
asp.net-web-api2

#asp.net-

web-api2

Table of Contents

About 1

Chapter 1: Getting started with asp.net-web-api2 2

Remarks 2

Examples 2

Installation or Setup 2

What and why Asp.Net Web API2? 2

Hello Web Api 4

Chapter 2: Attribute Routing in ASP.NET Web API 2 8

Introduction 8

Syntax 8

Parameters 8

Remarks 8

Examples 8

Basic Attribute Routing 8

Route prefixes 9

Chapter 3: OAuth 2.0 in ASP.NET Web API 11

Remarks 11

Examples 11

Configuring an OAuth Provider 11

Storing OAuth User Profiles 12

Allowing Redirect URLs Other Than Site Root 13

Registration Flow 13

Storing OAuth Profile Information 14

Credits 17

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: asp-net-web-api2

It is an unofficial and free asp.net-web-api2 ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official asp.net-web-
api2.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/asp-net-web-api2
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with asp.net-web-
api2

Remarks

This section provides an overview of what asp.net-web-api2 is, and why a developer might want to
use it.

It should also mention any large subjects within asp.net-web-api2, and link out to the related
topics. Since the Documentation for asp.net-web-api2 is new, you may need to create initial
versions of those related topics.

Examples

Installation or Setup

Detailed instructions on getting asp.net-web-api 2 set up or installed.

What and why Asp.Net Web API2?

What and Why ?

Asp.Net’s Web API2 is the latest version of Web API. It is an easy way to implement a RESTful
web service using all of the goodness that the Asp.Net framework provides. Once you understand
the basic principles of REST, then a Asp.net Web API2 will be very easy to implement. Web API2
is built on Asp.Net’s modular, pluggable pipeline model. This means that when a server hosting a
web API2 receives a request, it passes through Asp.Nets request pipeline first. This enables you
to easily add your own modules if you find that the default capabilities are not enough for your
needs. With the recent announcements on ASP.net vNext this also means you can potentially host
your Web API2 outside of Windows Server which opens up a whole range of usage cases. See
here for detail.

How works ?

Web API2 uses the Controller and Action concepts from MVC. Resources are mapped directly to
controllers; you would typically have a different controller for each of your main data entities
(Product, Person, Order etc). Web API2 uses the Asp.Net routing engine to map URLs to
controllers. Typically, APIs are held within a /api/ route which helps to distinguish API controllers
from other non-API in the same website.

Actions are used to map to specific HTTP verbs, for example you would typically have a GET
action which returns all of the entities. This action would respond to /api/Products (where
‘products’ is your controller) and would look something like this:

https://riptutorial.com/ 2

http://www.asp.net/vnext

 public IEnumerable<string> Get()
 {
 return new string[] { "value1", "value2" };
 }

You may also have a GET action which accepts a specific ID and returns a specific entity. It would
respond to /api/Products/81 and would look something like this:

public string Get(int id)
 {
 return "value";
 }

There are many great hidden benefits to using Web API which you may not realise but actually
save you a lot of work.

Web API2 is part of the ‘One Asp.Net’

Web API2 is part of the ‘One Asp.Net’ family which means that it natively supports all of the great
shared features you may currently use with MVC or web forms, this includes (these are just a few
examples):

Entity Framework•
Authorisation and identity•
Scaffolding•
Routing•

Serialization and Model Binding

Web API2 is setup by default to provide responses in either XML or JSON (JSON is default).
However, as a developer you do not need to do any conversion or parsing – you simply return a
strongly typed object and Web API2 will convert it to XML or JSON and return it to the calling
client, this is a process called Content Negotiation. This is an example of a GET action which
returns a strongly typed Product object.

 public Product GetProduct(int id)
 {
 var product = _products.FirstOrDefault(p => p.ID == id);
 if (product == null)
 {
 throw new HttpResponseException(HttpStatusCode.NotFound);
 }
 return Request.CreateResponse(HttpStatusCode.OK, product);
 }

This also works for incoming requests using a feature called Model Validation. With Model
Validation, Web API2 is able to validate and parse incoming response body data to a strongly
typed object for you to work with in your code. This is an example of model binding:

 public HttpResponseMessage Post(Product product)
 {

https://riptutorial.com/ 3

 if (ModelState.IsValid)
 {
 // Do something with the product (not shown).

 return new HttpResponseMessage(HttpStatusCode.OK);
 }
 else
 {
 return Request.CreateErrorResponse(HttpStatusCode.BadRequest, ModelState);
 }
 }

Hello Web Api

Web Api 2 - Hello World example

We are going to create a new Web Api simple application which return to us Json with message
and user name.
Lets start! First create new Web Api project using Visual Studio and select Empty Template. Be
sure to check "Web Api" folder:

NOTE I didn't choose "Web Api" template because it adds reference to ASP.NET MVC to provide
API Help Page. And in such basic application we don't really need it.

https://riptutorial.com/ 4

https://i.stack.imgur.com/TPLtf.png

Adding a model

A model is an C# class that represents some data in our app. ASP.NET Web API is able to
automatically serialize model to JSON, XML, or some other format (depends on configuration).

