" LEARNING
asp.net-mvc

Free unaffiliated eBook created from
Stack Overflow contributors.

#asp.net-

Table of Contents

A OUL . .. 1
Chapter 1: Getting started with asp.net-MmvcC............... ... 2
REMIAIKS . . 2
Y4157 0] I P 2
= 1] 0] [T 3
Hello MV G ettt e 3
Chapter 2: ACtion filters 6
= 10] 0] [6

A logging aCtion filler.o 6
Session Control action filter - page&ajax reQUEST.ttt e e 6
Action filter usage locations (global, controller, action).......... ... i 7
Exception Handler AtriDULE. 8
Chapter 3: ACHONRESUIL. 11
REMIAIKS . . 11
= 11 4] 0] (= T 11
RETUIMN @ VW Pag . . . oottt e e e e e e e 11
RETUIN @ FilE. e 11
RETUIMN 8 JS0N . . e 12
Chapter 4: ACtiONREsSUIt. 13
o= 10] 0] (2 13
VW R ESUIL. . . et 13
PartialVIEWRESUIL.o 13
REAITECIRESUIL.ot 14
RedireCtTOROUIERESUIL.o 14
CONIENTRESUIL. . . e et 15
JSONRESUIL. . .o 15
Chapter 5: ACtiONRESUIt. 16
) 1= ¥ G U 16

E XM S . ..o 16

ACHON MEINOUSo 16

Mapping Action-Method Parameters.o e e e e 17

Calling An ActionResult In Another ACIONRESUIL. e 17
PO B ATCAS 18
I OdUCTION. . e 18
RIS . 18
o 1111 o [TP 18
CrEALE B NMEW AIBA.ttt e ettt e et e et e e e e e e e e e e e 18
Configure ROULEC ON Q. CS. . .. e e e e e e e e e e 18
Create a new controller and configure areanameAreaRegistration.cs maproute...................oooiiiiiinn... 18
Chapter 7: Asp.netmvesend mail................. 20
E XM S . .o 20
Contact FOrm [N AsSp MV C . .. e e 20
Sending Email From Class. 21
Chapter 8: Automatic client-side validation from attributes... 23
REMIAIKS . . 23

E XM S . ..o 23
MOl . .. 23
WED.CONTIG SBHINGS . .. e e e e e 23
Required NUGEL PaCKagEsS.ttt ettt et e e e e e 23
O VW . e 23
Bundle configuration. 24
GlODALASAX.CS. . . ottt 25
Chapter 9: Bundling and Minification........... ... 26
E XM S . ..o 26
MINITICALION. . . .ttt e 26
Example using MinifiCation. 26
Script and Style BUNAIES. 26
Chapter 10: CRUD Operation............ ... 28
I OAUCTION. . e 28
RIS . . 28
EX APl . .. 28

Create - CoNtroller Part.o 28

Create - VIBW Palt. . ..o 29

Details - CONtroller Part. et e e 30
DEtalilS - VIBW DAt . ..ot 31
Edit - CONtroller Part.ot e e 32
Delete - CoNtroller Part.ttt 33
Chapter 11: Data annotatioNS 35
1o 0 0T o o 35
BN S . ..o 35
Basic validation attributes used in ViewMoOdel. 35
1 T = 35
VBV . o 35
L] 11 0] |1 36
RemOte ValIdatioN.ot 36
Remote Validation used to check whether the content enter in the input controlisvalidor................ 36
ReqUITEOAI OULE e e e e 38
SHNGLENGIN A UL e 38
RaANGE AU . . 39
RegUIArEXPrEeSSION At DULEttt 39
ComPare AU . . . 40
Custom Validation Attribute. o AL
Here is its DOtNetFIddIe DemO.o e 42
EDMx model - Data ANNOLALION. et e e 42
Data annotations for Database first implementation (model code auto-generated)............................o... 43
Chapter 12: Dependency INJECHON. 44
REMIAIKS . . 44
E XM S . .o 45
NINJect CoONfIQUIALIONS.t ettt e e e e e e e e e e e 45
Utilization of the INnterfaces.o i 4B
Constructor dependenCy INJECHION. ettt e 47
Hard coded dependenCYot e e e e e e e e A7
PaArAM T Dl ..o 47

Ninject Dependency INJECHION.o i e e e e e AT

Chapter 13: Display and Editortemplates........................ 52

o0 T 1o o 52
o= 10 4] 0] (2 52
Display TemMPIAte.t 52
Editor TEMPIALE. ettt e 53
Chapter 14: Dockerization of ASP.NET Application........................... . 56
BN S . ..o 56
Dockerfile and NUQGET. ot et e e e 56
POSTGRESQL SUPPOI. . .ottt et e e e e e e e e 56
DOCKENZALION. e e e 57
Chapter 15: Error LOGQING oottt 59
= 1] 0] (= 59
SIMPIE AT UL E . .. 59
FELUMNING CUSIOM BITOF PG . . . oottt e e ettt et et e et e e e e e e e e e e et 59
Create Custom ErrorLogger In ASP.Net MV C e e e 60
Chapter 16: HtmI Helpers.o 63
o0 T 1o o 63
o= 10 1] 0] (2 63
Custom HTML Helper - Display Name. o e 63
Custom Helper - Render submit BUttON. o 63
Exhaustive list of HtmIHelper samples including HTML OULPUL. e 64
HEMIHEI DI ACHON() . .. e e e e e e e e e e 64
HtMIHEIPEr ACtONLINK()ottt e e ettt e 64
@HtMIHEIPEr.BeginFOrm(). ... oo e 64
Standard HTML Helpers with their HTML OULPULS.o e 64
Custom Helper - Render Radio Button with Label. e 65
Custom Helper - Date Time PiCKer e e e e e e 66
Chapter 17: HtmLANtIFOrgeryTOKeN 67
o0 0T 1o o 67
)Y 1= G U 67
REMIAIKS . . 67

EX Al . .. 67

2 F T (o [T Vo [67
Razor (YOoUIrVIeW.CSNtMI) . .. e 67
Controller (YOUrCONIrOHEI.CS). . ..o e e e 68

Disable Identity HeUrIStIC CheCK. e e e 68

Validating All PoOStS 68

Advance usage: Apply default Antiforgery filter for every POST ... i e 69

Using AntiForgeryToken with Jquery Ajax ReqUEST. it 70

Chapter 18: HtMLRoOUtELINK. 72
P Al A IS 72
B S . ..o 72

Basic Example Using Link Text and Route Name. e 72

Chapter 19: Http Error Handling ... 73
o0 T 1o o 73
E XM S . ..o 73

BaSIC SO U . . ettt 73

Chapter 20: lISRewrite RUIES 75
E XM S . . oo 75

Force HTTPS USING REWTIIE TUIE.o e e e e e e e 75

Chapter 21: jQuery Ajax Call With ASp MV C ... 76
o= 10] 0] (2 76

Posting JavaScript objects with jQuery Ajax Call. ... 76

Chapter 22: Model binding.......... ... 78
o 0 T 1o o 78
REMIAIKS . . 78
E XM S . .o 78

Route value DINAING.o 78

QUETY SENG DINAING 78

BiNding 10 OB C S 79

AJaX DINAING . . o 79

Generic, Session based model binding. 79

Prevent binding on POSIMOUEL. e e e 81

FIle UPIOad. . ..o e e e 82

Validating date fields manually with dynamic formats using model binder............ 82
Chapter 23: Model validation.................. 84
o 1111 o [T 84
Validate Model in ACHIONRESUIL. e 84
Remove an object from validation. e 84
CUSIOM EITOr MESSAGES ottt e e e e e e e 85
Creating Custom Error Messages in Model and in Controller. e 85
Model Validation IN JQUETY..ottt et et ettt e e e e 86
Chapter 24: MVC Ajax EXTeNSIONS 88
I OAUCTION. . e 88

P A A B S . 88
RIS . 89
XAl . .. 89
AJaX ACHION LiNK. ... 89
ATBX OIS . L. 89
Chapter 25: MVC VS Web FOIMS, 90
I OdUCTION. . e 90
1= 3 U 90
RIS . . 90
e 1111 o [T 90
Advantages of ASP .NET Web FOIrmS. o e 90
Advantages of an MVC-Based Web Application. i 91
DISAAVANTAGES ettt ettt et e e 91
Razor View Engine VS ASPX VIieWw ENQINe. o e 91
Chapter 26: Partial VIEWS. 93
I OTUCTION. ... 93
) 1= G U 93

E XM S . ..o 93
Partial View With MOdel. o e 93
Partial View to a String - for email CONtENt €1C.t e 93

Html.Partial Vs HtmlLLRenderPartial. 94

Chapter 27: RAZOK.o 96

o0 T 1o o 96
) 1= G U 96
REMIAIKS . . 96
o= 10] 0] (S 96
A COMMENTS. . ..ttt et ettt 96
Display HTML within Razor code BIOCK. e 97
BaSIC Sy MAX . ..ottt 98
ESCAPING @ CaraCter.ottt e e e e e 99
Create inline classes and methods using @fUNCLIONS. e 99
Adding a custom attribute with - (hyphen) in name. 100
EditOr TeMPIatES. . . e 100
Pass Razor content to @ @ NeIper.o o 102
Share @heEIPErS ACrOSS VIEWSttt et e e e e e e e e e e e e e 102
Chapter 28: ROULING 104
[T OTUCTION. e e 104
= 1] 0] [104
(1013 o] o T =0 11 1 o To 0 104
AddINg CUSTOM FOULE IN IMVC.t et e e e e e e e e e 105
ALBULE TOULING IN MV C . L. ettt e e e e e e e 105
ROULING DaSICS . . . e e e 106
CatCN-all TOULE. . ..o 107
Catch-all route for enabling client-side roUtINg.oo i e 108
ALFDULE ROULING IN ATCBS ettt et e et e e e e e e e e e e e e e e 108
Chapter 29: TAMV C . . 110
BT OTUCTION. e e e 110
= 10] 0] [J 110
CalliNg AN ACHION. . ..ttt e e 110
Chapter 30: Using Multiple Models INOne View ..., 112
o 0 T 1o o 112
= 10] 0] [112

Using multiple model in a view with dynamic ExpandoODbject.o 112

Chapter 31: ViewData, ViewBag, TempData........................oiii 114

I OdU G ON . . 114
) 1= ¥ G 114
= 1] 0] [T 114
What are ViewData, ViewBag, and TempData?.o 114
TempData life CYClE. 116
Chapter 32: Web.config ENCryption. 117
B XM S . ..o 117
How to protect your Web.config file. 117

04 (=T [(- 118

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: asp-net-mvc

It is an unofficial and free asp.net-mvc ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official asp.net-mvc.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/asp-net-mvc
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Remarks

The Model-View-Controller (MVC) architectural pattern separates an application into three main
components: the model, the view, and the controller. The ASP.NET MVC framework provides an
alternative to the ASP.NET Web Forms pattern for creating Web applications. The ASP.NET MVC
framework is a lightweight, highly testable presentation framework that (as with Web Forms-based
applications) is integrated with existing ASP.NET features, such as master pages and
membership-based authentication. The MVC framework is defined in the System.Web.Mvc
assembly.

The MVC framework includes the following components:

* Models. Model objects are the parts of the application that implement the logic for the
application's data domain. Often, model objects retrieve and store model state in a database.
For example, a Product object might retrieve information from a database, operate on it, and
then write updated information back to a Products table in a SQL Server database. In small
applications, the model is often a conceptual separation instead of a physical one. For
example, if the application only reads a dataset and sends it to the view, the application does
not have a physical model layer and associated classes. In that case, the dataset takes on
the role of a model object.

* Views. Views are the components that display the application's user interface (Ul). Typically,
this Ul is created from the model data. An example would be an edit view of a Products table
that displays text boxes, drop-down lists, and check boxes based on the current state of a
Product object.

» Controllers. Controllers are the components that handle user interaction, work with the
model, and ultimately select a view to render that displays Ul. In an MVC application, the
view only displays information; the controller handles and responds to user input and
interaction. For example, the controller handles query-string values, and passes these
values to the model, which in turn might use these values to query the database.

Versions
MVC 1.0 .NET 3.5 2009-03-13
MVC 2.0 .NET 3.5/4.0 2010-03-10
MVC 3.0 .NET 4.0 2011-01-13
MVC 4.0 .NET 4.0/4.5 2012-08-15
MVC 5.0 .NET 4.5 2013-10-17

https://riptutorial.com/ 2

.NET Version | Release Date

MVC 5.1 .NET 4.5 2014-01-17
MVC 5.2 .NET 4.5 2014-08-28
MVC 6.0 .NET 4.5 2015-11-18
Core MVC 1.0 .NET 4.5 2016-07-12
Core MVC 1.1 .NET 4.5 2016-11-18
Examples
Hello MVC!

ASP.NET MVC is open source web application framework. MVC itself is a design pattern which is
built around three main components: model-view-controller.

Model - Models reflect your business objects, and are a means to pass data between Controllers
and Views.

View - Views are the pages that render and display the model data to the user. ASP.NET MVC
Views are typically written using Razor syntax.

Controller - Controllers handle incoming HTTP requests from a client, and usually return one or
more Models to an appropriate View.

The ASP.NET MVC features:

1. Ideal for developing complex but light weight applications

2. It provides an extensible and pluggable framework which can be easily replaced and
customized. For example, if you do not wish to use the in-built Razor or ASPX View Engine,
then you can use any other third-party view engines or even customize the existing ones.

3. Utilizes the component-based design of the application by logically dividing it into Model,
View and Controller components. This enables the developers to manage the complexity of
large-scale projects and work on individual components.

4. The MVC structure enhances the test-driven development and testability of the application
since all the components can be designed interface-based and tested using mock objects.
Hence the ASP.NET MVC Framework is ideal for projects with large team of web
developers.

5. Supports all the existing vast ASP.NET functionalities such as Authorization and
Authentication, Master Pages, Data Binding, User Controls, Memberships, ASP.NET
Routing, etc.

6. It does not use the concept of View State (which is present in ASP.NET). This helps in
building applications which are light-weight and gives full control to the developers.

Simple MVC application

https://riptutorial.com/

We are going to create simple MVC application which displays person details. Create new MVC
project using Visual Studio. Add new model named Person to Models folder as following:

public class Person

{
public string Surname { get; set; }
public string FirstName { get; set; }
public string Patronymic { get; set; }
public DateTime BirthDate { get; set; }

Add new controller to Controllers folder:

public class HomeController : Controller
{
//Action Method
public ActionResult Index()
{
// Initialize model
Person person = new Person

{

Surname = "Person_SURNAME",
FirstName = "Person_FIRSTNAME",
Patronymic = "Person_PATRONYMIC",

BirthDate = new DateTime (1990, 1, 1)
}i

// Send model to View for displaying to user
return View (person) ;

Finally add View to /Views/Home/ folder named Index.cshtml:

@* Model for this view is Person *(@
@model Hello_MVC.Models.Person

<h2>Hello @Model.FirstName !</h2>

<diwv>
<h5>Details:</h5>
<diwv>
@Html.LabelFor (m => m.Surname)
@Html.DisplayFor (m => m.Surname)
</div>
<diwv>
@Html.LabelFor (m => m.FirstName)
@Html.DisplayFor (m => m.FirstName)
</div>
<diwv>
@Html.LabelFor (m => m.Patronymic)
@Html.DisplayFor (m => m.Patronymic)
</div>
<diwv>
@Html.LabelFor (m => m.BirthDate)
@Html.DisplayFor (m => m.BirthDate)
</div>
</div>

https://riptutorial.com/

Read Getting started with asp.net-mvc online: https://riptutorial.com/asp-net-mvc/topic/769/getting-
started-with-asp-net-mvc

https://riptutorial.com/ 5

https://riptutorial.com/asp-net-mvc/topic/769/getting-started-with-asp-net-mvc
https://riptutorial.com/asp-net-mvc/topic/769/getting-started-with-asp-net-mvc

C_hapter 2. Action filters

Examples
A logging action filter

public class LogActionFilter : ActionFilterAttribute
{

public override void OnActionExecuting (ActionExecutingContext filterContext)

{
Log ("OnActionExecuting", filterContext.RouteData);

public override void OnActionExecuted (ActionExecutedContext filterContext)

{
Log ("OnActionExecuted", filterContext.RouteData);

public override void OnResultExecuting (ResultExecutingContext filterContext)

{
Log ("OnResultExecuting", filterContext.RouteData);

public override void OnResultExecuted (ResultExecutedContext filterContext)

{
Log ("OnResultExecuted", filterContext.RouteData);

private void Log(string methodName, RouteData routeData)

{

var controllerName = routeData.Values["controller"];
var actionName = routeData.Values["action"];
var message = String.Format ("{0} controller:{1l} action:{2}", methodName,

controllerName, actionName) ;
Debug.WritelLine (message, "Action Filter Log");

Session Control action filter - page&ajax request

Usually authentication&authorization processes are performed by built-in cookie and token
supports in .net MVC. But if you decide to do it yourself with session you can use below logic for
both page requests and ajax requests.

public class SessionControl : ActionFilterAttribute

{

public override void OnActionExecuting (ActionExecutingContext filterContext)

{

var session = filterContext.HttpContext.Session;

/// user is logged in (the "loggedIn" should be set in Login action upon a successful
login request)
if (session["loggedIn"] != null && (bool)session["loggedIn"])

https://riptutorial.com/

return;

/// if the request is ajax then we return a json object
if (filterContext.HttpContext.Request.IsAjaxRequest ())
{
filterContext.Result = new JsonResult
{
Data = "UnauthorizedAccess",
JsonRequestBehavior = JsonRequestBehavior.AllowGet
bi
}
/// otherwise we redirect the user to the login page
else
{
var redirectTarget = new RouteValueDictionary { { "Controller", "Login" }, {
"Action", "Index" } };

filterContext.Result = new RedirectToRouteResult (redirectTarget) ;

public override void OnResultExecuting (ResultExecutingContext filterContext)
{
base.OnResultExecuting (filterContext) ;

/// we set a field 'IsAjaxRequest' in ViewBag according to the actual request type
filterContext.Controller.ViewBag.IsAjaxRequest =
filterContext.HttpContext.Request.IsAjaxRequest () ;
}

Action filter usage locations (global, controller, action)

You can place action filters at three possible levels:

1. Global
2. Controller
3. Action

Placing a filter globally means it will execute on requests to any route. Placing one on a
controller makes it execute on requests to any action in that controller. Placing one on an action
means it runs with the action.

If we have this simple action filter:

[AttributeUsage (AttributeTargets.Class | AttributeTargets.Method, AllowMultiple = true)]
public class CustomActionFilterAttribute : FilterAttribute, IActionFilter
{

private readonly string _location;

public CustomActionFilterAttribute(string location)
{

_location = location;

public void OnActionExecuting (ActionExecutingContext filterContext)
{

Trace.TraceInformation ("OnActionExecuting: " + _location);

https://riptutorial.com/

public void OnActionExecuted (ActionExecutedContext filterContext)

{

Trace.TraceInformation ("OnActionExecuted: " + _location);

We can add it on global level by adding it to the global filter collection. With the typical ASP.NET
MVC project setup, this is done in App_Start/FilterConfig.cs.

public class FilterConfig
{
public static void RegisterGlobalFilters (GlobalFilterCollection filters)
{
filters.Add (new CustomActionFilterAttribute ("Global"));

We can also add it on controller and action level like so in a controller:

[CustomActionFilter ("HomeController")]
public class HomeController : Controller
{

[CustomActionFilter ("Index")]

public ActionResult Index ()

{

return View () ;

If we run the application and look at the Output window, we will see the following messages:

iisexpress.exe Information: : OnActionExecuting: Global

iisexpress.exe Information: : OnActionExecuting: HomeController
iisexpress.exe Information: : OnActionExecuting: Index
iisexpress.exe Information: : OnActionExecuted: Index

: OnActionExecuted: HomeController

: OnActionExecuted: Global

iisexpress.exe Information:

O O O O O O

iisexpress.exe Information:

As you can see, when the request comes in, the filters are executed:

1. Global
2. Controller
3. Action

Excellent examples of filters placed on global level include:

1. Authentication filters
2. Authorization filters
3. Logging filters

Exception Handler Attribute

https://riptutorial.com/

This attribute handles all unhandled exceptions in the code, (this is mostly for Ajax Requests - that
deal with JSON - but can be extended)

public class ExceptionHandlerAttribute : HandleErrorAttribute
{
/// <summary>
/// Overriden method to handle exception
/// </summary>
/// <param name="filterContext"> </param>
public override void OnException (ExceptionContext filterContext)
{
// If exeption is handled - return (don't do anything)
if (filterContext.ExceptionHandled)

return;

// Set the ExceptionHandled to true (as you are handling it here)
filterContext.ExceptionHandled = true;

//TODO: You can Log exception to database or Log File

//Set your result structure

filterContext.Result = new JsonResult
{
Data = new { Success = false, Message = filterContext .Exception.Message, data =
new {} 1},
JsonRequestBehavior = JsonRequestBehavior.AllowGet

}i

So let's say you always have to send a JSON response similar to this:

Success: true, // False when Error
data: {1},

Message:"Success" // Error Message when Error

So instead of handling exceptions in controller actions, like this:

public ActionResult PerformMyAction ()
{

try

{

var myData = new { myValue = 1};
throw new Exception ("Handled", new Exception("This is an Handled Exception"));

return Json(new {Success = true, data = myData, Message = ""});

}

catch (Exception ex)

{

https://riptutorial.com/

return Json(new {Success = false, data = null, Message = ex.Message});

You can do this:

[ExceptionHandler]
public ActionResult PerformMyAction ()
{
var myData = new { myValue = 1};

throw new Exception ("Unhandled", new Exception("This is an unhandled Exception"));

return Json(new {Success = true, data = myData, Message = ""});

OR you can add at Controller level

[ExceptionHandler]
public class MyTestController : Controller
{
public ActionResult PerformMyAction ()
{
var myData = new { myValue = 1};

throw new Exception ("Unhandled", new Exception("This is an unhandled Exception"));

return Json(new {Success = true, data = myData, Message = ""});

Read Action filters online: https://riptutorial.com/asp-net-mvc/topic/1450/action-filters

https://riptutorial.com/

https://riptutorial.com/asp-net-mvc/topic/1450/action-filters

C_hapter 3: ActionResult

Remarks

An actionresult IS best though of as an web endpoint in MVC. Ever ActionResult method can be
reached by typing in the appropriate web address as configured by your Routing engine.

Examples

Return a View Page

This ActionResult returns a Razor view page. Under the standard routing template this
ActionResult method would be reached at http://localhost/about/me

The View will be looked for automatically in your site at ~/views/about /Me.cshtml

public class AboutController : Controller

{
public ActionResult Me ()

{

return View () ;

}

Return a File

AN actionresult Can return rilecontentresult Dy specifying file path and file type based from
extension definition, known as MIME type.

The MIME type can be set automatically depending on file type using cetmimeMapping method, or
defined manually in proper format, e.g. "text/plain”.

Since rilecontentresult requires a byte array to be returned as a file stream,
System.I0.File.ReadAllBytes Can be used to read file contents as byte array before sending
requested file.

public class FileController : Controller

{
public ActionResult DownloadFile (String fileName)

{
String file = Server.MapPath ("~/ParentDir/ChildDir" + fileName) ;

String mimeType = MimeMapping.GetMimeMapping (path);

byte[] stream = System.IO.File.ReadAllBytes (file);
return File(stream, mimeType);

https://riptutorial.com/

11

http://localhost/about/me

Return a Json

Action result can return Json.

