
Assembly Language

#assembly



Table of Contents

About 1

Chapter 1: Getting started with Assembly Language 2

Remarks 2

Examples 2

Introduction 2

Machine code 3

Hello world for Linux x86_64 (Intel 64 bit) 5

Hello World for OS X (x86_64, Intel syntax gas) 6

Executing x86 assembly in Visual Studio 2015 7

Chapter 2: Flow Control 11

Introduction 11

Examples 11

Trivial IF-THEN-ELSE in m68k Assembly 11

FOR ... NEXT in Z80 Assembly 11

If-statement in Intel-syntax assembly 12

Loop while condition is true in Intel syntax assembly 13

Chapter 3: Interrupts 14

Remarks 14

Examples 14

Working with Interrupts on the Z80: 14

Chapter 4: Linux elf64 examples not using glibc 15

Examples 15

User Interface 15

Subrtx.asm 15

Generic.asm 17

Makefile 18

Chapter 5: Registers 20

Remarks 20

Examples 20

Zilog Z80 registers 20



x86 Registers 21

x64 Registers 22

Chapter 6: The Stack 24

Remarks 24

Examples 24

Zilog Z80 Stack 24

Credits 26



About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version 
from: assembly-language

It is an unofficial and free Assembly Language ebook created for educational purposes. All the 
content is extracted from Stack Overflow Documentation, which is written by many hardworking 
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official Assembly 
Language.

The content is released under Creative Commons BY-SA, and the list of contributors to each 
chapter are provided in the credits section at the end of this book. Images may be copyright of 
their respective owners unless otherwise specified. All trademarks and registered trademarks are 
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor 
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/assembly-language
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com


Chapter 1: Getting started with Assembly 
Language

Remarks

Assembly is a general name used for many human-readable forms of machine code. It naturally 
differs a lot between different CPUs (Central Processing Unit), but also on single CPU there may 
exist several incompatible dialects of Assembly, each compiled by different assembler, into the 
identical machine code defined by the CPU creator.

If you want to ask question about your own Assembly problem, always state what HW and which 
assembler you are using, otherwise it will be difficult to answer your question in detail.

Learning Assembly of single particular CPU will help to learn basics on different CPU, but every 
HW architecture can have considerable differences in details, so learning ASM for new platform 
can be close to learning it from scratch.

Links:

X86 Assembly Wikibook

Examples

Introduction

Assembly language is a human readable form of machine language or machine code which is the 
actual sequence of bits and bytes on which the processor logic operates. It is generally easier for 
humans to read and program in mnemonics than binary, octal or hex, so humans typically write 
code in assembly language and then use one or more programs to convert it into the machine 
language format understood by the processor.

EXAMPLE:

mov eax, 4 
cmp eax, 5 
je point

An assembler is a program that reads the assembly language program, parses it, and produces 
the corresponding machine language. It is important to understand that unlike a language like C++ 
that is a single language defined in standard document, there are many different assembly 
languages. Each processor architecture, ARM, MIPS, x86, etc has a different machine code and 
thus a different assembly language. Additionally, there are sometimes multiple different assembly 
languages for the same processor architecture. In particular, the x86 processor family has two 
popular formats which are often referred to as gas syntax (gas is the name of the executable for 
the GNU Assembler) and Intel syntax (named after the originator of the x86 processor family). 

https://riptutorial.com/ 2

https://en.wikibooks.org/wiki/X86_Assembly


They are different but equivalent in that one can typically write any given program in either syntax.

Generally, the inventor of the processor documents the processor and its machine code and 
creates an assembly language. It's common for that particular assembly language to be the only 
one used, but unlike compiler writers attempting to conform to a language standard, the assembly 
language defined by the inventor of the processor is usually but not always the version used by 
the people who write assemblers.

There are two general types of processors:

CISC (Complex Instruction Set Computer): have many different and often complex machine 
language instructions

•

RISC (Reduced Instruction set Computers): by contrast, has fewer and simpler instructions•

For an assembly language programmer, the difference is that a CISC processor may have a great 
many instructions to learn but there are often instructions suited for a particular task, while RISC 
processors have fewer and simpler instructions but any given operation may require the assembly 
language programmer to write more instructions to get the same thing done.

Other programming languages compilers sometimes produce assembler first, which is then 
compiled into machine code by calling an assembler. For example, gcc using its own gas 
assembler in final stage of compilation. Produced machine code is often stored in object files, 
which can be linked into executable by the linker program.

A complete "toolchain" often consists of a compiler, assembler and linker. One can then use that 
assembler and linker directly to write programs in assembly language. In the GNU world the 
binutils package contains the assembler and linker and related tools; those who are solely 
interested in assembly language programming do not need gcc or other compiler packages.

Small microcontrollers are often programmed purely in assembly language or in a combination of 
assembly language and one or more higher level languages such as C or C++. This is done 
because one can often use the particular aspects of the instruction set architecture for such 
devices to write more compact, efficient code than would be possible in a higher level language 
and such devices often have limited memory and registers. Many microprocessors are used in 
embedded systems which are devices other than general purpose computers that happen to 
have a microprocessor inside. Examples of such embedded systems are televisions, microwave 
ovens and the engine control unit of a modern automobile. Many such devices have no keyboard 
or screen, so a programmer generally writes the program on a general purpose computer, runs a 
cross-assembler (so called because this kind of assembler produces code for a different kind of 
processor than the one on which it runs) and/or a cross-compiler and cross linker to produce 
machine code.