In our application we will create only one model, but real-world apps usually have a lot of them.

In Solution Explorer, right-click the Models folder. Next select Add and then select Class. Name
the class "HelloMessage". Our model needs two properties: MessageText and UserName:

namespace WebApiHelloWorld.Models
{
 public class HelloMessage
 {
 public string MessageText { get; set; }
 public string UserName { get; set; }
 }
}

Adding a controller

A controller handles HTTP requests. Our app needs only one controller that returns Json with
Hello message and user name (which we will pass in URL).
In Solution Explorer, right-click the Controllers folder. Next select Add and then select
Controller. In the opened window, select Web API Controller - Empty and click Add.

https://riptutorial.com/ 5

Set controller name as "HelloController". Next edit code of created controller. We need to add
method which returns Hello message.

using System.Web.Http;
using WebApiHelloWorld.Models;

namespace WebApiHelloWorld.Controllers
{
 public class HelloController : ApiController
 {
 public HelloMessage GetMessage(string name)
 {
 HelloMessage message = new HelloMessage
 {
 MessageText = "Hello my Dear!",
 UserName = name
 };

https://riptutorial.com/ 6

https://i.stack.imgur.com/otR9M.png

 return message;
 }
 }
}

NOTE Be sure to add using WebApiHelloWorld.Models. Without it your controller won't find
HelloMessage class.

Finish

That's all! Now you only need to build and start your application. Simply hit Ctrl + F5 or just F5 (to
start without debugging). Visual studio will launch web browser. You need to call your controller.
To do that add at the end of the URL "/api/hello?name=John". The result should be:

{
 "MessageText": "Hello my Dear!",
 "UserName": "John"
}

Read Getting started with asp.net-web-api2 online: https://riptutorial.com/asp-net-web-
api2/topic/3323/getting-started-with-asp-net-web-api2

https://riptutorial.com/ 7

https://riptutorial.com/asp-net-web-api2/topic/3323/getting-started-with-asp-net-web-api2
https://riptutorial.com/asp-net-web-api2/topic/3323/getting-started-with-asp-net-web-api2

Chapter 2: Attribute Routing in ASP.NET Web
API 2

Introduction

As the name suggests, this uses attributes to route. This gives the user more control over the
URI's in the WebAPI. For example, you can describe hierarchies of the resource. However, the
earlier 'Conventional Routing' is fully supported. Users can have a mixture of both too.

Syntax

[RoutePrefix("api/books")] - for controller class•
[Route("getById")] - for actions•
[Route("~/api/authors/{authorId:int}/books")] - for overriding route prefix•

Parameters

Parameter
Name

Details

RoutePrefix
attribute to the controller class. all common url prefixes in actions are
clubbed here. takes string as input

Route
attribute to the controller actions. each action will have route assosciated
with(not necessarily)

Route("~/api/") this overrides the Route Prefix

Remarks

Currently, Attribute Routes doesn't have Controller specific Message Handlers. As there is no way
to specify Which handler to execute for which route at the time of declaration. This is possible in
Conventional Routing.

Examples

Basic Attribute Routing

Simply add an attribute to the controller action

[Route("product/{productId}/customer")]
public IQueryable<Product> GetProductsByCustomer(int productId)

https://riptutorial.com/ 8

{
 //action code goes here
}

this will be queried as /product/1/customer and productId=1 will be sent to the controller action.