1.Returning Json to transmit json in ActionResult

public class HomeController : Controller

{
public ActionResult HelloJson ()

{

return Json(new {messagel="Hello", message2 ="World"});

2.Returning Content to transmit json in ActionResult

public class HomeController : Controller

{
public ActionResult HelloJson ()

{

return Content ("Hello World", "application/json");

Read ActionResult online: https://riptutorial.com/asp-net-mvc/topic/6246/actionresult

https://riptutorial.com/

12

https://riptutorial.com/asp-net-mvc/topic/6246/actionresult

C_hapter 4. ActionResult

Examples
ViewResult

public ActionResult Index ()
{

// Renders a view as a Web page.
return View () ;

Action methods typically return a result that is known as an action result. The ActionResult class is

the base class for all action results. The Actioninvoker decide which type of action result to return
based on the task that the action method is performing.

It is possible be explicit about what type to return, but generally it not necessary.

public ViewResult Index()
{

// Renders a view as a Web page.
return View () ;

PartialViewResult

public ActionResult PopulateFoods ()
{

IEnumerable<Food> foodList = GetAll();

// Renders a partial view, which defines a section of a view that can be rendered inside
another view.

return PartialView ("_foodTable", foodvms);;

Action methods typically return a result that is known as an action result. The ActionResult class is

the base class for all action results. The Actioninvoker decide which type of action result to return
based on the task that the action method is performing.

It is possible be explicit about what type to return, but generally it not necessary.

public PartialViewResult PopulateFoods ()
{

IEnumerable<Food> foodList = GetAll();

// Renders a partial view, which defines a section of a view that can be rendered inside
another view.

return PartialView ("_foodTable", foodVms) ;

https://riptutorial.com/ 13

RedirectResult

public ActionResult Index ()
{

//Redirects to another action method by using its URL.
return new RedirectResult ("http://www.google.com") ;

Action methods typically return a result that is known as an action result. The ActionResult class is

the base class for all action results. The Actioninvoker decide which type of action result to return
based on the task that the action method is performing.

It is possible be explicit about what type to return, but generally it not necessary.

public RedirectResult Index ()
{

//Redirects to another action method by using its URL.
return new RedirectResult ("http://www.google.com") ;

RedirectToRouteResult

public ActionResult PopulateFoods ()
{
// Redirects to another action method.

In this case the index method
return RedirectToAction ("Index");

Action methods typically return a result that is known as an action result. The ActionResult class is

the base class for all action results. The Actioninvoker decidebl which type of action result to
return based on the task that the action method is performing.

It is possible be explicit about what type to return, but generally it not necessary.

public RedirectToRouteResult PopulateFoods ()
{
// Redirects to another action method.

In this case the index method
return RedirectToAction ("Index");

In case you want to redirect to another action with parameter - you can use RedirectToAction
overload:

public ActionResult SomeActionWithParameterFromThisController (string parameterName)

{
// Some logic

return RedirectToAction ("SomeActionWithParameterFromThisController", new { parameterName
parameter });

https://riptutorial.com/ 14

https://msdn.microsoft.com/en-us/library/system.web.mvc.controller.redirecttoaction

ContentResult

public ActionResult Hello ()
{

// Returns a user—-defined content type,

in this case a string.
return Content ("hello world!");

Action methods typically return a result that is known as an action result. The ActionResult class is

the base class for all action results. The Actioninvoker decide which type of action result to return
based on the task that the action method is performing.

It is possible be explicit about what type to return, but generally it not necessary.

public ContentResult Hello ()
{

// Returns a user—-defined content type,

in this case a string.
return Content ("hello world!");

You can know more about it here: Asp.Net Mvc: ContentResult vs. string

JsonResult

public ActionResult LoadPage ()
{

Student result = getFirst();

//Returns a serialized JSON object.

return Json(result, JsonRequestBehavior.AllowGet) ;

Action methods typically return a result that is known as an action result. The ActionResult class is

the base class for all action results. The Actioninvoker decide which type of action result to return
based on the task that the action method is performing.

It is possible be explicit about what type to return, but generally it not necessary.

public JsonResult LoadPage ()
{

Student result = getFirst();

//Returns a serialized JSON object.

return Json(result, JsonRequestBehavior.AllowGet) ;

Read ActionResult online: https://riptutorial.com/asp-net-mvc/topic/6487/actionresult

https://riptutorial.com/ 15

http://stackoverflow.com/questions/18482293/asp-net-mvc-contentresult-vs-string
https://riptutorial.com/asp-net-mvc/topic/6487/actionresult

C_hapter 5: ActionResult

Syntax

 // ActionResult method returns an instance that derives from ActionResult. You are able to
create action method that can return any instance that is wrapped in appropriate
ActionResult type.

 //Built-in ActionResult return types are:
 View(); // ViewResult renders a view as a WebPage

» PartialView(); // PartialViewResult renders a partial view, which can be used as a part of
another view.

» Redirect(); // RedirectResult redirects to another action method by using its URL.

» RediectToAction(); RedirectToRoute(); // RedirectToRouteResult redirects to another action

method.
» Content(); // ContentResult returns a user-defined content-type.
» Json(); // JsonResult returns a serialized JSON object.
« JavaScript(); // JavaScriptResult returns a script that can be executed on client side.
» File(); // FileResult returns a binary output to write to the reponse.

» /I EmptResult represents a return value that is used if action method must return a null
result.

Examples

Action Methods

When user enters an URL, for example: hitp://example-website.com/Example/HellowWorld, MVC
application will use the routing rules to parse this url and extract the subpath, that will determine
the controller, action and possible parameters. For the above url, the result will be
/Example/HelloWorld, which by default routing rules results provides the name of the controller:
Exmaple and the name of the action: HelloWorld.

public class ExampleController: Controller

{
public ActionResult HelloWorld()

{
ViewData ["ExampleData"] = "Hello world!";
return View () ;

https://riptutorial.com/

16

http://example-website.com/Example/HelloWorld

The above ActionResult method "HellowWorld" will render the view called HelloWorld, where we

can then use the data from ViewData.

Mapping Action-Method Parameters

If there would be another value in the URL like: /Example/Processinput/2, the routing rules will

threat the last number as a parameter passed into the action Processinput of controller Example.

public ActionResult ProcessInput (int number)

{

ViewData["OutputMessage"] = string.format ("The number you entered is: {0}", number);

return View () ;

Calling An ActionResult In Another ActionResult
We can call an action result in another action result.

public ActionResult Actionl ()

{
ViewData ["OutputMessage"] = "Hello World";
return RedirectToAction ("Action2", "ControllerName");
//this will go to second action;

public ActionResult Action2 ()
{
return View () ;
//this will go to Action2.cshtml as default;

Read ActionResult online: https://riptutorial.com/asp-net-mvc/topic/6635/actionresult

https://riptutorial.com/

17

https://riptutorial.com/asp-net-mvc/topic/6635/actionresult

C_hapter 6: Areas

Introduction

What is area?

An area is a smaller unit in MVC application which used as a way to separate large amount of
application modules into functional groups. An application can contain multiple areas which stored
in Areas folder.

Each area can contain different models, controllers and views depending on requirements. To use
an area, it is necessary to register the area name in routecontig and define route prefix for it.

Remarks

if you want to go to this area through your default controller

return RedirectToAction ("Index","Home",new{area="areaname"});

Examples

Create a new area

Right click on your project folder/name and create new area and name it.

In mvc internet/empty/basic application a folder with the name of the area will be created,which will
contain three different folders named controller , model and views and a class file called

"areanameAreaRegistration.cs"
Configure RouteConfig.cs
In your App_start folder open routeconfig.cs and do this

routes.MapRoute (
name: "Default",

url: "{controller}/{action}/{id}",

defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional
b

namespaces:new []{"nameofyourproject.Controllers"}// add this line ;

)i

Create a new controller and configure areanameAreaRegistration.cs maproute

Create a new controller foreg

https://riptutorial.com/ 18

ControllerName: "Home", ActionresultName :"Index"

open AreaRegistraion.cs and add the controller name and action name to be rerouted to

context .MapRoute (
"nameofarea_default",

"nameofarea/{controller}/{action}/{id}", // url shown will be like this in
browser

new {controller="Home", action = "Index", id =
)i

UrlParameter.Optional }

Read Areas online: https://riptutorial.com/asp-net-mvc/topic/6310/areas

https://riptutorial.com/

19

https://riptutorial.com/asp-net-mvc/topic/6310/areas

C_hapter /. Asp.net mvc send mail

Examples

Contact Form In Asp MVC
1. Model :

public class ContactModel
{
[Required, Display (Name="Sender Name")]
public string SenderName { get; set; }
[Required, Display (Name = "Sender Email"), EmailAddress]
public string SenderEmail { get; set; }
[Required]
public string Message { get; set; }

2. Controller :

public class HomeController
{
[HttpPost]
[ValidateAntiForgeryToken]
public async Task<ActionResult> Contact (ContectModel model)
{
if (ModelState.IsValid)
{

var mail = new MailMessage () ;
mail.To.Add (new MailAddress (model.SenderEmail)) ;
mail.Subject = "Your Email Subject";

mail.Body = string.Format ("<p>Email From: {0} ({1})</p><p>Message:</p><p>{2}</p>",
model.SenderName, mail.SenderEmail, model.Message) ;

mail.IsBodyHtml = true;

using (var smtp = new SmtpClient ())

{
await smtp.SendMailAsync(mail);
return RedirectToAction ("SuccessMessage");

}

return View (model) ;

public ActionResult SuccessMessage ()

{

return View () ;

3. Web.Config :

<system.net>
<mailSettings>

https://riptutorial.com/

20

<smtp from="you@outlook.com">

<network host="smtp-mail.outlook.com"

port="587"
userName="youl@outlook.com"
password="password"
enableSsl="true" />

</smtp>
</mailSettings>
</system.net>

4. View :

Contact.cshtml

@model ContectModel
@using (Html.BeginForm())

{

@Html.AntiForgeryToken ()
<h4>Send your comments.</h4>

<hr />
<div class="form-group">
@Html.LabelFor (m => m.SenderName, new { Qclass = "col-md-2 control-label" })
<div class="col-md-10">
@Html.TextBoxFor (m => m.SenderName, new { @class = "form-control" })
@Html.ValidationMessageFor (m => m.SenderName)
</div>
</div>
<div class="form-group">
@Html.LabelFor (m => m.SenderEmail, new { @class = "col-md-2 control-label" 1})
<div class="col-md-10">
@Html.TextBoxFor (m => m.SenderEmail, new { @class = "form-control" })
@Html.ValidationMessageFor (m => m.SenderEmail)
</div>
</div>
<div class="form-group">
@Html.LabelFor (m => m.Message, new { @class = "col-md-2 control-label" })
<div class="col-md-10">
@Html.TextAreaFor (m => m.Message, new { @class = "form-control" })
@Html.ValidationMessageFor (m => m.Message)
</div>
</div>

<div class="form-group">
<div class="col-md-offset-2 col-md-10">
<input type="submit" class="btn btn-default" value="Send" />
</div>
</div>

SuccessMessage.cshtml

<h2>Your message has been sent</h2>

Sending Email From Class

This way can be so helpfull, but, some people (like me) are afreak of repeat code, and like you are
showin us, it means that | need to create a contact controller with the same code on each proyect

https://riptutorial.com/ 21

that we have, so, | thing that this can be helpfull too

This is my class, that can be on a DLL or whatever

public class Emails
{
public static void SendHtmlEmail (string receiverEmail, string subject, string body,
bool Ssl = false)
{
//Those are read it from webconfig or appconfig
var client = new SmtpClient (ConfigurationManager.AppSettings["MailServer"],
Convert.ToIntl6

(ConfigurationManager.AppSettings["MailPort"]))

Credentials = new
NetworkCredential (ConfigurationManager.AppSettings["MailSender"],
ConfigurationManager.AppSettings["MailSenderPassword"]),
EnableSsl = Ssl
}i

MailMessage message = new MailMessage();

message.From = new MailAddress (ConfigurationManager.AppSettings["MailSender"]);
message.To.Add (receiverEmail) ;

// message.To.Add ("sgermosen@praysoft.net");

message.Subject = subject;

message.IsBodyHtml = true;

message.Body = body;

client.Send(message) ;

like you see it will read from the webconfig, so, we need to configured it, this configuration is for
Gmail, but, every host have their own configuration

<appSettings>
<add key="webpages:Version" value="3.0.0.0" />
<add key="webpages:Enabled" value="false" />
<add key="ClientValidationEnabled" value="true" />
<add key="UnobtrusiveJavaScriptEnabled" value="true" />
<add key="AdminUser" value="sgrysoft@gmail.com" />
<add key="AdminPassWord" value="123456789" />
<add key="SMTPName" value="smtp.gmail.com" />
<add key="SMTPPort" value="587" />

</appSettings>

Read Asp.net mvc send mail online: https://riptutorial.com/asp-net-mvc/topic/9736/asp-net--mvc-
send-mail

https://riptutorial.com/

https://riptutorial.com/asp-net-mvc/topic/9736/asp-net--mvc-send-mail
https://riptutorial.com/asp-net-mvc/topic/9736/asp-net--mvc-send-mail

C_hapter 8: Automatic client-side validation
from attributes

Remarks

By default, Safari does not enforce HTML5 element validation. You need to override this manually

using other means.

Examples
Model

public class UserModel

{

[Required]
[StringLength (6, MinimumLength = 3)]
[RegularExpression (@" (\S)+", ErrorMessage = "White space is not allowed")]

public string UserName { get; set; }

[Required]
[StringLength (8, MinimumLength = 3)]
public string FirstName { get; set; }

[Required]
[StringLength (9, MinimumLength = 2)]
public string LastName { get; set; }

[Required]
public string City { get; set; }

web.config settings

<appSettings>
<add key="ClientValidationEnabled" value="true"/>
<add key="UnobtrusiveJavaScriptEnabled" value="true"/>
</appSettings>

Required Nuget Packages

<package id="jQuery" version="1.10.2" targetFramework="net452" />
<package id="jQuery.Validation" version="1.11.1" targetFramework="net452" />
<package id="Microsoft. jQuery.Unobtrusive.Validation" version="3.2.3" targetFramework="net452"

/>

Form View

https://riptutorial.com/

23

@model WebApplication4.Models.UserModel
@f
ViewBag.Title = "Register";

<h2>@vViewBag.Title.</h2>

@Qusing (Html.BeginForm("Register", "Account", FormMethod.Post, new { Q@class = "form-
horizontal", role = "form" }))
{

@Html.AntiForgeryToken ()

<h4>Create a new account.</h4>

<hr />
@Html.ValidationSummary ("", new { @class = "text-danger" })
<div class="form-group">
@Html.LabelFor (m => m.FirstName, new { @class = "col-md-2 control-label" })
<div class="col-md-10">
@Html.TextBoxFor (m => m.FirstName, new { @class = "form-control" })
@Html.ValidationMessageFor (m=>m.FirstName)
</div>
</div>
<div class="form-group">
@Html.LabelFor (m => m.LastName, new { @class = "col-md-2 control-label" 1})
<div class="col-md-10">
@Html.TextBoxFor (m => m.LastName, new { Q@Qclass = "form-control" })
@Html.ValidationMessageFor (m => m.LastName)
</div>
</div>
<div class="form-group">
@Html.LabelFor (m => m.UserName, new { @class = "col-md-2 control-label" })
<div class="col-md-10">
@Html.TextBoxFor (m => m.UserName, new { @Qclass = "form-control" })
@Html.ValidationMessageFor (m => m.UserName)
</div>
</div>

<div class="form-group">
<div class="col-md-offset-2 col-md-10">
<input type="submit" class="btn btn-default" value="Register" />
</div>
</div>

@section Scripts {
@Scripts.Render ("~/bundles/jqueryval")

Bundle configuration

public class BundleConfig
{

public static void RegisterBundles (BundleCollection bundles)
{
bundles.Add (new ScriptBundle ("~/bundles/jquery") .Include (
"~/Scripts/jquery-{version}.js"));

bundles.Add (new ScriptBundle ("~/bundles/jqueryval") .Include (
"~/Scripts/jquery.validate*"));

https://riptutorial.com/

Global.asax.cs

public class MvcApplication : System.Web.HttpApplication
{
protected void Application_Start ()
{
AreaRegistration.RegisterAllAreas () ;
FilterConfig.RegisterGlobalFilters (GlobalFilters.Filters);
RouteConfig.RegisterRoutes (RouteTable.Routes) ;

// Need to include your bundles
BundleConfig.RegisterBundles (BundleTable.Bundles) ;

Read Automatic client-side validation from attributes online: https://riptutorial.com/asp-net-
mvc/topic/6044/automatic-client-side-validation-from-attributes

https://riptutorial.com/

25

https://riptutorial.com/asp-net-mvc/topic/6044/automatic-client-side-validation-from-attributes
https://riptutorial.com/asp-net-mvc/topic/6044/automatic-client-side-validation-from-attributes

C_hapter 9: Bundling and Minification

Examples
Minification

The minification is used to reduce the size of CSS and Javascript files to speed up download
times. This process is done by removing all of the unnecessary white-space, comments, and any
other non-essential content from the files.

This process is done automatically when using a scripteundie OF @ styleBundle Object. If you need
to disable it, you have to use a basic sundie Object.

Example using Minification

The following code uses preprocessor directives to apply bundling only during releases in order to
allow for easier debugging during non-releases (as non-bundled files are typically easier to
navigate through) :

public static void RegisterBundles (BundleCollection bundles)
{
#i1if DEBUG
bundles.Add (new Bundle ("~/bundles/jquery") .Include ("~/Scripts/jquery—{version}.js"));
bundles.Add (new Bundle ("~/Content/css") .Include ("~/Content/site.css"));
#else
bundles.Add (new ScriptBundle ("~/bundles/jquery") .Include ("~/Scripts/jquery-
{version}.js"));
bundles.Add (new StyleBundle ("~/Content/css").Include ("~/Content/site.css"));
#endif

Script and Style Bundles
The following is the default code snippet for the BundleConfig.cs file.

using System.Web.Optimization;

public class BundleConfig

{
// For more information on Bundling, visit http://go.microsoft.com/fwlink/?LinkId=254725

public static void RegisterBundles (BundleCollection bundles)
{
bundles.Add (new ScriptBundle ("~/bundles/jquery") .Include (
"~/Scripts/jquery-{version}.js"));

// Use the development version of Modernizr to develop with and learn from. Then, when
you're
// ready for production, use the build tool at http://modernizr.com to pick only the tests

you need.
bundles.Add (new ScriptBundle ("~/bundles/modernizr") .Include (

https://riptutorial.com/ 26

"~/Scripts/modernizr-*"));
bundles.Add (new StyleBundle ("~/Content/css").Include("~/Content/site.css"));

bundles.Add (new StyleBundle ("~/Content/themes/base/css") .Include (
"~/Content/themes/base/jquery.ui.core.css",
"~/Content/themes/base/jquery.ui.resizable.css",

Bundles are registered in the Global.asax file inside the Application_Start() method:

using System.Web.Optimization;

protected void Application_Start ()

{
BundleConfig.RegisterBundles (BundleTable.Bundles) ;

Bundles should be rendered in your Views as so:

@using System.Web.Optimization

@Scripts.Render ("~/bundles/jquery")
@Scripts.Render ("~/bundles/modernizr")
@Styles.Render ("~/Content/css")
@Styles.Render ("~/Content/themes/base/css")

Note that bundling does not occur when you are in development mode (where the compilation
Element in the Web.config file is set to debug="true"). Instead, the Render statements in your
Views will include each individual file in a non-bundled, non-minified format, for ease of debugging.

Once the application is in production mode (where the compilation Element in the Web.config file
is set to debug="false"), bundling will take place.

This can lead to complications for scripts that reference relative paths of other files, such as
references to Twitter Bootstrap's icon files. This can be addressed by using
System.Web.Optimization's CssRewriteUrITransform class:

bundles.Add (new StyleBundle ("~/bundles/css") .Include (
"~/Content/css/*.css", new CssRewriteUrlTransform()));

The CssRewriteUrlTransform class will rewrite relative Urls within the bundled files to absolute
paths, so that the references will remain intact after the calling reference is moved to the location
of the bundle (e.g. using the above code, moving from "~/Content/css/bootstrap.css” to
"~/bundles/css/bootstrap.css").

Read Bundling and Minification online: https://riptutorial.com/asp-net-mvc/topic/1959/bundling-
and-minification

https://riptutorial.com/ 27

https://riptutorial.com/asp-net-mvc/topic/1959/bundling-and-minification
https://riptutorial.com/asp-net-mvc/topic/1959/bundling-and-minification

C_hapter 10: CRUD operation

Introduction

CRUD Operation refers to classic (create, read, update, delete) operations as it pertains to data.

In ASP MVC context there are several ways to CRUD your data using Models and subsequently
views, Controllers.

One simple way is to make use of the scaffolding feature provided by the Visual studio templates
and customize to your needs.

Please keep in mind that CRUD is very broadly defined and it has many variations to suit your
requirements. For e.g. Database first, Entity first etc.

Remarks

For simplicity sake, this CRUD operation uses a entity framework context in the controller. It is not
a good practice, but it is beyond this topic's scope. Click in entity framework if you want to learn
more about it.

Examples

Create - Controller Part

To implement the create functionality we need two actions: GET and POST.

1. The GET action used to return view which will show a form allowing user to input data using
HTML elements. If there are some default values to be inserted before user adding any data,
it should be assigned to the view model properties on this action.

2. When the user fills the form and clicks the "Save" button we will be dealing with data from
the form. Because of that now we need the POST action. This method will be responsible for
managing data and saving it to database. In case of any errors, the same view returned with
stored form data & error message explains what problem occurs after submit action.

We'll implement these two steps within two Create() methods within our controller class.

// GET: Student/Create
// When the user access this the link ~/Student/Create a get request is made to controller
Student and action Create, as the page just need to build a blank form, any information is
needed to be passed to view builder
public ActionResult Create ()
{
// Creates a ViewResult object that renders a view to the response.
// no parameters means: view = default in this case Create and model = null

return View () ;

https://riptutorial.com/ 28

http://www.riptutorial.com/topic/815

// POST: Student/Create
[HttpPost]
// Used to protect from overposting attacks, see
http://stackoverflow.com/documentation/asp.net-mvc/1997/html-antiforgerytoke for details
[ValidateAntiForgeryToken]
// This is the post request with forms data that will be bind the action, if in the data
post request have enough information to build a Student instance that will be bind
public ActionResult Create (Student student)
{
try
{
//Gets a value that indicates whether this instance received from the view is valid.
if (ModelState.IsValid)
{
// Adds to the context
db.Students.Add (student) ;
// Persist the data
db.SaveChanges () ;
// Returns an HTTP 302 response to the browser, which causes the browser to
make a GET request to the specified action, in this case the index action.
return RedirectToAction ("Index");

}

catch

{

// Log the error (uncomment dex variable name and add a line here to write a log).
ModelState.AddModelError ("", "Unable to save changes. Try again, and if the
problem persists see your system administrator.");
}
// view = default in this case Create and model = student

return View (student) ;

Create - View Part

@model ContosoUniversity.Models.Student

//The Html.BeginForm helper Writes an opening <form> tag to the response. When the user
submits the form, the request will be processed by an action method.
@using (Html.BeginForm())
{

//Generates a hidden form field (anti-forgery token) that is validated when the form is
submitted.

