
AutoHotkey

#autohotkey

Table of Contents

About 1

Chapter 1: Getting started with AutoHotkey 2

Remarks 2

Versions 2

AutoHotkey 1.0.* - also retroactively known as AutoHotkey Basic, Classic, Vanilla, etc. 2

(Development was discontinued in 2011; Latest stable: 2009) 2

AutoHotkey 1.1.* - previously known as AutoHotkey_L. 2

(Stable and receives updates regularly) 2

AutoHotkey 2.0-a* 2

(Still in alpha stage) 3

Examples 3

Installation or Setup 3

Hello World 4

Show "Hello World" in a GUI 4

Achieve an effect similar to SplashTextOn 4

How to create a Script 4

Chapter 2: Arrays 6

Examples 6

Creating and Initializing Simple Arrays 6

Intro 6

Creating and initializing arrays with N number of items 6

Creating and initializing multi-dimensional arrays 7

Filling an array 7

Removing Elements from an array 7

Adding custom Methods by overriding Array() function 7

Chapter 3: Built-in Variables and Functions 9

Remarks 9

Examples 9

Determining the User Idle Time 9

Auto-insert current weekday's name 9

Extract string parts using RegEx 9

Trim a string 9

Chapter 4: Hello World 11

Examples 11

Hello World examples 11

Show a "Hello World!" in message box. 11

Show "Hello World!" stored in variable MyString in message box. 11

Show a "Hello World!" in tooltip. 11

Show a "Hello World!" message in the traybar edit. 11

Show "Hello World!" in a GUI window. 11

Prints "Hello, World!" to Standard Output (stdout). 11

Simulate typing "Hello, World!" when pressing enter 12

Create a new file called HelloWorld.txt 12

When typing the word "Hello" followed by a space or enter it will be replaced by "Hello Wo 12

Chapter 5: Hotkey Scripts 13

Syntax 13

Parameters 13

Examples 13

Hotkey 13

Hotstring 13

Multiple keypress 14

Context-sensitive Hotkeys and Hotstrings 14

Remap keys 14

Toggleable hotkeys 15

Chapter 6: Input Field 16

Introduction 16

Parameters 16

Remarks 16

Examples 17

Basic Usage Example 17

Passwords 17

Chapter 7: Open a File in a Script 18

Introduction 18

Examples 18

Open a File through Windows Explorer 18

Open a File through SelectFile dialog box 18

Open a File through Windows Drag n' Drop 19

Chapter 8: Use functions instead of labels 20

Remarks 20

Examples 20

Very basic example demonstrating function use on SetTimer. 20

Advanced use of SetTimer: Calling the same function with different parameters 20

Gui with functions instead of labels 21

Hotkeys with functions instead of labels 21

Tray menu actions with functions 22

General example of functions vs labels 22

OnClipboardChange with fucntion/label 23

More complicated Gui example with multiple listviews using the same event callback functio 23

Credits 26

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: autohotkey

It is an unofficial and free AutoHotkey ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official AutoHotkey.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/autohotkey
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with AutoHotkey

Remarks

AutoHotkey is a free, open-source custom scripting language for Microsoft Windows, initially
aimed at providing easy keyboard shortcuts or hotkeys, fast macro-creation and software
automation that allows users of most levels of computer skill to automate repetitive tasks in any
Windows application. User interfaces can easily be extended or modified by AutoHotkey (for
example, overriding the default Windows control key commands with their Emacs equivalents).
The Autohotkey installation includes its own extensive help file with an always updated web based
version.

You can write mouse or keyboard macros, remap keys, create hotkeys, expand abbreviations,
change clipboard contents, and make executables to run hotkey scripts on computers without
AutoHotkey installed.

Versions

AutoHotkey 1.0.* - also retroactively known as AutoHotkey
Basic, Classic, Vanilla, etc.

(Development was discontinued in 2011; Latest stable: 2009)

Version Release Date

v1.0.48.05 2009-09-26

v1.0.97.02 2011-04-14

AutoHotkey 1.1.* - previously known as AutoHotkey_L.

(Stable and receives updates regularly)

Version Release Date

v1.1.24.00 2016-05-22

v1.1.24.01 2016-08-02

AutoHotkey 2.0-a*

https://riptutorial.com/ 2

https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Script_(computer_programming)
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Keyboard_shortcut
https://en.wikipedia.org/wiki/Macro_(computer_science)#Keyboard_and_mouse_macros
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Automation
https://en.wikipedia.org/wiki/Control_key
https://en.wikipedia.org/wiki/Emacs
https://autohotkey.com/docs/AutoHotkey.htm
https://autohotkey.com/docs/misc/Macros.htm
https://autohotkey.com/docs/misc/Remap.htm
https://autohotkey.com/docs/Hotkeys.htm
https://autohotkey.com/docs/Hotstrings.htm
https://autohotkey.com/docs/misc/Clipboard.htm
https://autohotkey.com/docs/Scripts.htm#ahk2exe
https://autohotkey.com/docs/AHKL_ChangeLog.htm#L31
https://autohotkey.com/docs/AHKL_ChangeLog.htm#v1.0.97.02
https://autohotkey.com/docs/AHKL_ChangeLog.htm#v1.1.24.00
https://autohotkey.com/docs/AHKL_ChangeLog.htm#v1.1.24.01