Make sure the one within '{ }' and the action parameter are same. productId in this case.

before using this, you have to specify that you are using Attribute Routing by:

public static class WebApiConfig
{
 public static void Register(HttpConfiguration config)
 {
 config.MapHttpAttributeRoutes();
 }
}

Route prefixes

Usually, the routes in a controller have the same prefix connected somehow with functionality of
this controller. For example:

public class ProductsController : ApiController
{
 [Route("api/products")]
 public IEnumerable<Product> GetProducts() { ... }

 [Route("api/products/{id:int}")]
 public Product GetProduct(int id) { ... }

 [Route("api/products")]
 [HttpPost]
 public HttpResponseMessage CreateProduct(Product product) { ... }
}

In such scenario we can set common prefix for whole controller. To do so we use the
[RoutePrefix] attribute:

[RoutePrefix("api/products")]
public class ProductsController : ApiController
{
 // GET api/products
 [Route("")]
 public IEnumerable<Product> GetProducts() { ... }

 // GET api/products/5
 [Route("{id:int}")]
 public Product GetProduct(int id) { ... }

 //POST api/products
 [Route("")]
 [HttpPost]
 public HttpResponseMessage CreateProduct(Product product) { ... }
}

https://riptutorial.com/ 9

Overriding route prefix

If we want to override the route prefix we can use a tilde (~) in the routing attribute of the method:

[RoutePrefix("api/products")]
public class ProductsController : ApiController
{
 // GET api/owners/products
 [Route("~/api/owners/products")]
 public IEnumerable<Product> GetProducts() { ... }

 //...
}

Read Attribute Routing in ASP.NET Web API 2 online: https://riptutorial.com/asp-net-web-
api2/topic/9559/attribute-routing-in-asp-net-web-api-2

https://riptutorial.com/ 10

https://riptutorial.com/asp-net-web-api2/topic/9559/attribute-routing-in-asp-net-web-api-2
https://riptutorial.com/asp-net-web-api2/topic/9559/attribute-routing-in-asp-net-web-api-2

Chapter 3: OAuth 2.0 in ASP.NET Web API

Remarks

Registering in an Android Application

These are the steps I've taken to log in / register using an Android app:

Have a login activity which queries the ExternalLogins route, getting the available providers.
This activity should have the NoHistory flag enabled and launch as a single instance.

•

On a user's button press, launch a Custom Chrome Tab with the provider's URL. The user
should be logged in and redirected back to your published site at the given return URL. Don't
use a WebView.

•

Have this page redirect the user again, using a custom URI scheme to launch a post-login
activity within your application with the access token, expiry date and user account details
added as additional data. This will need to be done in JavaScript on the web page, as the
server's controllers can't access the URL parameters.

•

Store the user's details and token in a local MySQL database. On each login, check to see if
the token is still in date.

•

Any calls to the API can now be authorized using the Authorization HTTP header, with your
stored token added as so: “Bearer {token}”

•

Examples

Configuring an OAuth Provider

You need to get some details from your OAuth provider of choice. We'll be looking at Google, but
ASP.NET is also set up to allow out-the-box use of Twitter, Facebook and Microsoft (obviously).

You'll want to go to the Google developer console (https://console.developers.google.com/) and
create a project, enable the Google+ API (for getting the user's profile info, such as their name and
avatar) and create a new OAuth 2 Client ID in the “Credentials” section. The authorized JavaScript
origins should be your project's root URL (e.g. https://yourapi.azurewebsites.net) and the redirect
URIs need to include ASP's built-in Google callback endpoint (
https://yourapi.azurewebsites.net/signin-google) as well as your callback route of choice (
https://yourapi.azurewebsites.net/callback). Getting these wrong will result in Google having a
hissy fit.

Back in your Visual Studio project, open App_Start > Startup.Auth.cs. Replace the commented
Google section at the bottom with the code below, adding the ID and Secret from the Google
Developers Console:

var googleAuthOptions = new GoogleOAuth2AuthenticationOptions()
{
 ClientId = "YOUR ID",
 ClientSecret = "YOUR SECRET",

https://riptutorial.com/ 11

https://console.developers.google.com/)
https://yourapi.azurewebsites.net)
https://yourapi.azurewebsites.net/signin-google)
https://yourapi.azurewebsites.net/callback)

 Provider = new GoogleOAuth2AuthenticationProvider()
 {
 OnAuthenticated = (context) =>
 {
 context.Identity.AddClaim(new Claim("urn:google:name",
context.Identity.FindFirstValue(ClaimTypes.Name)));
 context.Identity.AddClaim(new Claim("urn:google:email",
context.Identity.FindFirstValue(ClaimTypes.Email)));
 //This following line is need to retrieve the profile image
 context.Identity.AddClaim(new Claim("urn:google:accesstoken",
context.AccessToken, ClaimValueTypes.String, "Google"));
 return System.Threading.Tasks.Task.FromResult(0);
 }
 }
 };
app.UseGoogleAuthentication(googleAuthOptions);

These additional claims allow you to query Google for the user's profile information, such as their
name and avatar URL.

