
asp.net-core-mvc

#asp.net-

core-mvc

Table of Contents

About 1

Chapter 1: Getting started with asp.net-core-mvc 2

Remarks 2

Examples 2

Installation or Setup 2

Installing Visual Studio 2

Creating an ASP.NET Core MVC Application. 2

Add MVC Middleware 5

Dependency injection basics 5

Lifetime management 7

Versions 7

Chapter 2: Change default view location 8

Introduction 8

Examples 8

Create a View Location Expander 8

Register the View Location Expander 8

Chapter 3: Setup and install .Net Core MVC with Visual studio code and quick start .net co 9

Introduction 9

Remarks 9

Examples 9

Step 1 - Visual studio code installation 9

Step 2 - Configuring .Net core and C#. 12

Step 3 - Create Basic MVC Template. 18

Step 4 - Execute and Debug the application. 18

Credits 19

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: asp-net-core-mvc

It is an unofficial and free asp.net-core-mvc ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official asp.net-core-
mvc.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/asp-net-core-mvc
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with asp.net-core-
mvc

Remarks

This section provides an overview of what asp.net-core-mvc is, and why a developer might want to
use it.

It should also mention any large subjects within asp.net-core-mvc, and link out to the related
topics. Since the Documentation for asp.net-core-mvc is new, you may need to create initial
versions of those related topics.

Examples

Installation or Setup

Installing Visual Studio

If you do not have Visual Studio installed, you can download the free Visual Studio Community
Edition here. If you already have it installed, you can proceed to the next step.

Creating an ASP.NET Core MVC Application.

Open Visual Studio.1.
Select File > New Project.2.
Select Web under the language of your choice within the Templates section on the left.3.
Choose a preferred Project type within the dialog.4.
Optional: Choose a .NET Framework you would like to target5.
Name your project and indicate if you want to create a Solution for the project.6.
Click OK to create the project.7.

https://riptutorial.com/ 2

https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx

You will be presented with another dialog to select the template you want to use for the project :

Each of the descriptions are self-explanatory. For this first project, select Web Application, which
will contain all of the default configurations, authentication, and some existing content.

Since this is an introduction application and doesn't require any security or authentication, you can
change the authentication option to No Authentication on the right-side of the dialog and click
OK to create the project.

https://riptutorial.com/ 3

http://i.stack.imgur.com/pMtnk.png
http://i.stack.imgur.com/uOxqu.png

You should then see the new project within the Solution Explorer :

Press the F5 key to run the application and begin a debugging session, which will launch the
application within your default browser :

You can now see that your project is up and running locally and is ready as a starting point for you
to build your application.

https://riptutorial.com/ 4

http://i.stack.imgur.com/K0Fx5.png
http://i.stack.imgur.com/h93dH.png

PS: Used Getting started with asp.net-core topic from the asp.net-core Documentation.

Add MVC Middleware

If you created an empty project, or you still don't have mvc configured in your application, you can
add dependency:

"Microsoft.AspNetCore.Mvc": "1.0.1"

To your project.json file under "dependencies".

And register MVC middleware in your Startup class:

public void ConfigureServices(IServiceCollection services)
{
 ...
 services.AddMvc();
}

Note that we have both services.AddMvc() and services.AddMvcCore(). If you are starting with
asp.net core, or you want it the way it is, you should keep with services.AddMvc(). But if you want
an advanced experience, you can start with a minimal MVC pipeline and add features to get a
customized framework using services.AddMvcCore(). See this discussion for more information about
AddMvcCore

public void ConfigureServices(IServiceCollection services)
{
 services
 .AddMvcCore()
 .AddAuthorization()
 .AddJsonFormatters(j => j.Formatting = Formatting.Indented);
}

Now you can tell your application builder to use the mvc:

public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory
loggerFactory)
{
 ...
 app.UseMvc();
}

or with default routing:

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

Dependency injection basics

https://riptutorial.com/ 5

http://www.riptutorial.com/asp-net-core/topic/810/getting-started-with-asp-net-core
http://www.riptutorial.com/asp-net-core/topic/810/getting-started-with-asp-net-core
https://github.com/aspnet/Mvc/issues/2872

Almost any controller needs some external dependencies to work. Here is a way to configure a
dependency object (or its factory) and pass it to a controller. Doing so will help to sustain a
separation of concerns, keep code clear and testable.

Say, we have an interface and its implementation that needs some values from config in its
constructor:

public interface ISomeDependency
{
 async Task<IEnumerable<string>> GetItemsAsync(string key);
}

public class SomeDependency : ISomeDependency
{
 public SomeDependency(string connectionString)
 {
 ...
 }
 ...
}

It's used in some controller class:

public class SomeController : Controller
{
 private reanonly ISomeDependency dependency;

 public SomeController(ISomeDependency dependency)
 {
 ...
 this.dependency = dependency;
 }

 ...

 public async Task<IEnumerable<string>> Get(string key) =>
 await dependency.GetItemsAsync(key);
}