(Still in alpha stage)

Version Release Date

v2.0-a069 2015-10-24

v2.0-a070 2015-11-09

v2.0-a071 2015-12-25

v2.0-a072 2015-12-25

v2.0-a073 2016-02-05

v2.0-a074 2016-03-11

v2.0-a075 2016-06-03

Examples

Installation or Setup

From Autohotkey Site Documentation

Go to the AutoHotkey Homepage.1.
Click Download, once downloaded run the executable.2.
During installation of AutoHotkey, you will be asked to choose from UNICODE or ANSI. In
short, you would probably want to choose UNICODE. It has support for non-English letters
and numbers (characters).

3.

Keep going until you see an Install button.4.
Once done, great!5.

Use as portable software

Go to the AutoHotkey's download page.1.
Find the Portable section, choose from UNICODE 32, 64 or ANSI and downloaded.2.
When choosing the destination folder, pick any correct storedevice external or not.3.
Now you can opt to associate .ahk files with Autohotkey.exe4.
Create a plain text file and give it the .ahk extension5.
Then Right-click on the .ahk file in explorer and click Properties.6.
In the file Properties, click the Change button next to the "Opens with" option.

After clicking Change, you'll be given a list of programs to open the file, select the
program you want to use and then click OK or Apply.

•

If the program you want to select is not listed, click the Browse button and find the
Autohotkey executable (.exe) file and click OK to select that program.

•

7.

Now .ahk files will run as if autohotkey was installed, great!8.

https://riptutorial.com/ 3

https://github.com/Lexikos/AutoHotkey_L/releases/tag/v2.0-a069
https://github.com/Lexikos/AutoHotkey_L/releases/tag/v2.0-a070
https://github.com/Lexikos/AutoHotkey_L/releases/tag/v2.0-a071
https://github.com/Lexikos/AutoHotkey_L/releases/tag/v2.0-a072
https://github.com/Lexikos/AutoHotkey_L/releases/tag/v2.0-a073
https://github.com/Lexikos/AutoHotkey_L/releases/tag/v2.0-a074
https://github.com/Lexikos/AutoHotkey_L/releases/tag/v2.0-a075
https://autohotkey.com/docs/Tutorial.htm#s11
https://autohotkey.com
https://autohotkey.com/download/ahk-install.exe
http://portableapps.com/about/what_is_a_portable_app
https://autohotkey.com/download/

If you have chocolatey installed, run the following command as an admin user

choco install autohotkey

Alternatively, it can be built from the source code. See here for details:
https://github.com/Lexikos/AutoHotkey_L/

Hello World

Show a "Hello World!" in message box.

MsgBox, Hello World!

Show a "Hello World!" in tooltip.

#Persistent
Tooltip, Hello World!

Show a "Hello World!" message in the traybar edit.

#Persistent
TrayTip,, Hello World!

Prints "Hello, World" to Standard Output (stdout).

FileAppend, % "Hello, World", *

Show "Hello World" in a GUI

Gui, Add, Text,, Hello World!
Gui, Show, w200 h200
return

GuiClose:
ExitApp

Achieve an effect similar to SplashTextOn

Gui, +AlwaysOnTop +Disabled -SysMenu +Owner ; +Owner avoids a taskbar button.
Gui, Add, Text,, Some text to display.
Gui, Show, NoActivate, Title of Window ; NoActivate avoids deactivating the currently active
window.

How to create a Script

Once you have AutoHotkey installed, you will probably want it to do stuff. AutoHotkey is not magic,
we all wish it was, but it is not. So we will need to tell it what to do. This process is called
"Scripting".

https://riptutorial.com/ 4

https://github.com/Lexikos/AutoHotkey_L/

Right-Click on your desktop.1.
Find "New" in the menu.2.
Click "AutoHotkey Script" inside the "New" menu.3.
Give the script a new name. Note: It must end with a .ahk extension. Ex. MyScript.ahk4.
Find the newly created file on your desktop and Right-Click it.5.
Click "Edit Script".6.
A window should have popped up, probably Notepad. If so, SUCCESS!7.

So now that you have created a script, we need to add stuff into the file. For a list of all built-in
commands, function and variables, see section 5. Here is a very basic script containing a Hotkey
which types text using the Send command when the hotkey is pressed.

^j::
 Send, My First Script
Return

We will get more in-depth later on. Until then, here's an explanation of the above code.

The first line. ^j:: is the Hotkey. ^ means CTRL, j is the letter j. Anything to the left of :: are
the keys you need to press.

