924/stateful-operations-in-spark-streaming
https://riptutorial.com/apache-spark/topic/1924/stateful-operations-in-spark-streaming

Chapter 16: Text files and operations in Scala

Introduction

Reading Text files and performing operations on them.

Examples

Example usage

Read text file from path:

val sc: org.apache.spark.SparkContext = ???
sc.textFile(path="/path/to/input/file")

Read files using wildcards:

sc.textFile(path="/path/to/*/*")

Read files specifying minimum number of partitions:

sc.textFile(path="/path/to/input/file", minPartitions=3)

Join two files read with textFile()

Joins in Spark:

Read textFile 1

val txt1=sc.textFile(path="/path/to/input/file1")

Eg:

 A B
 1 2
 3 4

•

Read textFile 2

val txt2=sc.textFile(path="/path/to/input/file2")

Eg:

 A C
 1 5

•

https://riptutorial.com/ 38

 3 6

Join and print the result.

txt1.join(txt2).foreach(println)

Eg:

 A B C
 1 2 5
 3 4 6

•

The join above is based on the first column.

Read Text files and operations in Scala online: https://riptutorial.com/apache-
spark/topic/1620/text-files-and-operations-in-scala

https://riptutorial.com/ 39

https://riptutorial.com/apache-spark/topic/1620/text-files-and-operations-in-scala
https://riptutorial.com/apache-spark/topic/1620/text-files-and-operations-in-scala

Chapter 17: Unit tests

Examples

Word count unit test (Scala + JUnit)

For example we have WordCountService with countWords method:

class WordCountService {
 def countWords(url: String): Map[String, Int] = {
 val sparkConf = new
SparkConf().setMaster("spark://somehost:7077").setAppName("WordCount"))
 val sc = new SparkContext(sparkConf)
 val textFile = sc.textFile(url)
 textFile.flatMap(line => line.split(" "))
 .map(word => (word, 1))
 .reduceByKey(_ + _).collect().toMap
 }
}

This service seems very ugly and not adapted for unit testing. SparkContext should be injected to
this service. It can be reached with your favourite DI framework but for simplicity it will be
implemented using constructor:

class WordCountService(val sc: SparkContext) {
 def countWords(url: String): Map[String, Int] = {
 val textFile = sc.textFile(url)
 textFile.flatMap(line => line.split(" "))
 .map(word => (word, 1))
 .reduceByKey(_ + _).collect().toMap
 }
}

Now we can create simple JUnit test and inject testable sparkContext to WordCountService:

class WordCountServiceTest {
 val sparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCountTest")
 val testContext = new SparkContext(sparkConf)
 val wordCountService = new WordCountService(testContext)

 @Test
 def countWordsTest() {
 val testFilePath = "file://my-test-file.txt"

 val counts = wordCountService.countWords(testFilePath)

 Assert.assertEquals(counts("dog"), 121)
 Assert.assertEquals(counts("cat"), 191)
 }
}

Read Unit tests online: https://riptutorial.com/apache-spark/topic/3333/unit-tests

https://riptutorial.com/ 40

https://riptutorial.com/apache-spark/topic/3333/unit-tests

Chapter 18: Window Functions in Spark SQL

Examples

Introduction

Window functions are used to do operations(generally aggregation) on a set of rows collectively
called as window. Window functions work in Spark 1.4 or later. Window functions provides more
operations then the built-in functions or UDFs, such as substr or round (extensively used before
Spark 1.4). Window functions allow users of Spark SQL to calculate results such as the rank of a
given row or a moving average over a range of input rows. They significantly improve the
expressiveness of Spark’s SQL and DataFrame APIs.

At its core, a window function calculates a return value for every input row of a table based on a
group of rows, called the Frame. Every input row can have a unique frame associated with it. This
characteristic of window functions makes them more powerful than other functions. The types of
window functions are

Ranking functions•
Analytic functions•
Aggregate functions•

To use window functions, users need to mark that a function is used as a window function by
either

Adding an OVER clause after a supported function in SQL, e.g. avg(revenue) OVER (...); or•
Calling the over method on a supported function in the DataFrame API, e.g. rank().over(...)
.

•

This documentation aims to demonstrate some of those functions with example. It is assumed that
the reader has some knowledge over basic operations on Spark DataFrame like: adding a new
column, renaming a column etc.

