
asp.net-core

#asp.net-

core

Table of Contents

About 1

Chapter 1: Getting started with asp.net-core 2

Remarks 2

Versions 2

Examples 2

Installation and Setup 2

Installing Visual Studio 2

Creating an ASP.NET Core MVC Application. 3

Create a new project from the command line 5

Minimal ASP.NET Core Web API with ASP.NET Core MVC 5

Controllers 6

Conclusion 7

Using Visual Studio code to develop Cross plateform aspnet core application 7

Setup environment variable in ASP.NET Core [Windows] 11

Chapter 2: Angular2 and .Net Core 16

Examples 16

Quick tutorial for an Angular 2 Hello World! App with .Net Core in Visual Studio 2015 16

Expected errors when generating Angular 2 components in .NET Core project (version 0.8.3) 41

Chapter 3: ASP.NET Core - Log both Request and Response using Middleware 43

Introduction 43

Remarks 43

Examples 43

Logger Middleware 43

Chapter 4: Authorization 45

Examples 45

Simple Authorization 45

Chapter 5: Bundling and Minification 47

Examples 47

Grunt and Gulp 47

Bundler and Minifier Extension 48

Building Your Bundles 48

Minifying Your Bundles 49

Automate Your Bundles 49

The dotnet bundle Command 50

Using BundlerMinifier.Core 50

Configuring Your Bundles 50

Creating / Updating Bundles 51

Automated Bundling 51

Available Commands 51

Chapter 6: Caching 52

Introduction 52

Examples 52

Using InMemory cache in ASP.NET Core application 52

Distributed Caching 53

Chapter 7: Configuration 54

Introduction 54

Syntax 54

Examples 54

Accessing Configuration using Dependency Injection 54

Getting Started 54

Work with Environment Variables 55

Option model and configuration 56

In Memory configuration source 56

Chapter 8: Configuring multiple Environments 57

Examples 57

Having appsettings per Environment 57

Get/Check Environment name from code 57

Configuring multiple environments 58

Render environment specific content in view 60

Set environment variable from command line 60

Set environment variable from PowerShell 60

Using ASPNETCORE_ENVIRONMENT from web.config 60

Chapter 9: Cross-Origin Requests (CORS) 62

Remarks 62

Examples 62

Enable CORS for all requests 62

Enable CORS policy for specific controllers 62

More sophisticated CORS policies 63

Enable CORS policy for all controllers 63

Chapter 10: Dependency Injection 65

Introduction 65

Syntax 65

Remarks 65

Examples 66

Register and manually resolve 66

Register dependencies 66

Lifetime control 67

Enumerable dependencies 67

Generic dependencies 67

Retrieve dependencies on a Controller 68

Injecting a dependency into a Controller Action 68

The Options pattern / Injecting options into services 69

Remarks 70

Using scoped services during application startup / Database Seeding 70

Resolve Controllers, ViewComponents and TagHelpers via Dependency Injection 71

Plain Dependency Injection example (Without Startup.cs) 72

Inner workings of Microsoft.Extensions.DependencyInjection 72

IServiceCollection 72

IServiceProvider 73

Result 73

Chapter 11: Error Handling 75

Examples 75

Redirect to custom error page 75

Global Exception Handling in ASP.NET Core 75

Chapter 12: Injecting services into views 77

Syntax 77

Examples 77

The @inject Directive 77

Example Usage 77

Required Configuration 77

Chapter 13: Localization 78

Examples 78

Localization using JSON language resources 78

Set Request culture via url path 86

Middleware Registration 87

Custom Route Constraints 87

Registering the route 87

Chapter 14: Logging 89

Examples 89

Using NLog Logger 89

Add Logger to Controller 89

Using Serilog in ASP.NET core 1.0 application 89

Chapter 15: Middleware 91

Remarks 91

Examples 91

Using the ExceptionHandler middleware to send custom JSON error to Client 91

Middleware to set response ContentType 92

Pass data through the middleware chain 92

Run, Map, Use 93

Chapter 16: Models 95

Examples 95

Model Validation with Validation Attrributes 95

Model Validation with Custom Attribute 95

Chapter 17: project.json 97

Introduction 97

Examples 97

Simple Library project example 97

Complete json file: 97

Simple startup project 100

Chapter 18: Publishing and Deployment 101

Examples 101

Kestrel. Configuring Listening Address 101

Chapter 19: Rate limiting 103

Remarks 103

Examples 103

Rate limiting based on client IP 103

Setup 103

Defining rate limit rules 106

Behavior 106

Update rate limits at runtime 107

Rate limiting based on client ID 108

Setup 108

Defining rate limit rules 111

Behavior 112

Update rate limits at runtime 113

Chapter 20: Routing 114

Examples 114

Basic Routing 114

Routing constraints 114

Using it on Controllers 114

Using it on Actions 115

Using it in Default Routes 115

Chapter 21: Sending Email in .Net Core apps using MailKit 116

Introduction 116

Examples 116

Installing nuget package 116

Simple implementation for sending emails 116

Chapter 22: Sessions in ASP.NET Core 1.0 118

Introduction 118

Examples 118

Basic example of handling Session 118

Chapter 23: Tag Helpers 120

Parameters 120

Examples 120

Form Tag Helper - Basic example 120

Form Tag Helper - With custom route attributes 120

Input Tag Helper 120

Select Tag Helper 121

Custom Tag Helper 123

Sample Widget Custom Tag Helper 124

Label Tag Helper 124

Anchor tag helper 125

Chapter 24: View Components 126

Examples 126

Create a View Component 126

Login View Component 126

Return from Controller Action 127

Chapter 25: Working with JavascriptServices 129

Introduction 129

Examples 129

Enabling webpack-dev-middleware for asp.net-core project 129

Prerequisites 129

NuGet 129

npm 129

Configuring 129

Add Hot Module Replacement (HMR) 129

Prerequisites 130

Configuration 130

Generating sample single page application with asp.net core 130

Credits 132

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: asp-net-core

It is an unofficial and free asp.net-core ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official asp.net-core.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/asp-net-core
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with asp.net-core

Remarks

.NET Core is a general purpose development platform maintained by Microsoft and the .NET
community on GitHub. It is cross-platform, supporting Windows, macOS and Linux, and can be
used in device, cloud, and embedded/IoT scenarios.

The following characteristics best define .NET Core:

Flexible deployment: Can be included in your app or installed side-by-side user- or machine-
wide.

•

Cross-platform: Runs on Windows, macOS and Linux; can be ported to other OSes. The
supported Operating Systems (OS), CPUs and application scenarios will grow over time,
provided by Microsoft, other companies, and individuals.

•

Command-line tools: All product scenarios can be exercised at the command-line.•
Compatible: .NET Core is compatible with .NET Framework, Xamarin and Mono, via the -
.NET Standard Library.

•

Open source: The .NET Core platform is open source, using MIT and Apache 2 licenses.
Documentation is licensed under CC-BY. .NET Core is a .NET Foundation project.

•

Supported by Microsoft: .NET Core is supported by Microsoft, per .NET Core Support•

Versions

Version Release Notes Release Date

RC1* 1.0.0-rc1 2015-11-18

RC2* 1.0.0-rc2 2016-05-16

1.0.0 1.0.0 2016-06-27

1.0.1 1.0.1 2016-09-13

1.1 1.1 2016-11-16

Examples

Installation and Setup

Installing Visual Studio

If you do not have Visual Studio installed, you can download the free Visual Studio Community
Edition here. If you already have it installed, you can proceed to the next step.

https://riptutorial.com/ 2

https://github.com/dotnet/core/blob/master/release-notes/1.0/Release-Notes-RC1.md
https://github.com/dotnet/core/blob/master/release-notes/1.0/Release-Notes-RC2.md
https://github.com/dotnet/core/blob/master/release-notes/1.0/1.0.0.md
https://github.com/dotnet/core/blob/master/release-notes/1.0/1.0.1-release-notes.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1.md
https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx

Creating an ASP.NET Core MVC Application.

Open Visual Studio.1.
Select File > New Project.2.
Select Web under the language of your choice within the Templates section on the left.3.
Choose a preferred Project type within the dialog.4.
Optional: Choose a .NET Framework you would like to target5.
Name your project and indicate if you want to create a Solution for the project.6.
Click OK to create the project.7.

You will be presented with another dialog to select the template you want to use for the project :

https://riptutorial.com/ 3

http://i.stack.imgur.com/pMtnk.png

Each of the descriptions are self-explanatory. For this first project, select Web Application, which
will contain all of the default configurations, authentication, and some existing content.

Since this is an introduction application and doesn't require any security or authentication, you can
change the authentication option to No Authentication on the right-side of the dialog and click
OK to create the project.

You should then see the new project within the Solution Explorer :

Press the F5 key to run the application and begin a debugging session, which will launch the
application within your default browser :

https://riptutorial.com/ 4

http://i.stack.imgur.com/uOxqu.png
http://i.stack.imgur.com/K0Fx5.png

You can now see that your project is up and running locally and is ready as a starting point for you
to build your application.

Create a new project from the command line

It's possible to create a new ASP.NET Core project entirely from the command line using the
dotnet command.

dotnet new web
dotnet restore
dotnet run

dotnet new web scaffolds a new "empty" web project. The web parameter tells the dotnet tool to use
the ASP.NET Core Empty template. Use dotnet new -all to show all the available templates currently
installed. Other key templates include console, classlib, mvc and xunit.

Once the template has been scaffolded out, you can restore the packages required to run the
project (dotnet restore), and compile and start it (dotnet run).

Once the project is running, it will be available on the default port: http://localhost:5000

Minimal ASP.NET Core Web API with ASP.NET Core MVC

With ASP.NET Core 1.0, the MVC and Web API framework have been merged into one
framework called ASP.NET Core MVC. This is a good thing, since MVC and Web API share a lot

https://riptutorial.com/ 5

http://i.stack.imgur.com/h93dH.png
http://localhost:5000

of functionality, yet there always were subtle differences and code duplication.

However, merging these two into framework one also made it more difficult to distinguish one from
another. For example, the Microsoft.AspNet.WebApi represents the Web API 5.x.x framework, not
the new one. But, when you include Microsoft.AspNetCore.Mvc (version 1.0.0), you get the full blown
package. This will contain all the out-of-the-box features the MVC framework offers. Such as
Razor, tag helpers and model binding.

When you just want to build a Web API, we don't need all this features. So, how do we build a
minimalistic Web API? The answer is: Microsoft.AspNetCore.Mvc.Core. In the new world MVC is split
up into multiple packages and this package contains just the core components of the MVC
framework, such as routing and authorization.

For this example, we're gonna create a minimal MVC API. Including a JSON formatter and CORS.
Create an empty ASP.NET Core 1.0 Web Application and add these packages to your
project.json:

"Microsoft.AspNetCore.Mvc.Core": "1.0.0",
"Microsoft.AspNetCore.Mvc.Cors": "1.0.0",
"Microsoft.AspNetCore.Mvc.Formatters.Json": "1.0.0"

Now we can register MVC using AddMvcCore() in the startup class:

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvcCore()
 .AddCors()
 .AddJsonFormatters();
}

AddMvcCore returns an IMvcCoreBuilder instance which allows further building. Configuring the
middleware is the same as usual:

public void Configure(IApplicationBuilder app)
{
 app.UseCors(policy =>
 {
 policy.AllowAnyOrigin();
 });
 app.UseMvc();
}

Controllers

The 'old' Web API comes with its own controller base class: ApiController. In the new world there
is no such thing, only the default Controller class. Unfortunately, this is a rather large base class
and it's tied to model binding, views and JSON.NET.

Fortunately, in the new framework controller classes don't have to derive from Controller to be
picked up by the routing mechanism. Just appending the name with Controller is enough. This

https://riptutorial.com/ 6

https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Core

allows us to build our own controller base class. Let's call it ApiController, just for old times sake:

/// <summary>
/// Base class for an API controller.
/// </summary>
[Controller]
public abstract class ApiController
{
 [ActionContext]
 public ActionContext ActionContext { get; set; }

 public HttpContext HttpContext => ActionContext?.HttpContext;

 public HttpRequest Request => ActionContext?.HttpContext?.Request;

 public HttpResponse Response => ActionContext?.HttpContext?.Response;

 public IServiceProvider Resolver => ActionContext?.HttpContext?.RequestServices;
}

The [Controller] attribute indicates that the type or any derived type is considered as a controller
by the default controller discovery mechanism. The [ActionContext] attribute specifies that the
property should be set with the current ActionContext when MVC creates the controller. The
ActionContext provides information about the current request.

ASP.NET Core MVC also offers a ControllerBase class which provides a controller
base class just without views support. It's still much larger than ours though. Use it if
you find it convenient.

Conclusion

We can now build a minimal Web API using the new ASP.NET Core MVC framework. The
modular package structure allows us to just pull in the packages we need and create a lean and
simple application.

Using Visual Studio code to develop Cross plateform aspnet core application

With AspNetCore you can develop the application on any platform including Mac,Linux,Window
and Docker.

Installation and SetUp

Install visual Studio Code from here1.
Add C# extesnion2.
Install dot net core sdk. You can install from here3.

Now you have all the tools available. To develop the application. Now you need some scaffolding
option. For that you should consider using Yeoman. To install Yeoman

Install NPM. For this you need Node on your machine. Install from here1.

https://riptutorial.com/ 7

https://github.com/aspnet/Mvc/blob/1.0.0/src/Microsoft.AspNetCore.Mvc.Core/ControllerBase.cs
https://code.visualstudio.com
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://www.microsoft.com/net/core#windows
https://nodejs.org/en/

Install Yeoman by using NPM

npm install -g yo

2.

Now install the aspnet generator

npm install -g generator-aspnet

3.

Now we have all the setup on your machine. First let's create a new project with DotNetCore basic
command and then create a new project using Yo.

New Project Using Command Line

Create a new Project Folder

mkdir CoreApplication cd CoreApplication

1.

Scaffold a very basic dotnet project using default command line option

dotnet New

2.

Restore the packages and run the application

dotNet restore dotnet run

1.

https://riptutorial.com/ 8

http://i.stack.imgur.com/wadsM.png

Use Yeoman as Scaffolding Option

Create Project Folder and Run the Yo Command

yo aspnet

Yeoman will ask some inputs like Project Type, Project Name etc like

https://riptutorial.com/ 9

http://i.stack.imgur.com/Tx7v4.png

Now restore the packages by running dotnet restore command and Run the application

Use VS Code to develop the application

Run the visual studio code like

https://riptutorial.com/ 10

http://i.stack.imgur.com/PoWbv.png
http://i.stack.imgur.com/77SSC.png

Now open the files and run the application. You can also search the extension for your help.

Setup environment variable in ASP.NET Core [Windows]

=> Original Post <=

ASP.NET Core uses the ASPNETCORE_ENVIRONMENT environment variable to determine the current
environment. By default, if you run your application without setting this value, it will automatically

https://riptutorial.com/ 11

http://i.stack.imgur.com/W6Wpf.png
https://andrewlock.net/how-to-set-the-hosting-environment-in-asp-net-core/

default to the Production environment.

> dotnet run
Project TestApp (.NETCoreApp,Version=v1.0) was previously compiled. Skipping compilation.

Hosting environment: Production
Content root path: C:\Projects\TestApp
Now listening on: http://localhost:5000
Application started. Press Ctrl+C to shut down.

Setting the environment variable in Windows

At the command line

You can easily set an environment variable from a command prompt using the setx.exe command
included in Windows. You can use it to easily set a user variable:

>setx ASPNETCORE_ENVIRONMENT "Development"

SUCCESS: Specified value was saved.

Note that the environment variable is not set in the current open window. You will need to open a
new command prompt to see the updated environment. It is also possible to set system variables
(rather than just user variables) if you open an administrative command prompt and add the /M
switch:

>setx ASPNETCORE_ENVIRONMENT "Development" /M

SUCCESS: Specified value was saved.

Using PowerShell Alternatively, you can use PowerShell to set the variable. In PowerShell, as
well as the normal user and system variables, you can also create a temporary variable using the
$Env: command:

$Env:ASPNETCORE_ENVIRONMENT = "Development"

The variable created lasts just for the duration of your PowerShell session - once you close the
window the environment reverts back to its default value.

Alternatively, you could set the user or system environment variables directly. This method does
not change the environment variables in the current session, so you will need to open a new
PowerShell window to see your changes. As before, changing the system (Machine) variables will
require administrative access

[Environment]::SetEnvironmentVariable("ASPNETCORE_ENVIRONMENT", "Development", "User")
[Environment]::SetEnvironmentVariable("ASPNETCORE_ENVIRONMENT", "Development", "Machine")

Using the windows control panel If you're not a fan of the command prompt, you can easily
update your variables using your mouse!Click the windows start menu button (or press the
Windows key), search for environment variables, and choose Edit environment variables for your

https://riptutorial.com/ 12

account:

Selecting this option will open the System Properties dialog

https://riptutorial.com/ 13

https://i.stack.imgur.com/g71hq.png

Click Environment Variables to view the list of current environment variables on your system.

https://riptutorial.com/ 14

https://i.stack.imgur.com/TCirT.png

Assuming you do not already have a variable called ASPNETCORE_ENVIRONMENT, click the New... button
and add a new account environment variable:

 Click
OK to save all your changes. You will need to re-open any command windows to ensure the new
environment variables are loaded.

Read Getting started with asp.net-core online: https://riptutorial.com/asp-net-
core/topic/810/getting-started-with-asp-net-core

https://riptutorial.com/ 15

https://i.stack.imgur.com/ZL6Hv.png
https://i.stack.imgur.com/yB7sd.png
https://riptutorial.com/asp-net-core/topic/810/getting-started-with-asp-net-core
https://riptutorial.com/asp-net-core/topic/810/getting-started-with-asp-net-core

Chapter 2: Angular2 and .Net Core

Examples

Quick tutorial for an Angular 2 Hello World! App with .Net Core in Visual
Studio 2015

Steps:

Create Empty .Net Core Web App: 1.

https://riptutorial.com/ 16

Go to wwwroot, and create a normal html page called Index.html: 2.

https://riptutorial.com/ 17

https://i.stack.imgur.com/68jtc.png

Configure Startup.cs to accept static files (this will require to add
"Microsoft.AspNetCore.StaticFiles": "1.0.0" library in the “project.json” file):

3.

https://riptutorial.com/ 18

https://i.stack.imgur.com/NSUEW.png
https://i.stack.imgur.com/4AycC.png

Add NPN File:

Right click the WebUi project and add NPN Configuration File (package.json): •

4.

https://riptutorial.com/ 19

https://i.stack.imgur.com/xppBs.png

Verify the last versions of the packages: •

https://riptutorial.com/ 20

https://i.stack.imgur.com/8GxRU.png

Note: If visual studio does not detect the versions of the packages (Check all
packages, because some of them does show the version, and some others don't), it
might be because the Node version coming in visual studio is not working correctly, so
it will probably require to install node js externally and then link that installation with
visual studio.

i. Download and install node js: https://nodejs.org/es/download/

ii. Link the installation with visual studio: https://ryanhayes.net/synchronize-node-js-
install-version-with-visual-studio-2015/:

https://riptutorial.com/ 21

https://i.stack.imgur.com/LZ6IK.png
https://nodejs.org/es/download/
https://ryanhayes.net/synchronize-node-js-install-version-with-visual-studio-2015/
https://ryanhayes.net/synchronize-node-js-install-version-with-visual-studio-2015/

iii. (Optional) after saving the package.json it will install the dependencies in the
project, if not, run "npm install" using a command prompt from the same location as the
package.json file.

https://riptutorial.com/ 22

https://i.stack.imgur.com/ZgeTz.png

Note: Recommended to install "Open Command Line", an extension that can be added
to Visual Studio:

Add typescript:

Create a TsScript folder inside the WebUi project, just for organization (The
TypeScripts won't go to the browser, they will be transpiled into a normal JS file, and
this JS file will be the one going to the wwwroot foder using gulp, this will be explained
later):

•

5.

https://riptutorial.com/ 23

https://i.stack.imgur.com/jWRu8.png

Inside that folder add "TypeScript JSON Configuration File" (tsconfig.json): •

https://riptutorial.com/ 24

https://i.stack.imgur.com/HYvED.png

And add the next code:

https://riptutorial.com/ 25

https://i.stack.imgur.com/OgRWE.png

In the WebUi Project’s root, add a new file called typings.json: •

https://riptutorial.com/ 26

https://i.stack.imgur.com/DHDCh.png

And add the next code:

https://riptutorial.com/ 27

https://i.stack.imgur.com/n5Kmj.png

In the Web Project root open a command line and execute "typings install", this will
create a typings folder (This requires “Open Command Line” explained as an optional
step in the Note inside Step 4, numeral iii).