•

The second line. Send, My First Script is how you SEND keystrokes. SEND is the command,
anything after the comma (,) will be typed.

•

The third line. Return. Return will become your best friend. It literally STOPS code from going
any further, to the lines below. This will prevent many issues when you start having a lot of
stuff in your scripts.

•

Save the File.8.
Double-Click the file/icon in the desktop to run it. Open notepad or (anything you can type in)
and press Ctrl and J.

9.

Hip Hip Hooray! Your first script is done. Go get some reward snacks then return to reading
the rest of this tutorial.

10.

Read Getting started with AutoHotkey online: https://riptutorial.com/autohotkey/topic/3532/getting-
started-with-autohotkey

https://riptutorial.com/ 5

https://riptutorial.com/autohotkey/topic/3532/getting-started-with-autohotkey
https://riptutorial.com/autohotkey/topic/3532/getting-started-with-autohotkey

Chapter 2: Arrays

Examples

Creating and Initializing Simple Arrays

Intro

An array is a container object that holds a number of values. In the following image you can see
an array with size 10, the first element indexed 1 and the last element 10.

Autohotkey offers a few ways of defining and creating arrays.

Array := []•
Array := Array()•

Creating and initializing arrays with N number
of items

Array := [Item1, Item2, ..., ItemN]
Array := Array(Item1, Item2, ..., ItemN)

In Autohotkey, it is possible to have arrays with no items:

Array := [] ; works fine.

And elements can then later be assigned to it:

Array[0] := 1

Array size can be determined using a method called length:

msgbox % array.length() ; shows 1 in this case.

https://riptutorial.com/ 6

http://i.stack.imgur.com/qqDyL.gif

If the array is not empty, MinIndex and MaxIndex/Length return the lowest and highest index
currently in use in the array. Since the lowest index is nearly always 1, MaxIndex usually returns
the number of items. However, if there are no integer keys, MaxIndex returns an empty string
whereas Length returns 0.

Creating and initializing multi-dimensional
arrays

You can create a multi-dimensional array as follows:

Array[1, 2] := 3

You can create and initialize at the same time time, and inner arrays do not need to be of same
length.

Array := [[4,5,6],7,8]

Arrays like this are also called arrays of arrays.

Filling an array

; Assign an item:
Array[Index] := Value

; Insert one or more items at a given index:
Array.InsertAt(Index, Value, Value2, ...)

; Append one or more items:
Array.Push(Value, Value2, ...)

The value of an index for an array element can also be a negative integer (-1, 0, 1, 2, 3, 4, ...)

Removing Elements from an array

; Remove an item:
RemovedValue := Array.RemoveAt(Index)

; Remove the last item:
RemovedValue := Array.Pop()

Adding custom Methods by overriding
Array() function

https://riptutorial.com/ 7

AutoHotkey is a prototype-based programming language, meaning you can override any built-in
function/object at anytime. This example demonstrates overriding Array() function in order to add
Methods within a custom Class Object.

; Overrides Array()
Array(Args*) {
 Args.Base := _Array
 Return Args
}

; Custom Class Object with Methods
Class _Array {

 ; Reverses the order of the array.
 Reverse() {
 Reversed := []
 Loop % This.MaxIndex()
 Reversed.Push(This.Pop())
 Return Reversed
 }

 ; Sums all Integers in Array
 Sum(Sum=0) {
 For Each, Value In This
 Sum += Value Is Integer ? Value : 0
 Return Sum
 }
}

; Arr == ["Hello, World!", 4, 3, 2, 1]
Arr := [1, 2, 3, 4, "Hello, World!"].Reverse()

; SumOfArray == 10
SumOfArray := Arr.Sum()

Read Arrays online: https://riptutorial.com/autohotkey/topic/4468/arrays

https://riptutorial.com/ 8

https://en.wikipedia.org/wiki/Prototype-based_programming#Languages_supporting_prototype-based_programming
https://riptutorial.com/autohotkey/topic/4468/arrays

Chapter 3: Built-in Variables and Functions

Remarks

AutoHotkey comes with many built-in functions and variables which can be used anywhere inside
a script.
For a full list including explanations, see:

List of built-in variables•
List of built-in functions•

Examples

Determining the User Idle Time

if(A_TimeIdlePhysical > 60000) { ; 60,000 milliseconds
 WinClose, ahk_class Chrome_WidgetWin_1
 MsgBox, Google Chrome was closed due to user inactivity.
}

This check could be done periodically, e.g. using SetTimer.

Auto-insert current weekday's name

This example inserts/sends the current day of the week's full name (e.g. Sunday) whenever Ctrl +
Alt + D is pressed:

^!d::Send, %A_DDDD%

Extract string parts using RegEx

myDebt := 9000
index := RegExMatch("You owe me $42", "\$(\d+)", dollars)
if(index > 0) { ; indices are usually 1-based in AHK
 myDebt += dollars1
 MsgBox, Current debt: %myDebt%
}

Result:

Current debt: 9042

Trim a string

myString := " hello, Trim()! "
trimmed := Trim(myString)

https://riptutorial.com/ 9

https://autohotkey.com/docs/Variables.htm#BuiltIn
https://autohotkey.com/docs/Functions.htm#BuiltIn

FileAppend, % trimmed "`n", TrimmedStrings.txt

Note that Trim() will not manipulate the original string, but return a new one which should be
stored or output somewhere.