Storing OAuth User Profiles

When someone registers with your application, a new ApplicationUser object will be stored in the
database. By default the class is very barebones, but it can be customised - you can find it in
Models > IdentityModels.cs. This is mine:

public class ApplicationUser : IdentityUser
{
 public string ImageUrl { get; set; }
 public DateTime DateCreated { get; set; }
 public string FirstName { get; set; }
 public string AuthProvider { get; set; }
 public string Surname { get; set; }

 public async Task<ClaimsIdentity> GenerateUserIdentityAsync(UserManager<ApplicationUser>
manager, string authenticationType)
 {
 // Note the authenticationType must match the one defined in
CookieAuthenticationOptions.AuthenticationType
 var userIdentity = await manager.CreateIdentityAsync(this, authenticationType);
 // Add custom user claims here
 return userIdentity;
 }
}

For reference, the user profile returned from Google with the Google+ API enabled takes the
following JSON structure:

{{
 "id": "1****************6",
 email": "dan********@gmail.com",
 "verified_email": true,
 "name": "Dan Richardson",
 "given_name": "Dan",
 "family_name": "Richardson",
 "link": "https://plus.google.com/+DanRichardson",

https://riptutorial.com/ 12

 "picture": "https://lh4.googleusercontent.com/photo.jpg",
 "gender": "male",
 "locale": "en"
}}

Allowing Redirect URLs Other Than Site Root

Go to Providers > ApplicationOAuthProvider.cs and edit the ValidateClientRedirectUri function.
This was a big gotcha to me, as if you don't do this there'll be a fantastically unhelpful error
message. By default, this code will make any callbacks to your site invalid unless they're to the
site's root. You likely want to be able to handle the callbacks in a controller, so you'll need to
change it to something like this:

public override Task ValidateClientRedirectUri(OAuthValidateClientRedirectUriContext context)
{
 if (context.ClientId == _publicClientId)
 {
 Uri expectedRootUri = new Uri(context.Request.Uri, "/");
 Uri expectedCallbackUri = new Uri(context.Request.Uri, "/callback");

 if (expectedRootUri.AbsoluteUri == context.RedirectUri ||
 expectedCallbackUri.AbsoluteUri == context.RedirectUri)
 {
 context.Validated();
 }
 }
 return Task.FromResult<object>(null);
}

Registration Flow

Here is the default flow of registering a user in Web API. All of these routes can be found in the
AccountController:

The user requests a list of the login providers using the GetExternalLogins route, passing a
return URL as a parameter. This returns an array of provider objects, containing the
provider's name and the route that should be requested in order to log in with it (each
configured to use the given return url).

e.g. GET: /api/Account/ExternalLogins?returnUrl=/callback&generateState=true, where the
requested return URL is /callback

•

The user calls one of these returned URLs in a browser, where they're redirected to the
provider's login page. Once logged in, the provider passes a cookie back to ASP, which
handles the creation of an external user account.

•

The user will be redirected to the return URL they passed in the first step. An external
access token is passed back to the user, appended to the URL in a # param. This token can
only be used on select routes, such as RegisterExternal.

•

The user now sends a POST request to RegisterExternal, using the new access token as a •

https://riptutorial.com/ 13

Bearer key. ASP then creates a new ApplicationUser and returns a proper access token
which can be used on any route.

Storing OAuth Profile Information

I have found that the Web API template is broken - the default implementation relies on cookies in
the final step, which you probably don't want to be using in a Rest API. Without a cookie,
GetExternalLoginInfoAsync in RegisterExternal always returns null. I removed RegisterExternal
entirely, instead creating the final user account in GetExternalLogin - called on return from the
OAuth provider (in this case, Google):

[OverrideAuthentication]
[HostAuthentication(DefaultAuthenticationTypes.ExternalCookie)]
[AllowAnonymous]
[Route("ExternalLogin", Name = "ExternalLogin")]
public async Task<IHttpActionResult> GetExternalLogin(string provider, string error = null)
{
 if (error != null)
 {
 return Redirect(Url.Content("~/") + "#error=" + Uri.EscapeDataString(error));
 }

 if (!User.Identity.IsAuthenticated)
 {
 return new ChallengeResult(provider, this);
 }

 ExternalLoginData externalLogin = ExternalLoginData.FromIdentity(User.Identity as
ClaimsIdentity);

 if (externalLogin == null)
 {
 return InternalServerError();
 }

 if (externalLogin.LoginProvider != provider)
 {
 Authentication.SignOut(DefaultAuthenticationTypes.ExternalCookie);
 return new ChallengeResult(provider, this);
 }