@Html.AntiForgeryToken ()

<div class="form-horizontal">
<h4>Student</h4>
<hr />

//Returns an unordered list (ul element) of validation messages that are in the
ModelStateDictionary object.
@Html.ValidationSummary (true, "", new { @class = "text-danger" })

<div class="form-group">
//Returns an HTML label element and the property name of the property that is
represented by the specified expression.
@Html.LabelFor (model => model.LastName, htmlAttributes: new { @class = "control-label

https://riptutorial.com/ 29

col-md-2" })

<div class="col-md-10">
//Returns an HTML input element for each property in the object that is
represented by the Expression expression.
@Html.EditorFor (model => model.LastName, new { htmlAttributes = new { @class =
"form-control" } })

//Returns the HTML markup for a validation-error message for each data field that
is represented by the specified expression.
@Html.ValidationMessageFor (model => model.LastName, "", new { @class = "text-
danger" })
</div>
</div>

<div class="form-group">
@Html.LabelFor (model => model.FirstMidName, htmlAttributes: new { @class = "control-
label col-md-2" })
<div class="col-md-10">
@Html.EditorFor (model => model.FirstMidName, new { htmlAttributes = new { @class =
"form-control" } })
@Html.ValidationMessageFor (model => model.FirstMidName, "", new { @class = "text-
danger" })
</div>
</div>

<div class="form-group">
@Html.LabelFor (model => model.EnrollmentDate, htmlAttributes: new { @class = "control-
label col-md-2" })
<div class="col-md-10">
@Html.EditorFor (model => model.EnrollmentDate, new { htmlAttributes = new { @class
= "form-control"™ } })
@Html.ValidationMessageFor (model => model.EnrollmentDate, "", new { @class =
"text-danger" })
</div>
</div>

<div class="form-group">
<div class="col-md-offset-2 col-md-10">
<input type="submit" value="Create" class="btn btn-default" />

</div>
</div>
</div>
}
<div>

//Returns an anchor element (a element) the text is Back to List and action is Index
@Html.ActionLink ("Back to List", "Index")
</div>

Details - Controller part

By the url ~/student /petails/s being: (~: site root, Student: Controller, Details: Action, 5: student
id), it is possible to retrieve the student by its id.

// GET: Student/Details/5
public ActionResult Details (int? id)
{

// it good practice to consider that things could go wrong so,it is wise to have a

https://riptutorial.com/ 30

validation in the controller
if (id == null)
{
// return a bad request
return new HttpStatusCodeResult (HttpStatusCode.BadRequest) ;
}
Student student = db.Students.Find(id) ;
if (student == null)
{
// if doesn't found return 404
return HttpNotFound() ;
}

return View (student) ;

Details - View part

// Model is the class that contains the student data send by the controller and will be
rendered in the view
@model ContosoUniversity.Models.Student

<h2>Details</h2>

<div>
<h4>Student</h4>

<hr />

<dl class="dl-horizontal">
<dt>

//Gets the display name for the model.
@Html.DisplayNameFor (model => model.LastName)
</dt>

<dd>
//Returns HTML markup for each property in the object that is represented by the
Expression expression.
@Html .DisplayFor (model => model.LastName)

</dd>
<dt>

@Html.DisplayNameFor (model => model.FirstMidName)
</dt>
<dd>

@Html .DisplayFor (model => model.FirstMidName)
</dd>
<dt>

@Html.DisplayNameFor (model => model.EnrollmentDate)
</dt>
<dd>

@Html.DisplayFor (model => model.EnrollmentDate)
</dd>
<dt>

@Html.DisplayNameFor (model => model.Enrollments)
</dt>
<dd>

<table class="table">

<tr>

https://riptutorial.com/

31

<th>Course Title</th>
<th>Grade</th>

</tr>

@foreach (var item in Model.Enrollments)

{

<tr>
<td>
@Html .DisplayFor (modelItem => item.Course.Title)
</td>
<td>
@Html .DisplayFor (modelItem => item.Grade)
</td>
</tr>
}
</table>
</dd>
</dl>
</div>

<p>
//Returns an anchor element (a element) the text is Edit, action is Edit and the route
value is the model ID property.
@Html.ActionLink ("Edit", "Edit", new { id = Model.ID }) |
@Html.ActionLink ("Back to List", "Index")

</p>

Edit - Controller part

// GET: Student/Edit/5
// It is receives a get http request for the controller Student and Action Edit with the id
of 5
public ActionResult Edit (int? id)
{

// it good practice to consider that things could go wrong so,it is wise to have a
validation in the controller
if (id == null)
{
// returns a bad request
return new HttpStatusCodeResult (HttpStatusCode.BadRequest) ;

// It finds the Student to be edited.
Student student = db.Students.Find(id) ;
if (student == null)

{
// if doesn't found returns 404

return HttpNotFound() ;

}
// Returns the Student data to fill out the edit form values.

return View (student) ;

This method is very similar to the details action method, which is a good candidate to a
refactoring, but it out of scope of this topic.

// POST: Student/Edit/5
[HttpPost]

//used to To protect from overposting attacks more details see

https://riptutorial.com/

http://stackoverflow.com/documentation/asp.net-mvc/1997/html-antiforgerytoke
[ValidateAntiForgeryToken]

//Represents an attribute that is used for the name of an action.
[ActionName ("Edit")]
public ActionResult Edit (Student student)
{
try
{
//Gets a value that indicates whether this instance received from the view is
valid.
if (ModelState.IsValid)
{

// Two thing happens here:

// 1) db.Entry(student) -> Gets a DbEntityEntry object for the student entity
providing access to information about it and the ability to perform actions on the entity.

// 2) Set the student state to modified, that means that the student entity is
being tracked by the context and exists in the database, and some or all of its property
values have been modified.

db.Entry (student) .State = EntityState.Modified;

// Now just save the changes that all the changes made in the form will be
persisted.
db.SaveChanges () ;

// Returns an HTTP 302 response to the browser, which causes the browser to
make a GET request to the specified action, in this case the index action.
return RedirectToAction ("Index");

}
catch
{
//Log the error add a line here to write a log.
ModelState.AddModelError ("", "Unable to save changes. Try again, and if the
problem persists, see your system administrator.");

}

// return the invalid student instance to be corrected.
return View (student) ;

Delete - Controller part

Is good practice to resist the temptation of doing the delete action in the get request. It would be a
huge security error, it has to be done always in the post method.

// GET: Student/Delete/5
public ActionResult Delete (int? id)
{
// it good practice to consider that things could go wrong so,it is wise to have a
validation in the controller
if (id == null)
{
// returns a bad request
return new HttpStatusCodeResult (HttpStatusCode.BadRequest) ;

// It finds the Student to be deleted.
Student student = db.Students.Find(id) ;

https://riptutorial.com/ 33

if (student == null)

{
// if doesn't found returns 404
return HttpNotFound() ;

}
// Returns the Student data to show the details of what will be deleted.

return View (student) ;

// POST: Student/Delete/5
[HttpPost]

//Represents an attribute that is used for the name of an action.
[ActionName ("Delete")]

//used to To protect from overposting attacks more details see
http://stackoverflow.com/documentation/asp.net-mvc/1997/html-antiforgerytoke
[ValidateAntiForgeryToken]
public ActionResult Delete (int id)
{
try
{
// Finds the student
Student student = db.Students.Find(id) ;

// Try to remove it
db.Students.Remove (student) ;

// Save the changes
db.SaveChanges () ;
}
catch
{
//Log the error add a line here to write a log.
ModelState.AddModelError ("", "Unable to save changes. Try again, and if the
problem persists, see your system administrator.");

}

// Returns an HTTP 302 response to the browser, which causes the browser to make a GET
request to the specified action, in this case the index action.
return RedirectToAction ("Index");

Read CRUD operation online: https://riptutorial.com/asp-net-mvc/topic/6380/crud-operation

https://riptutorial.com/

34

https://riptutorial.com/asp-net-mvc/topic/6380/crud-operation

C_hapter 11: Data annotations

Introduction

We can add validations to our application by adding Data Annotations to our model classes. Data
Annotations allow us to describe the rules we want applied to our model properties, and ASP.NET
MVC will take care of enforcing them and displaying appropriate messages to users.

Examples

Basic validation attributes used in ViewModel

Model

using System.ComponentModel.DataAnnotations;
public class ViewModel
{
[Required (ErrorMessage="Name is required")]
public string Name { get; set; }
[StringlLength (14, MinimumLength = 14, ErrorMessage = "Invalid Phone Number")]
[Required (ErrorMessage="Phone Number is required")]

public string PhoneNo { get; set; }

[Range (typeof (decimal), "O0", "150")]
public decimal? Age { get; set; }

[RegularExpression (@"~\d{5} (-\d{4})?$", ErrorMessage = "Invalid Zip Code.")]
public string ZipCode {get;set;}

[EmailAddress (ErrorMessage = "Invalid Email Address")]
public string Email { get; set; }

[Editable (false)]
public string Address{ get; set; }

View

// Include Jquery and Unobstructive Js here for client side validation
@using (Html.BeginForm("Index", "Home") {

@Html.TextBoxFor (model => model.Name)
@Html.ValidationMessageFor (model => model.Name)

@Html.TextBoxFor (model => model.PhoneNo)
@Html.ValidationMessageFor (model => model.PhoneNo)

https://riptutorial.com/ 35

@Html.TextBoxFor (model => model.Age)
@Html.ValidationMessageFor (model => model.Age)

@Html.TextBoxFor (model => model.ZipCode)
@Html.ValidationMessageFor (model => model.ZipCode)

@Html.TextBoxFor (model => model.Email)
@Html.ValidationMessageFor (model => model.Email)

@Html.TextBoxFor (model => model.Address)
@Html.ValidationMessageFor (model => model.Address)

<input type="submit" value="submit" />

Controller

public ActionResult Index (ViewModel _Model)

{
// Checking whether the Form posted is valid one.
1f (ModelState.IsValid)

{
// your model is valid here.
// perform any actions you need to, like database actions,
// and/or redirecting to other controllers and actions.

}

else

{
// redirect to same action
return View (_Model) ;

Remote validation

Remote Validation used to check whether the content enter
in the input control is valid or not by sending an ajax request
to server side to check it.

Working

The remoteattribute WOrks by making an AJAX call from the client to a controller action with the
value of the field being validated. The controller action then returns a gsonresult response
indicating validation success or failure. Returning true from your action indicates that validation
passed. Any other value indicates failure. If you return ra1se, the error message specified in the
attribute is used. If you return anything else such as a string or even an integer, it will be displayed
as the error message. Unless you need your error message to be dynamic, it makes sense to
return true or false and let the validator use the error message specified on the attribute.

ViewModel

https://riptutorial.com/ 36

public class ViewModel
{

[Remote ("IsEmailAvailable", "Group", HttpMethod = "POST", ErrorMessage = "Email already
exists. Please enter a different email address.")]

public string Email{ get; set; }

Controller

[HttpPost]

public JsonResult IsEmailAvailable(string Email)

{
// Logic to check whether email is already registered or Not.
var emailExists = IsEmailRegistered();
return Json(!emailExists);

Live Demo Fiddle

You can pass additional properties of the model to the controller method using the
AdditionalFields property of remoteattribute. A typical scenario would be to pass the ID property of
the model in an 'Edit' form, so that the controller logic can ignore values for the existing record.

Model

public int? ID { get; set; }

[Display (Name = "Email address")]

[DataType (DataType.EmailAddress)]

[Required (ErrorMessage = "Please enter you email address")]

[Remote ("IsEmailAvailable", HttpMethod="Post", AdditionalFields="ID", ErrorMessage = "Email

already exists. Please enter a different email address.")]
public string Email { get; set; }

Controller

[HttpPost]
public ActionResult Validate(string email, int? id)
{
if (id.HasValue)
{
return Json(!db.Users.Any(x => x.Email == email && x.ID != id);

}

else

{

return Json(!db.Users.Any(x => x.Email == email);

Working Demo - Additional Fields
Additional Note

The default error message is understandably vague, so always remember to override the default
error message when using the remoteattribute.

https://riptutorial.com/ 37

https://dotnetfiddle.net/HDoyF3
https://dotnetfiddle.net/59L3Ca

RequiredAttribute

The ==quirea attribute specifies that a property is required. An error message can be specified on
USing the errorves sage property on the attribute.

First add the namespace:

using System.ComponentModel.DataAnnotations;

And apply the attribute on a property.

public class Product

{

[Required (ErrorMessage = "The product name is required.")]
public string Name { get; set; }

[Required (ErrorMessage = "The product description is required.")]
public string Description { get; set; }

It is also possible to use resources in the error message for globalized applications. In this case,
the orrorvessageresourcenane must be specified with the resource key of the resource class (resx
f||6) that must be Setted on the ErrorMessageResourceType.

public class Product

{

[Required (ErrorMessageResourceName = "ProductNameRequired",
ErrorMessageResourceType = typeof (ResourceClass))]
public string Name { get; set; }

[Required (ErrorMessageResourceName = "ProductDescriptionRequired",

ErrorMessageResourceType = typeof (ResourceClass))]
public string Description { get; set; }

StringLengthAttribute

The st ringrengtn attribute specifies the minimum and maximum length of characters that are
allowed in a data field. This attribute can be applied on properties, public fields and parameters.
The error message must be specified on the =--or1essa0e property on the attribute. The properties
MinimumLength @nd vaximumiength Specifies the minimum and maximum respectively.

First add the namespace:

using System.ComponentModel.DataAnnotations;

And apply the attribute on a property.

public class User

{

// set the maximum

https://riptutorial.com/ 38

https://msdn.microsoft.com/library/system.componentmodel.dataannotations.requiredattribute(v=vs.110).aspx
https://msdn.microsoft.com/library/system.componentmodel.dataannotations.validationattribute.errormessage(v=vs.110).aspx
https://msdn.microsoft.com/library/system.componentmodel.dataannotations.validationattribute.errormessageresourcename(v=vs.110).aspx
https://msdn.microsoft.com/library/system.componentmodel.dataannotations.validationattribute.errormessageresourcetype(v=vs.110).aspx
https://msdn.microsoft.com/library/system.componentmodel.dataannotations.stringlengthattribute(v=vs.110).aspx
https://msdn.microsoft.com/library/system.componentmodel.dataannotations.validationattribute.errormessage(v=vs.110).aspx
https://msdn.microsoft.com/library/system.componentmodel.dataannotations.stringlengthattribute.minimumlength(v=vs.110).aspx
https://msdn.microsoft.com/library/system.componentmodel.dataannotations.stringlengthattribute.maximumlength(v=vs.110).aspx

[StringLength (20, ErrorMessage = "The username cannot exceed 20 characters. ")]
public string Username { get; set; }

[StringLength (MinimumLength = 3, MaximumLength = 16, ErrorMessage = "The password must have
between 3 and 16 characters.")]
public string Password { get; set; }

It is also possible to use resources in the error message for globalized applications. In this case,
the orrormessageresourcenane must be specified with the resource key of the resource class (resx
f|le) that must be Setted on the ErrorMessageResourceType.

public class User
{
[StringLength (20, ErrorMessageResourceName = "StringLength",
ErrorMessageResourceType = typeof (ResoucesKeys))]
public string Username { get; set; }

[StringLength (MinimumLength = 3,
MaximumLength = 16,
ErrorMessageResourceName = "StringLength",

ErrorMessageResourceType = typeof (ResoucesKeys))]
public string Password { get; set; }

Range Attribute

The =-n5e attribute can decorate any properties or public fields and specifies a range that a
numerical field must fall between to be considered valid.

[Range (minimumValue, maximumValue)]
public int Property { get; set; }

Additionally, it accepts an optional errorvessage property that can be used to set the message
received by the user when invalid data is entered :

[Range (minimumValue, maximumValue, ErrorMessage = "{your-error-message}")]
public int Property { get; set; }

Example

[Range (1,100, ErrorMessage = "Ranking must be between 1 and 100.")]
public int Ranking { get; set; }

RegularExpression Attribute

The recularsxpression) attribute can decorate any properties or public fields and specifies a
regular expression that must be matched for the property be considered valid.

[RegularExpression (validationExpression)]
public string Property { get; set; }

https://riptutorial.com/ 39

https://msdn.microsoft.com/library/system.componentmodel.dataannotations.validationattribute.errormessageresourcename(v=vs.110).aspx
https://msdn.microsoft.com/library/system.componentmodel.dataannotations.validationattribute.errormessageresourcetype(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.rangeattribute(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.regularexpressionattribute(v=vs.110).aspx

Additionally, it accepts an optional errormessage property that can be used to set the message
received by the user when invalid data is entered :

[RegularExpression (validationExpression, ErrorMessage = "{your—-error-message}")]
public string Property { get; set; 1}

Example(s)

[RegularExpression(@""[a-z]{8,16}?$", ErrorMessage = "A User Name must consist of 8-16
lowercase letters")]

public string UserName{ get; set; }

[RegularExpression (@""\d{5} (-\d{4})?$", ErrorMessage = "Please enter a valid ZIP Code (e.g.
12345, 12345-1234)")]

public string ZipCode { get; set; }

Compare Attribute

The conpare attribute compares two properties of a model.
The error message can be specified using property = -oruessage, OF using resource files.

To use compare attribute include using for the following namespace:

using System.ComponentModel.DataAnnotations;

Then you can use the attribute in your model:

public class RegisterModel

{
public string Email { get; set; }

[Compare ("Email", ErrorMessage = "The Email and Confirm Email fields do not match.")]
public string ConfirmEmail { get; set; }

When this model is validates, if emai1 and confirmEmail have different values, validation will falil.
Localized error messages

Just like with all validation attributes, it is possible to use error messages from resource files. In
this sample the error message will be loaded from resource file resources, resource name is

CompareValidationMessage.

public class RegisterModel

{
public string Email { get; set; }

["Email", ErrorMessageResourceType = typeof (Resources), ErrorMessageResourceName =
"CompareValidationMessage")]
public string ConfirmEmail { get; set; }

https://riptutorial.com/

https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.compareattribute(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.validationattribute.errormessage(v=vs.110).aspx

Avoid strings in property names

To avoid using string for property value, in C# 6+ you can use »-n-or keyword:

public class RegisterModel

{
public string Email { get; set; }

[Compare (nameof (Email), ErrorMessage = "The Email and Confirm Email fields do not
match.")]
public string ConfirmEmail { get; set; }

Placeholders in error messages

You can use placeholders in your error messages. Placeholder (o} is replaced with the display
name of current property and (1} is replaced with display name of related property:

public class RegisterModel

{
[Display (Name = "Email")]
public string Email { get; set; }

[Display (Name = "Confirm Email")]
[Compare ("Email", ErrorMessage = "The '{1l}' and '{0}' fields do not match.")]
public string ConfirmEmail { get; set; }

If validation of the model fails, the error message will be

The 'Email' and 'Confirm Email' fields do not match.
Custom Validation Attribute

When it comes to validate some rules which are not generic data validation e.g ensuring a field is
required or some range of values but they are specific to your business logic then you can create
your own Custom Validator. To create a custom validation attribute, you just need t0 inherit
ValidationAttribute Class and override itS 1svalid method. The 1sva1id method takes two
parameters, the first is an object N@amed as value and the second is @ validationContext object
named as validationContext. value fefers to the actual value from the field that your custom
validator is going to validate.

Suppose you want to validate emai1 through custom validator

public class MyCustomValidator : ValidationAttribute
{

private static string myEmail= "admin@dotnetfiddle.net";

protected override ValidationResult IsValid(object value, ValidationContext
validationContext)
{
string Email = value.ToString();
if (myEmail.Equals (Email))

https://riptutorial.com/ 41

https://msdn.microsoft.com/en-us/library/dn986596.aspx

return new ValidationResult ("Email Already Exist");
return ValidationResult.Success;

public class SampleViewModel
{
[MyCustomValidator]
[Required]
public string Email { get; set; }

public string Name { get; set; }

Here is its DotNetFiddle Demo

EDMx model - Data Annotation
Edmx model internel

public partial class ItemRequest

{
public int RequestId { get; set; }
/] ..

Adding data annotation to this - if we modify this model directly, when a update to the model is
made, the changes are lost . so

To add a attribute in this case 'Required’

Create a new class - any name Then

using System.ComponentModel;
using System.ComponentModel.DataAnnotations;

//make sure the namespace is equal to the other partial class ItemRequest
namespace MvcApplicationl.Models
{

[MetadataType (typeof (ItemRequestMetaData))]

public partial class ItemRequest

{

}

public class ItemRequestMetaData
{
[Required]
public int RequestId {get;set;}

7l ooo

or

https://riptutorial.com/

42

https://dotnetfiddle.net/s5Mi1x

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace YourApplication.Models
{
public interface IEntityMetadata
{
[Required]
Int32 Id { get; set; }

[MetadataType (typeof (IEntityMetadata))]
public partial class Entity : IEntityMetadata
{
/* Id property has already existed in the mapped class */

Data annotations for Database first implementation (model code auto-
generated)

[MetadataType (typeof (RoleMetaData))]
public partial class ROLE

{

}

public class RoleMetaData
{
[Display (Name = "Role")]
public string ROLE_DESCRIPTION { get; set; 1}

[Display (Name = "Username")]
public string ROLE_USERNAME { get; set; }

If you used database-first and your model code was auto-generated, this message will appear
above your model code:

This code was generated from a template. Manual changes to this file may cause
unexpected behavior in your application. Manual changes to this file will be overwritten
if the code is regenerated

If you want to use data-annotations and you don't want them to be over-written if you refresh the
edmx just add another a partial class to your model folder that looks like the example above.

Read Data annotations online: https://riptutorial.com/asp-net-mvc/topic/1961/data-annotations

https://riptutorial.com/

43

https://riptutorial.com/asp-net-mvc/topic/1961/data-annotations

Remarks

The whole point of Dependency Injection (DI) is to reduce code coupling. Imagine any kind if
interaction which involves newing up something like in the "Hard coded dependency example".

A big part of writing code is the ability to test it. Every time we new up a new dependency, we
make our code difficult to test because we have no control over that dependency.

How would you test code which depends on DataTime.Now for example? It always changes so
you have no reference. This is when you inject a stable parameter as your starting point. You can
control it, you can write tests based on various values and make sure you always get the right
result.

A good option therefore is to pass an interface or an abstract class as a parameter in the
constructor DI.

An interface represents a well defined contract, you can always rely on the methods to be there
and you can always rely on the method signatures.

Once you start using DI other aspects will open up. For example, even if you pass an interface at
some point you will need a real implementation to actually do any work. This is where other
concepts appear. We can use IOC (Inversion of Control) to resolve our dependencies. This
means that we instruct our code to always use a specific implementation for any contract. Of
course there are other ways of doing this. We could always instantiate each contract with a
specific implementation and from that point onwards our code can use that part :

public ILogging Logging { get; set }
at some point we initialise it.
Logging = new FileLogging () ;
this will always work as long as our class fulfils the expected contract :
public class FileLogging : ILogging
from the initialise moment onwards we always use the Logging object. This makes lif easier

because if we ever decide to change and use a DatabaselLogging for example, we only have to
change the code in one place and this is exactly where we initialise the Logging class.