Read Built-in Variables and Functions online: https://riptutorial.com/autohotkey/topic/4469/built-in-
variables-and-functions

https://riptutorial.com/ 10

https://riptutorial.com/autohotkey/topic/4469/built-in-variables-and-functions
https://riptutorial.com/autohotkey/topic/4469/built-in-variables-and-functions

Chapter 4: Hello World

Examples

Hello World examples

Show a "Hello World!" in message box.

MsgBox, Hello World!

Show "Hello World!" stored in variable MyString in message
box.

MyString := "Hello World!"
MsgBox, %MyString%

Show a "Hello World!" in tooltip.

#Persistent
Tooltip, Hello World!

Show a "Hello World!" message in the traybar edit.

#Persistent
TrayTip,, Hello World!

Show "Hello World!" in a GUI window.

Gui, Add, Text,, Hello World!
Gui, Add, Edit,, Hello World!
Gui, Show
return

GuiClose() {
 ExitApp
}

Prints "Hello, World!" to Standard Output (stdout).

FileAppend, % "Hello, World!", *

https://riptutorial.com/ 11

Simulate typing "Hello, World!" when pressing enter

Enter::Send, Hello World{!}

Create a new file called HelloWorld.txt

FileAppend,, HelloWorld.txt

When typing the word "Hello" followed by a space or enter it
will be replaced by "Hello World"

::Hello::Hello World

Read Hello World online: https://riptutorial.com/autohotkey/topic/3547/hello-world

https://riptutorial.com/ 12

https://riptutorial.com/autohotkey/topic/3547/hello-world

Chapter 5: Hotkey Scripts

Syntax

keybindings::•
::abbreviation::•
Return•

Parameters

Keybindings Details

^ Ctrl key

! Alt key

+ Shift key

Windows key

{enter} send enter key

{tab} send tab key

* wildcard, any key can be pressed down

~ key's native function will not be blocked

<symbol specifies left key (<+ is left shift)

>symbol specifies right key

Examples

Hotkey

To make a hotkey that sends the key sequence 'Hello World' from pressing Ctrl + J onto the active
window (can be demonstrated in notepad, e.g.)

^j::
 Send, Hello World
Return

Hotstring

https://riptutorial.com/ 13

To make a script to replace a phrase use the ::abbreviation:: hotstring syntax. It will replace btw
with by the way whenever you enter btw and then the space key.

::btw::by the way

If you wanted to make a login script to make logging in faster you could make a script like this (the
file is not encrypted so any information in your script will be visible to anyone with access to the
file).

::lmi::user{tab}password{enter}

Multiple keypress

To run a script when multiple keys are pressed use the & between the keys.

Numpad0 & Numpad1::
 MsgBox You pressed 0 and 1
return

Context-sensitive Hotkeys and Hotstrings

In order to create a hotkey or hotstring that only triggers when certain windows are active or exist,
you can put one or several of the following directives before the hotkey definition:

#IfWinActive [, WinTitle, WinText]
#IfWinExist [, WinTitle, WinText]
#IfWinNotActive [, WinTitle, WinText]
#IfWinNotExist [, WinTitle, WinText]

Example: You want stackoverflow.com to be sent whenever you type so (and a whitespace after
that) in Google Chrome, but ignore the hotstring in any other window.

#IfWinActive, ahk_class Chrome_WidgetWin_1
::so::stackoverflow.com

By using #If [, Expression], you can make a hotkey trigger only when an arbitrary expression is
true, for example:

#If A_Hour < 9
F1::
 MsgBox, It is too early to ask for help!
return

Remap keys

The following example remaps the key Z to Y and vice versa, e.g. if you want to work with the
QWERTY layout on a QWERTZ keyboard.

https://riptutorial.com/ 14

z::y
y::z

Toggleable hotkeys

Following script enters predefined strings on hotkey presses if the scroll lock is active. This can be
useful if you often paste a number of repeating strings. Included hotkey for script refresh (for
example if you need to edit paste-able strings).

; refresh script hotkey
Numpad9::
 GetKeyState, state, ScrollLock, T
 if (state = "D")
 Reload
Return

Numpad1::
 GetKeyState, state, ScrollLock, T
 if (state = "D")
 Send, Hello
Return

Numpad2::
 GetKeyState, state, ScrollLock, T
 if (state = "D")
 Send, World
Return
;...