•

https://riptutorial.com/ 28

https://i.stack.imgur.com/x4h7U.png

https://riptutorial.com/ 29

https://i.stack.imgur.com/X5fmM.png

https://riptutorial.com/ 30

https://i.stack.imgur.com/OLXiH.png

Add gulp to move files:

Add "Gulp Configuration File" (gulpfile.js) at the root of the web project: •

6.

https://riptutorial.com/ 31

https://i.stack.imgur.com/qerUw.png

Add Code: •

https://riptutorial.com/ 32

https://i.stack.imgur.com/zCBu2.png

Add Angular 2 bootstrapping files inside the “tsScripts” folder: 7.

https://riptutorial.com/ 33

https://i.stack.imgur.com/W4b3z.png

app.component.ts

https://riptutorial.com/ 34

https://i.stack.imgur.com/IByD3.png

app.module.ts

main.ts

Inside wwwroot, create the next file structure: 8.

Inside the scripts folder (but outside app), add the systemjs.config.js: 9.

https://riptutorial.com/ 35

https://i.stack.imgur.com/GOiju.png
https://i.stack.imgur.com/QBfTG.png
https://i.stack.imgur.com/Aq2Tz.png
https://i.stack.imgur.com/7rWYv.png

And add the next code:

https://riptutorial.com/ 36

https://i.stack.imgur.com/lVkVh.png

Execute Gulp Task to generate the scripts in wwwroot.

Right click gulpfile.js•
Task Runner Explorer •

10.

https://riptutorial.com/ 37

https://i.stack.imgur.com/8TX8V.png

i. If the tasks are not loaded ("Fail to load. See Output window") Go to output window
and take a look at the errors, most of the time are syntax errors in the gulp file.
Right Click "default" task and "Run" (It will take a while, and the confirmation messages
are not very precise, it shows it finished but the process is still running, keep that in
mind):

•

https://riptutorial.com/ 38

https://i.stack.imgur.com/mE8Rc.png

Modify Index.html like: 11.

https://riptutorial.com/ 39

https://i.stack.imgur.com/fcBes.png

Now run and enjoy.

Notes:

In case there are compilation errors with typescript, for example "TypeScript Virtual
Project", it is an indicator that the TypeScript version for Visual Studio is not updated
according to the version we selected in the “package.json”, if this happens please
install: https://www.microsoft.com/en-us/download/details.aspx?id=48593

•

12.

References:

https://riptutorial.com/ 40

https://i.stack.imgur.com/FLOOY.png
https://www.microsoft.com/en-us/download/details.aspx?id=48593

Deborah Kurata's "Angular 2: Getting Started" course in Pluralsight:

https://www.pluralsight.com/courses/angular-2-getting-started-update

•

Angular 2 Official Documentation:

https://angular.io/

•

Articles by Mithun Pattankar:

http://www.mithunvp.com/angular-2-in-asp-net-5-typescript-visual-studio-2015/

http://www.mithunvp.com/using-angular-2-asp-net-mvc-5-visual-studio/

•

Expected errors when generating Angular 2 components in .NET Core project
(version 0.8.3)

When generating new Angular 2 components in a .NET Core project, you may run into the
following errors (as of version 0.8.3):

Error locating module for declaration
 SilentError: No module files found

OR

No app module found. Please add your new Class to your component.
 Identical ClientApp/app/app.module.ts

[SOLUTION]

Rename app.module.client.ts to app.client.module.ts1.

Open app.client.module.ts: prepend the declaration with 3 dots “...” and wrap the declaration
in brackets.

For example: [...sharedConfig.declarations, <MyComponent>]

2.

Open boot-client.ts: update your import to use the new app.client.module reference.

For example: import { AppModule } from './app/app.client.module';

3.

Now try to generate the new component: ng g component my-component4.

[EXPLANATION]

Angular CLI looks for a file named app.module.ts in your project, and tries to find a references for
the declarations property to import the component. This should be an array (as the
sharedConfig.declarations is), but the changes do not get applied

[SOURCES]

https://riptutorial.com/ 41

https://www.pluralsight.com/courses/angular-2-getting-started-update
https://angular.io/
http://www.mithunvp.com/angular-2-in-asp-net-5-typescript-visual-studio-2015/
http://www.mithunvp.com/using-angular-2-asp-net-mvc-5-visual-studio/

https://github.com/angular/angular-cli/issues/2962•
https://www.udemy.com/aspnet-core-angular/learn/v4/t/lecture/6848548 (section 3.33 lecture
contributor Bryan Garzon)

•

Read Angular2 and .Net Core online: https://riptutorial.com/asp-net-core/topic/9352/angular2-and--
net-core

https://riptutorial.com/ 42

https://github.com/angular/angular-cli/issues/2962
https://www.udemy.com/aspnet-core-angular/learn/v4/t/lecture/6848548
https://riptutorial.com/asp-net-core/topic/9352/angular2-and--net-core
https://riptutorial.com/asp-net-core/topic/9352/angular2-and--net-core

Chapter 3: ASP.NET Core - Log both Request
and Response using Middleware

Introduction

For some time I've searched for the best way to log requests and response in an ASP.Net Core. I
was developing services and one of the requirements was to record request with its response in
one record the the database. So many topics out there but none worked for me. it's either for
request only, response only or simply didn't work. When I was able to finally do it, and it had
evolved during my project to better error handling and logging exceptions so I thought of sharing.

Remarks

some of the topics that was helpful to me:

http://www.sulhome.com/blog/10/log-asp-net-core-request-and-response-using-middleware•
http://dotnetliberty.com/index.php/2016/01/07/logging-asp-net-5-requests-using-middleware/•
How to log the HTTP Response Body in ASP.NET Core 1.0•

Examples

Logger Middleware

using Microsoft.AspNetCore.Http;
using System;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNet.Http.Internal;
using Microsoft.AspNetCore.Http.Internal;

 public class LoggerMiddleware
 {
 private readonly RequestDelegate _next;

 public LoggerMiddleware(RequestDelegate next)
 {
 _next = next;
 }

 public async Task Invoke(HttpContext context)
 {
 using (MemoryStream requestBodyStream = new MemoryStream())
 {
 using (MemoryStream responseBodyStream = new MemoryStream())
 {
 Stream originalRequestBody = context.Request.Body;
 context.Request.EnableRewind();

https://riptutorial.com/ 43

http://www.sulhome.com/blog/10/log-asp-net-core-request-and-response-using-middleware
http://dotnetliberty.com/index.php/2016/01/07/logging-asp-net-5-requests-using-middleware/
http://stackoverflow.com/questions/37855384/how-to-log-the-http-response-body-in-asp-net-core-1-0

 Stream originalResponseBody = context.Response.Body;

 try
 {
 await context.Request.Body.CopyToAsync(requestBodyStream);
 requestBodyStream.Seek(0, SeekOrigin.Begin);

 string requestBodyText = new
StreamReader(requestBodyStream).ReadToEnd();

 requestBodyStream.Seek(0, SeekOrigin.Begin);
 context.Request.Body = requestBodyStream;

 string responseBody = "";

 context.Response.Body = responseBodyStream;

 Stopwatch watch = Stopwatch.StartNew();
 await _next(context);
 watch.Stop();

 responseBodyStream.Seek(0, SeekOrigin.Begin);
 responseBody = new StreamReader(responseBodyStream).ReadToEnd();
 AuditLogger.LogToAudit(context.Request.Host.Host,
 context.Request.Path, context.Request.QueryString.ToString(),
context.Connection.RemoteIpAddress.MapToIPv4().ToString(),
 string.Join(",", context.Request.Headers.Select(he => he.Key +
":[" + he.Value + "]").ToList()),
 requestBodyText, responseBody, DateTime.Now,
watch.ElapsedMilliseconds);

 responseBodyStream.Seek(0, SeekOrigin.Begin);

 await responseBodyStream.CopyToAsync(originalResponseBody);
 }
 catch (Exception ex)
 {
 ExceptionLogger.LogToDatabse(ex);
 byte[] data = System.Text.Encoding.UTF8.GetBytes("Unhandled Error
occured, the error has been logged and the persons concerned are notified!! Please, try again
in a while.");
 originalResponseBody.Write(data, 0, data.Length);
 }
 finally
 {
 context.Request.Body = originalRequestBody;
 context.Response.Body = originalResponseBody;
 }
 }
 }
 }
 }

Read ASP.NET Core - Log both Request and Response using Middleware online:
https://riptutorial.com/asp-net-core/topic/9510/asp-net-core---log-both-request-and-response-
using-middleware

https://riptutorial.com/ 44

https://riptutorial.com/asp-net-core/topic/9510/asp-net-core---log-both-request-and-response-using-middleware
https://riptutorial.com/asp-net-core/topic/9510/asp-net-core---log-both-request-and-response-using-middleware

Chapter 4: Authorization

Examples

Simple Authorization

Authorization in asp.net core is simply AuthorizeAttribute

[Authorize]
public class SomeController : Controller
{
 public IActionResult Get()
 {
 }

 public IActionResult Post()
 {
 }
}

This will only allow a logged in user to access these actions.

or use the following to only limit a single action

public class SomeController : Controller
{
 public IActionResult Get()
 {
 }

 [Authorize]
 public IActionResult Post()
 {
 }
}

If you want to allow all users to access one of the actions you can use AllowAnonymousAttribute

[Authorize]
public class SomeController: Controller
{
 public IActionResult Get()
 {
 }

 [AllowAnonymous]
 public IActionResult Post()
 {
 }
}

Now Post can be accessed by any user. AllowAnonymous always comes as a priority to authorize, so

https://riptutorial.com/ 45

if a controller is set to AllowAnonymous then all it's actions are public, regardless of if they have an
AuthorizeAttribute or not.

There is an option to set all controllers to require authorized requests -

services.AddMvc(config =>
{
 var policy = new AuthorizationPolicyBuilder()
 .RequireAuthenticatedUser()
 .Build();
 config.Filters.Add(new AuthorizeFilter(policy));
})

This is done by adding a default authorization policy to each controller - any Authorize/
AllowAnonymous Attributes over a controller/action will override these settings.

Read Authorization online: https://riptutorial.com/asp-net-core/topic/6914/authorization

https://riptutorial.com/ 46

https://riptutorial.com/asp-net-core/topic/6914/authorization

Chapter 5: Bundling and Minification

Examples

Grunt and Gulp

In ASP.NET Core apps, you bundle and minify the client-side resources during design-time using
third party tools, such as Gulp and Grunt. By using design-time bundling and minification, the
minified files are created prior to the application’s deployment. Bundling and minifying before
deployment provides the advantage of reduced server load. However, it’s important to recognize
that design-time bundling and minification increases build complexity and only works with static
files.

This is done in ASP.NET Core by configuring Gulp via a gulpfile.js file within your project :

// Defining dependencies
var gulp = require("gulp"),
 rimraf = require("rimraf"),
 concat = require("gulp-concat"),
 cssmin = require("gulp-cssmin"),
 uglify = require("gulp-uglify");

// Define web root
var webroot = "./wwwroot/"

// Defining paths
var paths = {
 js: webroot + "js/**/*.js",
 minJs: webroot + "js/**/*.min.js",
 css: webroot + "css/**/*.css",
 minCss: webroot + "css/**/*.min.css",
 concatJsDest: webroot + "js/site.min.js",
 concatCssDest: webroot + "css/site.min.css"
};

// Bundling (via concat()) and minifying (via uglify()) Javascript
gulp.task("min:js", function () {
 return gulp.src([paths.js, "!" + paths.minJs], { base: "." })
 .pipe(concat(paths.concatJsDest))
 .pipe(uglify())
 .pipe(gulp.dest("."));
});

// Bundling (via concat()) and minifying (via cssmin()) Javascript
gulp.task("min:css", function () {
 return gulp.src([paths.css, "!" + paths.minCss])
 .pipe(concat(paths.concatCssDest))
 .pipe(cssmin())
 .pipe(gulp.dest("."));
});

This approach will properly bundle and minify your existing Javascript and CSS files respectively
accordingly to the directories and globbing patterns that are used.

https://riptutorial.com/ 47

http://gulpjs.com/
http://gruntjs.com/

Bundler and Minifier Extension

Visual Studio also features an available Bundler and Minifier Extension that is capable of handling
this process for you. The extension allows you to easily select and bundle the files you need
without writing a line of code.

Building Your Bundles

After installing the extension, you select all of the specific files that you want to include within
a bundle and use the Bundle and Minify Files option from the extension :

This will prompt to you name your bundle and choose a location to save it at. You'll then notice a
new file within your project called bundleconfig.json which looks like the following :

[
 {

https://riptutorial.com/ 48

https://visualstudiogallery.msdn.microsoft.com/9ec27da7-e24b-4d56-8064-fd7e88ac1c40
http://i.stack.imgur.com/4wie9.gif

 "outputFileName": "wwwroot/app/bundle.js",
 "inputFiles": [
 "wwwroot/lib/jquery/dist/jquery.js",
 "wwwroot/lib/bootstrap/dist/js/bootstrap.js",
 "wwwroot/lib/jquery-validation/dist/jquery.validate.js",
 "wwwroot/lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.js"
]
 }
]

NOTE: The order in which the files are selected will determine the order that they
appear in within the bundle, so if you have any dependencies, ensure you take that into
account.

Minifying Your Bundles

Now the previous step will simply bundle your files, if you want to minify the bundle, then you need
to indicate that within the bundleconfig.json file. Simply add a minify block like the following to
your existing bundle to indicate you want it minified :

[
 {
 "outputFileName": "wwwroot/app/bundle.js",
 "inputFiles": [
 "wwwroot/lib/jquery/dist/jquery.js",
 "wwwroot/lib/bootstrap/dist/js/bootstrap.js",
 "wwwroot/lib/jquery-validation/dist/jquery.validate.js",
 "wwwroot/lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.js"
],
 "minify": {
 "enabled": true
 }
 }
]

Automate Your Bundles

Finally, if you want to automate this process, you can schedule a task to run whenever your
application is built to ensure that your bundles reflect any changes within your application.

To do this, you'll need to do the following :

Open the Task Runner Explorer (via Tools > Task Runner Explorer).•
Right-click on the Update All Files option below bundleconfig.json.•
Select your preferred binding from the Bindings context menu.•

https://riptutorial.com/ 49

After doing this, your bundles should be automatically updated at the preferred step that you
selected.

The dotnet bundle Command

The ASP.NET Core RTM release introduced BundlerMinifier.Core, a new Bundling and Minification
tool that can be easily integrated into existing ASP.NET Core applications and doesn't require any
external extensions or script files.

Using BundlerMinifier.Core

To use this tool, simply add a reference to BundlerMinifier.Core within the tools section of
your existing project.json file as seen below :

"tools": {
 "BundlerMinifier.Core": "2.0.238",
 "Microsoft.AspNetCore.Razor.Tools": "1.0.0-preview2-final",
 "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.0.0-preview2-final"
}

Configuring Your Bundles

After adding the tool, you'll need to add a bundleconfig.json file in your project that will be used
to configure the files that you wish to include within your bundles. A minimal configuration can be
seen below :

[
 {
 "outputFileName": "wwwroot/css/site.min.css",
 "inputFiles": [
 "wwwroot/css/site.css"
]
 },
 {
 "outputFileName": "wwwroot/js/site.min.js",
 "inputFiles": [
 "wwwroot/js/site.js"
],
 "minify": {

https://riptutorial.com/ 50

http://i.stack.imgur.com/LYWkS.gif

 "enabled": true,
 "renameLocals": true
 },
 "sourceMap": false
 },
 {
 "outputFileName": "wwwroot/js/semantic.validation.min.js",
 "inputFiles": [
 "wwwroot/js/semantic.validation.js"
],
 "minify": {
 "enabled": true,
 "renameLocals": true
 }
 }
]

Creating / Updating Bundles

After your bundles have been configured, you can bundle and minify your existing files via the
following command :

dotnet bundle

Automated Bundling

The Bundling and Minification process can be automated as part of the build process by adding
the dotnet bundle command in the precompile section of your existing project.json file :

"scripts": {
 "precompile": [
 "dotnet bundle"
]
}

Available Commands

You can see a list of all of the available commands and their descriptions below :

dotnet bundle - Executes the bundle command using the bundleconfig.json file to bundle
and minify your specified files.

•

dotnet bundle clean - Clears all of the existing output files from disk.•
dotnet bundle watch - Creates a watchers that will automatically run dotnet bundle
whenever an existing input file from the bundleconfig.json configuration to bundle your files.

•

dotnet bundle help - Displays all available help options and instructions for using the
command-line interface.

•

Read Bundling and Minification online: https://riptutorial.com/asp-net-core/topic/4051/bundling-
and-minification

https://riptutorial.com/ 51

https://riptutorial.com/asp-net-core/topic/4051/bundling-and-minification
https://riptutorial.com/asp-net-core/topic/4051/bundling-and-minification

Chapter 6: Caching

Introduction

Caching helps in improving performance of an application by maintaining easily accessible copy of
the data. Aspnet Core comes with two easy to use and testing friendly caching abstractions.

Memory Cache will store data in to local server's memory caching.

Distributed Cache will hold the data cache in a centralized location which is accessible by
servers in cluster. It comes with three implementations out of the box : In Memory (for unit testing
and local dev), Redis and Sql Server.

Examples

Using InMemory cache in ASP.NET Core application

To use an in memory cache in your ASP.NET application, add the following dependencies to your
project.json file:

 "Microsoft.Extensions.Caching.Memory": "1.0.0-rc2-final",

add the cache service (from Microsoft.Extensions.Caching.Memory) to ConfigureServices method
in Startup class

services.AddMemoryCache();

To add items to the cache in our application, we will use IMemoryCache which can be injected to any
class (for example Controller) as shown below.

private IMemoryCache _memoryCache;
public HomeController(IMemoryCache memoryCache)
{
 _memoryCache = memoryCache;
}

Get will return the value if it exists, but otherwise returns null.