Reading a sample dataset:

val sampleData = Seq(
("bob","Developer",125000),("mark","Developer",108000),("carl","Tester",70000),("peter","Developer",185000),("jon","Tester",65000),("roman","Tester",82000),("simon","Developer",98000),("eric","Developer",144000),("carlos","Tester",75000),("henry","Developer",110000)).toDF("Name","Role","Salary")

List of import statements required:

import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._

The first statement imports Window Specification. A Window Specification contains
conditions/specifications indicating, which rows are to be included in the window.

https://riptutorial.com/ 41

scala> sampleData.show
+------+---------+------+
| Name| Role|Salary|
+------+---------+------+
bob	Developer	125000
mark	Developer	108000
carl	Tester	70000
peter	Developer	185000
jon	Tester	65000
roman	Tester	82000
simon	Developer	98000
eric	Developer	144000
carlos	Tester	75000
henry	Developer	110000
+------+---------+------+

Moving Average

To calculate moving average of salary of the employers based on their role:

val movAvg = sampleData.withColumn("movingAverage", avg(sampleData("Salary"))
 .over(Window.partitionBy("Role").rowsBetween(-1,1)))

withColumn() creates a new column named movingAverage, performing average on Salary
column

•

over() is used to define window specification.•
partitionBy() partitions the data over the column Role•
rowsBetween(start, end) This function defines the rows that are to be included in the window.
The parameters (start and end) takes numerical inputs,0 represents the current row, -1 is the
previous row, 1 is the next row and so on. The function includes all rows in between start
and end, thus in this example three rows(-1,0,1) are included in the window.

•

 scala> movAvg.show
+------+---------+------+------------------+
| Name| Role|Salary| movingAverage|
+------+---------+------+------------------+
bob	Developer	125000	116500.0
mark	Developer	108000	139333.33333333334
peter	Developer	185000	130333.33333333333
simon	Developer	98000	142333.33333333334
eric	Developer	144000	117333.33333333333
henry	Developer	110000	127000.0
carl	Tester	70000	67500.0
jon	Tester	65000	72333.33333333333
roman	Tester	82000	74000.0
carlos	Tester	75000	78500.0
+------+---------+------+------------------+

Spark automatically ignores previous and next rows,if the current row is first and last row
respectively.

In the above example, movingAverage of first row is average of current & next row only, as
previous row doesn't exist. Similarly the last row of the partition (i.e 6th row) is average of current

https://riptutorial.com/ 42

& previous row, as next row doesn't exist.

Cumulative Sum

To calculate moving average of salary of the employers based on their role:

val cumSum = sampleData.withColumn("cumulativeSum", sum(sampleData("Salary"))
 .over(Window.partitionBy("Role").orderBy("Salary")))

orderBy() sorts salary column and computes cumulative sum.•

scala> cumSum.show
+------+---------+------+-------------+
| Name| Role|Salary|cumulativeSum|
+------+---------+------+-------------+
simon	Developer	98000	98000
mark	Developer	108000	206000
henry	Developer	110000	316000
bob	Developer	125000	441000
eric	Developer	144000	585000
peter	Developer	185000	770000
jon	Tester	65000	65000
carl	Tester	70000	135000
carlos	Tester	75000	210000
roman	Tester	82000	292000
+------+---------+------+-------------+

Window functions - Sort, Lead, Lag , Rank , Trend Analysis

This topic demonstrates how to use functions like withColumn, lead, lag, Level etc using Spark.
Spark dataframe is an sql abstract layer on spark core functionalities. This enable user to write
SQL on distributed data. Spark SQL supports hetrogenous file formats including JSON, XML, CSV
, TSV etc.

In this blog we have a quick overview of how to use spark SQL and dataframes for common use
cases in SQL world.For the sake of simplicity we will deal with a single file which is CSV format.
File has four fields, employeeID, employeeName, salary, salaryDate

1,John,1000,01/01/2016
1,John,2000,02/01/2016
1,John,1000,03/01/2016
1,John,2000,04/01/2016
1,John,3000,05/01/2016
1,John,1000,06/01/2016

Save this file as emp.dat. In the first step we will create a spark dataframe using , spark CSV
package from databricks.

val sqlCont = new HiveContext(sc)
//Define a schema for file
val schema = StructType(Array(StructField("EmpId", IntegerType, false),
 StructField("EmpName", StringType, false),

https://riptutorial.com/ 43

 StructField("Salary", DoubleType, false),
 StructField("SalaryDate", DateType, false)))
//Apply Shema and read data to a dataframe
val myDF = sqlCont.read.format("com.databricks.spark.csv")
 .option("header", "false")
 .option("dateFormat", "MM/dd/yyyy")
 .schema(schema)
 .load("src/resources/data/employee_salary.dat")
//Show dataframe
myDF.show()

myDF is the dataframe used in remaining excercise. Since myDF is used repeatedly it is
recommended to persist it so that it does not need to be reevaluated.