Is DI only good for testing? No, DI is important when writing maintainable code as well. It allows
the separation of concerns to be clear.

When you write any code, think ... is it testable, can | write a test, that's when injecting a DateTime

https://riptutorial.com/ 44

value instead of using DateTime.Now makes sense.

Examples

Ninject Configurations

After the install of an 10C (Inversion of Control) container, some tweaks are needed to make it

work. In this case, I'll use Ninject. In the NinjectWebCommon file, that is located in the App_Start

folder, substitute the CreateKernel method with:

private static IKernel CreateKernel ()
{
// Create the kernel with the interface to concrete bindings
var kernel = RegisterServices();
try
{

kernel.Bind<Func<IKernel>> () .ToMethod(ctx => () => new Bootstrapper () .Kernel);

kernel.Bind<IHttpModule> () .To<HttpApplicationInitializationHttpModule>();

return kernel;

}

catch

{
kernel.Dispose () ;
throw;

And the RegisterServices method with:

private static StandardKernel RegisterServices()
{
Container container = new Container();
// encapsulate the interface to concrete bindings in another class or even in
another layer
StandardKernel kernel = container.GetServices|();
return kernel;

Create a new class to to the binding that in this case is called Container:

public class Container

{
public StandardKernel GetServices()
{

// It is good practice to create a derived class of NinjectModule to organize the
binding by concerns. In this case one for the repository, one for service and one for app
service bindings

return new StandardKernel (new NinjectRepositoryModule (),

new NinjectServiceModule (),
new NinjectAppServiceModule()) ;

https://riptutorial.com/

45

Finally in each derived NinjectModule class modify the bindings overloading the Load method like:

public class NinjectRepositoryModule: NinjectModule
{
public override void Load()
{
// When we need a generic IRepositoryBase<> to bind to a generic RepositoryBase<>
// The typeof keyword is used because the target method is generic
Bind (typeof (IRepositoryBase<>)) .To(typeof (RepositoryBase<>));

// When we need a IUnitOfWorkbind to UnitOfWork concrete class that is a singleton
Bind<IUnitOfWork> () .To<UnitOfWork> () .InSingletonScope () ;

Another example of derived NinjectModule:

public class NinjectServiceModule :NinjectModule
{
public override void Load()

{

// When we need a IBenefitService to BenefitService concrete class
Bind<IBenefitService> () .To<BenefitService>();

// When we need a ICategoryService to CategoryService concrete class
Bind<ICategoryService> () .To<CategoryService> () ;

// When we need a IConditionService to ConditionService concrete class
Bind<IConditionService> () .To<ConditionService> ();

Utilization of the interfaces

In the concrete class that need the service, use the interface to access the service instead of its
implementation like:

public class BenefitAppService

{
private readonly IBenefitService _service;
public BenefitAppService (IBenefitService service)
{

_service = service;

public void Update (Benefit benefit)
{
if (benefit == null) return
_service.Update (benefit) ;
_service.Complete();

Now if you need something in the concrete class, won't interfere in the the code above. You may
change the service implementation for another completely difference, and as long its satisfies the
interface you are good to go. Also it makes it very easy to test it.

https://riptutorial.com/ 46

Constructor dependency injection

The Constructor Dependency Injection requires parameters in the constructor to inject
dependencies. So you have to pass the values when you create a new object.

public class Example
{
private readonly ILogging _logging;

public Example (ILogging logging)
{

this._logging = logging;
}

Hard coded dependency

public class Example

{
private FilelLogging _logging;

public Example ()

{
this._logging = new FileLogging() ;
}

parameter DI

public DateTime SomeCalculation ()
{

return DateTime.Now.AddDays (3);
}

VS

public DateTime SomeCalculation (DateTime inputDate)
{

return inputDate.AddDays (3);
}

Ninject Dependency Injection

Dependency resolver is used to avoid tightly-coupled classes, improve flexibility and make testing
easy. You can create your own dependency injector (not recomended) or use one of well-written
and tested dependency injectors. In this example | am going to use Ninject.

Step one: Create dependency resolver.

First of all, download Ninject from NuGet. Create folder named Infrastructure and add class named
NinjectDependencyResolver:

https://riptutorial.com/ 47

http://www.ninject.org/

using Ninject;

using System;

using System.Collections.Generic;
using System.Web.Mvc;

public class NinjectDependencyResolver
IDependencyResolver

private IKernel kernel;

public NinjectDependencyResolver ()

{
// Initialize kernel and add bindings
kernel = new StandardKernel ();
AddBindings () ;

public object GetService (Type serviceType)
{

return kernel.TryGet (serviceType);

public IEnumerable<object> GetServices (Type serviceType)

{

return kernel.GetAll (serviceType);

private void AddBindings ()
{
// Bindings added here

The MVC Framework will call the GetService and GetServices methods when it needs an insance
of a class to service an incoming request.

Step two: Register dependency resolver.

Now we have our custom dependency resolver and we need to register it in order to tell MVC
framework to use our dependency resolver. Register dependency resolver in Global.asax.cs file:

protected void Application_Start ()

{
AreaRegistration.RegisterAllAreas () ;
DependencyResolver.SetResolver (new NinjectDependencyResolver());

Step three: Add bindings.

Imagine that we have following interface and implentation:

public interface ICustomCache

{
string Info { get; }

https://riptutorial.com/ 48

public class CustomCache : ICustomCache

{
public string Info

{
get
{

return "Hello from CustomCache.";

If we want to use CustomCache in our controller without tightly-coupling our controller with
CustomCache, then we need to bind ICustomCache to CustomCache and inject it using Ninject.
First things first, bind ICustomCache to CustomCache by adding following code to AddBindings()
method of NinjectDependencyResolver:

private void AddBindings ()

{
// Bindings added here
kernel.Bind<ICustomCache> () .To<CustomCache> () ;

Then prepare your controller for injection as below:

public class HomeController : Controller

{

private ICustomCache CustomCache { get; set; }

public HomeController (ICustomCache customCacheParam)
{
if (customCacheParam == null)
throw new ArgumentNullException (nameof (customCacheParam)) ;

CustomCache = customCacheParam;

public ActionResult Index ()
{

// cacheInfo: "Hello from CustomCache."
string cacheInfo = CustomCache.Info;

return View () ;

This is example of costructor injection and it is one form of dependency injection. As you see, our
Home controller does not depend on CustomCache class itslef. If we want to use another
inplementation of ICustomCache in our application, the only thing we need to change is to binding
ICustomCache to another implentation and that is the only step we need to take. What happened
here is, MVC Framework asked our registered dependency resolver to create instance of
HomeController class via GetService method. GetService method ask Ninject kernel to create
requested object and Ninject kernel examines the type in its term and finds out that constructor of
HomeController requeires an ICustomCache and binding has already been added for

https://riptutorial.com/ 49

ICustomCache. Ninject creates instance of binded class, uses it to create HomeController and
returns it MVC Framework.

Dependency chains.

When Ninject tries to create type, it examines other depenencies between type and other types
and if there is any Ninject tries to create them also. For example, if our CustomCache class
requires ICacheKeyProvider and if bining added for ICacheKeyProvider Ninject can provide it for
our class.

ICacheKeyProvider interface and SimpleCacheKeyProvider implentation:

public interface ICacheKeyProvider

{
string GenerateKey (Type type);

public class SimpleCacheKeyProvider
ICacheKeyProvider

public string GenerateKey (Type type)

{
if (type == null)
throw new ArgumentNullException (nameof (type));

return string.Format ("{0}CacheKey", type.Name) ;

Modified CustomCache class

public class CustomCache : ICustomCache

{

private ICacheKeyProvider CacheKeyProvider { get; set; }

public CustomCache (ICacheKeyProvider keyProviderParam)

{
if (keyProviderParam == null)
throw new ArgumentNullException (nameof (keyProviderParam)) ;

CacheKeyProvider = keyProviderParam;

Add binding for ICacheKeyProvider:

private void AddBindings ()

{
// Bindings added here
kernel.Bind<ICustomCache> () .To<CustomCache> () ;
kernel.Bind<ICacheKeyProvider> () .To<SimpleCacheKeyProvider> () ;

https://riptutorial.com/

50

Now when we navigate to HomeController Ninject creates instance of SimpleCacheKeyProvider
uses it to create CustomCache and uses CustomCache instance to create HomeController.

Ninject has number of great features like chained dependency injection and you should examine
them if you want to use Ninject.

Read Dependency Injection online: https://riptutorial.com/asp-net-mvc/topic/6392/dependency-
injection

https://riptutorial.com/

51

https://riptutorial.com/asp-net-mvc/topic/6392/dependency-injection
https://riptutorial.com/asp-net-mvc/topic/6392/dependency-injection

C_hapter 13: Display and Editor templates

Introduction

When dealing with objects in an MVC app, if any object should be shown in multiple places with
the same format, we'd need some kind of standardized layout. ASP.NET MVC has made this kind
of standardization easy to do with the inclusion of display and editor templates. In short, display
and editor templates are used to standardize the layout shown to the user when editing or
displaying certain types or classes.

Examples

Display Template
Model:

public class User

{
public int ID { get; set; }
public string FirstName { get; set; }
public DateTime DateOfBirth { get; set; }

If we want to display the users in different Views, it would be better to create a standardized layout
for these users wherever they need to be displayed. We can accomplish this using display
templates.

A display template is simply a partial view that is model-bound to the object it wants to display, and
exists in the views/shared/pisplayTemplates folder (though you can also put it in
Views/ControllerName/DisplayTemplates). Further, the name of the view (by default) should be
the name of the object you want to use it as the template for.

Views/Shared/DisplayTemplates/User.cshtml

@model TemplatesDemo.Models.User

<div style="padding-bottom: 10px">
<p>ID: @Html.DisplayFor (m => m.ID)</p>
<p>Name: @Html.DisplayFor (m => m.FirstName) </p>
<p>Date of Birth: @Html.DisplayFor (m => m.DateOfBirth)</p>

</div>

<hr/>

Now, if we want to display all the users from database and show them in different Views we can
simply send the list of users to the View and and use the Display Template to show them. We can
use one of two methods to do that:

https://riptutorial.com/ 52

Html.DisplayFor ()
Html.DisplayForModel ()

pisplayFor Call the display template for the type of the property selected (e.9. #tml.pisplayFor (x =>
x.PropertyName). DisplayForModel calls the dISpIay template for the eémoge1 Of the view

View

@model IEnumerable<TemplatesDemo.Models.User>

@
ViewBag.Title = "Users";

t
<h2>Users</h2>

@Html.DisplayForModel ()

Editor Template

Display Templates can be used to standardize the layout of an object, so let's now see how we
can do the same thing for these objects when editing them. Just like display templates, there's two
ways to call editor templates for a given type:

Html.EditorFor ()
Html.EditorForModel ()

Editor templates, similarly to display templates, need to exist in either
Views/Shared/EditorTemplates or Views/ControllerName/EditorTemplates. For this demo,
we'll be creating them in the Shared folder. Again, the name of the view (by default) should be
the name of the object you want to use it as the template for.

Model

public class User

{
public int Id { get; set; }
public string Name { get; set; }
public DateTime DateOfBirth { get; set; }
public Roles Roles { get; set; }
public int RoleId { get; set; }

public class Roles

public int Id { get; set; }
public string Role { get; set; }

Say we want to be able edit any user from the database in multiple views. We will use a
ViewModel for this purpose.

ViewModel

https://riptutorial.com/ 53

public class UserEditorViewModel
{
public User User { get; set; }
public IEnumerable<Roles> Roles { get; set; }

Using this ViewModel, we will create an Editor Template

Views/Shared/EditorTemplates/UserEditorViewModel.cshtml

@model TemplatesDemo.Models.UserEditorViewModel

<div class="form-group">
@Html.DisplayNameFor (m => m.User.Id)
@QHtml.EditorFor (m => m.User.Id)
</div>
<div class="form-group">
@Html.DisplayNameFor (m => m.User.Name)
@QHtml .EditorFor (m => m.User.Name)
</div>
<div class="form-group">
@Html .DisplayNameFor (m => m.User.DateOfBirth)
@Html.EditorFor (m => m.User.DateOfBirth)
</div>
<div class="form-group">
@Html .DisplayNameFor (m => m.User.Roles.Role)
@Html .DropDownListFor (m => m.User.Roleld, new SelectlList (Model.Roles,"Id","Role"))
</div>

We will get the desired user and the list of available roles and bind them in the viewModel

UserEditorViewModel in the Controller Action and send the viewModel to the view. For simplicity,

| am initiating the viewModel from the Action

Action

public ActionResult Editor()
{

var viewModel = new UserEditorViewModel
{
User = new User
{
Id = 1,
Name = "Robert",
DateOfBirth = DateTime.Now,
RoleId =1
by
Roles = new List<Roles> ()

{

new Roles

Id = 1,
Role = "Admin"

by

new Roles

Role = "Manager"

https://riptutorial.com/

54

by

new Roles

{
Id =3,

Role "User"

bi

return View (viewModel) ;

We can use the created Editor Template in any view we wish
View

@model TemplatesDemo.Models.UserEditorViewModel

@using (Html.BeginForm("--Your Action—--", "--Your Controller—-"))

{
@Html.EditorForModel ()
<input type="submit" value="Save" />

Read Display and Editor templates online: https://riptutorial.com/asp-net-mvc/topic/9784/display-
and-editor-templates

https://riptutorial.com/

https://riptutorial.com/asp-net-mvc/topic/9784/display-and-editor-templates
https://riptutorial.com/asp-net-mvc/topic/9784/display-and-editor-templates

C_hapter 14: Dockerization of ASP.NET
Application

Examples

Dockerfile and Nuget

Dockerization of ASP.NET Application requires a Dockerfile for configuration and running it as a
docker container.

FROM microsoft/dotnet:latest

RUN apt-get update && apt-get install sqglite3 libsqglite3-dev
COPY . /app

WORKDIR /app

RUN ["dotnet", "restore"]

RUN ["dotnet", "build"]

RUN npm install && npm run postscript

RUN bower install

RUN ["dotnet", "ef", "database", "update"]

EXPOSE 5000/tcp

ENTRYPOINT ["dotnet", "run", "--server.urls", "http://0.0.0.0:5000"]

A nuget feed configuration file helps in retrieving from the correct source. The usage of this file
depends on the current configuration of the project and can change to suite project's requirement.

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<packageSources>
<add key="nuget.org" value="https://api.nuget.org/v3/index.json" protocolVersion="3" />
<packageSources>
<packageRestore>
<add key="enabled" value="True" />
<add key="automatic" value="True" />
<packageRestore>
<bindingRedirects>
<add key="skip" value="False" />
</bindingRedirects>
</configuration>

POSTGRESQL Support.

https://riptutorial.com/ 56

"Data":

{

"DefaultConnection": {

"ConnectionString":

"Host=localhost;Username=postgres;Password=******;Database=postgres;Port=5432;Pooling=true;"

}
by

Dockerization

It is nessecary to have .NET or a mono-aspnet package.

It is important to understand the importance of dockerization. Install dotnet on ubuntu or the OS
you are working on.

Installing DOTNET

$ sudo
trusty
$ sudo
$ sudo

Ubuntu

$ sudo
xenial
$ sudo
$ sudo

sh —-c 'echo "deb [arch=amd64] https://apt-mo.trafficmanager.net/repos/dotnet-release/
main" > /etc/apt/sources.list.d/dotnetdev.list'

apt-key adv --keyserver apt-mo.trafficmanager.net --recv-keys 417A0893

apt—-get update

16.04

sh —c 'echo "deb [arch=amd64] https://apt-mo.trafficmanager.net/repos/dotnet-release/
main" > /etc/apt/sources.list.d/dotnetdev.list'

apt-key adv --keyserver apt-mo.trafficmanager.net --recv-keys 417A0893

apt—-get update

Install .NET Core SDK

$ sudo

apt-get install dotnet-dev-1.0.0-preview2-003121

COURTESY : https://www.microsoft.com/net/core#ubuntu

For installation of Docker follow, https://docs.docker.com/engine/installation/linux/ubuntulinux/

FOR PORT :
Kestrel server port : 5000
Docker Deamon will listen to port :

EXPOSE 5000/tcp

For building docker :

$ sudo docker build -t myapp .

For running the docker container :

$ sudo docker run -t -d -p 8195:5000 myapp

https://riptutorial.com/

https://www.microsoft.com/net/core#ubuntu
https://docs.docker.com/engine/installation/linux/ubuntulinux/

For visiting site :

$ ifconfig

etho . **k*.**k*.**k

server—ip-address
Site will be available on (given this configuration.) :
http://server-ip-address:8195
Docker Processes. It will list running processes.
$ sudo docker ps
To delete the process or the container.
$ sudo docker rm -rf <process_id>

Read Dockerization of ASP.NET Application online: https://riptutorial.com/asp-net-
mvc/topic/6740/dockerization-of-asp-net-application

https://riptutorial.com/

58

https://riptutorial.com/asp-net-mvc/topic/6740/dockerization-of-asp-net-application
https://riptutorial.com/asp-net-mvc/topic/6740/dockerization-of-asp-net-application

C_hapter 15: Error Logging

Examples
Simple Attribute

using System;
using System.Web;
using System.Web.Mvc;

namespace Example.SDK.Filters

{
[AttributeUsage (AttributeTargets.Class, Inherited = false, AllowMultiple = false)]

public sealed class CustomErrorHandlerFilter : HandleErrorAttribute

{

public override void OnException (ExceptionContext filterContext)

{

// RouteDate is useful for retrieving info like controller, action or other route

values

string controllerName = filterContext.RouteData.Values|["controller"].ToString();

string actionName = filterContext.RouteData.Values["action"].ToString();

string exception = filterContext.Exception.ToString(); // Full exception stack

string message = filterContext.Exception.Message; // Message given by the
exception

// Log the exception within database

LogExtensions.Insert (exception.ToString (), message, controllerName + "." +
actionName) ;

base.OnException (filterContext) ;

Then setitin FilterConfig.cs

filters.Add (new CustomErrorHandlerFilter());

returning custom error page

public ActionResult Details(string product)
{

if (productNotFound) {
// http://www.eidias.com/blog/2014/7/2/mvc—custom—error-pages
Response.Clear () ;
Response.TrySkipIisCustomErrors = true;
Response.Write (product + " product not exists");
Response.StatusCode = (int)HttpStatusCode.NotFound;
Response.End () ;
return null;

https://riptutorial.com/

59

Create Custom ErrorLogger In ASP.Net MVC

Step 1: Creating Custom Error Logging Filter which will write Errors in Text Files
According to DateWise.

public class ErrorLogger : HandleErrorAttribute

{

public override void OnException (ExceptionContext filterContext)

{

Error";

Error";

string strLogText = "";
Exception ex = filterContext.Exception;
filterContext.ExceptionHandled = true;
var objClass = filterContext;
strLogText += "Message —---\n{0}" + ex.Message;
if (ex.Source == ".Net SglClient Data Provider")
{
strLogText += Environment.NewLine + "SglClient Error ——--\n{0}" + "Check Sqgl
}
else if (ex.Source == "System.Web.Mvc")
{
strLogText += Environment.NewLine + ".Net Error ———-\n{0}" + "Check MVC Code For

}
else if (filterContext.HttpContext.Request.IsAjaxRequest ()

{

== true)

strLogText += Environment.NewLine + ".Net Error ———\n{0}" + "Check MVC Ajax Code

For Error";

}

strLogText += Environment.NewLine + "Source —-—-\n{0}" + ex.Source;

strLogText += Environment.NewLine + "StackTrace ——-\n{O0}" +
strLogText += Environment.NewLine + "TargetSite ———-\n{O0}" +
if (ex.InnerException != null)

{

strLogText += Environment.NewLine + "Inner Exception is

ex.InnerException;//error prone

prone

}
if (ex.HelpLink != null)

{

strLogText += Environment.NewLine + "HelpLink ———-\n{0}"

StreamWriter log;

string timestamp = DateTime.Now.ToString ("d-MMMM-yyyy", new

ex.StackTrace;
ex.TargetSite;

{O}" b

+ ex.Helplink;//error

CultureInfo ("en-GB"));

string error_folder = ConfigurationManager.AppSettings|["ErrorLogPath"].ToString() ;

if (!System.IO.Directory.Exists(error_folder))

{

System.IO.Directory.CreateDirectory (error_folder);

if (!File.Exists (String.Format (@"{0}\Log_{1l}.txt", error_folder, timestamp)))

https://riptutorial.com/

60

log = new StreamWriter (String.Format (@"{0}\Log_{1}.txt", error_folder,
timestamp));

}

else

{
log = File.AppendText (String.Format (@"{0}\Log_{1}.txt", error_folder, timestamp));

var controllerName = (string)filterContext.RouteData.Values|["controller"];
var actionName = (string)filterContext.RouteData.Values|["action"];

// Write to the file:
log.WritelLine (Environment .NewLine + DateTime.Now) ;
1og . Wrlt@hilng (V=—=—=—cccc==cs==cccc===s====cc=========—===============================

log.WritelLine ("Controller Name :— " + controllerName);
log.WriteLine ("Action Method Name :— " + actionName) ;
Log) . WElEEiln@ (Vo e

log.WritelLine (objClass);
log.WritelLine (strLogText) ;
log.WritelLine () ;

// Close the stream:

log.Close();

filterContext.HttpContext.Session.Abandon () ;

filterContext.Result = new RedirectToRouteResult
(new RouteValueDictionary

{

{"controller", "Errorview"}, {"action", "Error"}

1)

Step 2: Adding Physical Path on Server or Local drive where text file will be stored

<add key="ErrorLogPath" value="C:\ErrorLog\DemoMVC\" />

Step 3: Adding Errorview Controller with Error ActionMethod
Step 4: Adding Error.cshtml View and Display Custom Error Message on View

Step 5: Register ErrorLogger Filter in FilterConfig class

public class FilterConfig

{
public static void RegisterGlobalFilters (GlobalFilterCollection filters)

{
filters.Add (new ErrorLogger ());

Step 6: Register FilterConfig in Global.asax

https://riptutorial.com/

61

public class MvcApplication : System.Web.Httpfpplication

i

protected void Application_Start()

1
AreaRegistration.RegisterAllAreas();
WebfpiConfig.Register({GlobalConfiguration.Configuration);
FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);

Read Error Logging online: https://riptutorial.com/asp-net-mvc/topic/2268/error-logging

https://riptutorial.com/

62

https://i.stack.imgur.com/E5Ilw.jpg
https://riptutorial.com/asp-net-mvc/topic/2268/error-logging

C_hapter 16: Html Helpers

Introduction

HTML helpers are methods used to render HTML elements in a view. They are part of the
System.Web.Mvc.HtmlHelper NAMESpPAace.

There are different types of HTML helpers:
Standard HTML Helpers: They are used to render normal HTML elements, e.g. rtml.TextBox ().

Strongly Typed HTML Helpers: These helpers render HTML elements based on model
properties, e.g. Html.TextBoxFor ().

Custom HTML Helpers: The user can create custom helper method which returns wvcatmistring.