There are many vendors for such tools, which are as varied as the processors for which they 
produce code. Many, but not all processors also have an open source solution like GNU, sdcc, 
llvm or other.

Machine code

https://riptutorial.com/ 3



Machine code is term for the data in particular native machine format, which are directly processed 
by the machine - usually by the processor called CPU (Central Processing Unit).

Common computer architecture (von Neumann architecture) consist of general purpose processor 
(CPU), general purpose memory - storing both program (ROM/RAM) and processed data and 
input and output devices (I/O devices).

The major advantage of this architecture is relative simplicity and universality of each of 
components - when compared to computer machines before (with hard-wired program in the 
machine construction), or competing architectures (for example the Harvard architecture 
separating memory of program from memory of data). Disadvantage is a bit worse general 
performance. Over long run the universality allowed for flexible usage, which usually outweighed 
the performance cost.

How does this relate to machine code?

Program and data are stored in these computers as numbers, in the memory. There's no genuine 
way to tell apart code from data, so the operating systems and machine operators give the CPU 
hints, at which entry point of memory starts the program, after loading all the numbers into 
memory. The CPU then reads the instruction (number) stored at entry point, and processing it 
rigorously, sequentially reading next numbers as further instructions, unless the program itself tells 
CPU to continue with execution elsewhere.

For example a two 8 bit numbers (8 bits grouped together are equal to 1 byte, that's an unsigned 
integer number within 0-255 range): 60 201, when executed as code on Zilog Z80 CPU will be 
processed as two instructions: INC a (incrementing value in register a by one) and RET (returning 
from sub-routine, pointing CPU to execute instructions from different part of memory).

To define this program a human can enter those numbers by some memory/file editor, for example 
in hex-editor as two bytes: 3C C9 (decimal numbers 60 and 201 written in base 16 encoding). That 
would be programming in machine code.

To make the task of CPU programming easier for humans, an Assembler programs were created, 
capable to read text file containing something like:

subroutineIncrementA: 
    INC   a 
    RET 
 
dataValueDefinedInAssemblerSource: 
    DB    60          ; define byte with value 60 right after the ret

outputting byte hex-numbers sequence 3C C9 3C, wrapped around with optional additional numbers 
specific for target platform: marking which part of such binary is executable code, where is the 
entry point for program (the first instruction of it), which parts are encoded data (not executable), 
etc.

Notice how the programmer specified the last byte with value 60 as "data", but from CPU 
perspective it does not differ in any way from INC a byte. It's up to the executing program to 

https://riptutorial.com/ 4

https://en.wikipedia.org/wiki/Von_Neumann_architecture


correctly navigate CPU over bytes prepared as instructions, and process data bytes only as data 
for instructions.

Such output is usually stored in a file on storage device, loaded later by OS (Operating System - a 
machine code already running on the computer, helping to manipulate with the computer) into 
memory ahead of executing it, and finally pointing the CPU on the entry point of program.

The CPU can process and execute only machine code - but any memory content, even random 
one, can be processed as such, although result may be random, ranging from "crash" detected 
and handled by OS up to accidental wipe of data from I/O devices, or damage of sensitive 
equipment connected to the computer (not a common case for home computers :) ).

The similar process is followed by many other high level programming languages, compiling the 
source (human readable text form of program) into numbers, either representing the machine 
code (native instructions of CPU), or in case of interpreted/hybrid languages into some general 
language-specific virtual machine code, which is further decoded into native machine code during 
execution by interpreter or virtual machine.

Some compilers use the Assembler as intermediate stage of compilation, translating the source 
firstly into Assembler form, then running assembler tool to get final machine code out of it (GCC 
example: run gcc -S helloworld.c to get an assembler version of C program helloworld.c).

Hello world for Linux x86_64 (Intel 64 bit)

section .data 
    msg db "Hello world!",10      ; 10 is the ASCII code for a new line (LF) 
 
section .text 
    global _start 
 
_start: 
    mov rax, 1 
    mov rdi, 1 
    mov rsi, msg 
    mov rdx, 13 
    syscall 
 
    mov rax, 60 
    mov rdi, 0 
    syscall

If you want to execute this program, you first need the Netwide Assembler, nasm, because this 
code uses its syntax. Then use the following commands (assuming the code is in the file 
helloworld.asm). They are needed for assembling, linking and executing, respectively.

nasm -felf64 helloworld.asm•
ld helloworld.o -o helloworld•
./helloworld•

The code makes use of Linux's sys_write syscall. Here you can see a list of all syscalls for the 
x86_64 architecture. When you also take the man pages of write and exit into account, you can 

https://riptutorial.com/ 5

http://www.nasm.us/
http://blog.rchapman.org/post/36801038863/linux-system-call-table-for-x86-64
http://linux.die.net/man/2/write
http://linux.die.net/man/2/exit


translate the above program into a C one which does the same and is much more readable:

#include <unistd.h> 
 
#define STDOUT 1 
 
int main() 
{ 
    write(STDOUT, "Hello world!\n", 13); 
    _exit(0); 
}

Just two commands are needed here for compilation and linking (first one) and executing:

gcc helloworld_c.c -o helloworld_c.•
./helloworld_c•

Hello World for OS X (x86_64, Intel syntax gas)

.intel_syntax noprefix 
 
.data 
 
.align 16 
hello_msg: 
    .asciz "Hello, World!" 
 