 myDF.persist()

Output of dataframe show

+-----+-------+------+----------+
|EmpId|EmpName|Salary|SalaryDate|
+-----+-------+------+----------+
1	John	1000.0	2016-01-01
1	John	2000.0	2016-02-01
1	John	1000.0	2016-03-01
1	John	2000.0	2016-04-01
1	John	3000.0	2016-05-01
1	John	1000.0	2016-06-01
+-----+-------+------+----------+

Add a new column to dataframe

Since spark dataframes are immutable, adding a new column will create a new dataframe with
added column. To add a column use withColumn(columnName,Transformation). In below example
column empName is formatted to uppercase.

withColumn(columnName,transformation)
myDF.withColumn("FormatedName", upper(col("EmpName"))).show()

+-----+-------+------+----------+------------+
|EmpId|EmpName|Salary|SalaryDate|FormatedName|
+-----+-------+------+----------+------------+
1	John	1000.0	2016-01-01	JOHN
1	John	2000.0	2016-02-01	JOHN
1	John	1000.0	2016-03-01	JOHN
1	John	2000.0	2016-04-01	JOHN
1	John	3000.0	2016-05-01	JOHN
1	John	1000.0	2016-06-01	JOHN
+-----+-------+------+----------+------------+

Sort data based on a column

val sortedDf = myDF.sort(myDF.col("Salary"))
sortedDf.show()

https://riptutorial.com/ 44

+-----+-------+------+----------+
|EmpId|EmpName|Salary|SalaryDate|
+-----+-------+------+----------+
1	John	1000.0	2016-03-01
1	John	1000.0	2016-06-01
1	John	1000.0	2016-01-01
1	John	2000.0	2016-02-01
1	John	2000.0	2016-04-01
1	John	3000.0	2016-05-01
+-----+-------+------+----------+

Sort Descending

desc("Salary")

 myDF.sort(desc("Salary")).show()

+-----+-------+------+----------+
|EmpId|EmpName|Salary|SalaryDate|
+-----+-------+------+----------+
1	John	3000.0	2016-05-01
1	John	2000.0	2016-02-01
1	John	2000.0	2016-04-01
1	John	1000.0	2016-06-01
1	John	1000.0	2016-01-01
1	John	1000.0	2016-03-01
+-----+-------+------+----------+

Get and use previous row (Lag)

LAG is a function in SQL which is used to access previous row values in current row. This is useful
when we have use cases like comparison with previous value. LAG in Spark dataframes is
available in Window functions

lag(Column e, int offset)
Window function: returns the value that is offset rows before the current row, and null if
there is less than offset rows before the current row.

import org.apache.spark.sql.expressions.Window
//order by Salary Date to get previous salary.
//For first row we will get NULL
val window = Window.orderBy("SalaryDate")
//use lag to get previous row value for salary, 1 is the offset
val lagCol = lag(col("Salary"), 1).over(window)
myDF.withColumn("LagCol", lagCol).show()

+-----+-------+------+----------+------+
|EmpId|EmpName|Salary|SalaryDate|LagCol|
+-----+-------+------+----------+------+
1	John	1000.0	2016-01-01	null
1	John	2000.0	2016-02-01	1000.0
1	John	1000.0	2016-03-01	2000.0
1	John	2000.0	2016-04-01	1000.0
1	John	3000.0	2016-05-01	2000.0

https://riptutorial.com/ 45

| 1| John|1000.0|2016-06-01|3000.0|
+-----+-------+------+----------+------+

Get and use next row (Lead)

LEAD is a function in SQL which is used to access next row values in current row. This is useful
when we have usecases like comparison with next value. LEAD in Spark dataframes is available
in Window functions

lead(Column e, int offset)
Window function: returns the value that is offset rows after the current row, and null if
there is less than offset rows after the current row.

import org.apache.spark.sql.expressions.Window
//order by Salary Date to get previous salary. F
//or first row we will get NULL
val window = Window.orderBy("SalaryDate")
//use lag to get previous row value for salary, 1 is the offset
val leadCol = lead(col("Salary"), 1).over(window)
myDF.withColumn("LeadCol", leadCol).show()

+-----+-------+------+----------+-------+
|EmpId|EmpName|Salary|SalaryDate|LeadCol|
+-----+-------+------+----------+-------+
1	John	1000.0	2016-01-01	1000.0
1	John	1000.0	2016-03-01	1000.0
1	John	1000.0	2016-06-01	2000.0
1	John	2000.0	2016-02-01	2000.0
1	John	2000.0	2016-04-01	3000.0
1	John	3000.0	2016-05-01	null
+-----+-------+------+----------+-------+