Read Hotkey Scripts online: https://riptutorial.com/autohotkey/topic/3853/hotkey-scripts

https://riptutorial.com/ 15

https://riptutorial.com/autohotkey/topic/3853/hotkey-scripts

Chapter 6: Input Field

Introduction

To get a user's input and store it in a variable, you can use the InputBox command. The script will
not continue executing commands until the user either presses 'OK' or 'Cancel'.

'OK' will close the window and save the user's input 'Cancel' will close the window, discarding the
user's input

Parameters

InputBox, OutputVar [, Title, Prompt,
HIDE, Width, Height, X, Y, Timeout,
Default]

What each Option Means

OutputVar The variable the user's input will be saved to

Title The name of the input box

Prompt Text inside of the input box

HIDE
Displays the user's input as asterisks to hide the
input - type HIDE to enable

Width The width of the input box

Height The height of the input box

X
The amount of pixels from the left edge of the
screen that the top-left corner of the input box
will be

Y
The amount of pixels from the top edge of the
screen that the top-left corner of the input box
will be

Timeout
Automatically closes the input box and saves the
user's input after this time in miliseconds

Default
The text that will appear in the input box's
editable field when it is opened

Remarks

https://riptutorial.com/ 16

An input box is a GUI item, so it will be treated as a GUI item.

A list of errorlevels for this command:

Errorlevel What it Means

0 The user pressed the 'OK' button

1 The user pressed the 'Cancel' button

2 The input box timed out

You can find the page for this command on the AutoHotkey documentation here:
https://autohotkey.com/docs/commands/InputBox.htm

Examples

Basic Usage Example

InputBox, userinput

This will store what the user types into the input box in the variable named userinput

Passwords

InputBox, password, Enter your Password,, HIDE,, 100

Loop, {
 if (errorlevel = 1)
return

 if (password = "password") {
MsgBox, The password is correct.
 return
 } else if (password != "password") {
MsgBox, The password is incorrect.
InputBox, password, Enter your Password,, HIDE,, 100
 }
}

This will check if the user has typed "password" in the input box. If the user types the correct
value, it will say "The password is correct." and close the input box. If the user types the incorrect
value, it will say "The password is incorrect." and reopen the input box. If the errorlevel is 1 (the
user pressed cancel), it will terminate the script.

Read Input Field online: https://riptutorial.com/autohotkey/topic/9917/input-field

https://riptutorial.com/ 17

https://autohotkey.com/docs/commands/InputBox.htm
https://riptutorial.com/autohotkey/topic/9917/input-field

Chapter 7: Open a File in a Script

Introduction

Different ways to open a file to work with in a script.

Examples

Open a File through Windows Explorer

Inside the script, use the first line to store the very first variable (in this example, %1%) with a name
to deal with. Example: OpenWithFile = %1%

Once you open a file with this script through Windows (Right click on any file on MS Windows and
choose 'Open with...' then select the compiled version of the script such as script.exe) the name
of the choosed file will be stored in this variable and, so, the script will be able to work with it.
Example:

OpenWithFile = %1%
if OpenWithFile !=
{
FileRead, content, %OpenWithFile%
msgbox %content%
return
}

Open a File through SelectFile dialog box

The following example creates a Gui with a single button wich brings the SelectFile dialog box.

Gui, Loader: New
Gui, Loader: Add, Button, Default Center w220 vLOAD, LOAD
Gui, Loader: Show, AutoSize Center, Loader

return

LoaderButtonLOAD:
FileSelectFile, LoadedFile, , , ,

if ErrorLevel=1
{
return
}

else
{
 FileRead, content, %LoadedFile%
 msgbox %content%
}
return

https://riptutorial.com/ 18

Open a File through Windows Drag n' Drop

This examples creates a new empty Gui sensible to Drag n' Drop event:

Gui, Dropper: New
Gui, Dropper: Font, s10 w700
Gui, Dropper: Add, Text, y80 vText1, Drag the files here
Gui, Dropper: Show, w200 h200 Center, Dropper

return

DropperGuiDropFiles:
DroppedFile:=A_GuiEvent

 FileRead, content, %DroppedFile%
 msgbox %content%

return

Read Open a File in a Script online: https://riptutorial.com/autohotkey/topic/9070/open-a-file-in-a-
script

https://riptutorial.com/ 19

https://riptutorial.com/autohotkey/topic/9070/open-a-file-in-a-script
https://riptutorial.com/autohotkey/topic/9070/open-a-file-in-a-script

Chapter 8: Use functions instead of labels

Remarks

AutoHotkey used to heavily rely on labels until version 1.1.20. It's reliance on labels had very
serious disadvantages. The main one being that labels usually execute in the global scope
meaning that any variable defined within a label will be globally available. This sounds great until
you realize that for example you can't just use other peoples libraries without making sure that
their variables don't interfere with yours.
Working in the global scope when not necessary is simply bad practice.

So this is where functions come in. As of version 1.1.20, every AutoHotkey command that accepts
a label-name as a parameter, now alternatively accepts a function-name.

Examples

Very basic example demonstrating function use on SetTimer.