 ApplicationUser user = await UserManager.FindAsync(new
UserLoginInfo(externalLogin.LoginProvider,
 externalLogin.ProviderKey));

 bool hasRegistered = user != null;

 if (hasRegistered)
 {
 Authentication.SignOut(DefaultAuthenticationTypes.ExternalCookie);

 ClaimsIdentity oAuthIdentity = await user.GenerateUserIdentityAsync(UserManager,
 OAuthDefaults.AuthenticationType);
 ClaimsIdentity cookieIdentity = await user.GenerateUserIdentityAsync(UserManager,
 CookieAuthenticationDefaults.AuthenticationType);

 AuthenticationProperties properties =
ApplicationOAuthProvider.CreateProperties(user.UserName);

https://riptutorial.com/ 14

 Authentication.SignIn(properties, oAuthIdentity, cookieIdentity);
 }
 else
 {
 var accessToken = Authentication.User.Claims.Where(c =>
c.Type.Equals("urn:google:accesstoken")).Select(c => c.Value).FirstOrDefault();
 Uri apiRequestUri = new
Uri("https://www.googleapis.com/oauth2/v2/userinfo?access_token=" + accessToken);

 RegisterExternalBindingModel model = new RegisterExternalBindingModel();

 using (var webClient = new System.Net.WebClient())
 {
 var json = webClient.DownloadString(apiRequestUri);
 dynamic jsonResult = JsonConvert.DeserializeObject(json);
 model.Email = jsonResult.email;
 model.Picture = jsonResult.picture;
 model.Family_name = jsonResult.family_name;
 model.Given_name = jsonResult.given_name;
 }

 var appUser = new ApplicationUser
 {
 UserName = model.Email,
 Email = model.Email,
 ImageUrl = model.Picture,
 FirstName = model.Given_name,
 Surname = model.Family_name,
 DateCreated = DateTime.Now
 };

 var loginInfo = await Authentication.GetExternalLoginInfoAsync();

 IdentityResult result = await UserManager.CreateAsync(appUser);
 if (!result.Succeeded)
 {
 return GetErrorResult(result);
 }

 result = await UserManager.AddLoginAsync(appUser.Id, loginInfo.Login);
 if (!result.Succeeded)
 {
 return GetErrorResult(result);
 }

 ClaimsIdentity oAuthIdentity = await
appUser.GenerateUserIdentityAsync(UserManager,
 OAuthDefaults.AuthenticationType);
 ClaimsIdentity cookieIdentity = await
appUser.GenerateUserIdentityAsync(UserManager,
 CookieAuthenticationDefaults.AuthenticationType);

 AuthenticationProperties properties =
ApplicationOAuthProvider.CreateProperties(appUser.UserName);
 Authentication.SignIn(properties, oAuthIdentity, cookieIdentity);
 }

 return Ok();
}

This removes the need for the client application to perform a needless POST request after

https://riptutorial.com/ 15

receiving an external access token.

Read OAuth 2.0 in ASP.NET Web API online: https://riptutorial.com/asp-net-web-
api2/topic/7603/oauth-2-0-in-asp-net-web-api

https://riptutorial.com/ 16

https://riptutorial.com/asp-net-web-api2/topic/7603/oauth-2-0-in-asp-net-web-api
https://riptutorial.com/asp-net-web-api2/topic/7603/oauth-2-0-in-asp-net-web-api

Credits

S.
No

Chapters Contributors

1
Getting started with
asp.net-web-api2

Archil Labadze, Community, Krzyserious, Mostafiz

2
Attribute Routing in
ASP.NET Web API 2

Ajay Aradhya, Krzyserious

3
OAuth 2.0 in
ASP.NET Web API

GS_Dan

https://riptutorial.com/ 17

https://riptutorial.com/contributor/4089212/archil-labadze
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6697368/krzyserious
https://riptutorial.com/contributor/5154423/mostafiz
https://riptutorial.com/contributor/4792175/ajay-aradhya
https://riptutorial.com/contributor/6697368/krzyserious
https://riptutorial.com/contributor/1377099/gs-dan

	About
	Chapter 1: Getting started with asp.net-web-api2
	Remarks
	Examples
	Installation or Setup
	What and why Asp.Net Web API2?
	Hello Web Api

	Chapter 2: Attribute Routing in ASP.NET Web API 2
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Basic Attribute Routing
	Route prefixes

	Chapter 3: OAuth 2.0 in ASP.NET Web API
	Remarks
	Examples
	Configuring an OAuth Provider
	Storing OAuth User Profiles
	Allowing Redirect URLs Other Than Site Root
	Registration Flow
	Storing OAuth Profile Information

	Credits