Trend analysis with window functions Now, let us put window function LAG to use with a
simple trend analysis. If salary is less than previous month we will mark it as "DOWN", if salary
has increased then "UP". The code use Window function to order by, lag and then do a simple if
else with WHEN.

 val window = Window.orderBy("SalaryDate")
 //Derive lag column for salary
 val laggingCol = lag(col("Salary"), 1).over(trend_window)
 //Use derived column LastSalary to find difference between current and previous row
 val salaryDifference = col("Salary") - col("LastSalary")
 //Calculate trend based on the difference
 //IF ELSE / CASE can be written using when.otherwise in spark
 val trend = when(col("SalaryDiff").isNull || col("SalaryDiff").===(0), "SAME")
 .when(col("SalaryDiff").>(0), "UP")
 .otherwise("DOWN")
 myDF.withColumn("LastSalary", laggingCol)
 .withColumn("SalaryDiff",salaryDifference)
 .withColumn("Trend", trend).show()

+-----+-------+------+----------+----------+----------+-----+

https://riptutorial.com/ 46

|EmpId|EmpName|Salary|SalaryDate|LastSalary|SalaryDiff|Trend|
+-----+-------+------+----------+----------+----------+-----+
1	John	1000.0	2016-01-01	null	null	SAME
1	John	2000.0	2016-02-01	1000.0	1000.0	UP
1	John	1000.0	2016-03-01	2000.0	-1000.0	DOWN
1	John	2000.0	2016-04-01	1000.0	1000.0	UP
1	John	3000.0	2016-05-01	2000.0	1000.0	UP
1	John	1000.0	2016-06-01	3000.0	-2000.0	DOWN
+-----+-------+------+----------+----------+----------+-----+

Read Window Functions in Spark SQL online: https://riptutorial.com/apache-
spark/topic/3903/window-functions-in-spark-sql

https://riptutorial.com/ 47

https://riptutorial.com/apache-spark/topic/3903/window-functions-in-spark-sql
https://riptutorial.com/apache-spark/topic/3903/window-functions-in-spark-sql

Credits

S.
No

Chapters Contributors

1
Getting started with
apache-spark

4444, Ani Menon, Community, Daniel de Paula, David,
gsamaras, himanshuIIITian, Jacek Laskowski, KartikKannapur,
Naresh Kumar, user8371915, zero323

2
Calling scala jobs
from pyspark

eliasah, Thiago Baldim

3
Client mode and
Cluster Mode

Nayan Sharma

4
Configuration:
Apache Spark SQL

himanshuIIITian

5

Error message
'sparkR' is not
recognized as an
internal or external
command or
'.binsparkR' is not
recognized as an
internal or external
command

Rajesh

6
Handling JSON in
Spark

Furkan Varol, zero323

7
How to ask Apache
Spark related
question?

user7337271

8
Introduction to
Apache Spark
DataFrames

Mandeep Lohan, Nayan Sharma

9 Joins Adnan, CGritton

10
Migrating from Spark
1.6 to Spark 2.0

Béatrice Moissinac, eliasah, Shaido

11 Partitions Ani Menon, Armin Braun, gsamaras

Community, Jonathan Taws, RBanerjee, saranvisa, spiffman, 12 Shared Variables

https://riptutorial.com/ 48

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3864822/daniel-de-paula
https://riptutorial.com/contributor/5827767/david
https://riptutorial.com/contributor/2411320/gsamaras
https://riptutorial.com/contributor/3620633/himanshuiiitian
https://riptutorial.com/contributor/1305344/jacek-laskowski
https://riptutorial.com/contributor/3001733/kartikkannapur
https://riptutorial.com/contributor/5917671/naresh-kumar
https://riptutorial.com/contributor/8371915/user8371915
https://riptutorial.com/contributor/1560062/zero323
https://riptutorial.com/contributor/3415409/eliasah
https://riptutorial.com/contributor/6095508/thiago-baldim
https://riptutorial.com/contributor/3687426/nayan-sharma
https://riptutorial.com/contributor/3620633/himanshuiiitian
https://riptutorial.com/contributor/7658437/rajesh
https://riptutorial.com/contributor/4594600/furkan-varol
https://riptutorial.com/contributor/1560062/zero323
https://riptutorial.com/contributor/7337271/user7337271
https://riptutorial.com/contributor/5299999/mandeep-lohan
https://riptutorial.com/contributor/3687426/nayan-sharma
https://riptutorial.com/contributor/2172054/adnan
https://riptutorial.com/contributor/4520025/cgritton
https://riptutorial.com/contributor/1575548/beatrice-moissinac
https://riptutorial.com/contributor/3415409/eliasah
https://riptutorial.com/contributor/7579547/shaido
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/5509152/armin-braun
https://riptutorial.com/contributor/2411320/gsamaras
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3424322/jonathan-taws
https://riptutorial.com/contributor/3080158/rbanerjee
https://riptutorial.com/contributor/7163728/saranvisa
https://riptutorial.com/contributor/2275672/spiffman