;Sends the keystroke for the letter "a" every 3 seconds.
#Persistent
SetTimer, SendLetterA, 3000
return

SendLetterA() {
 Send, a
}

Advanced use of SetTimer: Calling the same function with different
parameters

This is an example of something that would have been straight up impossible with labels. If you
execute the same label multiple times at the same time and they rely on variables that are being
defined within them, they very likely interfere and cause unexpected behavior.

Here is how to do it with functions:

; This script will switch between showing "Hello 1" and "Hello 2"

#Persistent
DisplayMessage_Hello1 := Func("DisplayMessage").bind("Hello 1")
SetTimer, %DisplayMessage_Hello1%, 2000

Sleep, 1000

DisplayMessage_Hello2 := Func("DisplayMessage").bind("Hello 2")
SetTimer, %DisplayMessage_Hello2%, 2000

DisplayMessage(messageToDisplay) {
 TrayTip ; remove other traytips

https://riptutorial.com/ 20

 TrayTip, Message to display:, %messageToDisplay%
}

Here is how to not do it (with labels):

;This script will never display the message "Hello 1". It will always show "Hello 2".

#Persistent
messageToDisplay := "Hello 1"
SetTimer, DisplayMessage, 2000

Sleep, 1000

messageToDisplay := "Hello 2"
SetTimer, DisplayMessage, 2000

DisplayMessage:
 TrayTip ; remove other traytips
 TrayTip, Message to display:, %messageToDisplay%
Return

Gui with functions instead of labels

Example showing how to create Guis using functions instead of labels.

Gui, Add, Button, gCtrlEvent vButton1, Button 1
Gui, Add, Button, gCtrlEvent vButton2, Button 2
Gui, Add, Button, gGoButton, Go Button
Gui, Add, Edit, vEditField, Example text
Gui, Show,, Functions instead of labels

CtrlEvent(CtrlHwnd:=0, GuiEvent:="", EventInfo:="", ErrLvl:="") {
 GuiControlGet, controlName, Name, %CtrlHwnd%
 MsgBox, %controlName% has been clicked!
}
GoButton(CtrlHwnd:=0, GuiEvent:="", EventInfo:="", ErrLvl:="") {
 GuiControlGet, EditField
 MsgBox, Go has been clicked! The content of the edit field is "%EditField%"!
}

GuiClose(hWnd) {
 WinGetTitle, windowTitle, ahk_id %hWnd%
 MsgBox, The Gui with title "%windowTitle%" has been closed!
 ExitApp
}

Hotkeys with functions instead of labels

Examples of using functions with hotkeys:

Hotkey, a, MyFunction ; Calls MyFunction() when a is pressed

MyFunction() {
 MsgBox You pressed %A_ThisHotkey%.
}

https://riptutorial.com/ 21

Or:

a::MyFunction()

MyFunction() {
 MsgBox You pressed %A_ThisHotkey%.
}

Tray menu actions with functions

#Persistent

Menu, Tray, NoStandard ; remove default tray menu entries
Menu, Tray, Add, MyDefaultAction, OnDefaultTrayAction ; add a new tray menu entry
Menu, Tray, Add, Exit, Exit ; add another tray menu entry
Menu, Tray, Default, MyDefaultAction ;When doubleclicking the tray icon, run the tray menu
entry called "MyDefaultAction".

OnDefaultTrayAction() {
 MsgBox, You double clicked the tray icon of this script or you clicked the MyDefaultAction
entry!
}

Exit() {
 MsgBox, You clicked the Exit entry! The script will close itself now.
 ExitApp
}

General example of functions vs labels

I'll demonstrate the basic usage of using functions vs using labels+gosub.
In this example we'll implement simple functionality to add two numbers and store them in a
variable.

With functions:

c := Add(3, 2) ; function call
MsgBox, Result: %c%

Add(a, b) { ; This is a function. Put it wherever you want, it doesn't matter.
 ; the a and b inside of this function are set by the function call above
 Return a+b ; the function will return the result of the expression "a+b"
}

With labels (please don't do that):

a := 3
b := 2
GoSub, Add ; execute the label "Add" then jump back to the next line here
MsgBox, Result: %c%
Return ; without this, the label would be executed again for no reason.

Add: ; This is a label. Please put them at the bottom of your script and use "Return" in a

https://riptutorial.com/ 22

line above.
 c := a+b
Return

OnClipboardChange with fucntion/label

The following code is taken from he official AutoHotkey documentation:

Function implementation:

#Persistent
OnClipboardChange("ClipChanged")
return

ClipChanged(Type) {
 ToolTip Clipboard data type: %Type%
 Sleep 1000
 ToolTip ; Turn off the tip.
}

Label implementation:

#Persistent
return

OnClipboardChange:
ToolTip Clipboard data type: %A_EventInfo%
Sleep 1000
ToolTip ; Turn off the tip.
return

More complicated Gui example with multiple listviews using the same event
callback function

This script demonstrates how to receive complicated GUI events from different controls in the
same event callback function. We'll be using two ListView controls for that.
Now every time an action is detected on one of those ListView controls, we want a precise
description of what happened and have that logged into an edit control in the same GUI.