One can inject this dependency in the controller constructor calling services.AddTransient inside
Startup.ConfigureServices method:

public class Startup
{
 public Startup(IHostingEnvironment env)
 {
 var builder = new ConfigurationBuilder().
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
 ...
 Configuration = builder.Build();
 }

 public IConfigurationRoot Configuration { get; }

 public void ConfigureServices(IServiceCollection services)

https://riptutorial.com/ 6

https://en.wikipedia.org/wiki/Separation_of_concerns

 {
 ...
 services.AddTransient(serviceProvider =>
 new MyDependency(Configuration["Data:ConnectionString"]));
 }

 ...
}

Here Data:ConnectionString is a path to a setting in appsettings.json file:

{
 ...
 },
 "Data": {
 "ConnectionString": "some connection string"
 }
}

Lifetime management

To manage a lifetime of the injected object, along with AddTransient another two options exist:
AddSingleton and AddScoped. The last one means that lifetime of the object is scoped to a HTTP
request.

Versions

Official roadmap @ Github

Version Announcements Release Date

RC1* 1.0.0-rc1 2015-11-01

RC2* 1.0.0-rc2 2016-05-16

1.0.0 1.0.0 2016-06-27

1.0.1 1.0.1 2016-09-13

1.0.1 1.0.1 2016-09-13

1.1 1.1.0 Q4 2016 / Q1 2017

1.2 1.2.0 Q1 2017 / Q2 2017

* References to yearly quarters (Q1, Q2, Q3, Q4) are calendar-based

Read Getting started with asp.net-core-mvc online: https://riptutorial.com/asp-net-core-
mvc/topic/2174/getting-started-with-asp-net-core-mvc

https://riptutorial.com/ 7

https://github.com/aspnet/Home/wiki/Roadmap
https://github.com/aspnet/Announcements/milestone/6
https://github.com/aspnet/Announcements/milestone/7
https://github.com/aspnet/Announcements/milestone/8
https://github.com/aspnet/Announcements/milestone/10
https://github.com/aspnet/Announcements/milestone/10
https://github.com/aspnet/Announcements/issues?utf8=%E2%9C%93&q=is:open%20is:issue%20milestone:1.1.0
https://github.com/aspnet/Announcements/issues?utf8=%E2%9C%93&q=is:open%20is:issue%20milestone:1.2.0%20
https://riptutorial.com/asp-net-core-mvc/topic/2174/getting-started-with-asp-net-core-mvc
https://riptutorial.com/asp-net-core-mvc/topic/2174/getting-started-with-asp-net-core-mvc

Chapter 2: Change default view location

Introduction

In ASP.NET MVC, the views are placed by default in the Views folder. Sometimes you want to
change this locations and store the views somewhere else.

Examples

Create a View Location Expander

To be able to change the view location, you need to implement the IViewLocationExpander. The
ExpandViewLocations method returns an IEnumerable<string> containing the different locations where
to search, with

public class MyViewLocationExpander : IViewLocationExpander
{
 public IEnumerable<string> ExpandViewLocations(ViewLocationExpanderContext context,
IEnumerable<string> viewLocations)
 {
 yield return "/CustomViewFolder/{1}/{0}.cshtml";
 yield return "/SharedFolder/{0}.cshtml";
 }

 public void PopulateValues(ViewLocationExpanderContext context)
 {
 }
}

Register the View Location Expander

You now need to register the Expander, in order for it to be used by the Razor View Engine. Just
add this in the ConfigureServices of your Startup class.

public void ConfigureServices(IServiceCollection services)
{
 services.Configure<RazorViewEngineOptions>(options => {
 options.ViewLocationExpanders.Add(new MyViewLocationExpander());
 });
}

Read Change default view location online: https://riptutorial.com/asp-net-core-
mvc/topic/8669/change-default-view-location

https://riptutorial.com/ 8

https://riptutorial.com/asp-net-core-mvc/topic/8669/change-default-view-location
https://riptutorial.com/asp-net-core-mvc/topic/8669/change-default-view-location

Chapter 3: Setup and install .Net Core MVC
with Visual studio code and quick start .net
core mvc hello world.

Introduction

This article give idea's about setup and installing Asp.Net core with visual studio code. Also create
basic MVC template and debugging.

Steps involved below...

Step 1 - installing Visual studio code.

Step 2 - Configuring .Net core and C#.

Step 3 - Create Basic MVC Template.

Step 4 - Execute and Debug the application.

Remarks

This article is about to setup from scratch with visual studio code open source and create and
debug basic .net core mvc applications.

File location used above is change as per users, No constraint.•
Need internet for downloading setups.•

Examples

Step 1 - Visual studio code installation

Download visual studio code from here Visual studio code. Select your target
installer[mac|windows|linux].

•

https://riptutorial.com/ 9

http://code.visualstudio.com/

https://riptutorial.com/ 10

https://i.stack.imgur.com/U8PGy.jpg

Go to downloaded file in your local.•

Below steps in volved for installing•

https://riptutorial.com/ 11

https://i.stack.imgur.com/S1bqo.jpg

Installation finished successfully.

Step 2 - Configuring .Net core and C#.

After installing Visual studio code configure .net core and C#.