whaleberg, zero323

13 Spark DataFrame Daniel de Paula

14 Spark Launcher Ankit Agrahari

15
Stateful operations in
Spark Streaming

zero323

16
Text files and
operations in Scala

Ani Menon, Community, spiffman

17 Unit tests Cortwave

18
Window Functions in
Spark SQL

Daniel Argüelles, Hari, Joshua Weinstein, Tejus Prasad, vdep

https://riptutorial.com/ 49

https://riptutorial.com/contributor/803975/whaleberg
https://riptutorial.com/contributor/1560062/zero323
https://riptutorial.com/contributor/3864822/daniel-de-paula
https://riptutorial.com/contributor/4853827/ankit-agrahari
https://riptutorial.com/contributor/1560062/zero323
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2275672/spiffman
https://riptutorial.com/contributor/3830108/cortwave
https://riptutorial.com/contributor/710162/daniel-arguelles
https://riptutorial.com/contributor/6393066/hari
https://riptutorial.com/contributor/6801425/joshua-weinstein
https://riptutorial.com/contributor/3409405/tejus-prasad
https://riptutorial.com/contributor/3846291/vdep

	About
	Chapter 1: Getting started with apache-spark
	Remarks
	Versions
	Examples
	Introduction
	Transformation vs Action
	Check Spark version

	Chapter 2: Calling scala jobs from pyspark
	Introduction
	Examples
	Creating a Scala functions that receives a python RDD
	Serialize and Send python RDD to scala code
	How to call spark-submit

	Chapter 3: Client mode and Cluster Mode
	Examples
	Spark Client and Cluster mode explained

	Chapter 4: Configuration: Apache Spark SQL
	Introduction
	Examples
	Controlling Spark SQL Shuffle Partitions

	Chapter 5: Error message 'sparkR' is not recognized as an internal or external command or '.binsparkR' is not recognized as an internal or external command
	Introduction
	Remarks
	Examples
	details for set up Spark for R

	Chapter 6: Handling JSON in Spark
	Examples
	Mapping JSON to a Custom Class with Gson

	Chapter 7: How to ask Apache Spark related question?
	Introduction
	Examples
	Environment details:
	Example data and code

	Example Data
	Code
	Diagnostic information

	Debugging questions.
	Performance questions.
	Before you ask

	Chapter 8: Introduction to Apache Spark DataFrames
	Examples
	Spark DataFrames with JAVA
	Spark Dataframe explained

	Chapter 9: Joins
	Remarks
	Examples
	Broadcast Hash Join in Spark

	Chapter 10: Migrating from Spark 1.6 to Spark 2.0
	Introduction
	Examples
	Update build.sbt file
	Update ML Vector libraries

	Chapter 11: Partitions
	Remarks
	Examples
	Partitions Intro
	Partitions of an RDD
	Repartition an RDD
	Rule of Thumb about number of partitions
	Show RDD contents

	Chapter 12: Shared Variables
	Examples
	Broadcast variables
	Accumulators
	User Defined Accumulator in Scala
	User Defined Accumulator in Python

	Chapter 13: Spark DataFrame
	Introduction
	Examples
	Creating DataFrames in Scala

	Using toDF
	Using createDataFrame
	Reading from sources
	Chapter 14: Spark Launcher
	Remarks
	Examples
	SparkLauncher

	Chapter 15: Stateful operations in Spark Streaming
	Examples
	PairDStreamFunctions.updateStateByKey
	PairDStreamFunctions.mapWithState

	Chapter 16: Text files and operations in Scala
	Introduction
	Examples
	Example usage
	Join two files read with textFile()

	Chapter 17: Unit tests
	Examples
	Word count unit test (Scala + JUnit)

	Chapter 18: Window Functions in Spark SQL
	Examples
	Introduction
	Moving Average
	Cumulative Sum
	Window functions - Sort, Lead, Lag , Rank , Trend Analysis

	Credits