 // try to get the cached item; null if not found
 // greeting = _memoryCache.Get(cacheKey) as string;

 // alternately, TryGet returns true if the cache entry was found
 if(!_memoryCache.TryGetValue(cacheKey, out greeting))

Use the Set method to write to the cache. Set accepts the key to use to look up the value, the
value to be cached, and a set of MemoryCacheEntryOptions. The MemoryCacheEntryOptions allow you to
specify absolute or sliding time-based cache expiration, caching priority, callbacks, and

https://riptutorial.com/ 52

dependencies. One of the sample below-

_memoryCache.Set(cacheKey, greeting,
 new MemoryCacheEntryOptions()
 .SetAbsoluteExpiration(TimeSpan.FromMinutes(1)));

Distributed Caching

To leverage distributed cache, you'll have to reference one of the available implementations :

Redis•
Sql server•

For instance you'll register Redis implemention as follows :

public void ConfigureServices(IServiceCollection services)
{
 services.AddDistributedRedisCache(options =>
 {
 options.Configuration = "ServerAdress";
 options.InstanceName = "InstanceName";
 });
}

Require IDistributedCache dependency where you need it:

public class BooksController {
 private IDistributedCache distributedCache;

 public BooksController(IDistributedCache distributedCache) {
 this.distributedCache = distributedCache;
 }

 [HttpGet]
 public async Task<Books[]> GetAllBooks() {
 var serialized = this.distributedCache.GetStringAsync($"allbooks");
 Books[] books = null;
 if (string.IsNullOrEmpty(serialized)) {
 books = await Books.FetchAllAsync();
 this.distributedCache.SetStringAsync($"allbooks",
JsonConvert.SerializeObject(books));
 } else {
 books = JsonConvert.DeserializeObject<Books[]>(serialized);
 }
 return books;
 }
}

Read Caching online: https://riptutorial.com/asp-net-core/topic/8090/caching

https://riptutorial.com/ 53

https://www.nuget.org/packages/Microsoft.Extensions.Caching.Redis/
https://www.nuget.org/packages/Microsoft.Extensions.Caching.SqlServer/
https://riptutorial.com/asp-net-core/topic/8090/caching

Chapter 7: Configuration

Introduction

Asp.net core provides configuration abstractions. They allow you to load configuration settings
from various sources and build a final configuration model which can then be consumed by your
application.

Syntax

IConfiguration•
string this[string key] { get; set; }•
IEnumerable<IConfigurationSection> GetChildren();•
IConfigurationSection GetSection(string key);•

Examples

Accessing Configuration using Dependency Injection

The recommended approach would be to avoid doing so and rather use IOptions<TOptions> and
IServiceCollection.Configure<TOptions>.

That said, this is still pretty straightforward to make IConfigurationRootavailable application wide.

In the Startup.cs constructor you should have the following code to build the configuration,

 Configuration = builder.Build();

Here Configuration is an instance of IConfigurationRoot, And add this instance as a Singleton to
the service collection in ConfigureServices method , Startup.cs ,

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddSingleton<IConfigurationRoot>(provider => Configuration);

For example, you can now access the configuration in a Controller/Service

 public MyController(IConfigurationRoot config){
 var setting1= config.GetValue<string>("Setting1")
 }

Getting Started

In this example we will describe what happens when you scaffold a new project.

First thing, the following dependencies will be added to you project (currently project.json file) :

https://riptutorial.com/ 54

"Microsoft.Extensions.Configuration.EnvironmentVariables": "1.0.0",
"Microsoft.Extensions.Configuration.Json": "1.0.0",

It will also create a constructor in your Startup.cs file which will be in charge of building the
configuration using ConfigurationBuilder fluent api:

It first creates a new ConfigurationBuilder.1.
It then sets a base path which will be used to compute absolute path of further files2.
It adds an optional appsettings.json to the configuration builder and monitor it's changes3.
It adds an optional environment related appsettings.environementName.json configuration file4.
It then adds environement variables.5.

public Startup(IHostingEnvironment env)
{
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)
 .AddEnvironmentVariables();

 Configuration = builder.Build();
}

If a same setting is set in several sources, the latest source added will win and its value will be
selected.

Configuration can then be consumed using the indexer property. The colon : character serve a
path delimiter.

Configuration["AzureLogger:ConnectionString"]

This will look for a configuration value ConnectionString in an AzureLogger section.

Work with Environment Variables

You can source configuration from environment variables by calling .AddEnvironmentVariables() on
you ConfigurationBuilder.

It will load environment variables prefixed with APPSETTING_ It will then use colon : as the key path
separator.

This means that : following environement settings :

APPSETTING_Security:Authentication:UserName = a_user_name
APPSETTING_Security:Authentication:Password = a_user_password

Will be the equivalent this json :

{
 "Security" : {

https://riptutorial.com/ 55

 "Authentication" : {
 "UserName" : "a_user_name",
 "Password" : "a_user_password"
 }
 }
}

** Note that Azure Service will transmit settings as environment variables. Prefix will be set for you
transparently. So to do the same in Azure just set two Application Settings in AppSettings blade :

Security:Authentication:UserName a_user_name
Security:Authentication:Password a_user_password

Option model and configuration

When dealing with large configuration sets of value, it might become quite unhandy to load them
one buy one.

Option model which comes with asp.net offers a convenient way to map a section to a dotnet poco:
For instance, one might hydrate StorageOptions directly from a configuration section b adding
Microsoft.Extensions.Options.ConfigurationExtensions package and calling the
Configure<TOptions>(IConfiguration config) extension method.

services.Configure<StorageOptions>(Configuration.GetSection("Storage"));

In Memory configuration source

You can also source configuration from an in memory object such as a Dictionary<string,string>

.AddInMemoryCollection(new Dictionary<string, string>
{
 ["akey"] = "a value"
})

This can reveal helpful in integration/unit testing scenarios.

Read Configuration online: https://riptutorial.com/asp-net-core/topic/8660/configuration

https://riptutorial.com/ 56

https://riptutorial.com/asp-net-core/topic/8660/configuration

Chapter 8: Configuring multiple
Environments

Examples

Having appsettings per Environment

For each environment you need to create a separate appsettings.{EnvironmentName}.json files:

appsettings.Development.json•
appsettings.Staging.json•
appsettings.Production.json•

Then open project.json file and include them into "include" in "publishOptions" section. This lists all
the files and folders that will be included when you publish:

"publishOptions": {
 "include": [
 "appsettings.Development.json",
 "appsettings.Staging.json",
 "appsettings.Production.json"
 ...
]
}

The final step. In your Startup class add:

.AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true);

in constructor where you set up configuration sources:

var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)
 .AddEnvironmentVariables();

Get/Check Environment name from code

All you need is a variable of type IHostingEnvironment:

get environment name:

 env.EnvironmentName

•

for predefined Development, Staging, Production environments the best way is to use extension
methods from HostingEnvironmentExtensions class

•

https://riptutorial.com/ 57

https://github.com/aspnet/Hosting/blob/b7bdc9c40494f8e0f0eac22db91b8d5c58811ee2/src/Microsoft.AspNetCore.Hosting.Abstractions/HostingEnvironmentExtensions.cs

 env.IsDevelopment()
 env.IsStaging()
 env.IsProduction()

correctly ignore case (another extension method from HostingEnvironmentExtensions:

 env.IsEnvironment("environmentname")

•

case sensitive variant:

 env.EnvironmentName == "Development"

•

Configuring multiple environments

This example shows how to configure multiple environments with different Dependency Injection
configuration and separate middlewares in one Startup class.

Alongside of public void Configure(IApplicationBuilder app) and public void
ConfigureServices(IServiceCollection services) methods one can use Configure{EnvironmentName}
and Configure{EnvironmentName}Services to have environment dependent configuration.

Using this pattern avoids putting to much if/else logic withing one single method/Startup class
and keep it clean and separated.

public class Startup
{
 public void ConfigureServices(IServiceCollection services) { }
 public void ConfigureStaggingServices(IServiceCollection services) { }
 public void ConfigureProductionServices(IServiceCollection services) { }

 public void Configure(IApplicationBuilder app) { }
 public void ConfigureStagging(IApplicationBuilder app) { }
 public void ConfigureProduction(IApplicationBuilder app) { }
}

When a Configure{Environmentname} or Configure{Environmentname}Services is not found, it will fall
back to Configure or ConfigureServices respectively.

The same semantics also apply to the Startup class. StartupProduction will be used when the
ASPNETCORE_ENVIRONMENT variable is set to Production and will fall back to Startup when it's Stagging or
Development

A complete example:

public class Startup
{
 public Startup(IHostingEnvironment hostEnv)
 {
 // Set up configuration sources.
 var builder = new ConfigurationBuilder()
 .SetBasePath(hostEnv.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: false, reloadOnChange: true)

https://riptutorial.com/ 58

https://github.com/aspnet/Hosting/blob/b7bdc9c40494f8e0f0eac22db91b8d5c58811ee2/src/Microsoft.AspNetCore.Hosting.Abstractions/HostingEnvironmentExtensions.cs

 .AddJsonFile($"appsettings.{hostEnv.EnvironmentName}.json", optional: true,
reloadOnChange: true);

 if (hostEnv.IsDevelopment())
 {
 // This will push telemetry data through Application Insights pipeline faster,
allowing you to view results immediately.
 builder.AddApplicationInsightsSettings(developerMode: true);
 }

 builder.AddEnvironmentVariables();
 Configuration = builder.Build();
 }

 public IConfigurationRoot Configuration { get; set; }

 // This method gets called by the runtime. Use this method to add services to the
container
 public static void RegisterCommonServices(IServiceCollection services)
 {
 services.AddScoped<ICommonService, CommonService>();
 services.AddScoped<ICommonRepository, CommonRepository>();
 }

 public void ConfigureServices(IServiceCollection services)
 {
 RegisterCommonServices(services);

 services.AddOptions();
 services.AddMvc();
 }

 public void ConfigureDevelopment(IApplicationBuilder app, IHostingEnvironment env,
ILoggerFactory loggerFactory)
 {
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 app.UseBrowserLink();
 app.UseDeveloperExceptionPage();

 app.UseApplicationInsightsRequestTelemetry();
 app.UseApplicationInsightsExceptionTelemetry();
 app.UseStaticFiles();
 app.UseMvc();
 }

 // No console Logger and debugging tools in this configuration
 public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory
loggerFactory)
 {
 loggerFactory.AddDebug();

 app.UseApplicationInsightsRequestTelemetry();
 app.UseApplicationInsightsExceptionTelemetry();
 app.UseStaticFiles();
 app.UseMvc();
 }
}

https://riptutorial.com/ 59

Render environment specific content in view

You may need to render some content in view, which is specific to some environment only. To
achieve this goal you can use Environment tag helper:

<environment names="Development">
 <h1>This is heading for development environment</h1>
</environment>
<environment names="Staging,Production">
 <h1>This is heading for Staging or production environment</h1>
</environment>

The Environment tag helper will only render its contents if the current environment matches one of
the environments specified using the names attribute.

Set environment variable from command line

To set the environment to Development

SET ASPNETCORE_ENVIRONMENT=Development

Now running an Asp.Net Core application will be in the defined environment.

Note

There should be no space before and after the equality sign =.1.
The command prompt should not be closed before running the application because the
settings are not persisted.

2.

Set environment variable from PowerShell

When using PowerShell, you can use setx.exe to set environment variables permanently.

Start PowerShell1.

Type one of the following:

setx ASPNETCORE_ENVIRONMENT "development"

setx ASPNETCORE_ENVIRONMENT "staging"

2.

Restart PowerShell3.

Using ASPNETCORE_ENVIRONMENT from web.config

If you do not want to use ASPNETCORE_ENVIRONMENT from environment variables and use it
from web.config of your application then modify web.config like this-

<aspNetCore processPath=".\WebApplication.exe" arguments="" stdoutLogEnabled="false"
stdoutLogFile=".\logs\stdout" forwardWindowsAuthToken="false">
 <environmentVariables>

https://riptutorial.com/ 60

http://www.riptutorial.com/asp-net-core/topic/2665/tag-helpers

 <environmentVariable name="ASPNETCORE_ENVIRONMENT" value="Development" />
 </environmentVariables>
</aspNetCore>

Read Configuring multiple Environments online: https://riptutorial.com/asp-net-
core/topic/2292/configuring-multiple-environments

https://riptutorial.com/ 61

https://riptutorial.com/asp-net-core/topic/2292/configuring-multiple-environments
https://riptutorial.com/asp-net-core/topic/2292/configuring-multiple-environments

Chapter 9: Cross-Origin Requests (CORS)

Remarks

Browser security prevents a web page from making AJAX requests to another domain. This
restriction is called the same-origin policy, and prevents a malicious site from reading sensitive
data from another site. However, sometimes you might want to let other sites make cross-origin
requests to your web app.

Cross Origin Resource Sharing (CORS) is a W3C standard that allows a server to relax the same-
origin policy. Using CORS, a server can explicitly allow some cross-origin requests while rejecting
others. CORS is safer and more flexible than earlier techniques such as JSONP.

Examples

Enable CORS for all requests

Use the UseCors() extension method on the IApplicationBuilder in the Configure method to apply
the CORS policy to all requests.

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();
 services.AddCors();
}

public void Configure(IApplicationBuilder app)
{
 // Other middleware..

 app.UseCors(builder =>
 {
 builder.AllowAnyOrigin()
 .AllowAnyHeader()
 .AllowAnyMethod();
 });

 // Other middleware..

 app.UseMvc();
}

Enable CORS policy for specific controllers

To enable a certain CORS policy for specific controllers you have to build the policy in the AddCors
extension within the ConfigureServices method:

services.AddCors(cors => cors.AddPolicy("AllowAll", policy =>
{
 policy.AllowAnyOrigin()

https://riptutorial.com/ 62

 .AllowAnyMethod()
 .AllowAnyHeader();
}));

This allows you to apply the policy to a controller:

[EnableCors("AllowAll")]
public class HomeController : Controller
{
 // ...
}

More sophisticated CORS policies

The policy builder allows you to build sophisticated policies.

app.UseCors(builder =>
{
 builder.WithOrigins("http://localhost:5000", "http://myproductionapp.com")
 .WithMethods("GET", "POST", "HEAD")
 .WithHeaders("accept", "content-type", "origin")
 .SetPreflightMaxAge(TimeSpan.FromDays(7));
});

This policy only allows the origins http://localhost:5000 and http://myproductionapp.com with only
the GET, POST and HEAD methods and only accepts the accept, content-type and origin HTTP
headers. The SetPreflightMaxAge method causes the browsers to cache the result of the preflight
request (OPTIONS) to be cached for the specified amount of time.

Enable CORS policy for all controllers

To enable a CORS policy across all of your MVC controllers you have to build the policy in the
AddCors extension within the ConfigureServices method and then set the policy on the
CorsAuthorizationFilterFactory

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Cors.Internal;
...
public void ConfigureServices(IServiceCollection services) {
 // Add AllowAll policy just like in single controller example.
 services.AddCors(options => {
 options.AddPolicy("AllowAll",
 builder => {
 builder.AllowAnyOrigin()
 .AllowAnyMethod()
 .AllowAnyHeader();
 });
 });

 // Add framework services.
 services.AddMvc();

 services.Configure<MvcOptions>(options => {
 options.Filters.Add(new CorsAuthorizationFilterFactory("AllowAll"));

https://riptutorial.com/ 63

 });
}

public void Configure(IApplicationBuilder app) {
 app.useMvc();
 // For content not managed within MVC. You may want to set the Cors middleware
 // to use the same policy.
 app.UseCors("AllowAll");
}

This CORS policy can be overwritten on a controller or action basis, but this can set the default for
the entire application.

Read Cross-Origin Requests (CORS) online: https://riptutorial.com/asp-net-core/topic/2556/cross-
origin-requests--cors-

https://riptutorial.com/ 64

https://riptutorial.com/asp-net-core/topic/2556/cross-origin-requests--cors-
https://riptutorial.com/asp-net-core/topic/2556/cross-origin-requests--cors-

Chapter 10: Dependency Injection

Introduction

Aspnet core is built with Dependency Injection as one of its key core concepts. It introduces one
conforming container abstraction so you can replace the builtin one with a third-party container of
your choice.

Syntax

IServiceCollection.Add(ServiceDescriptor item);•
IServiceCollection.AddScoped(Type serviceType);•
IServiceCollection.AddScoped(Type serviceType, Type implementationType);•
IServiceCollection.AddScoped(Type serviceType, Func<IServiceProvider, object>
implementationFactory);

•

IServiceCollection.AddScoped<TService>()•
IServiceCollection.AddScoped<TService>(Func<IServiceProvider, TService>
implementationFactory)

•

IServiceCollection.AddScoped<TService, TImplementation>()•
IServiceCollection.AddScoped<TService, TImplementation>(Func<IServiceProvider,
TImplementation> implementationFactory)

•

IServiceCollection.AddSingleton(Type serviceType);•
IServiceCollection.AddSingleton(Type serviceType, Func<IServiceProvider, object>
implementationFactory);

•

IServiceCollection.AddSingleton(Type serviceType, Type implementationType);•
IServiceCollection.AddSingleton(Type serviceType, object implementationInstance);•
IServiceCollection.AddSingleton<TService>()•
IServiceCollection.AddSingleton<TService>(Func<IServiceProvider, TService>
implementationFactory)

•

IServiceCollection.AddSingleton<TService>(TService implementationInstance)•
IServiceCollection.AddSingleton<TService, TImplementation>()•
IServiceCollection.AddSingleton<TService, TImplementation>(Func<IServiceProvider,
TImplementation> implementationFactory)

•

IServiceCollection.AddTransient(Type serviceType);•
IServiceCollection.AddTransient(Type serviceType, Func<IServiceProvider, object>
implementationFactory);

•

IServiceCollection.AddTransient(Type serviceType, Type implementationType);•
IServiceCollection.AddTransient<TService>()•
IServiceCollection.AddTransient<TService>(Func<IServiceProvider, TService>
implementationFactory)

•

IServiceCollection.AddTransient<TService, TImplementation>()•
IServiceCollection.AddTransient<TService, TImplementation>(Func<IServiceProvider,
TImplementation> implementationFactory)

•

IServiceProvider.GetService(Type serviceType)•
IServiceProvider.GetService<T>()•
IServiceProvider.GetServices(Type serviceType)•
IServiceProvider.GetServices<T>()•

Remarks

To use generic variants of IServiceProvider methods you have to include the following namespace:

https://riptutorial.com/ 65

using Microsoft.Extensions.DependencyInjection;

Examples

Register and manually resolve

The preferred way of describing dependencies is by using constructor injection which follows
Explicit Dependencies Principle:

ITestService.cs

public interface ITestService
{
 int GenerateRandom();
}

TestService.cs

public class TestService : ITestService
{
 public int GenerateRandom()
 {
 return 4;
 }
}

Startup.cs (ConfigureServices)

public void ConfigureServices(IServiceCollection services)
{
 // ...

 services.AddTransient<ITestService, TestService>();
}

HomeController.cs

using Microsoft.Extensions.DependencyInjection;

namespace Core.Controllers
{
 public class HomeController : Controller
 {
 public HomeController(ITestService service)
 {
 int rnd = service.GenerateRandom();
 }
 }
}

Register dependencies

https://riptutorial.com/ 66

http://deviq.com/explicit-dependencies-principle/

Builtin container comes with a set of builtin features :

Lifetime control

public void ConfigureServices(IServiceCollection services)
 {
 // ...

 services.AddTransient<ITestService, TestService>();
 // or
 services.AddScoped<ITestService, TestService>();
 // or
 services.AddSingleton<ITestService, TestService>();
 // or
 services.AddSingleton<ITestService>(new TestService());
 }

AddTransient: Created everytime it is resolved•
AddScoped: Created once per request•
AddSingleton: Lazily created once per application•
AddSingleton (instance): Provides a previously created instance per application•

Enumerable dependencies

It is also possible to register enumerable dependencies :

 services.TryAddEnumerable(ServiceDescriptor.Transient<ITestService, TestServiceImpl1>());
 services.TryAddEnumerable(ServiceDescriptor.Transient<ITestService, TestServiceImpl2>());

You can then consume them as follows :

public class HomeController : Controller
{
 public HomeController(IEnumerable<ITestService> services)
 {
 // do something with services.
 }
}

Generic dependencies

You can also register generic dependencies :

services.Add(ServiceDescriptor.Singleton(typeof(IKeyValueStore<>), typeof(KeyValueStore<>)));

And then consume it as follows :

https://riptutorial.com/ 67

public class HomeController : Controller
{
 public HomeController(IKeyValueStore<UserSettings> userSettings)
 {
 // do something with services.
 }
}

Retrieve dependencies on a Controller

Once registered a dependency can be retrieved by adding parameters on the Controller
constructor.