Gui, Add, ListView, gListCtrlEvent vMyFirstListView AltSubmit -ReadOnly R10 w310,
ColumnTitle1|ColumnTitle2|ColumnTitle3
Gui, Add, ListView, gListCtrlEvent vMySecondListView AltSubmit -ReadOnly R10 w310,
ColumnTitle1|ColumnTitle2|ColumnTitle3
Gui, Add, Text, w310, Action Log
Gui, Add, Edit, vLog R7 w310,
Gui, Show,, Functions instead of labels

; Create example entries for the first ListView
Gui, ListView, MyFirstListView
Loop, 10 {
 LV_Add("", "Column-1 | Row-" A_Index , "Column-2 | Row-" A_Index, "Column-3 | Row-"
A_Index)
}
LV_ModifyCol()

https://riptutorial.com/ 23

; Create example entries for the second ListView
Gui, ListView, MySecondListView
Loop, 10 {
 LV_Add("", "Column-1 | Row-" A_Index , "Column-2 | Row-" A_Index, "Column-3 | Row-"
A_Index)
}
LV_ModifyCol()

ListCtrlEvent(ctrlHwnd:=0, guiEvent:="", eventInfo:="", errLvl:="") {
 GuiControlGet, ctrlName, Name, %CtrlHwnd%
 whatHappened := "Action detected!`n"
 whatHappened .= "Control handle: " ctrlHwnd "`n"
 whatHappened .= "Control name: " ctrlName "`n"

 If (guiEvent = "DoubleClick") {
 whatHappened .= "`nThe user has double-clicked within the control."
 whatHappened .= "`n> Focused row number: " eventInfo
 } Else If (guiEvent = "R") {
 whatHappened .= "`nThe user has double-right-clicked within the control."
 whatHappened .= "`n> Focused row number: " eventInfo
 } Else If (guiEvent = "ColClick") {
 whatHappened .= "`nThe user has clicked a column header."
 whatHappened .= "`n> Column number: " eventInfo
 } Else If (guiEvent = "D") {
 whatHappened .= "`nThe user has attempted to start dragging a row or icon."
 whatHappened .= "`n> Focused row number: " eventInfo
 } Else If (guiEvent = "d") {
 whatHappened .= "`nThe user has attempted to start right-click-dragging a row or
icon."
 whatHappened .= "`n> Focused row number: " eventInfo
 } Else If (guiEvent = "e") {
 whatHappened .= "`nThe user has finished editing the first field of a row."
 whatHappened .= "`n> Row number: " eventInfo
 } Else If (guiEvent = "Normal") {
 whatHappened .= "`nThe user has left-clicked a row."
 whatHappened .= "`n> Focused row number: " eventInfo
 } Else If (guiEvent = "RightClick") {
 whatHappened .= "`nThe user has right-clicked a row."
 whatHappened .= "`n> Focused row number: " eventInfo
 } Else If (guiEvent = "A") {
 whatHappened .= "`nA row has been activated."
 whatHappened .= "`n> Row number: " eventInfo
 } Else If (guiEvent = "C") {
 whatHappened .= "`nThe ListView has released mouse capture."
 } Else If (guiEvent = "E") {
 whatHappened .= "`nThe user has begun editing the first field of a row."
 whatHappened .= "`n> Row number: " eventInfo
 } Else If (guiEvent = "F") {
 whatHappened .= "`nThe ListView has received keyboard focus."
 } Else If (guiEvent = "f") {
 whatHappened .= "`nThe ListView has lost keyboard focus."
 } Else If (guiEvent = "I") {
 whatHappened .= "`nItem changed. (A row has changed by becoming selected/deselected,
checked/unchecked, etc.)"
 whatHappened .= "`n> Row number: " eventInfo
 } Else If (guiEvent = "K") {
 whatHappened .= "`nThe user has pressed a key while the ListView has focus."
 whatHappened .= "`n> Key pressed: " GetKeyName(Format("vk{:x}", eventInfo))
 } Else If (guiEvent = "M") {

https://riptutorial.com/ 24

 whatHappened .= "`nItem changed. (A row has changed by becoming selected/deselected,
checked/unchecked, etc.)"
 whatHappened .= "`n> Row number: " eventInfo
 } Else If (guiEvent = "S") {
 whatHappened .= "`nMarquee. The user has started to drag a selection-rectangle around
a group of rows or icons."
 } Else If (guiEvent = "s") {
 whatHappened .= "`nThe user has finished scrolling the ListView."
 }
 GuiControlGet, Log
 GuiControl,, Log, % whatHappened "`n---------------------`n" Log
}