Examples
Custom HTML Helper - Display Name

/// <summary>
/// Gets displayName from DataAnnotations attribute
/// </summary>
/// <typeparam name="TModel"></typeparam>
/// <typeparam name="TProperty"></typeparam>
/// <param name="htmlHelper"></param>
/// <param name="expression"></param>
/// <returns></returns>
public static MvcHtmlString GetDisplayName<TModel, TProperty>(this HtmlHelper<TModel>
htmlHelper, Expression<Func<TModel, TProperty>> expression)
{
var metaData = ModelMetadata.FromLambdaExpression (expression, htmlHelper.ViewData) ;
var value = metaData.DisplayName ?? (metaData.PropertyName ?7?
ExpressionHelper.GetExpressionText (expression));
return MvcHtmlString.Create (value);

}

Custom Helper - Render submit button

/// <summary>

/// Creates simple button

/// </summary>

/// <param name="poHelper"></param>

/// <param name="psValue"></param>

/// <returns></returns>

public static MvcHtmlString SubmitButton (this HtmlHelper poHelper, string psValue)
{

return new MvcHtmlString(string.Format ("<input type=\"submit\" value=\"{0}\">", psValue));

https://riptutorial.com/ 63

Exhaustive list of HtmIHelper samples including HTML output

HtmlHelper.Action()

@Html.Action (actionName: "Index")

output: The HTML rendered by an action method called 1ndex ()

@Html.Action (actionName: "Index", routeValues: new {id = 1})

output: The HTML rendered by an action method called 1ndex (int id)

@ (Html.Action ("Index", routeValues: new RouteValueDictionary(new Dictionary<string,
object>{ {"id", 1} })))

output: The HTML rendered by an action method called 1ndex (int id)

@Html.Action (actionName: "Index", controllerName: "Home")

output: The HTML rendered by an action method called 1ndex () in the Homecontroller

@Html.Action (actionName: "Index", controllerName: "Home", routeValues: new {id = 1})
output: The HTML rendered by an action method called 1ndex (int iq) in the

HomeController

@Html.Action (actionName: "Index", controllerName: "Home", routeValues: new
RouteValueDictionary (new Dictionary<string, object>{ {"id", 1} }))

output: The HTML rendered by an action method called 1ndex (int iq) in the

HomeController

HtmlHelper.ActionLink ()

@Html.ActionLink (1inkText: "Click me", actionName: "Index")

Output: Click me

@Html.ActionLink (1inkText: "Click me", actionName: "Index", routeValues: new {id = 1})

0UtpUt:Click me

@Html.ActionLink (1linkText: "Click me", actionName: "Index", routeValues: new {id = 1},
htmlAttributes: new {Q@class = "btn btn-default", data_foo = "bar")

OUtpUt:Click me

@Html.ActionLink ()
output:

@HtmlHelper.BeginForm()

@using (Html.BeginForm("MyAction", "MyController", FormMethod.Post, new {id="forml",G@class

= "form-horizontal"}))
OUtpUt:<form action="/MyController/MyAction" class="form-horizontal" id="forml"

method="post">

Standard HTML Helpers with their HTML Outputs

Html. TextBox()

@Html.TextBox ("Name", null, new { @class = "form-control" })

OUtpUt<input class="form-control" id="Name"name="Name"type="text"value=""/>
@Html.TextBox ("Name", "Stack Overflow", new { @class = "form-control" })

https://riptutorial.com/

64

https://msdn.microsoft.com/en-us/library/system.web.mvc.html.childactionextensions.action(v=vs.118).aspx
https://msdn.microsoft.com/en-US/library/system.web.mvc.html.linkextensions_methods(v=vs.118).aspx
https://msdn.microsoft.com/en-US/library/system.web.mvc.html.formextensions_methods(v=vs.118).aspx
https://msdn.microsoft.com/en-us/library/system.web.webpages.html.htmlhelper.textbox(v=vs.111).aspx

OUtpUt<input class="form-control" id="Name"name="Name"type="text" value="Stack Overflow"/>

Html.TextArea()

@Html.TextArea ("Notes", null, new { (@class = "form-control" })
Ooutput:<textarea class="form-control" id="Notes" name="Notes" rows="2"

cols="20"></textarea>
@Html.TextArea ("Notes", "Please enter Notes", new { @class = "form-control" })

output:<textarea class="form-control" id="Notes" name="Notes" rows="2" cols="20" >Please

enter Notes</textarea>

Html.Label()

@Html.Label ("Name", "FirstName")

Ooutputi<label for="Name"> FirstName </label>
@Html.Label ("Name", "FirstName", new { @class = "NameClass" })

output:i<label for="Name" class="NameClass">FirstName</label>

Html.Hidden()

@Html.Hidden ("Name", "Value")

output:<input id="Name" name="Name" type="hidden" value="Value" />

Html.CheckBox()

@Html.CheckBox ("isStudent", true)
OUtpUt<input checked="checked" id="isStudent" name="isStudent" type="checkbox"

value="true" />

Html.Password()

@Html.Password ("StudentPassword")

OUtpUt<input id="StudentPassword" name="StudentPassword" type="password" value="" />

Custom Helper - Render Radio Button with Label

public static MvcHtmlString RadioButtonLabelFor<TModel, TProperty> (this

HtmlHelper<TModel> self, Expression<Func<TModel, TProperty>> expression, bool value, string
labelText)

{
// Retrieve the qualified model identifier
string name = ExpressionHelper.GetExpressionText (expression);
string fullName = self.ViewContext.ViewData.TemplateInfo.GetFullHtmlFieldName (name) ;

// Generate the base ID

TagBuilder tagBuilder = new TagBuilder ("input");
tagBuilder.GenerateId (fullName) ;

string idAttr = tagBuilder.Attributes["id"];

// Create an ID specific to the boolean direction
idAttr = string.Format ("{0}_{1}", idAttr, value);

// Create the individual HTML elements, using the generated ID
MvcHtmlString radioButton = self.RadioButtonFor (expression, value, new { id = idAttr

MvcHtmlString label = self.Label (idAttr, labelText);

https://riptutorial.com/

65

https://msdn.microsoft.com/en-us/library/system.web.webpages.html.htmlhelper.textarea(v=vs.111).aspx
https://msdn.microsoft.com/en-us/library/system.web.webpages.html.htmlhelper.label(v=vs.111).aspx
https://msdn.microsoft.com/en-us/library/system.web.webpages.html.htmlhelper.hidden(v=vs.111).aspx
https://msdn.microsoft.com/en-us/library/system.web.webpages.html.htmlhelper.checkbox(v=vs.111).aspx
https://msdn.microsoft.com/en-us/library/system.web.mvc.html.inputextensions.password(v=vs.118).aspx

return new MvcHtmlString(radioButton.ToHtmlString() + label.ToHtmlString());

Example: @Html .RadioButtonLabelFor (m => m.IsActive, true, "Yes")

Custom Helper - Date Time Picker

public static MvcHtmlString DatePickerFor<TModel, TProperty> (this HtmlHelper<TModel>
htmlHelper, Expression<Func<TModel, TProperty>> expression, object htmlAttributes)
{
var sb = new StringBuilder();
var metaData = ModelMetadata.FromLambdaExpression (expression, htmlHelper.ViewData) ;
var dtpId = "dtp" + metaData.PropertyName;
var dtp = htmlHelper.TextBoxFor (expression, htmlAttributes) .ToHtmlString();
sb.AppendFormat ("<div class='input-group date' id='{0}'> {1} <span class='input-group-
addon'></div>", dtpld, dtp);
return MvcHtmlString.Create (sb.ToString());

Example:

@Html .DatePickerFor (model => model.PublishedDate, new { @class = "form-control" })

If you use Bootstrap.v3.Datetimepicker The your JavaScript is like below --

S ('#dtpPublishedDate') .datetimepicker ({ format: 'MMM DD, YYYY' });

Read Html Helpers online: https://riptutorial.com/asp-net-mvc/topic/2290/html-helpers

https://riptutorial.com/

66

https://riptutorial.com/asp-net-mvc/topic/2290/html-helpers

C_hapter 17: Html.AntiForgeryToken

Introduction
The anti-forgery token can be used to help protect your application against cross-site request

forgery. To use this feature, call the AntiForgeryToken method from a form and add the
ValidateAntiForgeryTokenAttribute attribute to the action method that you want to protect.

Generates a hidden form field (anti-forgery token) that is validated when the form is submitted.

Syntax

* @Html.AntiForgeryToken()

Remarks

When submitting an ajax request with CSRF token (__requestverificationToken) Make sure that
content type is not set to app1lication/json. If you are using jQuery it automatically sets the content
type to application/x-www-form-urlencoded Which is then recognised by ASP.NET MVC.

Caution

Use caution when setting this value. Using it improperly can open security vulnerabilities in the
application.

Examples

Basic usage

The entm1.antiForgeryToken () helper method protects against cross-site request forgery (or CSRF)
attacks.

It can be used by simply using the utmi.antirorgerytoken () helper within one of your existing forms
and decorating its corresponding Controller Action with the [validateantiForgeryToken] attribute.

Razor (YourView.cshtml)

@using (Html.BeginForm("Manage", "Account")) ({
@Html.AntiForgeryToken ()
l== 5, ==>

OR

https://riptutorial.com/ 67

https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)

<form>
@Html.AntiForgeryToken ()
Rl== o0 =2

</form>

Controller (YourController.cs)

The target action method:

[ValidateAntiForgeryToken]
[HttpPost]
public ActionResult ActionMethod (ModelObject model)

{
7 ooo

Disable Identity Heuristic Check
Often times you will see an exception

Anti forgery token is meant for user "" but the current user is "username"

This is because the Anti-Forgery token is also linked to the current logged-in user. This error
appears when a user logs in but their token is still linked to being an anonymous user for the site.

There are a few ways to fix this behavior, but if you would rather not have CSRF tokens linked to
the logged-in state of a user you may disable this feature.

Put this line in your ciobal.asax file or similar application startup logic.

AntiForgeryConfig.SuppressIdentityHeuristicChecks = true;

Validating All Posts

Due to the vulnerability caused by CSRF, it is generally considered a good practice to check for an
AntiForgeryToken on all HttpPosts unless there is a good reason to not do it (some technical issue
with the post, there is another authentication mechanism and/or the post does not mutate state
like saving to a db or file). To ensure that you don't forget, you can add a special
GlobalActionFilter that automatically checks all HttpPosts unless the action is decorated with a
special "ignore" attribute.

[AttributeUsage (AttributeTargets.Class)]
public class ValidateAntiForgeryTokenOnAllPosts : AuthorizeAttribute
{

public override void OnAuthorization (AuthorizationContext filterContext)

{
var request = filterContext.HttpContext.Request;

// Only validate POSTs
if (request.HttpMethod == WebRequestMethods.Http.Post)

https://riptutorial.com/ 68

bool skipCheck =
filterContext.ActionDescriptor.IsDefined (typeof (DontCheckForAntiForgeryTokenAttribute), true)

I
filterContext.ActionDescriptor.ControllerDescriptor.IsDefined (typeof (DontCheckForAntiForgeryTokenAttril

true);
if (skipCheck)
return;
// Ajax POSTs and normal form posts have to be treated differently when it comes
// to validating the AntiForgeryToken
if (request.IsAjaxRequest ())
{
var antiForgeryCookie = request.Cookies[AntiForgeryConfig.CookieName];
var cookieValue = antiForgeryCookie != null
? antiForgeryCookie.Value
null;
AntiForgery.Validate (cookieValue,
request .Headers["__RequestVerificationToken"]);

}

else

{
new ValidateAntiForgeryTokenAttribute ()
.OnAuthorization(filterContext) ;

/// <summary>
/// this should ONLY be used on POSTS that DO NOT MUTATE STATE

/// </summary>
[AttributeUsage (AttributeTargets.Class | AttributeTargets.Method, AllowMultiple = false,

Inherited = true)]
public sealed class DontCheckForAntiForgeryTokenAttribute : Attribute { }

To make sure it gets checked on all requests, just add it to your Global Action Filters

public class FilterConfig

{
public static void RegisterGlobalFilters (GlobalFilterCollection filters)

{
14600
filters.Add (new ValidateAntiForgeryTokenOnAllPosts());

/oo

Advance usage: Apply default Antiforgery filter for every POST

We may forget to apply the antiforgery attribute fOr each rost request so we should make it by
default. This sample will make sure antiforgery filter Will always be applied to every rost
request.

https://riptutorial.com/ 69

Firstly create new antirorgeryTokenrilter filter:

//This will add ValidateAntiForgeryToken Attribute to all HttpPost action methods
public class AntiForgeryTokenFilter : IFilterProvider
{

public IEnumerable<Filter> GetFilters (ControllerContext controllerContext,
ActionDescriptor actionDescriptor)

{

List<Filter> result = new List<Filter>();
string incomingVerb = controllerContext.HttpContext.Request.HttpMethod;

if (String.Equals (incomingVerb, "POST", StringComparison.OrdinalIgnoreCase))
{

result.Add (new Filter (new ValidateAntiForgeryTokenAttribute (), FilterScope.Global,

null));

return result;

Then register this custom filter to MVC, Application_Start:

public class FilterConfig

{
public static void RegisterGlobalFilters (GlobalFilterCollection filters)
{

//Cactch generic error
filters.Add (new HandleErrorAttribute());

//Anti forgery token hack for every post request
FilterProviders.Providers.Add (new AntiForgeryTokenFilter());

public class MvcApplication : System.Web.HttpApplication
{
protected void Application_Start ()
{
AreaRegistration.RegisterAllAreas();
FilterConfig.RegisterGlobalFilters (GlobalFilters.Filters);
RouteConfig.RegisterRoutes (RouteTable.Routes) ;
BundleConfig.RegisterBundles (BundleTable.Bundles) ;

So now all your rost requests are protected by default using Antiforgery attributes so we are no
longer need to have [validateantiForgeryToken] attribute on each POST method.

Using AntiForgeryToken with Jquery Ajax Request

First off you create the form

https://riptutorial.com/

70

@using (Html.BeginForm())

{
@Html.AntiForgeryToken ()

Action Method

[HttpPost]
[ValidateAntiForgeryToken]
public ActionResult Test (FormViewModel formData)
{
//

Script

<script src="https://code.jquery.com/jquery-1.12.4.min.Jjs"></script>
<script>
var formData = new FormData ($('form') [0]);
$S.ajax ({

method: "POST",

url: "/demo/test",

data: formbData ,

success: function (data) {

console.log(data);
by
error: function (jgXHR, textStatus, errorThrown) {
console.log(errorThrown) ;

})
</script>

Make sure contentType isn't set to anything apart from application/x-www-form-urlencoded and if its
not specified Jquery defaults to application/x-www-form-urlencoded

Read Html.AntiForgeryToken online: https://riptutorial.com/asp-net-mvc/topic/1997/htmil-
antiforgerytoken

https://riptutorial.com/ 71

https://riptutorial.com/asp-net-mvc/topic/1997/html-antiforgerytoken
https://riptutorial.com/asp-net-mvc/topic/1997/html-antiforgerytoken

C_hapter 18: Html.RouteLink

Parameters

linkText The text that will be displayed for the link.

routeName The name of the route to return a virtual path for.

Examples

Basic Example Using Link Text and Route Name

As an alternative to using utn1 .20t ionnink t0 generate links in a view, you can use
Html.RouteLink

To make use of this feature, you need to configure a route, for example:

public static void RegisterRoutes (RouteCollection routes)

{
routes.MapRoute (
"SearchResults",
"{controller}/{action}",
new { controller = "Search", action = "Results" });

Then in a view you can create a link to that route like so:

@Html.RouteLink ("Search Results", "SearchResults");

Using routerink () IS convenient if you end up changing controller names, or action method names,
since using utnl.actionLink () Means having to change the controller and action method name
parameters in the call, so that they match the new names which have been changed.

With routerink () You can change the route details in the vaproute () call, in other words in one
location, and any code that is referencing that route via routerink () Will not be required to change.

Read Html.RouteLink online: https://riptutorial.com/asp-net-mvc/topic/6209/html-routelink

https://riptutorial.com/ 72

https://msdn.microsoft.com/en-us/library/system.web.mvc.html.linkextensions.actionlink(v=vs.118).aspx
https://msdn.microsoft.com/en-us/library/system.web.mvc.html.linkextensions.routelink(v=vs.118).aspx
https://riptutorial.com/asp-net-mvc/topic/6209/html-routelink

C_hapter 19: Http Error Handling

Introduction

Every website needs to handle errors. You could let your users see the stock 404 or 500 error
pages that IS dishes out or, using the Web.Config and a simple Controller you can capture these
errors and deliver your own custom error pages.

Examples

Basic Setup

This example will cover creating a custom error page for 404 Page Not Found and 500 Server
Error. You can extend this code to capture any error code you need to.

Web.Config
If you are using IIS7 and above, ignore the <custontrror.. Node and use <nttperrors. .. iNstead.

Add in the following in the system.webserver Node:

<httpErrors errorMode="Custom" existingResponse="Replace">
<remove statusCode="404" />
<remove statusCode="500" />
<error statusCode="404" path="/error/notfound" responseMode="ExecuteURL" />
<error statusCode="500" path="/error/servererror" responseMode="ExecuteURL" />
</httpErrors>

This tells the site to direct any 404 errors to ~/error/notfound and any 500 error to
~/error/servererror. It Will also preserve your requested URL (think transfer rather than redirect)
so the user will never see the ~/error/... page URL.

Next, you need a new error controller so...

public class ErrorController : Controller
{
public ActionResult servererror ()
{
Response.TrySkipIisCustomErrors = true;
Response.StatusCode = (int)HttpStatusCode.InternalServerError;

return View();

public ActionResult notfound()

{
Response.TrySkipIisCustomErrors = true;
Response.StatusCode = (int)HttpStatusCode.NotFound;
return View();

https://riptutorial.com/ 73

The key thing to note here is the Response.TrySkipIisCustomErrors = true;. This will bypaSS 1S and
force your error page through.

Lastly, create the corresponding notround and servererror Views and style them up so it's all nice
and seamless with your site's design.

Hey presto - custom error pages.

Read Http Error Handling online: https://riptutorial.com/asp-net-mvc/topic/9137/http-error-handling

https://riptutorial.com/ 74

https://riptutorial.com/asp-net-mvc/topic/9137/http-error-handling

C_hapter 20: 1IS Rewrite Rules

Examples

Force HTTPS using Rewrite rule

This example shows how you can use IIS Rewrite rules to force HTTPS by making all HTTP
requests return a 301 (Permanent) Redirect to the HTTPS page.

This is usually better than using the [requirenttps] attribute because the attribute uses a 302
redirect, and being in the MVC pipeline it is much slower than doing it at the IIS level.

<rewrite xdt:Transform="Insert">

<rules>
<rule name="Enforce HTTPS WWW" stopProcessing="true">
<match url=".x*" />

<conditions logicalGrouping="MatchAll" trackAllCaptures="true">
<add input="{HTTP_HOST}" pattern=""(?!www) (.*)"/>
<add input="{URL}" pattern=""(.*)"/>

<!-— {URL} Gives the base portion of the URL, without any querystring or extra
path information, for example, "/vdir/default.asp". —-—>
</conditions>

<action type="Redirect" url="https://www.{C:1}{C:2}" appendQueryString="true"
redirectType="Permanent" />
</rule>
</rules>
</rewrite>

Read IIS Rewrite Rules online: https://riptutorial.com/asp-net-mvc/topic/6358/iis-rewrite-rules

https://riptutorial.com/

75

https://riptutorial.com/asp-net-mvc/topic/6358/iis-rewrite-rules

C_hapter 21: |Query Ajax Call With Asp MVC

Examples

Posting JavaScript objects with jQuery Ajax Call

Ajax calls, request and retrieve data for giving the user a sense of a better interactive user
interface experience. This article will show you how to use jQuery and send data through Ajax
calls. For this example, we’re going to POST the following JavaScript object to our server.

var post = {
title: " Posting JavaScript objects with jQuery Ajax Call",
content: " Posting JavaScript objects with jQuery Ajax Call",
tags: ["asp mvc", "jquery"]

}i

The server side

The server side model corresponding the javascript object.

public class Post

{
public string Title { get; set; }
public string Content { get; set; }
public string[] Tags { get; set; }

All we need to do is create a standard ASP.NET MVC controller method which takes a single
parameter of the Person type, like so.

public class PostController : BaseController

{
public bool Create (Post model)

{
//Do somthing

The client side

To send JavaScript Objects we need to use the JSON.stringify() method for send the object to the
data option.

S.ajax ({
url: '@Url.Action("create", "Post")',
type: "POST",
contentType: "application/json",

data: JSON.stringify({ model: post })
}) .done (function (result) {
//do something

https://riptutorial.com/ 76

}) i

Read jQuery Ajax Call With Asp MVC online: https://riptutorial.com/asp-net-mvc/topic/9734/jquery-
ajax-call-with-asp-mvc

https://riptutorial.com/ 77

https://riptutorial.com/asp-net-mvc/topic/9734/jquery-ajax-call-with-asp-mvc
https://riptutorial.com/asp-net-mvc/topic/9734/jquery-ajax-call-with-asp-mvc

C_hapter 22: Model binding

Introduction

Model binding is the process of taking HTTP parameters, typically in the Query String of a GET
request, or within POST body, and applying it into an object that can then be validated and
consumed in an object-oriented manner without the need for Controller actions having intimate
knowledge of how to retrieve HTTP parameters.

In other words, model binding is what allows actions, in MVC, to have either parameter(s), whether

it being a value type or an object.

Remarks

To try to create instance in the action, the bind model process will search data in various places:

* Form Data

* Route Data

* Query String

* Files Custom (cookies for example)

Examples

Route value binding

Given some default routing such as {controller=Home}/{action=Index}/{id?} if you had the url
https://stackoverflow.com/questions/1558902

This would go to the QuestionsController and the value 1558902 would be mapped to an id
parameter of an index action, i.e.

public ActionResult Index (int? id) {
//id would be bound to id of the route
}

Query string binding

To extend on the route binding say you had a url like
https://stackoverflow.com/questions/1558902?sort=desc

and n)uﬂng like {controller=Home}/{action=Index}/{id?}

public ActionResult Index (int? id, string sort) {
//sort would bind to the value in the query string, i.e. "desc"

}

https://riptutorial.com/ 78

Binding to objects

Often you'd be working with viewmodel classes in asp.net-mvc and would want to bind to
properties on these. This works similar to mapping to individual parameters.

Say you had a simple view model call PostViewModel like this

public class PostViewModel {

public int Id {get;set;}

public int SnappyTitle {get;set;}
}

Then you had posted values of Id and SnappyTitle from a form in the http request then they would
map right onto that model if the model itself was the action parameter, e.g.

public ActionResult UpdatePost (PostViewModel viewModel) {
//viewModel.Id would have our posted value

}

It's worth noting the binding is case insensitive for the parameter and property names. It will also
cast values where possible. I'm leaving more edge cases for specific examples

Ajax binding

These are form values that go in the HTTP request using the POST method. (including jQuery
POST requests).