// ...
using System;
using Microsoft.Extensions.DependencyInjection;

namespace Core.Controllers
{
 public class HomeController : Controller
 {
 public HomeController(ITestService service)
 {
 int rnd = service.GenerateRandom();
 }
 }
}

Injecting a dependency into a Controller Action

A less known builtin feature is Controller Action injection using the FromServicesAttribute.

[HttpGet]
public async Task<IActionResult> GetAllAsync([FromServices]IProductService products)
{
 return Ok(await products.GetAllAsync());
}

An important note is that the [FromServices] can not be used as general "Property Injection" or
"Method injection" mechanism! It can only be used on method parameters of an controller action
or controller constructor (in the constructor it's obsolete though, as ASP.NET Core DI system
already uses constructor injection and there are no extra markers required).

It can not be used anywhere outside of a controllers, controller action. Also it is very specific
to ASP.NET Core MVC and resides in the Microsoft.AspNetCore.Mvc.Core assembly.

Original quote from the ASP.NET Core MVC GitHub issue (Limit [FromServices] to apply only to
parameters) regarding this attribute:

@rynowak:

@Eilon:

https://riptutorial.com/ 68

https://github.com/aspnet/Mvc/issues/3507#issuecomment-155484837
https://github.com/aspnet/Mvc/issues/3507#issuecomment-155484837

The problem with properties is that it appears to many people that it can be
applied to any property of any object.

Agreed, we've had a number of issues posted by users with confusion around how this
feature should be used. There's really been a fairly large amount of feedback both of
the kinds " [FromServices] is weird and I don't like it" and " [FromServices] has
confounded me". It feels like a trap, and something that the team would still be
answering questions about years from now.

We feel like most valuable scenario for [FromServices] is on method parameter to an
action for a service that you only need in that one place.

/cc @danroth27 - docs changes

To anyone in love with the current [FromServices] , I'd strongly recommend looking into
a DI system that can do property injection (Autofac, for example).

Notes:

Any services registered with the .NET Core Dependency Injection system can be injected
inside an controller's action using the [FromServices] attribute.

•

Most relevant case is when you need a service only in a single action method and don't want
to clutter your controller's constructor with another dependency, which will only be used
once.

•

Can't be used outside of ASP.NET Core MVC (i.e. pure .NET Framework or .NET Core
console applications), because it resides in Microsoft.AspNetCore.Mvc.Core assembly.

•

For property or method injection you must use one of third-party IoC containers available
(Autofac, Unity, etc.).

•

The Options pattern / Injecting options into services

With ASP.NET Core the Microsoft team also introduced the Options pattern, which allows to have
strong typed options and once configured the ability to inject the options into your services.

First we start with a strong typed class, which will hold our configuration.

public class MySettings
{
 public string Value1 { get; set; }
 public string Value2 { get; set; }
}

And an entry in the appsettings.json.

{
 "mysettings" : {
 "value1": "Hello",
 "value2": "World"

https://riptutorial.com/ 69

 }
}

Next we initialize it in the Startup class. There are two ways to do this

Load it directly from the appsettings.json "mysettings" section

services.Configure<MySettings>(Configuration.GetSection("mysettings"));

1.

Do it manually

services.Configure<MySettings>(new MySettings
{
 Value1 = "Hello",
 Value2 = Configuration["mysettings:value2"]
});

Each hierarchy level of the appsettings.json is separated by a :. Since value2 is a property of
the mysettings object, we access it via mysettings:value2.

2.

Finally we can inject the options into our services, using the IOptions<T> interface

public class MyService : IMyService
{
 private readonly MySettings settings;

 public MyService(IOptions<MySettings> mysettings)
 {
 this.settings = mySettings.Value;
 }
}

Remarks

If the IOptions<T> isn't configured during the startup, injecting IOptions<T> will inject the default
instance of T class.

Using scoped services during application startup / Database Seeding

Resolving scoped services during application startup can be difficult, because there is no request
and hence no scoped service.

Resolving a scoped service during application startup via
app.ApplicationServices.GetService<AppDbContext>() can cause issues, because it will be created in
the scope of the global container, effectively making it a singleton with the lifetime of the
application, which may lead to exceptions like Cannot access a disposed object in ASP.NET Core
when injecting DbContext.

The following pattern solves the issue by first creating a new scope and then resolving the scoped

https://riptutorial.com/ 70

services from it, then once the work is done, disposing the scoped container.

public Configure(IApplicationBuilder app)
{
 // serviceProvider is app.ApplicationServices from Configure(IApplicationBuilder app)
method
 using (var serviceScope =
app.ApplicationServices.GetRequiredService<IServiceScopeFactory>().CreateScope())
 {
 var db = serviceScope.ServiceProvider.GetService<AppDbContext>();

 if (await db.Database.EnsureCreatedAsync())
 {
 await SeedDatabase(db);
 }
 }
}

This is a semi-official way of the Entity Framework core team to seed data during application
startup and is reflected in the MusicStore sample application.

Resolve Controllers, ViewComponents and TagHelpers via Dependency
Injection

By default Controllers, ViewComponents and TagHelpers aren't registered and resolved via the
dependency injection container. This results in the inability to do i.e. property injection when using
a 3rd party Inversion of Control (IoC) container like AutoFac.

In order to make ASP.NET Core MVC resolve these Types via IoC too, one needs to add the
following registrations in the Startup.cs (taken from the official ControllersFromService sample on
GitHub)

public void ConfigureServices(IServiceCollection services)
{
 var builder = services
 .AddMvc()
 .ConfigureApplicationPartManager(manager => manager.ApplicationParts.Clear())
 .AddApplicationPart(typeof(TimeScheduleController).GetTypeInfo().Assembly)
 .ConfigureApplicationPartManager(manager =>
 {
 manager.ApplicationParts.Add(new TypesPart(
 typeof(AnotherController),
 typeof(ComponentFromServicesViewComponent),
 typeof(InServicesTagHelper)));

 manager.FeatureProviders.Add(new AssemblyMetadataReferenceFeatureProvider());
 })
 .AddControllersAsServices()
 .AddViewComponentsAsServices()
 .AddTagHelpersAsServices();

 services.AddTransient<QueryValueService>();
 services.AddTransient<ValueService>();
 services.AddSingleton<IHttpContextAccessor, HttpContextAccessor>();
}

https://riptutorial.com/ 71

https://github.com/aspnet/MusicStore/blob/1.0.0/src/MusicStore/Models/SampleData.cs#L22-L34
https://github.com/aspnet/Mvc/blob/rel/1.0.1/test/WebSites/ControllersFromServicesWebSite/Startup.cs#L37-L39

Plain Dependency Injection example (Without Startup.cs)

This shows you how to use Microsoft.Extensions.DependencyInjection nuget package without the
use of the WebHostBuilder from kestrel (e.g. when you want to build something else then a
webApp):

internal class Program
{
 public static void Main(string[] args)
 {
 var services = new ServiceCollection(); //Creates the service registry
 services.AddTransient<IMyInterface, MyClass>(); //Add registration of IMyInterface
(should create an new instance of MyClass every time)
 var serviceProvider = services.BuildServiceProvider(); //Build dependencies into an
IOC container
 var implementation = serviceProvider.GetService<IMyInterface>(); //Gets a dependency

 //serviceProvider.GetService<ServiceDependingOnIMyInterface>(); //Would throw an error
since ServiceDependingOnIMyInterface is not registered
 var manualyInstaniate = new ServiceDependingOnIMyInterface(implementation);

 services.AddTransient<ServiceDependingOnIMyInterface>();
 var spWithService = services.BuildServiceProvider(); //Generaly its bad practise to
rebuild the container because its heavey and promotes use of anti-pattern.
 spWithService.GetService<ServiceDependingOnIMyInterface>(); //only now i can resolve
 }
}

interface IMyInterface
{
}

class MyClass : IMyInterface
{
}

class ServiceDependingOnIMyInterface
{
 private readonly IMyInterface _dependency;

 public ServiceDependingOnIMyInterface(IMyInterface dependency)
 {
 _dependency = dependency;
 }
}

Inner workings of Microsoft.Extensions.DependencyInjection

IServiceCollection

To start building an IOC container with Microsoft's DI nuget package you start with creating an
IServiceCollection. You can use the already provided Collection: ServiceCollection:

var services = new ServiceCollection();

https://riptutorial.com/ 72

https://www.nuget.org/packages/Microsoft.Extensions.DependencyInjection/

This IServiceCollection is nothing more than an implementation of: IList<ServiceDescriptor>,
ICollection<ServiceDescriptor>, IEnumerable<ServiceDescriptor>, IEnumerable

All the following methods are only extension methods to add ServiceDescriptor instances to the
list:

services.AddTransient<Class>(); //add registration that is always recreated
services.AddSingleton<Class>(); // add registration that is only created once and then re-used
services.AddTransient<Abstract, Implementation>(); //specify implementation for interface
services.AddTransient<Interface>(serviceProvider=> new
Class(serviceProvider.GetService<IDependency>())); //specify your own resolve function/
factory method.
services.AddMvc(); //extension method by the MVC nuget package, to add a whole bunch of
registrations.
// etc..

//when not using an extension method:
services.Add(new ServiceDescriptor(typeof(Interface), typeof(Class)));

IServiceProvider

The serviceprovider is the one 'Compiling' all the registrations so that they can be used quickly,
this can be done with services.BuildServiceProvider() which is basically an extension mehtod for:

var provider = new ServiceProvider(services, false); //false is if it should validate scopes

Behind the scenes every ServiceDescriptor in the IServiceCollection gets compiled to a factory
method Func<ServiceProvider, object> where object is the return type and is: the created instance
of the Implementation type, the Singleton or your own defined factory method.

These registrations get added to the ServiceTable which is basically a ConcurrentDictionary with the
key being the ServiceType and the value the Factory method defined above.

Result

Now we have a ConcurrentDictionary<Type, Func<ServiceProvider, object>> which we can use
concurrently to ask to create Services for us. To show a basic example of how this could have
looked.

 var serviceProvider = new ConcurrentDictionary<Type, Func<ServiceProvider, object>>();
 var factoryMethod = serviceProvider[typeof(MyService)];
 var myServiceInstance = factoryMethod(serviceProvider)

This is not how it works!

This ConcurrentDictionary is a property of the ServiceTable which is a property of the
ServiceProvider

Read Dependency Injection online: https://riptutorial.com/asp-net-core/topic/1949/dependency-

https://riptutorial.com/ 73

https://riptutorial.com/asp-net-core/topic/1949/dependency-injection

injection

https://riptutorial.com/ 74

https://riptutorial.com/asp-net-core/topic/1949/dependency-injection

Chapter 11: Error Handling

Examples

Redirect to custom error page

ASP.NET Core provides the status code pages middleware, that supports several different
extension methods, but we are interesting in UseStatusCodePages and
UseStatusCodePagesWithRedirects:

UseStatusCodePages adds a StatusCodePages middleware with the given options that
checks for responses with status codes between 400 and 599 that do not have a body.
Example of use for redirect:

app.UseStatusCodePages(async context => {
 //context.HttpContext.Response.StatusCode contains the status code

 // your redirect logic

});

•

UseStatusCodePagesWithRedirects adds a StatusCodePages middleware to the pipeline.
Specifies that responses should be handled by redirecting with the given location URL
template. This may include a '{0}' placeholder for the status code. URLs starting with '~' will
have PathBase prepended, where any other URL will be used as is. For example the
following will redirect to ~/errors/<error_code> (for example ~/errors/403 for 403 error):

app.UseStatusCodePagesWithRedirects("~/errors/{0}");

•

Global Exception Handling in ASP.NET Core

UseExceptionHandler can be used to handle exceptions globally. You can get all the details of
exception object like Stack Trace, Inner exception and others. And then you can show them on
screen. You can easily implement like this.

app.UseExceptionHandler(
 options => {
 options.Run(
 async context =>
 {
 context.Response.StatusCode = (int)HttpStatusCode.InternalServerError;
 context.Response.ContentType = "text/html";
 var ex = context.Features.Get<IExceptionHandlerFeature>();
 if (ex != null)
 {
 var err = $"<h1>Error: {ex.Error.Message}</h1>{ex.Error.StackTrace }";
 await context.Response.WriteAsync(err).ConfigureAwait(false);
 }
 });

https://riptutorial.com/ 75

https://docs.asp.net/en/latest/fundamentals/error-handling.html#configuring-status-code-pages
https://github.com/aspnet/Diagnostics/blob/48b436ec8a2aa2d8ebcfc8682e85d336e217c8ce/src/Microsoft.AspNetCore.Diagnostics/StatusCodePage/StatusCodePagesExtensions.cs
https://github.com/aspnet/Diagnostics/blob/48b436ec8a2aa2d8ebcfc8682e85d336e217c8ce/src/Microsoft.AspNetCore.Diagnostics/StatusCodePage/StatusCodePagesExtensions.cs

 }
);

You need to put this inside configure() of startup.cs file.

Read Error Handling online: https://riptutorial.com/asp-net-core/topic/6581/error-handling

https://riptutorial.com/ 76

https://riptutorial.com/asp-net-core/topic/6581/error-handling

Chapter 12: Injecting services into views

Syntax

@inject<NameOfService><Identifier>•
@<Identifier>.Foo()•
@inject <type> <name>•

Examples

The @inject Directive

ASP.NET Core introduces the concept of dependency injection into Views via the @inject directive
via the following syntax :

@inject <type> <name>

Example Usage

Adding this directive into your View will basically generate a property of the given type using the
given name within your View using proper dependency injection as demonstrated in the example
below :

@inject YourWidgetServiceClass WidgetService

<!-- This would call the service, which is already populated and output the results -->
There are @WidgetService.GetWidgetCount() Widgets here.

Required Configuration

Services that use dependency injection are still required to be registered within the
ConfigureServices() method of the Startup.cs file and scoped accordingly :

public void ConfigureServices(IServiceCollection services)
{
 // Other stuff omitted for brevity

 services.AddTransient<IWidgetService, WidgetService>();
}

Read Injecting services into views online: https://riptutorial.com/asp-net-core/topic/4284/injecting-
services-into-views

https://riptutorial.com/ 77

https://riptutorial.com/asp-net-core/topic/4284/injecting-services-into-views
https://riptutorial.com/asp-net-core/topic/4284/injecting-services-into-views

Chapter 13: Localization

Examples

Localization using JSON language resources

In ASP.NET Core there are several different ways we can localize/globalize our app. It's important
to pick a way that suits your needs. In this example you'll see how we can make a multilingual
ASP.NET Core app that reads language specific strings from .json files and store them in memory
to provide localization in all sections of the app as well as maintaining a high performance.

The way we do it is by using Microsoft.EntityFrameworkCore.InMemory package.

Notes:

The namespace for this project is DigitalShop that you may change to your projects own
namespace

1.

Consider creating a new project so that you don't run into weird errors2.
By no means this example show the best practices, So if you think it can be improved please
kindly edit it

3.

To begin let's add the following packages to the existing dependencies section in the project.json
file:

"Microsoft.EntityFrameworkCore": "1.0.0",
"Microsoft.EntityFrameworkCore.SqlServer": "1.0.0",
"Microsoft.EntityFrameworkCore.InMemory": "1.0.0"

Now let's replace the Startup.cs file with: (using statements are removed as they can be easily
added later)

Startup.cs

namespace DigitalShop
{
 public class Startup
 {
 public static string UiCulture;
 public static string CultureDirection;
 public static IStringLocalizer _e; // This is how we access language strings

 public static IConfiguration LocalConfig;

 public Startup(IHostingEnvironment env)
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: false, reloadOnChange: true) //
this is where we store apps configuration including language
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)

https://riptutorial.com/ 78

 .AddEnvironmentVariables();

 Configuration = builder.Build();
 LocalConfig = Configuration;
 }

 public IConfigurationRoot Configuration { get; }

 // This method gets called by the runtime. Use this method to add services to the
container.
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc().AddViewLocalization().AddDataAnnotationsLocalization();

 // IoC Container
 // Add application services.
 services.AddTransient<EFStringLocalizerFactory>();
 services.AddSingleton<IConfiguration>(Configuration);
 }

 // This method gets called by the runtime. Use this method to configure the HTTP
request pipeline.
 public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory
loggerFactory, EFStringLocalizerFactory localizerFactory)
 {
 _e = localizerFactory.Create(null);

 // a list of all available languages
 var supportedCultures = new List<CultureInfo>
 {
 new CultureInfo("en-US"),
 new CultureInfo("fa-IR")
 };

 var requestLocalizationOptions = new RequestLocalizationOptions
 {
 SupportedCultures = supportedCultures,
 SupportedUICultures = supportedCultures,
 };
 requestLocalizationOptions.RequestCultureProviders.Insert(0, new
JsonRequestCultureProvider());
 app.UseRequestLocalization(requestLocalizationOptions);

 app.UseStaticFiles();

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }
 }

 public class JsonRequestCultureProvider : RequestCultureProvider
 {
 public override Task<ProviderCultureResult> DetermineProviderCultureResult(HttpContext
httpContext)
 {
 if (httpContext == null)
 {

https://riptutorial.com/ 79

 throw new ArgumentNullException(nameof(httpContext));
 }

 var config = Startup.LocalConfig;

 string culture = config["AppOptions:Culture"];
 string uiCulture = config["AppOptions:UICulture"];
 string culturedirection = config["AppOptions:CultureDirection"];

 culture = culture ?? "fa-IR"; // Use the value defined in config files or the
default value
 uiCulture = uiCulture ?? culture;

 Startup.UiCulture = uiCulture;

 culturedirection = culturedirection ?? "rlt"; // rtl is set to be the default
value in case culturedirection is null
 Startup.CultureDirection = culturedirection;

 return Task.FromResult(new ProviderCultureResult(culture, uiCulture));
 }
 }
}

In the above code, we first add three public static field variables that we will later initialize using
the values read from the settings file.

In the constructor for Startup class we add a json settings file to the builder variable. The first file
is required for the app to work, so go ahead and create appsettings.json in your project root if it
doesn't already exist. Using Visual Studio 2015, this file is created automatically, so just change its
content to: (You may omit the Logging section if you don't use it)

appsettings.json

{
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Debug",
 "System": "Information",
 "Microsoft": "Information"
 }
 },
 "AppOptions": {
 "Culture": "en-US", // fa-IR for Persian
 "UICulture": "en-US", // same as above
 "CultureDirection": "ltr" // rtl for Persian/Arabic/Hebrew
 }
}

Going forward, create three folders in your project root:

Models, Services and Languages. In the Models folder create another folder named Localization.

