
autofac

#autofac

Table of Contents

About 1

Chapter 1: Getting started with autofac 2

Remarks 2

Examples 2

Installing Autofac 2

Setting up Autofac 3

IOuput.cs 4

ConsoleOutput.cs 4

IDateWriter.cs 4

TodayWriter.cs 4

Credits 6

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: autofac

It is an unofficial and free autofac ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official autofac.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/autofac
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with autofac

Remarks

Autofac is an IoC container for Microsoft .NET 4.5, Silverlight 5, Windows Store apps, and
Windows Phone 8 apps. It manages the dependencies between classes so that applications stay
easy to change as they grow in size and complexity. This is achieved by treating regular .NET
classes as components.

From Wikipedia:
In software engineering, inversion of control (IoC) is a design principle in which custom-written
portions of a computer program receive the flow of control from a generic framework. A software
architecture with this design inverts control as compared to traditional procedural programming: in
traditional programming, the custom code that expresses the purpose of the program calls into
reusable libraries to take care of generic tasks, but with inversion of control, it is the framework
that calls into the custom, or task-specific, code.

Inversion of Control•

Examples

Installing Autofac

To use Autofac in your project, all you have to do is install Autofac from NuGet Package Manager.
Open the solution that want to use Autofac in, then select Manager NuGet Packages for Solution...
by going to:

Tools -> NuGet Package Manager -> Manager NuGet Packages for Solution...

In the NuGet-Solution tab, type in "Autofac" in the search box. Make sure you are in the "Browse"
section. Install the first option as shown in the image below (take note of the marked regions in the
image):

https://riptutorial.com/ 2

http://docs.autofac.org/en/latest/index.html
https://martinfowler.com/articles/injection.html
https://en.wikipedia.org/wiki/Inversion_of_control
https://martinfowler.com/articles/injection.html

Installing through NuGet will automatically add Autofac in the References of the projects which
were selected during installation.

Take a look at the official documentation.

Setting up Autofac

This example will show how get started with Inverion of Control using Autofac with a relatively
simple project, closely following the official getting started docs.

Create a console application from File -> New -> Project -> Console Application1.

Install Autofac for this project. You can take a look here Installing Autofac2.

Add 2 interfaces and 2 classes, with the following names:

 Interfaces | Classes

IOutput | ConsoleOutput (implementing IOutput)
IDateWriter | TodayWriter (implementing IDateWriter)

3.

https://riptutorial.com/ 3

https://i.stack.imgur.com/tbpVp.png
http://docs.autofac.org/en/latest/getting-started/index.html#add-autofac-references
https://en.wikipedia.org/wiki/Inversion_of_control
http://docs.autofac.org/en/latest/getting-started/index.html
http://www.riptutorial.com/autofac/example/29635/installing-autofac

For simplicity, the using statements and namespaces are not shown.

IOuput.cs

public interface IOutput
{
 void Write(string content);
}

ConsoleOutput.cs

public class ConsoleOutput : IOutput
{
 public void Write(string content)
 {
 Console.WriteLine(content);
 }
}

IDateWriter.cs

public interface IDateWriter
{
 void WriteDate();
}

TodayWriter.cs

public class TodayWriter : IDateWriter
{
 private IOutput _output;

 public TodayWriter(IOutput output)
 {
 _output = output;
 }

 public void WriteDate()
 {
 _output.Write(DateTime.Today.ToShortDateString());
 }
}

So far the code has been plain and simple. Lets get to the part where automatic dependency
injection takes place, which of course is being done by Autofac!

Replace the Program class in Program.cs file with this code (Program class is automatically created
by Visual Studio at project creation. If it doesn't exist, go ahead and create one):

https://riptutorial.com/ 4

class Program
{
 private static IContainer Container { get; set; }

 static void Main(string[] args)
 {
 var builder = new ContainerBuilder();
 builder.RegisterType<ConsoleOutput>().As<IOutput>();
 builder.RegisterType<TodayWriter>().As<IDateWriter>();
 Container = builder.Build();

 WriteDate();
 }

 public static void WriteDate()
 {
 using (var scope = Container.BeginLifetimeScope())
 {
 var writer = scope.Resolve<IDateWriter>();
 writer.WriteDate();
 }
 }
}

When run, the output should be the current date in the console. You have successfully used
Autofac in your project to inject dependencies automatically.

Here is what's going on under the hood:

At application startup, we are creating a ContainerBuilder and registering our Components
with it. A component in simple terms is a .NET type that implements an interface, and thus
exposes some services. Read Services vs. Components.

1.

We then register our components (classes) with the services (interfaces) they expose. When
registered, Autofac knows which instance of a class to create when an interface is to be
resolved.

2.

Finally, when we run the program:

The WriteDate() method (in Main()) asks Autofac for an IDateWriter.•
Autofac sees that IDateWriter maps to TodayWriter so starts creating a TodayWriter.•
Autofac sees that the TodayWriter needs an IOutput in its constructor.•
Autofac sees that IOutput maps to ConsoleOutput so creates a new ConsoleOutput
instance.

•

Autofac uses the new ConsoleOutput instance to finish constructing the TodayWriter.•
Autofac returns the fully-constructed TodayWriter for WriteDate() to consume.•

3.

Read Getting started with autofac online: https://riptutorial.com/autofac/topic/9595/getting-started-
with-autofac

https://riptutorial.com/ 5

http://docs.autofac.org/en/latest/register/registration.html#services-vs-components
https://riptutorial.com/autofac/topic/9595/getting-started-with-autofac
https://riptutorial.com/autofac/topic/9595/getting-started-with-autofac

Credits

S.
No

Chapters Contributors

1
Getting started with
autofac

Community, Sнаđошƒа

https://riptutorial.com/ 6

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--

	About
	Chapter 1: Getting started with autofac
	Remarks
	Examples
	Installing Autofac
	Setting up Autofac

	IOuput.cs
	ConsoleOutput.cs
	IDateWriter.cs
	TodayWriter.cs

	Credits