Say you did an ajax post like

$S.ajax ({
type: 'POST',
url: window.updatePost,
data: { id: 21, title: 'snappy title' },
//kept short for clarity
1)

Here the two values in json, id and title, would be bound to the matching action, e.g.

public JsonResult UpdatePost (int id, string title) {

}

Generic, Session based model binding

Sometimes we need preserve whole model and transfer it across actions or even controllers.
Storing model at session good solution for this type of requirements. If we combine this with
powerful model binding features of MVC we get elegant way of doing so. We can create generic
session based model binding in three easy steps:

Step one: Create model binder

https://riptutorial.com/ 79

Create a model binder itself. Personally | created SessionDataModelBinder class in
/Infrastructure/ModelBinders folder.

using System;
using System.Web.Mvc;

public class SessionDataModelBinder<TModel>
IModelBinder
where TModel : class

private string SessionKey { get; set; }

public SessionDataModelBinder (string sessionKey)
{
if (string.IsNullOrEmpty (sessionKey))
throw new ArgumentNullException (nameof (sessionKey));
SessionKey = sessionKey;

public object BindModel (
ControllerContext controllerContext,
ModelBindingContext bindingContext)

// Get model from session
TModel model = controllerContext
.HttpContext
.Session[SessionKey] as TModel;
// Create model if it wasn't found from session and store it
if (model == null)
{
model = Activator.CreatelInstance<TModel> () ;
controllerContext.HttpContext.Session[SessionKey] = model;
}
// Return the model
return model;

Step two: register binder

If we have model like below:

public class ReportInfo

{
public int ReportId { get; set; }
public ReportTypes Typeld { get; set; }

public enum ReportTypes
{
NotSpecified,
Monthly, Yearly

We can register session based model binder for this model in Global.asax in Application_Start
method:

https://riptutorial.com/

protected void Application_Start ()

// Model binders.
// Remember to specy unique SessionKey
ModelBinders.Binders.Add (typeof (ReportInfo),

new SessionDataModelBinder<ReportInfo> ("ReportInfo"));

Step three: use it!

Now we can benefit from this model binder simply by adding parameter to our actions:

public class HomeController : Controller

{
public ActionResult Index (ReportInfo reportInfo)

{
// Simply set properties
reportInfo.Typeld = ReportTypes.Monthly;

return View () ;

public ActionResult About (ReportInfo reportInfo)

{
// reportInfo.Typeld is Monthly now because we set
// it previously in Index action.
ReportTypes currentReportType = reportInfo.Typeld;

return View () ;

Prevent binding on PostModel
Considering a (post)model:

public class User

{
public string FirstName { get; set; }
public bool IsAdmin { get; set; }

With a view like so:

@using (Html.BeginForm()) {
@Html.EditorFor (model => model.FirstName)
<input type="submit" value="Save" />

In order to prevent a malicious user from assigning ISsAdmin you can use the sina attribute in the
action:

https://riptutorial.com/

[HttpPost]

public ViewResult Edit ([Bind (Exclude = "IsAdmin")] User user)
{
//

File Upload
Model:

public class SampleViewModel
{
public HttpPostedFileBase file {get;set;}

View:

@model HelloWorldMvcApp.SampleViewModel

@Qusing (Html.BeginForm("Index", "Home",FormMethod.Post, new { enctype = "multipart/form-data"
1))
{

<div class="form-group">

@Html.TextBoxFor (model => model.file, new {@class="form-control", type="file"})
@Html.ValidationMessageFor (model => model.file)
</div>

<button type="submit" class="btn btn-success submit">Upload</button>

Action:

[HttpPost]

public ActionResult Index (SampleViewModel model)
{

if (model.file.ContentLength > 0)

{
string fileName = Path.GetFileName (model.file.FileName);
string fileLocation = "~/App_Data/uploads/"+ fileName;
model.file.SaveAs (Server.MapPath (fileLocation));

t

return View (model) ;

Validating date fields manually with dynamic formats using model binder

If different users need different datetime format then you may need to parse your incoming date
string to actual date according to the format. In this case this snippet may help you.

public class DateTimeBinder : DefaultModelBinder

{

public override object BindModel (ControllerContext controllerContext, ModelBindingContext
bindingContext)

https://riptutorial.com/

var value = bindingContext.ValueProvider.GetValue (bindingContext .ModelName) ;
DateTime date;

var displayFormat = Session["DateTimeFormat"];
if (value.AttemptedvValue != "")
{
if (DateTime.TryParseExact (value.AttemptedValue, displayFormat,
CultureInfo.InvariantCulture, DateTimeStyles.None, out date))
{
return date;
}
else

{

bindingContext.ModelState.AddModelError (bindingContext .ModelName,
"Invalid date format");

}

return base.BindModel (controllerContext, bindingContext);

Read Model binding online: https://riptutorial.com/asp-net-mvc/topic/1258/model-binding

https://riptutorial.com/

83

https://riptutorial.com/asp-net-mvc/topic/1258/model-binding

C_hapter 23:. Model validation

Examples

Validate Model in ActionResult

[HttpPost]
public ActionResult ContactUs (ContactUsModel contactObject)
{

// This line checks to see if the Model is Valid by verifying each Property in the Model
meets the data validation rules

if (ModelState.IsValid)
{
}

return View (contactObject) ;

The model class

public class ContactUsModel

{
[Required]
public string Name { get; set; }
[Required]

[EmailAddress] // The value must be a valid email address
public string Email { get; set; }
[Required]

[StringLength (500)] // Maximum length of message is 500 characters
public string Message { get; set; }

Remove an object from validation
Say you have the following model:

public class foo
{
[Required]
public string Email { get; set; }

[Required]

public string Password { get; set; }

[Required]
public string FullName { get; set; }

But you want to exclude FullName from the modelvalidation because you are using the model also
in a place where FullName is not filled in, you can do so in the following way:

ModelState.Remove ("FullName") ;

https://riptutorial.com/ 84

Custom Error Messages
If you want to provide Custom Error Messages you would do it like this:

public class LoginViewModel

{
[Required (ErrorMessage = "Please specify an Email Address")]
[EmailAddress (ErrorMessage = "Please specify a valid Email Address")]
public string Email { get; set; }

[Required (ErrorMessage = "Type in your password")]
public string Password { get; set; }

When your Error Messages are in a ResourceFile (.resx) you have to specify the ResourceType
and the ResourceName:

public class LoginViewModel
{

[Required (ErrorMessageResourceType = typeof (ErrorResources), ErrorMessageResourceName =
"LoginViewModel RequiredEmail")]

[EmailAddress (ErrorMessageResourceType = typeof (ErrorResources), ErrorMessageResourceName
= "LoginViewModel_ValidEmail")]

public string Email { get; set; }

[Required (ErrorMessageResourceType = typeof (ErrorResources), ErrorMessageResourceName =
"LoginViewModel_ RequiredPassword")]
public string Password { get; set; }

Creating Custom Error Messages in Model and in Controller
Let's say that you have the following class:

public class PersonInfo

{
public int ID { get; set; }

[Display (Name = "First Name")]
[Required (ErrorMessage = "Please enter your first name!")]
public string FirstName{ get; set; }

[Display (Name = "Last Name")]
[Required (ErrorMessage = "Please enter your last name!")]
public string LastName{ get; set; }

[Display (Name = "Age")]
[Required (ErrorMessage = "Please enter your Email Address!")]
[EmailAddress (ErrorMessage = "Invalid Email Address")]

public string EmailAddress { get; set; }

These custom error messages will appear if your mode1state.1svalid returns false.

But, you as well as | know that there can only be 1 email address per person, or else you will be

https://riptutorial.com/

sending emails to potentially wrong people and/or multiple people. This is where checking in the
controller comes into play. So let's assume people are creating accounts for you to save via the
Create Action.

[HttpPost]
[ValidateAntiForgeryToken]
public ActionResult Create ([Bind(Include = "ID, FirstName, LastName, EmailAddress")]
PersonInfo newPerson)
{

if (ModelState.IsValid) // this is where the custom error messages on your model will
display if return false

{

if (database.People.Any(x => x.EmailAddress == newPerson.EmailAddress)) // checking if
the email address that the new person is entering already exists.. if so show this error
message
{
ModelState.AddModelError ("EmailAddress", "This email address already exists!

Please enter a new email address!");

return View (newPerson) ;

db.Person.Add (newPerson) ;
db.SaveChanges () :
return RedirectToAction ("Index");

return View (newPerson) ;

| hope this is able to help somebody!
Model Validation in JQuery.

In cases where you need to ensure model validation using Jquery, .valid() function can be used.

The model class fields

[Required]

[Display (Name = "Number of Hospitals")]
public int Hospitals{ get; set; }
[Required]

[Display (Name = "Number of Beds")]

public int Beds { get; set; }

The View code

@using (Html.BeginForm(new {id = "forml", @class = "form-horizontal" }))

{

<div class="divPanel">
<div class="row">
<div class="col-md-3">
@Html.LabelFor (m => m.Hospitals)
@Html.TextBoxFor (m => m.Hospitals, new { @class = "form-control", @type =
"number"})

@Html.ValidationMessageFor (m => m.Hospitals)

https://riptutorial.com/ 86

</div>
<div class="col-md-3">

@Html.LabelFor (m => m.Beds)

@Html.TextBoxFor (m => m.Beds, new { @class = "form-control", @type = "number"})
@Html.ValidationMessageFor (m => m.Beds)
</div>
<div class="col-md-3">
<button type=button class="btn btn-primary" id="btnCalculateBeds"> Calculate
Score</button>
</div>
</div>

</div>
}

The script for Validation check.

S ('#btnCalculateBeds') .on('click', function (evt) {
evt.preventDefault () ;

if ($('"#forml').valid()) {
//Do Something.

}
}

Ensure that the jquery.validate and jquery.validate.unobtrusive files are present in the solution.

Read Model validation online: https://riptutorial.com/asp-net-mvc/topic/2683/model-validation

https://riptutorial.com/

87

https://riptutorial.com/asp-net-mvc/topic/2683/model-validation

Introduction

This documents the use of the system.web.Mvc.ajax library.

Citing MSDN docs "Each extension method renders an HTML element. The ActionLink method
renders an anchor (a) element that links to an action method. The RouteLink method renders an
anchor (a) element that links to a URL, which can resolve to an action method, a file, a folder, or
some other resource. This class also contains BeginForm and BeginRouteForm methods that help
you create HTML forms that are supported by AJAX functions.

Parameters

Confirm

HttpMethod

InsertionMode

LoadingElementDuration

LoadingElementld

OnBegin

OnComplete

OnFailure

OnSuccess

UpdateTargetld

Url

Gets or sets the message to display in a confirmation window
before a request is submitted.

Gets or sets the HTTP request method ("Get" or "Post").

Gets or sets the mode that specifies how to insert the response
into the target DOM element.

Gets or sets a value, in milliseconds, that controls the duration of
the animation when showing or hiding the loading element.

Gets or sets the id attribute of an HTML element that is displayed
while the Ajax function is loading.

Gets or sets the name of the JavaScript function to call
immediately before the page is updated.

Gets or sets the JavaScript function to call when response data
has been instantiated but before the page is updated.

Gets or sets the JavaScript function to call if the page update fails.

Gets or sets the JavaScript function to call after the page is
successfully updated.

Gets or sets the ID of the DOM element to update by using the
response from the server.

Gets or sets the URL to make the request to.

https://riptutorial.com/

88

Remarks

The package squery.Unobtrusive-ajax IS required in the project. The corresponding javascript files

must be included in a bundle (jquery.unobtrusive—ajax. js OI jquery.unobtrusive-ajax.min. js).
Finally, it must be activated as well in the web.conrig file:

<appSettings>
<add key="UnobtrusivedJavaScriptEnabled" value="true" />

</appSettings>

The Actions invoked (someaction Iin the examples) must either return a sson Or @ Partialview.

Examples

Ajax Action Link

@* Renders an anchor (a) element that links to an action method.
* The innerHTML of "target-element" is replaced by the result of SomeAction.
*@
@Ajax.ActionLink ("Update", "SomeAction", new AjaxOptions{UpdateTargetId="target-element"

Ajax Forms

@* Adds AJAX functions support to a form.
* The innerHTML of "target-element" is replaced by the result of SomeAction.
*Q
@using (Ajax.BeginForm("SomeAction", "SomeController",
new AjaxOptions {
UpdateTargetId="target-element",
OnSuccess = "some_js_fun (context)"

<!-—— my form contents ——>

Read MVC Ajax Extensions online: https://riptutorial.com/asp-net-mvc/topic/9007/mvc-ajax-
extensions

})

https://riptutorial.com/

89

https://riptutorial.com/asp-net-mvc/topic/9007/mvc-ajax-extensions
https://riptutorial.com/asp-net-mvc/topic/9007/mvc-ajax-extensions

C_hapter 25. MVC vs Web Forms

Introduction

Before you jump into ASP. NET MVC to develop your web application you should consider the
advantages and disavantages of the framework and you should know that there is another web
framework made and maintained by Microsoft that is ASP .NET Web Forms.

Which one should you choose is a matter of knowledge of both techonologies.

Syntax

e The ASPX View Engine uses "<%= %>" or "<%: %>" to render server-side content.

* The Razor View Engine uses @ to render server-side content.

Remarks

https://lwww.asp.net/web-forms

https://www.asp.net/mvc

Examples

Advantages of ASP .NET Web Forms

* Pre build controls to handle Grids, Inputs, Graphs, Trees, and so on.

* |t supports an event model that preserves state over HTTP, which benefits line-of-business
Web application development. The Web Forms-based application provides dozens of events
that are supported in hundreds of server controls.

» It uses a Page Controller pattern that adds functionality to individual pages. For more
information, see Page Controller on the MSDN Web site.

* |t uses view state or server-based forms, which can make managing state information easier.

« It works well for small teams of Web developers and designers who want to take advantage
of the large number of components available for rapid application development.

* In general, it is less complex for application development, because the components (the
Page class, controls, and so on) are tightly integrated and usually require less code than the
MVC model.

» Easy development model for those developers coming from WindowsForm development.

https://riptutorial.com/ 90

https://www.asp.net/web-forms
https://www.asp.net/mvc

What is Web Forms

Advantages of an MVC-Based Web Application

* It makes it easier to manage complexity by dividing an application into the model, the view,
and the controller (Separation of concerns).

* It does not use view state or server-based forms. This makes the MVC framework ideal for
developers who want full control over the behavior of an application.

It uses a Front Controller pattern that processes Web application requests through a single
controller. This enables you to design an application that supports a rich routing
infrastructure. For more information, see Front Controller on the MSDN Web site.

* It provides better support for test-driven development (TDD).

* |t works well for Web applications that are supported by large teams of developers and Web
designers who need a high degree of control over the application behavior.

What is Web Forms

Disadvantages

Web Forms:

» Complex Page Life Cycle, whenever a Request is made to the server there are at least 5
methods to execute previous to the event handler.

« Dificult to work with Client-Side frameworks like JQuery or Angular.

» Hard to work with Asyncronous Javascript and XML (AJAX)

» Viewstate handling

» The page's client-side and the code behind are tightly coupled.

MVC:

* It takes more time to develop in comparision with Web Forms.
« Data is sent in clear text format to the server whereas in web forms view state data are
encrypted by default.

Razor View Engine VS ASPX View Engine

Razor (MVC) ASPX (Web Forms)

The namespace used by the
Razor View Engine is
System.Web.Razor

The namespace used by the ASPX View Engine is
System.Web.Mvc.WebFormViewEngine

The file extensions used by the The file extensions used by the Web Form View Engines
Razor View Engine are different are like ASP.Net web forms. It uses the ASPX extension
from a web form view engine. It to view the aspc extension for partial views or User

https://riptutorial.com/ 91

https://www.asp.net/web-forms/what-is-web-forms
https://www.asp.net/web-forms/what-is-web-forms

Razor (MVC) ASPX (Web Forms)

uses cshtml with C# and vbhtml Controls or templates and master extensions for
with vb for views, partial view, layout/master pages.
templates and layout pages.

Web Form view engine does not support Test Driven
Development (TDD) because it depends on the
System.Web.UIl.Page class to make the testing complex.

The Razor Engine supports Test
Driven Development (TDD).

ASPX View Engine VS Razor View Engine

Read MVC vs Web Forms online: https://riptutorial.com/asp-net-mvc/topic/8584/mvc-vs-web-forms

https://riptutorial.com/ 92

http://www.c-sharpcorner.com/UploadFile/ff2f08/aspx-view-engine-vs-razor-view-engine/
https://riptutorial.com/asp-net-mvc/topic/8584/mvc-vs-web-forms

C_hapter 26 Partial Views

Introduction

A partial view is a view that is rendered within another view. Partial views can be reused and thus
prevent duplication of code. They can be rendered by Html.Partial or Html.RenderPartial

Syntax

o @Html.Partial("ViewName")
@Html.Partial("ViewName",ViewModel)
@{Html.RenderPartial("ViewName");}

If your partial view is located in a different folder other than shared folder, then you will have
to mention full path of the view as below:

-@Html.RenderPartial("~/Areas/Admin/Views/Shared/partial/ _subcat.cshtml")

Examples

Partial View with model
A model can also be added to the partial view :

@model Solution.Project.Namespace.MyModelClass
<p>@Model.Property</p>

In the View you can now just use:

<div>

@Html.Partial ("PartialViewExample", new MyModelClass () {Property="my property value"})
</div>
<div>

@{ Html.RenderPartial ("PartialViewExample", new MyModelClass () {Property="my property
value"}); }
</div>

Partial View to a String - for email content etc
Calling the function

string InvoiceHtml = myFunction.RenderPartialViewToString ("PartialInvoiceCustomer",
ToInvoice); // ToInvoice is a model, you can pass parameters if needed

Function to generate HTML

https://riptutorial.com/ 93

public static string RenderPartialViewToString (string viewName, object model)

{

using (var sw = new StringWriter())

{
BuyOnlineController controller = new BuyOnlineController(); // instance of the
required controller (you can pass this as a argument if needed)

// Create an MVC Controller Context
var wrapper = new HttpContextWrapper (System.Web.HttpContext.Current);

RouteData routeData = new RouteData();

routeData.Values.Add ("controller",
controller.GetType () .Name.ToLower () .Replace ("controller", ""));

controller.ControllerContext = new ControllerContext (wrapper, routeData, controller);
controller.ViewData.Model = model;

var viewResult = ViewEngines.Engines.FindPartialView (controller.ControllerContext,

viewName) ;

var viewContext = new ViewContext (controller.ControllerContext, viewResult.View,
controller.ViewData, controller.TempData, sw);
viewResult.View.Render (viewContext, sw);

return sw.ToString();

Partial View - PartiallnvoiceCustomer

@model eDurar.Models.BuyOnlineCartMaster
<h2>hello customer - @Model.CartID </h2>

Html.Partial Vs Html.RenderPartial

Html.Partial returns a string on the other hand Html.RenderPartial returns void.
Html.RenderPartial

This method returns void and the result is directly written to the HTTP response stream. That
means it uses the same TextWriter object used in the current webpage/template. For this reason,
this method is faster than Partial method.This method is useful when the displaying data in the
partial view is already in the corresponding view model.

Example : In a blog to show comments of an article, we would like to use RenderPartial method
since an article information with comments are already populated in the view model.

@{Html.RenderPartial ("_Comments") ; }

Html.Partial

This method returns an HTML-encoded string. This can be stored in a variable. Like RenderPartial

https://riptutorial.com/ 94

method, Partial method is also useful when the displaying data in the partial view is already in the
corresponding view model.

Example: In a blog to show comments of an article, you can use Partial method since an article
information with comments are already populated in the view model.

@Html.Partial ("_Comments")

Read Partial Views online: https://riptutorial.com/asp-net-mvc/topic/217 1/partial-views

https://riptutorial.com/ 95

https://riptutorial.com/asp-net-mvc/topic/2171/partial-views

C_hapter 27. Razor

Introduction

What is Razor?

Razor is a markup syntax that lets you embed server-based code (Visual Basic and C#) into web
pages.

Server-based code can create dynamic web content on the fly, while a web page is written to the
browser. When a web page is called, the server executes the server-based code inside the page
before it returns the page to the browser. By running on the server, the code can perform complex
tasks, like accessing databases.

Syntax

@{..}
@variableName

@ (variableName)
@for(...){ }

@ (Explicit Expression)
@* comments *@

Remarks

ASP.NET Razor includes view engines for both C# and VB.

The C# view engine processes files with a .cshtm1 extension, while the VB view engine works with
.vbhtm1 files.

Examples

Add Comments

Razor has its own comment syntax which begins with e+ and ends with +e.

Inline Comment:

<hl>Comments can be @*hi!*@ inline</hl>

Multi-line Comment:

@* Comments can spread
over multiple
lines *@

https://riptutorial.com/ 96

HTML Comment

You can also use the normal HTML comment syntax starting with <:-- and ending with —-> in
Razor views. But unlike other comments, the Razor code inside a HTML comment is still executed
normally.

@{
var hello = "Hello World!";

}
<!-- @hello -—>

The above example produces the following HTML output:

<!-— Hello World! —-->

Comments within a code block:

@{
// This is a comment
var Input = "test";

Display HTML within Razor code block

While inside a Razor code block, the browser will only recognize HTML code if the code is
escaped.

Use @: for a Single line:

@foreach (int number in Model.Numbers)

{
@:<hl>Hello, I am a header!</hl>

}

Use <text> ... </text> for Multi-line:
@{
var number = 1;
<text>
Hello, I am text
<br / >
Hello, I am more text!
</text>

Note that Razor, when inside a code block, will understand HTML tags. Therefore, adding the text
tag around HTML tags is unnecessary (although still correct), such as:

@{

var number = 1;

https://riptutorial.com/ 97

<text>
<div>
Hello, I am text
<br / >
Hello, I am more text!
</div>
</text>

Basic Syntax

Razor code can be inserted anywhere within HTML code. Razor code blocks are enclosed in ¢
1. Inline variable and functions start with ¢. Code inside the Razor brackets follow the normal
C# or VB rules.

Single line statement:

@{ var firstNumber = 1; }
Multi-line code block:

@{
var secondNumber = 2;

var total = firstNumber + secondNumber;

Using a variable inline:
<h1>The total count is Q@total</hl>
Using a variable inline explicitly:
<h2>Ttem@ (item.Id)</h2>

For this particular example we will not be able to use the implicit syntax because 1temeiten.1d
looks like an email and will be rendered as such by Razor.

Enclose code inside control flow statements:

<hl>Start with some HTML code</hl>

@Qfor (int 1 = 0; 1 < total; i++) {
Console.Write (1) ;

}

<p>Mix in some HTML code for fun!</p>
<p>Add a second paragraph.</p>

@if (total > 3)
{

Console.Write ("The total is greater than 3");

https://riptutorial.com/

else

Console.Write ("The total is less than 3");

This same syntax would be used for all statements such as for, foreach, while, if, switch, etc.

Adding code inside of code:

Qif (total > 3)
{
if (total == 10)
{
Console.Write ("The total is 10")

}

Note that you don't need to type the e at the second ir. After code you can just type other code
behind the existing code.

If you want to add code after a HTML element you do need to type a e.