In the Services folder we create a new .cs file named EFLocalization. The content would be: (Again
using statements are not included)

https://riptutorial.com/ 80

EFLocalization.cs

namespace DigitalShop.Services
{
 public class EFStringLocalizerFactory : IStringLocalizerFactory
 {
 private readonly LocalizationDbContext _db;

 public EFStringLocalizerFactory()
 {
 _db = new LocalizationDbContext();
 // Here we define all available languages to the app
 // available languages are those that have a json and cs file in
 // the Languages folder
 _db.AddRange(
 new Culture
 {
 Name = "en-US",
 Resources = en_US.GetList()
 },
 new Culture
 {
 Name = "fa-IR",
 Resources = fa_IR.GetList()
 }
);
 _db.SaveChanges();
 }

 public IStringLocalizer Create(Type resourceSource)
 {
 return new EFStringLocalizer(_db);
 }

 public IStringLocalizer Create(string baseName, string location)
 {
 return new EFStringLocalizer(_db);
 }
 }

 public class EFStringLocalizer : IStringLocalizer
 {
 private readonly LocalizationDbContext _db;

 public EFStringLocalizer(LocalizationDbContext db)
 {
 _db = db;
 }

 public LocalizedString this[string name]
 {
 get
 {
 var value = GetString(name);
 return new LocalizedString(name, value ?? name, resourceNotFound: value ==
null);
 }
 }

 public LocalizedString this[string name, params object[] arguments]
 {

https://riptutorial.com/ 81

 get
 {
 var format = GetString(name);
 var value = string.Format(format ?? name, arguments);
 return new LocalizedString(name, value, resourceNotFound: format == null);
 }
 }

 public IStringLocalizer WithCulture(CultureInfo culture)
 {
 CultureInfo.DefaultThreadCurrentCulture = culture;
 return new EFStringLocalizer(_db);
 }

 public IEnumerable<LocalizedString> GetAllStrings(bool includeAncestorCultures)
 {
 return _db.Resources
 .Include(r => r.Culture)
 .Where(r => r.Culture.Name == CultureInfo.CurrentCulture.Name)
 .Select(r => new LocalizedString(r.Key, r.Value, true));
 }

 private string GetString(string name)
 {
 return _db.Resources
 .Include(r => r.Culture)
 .Where(r => r.Culture.Name == CultureInfo.CurrentCulture.Name)
 .FirstOrDefault(r => r.Key == name)?.Value;
 }
 }

 public class EFStringLocalizer<T> : IStringLocalizer<T>
 {
 private readonly LocalizationDbContext _db;

 public EFStringLocalizer(LocalizationDbContext db)
 {
 _db = db;
 }

 public LocalizedString this[string name]
 {
 get
 {
 var value = GetString(name);
 return new LocalizedString(name, value ?? name, resourceNotFound: value ==
null);
 }
 }

 public LocalizedString this[string name, params object[] arguments]
 {
 get
 {
 var format = GetString(name);
 var value = string.Format(format ?? name, arguments);
 return new LocalizedString(name, value, resourceNotFound: format == null);
 }
 }

 public IStringLocalizer WithCulture(CultureInfo culture)

https://riptutorial.com/ 82

 {
 CultureInfo.DefaultThreadCurrentCulture = culture;
 return new EFStringLocalizer(_db);
 }

 public IEnumerable<LocalizedString> GetAllStrings(bool includeAncestorCultures)
 {
 return _db.Resources
 .Include(r => r.Culture)
 .Where(r => r.Culture.Name == CultureInfo.CurrentCulture.Name)
 .Select(r => new LocalizedString(r.Key, r.Value, true));
 }

 private string GetString(string name)
 {
 return _db.Resources
 .Include(r => r.Culture)
 .Where(r => r.Culture.Name == CultureInfo.CurrentCulture.Name)
 .FirstOrDefault(r => r.Key == name)?.Value;
 }
 }
}

In the above file we implement the IStringLocalizerFactory interface from Entity Framework Core
in order to make a custom localizer service. The important part is the constructor of
EFStringLocalizerFactory where we make a list of all available languages and add it to the
database context. Each one of these language files act as a separate database.

Now add each of the following files to the Models/Localization folder:

Culture.cs

namespace DigitalShop.Models.Localization
{
 public class Culture
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public virtual List<Resource> Resources { get; set; }
 }
}

Resource.cs

namespace DigitalShop.Models.Localization
{
 public class Resource
 {
 public int Id { get; set; }
 public string Key { get; set; }
 public string Value { get; set; }
 public virtual Culture Culture { get; set; }
 }
}

LocalizationDbContext.cs

https://riptutorial.com/ 83

namespace DigitalShop.Models.Localization
{
 public class LocalizationDbContext : DbContext
 {
 public DbSet<Culture> Cultures { get; set; }
 public DbSet<Resource> Resources { get; set; }

 protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
 {
 optionsBuilder.UseInMemoryDatabase();
 }
 }
}

The above files are just models that will be populated with language resources, cultures and
there's also a typical DBContext used by EF Core.

The last thing we need to make all of this work is to create the language resource files. The JSON
files used to store a key-value pair for different languages available in your app.

In this example our app only has two languages available. English and Persian. For each of the
languages we need two files. A JSON file containing key-value pairs and a .cs file that contains a
class with the same name as JSON file. That class has one method, GetList that deserializes the
JSON file and returns it. This method is called in the constructor of EFStringLocalizerFactory that
we created earlier.

So, create these four files in your Languages folder:

en-US.cs

namespace DigitalShop.Languages
{
 public static class en_US
 {
 public static List<Resource> GetList()
 {
 var jsonSerializerSettings = new JsonSerializerSettings();
 jsonSerializerSettings.MissingMemberHandling = MissingMemberHandling.Ignore;
 return
JsonConvert.DeserializeObject<List<Resource>>(File.ReadAllText("Languages/en-US.json"),
jsonSerializerSettings);
 }
 }
}

en-US.json

[
 {
 "Key": "Welcome",
 "Value": "Welcome"
 },
 {
 "Key": "Hello",
 "Value": "Hello"

https://riptutorial.com/ 84

 },
]

fa-IR.cs

public static class fa_IR
{
 public static List<Resource> GetList()
 {
 var jsonSerializerSettings = new JsonSerializerSettings();
 jsonSerializerSettings.MissingMemberHandling = MissingMemberHandling.Ignore;
 return JsonConvert.DeserializeObject<List<Resource>>(File.ReadAllText("Languages/fa-
IR.json", Encoding.UTF8), jsonSerializerSettings);
 }
}

fa-IR.json

[
 {
 "Key": "Welcome",
 "Value": "دیدمآ شوخ"
 },
 {
 "Key": "Hello",
 "Value": "مالس"
 },
]

We are all done. Now in order to access the language strings (key-value pairs) anywhere in your
code (.cs or .cshtml) you can do the following:

in a .cs file (be Controller or not, doesn't matter):

// Returns "Welcome" for en-US and "دیدمآ شوخ" for fa-IR
var welcome = Startup._e["Welcome"];

in a Razor view file (.cshtml):

<h1>@Startup._e["Welcome"]</h1>

Few things to keep in mind:

If you try to access a Key that doesn't exist in the JSON file or loaded, you will just get the key
literal (in the above example, trying to access Startup._e["How are you"] will return How are
you no matter the language settings because it doesn't exist

•

If you change a string value in a language .json file, you will need to RESTART the app.
Otherwise it will just show the default value (key name). This is specially important when
you're running your app without debugging.

•

The appsettings.json can be used to store all kinds of settings that your app may need•
Restarting the app is not necessary if you just want to change the language/culture
settings from appsettings.json file. This means that you can have an option in your apps

•

https://riptutorial.com/ 85

interface to let users change the language/culture at runtime.

Here's the final project structure:

Set Request culture via url path

By default the built-in Request Localization middleware only supports setting culture via query,
cookie or Accept-Language header. This example shows how create a middleware which allows to
set the culture as part of the path like in /api/en-US/products.

This example middleware assumes the locale to be in the second segment of the path.

public class UrlRequestCultureProvider : RequestCultureProvider
{
 private static readonly Regex LocalePattern = new Regex(@"^[a-z]{2}(-[a-z]{2,4})?$",
 RegexOptions.IgnoreCase);

 public override Task<ProviderCultureResult> DetermineProviderCultureResult(HttpContext
httpContext)
 {
 if (httpContext == null)
 {
 throw new ArgumentNullException(nameof(httpContext));
 }

 var url = httpContext.Request.Path;

https://riptutorial.com/ 86

https://i.stack.imgur.com/8I6TR.png

 // Right now it's not possible to use httpContext.GetRouteData()
 // since it uses IRoutingFeature placed in httpContext.Features when
 // Routing Middleware registers. It's not set when the Localization Middleware
 // is called, so this example simply assumes the locale will always
 // be located in the second segment of a path, like in /api/en-US/products
 var parts = httpContext.Request.Path.Value.Split('/');
 if (parts.Length < 3)
 {
 return Task.FromResult<ProviderCultureResult>(null);
 }

 if (!LocalePattern.IsMatch(parts[2]))
 {
 return Task.FromResult<ProviderCultureResult>(null);
 }

 var culture = parts[2];
 return Task.FromResult(new ProviderCultureResult(culture));
 }
}

Middleware Registration

var localizationOptions = new RequestLocalizationOptions
{
 SupportedCultures = new List<CultureInfo>
 {
 new CultureInfo("de-DE"),
 new CultureInfo("en-US"),
 new CultureInfo("en-GB")
 },
 SupportedUICultures = new List<CultureInfo>
 {
 new CultureInfo("de-DE"),
 new CultureInfo("en-US"),
 new CultureInfo("en-GB")
 },
 DefaultRequestCulture = new RequestCulture("en-US")
};

// Adding our UrlRequestCultureProvider as first object in the list
localizationOptions.RequestCultureProviders.Insert(0, new UrlRequestCultureProvider
{
 Options = localizationOptions
});

app.UseRequestLocalization(localizationOptions);

Custom Route Constraints

Adding and creating custom route constraints are shown in the Route constrains example. Using
constraints simplifies the usage of custom route constrains.

https://riptutorial.com/ 87

http://www.riptutorial.com/asp-net-core/example/10045/routing-constraints

Registering the route

Example of registering the routes without using a custom constraints

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "api/{culture::regex(^[a-z]{{2}}-[A-Za-z]{{4}}$)}}/{controller}/{id?}");
 routes.MapRoute(
 name: "default",
 template: "api/{controller}/{id?}");
});

Read Localization online: https://riptutorial.com/asp-net-core/topic/2869/localization

https://riptutorial.com/ 88

https://riptutorial.com/asp-net-core/topic/2869/localization

Chapter 14: Logging

Examples

Using NLog Logger

NLog.Extensions.Logging is the official NLog provider for Microsoft's in .NET Core and ASP.NET
Core. Here and here are instruction and example respectively.

Add Logger to Controller

Instead of requesting an ILoggerFactory and creating an instance of ILogger explicitly, you can
request an ILogger (where T is the class requesting the logger).

public class TodoController : Controller
{
 private readonly ILogger _logger;

 public TodoController(ILogger<TodoController> logger)
 {
 _logger = logger;
 }
}

Using Serilog in ASP.NET core 1.0 application

1)In project.json, add below dependencies-

"Serilog": "2.2.0",
"Serilog.Extensions.Logging": "1.2.0",
"Serilog.Sinks.RollingFile": "2.0.0",
"Serilog.Sinks.File": "3.0.0"

2)In Startup.cs, add below lines in constructor-

Log.Logger = new LoggerConfiguration()
 .MinimumLevel.Debug()
 .WriteTo.RollingFile(Path.Combine(env.ContentRootPath, "Serilog-{Date}.txt"))
 .CreateLogger();

3)In Configure method of Startup class-

loggerFactory.AddSerilog();

4)In Controller, create instance of ILogger like this-

public class HomeController : Controller
{

https://riptutorial.com/ 89

https://github.com/NLog/NLog.Extensions.Logging
http://nlog-project.org
https://github.com/NLog/NLog.Extensions.Logging/blob/master/README.md
https://github.com/NLog/NLog.Extensions.Logging/tree/master/examples/aspnet-core-example

 ILogger<HomeController> _logger = null;
 public HomeController(ILogger<HomeController> logger)
 {
 _logger = logger;
 }

5)Sample logging below-

try
{
 throw new Exception("Serilog Testing");
}
catch (System.Exception ex)
{
 this._logger.LogError(ex.Message);
}

Read Logging online: https://riptutorial.com/asp-net-core/topic/1946/logging

https://riptutorial.com/ 90

https://riptutorial.com/asp-net-core/topic/1946/logging

Chapter 15: Middleware

Remarks

Middleware is a software component that will determine how to process the request and decide
whether to pass it to the next component in the application pipeline. Each middleware has a vary
specific role and actions to preform on the request.

Examples

Using the ExceptionHandler middleware to send custom JSON error to Client

Define your class that will represent your custom error.

public class ErrorDto
{
 public int Code { get; set; }
 public string Message { get; set; }

 // other fields

 public override string ToString()
 {
 return JsonConvert.SerializeObject(this);
 }
}

Then put next ExceptionHandler middleware to Configure method. Pay attention that middleware
order is important.

app.UseExceptionHandler(errorApp =>
 {
 errorApp.Run(async context =>
 {
 context.Response.StatusCode = 500; // or another Status
 context.Response.ContentType = "application/json";

 var error = context.Features.Get<IExceptionHandlerFeature>();
 if (error != null)
 {
 var ex = error.Error;

 await context.Response.WriteAsync(new ErrorDto()
 {
 Code = <your custom code based on Exception Type>,
 Message = ex.Message // or your custom message

 ... // other custom data
 }.ToString(), Encoding.UTF8);
 }
 });
 });

https://riptutorial.com/ 91

https://github.com/aspnet/Diagnostics/tree/dev/src/Microsoft.AspNetCore.Diagnostics/ExceptionHandler

Middleware to set response ContentType

The idea is to use HttpContext.Response.OnStarting callback, as this is the last event that is fired
before the headers are sent. Add the following to your middleware Invoke method.

public async Task Invoke(HttpContext context)
{
 context.Response.OnStarting((state) =>
 {
 if (context.Response.StatusCode == (int)HttpStatusCode.OK)
 {
 if (context.Request.Path.Value.EndsWith(".map"))
 {
 context.Response.ContentType = "application/json";
 }
 }
 return Task.FromResult(0);
 }, null);

 await nextMiddleware.Invoke(context);
}

Pass data through the middleware chain

From documentation:

The HttpContext.Items collection is the best location to store data that is only needed
while processing a given request. Its contents are discarded after each request. It is
best used as a means of communicating between components or middleware that
operate at different points in time during a request, and have no direct relationship with
one another through which to pass parameters or return values.

HttpContext.Items is a simple dictionary collection of type IDictionary<object, object>. This
collection is

available from the start of an HttpRequest•
and is discarded at the end of each request.•

You can access it by simply assigning a value to a keyed entry, or by requesting the value for a
given key.

For example, some simple Middleware could add something to the Items collection:

app.Use(async (context, next) =>
{
 // perform some verification
 context.Items["isVerified"] = true;
 await next.Invoke();
});

and later in the pipeline, another piece of middleware could access it:

https://riptutorial.com/ 92

https://docs.asp.net/en/latest/fundamentals/app-state.html#httpcontext-items

app.Run(async (context) =>
{
 await context.Response.WriteAsync("Verified request? " + context.Items["isVerified"]);
});

Run, Map, Use

Run

Terminates chain. No other middleware method will run after this. Should be placed at the end of
any pipeline.

app.Run(async context =>
{
 await context.Response.WriteAsync("Hello from " + _environment);
});

Use

Performs action before and after next delegate.

app.Use(async (context, next) =>
{
 //action before next delegate
 await next.Invoke(); //call next middleware
 //action after called middleware
});

Ilustration of how it works:

MapWhen

https://riptutorial.com/ 93

https://i.stack.imgur.com/YXaaj.png

Enables branching pipeline. Runs specified middleware if condition is met.

private static void HandleBranch(IApplicationBuilder app)
{
 app.Run(async context =>
 {
 await context.Response.WriteAsync("Condition is fulfilled");
 });
}

public void ConfigureMapWhen(IApplicationBuilder app)
{
 app.MapWhen(context => {
 return context.Request.Query.ContainsKey("somekey");
 }, HandleBranch);
}

Map

Similar to MapWhen. Runs middleware if path requested by user equals path provided in
parameter.

private static void HandleMapTest(IApplicationBuilder app)
{
 app.Run(async context =>
 {
 await context.Response.WriteAsync("Map Test Successful");
 });
}

public void ConfigureMapping(IApplicationBuilder app)
{
 app.Map("/maptest", HandleMapTest);

}

Based on ASP.net Core Docs

Read Middleware online: https://riptutorial.com/asp-net-core/topic/1479/middleware

https://riptutorial.com/ 94

https://docs.asp.net/en/latest/fundamentals/middleware.html#middleware
https://riptutorial.com/asp-net-core/topic/1479/middleware

Chapter 16: Models

Examples

Model Validation with Validation Attrributes

Validation attributes can be used to easily configure model validation.

public class MyModel
{
 public int id { get; set; }

 //sets the FirstName to be required, and no longer than 100 characters
 [Required]
 [StringLength(100)]
 public string FirstName { get; set; }
}

The built in attributes are:

[CreditCard]: Validates the property has a credit card format.•
[Compare]: Validates two properties in a model match.•
[EmailAddress]: Validates the property has an email format.•
[Phone]: Validates the property has a telephone format.•
[Range]: Validates the property value falls within the given range.•
[RegularExpression]: Validates that the data matches the specified regular expression.•
[Required]: Makes a property required.•
[StringLength]: Validates that a string property has at most the given maximum length.•
[Url]: Validates the property has a URL format.•

Model Validation with Custom Attribute

If the built in attributes are not sufficient to validate your model data, then you can place your
validation logic in a class derived from ValidationAttribute. In this example only odd numbers are
valid values for a model member.

Custom Validation Attribute

public class OddNumberAttribute : ValidationAttribute
{
 protected override ValidationResult IsValid(object value, ValidationContext
validationContext)
 {
 try
 {
 var number = (int) value;
 if (number % 2 == 1)
 return ValidationResult.Success;
 else
 return new ValidationResult("Only odd numbers are valid.");

https://riptutorial.com/ 95

 }
 catch (Exception)
 {
 return new ValidationResult("Not a number.");
 }
 }
}

Model Class

public class MyModel
{
 [OddNumber]
 public int Number { get; set; }
}

Read Models online: https://riptutorial.com/asp-net-core/topic/4625/models

https://riptutorial.com/ 96

https://riptutorial.com/asp-net-core/topic/4625/models

Chapter 17: project.json

Introduction

Project json is a project configuration file structure, temporarily used by asp.net-core projects,
before Microsoft moved back to the csproj files in favor of msbuild.