.text 
 
.global _main 
_main: 
    push rbp 
    mov rbp, rsp 
 
    lea rdi, [rip+hello_msg] 
    call _puts 
 
    xor rax, rax 
    leave 
    ret

Assemble:

clang main.s -o hello 
./hello

Notes:

The use of system calls is discouraged as the system call API in OS X is not considered 
stable. Instead, use the C library. (Reference to a Stack Overflow question)

•

Intel recommends that structures larger than a word begin on a 16-byte boundary. (
Reference to Intel documentation)

•

The order data is passed into functions through the registers is: rdi, rsi, rdx, rcx, r8, and r9. (
Reference to System V ABI)

•

https://riptutorial.com/ 6

http://stackoverflow.com/a/357113/6557303
https://software.intel.com/en-us/articles/data-alignment-when-migrating-to-64-bit-intel-architecture/
http://people.freebsd.org/~obrien/amd64-elf-abi.pdf


Executing x86 assembly in Visual Studio 2015

Step 1: Create an empty project via File -> New Project.

https://riptutorial.com/ 7

https://i.stack.imgur.com/LE2AI.png


Step 2: Right click the project solution and select Build Dependencies->Build Customizations.

Step 3: Check the checkbox ".masm".

https://riptutorial.com/ 8

https://i.stack.imgur.com/Fkbpm.png


Step 4: Press the button "ok".

Step 5: Create your assembly file and type in this:

.386 
    .model small 
        .code 
 
            public main 
                main proc 
 
                    ; Ends program normally 
 
                    ret 
                main endp 
            end main

Step 6: Compile!

https://riptutorial.com/ 9



Read Getting started with Assembly Language online: 
https://riptutorial.com/assembly/topic/1358/getting-started-with-assembly-language

https://riptutorial.com/ 10

https://i.stack.imgur.com/18zg4.png
https://riptutorial.com/assembly/topic/1358/getting-started-with-assembly-language


Chapter 2: Flow Control

Introduction

Every piece of non-trivial software needs flow-control structures to divert program flow according 
to conditions. Assembly being the lowest-level programming language provides only primitives for 
control structures. Typically, machine operations affect flags in the CPU, and conditional 
branches/jumps implement the flow control. In assembly, all higher-level control structures need to 
be constructed from such primitives.

Examples

Trivial IF-THEN-ELSE in m68k Assembly

; IF d0 == 10 GO TO ten, ELSE GO TO other 
    CMP    #10,d0        ; compare register contents to immediate value 10 
                         ; instruction affects the zero flag 
    BEQ    ten           ; branch if zero flag set 
other: 
    ; do whatever needs to be done for d0 != 10 
    BRA    afterother    ; unconditionally jump across IF case 
ten: 
    ; do whatever needs to be done for d0 == 10 
afterother: 
    ; continue normal common program flow

Which instructions are affecting which flags, and which conditional branches (that might also be 
based on specific combinations of flags) are available, depends very much on your chosen CPU 
and should be looked up in the manuals.

FOR ... NEXT in Z80 Assembly

The Z80 has a specific instruction to implement loop counts: DJNZstanding for "decrement B 
register and jump if not zero". So, B is the register of choice to implement loops on this processor. 
FOR...NEXT needs to be implemented "backwards", because the register counts down to zero. 
Other CPUs (like the 8086, this CPU uses the CX register as loop counter) might have similar 
specific loop counter registers and instructions, some other CPUs allow loop commands with 
arbitrary registers (m68k has a DBRA instruction that works with any data register).

; Trivial multiplication (by repeated adding, ignores zero in factors, so 
; not recommended for general use) 
; 
; inputs:    A = Factor 1 
;            B = Factor 2 
; 
; output:    A = Factor 1 * Factor 2 
; 
; Pseudo code 
; C = A : A = 0 : FOR B = Factor 2 DOWNTO 0 : A = A + C : NEXT B 

https://riptutorial.com/ 11



 
mul: 
     LD    C,A        ; Save Factor 1 in C register 
     XOR   A          ; Clear accumulator 
mLoop: 
     ADD   A,C        ; Add Factor 1 to accumulator 
     DJNZ  mLoop      ; Do this Factor 2 times 
     RET              ; return to caller