Configure C# based on market-place. Reference Url: C# market place .net core•

Launch Visual studio code.1.

https://riptutorial.com/ 12

https://i.stack.imgur.com/bzNCA.jpg
https://i.stack.imgur.com/82V2d.jpg
https://i.stack.imgur.com/P6yGh.jpg
https://i.stack.imgur.com/LDSOD.jpg
https://i.stack.imgur.com/eorRI.jpg
https://i.stack.imgur.com/auzX4.jpg
https://i.stack.imgur.com/eGJPn.jpg
https://i.stack.imgur.com/MWi6V.jpg
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://i.stack.imgur.com/NX4xI.jpg

Press [ctrl + P]2.
paste "ext install csharp" this and hit.3.

Once done above steps , C# extension available in VS Code.

https://riptutorial.com/ 13

Now configure .net core.•

https://riptutorial.com/ 14

https://i.stack.imgur.com/enwuy.jpg

Download .net core sdk from here. Choose Windows=>CommandLine.

https://riptutorial.com/ 15

https://www.microsoft.com/net/core#windowscmd

https://riptutorial.com/ 16

https://i.stack.imgur.com/HYcwt.jpg

Install the sdk like below.

https://riptutorial.com/ 17

.Net core sdk installation done successfully.

Step 3 - Create Basic MVC Template.

Create your new project folder and open in windows-command prompt with the location of p•

Type "dotnet new -t web" and hit. This is for creating new mvc template.•

Once complete. GO to the project location and see basic mvc project has been created.•

Then type "dotnet restore" and hit. This is for to restoring all packages from project.json file.•

Now launch VScode and open the project folder.•

Now you can finally see the mvc project in VS code.

All the basic mvc structure files you can see.[Model-View-Controller]

Step 4 - Execute and Debug the application.

Open the project folder in VScode.

Sample here i am setting break point in home controller.

Now click the debug option.

add debug configuration like below. Make sure .Net core Launch(web) is selected.

You can see break point will hit , once you start debugging by press run icon.

Then give continue. Web page will shown in browser like below.

Web page is seems broken.

Press "F12" or open developer tool.

You can see some errors in console.

Few bootstrap and jquery files were not loaded.

[Find a script and css files by Ctrl+shift+f in VS code and enter missed file name and search.]

Fix this by adding scripts with cdn or exact file location in layout file.

Now refresh the page and watch.

Now site seems fine and no more console error finally.

Happy coding.

Read Setup and install .Net Core MVC with Visual studio code and quick start .net core mvc hello

https://riptutorial.com/ 18

https://i.stack.imgur.com/Gkzk5.jpg
https://i.stack.imgur.com/332tI.jpg
https://i.stack.imgur.com/PUfdd.jpg
https://i.stack.imgur.com/l3acC.jpg
https://i.stack.imgur.com/PMX9p.jpg
https://i.stack.imgur.com/aaaP0.jpg
https://i.stack.imgur.com/vcNnU.jpg
https://i.stack.imgur.com/XP2J0.jpg
https://i.stack.imgur.com/A0XBn.jpg
https://i.stack.imgur.com/S6HRy.jpg
https://i.stack.imgur.com/lgjvK.jpg
https://i.stack.imgur.com/oxUwu.jpg
https://i.stack.imgur.com/hROBm.jpg
https://i.stack.imgur.com/d8gx5.jpg
https://i.stack.imgur.com/kXnzw.jpg
https://i.stack.imgur.com/rA1kI.jpg
https://i.stack.imgur.com/0hfCA.jpg
https://i.stack.imgur.com/FHwSe.jpg

Credits

S.
No

Chapters Contributors

1
Getting started with
asp.net-core-mvc

Community, Ole K, Rafael Marques, Set, stop-cran, tmg, Zach
Becknell

2
Change default view
location

glacasa

3

Setup and install
.Net Core MVC with
Visual studio code
and quick start .net
core mvc hello world.

Andi AR

https://riptutorial.com/ 19

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2106997/ole-k
https://riptutorial.com/contributor/2397711/rafael-marques
https://riptutorial.com/contributor/2833802/set
https://riptutorial.com/contributor/2858407/stop-cran
https://riptutorial.com/contributor/3805023/tmg
https://riptutorial.com/contributor/3384388/zach-becknell
https://riptutorial.com/contributor/3384388/zach-becknell
https://riptutorial.com/contributor/704012/glacasa
https://riptutorial.com/contributor/2632619/andi-ar

	About
	Chapter 1: Getting started with asp.net-core-mvc
	Remarks
	Examples
	Installation or Setup

	Installing Visual Studio
	Creating an ASP.NET Core MVC Application.
	Add MVC Middleware
	Dependency injection basics

	Lifetime management
	Versions

	Chapter 2: Change default view location
	Introduction
	Examples
	Create a View Location Expander
	Register the View Location Expander

	Chapter 3: Setup and install .Net Core MVC with Visual studio code and quick start .net core mvc hello world.
	Introduction
	Remarks
	Examples
	Step 1 - Visual studio code installation
	Step 2 - Configuring .Net core and C#.
	Step 3 - Create Basic MVC Template.
	Step 4 - Execute and Debug the application.

	Credits