Examples

Simple Library project example

A library based on NETStandard 1.6 would look like this:

{
 "version": "1.0.0",
 "dependencies": {
 "NETStandard.Library": "1.6.1", //nuget dependency
 },
 "frameworks": { //frameworks the library is build for
 "netstandard1.6": {}
 },
 "buildOptions": {
 "debugType": "portable"
 }
}

Complete json file:

Taken from microsoft's github page with official documentation

{
"name": String, //The name of the project, used for the assembly name as well as the name of
the package. The top level folder name is used if this property is not specified.
"version": String, //The Semver version of the project, also used for the NuGet package.
"description": String, //A longer description of the project. Used in the assembly properties.
"copyright": String, //The copyright information for the project. Used in the assembly
properties.
"title": String, //The friendly name of the project, can contain spaces and special characters
not allowed when using the `name` property. Used in the assembly properties.
"entryPoint": String, //The entrypoint method for the project. `Main` by default.
"testRunner": String, //The name of the test runner, such as NUnit or xUnit, to use with this
project. Setting this also marks the project as a test project.
"authors": String[], // An array of strings with the names of the authors of the project.
"language": String, //The (human) language of the project. Corresponds to the "neutral-
language" compiler argument.
"embedInteropTypes": Boolean, //`true` to embed COM interop types in the assembly; otherwise,
`false`.
"preprocess": String or String[], //Specifies which files are included in preprocessing.
"shared": String or String[], //Specifies which files are shared, this is used for library
export.
"dependencies": Object { //project and nuget dependencies
 version: String, //Specifies the version or version range of the dependency. Use the *

https://riptutorial.com/ 97

https://github.com/dotnet/docs

wildcard to specify a floating dependency version.
 type: String, //type of dependency: build
 target: String, //Restricts the dependency to match only a `project` or a `package`.
 include: String,
 exclude: String,
 suppressParent: String
},
"tools": Object, //An object that defines package dependencies that are used as tools for the
current project, not as references. Packages defined here are available in scripts that run
during the build process, but they are not accessible to the code in the project itself. Tools
can for example include code generators or post-build tools that perform tasks related to
packing.
"scripts": Object, // commandline scripts: precompile, postcompile, prepublish & postpublish
"buildOptions": Object {
 "define": String[], //A list of defines such as "DEBUG" or "TRACE" that can be used in
conditional compilation in the code.
 "nowarn": String[], //A list of warnings to ignore.
 "additionalArguments": String[], //A list of extra arguments that will be passed to the
compiler.
 "warningsAsErrors": Boolean,
 "allowUnsafe": Boolean,
 "emitEntryPoint": Boolean,
 "optimize": Boolean,
 "platform": String,
 "languageVersion": String,
 "keyFile": String,
 "delaySign": Boolean,
 "publicSign": Boolean,
 "debugType": String,
 "xmlDoc": Boolean,
 "preserveCompilationContext": Boolean,
 "outputName": String,
 "compilerName": String,
 "compile": Object {
 "include": String or String[],
 "exclude": String or String[],
 "includeFiles": String or String[],
 "excludeFiles": String or String[],
 "builtIns": Object,
 "mappings": Object
 },
 "embed": Object {
 "include": String or String[],
 "exclude": String or String[],
 "includeFiles": String or String[],
 "excludeFiles": String or String[],
 "builtIns": Object,
 "mappings": Object
 },
 "copyToOutput": Object {
 "include": String or String[],
 "exclude": String or String[],
 "includeFiles": String or String[],
 "excludeFiles": String or String[],
 "builtIns": Object,
 "mappings": Object
 }
},
"publishOptions": Object {
 "include": String or String[],
 "exclude": String or String[],

https://riptutorial.com/ 98

 "includeFiles": String or String[],
 "excludeFiles": String or String[],
 "builtIns": Object,
 "mappings": Object
},
"runtimeOptions": Object {
 "configProperties": Object {
 "System.GC.Server": Boolean,
 "System.GC.Concurrent": Boolean,
 "System.GC.RetainVM": Boolean,
 "System.Threading.ThreadPool.MinThreads": Integer,
 "System.Threading.ThreadPool.MaxThreads": Integer
 },
 "framework": Object {
 "name": String,
 "version": String,
 },
 "applyPatches": Boolean
},
"packOptions": Object {
 "summary": String,
 "tags": String[],
 "owners": String[],
 "releaseNotes": String,
 "iconUrl": String,
 "projectUrl": String,
 "licenseUrl": String,
 "requireLicenseAcceptance": Boolean,
 "repository": Object {
 "type": String,
 "url": String
 },
 "files": Object {
 "include": String or String[],
 "exclude": String or String[],
 "includeFiles": String or String[],
 "excludeFiles": String or String[],
 "builtIns": Object,
 "mappings": Object
 }
},
"analyzerOptions": Object {
 "languageId": String
},
"configurations": Object,
"frameworks": Object {
 "dependencies": Object {
 version: String,
 type: String,
 target: String,
 include: String,
 exclude: String,
 suppressParent: String
 },
 "frameworkAssemblies": Object,
 "wrappedProject": String,
 "bin": Object {
 assembly: String
 }
},
"runtimes": Object,

https://riptutorial.com/ 99

"userSecretsId": String
}

Simple startup project

A simple example of project configuration for a .NetCore 1.1 Console App

{
 "version": "1.0.0",
 "buildOptions": {
 "emitEntryPoint": true // make sure entry point is emitted.
 },
 "dependencies": {
 },
 "tools": {
 },
 "frameworks": {
 "netcoreapp1.1": { // run as console app
 "dependencies": {
 "Microsoft.NETCore.App": {
 "type": "platform",
 "version": "1.1.0"
 }
 },
 "imports": "dnxcore50"
 }
 },
}

Read project.json online: https://riptutorial.com/asp-net-core/topic/9364/project-json

https://riptutorial.com/ 100

https://riptutorial.com/asp-net-core/topic/9364/project-json

Chapter 18: Publishing and Deployment

Examples

Kestrel. Configuring Listening Address

Using Kestrel you can specify port using next approaches:

Defining ASPNETCORE_URLS environment variable.

Windows

SET ASPNETCORE_URLS=https://0.0.0.0:5001

OS X

export ASPNETCORE_URLS=https://0.0.0.0:5001

1.

Via command line passing --server.urls parameter

dotnet run --server.urls=http://0.0.0.0:5001

2.

Using UseUrls() method

var builder = new WebHostBuilder()
 .UseKestrel()
 .UseUrls("http://0.0.0.0:5001")

3.

Defining server.urls setting in configuration source.4.

Next sample use hosting.json file for example.

Add `hosting.json` with the following content to you project:

 {
 "server.urls": "http://<ip address>:<port>"
 }

Examples of posible values:

listen 5000 on any IP4 and IP6 addresses from any interface:

 "server.urls": "http://*:5000"

or

 "server.urls": "http://::5000;http://0.0.0.0:5000"

•

https://riptutorial.com/ 101

listen 5000 on every IP4 address:

 "server.urls": "http://0.0.0.0:5000"

•

One should be carefully and not use http://*:5000;http://::5000,
http://::5000;http://*:5000, http://*:5000;http://0.0.0.0:5000 or
http://*:5000;http://0.0.0.0:5000 because it will require to register IP6 address :: or
IP4 address 0.0.0.0 twice

Add file to publishOptions in project.json

"publishOptions": {
"include": [
 "hosting.json",
 ...
]
}

and in entry point for the application call .UseConfiguration(config) when creating WebHostBuilder:

public static void Main(string[] args)
{
 var config = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("hosting.json", optional: true)
 .Build();

 var host = new WebHostBuilder()
 .UseConfiguration(config)
 .UseKestrel()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .UseIISIntegration()
 .UseStartup<Startup>()
 .Build();

 host.Run();
}

Read Publishing and Deployment online: https://riptutorial.com/asp-net-core/topic/2262/publishing-
and-deployment

https://riptutorial.com/ 102

https://riptutorial.com/asp-net-core/topic/2262/publishing-and-deployment
https://riptutorial.com/asp-net-core/topic/2262/publishing-and-deployment

Chapter 19: Rate limiting

Remarks

AspNetCoreRateLimit is an open source ASP.NET Core rate limiting solution designed to control
the rate of requests that clients can make to a Web API or MVC app based on IP address or client
ID.

Examples

Rate limiting based on client IP

With IpRateLimit middleware you can set multiple limits for different scenarios like allowing an IP
or IP range to make a maximum number of calls in a time interval like per second, 15 minutes, etc.
You can define these limits to address all requests made to an API or you can scope the limits to
each URL path or HTTP verb and path.

Setup

NuGet install:

Install-Package AspNetCoreRateLimit

Startup.cs code:

public void ConfigureServices(IServiceCollection services)
{
 // needed to load configuration from appsettings.json
 services.AddOptions();

 // needed to store rate limit counters and ip rules
 services.AddMemoryCache();

 //load general configuration from appsettings.json
 services.Configure<IpRateLimitOptions>(Configuration.GetSection("IpRateLimiting"));

 //load ip rules from appsettings.json
 services.Configure<IpRateLimitPolicies>(Configuration.GetSection("IpRateLimitPolicies"));

 // inject counter and rules stores
 services.AddSingleton<IIpPolicyStore, MemoryCacheIpPolicyStore>();
 services.AddSingleton<IRateLimitCounterStore, MemoryCacheRateLimitCounterStore>();

 // Add framework services.
 services.AddMvc();
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory
loggerFactory)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));

https://riptutorial.com/ 103

https://github.com/stefanprodan/AspNetCoreRateLimit

 loggerFactory.AddDebug();

 app.UseIpRateLimiting();

 app.UseMvc();
}

You should register the middleware before any other components except loggerFactory.

if you load balance your app you'll need to use IDistributedCache with Redis or SQLServer so that
all kestrel instances will have the same rate limit store. Instead of the in memory stores you should
inject the distributed stores like this:

 // inject counter and rules distributed cache stores
 services.AddSingleton<IIpPolicyStore, DistributedCacheIpPolicyStore>();
 services.AddSingleton<IRateLimitCounterStore,DistributedCacheRateLimitCounterStore>();

Configuration and general rules appsettings.json:

 "IpRateLimiting": {
 "EnableEndpointRateLimiting": false,
 "StackBlockedRequests": false,
 "RealIpHeader": "X-Real-IP",
 "ClientIdHeader": "X-ClientId",
 "HttpStatusCode": 429,
 "IpWhitelist": ["127.0.0.1", "::1/10", "192.168.0.0/24"],
 "EndpointWhitelist": ["get:/api/license", "*:/api/status"],
 "ClientWhitelist": ["dev-id-1", "dev-id-2"],
 "GeneralRules": [
 {
 "Endpoint": "*",
 "Period": "1s",
 "Limit": 2
 },
 {
 "Endpoint": "*",
 "Period": "15m",
 "Limit": 100
 },
 {
 "Endpoint": "*",
 "Period": "12h",
 "Limit": 1000
 },
 {
 "Endpoint": "*",
 "Period": "7d",
 "Limit": 10000
 }
]
 }

If EnableEndpointRateLimiting is set to false then the limits will apply globally and only rules that
have as endpoint * will apply. For example if you set a limit of 5 calls per second, any HTTP call to
any endpoint will count towards that limit.

https://riptutorial.com/ 104

If EnableEndpointRateLimiting is set to true then the limits will apply for each endpoint as in
{HTTP_Verb}{PATH}. For example if you set a limit of 5 calls per second for *:/api/values a client can
call GET /api/values 5 times per second but also 5 times PUT /api/values.

If StackBlockedRequests is set to false rejected calls are not added to the throttle counter. If a client
makes 3 requests per second and you've set a limit of one call per second, other limits like per
minute or per day counters will only record the first call, the one that wasn't blocked. If you want
rejected requests to count towards the other limits, you'll have to set StackBlockedRequests to true.

The RealIpHeader is used to extract the client IP when your Kestrel server is behind a reverse
proxy, if your proxy uses a different header then X-Real-IP use this option to set it up.

The ClientIdHeader is used to extract the client id for white listing, if a client id is present in this
header and matches a value specified in ClientWhitelist then no rate limits are applied.

Override general rules for specific IPs appsettings.json:

 "IpRateLimitPolicies": {
 "IpRules": [
 {
 "Ip": "84.247.85.224",
 "Rules": [
 {
 "Endpoint": "*",
 "Period": "1s",
 "Limit": 10
 },
 {
 "Endpoint": "*",
 "Period": "15m",
 "Limit": 200
 }
]
 },
 {
 "Ip": "192.168.3.22/25",
 "Rules": [
 {
 "Endpoint": "*",
 "Period": "1s",
 "Limit": 5
 },
 {
 "Endpoint": "*",
 "Period": "15m",
 "Limit": 150
 },
 {
 "Endpoint": "*",
 "Period": "12h",
 "Limit": 500
 }
]
 }
]
 }

https://riptutorial.com/ 105

The IP field supports IP v4 and v6 values and ranges like "192.168.0.0/24", "fe80::/10" or
"192.168.0.0-192.168.0.255".

Defining rate limit rules

A rule is composed of an endpoint, a period and a limit.

Endpoint format is {HTTP_Verb}:{PATH}, you can target any HTTP verb by using the asterix symbol.

Period format is {INT}{PERIOD_TYPE}, you can use one of the following period types: s, m, h, d.

Limit format is {LONG}.

Examples:

Rate limit all endpoints to 2 calls per second:

{
 "Endpoint": "*",
 "Period": "1s",
 "Limit": 2
}

If, from the same IP, in the same second, you'll make 3 GET calls to api/values, the last call will
get blocked. But if in the same second you call PUT api/values too, the request will go through
because it's a different endpoint. When endpoint rate limiting is enabled each call is rate limited
based on {HTTP_Verb}{PATH}.

Rate limit calls with any HTTP Verb to /api/values to 5 calls per 15 minutes:

{
 "Endpoint": "*:/api/values",
 "Period": "15m",
 "Limit": 5
}

Rate limit GET call to /api/values to 5 calls per hour:

{
 "Endpoint": "get:/api/values",
 "Period": "1h",
 "Limit": 5
}

If, from the same IP, in one hour, you'll make 6 GET calls to api/values, the last call will get
blocked. But if in the same hour you call GET api/values/1 too, the request will go through
because it's a different endpoint.

Behavior

When a client make a HTTP call the IpRateLimitMiddleware does the following:

https://riptutorial.com/ 106

extracts the IP, Client id, HTTP verb and URL from the request object, if you want to
implement your own extraction logic you can override the IpRateLimitMiddleware.SetIdentity

•

searches for the IP, Client id and URL in the white lists, if any matches then no action is
taken

•

searches in the IP rules for a match, all rules that apply are grouped by period, for each
period the most restrictive rule is used

•

searches in the General rules for a match, if a general rule that matches has a defined
period that is not present in the IP rules then this general rule is also used

•

for each matching rule the rate limit counter is incremented, if the counter value is greater
then the rule limit then the request gets blocked

•

If the request gets blocked then the client receives a text response like this:

Status Code: 429
Retry-After: 58
Content: API calls quota exceeded! maximum admitted 2 per 1m.

You can customize the response by changing these options HttpStatusCode and
QuotaExceededMessage, if you want to implement your own response you can override the
IpRateLimitMiddleware.ReturnQuotaExceededResponse. The Retry-After header value is expressed in
seconds.

If the request doesn't get rate limited then the longest period defined in the matching rules is used
to compose the X-Rate-Limit headers, these headers are injected in the response:

X-Rate-Limit-Limit: the rate limit period (eg. 1m, 12h, 1d)
X-Rate-Limit-Remaining: number of request remaining
X-Rate-Limit-Reset: UTC date time when the limits resets

By default blocked request are logged using Microsoft.Extensions.Logging.ILogger, if you want to
implement your own logging you can override the IpRateLimitMiddleware.LogBlockedRequest. The
default logger emits the following information when a request gets rate limited:

info: AspNetCoreRateLimit.IpRateLimitMiddleware[0]
 Request get:/api/values from IP 84.247.85.224 has been blocked, quota 2/1m exceeded by
3. Blocked by rule *:/api/value, TraceIdentifier 0HKTLISQQVV9D.

Update rate limits at runtime

At application startup the IP rate limit rules defined in appsettings.json are loaded in cache by
either MemoryCacheClientPolicyStore or DistributedCacheIpPolicyStore depending on what type of
cache provider you are using. You can access the Ip policy store inside a controller and modify the
IP rules like so:

public class IpRateLimitController : Controller
{
 private readonly IpRateLimitOptions _options;
 private readonly IIpPolicyStore _ipPolicyStore;

https://riptutorial.com/ 107

 public IpRateLimitController(IOptions<IpRateLimitOptions> optionsAccessor, IIpPolicyStore
ipPolicyStore)
 {
 _options = optionsAccessor.Value;
 _ipPolicyStore = ipPolicyStore;
 }

 [HttpGet]
 public IpRateLimitPolicies Get()
 {
 return _ipPolicyStore.Get(_options.IpPolicyPrefix);
 }

 [HttpPost]
 public void Post()
 {
 var pol = _ipPolicyStore.Get(_options.IpPolicyPrefix);

 pol.IpRules.Add(new IpRateLimitPolicy
 {
 Ip = "8.8.4.4",
 Rules = new List<RateLimitRule>(new RateLimitRule[] {
 new RateLimitRule {
 Endpoint = "*:/api/testupdate",
 Limit = 100,
 Period = "1d" }
 })
 });

 _ipPolicyStore.Set(_options.IpPolicyPrefix, pol);
 }
}

This way you can store the IP rate limits in a database and push them in cache after each app
start.

Rate limiting based on client ID

With ClientRateLimit middleware you can set multiple limits for different scenarios like allowing a
Client to make a maximum number of calls in a time interval like per second, 15 minutes, etc. You
can define these limits to address all requests made to an API or you can scope the limits to each
URL path or HTTP verb and path.

Setup

NuGet install:

Install-Package AspNetCoreRateLimit

Startup.cs code:

public void ConfigureServices(IServiceCollection services)
{
 // needed to load configuration from appsettings.json
 services.AddOptions();

https://riptutorial.com/ 108

 // needed to store rate limit counters and ip rules
 services.AddMemoryCache();

 //load general configuration from appsettings.json

services.Configure<ClientRateLimitOptions>(Configuration.GetSection("ClientRateLimiting"));

 //load client rules from appsettings.json

services.Configure<ClientRateLimitPolicies>(Configuration.GetSection("ClientRateLimitPolicies"));

 // inject counter and rules stores
 services.AddSingleton<IClientPolicyStore, MemoryCacheClientPolicyStore>();
 services.AddSingleton<IRateLimitCounterStore, MemoryCacheRateLimitCounterStore>();

 // Add framework services.
 services.AddMvc();
}

public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory
loggerFactory)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 app.UseClientRateLimiting();

 app.UseMvc();
}

You should register the middleware before any other components except loggerFactory.

if you load balance your app you'll need to use IDistributedCache with Redis or SQLServer so that
all kestrel instances will have the same rate limit store. Instead of the in memory stores you should
inject the distributed stores like this:

 // inject counter and rules distributed cache stores
 services.AddSingleton<IClientPolicyStore, DistributedCacheClientPolicyStore>();
 services.AddSingleton<IRateLimitCounterStore,DistributedCacheRateLimitCounterStore>();

Configuration and general rules appsettings.json:

 "ClientRateLimiting": {
 "EnableEndpointRateLimiting": false,
 "StackBlockedRequests": false,
 "ClientIdHeader": "X-ClientId",
 "HttpStatusCode": 429,
 "EndpointWhitelist": ["get:/api/license", "*:/api/status"],
 "ClientWhitelist": ["dev-id-1", "dev-id-2"],
 "GeneralRules": [
 {
 "Endpoint": "*",
 "Period": "1s",
 "Limit": 2
 },
 {
 "Endpoint": "*",

https://riptutorial.com/ 109

 "Period": "15m",
 "Limit": 100
 },
 {
 "Endpoint": "*",
 "Period": "12h",
 "Limit": 1000
 },
 {
 "Endpoint": "*",
 "Period": "7d",
 "Limit": 10000
 }
]
 }

If EnableEndpointRateLimiting is set to false then the limits will apply globally and only rules that
have as endpoint * will apply. For example if you set a limit of 5 calls per second, any HTTP call to
any endpoint will count towards that limit.