If-statement in Intel-syntax assembly

section .data 
    msg_eq db 'Equal', 10 
    len_eq equ $ - msg_eq 
 
    msg_le db 'Less than', 10 
    len_le equ $ - msg_le 
 
    msg_gr db 'Greater than', 10 
    len_gr equ $ - msg_gr ; Length of msg_gr 
section .text 
    global _main ; Make the _main label global for linker 
_main: 
    cmp 4, 5 ; Compare 4 and 5 
    je _equal ; je = jump if equal 
    jl _less ; jl = jump if less 
    jg _greater ; jg = jump if greater 
exit: 
    ret ; Return 
_equal: 
    ; Whatever code here 
    mov rax, 0x2000004 ; sys_write, 4 for linux 
    mov rdi, 1 ; STDOUT 
    mov rsi, msg_eq 
    mov rdi, len_eq 
 
    syscall 
 
    jmp exit ; Exit 
_less: 
    ; Whatever code here 
    mov rax, 0x2000004 
    mov rdi, 1 
    mov rsi, msg_le 
    mov rdi, len_le 
 
    syscall 
 
    jmp exit 
_greater: 
    ; Whatever code here 
 
    mov rax, 0x2000004 
    mov rdi, 1 
    mov rsi, msg_gr 
    mov rdi, len_gr 
 
    syscall 
    jmp exit

https://riptutorial.com/ 12



Loop while condition is true in Intel syntax assembly

section .data 
    msg db 'Hello, world!', 0xA 
    len equ $ - msg 
section .text 
global _main 
_main: 
    mov rax, 0 ; This will be the current number 
    mov rcx, 10 ; This will be the last number 
 
_loop: 
    cmp rax, rcx 
    jl .loopbody ; Jump to .loopbody if rax < rcx 
    jge _exit ; Jump to _exit if rax ≥ rcx 
.loopbody: 
    push rax ; Store the rax value for later use 
 
    mov rax, 0x2000004 ; 4 for Linux 
    mov rdi, 1 ; STDOUT 
    mov rsi, msg 
    mov rdx, len 
 
    syscall 
 
    pop rax ; Take it back to rax 
 
    inc rax ; Add 1 to rax. This is required since the loop must have an ending. 
 
    jmp _loop ; Back to loop 
_exit: 
    ret    ; Return

This will execute .loopbody as long as rax < rcx.

Read Flow Control online: https://riptutorial.com/assembly/topic/8172/flow-control

https://riptutorial.com/ 13

https://riptutorial.com/assembly/topic/8172/flow-control


Chapter 3: Interrupts

Remarks

Why do we need Interrupts

Lets imagine: Our computer is connected to a keypad. We want to enter something. When we 
press the key nothing happens because the computer is dealing with different things and doesnt 
notice that we want something from him. We need Interrupts!

Interrupts are triggered by software (INT 80h) or hardware (keypress), they behave like a Call 
(they jump to a specific location, execute code and jump back again).

Examples

Working with Interrupts on the Z80:

The Z80 has no Interrupt table like modern processors. The Interrupts all execute the same code. 
In Interrupt Mode 1, they execute the code in a specific unchangeable location. In Interrupt Mode 
2, they execute the code from the Pointer register I points to. The Z80 has got a timer, that triggers 
the Interrupt all ~0.007s.

EI      ;enables Interrupts 
DI      ;disables Interrupts 
IM 1    ;sets the Normal Interrupt Mode 
 
 
IM 2    ;sets the Advanced Interrupt Mode 
LD I,$99;sets the Interrupt Pointer to $99 (just possible in IM 2)

Read Interrupts online: https://riptutorial.com/assembly/topic/6555/interrupts

https://riptutorial.com/ 14

https://riptutorial.com/assembly/topic/6555/interrupts


Chapter 4: Linux elf64 examples not using 
glibc

Examples

User Interface

I would venture to say that 80% of the processing that goes on in modern computing systems 
does not require user interaction, such as kernel code for Linux, OSX and Windows. For those that 
do, there are two fundamentals which are interactivity via keyboard (pointing devices) and 
console. This example and others in my series are oriented around text based console (VT100 
emulation) and keyboard.

In and of itself, this example is very simple, but it is an essential building block toward more 
complex algorithms.

Subrtx.asm

        STDIN    equ        0 
       STDOUT    equ        1 
 
     SYS_READ    equ        0 
    SYS_WRITE    equ        1 
 
    global  gets, strlen, print, atoq 
 
            section .text

As this is intended exclusively for keyboard, the probability of errors is next to none. I would 
imagine most often, program will be able to contemplate buffer size to circumvent buffer overrun, 
but that is not guaranteed due to indirection.

; ============================================================================= 
; Accept canonical input from operator for a maximum of EDX bytes and replace 
; terminating CR with NULL. 
 
;        ENTER: RSI = Pointer to input buffer 
;               EDX = Maximum number of characters 
 
;        LEAVE: EAX = Number of characters entered 
;               R11 = Modified by syscall, all others preserved. 
 
;        FLAGS:  ZF = Null entry, NZ otherwise. 
; _____________________________________________________________________________ 
 
     gets:  push    rcx 
            push    rdi 
 

https://riptutorial.com/ 15



            xor     eax, eax            ; RAX = SYS_READ 
            mov     edi, eax            ; RDI = STDIN 
            syscall 
 
; TODO:    Should probably do some error trapping here, especially for 
;            buffer overrun, but I'll see if it becomes an issue over time. 
 
            dec     eax                 ; Bump back to CR 
            mov     byte [rsi+rax], 0   ; Replace it with NULL 
 
            pop     rdi 
            pop     rcx 
            ret

To begin with, this was intended to circumvent the need to either code or manually calculate a 
strings length for write(2). Then I decided to incorporate a delimiter, now it can be used to scan for 
any character (0 - FF). This opens the possibility for word wrapping text for example, so the label 
strlen is a bit of a misnomer as one would generally think the result is going to be the number of 
visible character.