Escaping @ character

In many cases, the Razor parser is smart enough to figure out when the e sign is meant to be used
as part of code, as opposed to being part of something like an email address. In the example

below, escaping the e sign is not necessary:

<p>Reach out to us at contact@mail.com</p>

However, in some cases, usage of the e sign is more ambiguous, and it must be explicitly escaped
with ee, as in the example below:

<p>Join us @R Stack Overflow!</p>

Alternatively, we can use a HTML encoded ¢ character

<p>Join us @ Stack Overflow!</p>

Create inline classes and methods using @functions

Using Razor erunctions keyword gives the capability of introducing classes and methods for inline
use within a Razor file:

@functions

{
string GetCssClass (Status status)

{

switch (status)

{

https://riptutorial.com/ 99

case Status.Success:

return "alert-success";
case Status.Info:

return "alert-info";
case Status.Warning:

return "alert-warning";
case Status.Danger:
default:

return "alert-danger";

<label class="alert @GetCssClass (status)"></label>

The same can be done for classes:

@functions

{

class Helpers

{

//implementation

Adding a custom attribute with - (hyphen) in name

If you need to add an attribute through razor that has a - (hyphen) in the name you cannot simply
do

@Html.DropDownListFor (m => m.Id, Model.Values, new { @data-placeholder = "whatever" })

it will not compile. data-* attributes are valid and common in html5 for adding extra values to
elements.

However the following will work

@Html.DropDownListFor (m => m.Id, Model.Values, new { @data_placeholder = "whatever" })

since is replaced with "-" when rendered.

This works fine as underscores are not acceptable in attribute names in html.
Editor Templates

Editor templates are a good way to reuse Razor code. You can define editor templates as Razor
partial views and then use them in other views.

Editor templates usually exist in the views/shared/EditorTemplates/ folder, although they can also
be saved to the views/controllername/EditorTemplates/ folder. The name of the view is typically the
name of the object you want to use the template for, like <type>.cshtmi.

https://riptutorial.com/ 100

Here is a simple editor template for DateTime:

@model DateTime
<div>

@Html.TextBox ("", Model.ToShortDateString(), new { data_date_picker="true" })

</div>

Save the file as Views/Shared/EditorTemplate/DateTime.cshtml.

Then, use =aitorror to call this template code in a another view:

@QHtml .EditorFor (m => m.CreatedDate)

There is also a UlIHint attribute to specify the file name:

public class UiHintExampleClass

{
[UIHint ("PhoneNumber")]
public string Phone { get; set; }

Define this phone number template in Views/Shared/EditorTemplates/PhoneNumber.cshtml.

Editor templates can be defined for Custom Types as well.

Here is a custom type called subModel:

public class SubModel

{
public Guid Id { get; set;}
public string FirstName { get; set; }
public string LastName { get; set; }

public class Model

{
public Guid Id { get; set; }
public DateTime Created {get; set; }

public SubModel SubModel{get; set; }

This is the EditorTemplate for SubModel:

@model SubModel

<div class="form-group">
@Html.LabelFor (m => m.FirstName)
@Html.TextBoxFor (m => m.FirstName)

</div>

<div class="form-group">

https://riptutorial.com/ 101

https://msdn.microsoft.com/en-us/library/system.web.mvc.html.editorextensions.editorfor(v=vs.118).aspx

@Html.LabelFor (m => m.LastName)
@Html.TextBoxFor (m => m.LastName)
</div>

Now, the View for Model simply becomes:

@model Model
@Html.EditorFor (m => m.CreatedDate)
@Html.EditorFor (m => m.SubModel, new { @Prefix = "New"})

@* the second argument is how you can pass viewdata to your editor template*@

Pass Razor content to a @helper
Send a Razor part to a @helper, for example a HTML div.

@helper WrapInBox (Func<Object, HelperResult> content)
{

<div class="box">Qcontent (null) </div>

//call
@WrapInBox (@<div>
I'm a inner div
</div>)

Share @helpers across views

@Helpers could be shared between views.

They should be created in the folder App_Code

4 App_Code
v[@ MenuHelpers.cshtml

@helper CreatePrimaryBootstrapButton (string label)
{
<button type="button" class="btn btn-primary">@label</button>

//call

@MenuHelpers.CreatePrimaryBootstrapButton ("my button")

The globals eur1 and estm1 aren't available by default in the @Helper defined in App_code. You
could add them as follows (for every .cshtml in your App_code folder)

@* Make @Html and @Url available *@
@functions
{
private new static HtmlHelper<object> Html
{

https://riptutorial.com/ 102

http://i.stack.imgur.com/EMu2v.png

get { return ((WebViewPage)CurrentPage) .Html; }

private static UrlHelper Url

{
get { return ((WebViewPage)CurrentPage) .Url; }

Read Razor online: https://riptutorial.com/asp-net-mvc/topic/5266/razor

https://riptutorial.com/ 103

https://riptutorial.com/asp-net-mvc/topic/5266/razor

C_hapter 28: Routing

Introduction

Routing is how ASP.NET MVC matches a URI to an action. Routing module is responsible for
mapping incoming browser requests to particular MVC controller actions.

MVC 5 supports a new type of routing, called attribute routing. As the name implies, attribute
routing uses attributes to define routes. Attribute routing gives you more control over the URIs in
your web application.

Examples

Custom Routing

Custom routing provides specialized need of routing to handle specific incoming requests.

In order to defining custom routes, keep in mind that the order of routes that you add to the route
table is important.

public static void RegisterRoutes (RouteCollection routes)

{

routes.IgnoreRoute (" {resource}.axd/{*pathInfo}l");

// this is an advanced custom route

// you can define custom URL with custom parameter (s) point to certain action method

routes.MapRoute (

"CustomEntry", // Route name

"Custom/{entryId}", // Route pattern

new { controller = "Custom", action = "Entry" } // Default values for defined parameters
above

)i

// this is a basic custom route
// any custom routes take place on top before default route
routes.MapRoute (

"CustomRoute", // Route name
"Custom/{controller}/{action}/{id}", // Route pattern
new { controller = "Custom", action = "Index", id = UrlParameter.Optional } // Default

values for defined parameters above
)i

routes.MapRoute (

"Default", // Route name

"{controller}/{action}/{id}", // Route pattern

new { controller = "Home", action = "Index", id = UrlParameter.Optional } // Default
values for defined parameters above

)i

controller and action NAMes are reserved. By default MVC maps (controlier} part of the URL to
the class <controller>controller, and then looks for a method with the name <action> without

https://riptutorial.com/ 104

adding any suffixes.

Though it may be tempting to create a family of routes using {controliler}/{action}/{parameter}
template consider that by doing this you disclose the structure of your application and make URLs
somewhat brittle because changing the name of the controller changes the route and breaks the
links saved by the user.

Prefer explicit route setting:

routes.MapRoute (

"CustomRoute", // Route name
"Custom/Index/{id}", // Route pattern
new { controller = "Custom", action = nameof (CustomController.Index), id =

UrlParameter.Optional }
)i

(you cannot use nameot Operator for controller name as it will have additional suffix contro1ier)
which must be omitted when setting controller name in the route.

Adding custom route in Mvc

User can add custom route, mapping an URL to a specific action in a controller. This is used for
search engine optimization purpose and make URLSs readable.

routes.MapRoute (

name: "AboutUsAspx", // Route name
url: "AboutUs.aspx", // URL with parameters
defaults: new { controller = "Home", action = "AboutUs", id = UrlParameter.Optional } //

Parameter defaults
)i

Attribute routing in MVC

Along with classic way of route definition MVC WEB API 2 and then MVC 5 frameworks introduced

Attribute routing.

public class RouteConfig
{

public static void RegisterRoutes (RouteCollection routes)

{

routes.IgnoreRoute ("{resource}.axd/{*pathInfo}");

// This enables attribute routing and must go before other routes are added to the
routing table.

// This makes attribute routes have higher priority

routes.MapMvcAttributeRoutes () ;

For routes with same prefix inside a controller, you can set a common prefix for entire action
methods inside the controller using routerrerix attribute.

https://riptutorial.com/ 105

[RoutePrefix ("Custom")]
public class CustomController : Controller
{

[Route ("Index")]

public ActionResult Index ()

{

rRoutePrefix IS Optional and defines the part of the URL which is prefixed to all the actions of the
controller.

If you have multiple routes, you may set a default route by capturing action as parameter then
apply it for entire controller unless specific route attribute defined on certain action method(s)
which overriding the default route.

[RoutePrefix ("Custom")]
[Route ("{action=index}")]
public class CustomController : Controller

{
public ActionResult Index ()

{

public ActionResult Detail ()
{

Routing basics

When you request the url yoursite/nome/1ndex through a browser, the routing module will direct the
request to the ndex action method of nomecontro1ier class. How does it know to send the request
to this specific class's specific method ? there comes the RouteTable.

Every application has a route table where it stores the route pattern and information about where
to direct the request to. So when you create your mvc application, there is a default route already
registered to the routing table. You can see that in the routeconfig.cs class.

public static void RegisterRoutes (RouteCollection routes)

{

routes.IgnoreRoute (" {resource}.axd/{*pathInfo}");
routes.MapRoute ("Default", "{controller}/{action}/{id}",

new { controller = "Home", action = "Index", id = UrlParameter.Optional });

You can see that the entry has a name and a template. The template is the route pattern to be
checked when a request comes in. The default template has zome as the value of the controller url
segment and 1ndex as the value for the action segment. That means, if you are not explicitly
passing a controller name and action in your request, it will use these default values. This is the

https://riptutorial.com/ 106

reason you get the same result when you access yoursite/Home/Index and yoursite

You might have noticed that we have a parameter called id as the last segment of our route
pattern. But in the defaults, we specify that it is optional. That is the reason we did not have to
specify the id value int he url we tried.

Now, go back to the Index action method in HomeController and add a parameter to that

public ActionResult Index (int id)
{

return View () ;

Now put a visual studio breakpoint in this method. Run your project and access
yourSite/Home/Index/999 iN your browser. The breakpoint will be hit and you should be able to see
that the value 999 is now available in the iq parameter.

Creating a second Route pattern

Let's say we would like a set it up so that the same action method will be called for a different
route pattern. We can do that by adding a new route definition to the route table.

public static void RegisterRoutes (RouteCollection routes)

{

routes.IgnoreRoute ("{resource}.axd/{*pathInfo}");

// New custom route definition added
routes.MapRoute ("MySpecificRoute",

"Important/{id}",

new { controller = "Home", action = "Index", id = UrlParameter.Optional });

//Default catch all normal route definition

routes.MapRoute ("Default", "{controller}/{action}/{id}",
new { controller = "Home", action = "Index", id = UrlParameter.Optional });

The new definition i added has a pattern tmportant/{id} where id is again optional. That means
when you request yourSiteName\Important Of yourSiteName\Important\888 , It will be send to the
Index action of HomeController.

Order of route definition registration

The order of route registration is important. You should always register the specific route patterns
before generic default route.

Catch-all route

Suppose we want to have a route that allows an unbound number of segments like so:

o http://example.com/Products/ (view all products)
 http://lexample.com/Products/IT
* http://example.com/Products/IT/Laptops

https://riptutorial.com/ 107

https://msdn.microsoft.com/en-us/library/k80ex6de(v=vs.100).aspx
http://example.com/Products/
http://example.com/Products/IT
http://example.com/Products/IT/Laptops

* http://example.com/Products/IT/Laptops/Ultrabook
 http://lexample.com/Products/IT/Laptops/Ultrabook/Asus
* eftc.

We would need to add a route, normally at the end of the route table because this would probably
catch all requests, like so:

routes.MapRoute ("Final", "Route/{*segments}",
new { controller = "Product", action = "View" });

In the controller, an action that could handle this, could be:

public void ActionResult View(string[] segments /* <- the name of the parameter must match the
name of the route parameter */)

{

// use the segments to obtain information about the product or category and produce data
to the user

/...
}

Catch-all route for enabling client-side routing
It's a good practice to encode state of Single Page Application (SPA) in url:

my-app.com/admin-spa/users/edit/id123

This allows to save and share application state.

When user puts url into browser's address bar and hits enter server must ignore client-side part of
the requested url. If you serve your SPA as a rendered Razor view (result of calling controller's
action) rather than a static html file, you can use a catch-all route:

public class AdminSpaController

{
[Route ("~/admin-spa/{clienSidePart*}")]
ActionResult AdminSpa ()
{

}

In this case server returns just SPA, and it then initializes itself according to the route. This
approach is more flexible as it does not depend on url-rewrite module.

Attribute Routing in Areas

For using Attribute Routing in areas, registering areas and [routearea(...)] definitions are
required.

IN RouteConfig.cs :

https://riptutorial.com/ 108

http://example.com/Products/IT/Laptops/Ultrabook
http://example.com/Products/IT/Laptops/Ultrabook/Asus
http://www.iis.net/learn/extensions/url-rewrite-module/creating-rewrite-rules-for-the-url-rewrite-module

public class RouteConfig

{

public static void RegisterRoutes (RouteCollection routes)

{
routes.IgnoreRoute ("{resource}.axd/{*pathInfo}");
routes.MapMvcAttributeRoutes () ;
AreaRegistration.RegisterAllAreas () ;

In a sample area controller attribute routing definition :

[RouteArea ("AreaName", AreaPrefix = "AreaName")]
[RoutePrefix ("SampleAreaController")]
public class SampleAreaController : Controller

{
[Route ("Index")]
public ActionResult Index ()

{

return View () ;

For using ur1.action links in Areas :

@Url.Action ("Index", "SampleAreaController", new { area = "AreaName" })

Read Routing online: https://riptutorial.com/asp-net-mvc/topic/1534/routing

https://riptutorial.com/

109

https://riptutorial.com/asp-net-mvc/topic/1534/routing

C_hapter 29: TAMVC

Introduction

TAMVC is a T4 template that generates strongly-typed helpers for use in MVC Routing
mechanisms, as opposed to magic strings. T4AMVC will detect the various controllers, actions, and
views, and create references to those views, making compile-time errors in the event that an
attempt to Route or access a View is invalid.

Examples

Calling an Action

In MVC, there are some scenerios where you want to specify an action for routing purposes, either
for a link, form action, or a redirect to action. You can specify an action via the MVC namespace.

When given a Controller, such as zomecontroliler:

public class HomeController : Controller

{
public ActionResult Index ()

{

t
public ActionResult MyAction ()

{

}

public ActionResult MyActionWithParameter (int parameter)

{

T4MVC will generate an inherited controller that overrides the action. This override will set the
route data properly so that MVC's urineiper Will generate the proper Url. You can call this method
and pass it into the various methods for urize1per. The examples below assume the default MVC
route is being used:

Link
To generate an a tag with the specified text:

@Html.ActionLink ("Link Text", MVC.Home.Index ())

//result: Link Text

@Html.ActionLink ("Link Text", MVC.Home.MyAction())

//result: Link Text

//T4MVC also allows you to specify the parameter without creating an anonymous object:
@Html.ActionLink ("Link Text", MVC.Home.MyActionWithParameter (1))

//result: Link Text

https://riptutorial.com/ 110

https://github.com/T4MVC/T4MVC
https://msdn.microsoft.com/en-us/library/bb126445.aspx?f=255&MSPPError=-2147217396%5C

To generate a url:

@QUrl.Action(MVC.Home.Index ())

//result: /

@QUrl.Action ("Link Text", MVC.Home.MyAction())

//result: /Home/MyAction

@QUrl.Action ("Link Text", MVC.Home.MyActionWithParameter (1))
//result: /Home/MyActionWithParameter/1

Notice that T4AMVC follows the same rules as MVC Routing - it won't specify default route
variables, so that the 1ndex action on the nomecontrol1ler doesn't generate /uome/1ndex but instead
the perfectly valid and abbreviated form of .

Form Method

To generate a rorm tag With the correct action specified:

@Html .BeginForm(MVC.Home.Index (), FormMethod.Get /* or FormMethod.Post */)
{
//my form
}
//result:
<form action="/" method="GET">
//my form
</form>
@Html .BeginForm(MVC.Home.MyActionWithParameter (1), FormMethod.Get /* or FormMethod.Post */)
{
//my form

}
//result:
<form action="/Home/MyActionWithParameter/1" method="GET">

//my form
</form>

Redirect To Action

When in a controller, you may want to redirect to an action from the current action. This can be
done, likeso:

public class RedirectingController : Controller

{
public ActionResult MyRedirectAction ()

{

return RedirectToAction(MVC.Redirecting.ActionToRedirectTo ());
//redirects the user to the action below.

}
public ActionResult ActionToRedirectTo ()

{

Read T4MVC online: https://riptutorial.com/asp-net-mvc/topic/9147/t4mvc

https://riptutorial.com/ 111

https://riptutorial.com/asp-net-mvc/topic/9147/t4mvc

C_hapter 30: Using Multiple Models In One

View

Introduction

The main focus of this topic using multiple model class in view layer of MVC

Examples

Using multiple model in a view with dynamic ExpandoObject

ExpandoObiject (the system.pynamic Namespace) is a class that was added to the .net rramework

4.0. This class allows us to dynamically add and remove properties onto an object at runtime. By

using Expando object we can add our model classes into dynamically created Expando object.

Following example explains how we can use this dynamic object.

Teacher and Student Model:

public class Teacher

{

public int TeacherId { get; set; }
public string Name { get; set; }

public class Student

{

public int StudentId { get; set; }
public string Name { get; set; }

Teacher and Student List Methods:

public List<Teacher> GetTeachers ()

{

List<Teacher> teachers = new List<Teacher>();
teachers.Add (new Teacher { TeacherId = 1, Name
teachers.Add (new Teacher { TeacherId = 2, Name
teachers.Add (new Teacher { TeacherId = 3, Name
return teachers;

public List<Student> GetStudents ()

{

List<Student> students = new List<Student>();
students.Add (new Student { StudentId = 1, Name
students.Add (new Student { StudentId
students.Add (new Student { StudentId
return students;

2, Name

3, Name

"Teacherl" 1});
"Teacher2" 1});
"Teacher3" });

"Studentl"});
"Student2"}) ;
"Student3"});

https://riptutorial.com/

112

Controller (Using Dynamic Model):

public class HomeController : Controller

{
public ActionResult Index ()

{

ViewBag.Message = "Hello World";
dynamic mymodel = new ExpandoObject () ;
mymodel.Teachers = GetTeachers();

mymodel.Students = GetStudents();
return View (mymodel) ;

View:

@using ProjectName ; // Project Name
@model dynamic
@
ViewBag.Title = "Home Page";
}
<h2>@ViewBag.Message</h2>

<h2>Teacher List</h2>

<table>
<tr>
<th>Id</th>
<th>Name</th>
</tr>
@foreach (Teacher teacher in Model.Teachers)
{
<tr>
<td>@teacher.TeacherId</td>
<td>Q@teacher.Name</td>
</tr>
}
</table>

<h2>Student List</h2>

<table>
<tr>
<th>Id</th>
<th>Name</th>
</tr>
@foreach (Student student in Model.Students)
{
<tr>
<td>@student.StudentId</td>
<td>Q@student .Name</td>
</tr>
}
</table>

Read Using Multiple Models In One View online: https://riptutorial.com/asp-net-
mvc/topic/10144/using-multiple-models-in-one-view

https://riptutorial.com/ 113

https://riptutorial.com/asp-net-mvc/topic/10144/using-multiple-models-in-one-view
https://riptutorial.com/asp-net-mvc/topic/10144/using-multiple-models-in-one-view

C_hapter 31: ViewData, ViewBag, TempData

Introduction

viewbata and viewsag are used to transfer data from controller to view.
ViewData is nothing but a dictionary of objects and it is accessible by string as key.

ViewBag is very similar to ViewData. ViewBag is a dynamic property. ViewBag is just a wrapper
around the ViewData.

TempData keeps data for the time of HTTP Request, which means that it holds data between two
consecutive requests. TempData helps us to transfer data between controllers or between actions.
Internally uses session.

Syntax

1. ViewData[key] = value;
2. ViewBag.Key = value;

3. TempDatalkey] = value;

Examples

What are ViewData, ViewBag, and TempData?

ViewData is the mechanism for a controller to provide data to the view it presents, without using a
ViewModel. Specifically, ViewData is a dictionary which is available both in MVC action methods
and views. You may use ViewData to transfer some data from your action method to the view
returned by the action method.

Since it is a dictionary, you can use the dictionary like syntax to set and get data from it.

ViewData[key] = value; // In the action method in the controller

For example, If you want to pass a string message from your Index action method to your Index
VIEW Index.cshtml, yOU can do this.

public ActionResult Index ()

{
ViewData["Message"] = "Welcome to ASP.NET MVC";
return View(); // notice the absence of a view model

To access this in your tndex.cshtml View, you can simply access the ViewData dictionary with the

https://riptutorial.com/ 114

key used in the action method.

<h2>@ViewData["Message"]</h2>

ViewBag is the dynamic equivalent of the untyped ViewData dictionary. It takes advantage of the
C# aynamic type for syntactical sugar experience.

The syntax for setting some data to ViewBag is

ViewBag.Key = Value;

So if we want to pass the message string in our previous example using ViewBag, it will be

public ActionResult Index ()

{
ViewBag.Message = "Welcome to ASP.NET MVC";
return View(); // not the absence of a view model

and in your Index view,

<h2>@ViewBag.Message</h2>

Data is not shared between the ViewBag and the ViewData. ViewData requires typecasting for
getting data from complex data types and check for null values to avoid error where as View Bag
does not require typecasting.

TempData can be used when you want to persist data between one http request and the next
HTTP request only. The life of data stored in the TempDataDictionary ends after the second
request. So TempData is useful in scenarios where you are following the PRG pattern.

[HttpPost]

public ActionResult Create(string name)

{
// Create a user
// Let's redirect (P-R-G Pattern)
TempData["Message"] = "User created successfully";
return RedirectToAction ("Index");

}

public ActionResult Index()

{
var messageFromPreviousCall = TempData["Message"] as String;
// do something with this message
// to do : Return something

When we do return RedirectToAction ("SomeActionMethod"), the server will send a 302 response to
the client(browser) with location header value set to the URL to "SomeActionMethod" and browser
will make a totally new request to that. ViewBag / ViewData won't work in that case to share some
data between these 2 calls. You need to use TempData in such scenarios.

https://riptutorial.com/ 115

TempData life cycle

Data saved to TempData is stored in the session and will be automatically removed at the end of
the first request where the data is accessed. If never read, it will be kept until finally read or the
session times out.

The typicaly usage looks like the following sequence (where each line is invoked from a different
request):

//first request, save value to TempData
TempData["value"] = "someValueForNextRequest";

//second request, read value, which is marked for deletion
object value = TempDatal["value"];

//third request, value is not there as it was deleted at the end of the second request
TempData["value"] == null

This behavior can be further controller with the »ccx and zc<» methods.

» With reek you can retrieve data stored in TempData without marking it for deletion, so data
will still be available on a future request

//first request, save value to TempData
TempData["value"] = "someValueForNextRequest";

//second request, PEEK value so it is not deleted at the end of the request
object value = TempData.Peek ("value");

//third request, read value and mark it for deletion
object value = TempDatal["value"];

» With xeep you can specify that a key that was marked for deletion should actually be
retained. In this case retrieving the data and saving it from deletion requires 2 method calls:

//first request, save value to TempData
TempData["value"] = "someValueForNextRequest";

//second request, get value marking it from deletion
object value = TempDatal["value"];

//later on decide to keep it

TempData.Keep ("value");

//third request, read value and mark it for deletion
object value = TempDatal["value"];

With this in mind, use reex When you always want to retain the value for another request and use
keep When retaining the value depends on additional logic.