If EnableEndpointRateLimiting is set to true then the limits will apply for each endpoint as in
{HTTP_Verb}{PATH}. For example if you set a limit of 5 calls per second for *:/api/values a client can
call GET /api/values 5 times per second but also 5 times PUT /api/values.

If StackBlockedRequests is set to false rejected calls are not added to the throttle counter. If a client
makes 3 requests per second and you've set a limit of one call per second, other limits like per
minute or per day counters will only record the first call, the one that wasn't blocked. If you want
rejected requests to count towards the other limits, you'll have to set StackBlockedRequests to true.

The ClientIdHeader is used to extract the client id, if a client id is present in this header and
matches a value specified in ClientWhitelist then no rate limits are applied.

Override general rules for specific clients appsettings.json:

 "ClientRateLimitPolicies": {
 "ClientRules": [
 {
 "ClientId": "client-id-1",
 "Rules": [
 {
 "Endpoint": "*",
 "Period": "1s",
 "Limit": 10
 },
 {
 "Endpoint": "*",
 "Period": "15m",
 "Limit": 200
 }
]
 },
 {
 "Client": "client-id-2",
 "Rules": [
 {
 "Endpoint": "*",

https://riptutorial.com/ 110

 "Period": "1s",
 "Limit": 5
 },
 {
 "Endpoint": "*",
 "Period": "15m",
 "Limit": 150
 },
 {
 "Endpoint": "*",
 "Period": "12h",
 "Limit": 500
 }
]
 }
]
 }

Defining rate limit rules

A rule is composed of an endpoint, a period and a limit.

Endpoint format is {HTTP_Verb}:{PATH}, you can target any HTTP verb by using the asterix symbol.

Period format is {INT}{PERIOD_TYPE}, you can use one of the following period types: s, m, h, d.

Limit format is {LONG}.

Examples:

Rate limit all endpoints to 2 calls per second:

{
 "Endpoint": "*",
 "Period": "1s",
 "Limit": 2
}

If in the same second, a client make 3 GET calls to api/values, the last call will get blocked. But if
in the same second he calls PUT api/values too, the request will go through because it's a
different endpoint. When endpoint rate limiting is enabled each call is rate limited based on
{HTTP_Verb}{PATH}.

Rate limit calls with any HTTP Verb to /api/values to 5 calls per 15 minutes:

{
 "Endpoint": "*:/api/values",
 "Period": "15m",
 "Limit": 5
}

Rate limit GET call to /api/values to 5 calls per hour:

https://riptutorial.com/ 111

{
 "Endpoint": "get:/api/values",
 "Period": "1h",
 "Limit": 5
}

If in one hour, a client makes 6 GET calls to api/values, the last call will get blocked. But if in the
same hour he calls GET api/values/1 too, the request will go through because it's a different
endpoint.

Behavior

When a client make a HTTP call the ClientRateLimitMiddleware does the following:

extracts the Client id, HTTP verb and URL from the request object, if you want to implement
your own extraction logic you can override the ClientRateLimitMiddleware.SetIdentity

•

searches for the Client id and URL in the white lists, if any matches then no action is taken•
searches in the Client rules for a match, all rules that apply are grouped by period, for each
period the most restrictive rule is used

•

searches in the General rules for a match, if a general rule that matches has a defined
period that is not present in the Client rules then this general rule is also used

•

for each matching rule the rate limit counter is incremented, if the counter value is greater
then the rule limit then the request gets blocked

•

If the request gets blocked then the client receives a text response like this:

Status Code: 429
Retry-After: 58
Content: API calls quota exceeded! maximum admitted 2 per 1m.

You can customize the response by changing these options HttpStatusCode and
QuotaExceededMessage, if you want to implement your own response you can override the
ClientRateLimitMiddleware.ReturnQuotaExceededResponse. The Retry-After header value is expressed
in seconds.

If the request doesn't get rate limited then the longest period defined in the matching rules is used
to compose the X-Rate-Limit headers, these headers are injected in the response:

X-Rate-Limit-Limit: the rate limit period (eg. 1m, 12h, 1d)
X-Rate-Limit-Remaining: number of request remaining
X-Rate-Limit-Reset: UTC date time when the limits resets

By default blocked request are logged using Microsoft.Extensions.Logging.ILogger, if you want to
implement your own logging you can override the ClientRateLimitMiddleware.LogBlockedRequest.
The default logger emits the following information when a request gets rate limited:

info: AspNetCoreRateLimit.ClientRateLimitMiddleware[0]
 Request get:/api/values from ClientId client-id-1 has been blocked, quota 2/1m exceeded
by 3. Blocked by rule *:/api/value, TraceIdentifier 0HKTLISQQVV9D.

https://riptutorial.com/ 112

Update rate limits at runtime

At application startup the client rate limit rules defined in appsettings.json are loaded in cache by
either MemoryCacheClientPolicyStore or DistributedCacheClientPolicyStore depending on what type
of cache provider you are using. You can access the client policy store inside a controller and
modify the rules like so:

public class ClientRateLimitController : Controller
{
 private readonly ClientRateLimitOptions _options;
 private readonly IClientPolicyStore _clientPolicyStore;

 public ClientRateLimitController(IOptions<ClientRateLimitOptions> optionsAccessor,
IClientPolicyStore clientPolicyStore)
 {
 _options = optionsAccessor.Value;
 _clientPolicyStore = clientPolicyStore;
 }

 [HttpGet]
 public ClientRateLimitPolicy Get()
 {
 return _clientPolicyStore.Get($"{_options.ClientPolicyPrefix}_cl-key-1");
 }

 [HttpPost]
 public void Post()
 {
 var id = $"{_options.ClientPolicyPrefix}_cl-key-1";
 var clPolicy = _clientPolicyStore.Get(id);
 clPolicy.Rules.Add(new RateLimitRule
 {
 Endpoint = "*/api/testpolicyupdate",
 Period = "1h",
 Limit = 100
 });
 _clientPolicyStore.Set(id, clPolicy);
 }
}

This way you can store the client rate limits in a database and push them in cache after each app
start.

Read Rate limiting online: https://riptutorial.com/asp-net-core/topic/5240/rate-limiting

https://riptutorial.com/ 113

https://riptutorial.com/asp-net-core/topic/5240/rate-limiting

Chapter 20: Routing

Examples

Basic Routing

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

This will match requests for /Home/Index, /Home/Index/123 and /

Routing constraints

It is possible to create custom routing constraint which can be used inside routes to constraint a
parameter to specific values or pattern.

This constrain will match a typical culture/locale pattern, like en-US, de-DE, zh-CHT, zh-Hant.

public class LocaleConstraint : IRouteConstraint
{
 private static readonly Regex LocalePattern = new Regex(@"^[a-z]{2}(-[a-z]{2,4})?$",
 RegexOptions.Compiled | RegexOptions.IgnoreCase);

 public bool Match(HttpContext httpContext, IRouter route, string routeKey,
 RouteValueDictionary values, RouteDirection routeDirection)
 {
 if (!values.ContainsKey(routeKey))
 return false;

 string locale = values[routeKey] as string;
 if (string.IsNullOrWhiteSpace(locale))
 return false;

 return LocalePattern.IsMatch(locale);
 }
}

Afterwards, the Constraint needs to be registered before it can be used in routes.

services.Configure<RouteOptions>(options =>
{
 options.ConstraintMap.Add("locale", typeof(LocaleConstraint));
});

Now it can be used within routes.

https://riptutorial.com/ 114

Using it on Controllers

[Route("api/{culture:locale}/[controller]")]
public class ProductController : Controller { }

Using it on Actions

[HttpGet("api/{culture:locale}/[controller]/{productId}"]
public Task<IActionResult> GetProductAsync(string productId) { }

Using it in Default Routes

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "api/{culture:locale}/{controller}/{id?}");
 routes.MapRoute(
 name: "default",
 template: "api/{controller}/{id?}");
});

Read Routing online: https://riptutorial.com/asp-net-core/topic/2863/routing

https://riptutorial.com/ 115

https://riptutorial.com/asp-net-core/topic/2863/routing

Chapter 21: Sending Email in .Net Core apps
using MailKit

Introduction

Currently .Net Core does not include support to send emails like System.Net.Mail from .Net. MailKit
project (which is available on nuget) is a nice library for this purpose.

Examples

Installing nuget package

Install-Package MailKit

Simple implementation for sending emails

using MailKit.Net.Smtp;
using MimeKit;
using MimeKit.Text;
using System.Threading.Tasks;

namespace Project.Services
{
 /// Using a static class to store sensitive credentials
 /// for simplicity. Ideally these should be stored in
 /// configuration files
 public static class Constants
 {
 public static string SenderName => "<sender_name>";
 public static string SenderEmail => "<sender_email>";
 public static string EmailPassword => "email_password";
 public static string SmtpHost => "<smtp_host>";
 public static int SmtpPort => "smtp_port";
 }
 public class EmailService : IEmailSender
 {
 public Task SendEmailAsync(string recipientEmail, string subject, string message)
 {
 MimeMessage mimeMessage = new MimeMessage();
 mimeMessage.From.Add(new MailboxAddress(Constants.SenderName,
Constants.SenderEmail));
 mimeMessage.To.Add(new MailboxAddress("", recipientEmail));
 mimeMessage.Subject = subject;

 mimeMessage.Body = new TextPart(TextFormat.Html)
 {
 Text = message,
 };

 using (var client = new SmtpClient())
 {

https://riptutorial.com/ 116

https://github.com/jstedfast/MailKit
https://github.com/jstedfast/MailKit
https://www.nuget.org/packages/MailKit/

 client.ServerCertificateValidationCallback = (s, c, h, e) => true;

 client.Connect(Constants.SmtpHost, Constants.SmtpPort, false);

 client.AuthenticationMechanisms.Remove("XOAUTH2");

 // Note: only needed if the SMTP server requires authentication
 client.Authenticate(Constants.SenderEmail, Constants.EmailPassword);

 client.Send(mimeMessage);

 client.Disconnect(true);
 return Task.FromResult(0);
 }
 }
 }

}

Read Sending Email in .Net Core apps using MailKit online: https://riptutorial.com/asp-net-
core/topic/8831/sending-email-in--net-core-apps-using-mailkit

https://riptutorial.com/ 117

https://riptutorial.com/asp-net-core/topic/8831/sending-email-in--net-core-apps-using-mailkit
https://riptutorial.com/asp-net-core/topic/8831/sending-email-in--net-core-apps-using-mailkit

Chapter 22: Sessions in ASP.NET Core 1.0

Introduction

Using Sessions in ASP.NET Core 1.0

Examples

Basic example of handling Session

1)First, add dependency in project.json - "Microsoft.AspNetCore.Session": "1.1.0",

2)In startup.cs and add AddSession() and AddDistributedMemoryCache() lines to the ConfigureServices
like this-

services.AddDistributedMemoryCache(); //This way ASP.NET Core will use a Memory Cache to store
session variables
services.AddSession(options =>
 {
 options.IdleTimeout = TimeSpan.FromDays(1); // It depends on user requirements.
 options.CookieName = ".My.Session"; // Give a cookie name for session which will
be visible in request payloads.
 });

3)Add the UseSession() call in Configure method of startup like this-

app.UseSession(); //make sure add this line before UseMvc()

4)In Controller, Session object can be used like this-

using Microsoft.AspNetCore.Http;

public class HomeController : Controller
{
 public IActionResult Index()
 {
 HttpContext.Session.SetString("SessionVariable1", "Testing123");
 return View();
 }

 public IActionResult About()
 {
 ViewBag.Message = HttpContext.Session.GetString("SessionVariable1");

 return View();
 }
}

If you are using cors policy then sometimes it may give errors, after enabling
session regarding headers about enabling AllowCredentials header and using

5.

https://riptutorial.com/ 118

WithOrigins header instead of AllowAllOrigins.

Read Sessions in ASP.NET Core 1.0 online: https://riptutorial.com/asp-net-
core/topic/8067/sessions-in-asp-net-core-1-0

https://riptutorial.com/ 119

https://riptutorial.com/asp-net-core/topic/8067/sessions-in-asp-net-core-1-0
https://riptutorial.com/asp-net-core/topic/8067/sessions-in-asp-net-core-1-0

Chapter 23: Tag Helpers

Parameters

Name Info

asp-action The name of the action method to which the form should be posted to

asp-
controller

The name of the controller where the action method specified in asp-action
exists

asp-route-*
Custom route values you want to add as querystring to the form action attribute
value. Replace 8 with the querystring name you want

Examples

Form Tag Helper - Basic example

<form asp-action="create" asp-controller="Home">
 <!--Your form elements goes here-->
</form>

Form Tag Helper - With custom route attributes

<form asp-action="create"
 asp-controller="Home"
 asp-route-returnurl="dashboard"
 asp-route-from="google">
 <!--Your form elements goes here-->
</form>

This will generate the below markup

<form action="/Home/create?returnurl=dashboard&from=google" method="post">
 <!--Your form elements goes here-->
</form>

Input Tag Helper

Assuming your view is strongly typed to a view model like

public class CreateProduct
{
 public string Name { set; get; }
}

https://riptutorial.com/ 120

And you are passing an object of this to the view from your action method.

@model CreateProduct
<form asp-action="create" asp-controller="Home" >

 <input type="text" asp-for="Name"/>
 <input type="submit"/>

</form>

This will generate the below markup.

<form action="/Home/create" method="post">

 <input type="text" id="Name" name="Name" value="" />
 <input type="submit"/>
 <input name="__RequestVerificationToken" type="hidden" value="ThisWillBeAUniqueToken" />

</form>

If you want the input field to be rendered with a default value, you can set the Name property value
of your view model in the action method.

public IActionResult Create()
{
 var vm = new CreateProduct { Name="IPhone"};
 return View(vm);
}

Form submission & Model binding

Model binding will work fine if you use CreateProduct as your HttpPost action method parameter/a
parameter named name

Select Tag Helper

Assuming your view is strongly typed to a view model like this

public class CreateProduct
{
 public IEnumerable<SelectListItem> Categories { set; get; }
 public int SelectedCategory { set; get; }
}

And in your GET action method, you are creating an object of this view model, setting the
Categories property and sending to the view

public IActionResult Create()
{
 var vm = new CreateProduct();
 vm.Categories = new List<SelectListItem>
 {
 new SelectListItem {Text = "Books", Value = "1"},

https://riptutorial.com/ 121

 new SelectListItem {Text = "Furniture", Value = "2"}
 };
 return View(vm);
}

and in your view

@model CreateProduct

<form asp-action="create" asp-controller="Home">
 <select asp-for="SelectedCategory" asp-items="@Model.Categories">
 <option>Select one</option>
 </select>
 <input type="submit"/>
</form>

This will render the below markup(included only relevant parts of form/fields)

<form action="/Home/create" method="post">
 <select data-val="true" id="SelectedCategory" name="SelectedCategory">
 <option>Select one</option>
 <option value="1">Shyju</option>
 <option value="2">Sean</option>
 </select>
 <input type="submit"/>
</form>

Getting the selected dropdown value in form submission

You can use the same view model as your HttpPost action method parameter

[HttpPost]
public ActionResult Create(CreateProduct model)
{
 //check model.SelectedCategory value
 / /to do : return something
}

Set an option as the selected one

If you want to set an option as the selected option, you may simply set the SelectedCategory
property value.

public IActionResult Create()
{
 var vm = new CreateProduct();
 vm.Categories = new List<SelectListItem>
 {
 new SelectListItem {Text = "Books", Value = "1"},
 new SelectListItem {Text = "Furniture", Value = "2"},
 new SelectListItem {Text = "Music", Value = "3"}
 };
 vm.SelectedCategory = 2;
 return View(vm);

https://riptutorial.com/ 122

}

Rendering a Multi select dropdown/ListBox

If you want to render a multi select dropdown, you can simply change your view model property
which you use for asp-for attribute in your view to an array type.

public class CreateProduct
{
 public IEnumerable<SelectListItem> Categories { set; get; }
 public int[] SelectedCategories { set; get; }
}

In the view

@model CreateProduct

<form asp-action="create" asp-controller="Home" >
 <select asp-for="SelectedCategories" asp-items="@Model.Categories">
 <option>Select one</option>
 </select>
 <input type="submit"/>
</form>

This will generate the SELECT element with multiple attribute

<form action="/Home/create" method="post">
 <select id="SelectedCategories" multiple="multiple" name="SelectedCategories">
 <option>Select one</option>
 <option value="1">Shyju</option>
 <option value="2">Sean</option>
 </select>
 <input type="submit"/>
</form>

Custom Tag Helper

You can create your own tag helpers by implementing ITagHelper or deriving from the convenience
class TagHelper.

The default convention is to target an html tag that matches the name of the helper without
the optional TagHelper suffix. For example WidgetTagHelper will target a <widget> tag.

•

The [HtmlTargetElement] attribute can be used to further control the tag being targetted•
Any public property of the class can be given a value as an attribute in the razor markup. For
example a public property public string Title {get; set;} can be given a value as <widget
title="my title">

•

By default, tag helpers translates Pascal-cased C# class names and properties for tag
helpers into lower kebab case. For example, if you omit using [HtmlTargetElement] and the
class name is WidgetBoxTagHelper, then in Razor you'll write <widget-box></widget-box>.

•

Process and ProcessAsync contain the rendering logic. Both receive a context parameter with
information about the current tag being rendered and an output parameter used to

•

https://riptutorial.com/ 123

customize the rendered result.

Any assembly containing custom tag helpers needs to be added to the _ViewImports.cshtml file
(Note it is the assembly being registered, not the namespace):

@addTagHelper *, MyAssembly

Sample Widget Custom Tag Helper

The following example creates a custom widget tag helper that will target razor markup like:

<widget-box title="My Title">This is my content: @ViewData["Message"]</widget-box>

Which will be rendered as:

<div class="widget-box">
 <div class="widget-header">My Title</div>
 <div class="widget-body">This is my content: some message</div>
</div>

The coded needed to create such a tag helper is the following:

[HtmlTargetElement("widget-box")]
public class WidgetTagHelper : TagHelper
{
 public string Title { get; set; }

 public override async Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
 {
 var outerTag = new TagBuilder("div");
 outerTag.Attributes.Add("class", output.TagName);
 output.MergeAttributes(outerTag);
 output.TagName = outerTag.TagName;

 //Create the header
 var header = new TagBuilder("div");
 header.Attributes.Add("class", "widget-header");
 header.InnerHtml.Append(this.Title);
 output.PreContent.SetHtmlContent(header);

 //Create the body and replace original tag helper content
 var body = new TagBuilder("div");
 body.Attributes.Add("class", "widget-body");
 var originalContents = await output.GetChildContentAsync();
 body.InnerHtml.Append(originalContents.GetContent());
 output.Content.SetHtmlContent(body);
 }
}

Label Tag Helper

Label Tag Helper can be used to render label for a model property. It replaces method

https://riptutorial.com/ 124

Html.LabelFor in previous versions of MVC.