; ============================================================================= 
; Determine length, including terminating character EOS. Result may include 
; VT100 escape sequences. 
 
;        ENTER: RDI = Pointer to ASCII string. 
;               RCX   Bits 31 - 08 = Max chars to scan (1 - 1.67e7) 
;                           07 - 00 = Terminating character (0 - FF) 
 
;        LEAVE: RAX = Pointer to next string (optional). 
 
;        FLAGS:  ZF = Terminating character found, NZ otherwise (overrun). 
; _____________________________________________________________________________ 
 
   strlen:  push    rcx                 ; Preserve registers used by proc so 
            push    rdi                 ; it's non-destructive except for RAX. 
 
            mov      al, cl             ; Byte to scan for in AL. 
            shr     ecx, 8              ; Shift max count into bits 23 - 00 
 
; NOTE: Probably should check direction flag here, but I always set and 
;       reset DF in the process that is using it. 
 
            repnz   scasb               ; Scan for AL or until ECX = 0 
            mov     rax, rdi            ; Return pointer to EOS + 1 
 
            pop     rdi                 ; Original pointer for proglogue 
            jz      $ + 5               ; ZF indicates EOS was found 
            mov     rax, rdi            ; RAX = RDI, NULL string 
            pop     rcx 
 
            ret

The intent to this procedure is to simplify loop design in the calling procedure.

; ============================================================================= 
; Display an ASCIIZ string on console that may have embedded VT100 sequences. 
 

https://riptutorial.com/ 16



;        ENTER: RDI = Points to string 
 
;        LEAVE: RAX = Number of characters displayed, including EOS 
;                   = Error code if SF 
;               RDI = Points to byte after EOS. 
;               R11 = Modified by syscall all others preserved 
 
;        FLAGS:  ZF = Terminating NULL was not found. NZ otherwise 
;                SF = RAX is negated syscall error code. 
;______________________________________________________________________________ 
 
    print:  push    rsi 
            push    rdx 
            push    rcx 
 
            mov     ecx, -1 << 8        ; Scan for NULL 
            call    strlen 
            push    rax                 ; Preserve point to next string 
            sub     rax, rdi            ; EAX = End pntr - Start pntr 
            jz      .done 
 
     ; size_t = write (int STDOUT, char *, size_t length) 
 
            mov     edx, eax            ; RDX = length 
            mov     rsi, rdi            ; RSI = Pointer 
            mov     eax, SYS_WRITE 
            mov     edi, eax            ; RDI = STDOUT 
            syscall 
            or      rax, rax            ; Sets SF if syscall error 
 
; NOTE:    This procedure is intended for console, but in the event STDOUT is 
;        redirected by some means, EAX may return error code from syscall. 
 
    .done:  pop     rdi                 ; Retrieve pointer to next string. 
            pop     rcx 
            pop     rdx 
            pop     rsi 
 
            ret

Finally an example of how these functions can be used.

Generic.asm

global  _start 
 
    extern  print, gets, atoq 
 
    SYS_EXIT  equ   60 
         ESC  equ   27 
 
       BSize  equ   96 
 
            section .rodata 
   Prompt:  db  ESC, '[2J'      ; VT100 clear screen 
            db  ESC, '[4;11H'   ;   "   Position cursor to line 4 column 11 
            db  'ASCII -> INT64 (binary, octal, hexidecimal, decimal), ' 
            db  'Packed & Unpacked BCD and floating point conversions' 

https://riptutorial.com/ 17



            db  10, 10, 0, 9, 9, 9, '=> ', 0 
            db  10, 9, 'Bye' 
            db  ESC, '[0m'      ; VT100 Reset console 
            db  10, 10, 0 
 
            section .text 
   _start:  pop    rdi 
            mov    rsi, rsp 
            and    rsp, byte 0xf0       ; Align stack on 16 byte boundary. 
 
            call   main 
            mov    rdi, rax             ; Copy return code into ARG0 
 
            mov    eax, SYS_EXIT 
            syscall 
 
; int main ( int argc, char *args[] ) 
 
     main:  enter   BSize, 0            ; Input buffer on stack 
            mov     edi, Prompt 
            call    print 
            lea     rsi, [rbp-BSize]    ; Establish pointer to input buffer 
            mov     edx, BSize          ; Max size for read(2) 
 
    .Next:  push    rdi                 ; Save pointer to "=> " 
            call    print 
            call    gets 
            jz      .done 
 
            call    atoq                ; Convert string pointed to by RSI 
 
            pop     rdi                 ; Restore pointer to prompt 
            jmp     .Next 
 
    .done:  call    print               ; RDI already points to "Bye" 
            xor     eax, eax 
            leave 
            ret

Makefile

OBJECTS = Subrtx.o Generic.o 
 
Generic : $(OBJECTS) 
    ld -oGeneric $(OBJECTS) 
    readelf -WS Generic 
 
Generic.o : Generic.asm 
     nasm -g -felf64 Generic.asm 
 
Subrtx.o : Subrtx.asm 
    nasm -g -felf64 Subrtx.asm 
 
clean: 
    rm -f $(OBJECTS) Generic

Read Linux elf64 examples not using glibc online: https://riptutorial.com/assembly/topic/7059/linux-

https://riptutorial.com/ 18

https://riptutorial.com/assembly/topic/7059/linux-elf64-examples-not-using-glibc


elf64-examples-not-using-glibc

https://riptutorial.com/ 19

https://riptutorial.com/assembly/topic/7059/linux-elf64-examples-not-using-glibc


Chapter 5: Registers

Remarks

What are Registers?