Read ViewData, ViewBag, TempData online: https://riptutorial.com/asp-net-
mvc/topic/1286/viewdata--viewbag--tempdata

https://riptutorial.com/ 116

https://msdn.microsoft.com/en-us/library/system.web.mvc.tempdatadictionary.peek(v=vs.118).aspx
https://msdn.microsoft.com/en-us/library/ee703497(v=vs.118).aspx
https://riptutorial.com/asp-net-mvc/topic/1286/viewdata--viewbag--tempdata
https://riptutorial.com/asp-net-mvc/topic/1286/viewdata--viewbag--tempdata

C_hapter 32: Web.config Encryption

Examples

How to protect your Web.config file

It is a good practice to encrypt your Web.config file if you have sensitive information there, for
example a connection string with password.

With the ASP.NET IIS Registration tool (Aspnet_regiis.exe) you can easily encrypt specific
sections of Web.config file. A command with elevated privileges is required.

Example using DataProtectionConfigurationProvider. This provider uses DPAPI to encrypt and
decrypt data:

aspnet_regiis.exe —-pef "connectionStrings" c:\inetpub\YourWebApp —-prov
"DataProtectionConfigurationProvider"

Example using RSAProtectedConfigurationProvider:

aspnet_regiis.exe —-pef "connectionStrings" c:\inetpub\YourWebApp -prov
"RSAProtectedConfigurationProvider"

If you do not specify the -prov parameter it uses RSAProtectedConfigurationProvider as
default. This provider is recommended for Web Farm scenarios.

To get connectionStrings section back to clear text:

aspnet_regiis.exe —-pdf "connectionStrings" c:\inetpub\YourWebApp

More information about the aspnet_regiis.exe is avaiable on MSDN.

Read Web.config Encryption online: https://riptutorial.com/asp-net-mvc/topic/6373/web-config-
encryption

https://riptutorial.com/

117

https://msdn.microsoft.com/en-us/library/k6h9cz8h.aspx
https://msdn.microsoft.com/en-us/library/ff647398.aspx
https://msdn.microsoft.com/en-us/library/ms995355.aspx
https://msdn.microsoft.com/en-us/library/ms998283.aspx
https://msdn.microsoft.com/en-us/library/k6h9cz8h.aspx
https://riptutorial.com/asp-net-mvc/topic/6373/web-config-encryption
https://riptutorial.com/asp-net-mvc/topic/6373/web-config-encryption

Credits

10

11

12

13

14

15

Chapters

Getting started with
asp.net-mvc

Action filters

ActionResult

Areas

Asp.net mvc send mail

Automatic client-side
validation from
attributes

Bundling and
Minification

CRUD operation

Data annotations

Dependency Injection

Display and Editor
templates

Dockerization of
ASP.NET Application

Error Logging

Html Helpers

Html.AntiForgeryToken

Contributors

Aaron Hudon, Adil Mammadov, Aditya Korti, Ameya
Deshpande, Ashley Medway, Community, Hywel Rees, Rifaj,
Shog9, Shyju, Supraj v, Syed Farjad Zia Zaidi, SztupY

Andrei Rinea, Dawood Awan, juunas, Laurel, Lokesh Ram,
Tolga Evcimen

hasan, SlaterCodes, Tetsuya Yamamoto
Himaan Singh, Tetsuya Yamamoto

Ashiguzzaman, hasan, sGermosen

Slick86

Ashley Medway, Beofett, hasan, Laurel, Lokesh_Ram, Paul
DS, rageit, Rion Williams, Robban, Tetsuya Yamamoto, tmg

EvenPrime, Krzyserious, PedroSouki, Tetsuya Yamamoto

abiNerd, dotnetom, dove, Edathadan Chief aka Arun, Ehsan
Sajjad, Felipe Oriani, gunr2171, Karthikeyan, LaCartouche,
mmushtaq, Ollie P, Rion Williams, SailajaPalakodeti, Stephen
Muecke, Tetsuya Yamamoto, The Outsider, tmg, Tsahi Asher

Adil Mammadov, Andrei Dragotoniu, Ca phé den, Dave,
PedroSouki

Adnan Niloy, SailajaPalakodeti

SUMIT LAHIRI

Andrus, Leandro Soares, Saineshwar

Ashiquzzaman, Laurel, Lokesh_Ram, Pavel Paja Halbich,
Peter Mortensen, QuantumHive, Tassadaque, Testing123,
Tetsuya Yamamoto, The_Outsider, TheFallenOne

Aaron Hudon, Andrei Rinea, Art, felickz, Hanno,

https://riptutorial.com/

118

https://riptutorial.com/contributor/459102/aaron-hudon
https://riptutorial.com/contributor/1380428/adil-mammadov
https://riptutorial.com/contributor/4635947/aditya-korti
https://riptutorial.com/contributor/2609817/ameya-deshpande
https://riptutorial.com/contributor/2609817/ameya-deshpande
https://riptutorial.com/contributor/1398425/ashley-medway
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3521193/hywel-rees
https://riptutorial.com/contributor/1035197/rifaj
https://riptutorial.com/contributor/811/shog9
https://riptutorial.com/contributor/40521/shyju
https://riptutorial.com/contributor/4449101/supraj-v
https://riptutorial.com/contributor/2215809/syed-farjad-zia-zaidi
https://riptutorial.com/contributor/120917/sztupy
https://riptutorial.com/contributor/1796/andrei-rinea
https://riptutorial.com/contributor/1910735/dawood-awan
https://riptutorial.com/contributor/1658906/juunas
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/4887911/lokesh-ram
https://riptutorial.com/contributor/1469980/tolga-evcimen
https://riptutorial.com/contributor/3089009/hasan
https://riptutorial.com/contributor/602379/slatercodes
https://riptutorial.com/contributor/6378815/tetsuya-yamamoto
https://riptutorial.com/contributor/5720389/himaan-singh
https://riptutorial.com/contributor/6378815/tetsuya-yamamoto
https://riptutorial.com/contributor/3557266/ashiquzzaman
https://riptutorial.com/contributor/3089009/hasan
https://riptutorial.com/contributor/5155563/sgermosen
https://riptutorial.com/contributor/271458/slick86
https://riptutorial.com/contributor/1398425/ashley-medway
https://riptutorial.com/contributor/664342/beofett
https://riptutorial.com/contributor/3089009/hasan
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/4887911/lokesh-ram
https://riptutorial.com/contributor/5461833/paul-ds
https://riptutorial.com/contributor/5461833/paul-ds
https://riptutorial.com/contributor/455490/rageit
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/162506/robban
https://riptutorial.com/contributor/6378815/tetsuya-yamamoto
https://riptutorial.com/contributor/3805023/tmg
https://riptutorial.com/contributor/266562/evenprime
https://riptutorial.com/contributor/6697368/krzyserious
https://riptutorial.com/contributor/4166211/pedrosouki
https://riptutorial.com/contributor/6378815/tetsuya-yamamoto
https://riptutorial.com/contributor/1498739/abinerd
https://riptutorial.com/contributor/3697011/dotnetom
https://riptutorial.com/contributor/30913/dove
https://riptutorial.com/contributor/5237614/edathadan-chief-aka-arun
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/316799/felipe-oriani
https://riptutorial.com/contributor/1043380/gunr2171
https://riptutorial.com/contributor/5194088/karthikeyan
https://riptutorial.com/contributor/2107410/lacartouche
https://riptutorial.com/contributor/3814721/mmushtaq
https://riptutorial.com/contributor/2082842/ollie-p
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/8297063/sailajapalakodeti
https://riptutorial.com/contributor/3559349/stephen-muecke
https://riptutorial.com/contributor/3559349/stephen-muecke
https://riptutorial.com/contributor/6378815/tetsuya-yamamoto
https://riptutorial.com/contributor/7793375/the-outsider
https://riptutorial.com/contributor/3805023/tmg
https://riptutorial.com/contributor/767425/tsahi-asher
https://riptutorial.com/contributor/1380428/adil-mammadov
https://riptutorial.com/contributor/2611237/andrei-dragotoniu
https://riptutorial.com/contributor/4494979/ca-phe-den
https://riptutorial.com/contributor/4494979/ca-phe-den
https://riptutorial.com/contributor/5179780/dave
https://riptutorial.com/contributor/4166211/pedrosouki
https://riptutorial.com/contributor/5213049/adnan-niloy
https://riptutorial.com/contributor/8297063/sailajapalakodeti
https://riptutorial.com/contributor/6243681/sumit-lahiri
https://riptutorial.com/contributor/742402/andrus
https://riptutorial.com/contributor/2369464/leandro-soares
https://riptutorial.com/contributor/1234855/saineshwar
https://riptutorial.com/contributor/3557266/ashiquzzaman
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/4887911/lokesh-ram
https://riptutorial.com/contributor/2916232/pavel-paja-halbich
https://riptutorial.com/contributor/63550/peter-mortensen
https://riptutorial.com/contributor/2040663/quantumhive
https://riptutorial.com/contributor/326010/tassadaque
https://riptutorial.com/contributor/8184892/testing123
https://riptutorial.com/contributor/6378815/tetsuya-yamamoto
https://riptutorial.com/contributor/7793375/the-outsider
https://riptutorial.com/contributor/4761773/thefallenone
https://riptutorial.com/contributor/459102/aaron-hudon
https://riptutorial.com/contributor/1796/andrei-rinea
https://riptutorial.com/contributor/62194/art
https://riptutorial.com/contributor/343347/felickz
https://riptutorial.com/contributor/964955/hanno

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Html.RouteLink
Http Error Handling
IIS Rewrite Rules

jQuery Ajax Call With
Asp MVC

Model binding

Model validation

MVC Ajax Extensions

MVC vs Web Forms

Partial Views

Razor

Routing

T4AMVC

Using Multiple Models
In One View

ViewData, ViewBag,
TempData

Web.config Encryption

Jakotheshadows, Joshua Leigh, Martin Costello, Minh Nguyen
, Rion Williams, SailajaPalakodeti, SlaterCodes, viggity

Jason Evans
scgough

SlaterCodes

Ashiguzzaman, hasan

Adil Mammadov, Andrei Rinea, dove, Ehsan Sajjad, James
Haug, Md Dinar, PedroSouki, rdans, Tolga Evcimen

Aaron Hudon, Ankit Kumar Singh, GTown-Coder, hasan,
Marimba, Nikunj Patel, Pavel Voronin, SlaterCodes, Stephen
Muecke, The_Outsider, TheFallenOne, Vincentw

ril
DiegoS, Houssam Hamdan, The_Outsider

Adnan Niloy, Ashiquzzaman, Edathadan Chief aka Arun,
glacasa, Jason Evans, Laurel, Lokesh_Ram, Marimba,
SailajaPalakodeti, The_Outsider

Aditya Korti, aeliusd, Anik Saha, Arendax, Ashley Medway,
Big Fan, Brandon Wood, Braydie, Denis Elkhov, dove, James
Haug, Julian, Kuldeep Prajapati, Lee Chengkali, lloyd,
RamenChef, SadiRubaiyet, Sain Pradeep, Sandro,
Thennarasan, Tim Coker, TKharaishvili, Tot Zam, usr

Alex Art., Andrei Rinea, chsword, Ciaran Bruen, Jarrod Dixon,
Jason Evans, Karthikeyan, kkakkurt, Laurel, Lokesh_Ram,
mstaessen, Pavel Voronin, SailajaPalakodeti, Sandro, Shyju,
SlaterCodes, Stephen Muecke, Tetsuya Yamamoto, tmg, Tot
Zam, user270576

James Haug

hasan, Travis Tubbs

bzlm, Daniel J.G., lanB, Rion Williams, SailajaPalakodeti,
Shyju, TheFallenOne, tmg

glaubergft, Jack Spektor

https://riptutorial.com/

119

https://riptutorial.com/contributor/2619157/jakotheshadows
https://riptutorial.com/contributor/6614944/joshua-leigh
https://riptutorial.com/contributor/1064169/martin-costello
https://riptutorial.com/contributor/2491685/minh-nguyen
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/8297063/sailajapalakodeti
https://riptutorial.com/contributor/602379/slatercodes
https://riptutorial.com/contributor/4572/viggity
https://riptutorial.com/contributor/127440/jason-evans
https://riptutorial.com/contributor/4457454/scgough
https://riptutorial.com/contributor/602379/slatercodes
https://riptutorial.com/contributor/3557266/ashiquzzaman
https://riptutorial.com/contributor/3089009/hasan
https://riptutorial.com/contributor/1380428/adil-mammadov
https://riptutorial.com/contributor/1796/andrei-rinea
https://riptutorial.com/contributor/30913/dove
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/2453740/james-haug
https://riptutorial.com/contributor/2453740/james-haug
https://riptutorial.com/contributor/1462316/md-dinar
https://riptutorial.com/contributor/4166211/pedrosouki
https://riptutorial.com/contributor/2617732/rdans
https://riptutorial.com/contributor/1469980/tolga-evcimen
https://riptutorial.com/contributor/459102/aaron-hudon
https://riptutorial.com/contributor/6937161/ankit-kumar-singh
https://riptutorial.com/contributor/5525311/gtown-coder
https://riptutorial.com/contributor/3089009/hasan
https://riptutorial.com/contributor/5504438/marimba
https://riptutorial.com/contributor/4427614/nikunj-patel
https://riptutorial.com/contributor/921054/pavel-voronin
https://riptutorial.com/contributor/602379/slatercodes
https://riptutorial.com/contributor/3559349/stephen-muecke
https://riptutorial.com/contributor/3559349/stephen-muecke
https://riptutorial.com/contributor/7793375/the-outsider
https://riptutorial.com/contributor/4761773/thefallenone
https://riptutorial.com/contributor/1799709/vincentw
https://riptutorial.com/contributor/4974175/rll
https://riptutorial.com/contributor/5555200/diegos
https://riptutorial.com/contributor/1484713/houssam-hamdan
https://riptutorial.com/contributor/7793375/the-outsider
https://riptutorial.com/contributor/5213049/adnan-niloy
https://riptutorial.com/contributor/3557266/ashiquzzaman
https://riptutorial.com/contributor/5237614/edathadan-chief-aka-arun
https://riptutorial.com/contributor/704012/glacasa
https://riptutorial.com/contributor/127440/jason-evans
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/4887911/lokesh-ram
https://riptutorial.com/contributor/5504438/marimba
https://riptutorial.com/contributor/8297063/sailajapalakodeti
https://riptutorial.com/contributor/7793375/the-outsider
https://riptutorial.com/contributor/4635947/aditya-korti
https://riptutorial.com/contributor/1737218/aeliusd
https://riptutorial.com/contributor/3127813/anik-saha
https://riptutorial.com/contributor/5745152/arendax
https://riptutorial.com/contributor/1398425/ashley-medway
https://riptutorial.com/contributor/6632777/big-fan
https://riptutorial.com/contributor/423/brandon-wood
https://riptutorial.com/contributor/4477493/braydie
https://riptutorial.com/contributor/585584/denis-elkhov
https://riptutorial.com/contributor/30913/dove
https://riptutorial.com/contributor/2453740/james-haug
https://riptutorial.com/contributor/2453740/james-haug
https://riptutorial.com/contributor/201303/julian
https://riptutorial.com/contributor/7074395/kuldeep-prajapati
https://riptutorial.com/contributor/6698810/lee-chengkai
https://riptutorial.com/contributor/2395659/lloyd
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3833836/sadirubaiyet
https://riptutorial.com/contributor/795683/sain-pradeep
https://riptutorial.com/contributor/879553/sandro
https://riptutorial.com/contributor/6612972/thennarasan
https://riptutorial.com/contributor/88066/tim-coker
https://riptutorial.com/contributor/1936841/tkharaishvili
https://riptutorial.com/contributor/4660897/tot-zam
https://riptutorial.com/contributor/122718/usr
https://riptutorial.com/contributor/2496702/alex-art-
https://riptutorial.com/contributor/1796/andrei-rinea
https://riptutorial.com/contributor/534782/chsword
https://riptutorial.com/contributor/177347/ciaran-bruen
https://riptutorial.com/contributor/3/jarrod-dixon
https://riptutorial.com/contributor/127440/jason-evans
https://riptutorial.com/contributor/5194088/karthikeyan
https://riptutorial.com/contributor/3401842/kkakkurt
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/4887911/lokesh-ram
https://riptutorial.com/contributor/1323798/mstaessen
https://riptutorial.com/contributor/921054/pavel-voronin
https://riptutorial.com/contributor/8297063/sailajapalakodeti
https://riptutorial.com/contributor/879553/sandro
https://riptutorial.com/contributor/40521/shyju
https://riptutorial.com/contributor/602379/slatercodes
https://riptutorial.com/contributor/3559349/stephen-muecke
https://riptutorial.com/contributor/6378815/tetsuya-yamamoto
https://riptutorial.com/contributor/3805023/tmg
https://riptutorial.com/contributor/4660897/tot-zam
https://riptutorial.com/contributor/4660897/tot-zam
https://riptutorial.com/contributor/270576/user270576
https://riptutorial.com/contributor/2453740/james-haug
https://riptutorial.com/contributor/3089009/hasan
https://riptutorial.com/contributor/5874935/travis-tubbs
https://riptutorial.com/contributor/7724/bzlm
https://riptutorial.com/contributor/1836935/daniel-j-g-
https://riptutorial.com/contributor/2271680/ianb
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/8297063/sailajapalakodeti
https://riptutorial.com/contributor/40521/shyju
https://riptutorial.com/contributor/4761773/thefallenone
https://riptutorial.com/contributor/3805023/tmg
https://riptutorial.com/contributor/2830647/glaubergft
https://riptutorial.com/contributor/750392/jack-spektor

	About
	Chapter 1: Getting started with asp.net-mvc
	Remarks
	Versions
	Examples
	Hello MVC!

	Chapter 2: Action filters
	Examples
	A logging action filter
	Session Control action filter - page&ajax request
	Action filter usage locations (global, controller, action)
	Exception Handler Attribute

	Chapter 3: ActionResult
	Remarks
	Examples
	Return a View Page
	Return a File
	Return a Json

	Chapter 4: ActionResult
	Examples
	ViewResult
	PartialViewResult
	RedirectResult
	RedirectToRouteResult
	ContentResult
	JsonResult

	Chapter 5: ActionResult
	Syntax
	Examples
	Action Methods
	Mapping Action-Method Parameters
	Calling An ActionResult In Another ActionResult

	Chapter 6: Areas
	Introduction
	Remarks
	Examples
	Create a new area
	Configure RouteConfig.cs
	Create a new controller and configure areanameAreaRegistration.cs maproute

	Chapter 7: Asp.net mvc send mail
	Examples
	Contact Form In Asp MVC
	Sending Email From Class

	Chapter 8: Automatic client-side validation from attributes
	Remarks
	Examples
	Model
	web.config settings
	Required Nuget Packages
	Form View
	Bundle configuration
	Global.asax.cs

	Chapter 9: Bundling and Minification
	Examples
	Minification

	Example using Minification
	Script and Style Bundles

	Chapter 10: CRUD operation
	Introduction
	Remarks
	Examples
	Create - Controller Part
	Create - View Part
	Details - Controller part
	Details - View part
	Edit - Controller part
	Delete - Controller part

	Chapter 11: Data annotations
	Introduction
	Examples
	Basic validation attributes used in ViewModel

	Model
	View
	Controller
	Remote validation

	Remote Validation used to check whether the content enter in the input control is valid or not by sending an ajax request to server side to check it.
	RequiredAttribute
	StringLengthAttribute
	Range Attribute
	RegularExpression Attribute
	Compare Attribute
	Custom Validation Attribute

	Here is its DotNetFiddle Demo
	EDMx model - Data Annotation
	Data annotations for Database first implementation (model code auto-generated)

	Chapter 12: Dependency Injection
	Remarks
	Examples
	Ninject Configurations
	Utilization of the interfaces
	Constructor dependency injection
	Hard coded dependency
	parameter DI
	Ninject Dependency Injection

	Chapter 13: Display and Editor templates
	Introduction
	Examples
	Display Template
	Editor Template

	Chapter 14: Dockerization of ASP.NET Application
	Examples
	Dockerfile and Nuget
	POSTGRESQL Support.
	Dockerization

	Chapter 15: Error Logging
	Examples
	Simple Attribute
	returning custom error page
	Create Custom ErrorLogger In ASP.Net MVC

	Chapter 16: Html Helpers
	Introduction
	Examples
	Custom HTML Helper - Display Name
	Custom Helper - Render submit button
	Exhaustive list of HtmlHelper samples including HTML output
	HtmlHelper.Action()
	HtmlHelper.ActionLink()
	@HtmlHelper.BeginForm()
	Standard HTML Helpers with their HTML Outputs
	Custom Helper - Render Radio Button with Label
	Custom Helper - Date Time Picker

	Chapter 17: Html.AntiForgeryToken
	Introduction
	Syntax
	Remarks
	Caution
	Examples
	Basic usage

	Razor (YourView.cshtml)
	Controller (YourController.cs)
	Disable Identity Heuristic Check
	Validating All Posts
	Advance usage: Apply default Antiforgery filter for every POST
	Using AntiForgeryToken with Jquery Ajax Request

	Chapter 18: Html.RouteLink
	Parameters
	Examples
	Basic Example Using Link Text and Route Name

	Chapter 19: Http Error Handling
	Introduction
	Examples
	Basic Setup

	Chapter 20: IIS Rewrite Rules
	Examples
	Force HTTPS using Rewrite rule

	Chapter 21: jQuery Ajax Call With Asp MVC
	Examples
	Posting JavaScript objects with jQuery Ajax Call

	Chapter 22: Model binding
	Introduction
	Remarks
	Examples
	Route value binding
	Query string binding
	Binding to objects
	Ajax binding
	Generic, Session based model binding
	Prevent binding on PostModel
	File Upload
	Validating date fields manually with dynamic formats using model binder

	Chapter 23: Model validation
	Examples
	Validate Model in ActionResult
	Remove an object from validation
	Custom Error Messages
	Creating Custom Error Messages in Model and in Controller
	Model Validation in JQuery.

	Chapter 24: MVC Ajax Extensions
	Introduction
	Parameters
	Remarks
	Examples
	Ajax Action Link
	Ajax Forms

	Chapter 25: MVC vs Web Forms
	Introduction
	Syntax
	Remarks
	Examples
	Advantages of ASP .NET Web Forms
	Advantages of an MVC-Based Web Application
	Disadvantages
	Razor View Engine VS ASPX View Engine

	Chapter 26: Partial Views
	Introduction
	Syntax
	Examples
	Partial View with model
	Partial View to a String - for email content etc
	Html.Partial Vs Html.RenderPartial

	Chapter 27: Razor
	Introduction
	Syntax
	Remarks
	Examples
	Add Comments
	Display HTML within Razor code block
	Basic Syntax
	Escaping @ character
	Create inline classes and methods using @functions
	Adding a custom attribute with - (hyphen) in name
	Editor Templates
	Pass Razor content to a @helper
	Share @helpers across views

	Chapter 28: Routing
	Introduction
	Examples
	Custom Routing
	Adding custom route in Mvc
	Attribute routing in MVC
	Routing basics
	Catch-all route
	Catch-all route for enabling client-side routing
	Attribute Routing in Areas

	Chapter 29: T4MVC
	Introduction
	Examples
	Calling an Action

	Chapter 30: Using Multiple Models In One View
	Introduction
	Examples
	Using multiple model in a view with dynamic ExpandoObject

	Chapter 31: ViewData, ViewBag, TempData
	Introduction
	Syntax
	Examples
	What are ViewData, ViewBag, and TempData?
	TempData life cycle

	Chapter 32: Web.config Encryption
	Examples
	How to protect your Web.config file

	Credits