GuiClose(hWnd) {
 WinGetTitle, windowTitle, ahk_id %hWnd%
 MsgBox, The Gui with title "%windowTitle%" is going to be closed! This script will exit
afterwards!
 ExitApp
}

Read Use functions instead of labels online: https://riptutorial.com/autohotkey/topic/4062/use-
functions-instead-of-labels

https://riptutorial.com/ 25

https://riptutorial.com/autohotkey/topic/4062/use-functions-instead-of-labels
https://riptutorial.com/autohotkey/topic/4062/use-functions-instead-of-labels

Credits

S.
No

Chapters Contributors

1
Getting started with
AutoHotkey

blackholyman, Community, depperm, Forivin, Joe DF, Shyam
Sundar Shankar, tlm, Vijay

2 Arrays blackholyman, errorseven

3
Built-in Variables and
Functions

MCL

4 Hello World errorseven, Forivin, Goerman, mikew, vasili111

5 Hotkey Scripts depperm, MCL, user5226582

6 Input Field Meh

7
Open a File in a
Script

freestock.tk

8
Use functions
instead of labels

Forivin

https://riptutorial.com/ 26

https://riptutorial.com/contributor/1882207/blackholyman
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3462319/depperm
https://riptutorial.com/contributor/2879085/forivin
https://riptutorial.com/contributor/883015/joe-df
https://riptutorial.com/contributor/2931864/shyam-sundar-shankar
https://riptutorial.com/contributor/2931864/shyam-sundar-shankar
https://riptutorial.com/contributor/5156546/tlm
https://riptutorial.com/contributor/107537/vijay
https://riptutorial.com/contributor/1882207/blackholyman
https://riptutorial.com/contributor/1914172/errorseven
https://riptutorial.com/contributor/1282023/mcl
https://riptutorial.com/contributor/1914172/errorseven
https://riptutorial.com/contributor/2879085/forivin
https://riptutorial.com/contributor/4564845/goerman
https://riptutorial.com/contributor/312601/mikew
https://riptutorial.com/contributor/1601703/vasili111
https://riptutorial.com/contributor/3462319/depperm
https://riptutorial.com/contributor/1282023/mcl
https://riptutorial.com/contributor/5226582/user5226582
https://riptutorial.com/contributor/7520674/meh
https://riptutorial.com/contributor/5875416/freestock-tk
https://riptutorial.com/contributor/2879085/forivin

	About
	Chapter 1: Getting started with AutoHotkey
	Remarks
	Versions
	AutoHotkey 1.0.* - also retroactively known as AutoHotkey Basic, Classic, Vanilla, etc.
	(Development was discontinued in 2011; Latest stable: 2009)

	AutoHotkey 1.1.* - previously known as AutoHotkey_L.
	(Stable and receives updates regularly)

	AutoHotkey 2.0-a*
	(Still in alpha stage)

	Examples
	Installation or Setup
	Hello World
	Show "Hello World" in a GUI
	Achieve an effect similar to SplashTextOn
	How to create a Script

	Chapter 2: Arrays
	Examples
	Creating and Initializing Simple Arrays

	Intro

	Creating and initializing arrays with N number of items
	Creating and initializing multi-dimensional arrays
	Filling an array
	Removing Elements from an array
	Adding custom Methods by overriding Array() function
	Chapter 3: Built-in Variables and Functions
	Remarks
	Examples
	Determining the User Idle Time
	Auto-insert current weekday's name
	Extract string parts using RegEx
	Trim a string

	Chapter 4: Hello World
	Examples
	Hello World examples

	Show a "Hello World!" in message box.
	Show "Hello World!" stored in variable MyString in message box.
	Show a "Hello World!" in tooltip.
	Show a "Hello World!" message in the traybar edit.
	Show "Hello World!" in a GUI window.
	Prints "Hello, World!" to Standard Output (stdout).
	Simulate typing "Hello, World!" when pressing enter
	Create a new file called HelloWorld.txt
	When typing the word "Hello" followed by a space or enter it will be replaced by "Hello World"

	Chapter 5: Hotkey Scripts
	Syntax
	Parameters
	Examples
	Hotkey
	Hotstring
	Multiple keypress
	Context-sensitive Hotkeys and Hotstrings
	Remap keys
	Toggleable hotkeys

	Chapter 6: Input Field
	Introduction
	Parameters
	Remarks
	Examples
	Basic Usage Example
	Passwords

	Chapter 7: Open a File in a Script
	Introduction
	Examples
	Open a File through Windows Explorer
	Open a File through SelectFile dialog box
	Open a File through Windows Drag n' Drop

	Chapter 8: Use functions instead of labels
	Remarks
	Examples
	Very basic example demonstrating function use on SetTimer.
	Advanced use of SetTimer: Calling the same function with different parameters
	Gui with functions instead of labels
	Hotkeys with functions instead of labels
	Tray menu actions with functions
	General example of functions vs labels
	OnClipboardChange with fucntion/label
	More complicated Gui example with multiple listviews using the same event callback function

	Credits