The processor can operate upon numeric values (numbers), but these have to be stored 
somewhere first. The data are stored mostly in memory, or inside the instruction opcode (which is 
stored usually in memory too), or in special on-chip memory placed directly in processor, which is 
called register.

To work with value in register, you don't need to address it by address, but special mnemonic 
"names" are used, like for example ax on x86, or A on Z80, or r0 on ARM.

Some processors are constructed in a way, where almost all registers are equal and can be used 
for all purposes (often RISC group of processors), others have distinct specialization, when only 
some registers may be used for arithmetic ("accumulator" on early CPUs) and other registers for 
memory addressing only, etc.

This construction using memory directly on the processor chip has huge performance implication, 
adding two numbers from registers storing it back to register is usually done in shortest possible 
time by that processor (Example on ARM processor: ADD r2,r0,r1 sets r2 to (r0 + r1) value, in 
single processor cycle).

On the contrary, when one of the operands is referencing a memory location, the processor may 
stall for some time, waiting for the value to arrive from the memory chip (on x86 this can range 
from zero wait for values in L0 cache to hundreds of CPU cycles when the value is not in any 
cache and has to be read directly from memory DRAM chip).

So when programmer is creating some data processing code, she usually wants to have all data 
during processing in registers to get best performance. If that's not possible, and memory 
reads/writes are required, then those should be minimised, and form a pattern which cooperates 
with caches/memory architecture of the particular platform.

The native size of register in bits is often used to group processors, like Z80 being "8 bit 
processor", and 80386 being "32 bit processor" - although that grouping is rarely a clear cut. For 
example Z80 operates also with pairs of registers, forming native 16 bit value, and 32 bit 80686 
CPU has MMX instructions to work with 64 bit registers natively.

Examples

Zilog Z80 registers

Registers: 8 bit: A, B, C, D, E, H, L, F, I, R, 16 bit: SP, PC, IX, IY, and shadows of some 8b registers: A', 
B', C', D', E', H', L' and F'.

https://riptutorial.com/ 20



Most of the 8 bit registers can be used also in pairs as 16 bit registers: AF, BC, DE and HL.

SP is stack pointer, marking the bottom of stack memory (used by PUSH/POP/CALL/RET instructions). 
PC is program counter, pointing to the currently executed instruction. 
I is Interrupt register, supplying high byte of vector table address for IM 2 interrupt mode. 
R is refresh register, it increments each time the CPU fetches an opcode (or opcode prefix). 
Some unofficial instructions exist on some Z80 processors to manipulate 8bit parts of IX as IXH:IXL 
and IY as IYH:IYL.

Shadow variants can't be directly accessed by any instruction, the EX AF,AF' instruction will swap 
between AF and AF', and EXX instruction will swap BC,DE,HL with BC',DE',HL'.

Loading value into a register:

    ; from other register 
    LD   I,A        ; copies value in A into I (8 bit) 
    LD   BC,HL      ; copies value in HL into BC (16 bit) 
    ; directly with value encoded in instruction machine code 
    LD   B,d8       ; 8b value d8 into B 
    LD   DE,d16     ; 16b value d16 into DE 
    ; from a memory (ROM/RAM) 
    LD   A,(HL)     ; value from memory addressed by HL into A 
    LD   A,(a16)    ; value from memory with address a16 into A 
    LD   HL,(a16)   ; 16b value from memory with address a16 into HL 
    POP  IX         ; 16b value popped from stack into IX 
    LD   A,(IY+a8)  ; IX and IY allows addressing with 8b offset 
    ; from I/O port (for writing value at I/O port use "OUT") 
    IN   A,(C)      ; reads I/O port C, value goes to A

Correct combinations of possible source and destination operands are limited (for example LD 
H,(a16) does not exist).

Storing value into a memory:

    LD   (HL),D     ; value D stored into memory addressed by HL 
    LD   (a16),A    ; value A into memory with address a16 
    LD   (a16),HL   ; value HL into 16b of memory with address a16 
    LD   (IX+a8),d8 ; value d8 into memory at address IX+a8 
    LD   (IY+a8),B  ; value B into memory at address IY+a8 
    ; specials ;) 
    PUSH DE         ; 16b value DE pushed to stack 
    CALL a16        ; while primarily used for execution branching 
      ; it also stores next instruction address into stack

x86 Registers

In the 32-bit world, the general-purpose registers fall into three general classes: the 16-bit general-
purpose registers, the 32-bit extended general-purpose registers, and the 8-bit register halves. 
These three classes do not represent three entirely distinct sets of registers at all. The 16-bit and 
8-bit registers are actually names of regions inside the 32-bit registers. Register growth in the x86 
CPU family has come about by extending registers existing in older CPUs

https://riptutorial.com/ 21



There are eight 16-bit general-purpose registers: AX, BX, CX, DX, BP, SI, DI, and SP; and you 
can place any value in them that may be expressed in 16 bits or fewer.