Let's say you have a model:

public class FormViewModel
{
 public string Name { get; set; }
}

In the view you can use label HTML element and asp-for tag helper:

<form>
 <label asp-for="Name"></label>
 <input asp-for="Name" type="text" />
</form>

This is equivalent to the following code in earlier versions of MVC:

<form>
 @Html.LabelFor(x => x.Name)
 @Html.TextBoxFor(x => x.Name)
</form>

Both code snippets above render the same HTML:

<form>
 <label for="Name">Name</label>
 <input name="Name" id="Name" type="text" value="">
</form>

Anchor tag helper

Anchor tag helper is used generate href attributes to link to a particular controller action or MVC
route. Basic example

<a asp-controller="Products" asp-action="Index">Login

Sometimes, we need to specify additional parameters for the controller action that you are binding
to. We can specify values for these parameters by adding attributes with the asp-route- prefix.

<a asp-controller="Products" asp-action="Details" asp-route-id="@Model.ProductId">
 View Details

Read Tag Helpers online: https://riptutorial.com/asp-net-core/topic/2665/tag-helpers

https://riptutorial.com/ 125

https://riptutorial.com/asp-net-core/topic/2665/tag-helpers

Chapter 24: View Components

Examples

Create a View Component

View components encapsulate reusable pieces of logic and views. They are defined by:

A ViewComponent class containing the logic for fetching and preparing the data for the view
and deciding which view to render.

•

One or more views•

Since they contain logic, they are more flexible than partial views while still promoting a good
separation of concerns.

A simple custom view component is defined as:

public class MyCustomViewComponent : ViewComponent
{
 public async Task<IViewComponentResult> InvokeAsync(string param1, int param2)
 {
 //some business logic

 //renders ~/Views/Shared/Components/MyCustom/Default.cshtml
 return View(new MyCustomModel{ ... });
 }
}

@*View file located in ~/Views/Shared/Components/MyCustom/Default.cshtml*@
@model WebApplication1.Models.MyCustomModel
<p>Hello @Model.UserName!</p>

They can be invoked from any view (or even a controller by returning a ViewComponentResult)

@await Component.InvokeAsync("MyCustom", new {param1 = "foo", param2 = 42})

Login View Component

The default project template creates a partial view _LoginPartial.cshtml which contains a bit of
logic for finding out whether the user is logged in or not and find out its user name.

Since a view component might be a better fit (as there is logic involved and even 2 services
injected) the following example shows how to convert the LoginPartial into a view component.

View Component class

public class LoginViewComponent : ViewComponent
{
 private readonly SignInManager<ApplicationUser> signInManager;

https://riptutorial.com/ 126

 private readonly UserManager<ApplicationUser> userManager;

 public LoginViewComponent(SignInManager<ApplicationUser> signInManager,
UserManager<ApplicationUser> userManager)
 {
 this.signInManager = signInManager;
 this.userManager = userManager;
 }

 public async Task<IViewComponentResult> InvokeAsync()
 {
 if (signInManager.IsSignedIn(this.User as ClaimsPrincipal))
 {
 return View("SignedIn", await userManager.GetUserAsync(this.User as
ClaimsPrincipal));
 }
 return View("SignedOut");
 }
}

SignedIn view (in ~/Views/Shared/Components/Login/SignedIn.cshtml)

@model WebApplication1.Models.ApplicationUser

<form asp-area="" asp-controller="Account" asp-action="LogOff" method="post" id="logoutForm"
class="navbar-right">
 <ul class="nav navbar-nav navbar-right">

 <a asp-area="" asp-controller="Manage" asp-action="Index" title="Manage">Hello
@Model.UserName!

 <button type="submit" class="btn btn-link navbar-btn navbar-link">Log off</button>

</form>

SignedOut view (in ~/Views/Shared/Components/Login/SignedOut.cshtml)

<ul class="nav navbar-nav navbar-right">
 <a asp-area="" asp-controller="Account" asp-action="Register">Register
 <a asp-area="" asp-controller="Account" asp-action="Login">Log in

Invocation from _Layout.cshtml

@await Component.InvokeAsync("Login")

Return from Controller Action

When inheriting from base Controller class provided by the framework, you can use the
convenience method ViewComponent() to return a view component from the action:

public IActionResult GetMyComponent()
{

https://riptutorial.com/ 127

 return ViewComponent("Login", new { param1 = "foo", param2 = 42 });
}

If using a POCO class as a controller, you can manually create an instance of the
ViewComponentResult class. This would be equivalent to the code above:

public IActionResult GetMyComponent()
{
 return new ViewComponentResult
 {
 ViewComponentName = "Login",
 Arguments = new { param1 = "foo", param2 = 42 }
 };
}

Read View Components online: https://riptutorial.com/asp-net-core/topic/3248/view-components

https://riptutorial.com/ 128

https://riptutorial.com/asp-net-core/topic/3248/view-components

Chapter 25: Working with JavascriptServices

Introduction

According to official documentation:

JavaScriptServices is a set of technologies for ASP.NET Core developers. It provides infrastructure
that you'll find useful if you use Angular 2 / React / Knockout / etc. on the client, or if you build your
client-side resources using Webpack, or otherwise want to execute JavaScript on the server at
runtime.

Examples

Enabling webpack-dev-middleware for asp.net-core project

Let's say you use Webpack for front end bundling. You can add webpack-dev-middleware to serve your
statics through tiny and fast server. It allows you to automatically reload your assets when content
has changed, serve statics in memory without continuously writing intermediate versions on disk.

Prerequisites

NuGet

Install-Package Microsoft.AspNetCore.SpaServices

npm

npm install --save-dev aspnet-webpack, webpack-dev-middleware, webpack-dev-server

Configuring

Extend Configure method in your Startup class

if (env.IsDevelopment())
{
 app.UseWebpackDevMiddleware(new WebpackDevMiddlewareOptions()
 {
 ConfigFile = "webpack.config.js" //this is defualt value
 });
}

Add Hot Module Replacement (HMR)

https://riptutorial.com/ 129

Hot Module Replacement allows to add, change or delete app module when application is running.
Page reloading is not needed in this case.

Prerequisites

In addition to webpack-dev-middleware packages:

npm install --save-dev webpack-hot-middleware

Configuration

Simply update configuration of UseWebpackDevMiddleware with new options:

app.UseWebpackDevMiddleware(new WebpackDevMiddlewareOptions()
{
 ConfigFile = "webpack.config.js", //this is defualt value
 HotModuleReplacement = true,
 ReactHotModuleReplacement = true, //for React only
});

You also need to accept hot modules in your app code.

HMR is supported for Angular 2, React, Knockout and Vue.

Generating sample single page application with asp.net core

You can use aspnetcore-spa generator for Yeoman to create brand-new single page application with
asp.net core.

This allows you to choose one of the popular front end frameworks and generates project with
webpack, dev server, hot module replacement and server-side rendering features.

Just run

npm install -g yo generator-aspnetcore-spa
cd newproject
yo aspnetcore-spa

and choose your favorite framework

https://riptutorial.com/ 130

Read Working with JavascriptServices online: https://riptutorial.com/asp-net-
core/topic/9621/working-with-javascriptservices

https://riptutorial.com/ 131

https://i.stack.imgur.com/hNv2A.png
https://riptutorial.com/asp-net-core/topic/9621/working-with-javascriptservices
https://riptutorial.com/asp-net-core/topic/9621/working-with-javascriptservices

Credits

S.
No

Chapters Contributors

1
Getting started with
asp.net-core

Alex Logan, Alexan, Ashish Rajput, Ashley Medway, Bogdan
Stefanjuk, BrunoLM, ChadT, Community, gbellmann, Henk
Mollema, Nate Barbettini, Rion Williams, Shog9, Shyju, Svek,
Tseng, VSG24, Zach Becknell

2
Angular2 and .Net
Core

Alejandro Tobón, Sentient Entities

3

ASP.NET Core - Log
both Request and
Response using
Middleware

Gubr

4 Authorization gilmishal, RamenChef

5
Bundling and
Minification

Rion Williams, Zach Becknell

6 Caching Cyprien Autexier, Sanket

7 Configuration Cyprien Autexier, Jayantha Lal Sirisena

8
Configuring multiple
Environments

dotnetom, Johnny, Robert Paulsen, Sanket, Set, Tseng

9
Cross-Origin
Requests (CORS)

Henk Mollema, Sanket, Saqib Rokadia, Tseng

10
Dependency
Injection

Alexan, BrunoLM, Cyprien Autexier, Dan Soper, Darren Evans,
gilmishal, Gurgen Hakobyan, Jayantha Lal Sirisena, Joel
Harkes, maztt, Tseng, Zach Becknell

11 Error Handling Sanket, Set

12
Injecting services
into views

Alex Logan, Rion Williams

13 Localization Tseng, VSG24, Zach Becknell

14 Logging Dmitry, Sanket, Set, Tseng

15 Middleware Ali, Piotrek, Set, VSG24, Zach Becknell

https://riptutorial.com/ 132

https://riptutorial.com/contributor/6161714/alex-logan
https://riptutorial.com/contributor/240564/alexan
https://riptutorial.com/contributor/1367653/ashish-rajput
https://riptutorial.com/contributor/1398425/ashley-medway
https://riptutorial.com/contributor/7932769/bogdan-stefanjuk
https://riptutorial.com/contributor/7932769/bogdan-stefanjuk
https://riptutorial.com/contributor/340760/brunolm
https://riptutorial.com/contributor/23300/chadt
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3465108/gbellmann
https://riptutorial.com/contributor/1823494/henk-mollema
https://riptutorial.com/contributor/1823494/henk-mollema
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/811/shog9
https://riptutorial.com/contributor/40521/shyju
https://riptutorial.com/contributor/3645638/svek
https://riptutorial.com/contributor/455493/tseng
https://riptutorial.com/contributor/5173926/vsg24
https://riptutorial.com/contributor/3384388/zach-becknell
https://riptutorial.com/contributor/7245930/alejandro-tobon
https://riptutorial.com/contributor/6824203/sentient-entities
https://riptutorial.com/contributor/3936264/gubr
https://riptutorial.com/contributor/3090249/gilmishal
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/3384388/zach-becknell
https://riptutorial.com/contributor/1036079/cyprien-autexier
https://riptutorial.com/contributor/5802115/sanket
https://riptutorial.com/contributor/1036079/cyprien-autexier
https://riptutorial.com/contributor/590278/jayantha-lal-sirisena
https://riptutorial.com/contributor/3697011/dotnetom
https://riptutorial.com/contributor/1640121/johnny
https://riptutorial.com/contributor/5754565/robert-paulsen
https://riptutorial.com/contributor/5802115/sanket
https://riptutorial.com/contributor/2833802/set
https://riptutorial.com/contributor/455493/tseng
https://riptutorial.com/contributor/1823494/henk-mollema
https://riptutorial.com/contributor/5802115/sanket
https://riptutorial.com/contributor/1807040/saqib-rokadia
https://riptutorial.com/contributor/455493/tseng
https://riptutorial.com/contributor/240564/alexan
https://riptutorial.com/contributor/340760/brunolm
https://riptutorial.com/contributor/1036079/cyprien-autexier
https://riptutorial.com/contributor/7480207/dan-soper
https://riptutorial.com/contributor/1669123/darren-evans
https://riptutorial.com/contributor/3090249/gilmishal
https://riptutorial.com/contributor/4381515/gurgen-hakobyan
https://riptutorial.com/contributor/590278/jayantha-lal-sirisena
https://riptutorial.com/contributor/1275832/joel-harkes
https://riptutorial.com/contributor/1275832/joel-harkes
https://riptutorial.com/contributor/324831/maztt
https://riptutorial.com/contributor/455493/tseng
https://riptutorial.com/contributor/3384388/zach-becknell
https://riptutorial.com/contributor/5802115/sanket
https://riptutorial.com/contributor/2833802/set
https://riptutorial.com/contributor/6161714/alex-logan
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/455493/tseng
https://riptutorial.com/contributor/5173926/vsg24
https://riptutorial.com/contributor/3384388/zach-becknell
https://riptutorial.com/contributor/460298/dmitry
https://riptutorial.com/contributor/5802115/sanket
https://riptutorial.com/contributor/2833802/set
https://riptutorial.com/contributor/455493/tseng
https://riptutorial.com/contributor/2237268/ali
https://riptutorial.com/contributor/1804027/piotrek
https://riptutorial.com/contributor/2833802/set
https://riptutorial.com/contributor/5173926/vsg24
https://riptutorial.com/contributor/3384388/zach-becknell

16 Models Alex Logan, Ralf Bönning

17 project.json Joel Harkes

18
Publishing and
Deployment

Set

19 Rate limiting Stefan P.

20 Routing ChadT, Tseng

21
Sending Email in
.Net Core apps using
MailKit

Ankit

22
Sessions in
ASP.NET Core 1.0

ravindra, Sanket

23 Tag Helpers Ali, Daniel J.G., dotnetom, Shyju, tmg, Zach Becknell

24 View Components Daniel J.G.

25
Working with
JavascriptServices

hmnzr

https://riptutorial.com/ 133

https://riptutorial.com/contributor/6161714/alex-logan
https://riptutorial.com/contributor/5881616/ralf-bonning
https://riptutorial.com/contributor/1275832/joel-harkes
https://riptutorial.com/contributor/2833802/set
https://riptutorial.com/contributor/502575/stefan-p-
https://riptutorial.com/contributor/23300/chadt
https://riptutorial.com/contributor/455493/tseng
https://riptutorial.com/contributor/3615478/ankit
https://riptutorial.com/contributor/4590867/ravindra
https://riptutorial.com/contributor/5802115/sanket
https://riptutorial.com/contributor/2237268/ali
https://riptutorial.com/contributor/1836935/daniel-j-g-
https://riptutorial.com/contributor/3697011/dotnetom
https://riptutorial.com/contributor/40521/shyju
https://riptutorial.com/contributor/3805023/tmg
https://riptutorial.com/contributor/3384388/zach-becknell
https://riptutorial.com/contributor/1836935/daniel-j-g-
https://riptutorial.com/contributor/907844/hmnzr

	About
	Chapter 1: Getting started with asp.net-core
	Remarks
	Versions
	Examples
	Installation and Setup

	Installing Visual Studio
	Creating an ASP.NET Core MVC Application.
	Create a new project from the command line
	Minimal ASP.NET Core Web API with ASP.NET Core MVC

	Controllers
	Conclusion
	Using Visual Studio code to develop Cross plateform aspnet core application
	Setup environment variable in ASP.NET Core [Windows]

	Chapter 2: Angular2 and .Net Core
	Examples
	Quick tutorial for an Angular 2 Hello World! App with .Net Core in Visual Studio 2015
	Expected errors when generating Angular 2 components in .NET Core project (version 0.8.3)

	Chapter 3: ASP.NET Core - Log both Request and Response using Middleware
	Introduction
	Remarks
	Examples
	Logger Middleware

	Chapter 4: Authorization
	Examples
	Simple Authorization

	Chapter 5: Bundling and Minification
	Examples
	Grunt and Gulp
	Bundler and Minifier Extension

	Building Your Bundles
	Minifying Your Bundles
	Automate Your Bundles
	The dotnet bundle Command

	Using BundlerMinifier.Core
	Configuring Your Bundles
	Creating / Updating Bundles
	Automated Bundling
	Available Commands

	Chapter 6: Caching
	Introduction
	Examples
	Using InMemory cache in ASP.NET Core application
	Distributed Caching

	Chapter 7: Configuration
	Introduction
	Syntax
	Examples
	Accessing Configuration using Dependency Injection
	Getting Started
	Work with Environment Variables
	Option model and configuration
	In Memory configuration source

	Chapter 8: Configuring multiple Environments
	Examples
	Having appsettings per Environment
	Get/Check Environment name from code
	Configuring multiple environments
	Render environment specific content in view
	Set environment variable from command line
	Set environment variable from PowerShell
	Using ASPNETCORE_ENVIRONMENT from web.config

	Chapter 9: Cross-Origin Requests (CORS)
	Remarks
	Examples
	Enable CORS for all requests
	Enable CORS policy for specific controllers
	More sophisticated CORS policies
	Enable CORS policy for all controllers

	Chapter 10: Dependency Injection
	Introduction
	Syntax
	Remarks
	Examples
	Register and manually resolve
	Register dependencies

	Lifetime control
	Enumerable dependencies
	Generic dependencies
	Retrieve dependencies on a Controller
	Injecting a dependency into a Controller Action
	The Options pattern / Injecting options into services

	Remarks
	Using scoped services during application startup / Database Seeding
	Resolve Controllers, ViewComponents and TagHelpers via Dependency Injection
	Plain Dependency Injection example (Without Startup.cs)
	Inner workings of Microsoft.Extensions.DependencyInjection

	IServiceCollection
	IServiceProvider
	Result

	Chapter 11: Error Handling
	Examples
	Redirect to custom error page
	Global Exception Handling in ASP.NET Core

	Chapter 12: Injecting services into views
	Syntax
	Examples
	The @inject Directive

	Example Usage
	Required Configuration

	Chapter 13: Localization
	Examples
	Localization using JSON language resources
	Set Request culture via url path

	Middleware Registration
	Custom Route Constraints
	Registering the route
	Chapter 14: Logging
	Examples
	Using NLog Logger
	Add Logger to Controller
	Using Serilog in ASP.NET core 1.0 application

	Chapter 15: Middleware
	Remarks
	Examples
	Using the ExceptionHandler middleware to send custom JSON error to Client
	Middleware to set response ContentType
	Pass data through the middleware chain
	Run, Map, Use

	Chapter 16: Models
	Examples
	Model Validation with Validation Attrributes
	Model Validation with Custom Attribute

	Chapter 17: project.json
	Introduction
	Examples
	Simple Library project example
	Complete json file:
	Simple startup project

	Chapter 18: Publishing and Deployment
	Examples
	Kestrel. Configuring Listening Address

	Chapter 19: Rate limiting
	Remarks
	Examples
	Rate limiting based on client IP
	Setup
	Defining rate limit rules
	Behavior
	Update rate limits at runtime
	Rate limiting based on client ID
	Setup
	Defining rate limit rules
	Behavior
	Update rate limits at runtime

	Chapter 20: Routing
	Examples
	Basic Routing
	Routing constraints

	Using it on Controllers
	Using it on Actions
	Using it in Default Routes
	Chapter 21: Sending Email in .Net Core apps using MailKit
	Introduction
	Examples
	Installing nuget package
	Simple implementation for sending emails

	Chapter 22: Sessions in ASP.NET Core 1.0
	Introduction
	Examples
	Basic example of handling Session

	Chapter 23: Tag Helpers
	Parameters
	Examples
	Form Tag Helper - Basic example
	Form Tag Helper - With custom route attributes
	Input Tag Helper
	Select Tag Helper
	Custom Tag Helper

	Sample Widget Custom Tag Helper
	Label Tag Helper
	Anchor tag helper

	Chapter 24: View Components
	Examples
	Create a View Component
	Login View Component
	Return from Controller Action

	Chapter 25: Working with JavascriptServices
	Introduction
	Examples
	Enabling webpack-dev-middleware for asp.net-core project

	Prerequisites
	NuGet
	npm

	Configuring
	Add Hot Module Replacement (HMR)

	Prerequisites
	Configuration
	Generating sample single page application with asp.net core

	Credits