When Intel expanded the x86 architecture to 32 bits in 1986, it doubled the size of all eight 
registers and gave them new names by prefixing an E in front of each register name, resulting in 
EAX, EBX, ECX, EDX, EBP, ESI, EDI, and ESP.

With x86_64 came another doubling of register size, as well as the addition of some new registers. 
These registers are 64 bits wide and are named (slash used to show alternate register name): 
RAX/r0, RBX/r3, RCX/r1, RDX/r2, RBP/r5, RSI/r6, RDI/r7, RSP/r4, R8, R9, R10, R11, R12, R13, 
R14, R15.

While the general purpose registers can be technically used for anything, each register also has 
an alternate/main purpose:

AX (accumulator) is used in arithmetic operations.•
CX (counter) is used in the shift and rotate instructions, and used for loops.•
DX (data) is used in arithmetic and I/O operations.•
BX (base) used as a pointer to data (specifically as an offset to the DS segment register 
when in segmented mode).

•

SP (stack) points to the top of the stack.•
BP (stack base) points to the base of the stack.•
SI (source) points to a source in memory for stream operations (e.g. lodsb).•
DI (destination) points to a destination in memory for stream operations (e.g. stosb).•

Segment registers, used in segmented mode, point to different segments in memory. Each 16-bit 
segment register gives a view to 64k (16 bits) of data. After a segment register has been set to 
point to a block of memory, registers (such as BX, SI, and DI) can be used as offsets to the 
segment register so specific locations in the 64k space can be accessed.

The six segment registers and their uses are:

Register Full name Description

SS Stack Segment Points to the stack

CS Code Segment Used by the CPU to fetch the code

DS Data Segment Default register for MOV operations

ES Extra Segment Extra data segment

FS Extra Segment Extra data segment

GS Extra Segment Extra data segment

x64 Registers

https://riptutorial.com/ 22



The x64 architecture is the evolution of the older x86 architecture, it kept compatibility with its 
predecessor (x86 registers are still available) but it also introduced new features:

Registers have now a capacity of 64 bits;•
There are 8 more general-purpose registers;•
Segment registers are forced to 0 in 64 bits mode;•
The lower 32, 16 and 8 bits of each register are now available.•

General-purpose

Register Name Subregisters(bits)

RAX Accumulator EAX(32), AX(16), AH(8), AL(8)

RBX Base EBX(32), BX(16), BH(8), BL(8)

RCX Counter ECX(32), CX(16), CH(8), CL(8)

RDX Data EDX(32), DX(16), DH(8), DL(8)

RSI Source ESI(32), SI(16), SL(8)

RDI Destination EDI(32), DI(16), DL(8)

RBP Base pointer EBP(32), BP(16), BPL(8)

RSP Stack pointer ESP(32), SP(16), SPL(8)

R8-R15 New registers R8D-R15D(32), R8W-R15W(16), R8B-R15B(8)

Note

The suffixes used to address the lower bits of the new registers stand for:

B byte, 8 bits;•
W word, 16 bits;•
D double word, 32 bits.•

Read Registers online: https://riptutorial.com/assembly/topic/4802/registers

https://riptutorial.com/ 23

https://riptutorial.com/assembly/topic/4802/registers


Chapter 6: The Stack

Remarks

The stack of computers is like a stack of books. PUSH adds one to the top and POP takes the 
uppermost away. Like in real life the stack cannot be endless, so it has maximum size. The stack 
can be used for sorting algorithms, to handle a bigger amount of data or to safe values of registers 
while doing another operation.

Examples

Zilog Z80 Stack

The register sp is used as stack pointer, pointing to the last stored value into stack ("top" of stack). 
So EX (sp),hl will exchange value of hl with the value on top of stack.

Contrary to "top" word, the stack grows in memory by decreasing the sp, and releases ("pops") 
values by increasing sp.

For sp = $4844 with values 1, 2, 3 stored on stack (the 3 being pushed onto stack as last value, so 
being at top of it), the memory will look like this:

|    address | value bytes | comment (btw, all numbers are in hexadecimal) 
| ---------- | ----------- | --------------------------------- 
|       4840 | ?? ??       | free stack spaces to be used by next push/call 
|       4842 | ?? ??       | or by interrupt call! (don't expect values to stay here) 
| sp -> 4844 | 03 00       | 16 bit value "3" on top of stack 
|       4846 | 02 00       | 16 bit value "2" 
|       4848 | 01 00       | 16 bit value "1" 
|       484A | ?? ??       | Other values in stack (up to it's origin) 
|       484C | ?? ??       | like for example return address for RET instruction

Examples, how instructions work with stack:

    LD   hl,$0506 
    EX   (sp),hl           ; $0003 into hl, "06 05" bytes at $4844 
    POP  bc                ; like: LD c,(sp); INC sp; LD b,(sp); INC sp 
                           ; so bc is now $0506, and sp is $4846 
    XOR  a                 ; a = 0, sets zero and parity flags 
    PUSH af                ; like: DEC sp; LD (sp),a; DEC sp; LD (sp),f 
                           ; so at $4844 is $0044 (44 = z+p flags), sp is $4844 
    CALL $8000             ; sp is $4842, with address of next ins at top of stack 
                           ; pc = $8000 (jumping to sub-routine) 
                           ; after RET will return here, the sp will be $4844 again 
    LD   (L1+1),sp         ; stores current sp into LD sp,nn instruction (self modification) 
    DEC  sp                ; sp is $4843 
L1  LD   sp,$1234          ; restores sp to $4844 ($1234 was modified) 
    POP  de                ; de = $0044, sp = $4846 
    POP  ix                ; ix = $0002, sp = $4848 
    ... 

https://riptutorial.com/ 24



 
    ... 
    ORG  $8000 
    RET                    ; LD pc,(sp); INC sp; INC sp 
                           ; jumps to address at top of stack, "returning" to caller

Summary: PUSH will store value on top of stack, POP will fetch value from top of stack, it's a LIFO 
(last in, first out) queue. CALL is same as JP, but it also pushes address of next instruction after CALL 
at top of stack. RET is similar to JP also, popping the address from stack and jumping to it.

Warning: when interrupts are enabled, the sp must be valid during interrupt signal, with enough 
free space reserved for interrupt handler routine, as the interrupt signal will store the return 
address (actual pc) before calling handler routine, which may store further data on stack as well. 
Any value ahead of sp may be thus modified "unexpectedly", if interrupt happens.

Advanced trick: on Z80 with PUSH taking 11 clock cycles (11t) and POP taking 10t, the unrolled POP/
PUSH trough all registers, including EXX for shadow variants, was the fastest way to copy block of 
memory, even faster than unrolled LDI. But you had to time the copy in between interrupt signals 
to avoid memory corruption. Also unrolled PUSH was the fastest way to fill memory with particular 
value on ZX Spectrum (again with the risk of corruption by Interrupt, if not timed properly, or done 
under DI).

Read The Stack online: https://riptutorial.com/assembly/topic/4957/the-stack

https://riptutorial.com/ 25

https://riptutorial.com/assembly/topic/4957/the-stack


Credits

S. 
No

Chapters Contributors

1
Getting started with 
Assembly Language

Community, Edward, FedeWar, godisgood4, old_timer, Ped7g, 
Pichi Wuana, sigalor, stackptr, TheFrenchPlays Hd Micraftn, 
Zopesconk

2 Flow Control SpilledMango, tofro

3 Interrupts Jonas W.

4
Linux elf64 examples 
not using glibc

Shift_Left

5 Registers
FedeWar, godisgood4, Jonas W., Ped7g, Pichi Wuana, 
SirPython

6 The Stack Jonas W., Ped7g

https://riptutorial.com/ 26

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3191481/edward
https://riptutorial.com/contributor/5501669/fedewar
https://riptutorial.com/contributor/6557303/godisgood4
https://riptutorial.com/contributor/16007/old-timer
https://riptutorial.com/contributor/4271923/ped7g
https://riptutorial.com/contributor/4831846/pichi-wuana
https://riptutorial.com/contributor/3554605/sigalor
https://riptutorial.com/contributor/2469027/stackptr
https://riptutorial.com/contributor/6634125/thefrenchplays-hd-micraftn
https://riptutorial.com/contributor/4789127/zopesconk
https://riptutorial.com/contributor/5563855/spilledmango
https://riptutorial.com/contributor/5785362/tofro
https://riptutorial.com/contributor/5260024/jonas-w-
https://riptutorial.com/contributor/6767602/shift-left
https://riptutorial.com/contributor/5501669/fedewar
https://riptutorial.com/contributor/6557303/godisgood4
https://riptutorial.com/contributor/5260024/jonas-w-
https://riptutorial.com/contributor/4271923/ped7g
https://riptutorial.com/contributor/4831846/pichi-wuana
https://riptutorial.com/contributor/3424096/sirpython
https://riptutorial.com/contributor/5260024/jonas-w-
https://riptutorial.com/contributor/4271923/ped7g

	About
	Chapter 1: Getting started with Assembly Language
	Remarks
	Examples
	Introduction
	Machine code
	Hello world for Linux x86_64 (Intel 64 bit)
	Hello World for OS X (x86_64, Intel syntax gas)
	Executing x86 assembly in Visual Studio 2015


	Chapter 2: Flow Control
	Introduction
	Examples
	Trivial IF-THEN-ELSE in m68k Assembly
	FOR ... NEXT in Z80 Assembly
	If-statement in Intel-syntax assembly
	Loop while condition is true in Intel syntax assembly


	Chapter 3: Interrupts
	Remarks
	Examples
	Working with Interrupts on the Z80:


	Chapter 4: Linux elf64 examples not using glibc
	Examples
	User Interface


	Subrtx.asm
	Generic.asm
	Makefile
	Chapter 5: Registers
	Remarks
	Examples
	Zilog Z80 registers
	x86 Registers
	x64 Registers


	Chapter 6: The Stack
	Remarks
	Examples
	Zilog Z80 Stack


	Credits



