
awk

#awk

Table of Contents

About 1

Chapter 1: Getting started with awk 2

Remarks 2

Resources 2

Versions 2

Examples 2

Hello world 2

How to run AWK programs 3

AWK by examples 3

Reference file 4

Minimal theory 4

Examples 6

Condition Examples 6

Some string functions 7

Statements 7

AWK executable script 8

Chapter 2: Arrays 10

Examples 10

Array basics 10

Chapter 3: Built-in functions 12

Examples 12

length([String]) 12

Considerations 12

Examples 12

Chapter 4: Built-in Variables 14

Examples 14

FS - Field Separator 14

RS - Record Separator 14

OFS - Output Field Separator 14

ORS - Output Record Separator 15

ARGV, ARGC - Array of Command Line Arguments 15

FS - Field Separator 15

OFS - Output Field Separator 16

RS - Input Record Separator 16

ORS - Output Record Separator 16

NF - Number of Fields 16

NR - Total Number of Records 17

FNR - Number of Records in File 17

NF - Number of Fields 18

FNR - The Current Record Number being processed 18

Chapter 5: Fields 20

Examples 20

Looping trough fields 20

Chapter 6: Patterns 21

Examples 21

Regexp Patterns 21

Chapter 7: Patterns and Actions 22

Examples 22

Introduction 22

Filter Lines by length 22

Chapter 8: Row Manipulation 24

Examples 24

Extract specific lines from a text file 24

Extract specific column/field from specific line 24

Modifying rows on-the-fly (e.g. to fix Windows line-endings) 25

Chapter 9: String manipulation functions 26

Syntax 26

Parameters 26

Examples 26

Converting string to upper case 26

String Concatenation 27

Computing a hash of a string 27

Convert string to lower case 28

String text substitution 29

Substring extraction 29

Chapter 10: Two-file processing 31

Examples 31

Check matching fields in two files 31

Print awk variables when reading two files 31

Chapter 11: Useful one-liners - calculating average from a CSV etc 33

Examples 33

Robust processing tabular data (CSV et al.) 33

Exchanging two columns in tabular data 33

Compute the average of values in a column from tabular data 33

Selecting specific columns in tabular data 34

Compute the median of values in a column from tabular data 34

Selecting a set of lines between two patterns 35

Chapter 12: Variables 36

Examples 36

Command-line variable assignment 36

Passing parameters to a program using the -v option 36

Local variables 38

Assignment Arguments 38

Credits 40

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: awk

It is an unofficial and free awk ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official awk.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/awk
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with awk

Remarks

The name AWK comes from the last initials of its creators Alfred V. Aho, Peter J. Weinberger, and
Brian W. Kernighan.

Resources

The Illumos AWK man-page•
The Plan9 AWK man-page•
The GNU AWK Users Guide•
The AWK Programming Language•

Versions

Name
Initial
Version

Version
Release
Date

POSIX awk 1992
IEEE Std 1003.1, 2013
Edition

2013-04-19

One True Awk or nawk or BWK
awk

198X - 2012-12-20

GNU awk or gawk 1986 4.1.3 2015-05-19

Examples

Hello world

The Hello world example is as simple as:

awk 'BEGIN {print "Hello world"}'

The most basic awk program consists of a true value (typically 1) and makes awk echo its input:

$ date | awk '1'
Mon Jul 25 11:12:05 CEST 2016

Since "hello world" is also a true value, you could also say:

$ date | awk '"hello world"'
Mon Jul 25 11:12:05 CEST 2016

https://riptutorial.com/ 2

https://illumos.org/man/1/awk
http://plan9.bell-labs.com/magic/man2html/1/awk
https://www.gnu.org/software/gawk/manual/html_node/index.html
https://dl.acm.org/citation.cfm?id=29361
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.html
http://www.opengroup.org/austin/
http://www.cs.princeton.edu/~bwk/btl.mirror/
http://git.savannah.gnu.org/cgit/gawk.git/tree/awk.h?id=3ffce190be7a1d11725c224fa76876d2b621d00d#n

However, your intention becomes much clearer if you write

$ date | awk '{print}'
Mon Jul 25 11:12:05 CEST 2016

instead.

How to run AWK programs

If the program is short, you can include it in the command that runs awk:

awk -F: '{print $1, $2}' /etc/passwd

In this example, using command line switch -F: we advise awk to use : as input fields delimiter. Is
is the same like

awk 'BEGIN{FS=":"}{print $1,$2}' file

Alternativelly, we can save the whole awk code in an awk file and call this awk programm like this:

awk -f 'program.awk' input-file1 input-file2 ...

program.awk can be whatever multiline program, i.e :

file print_fields.awk
BEGIN {print "this is a header"; FS=":"}
{print $1, $2}
END {print "that was it"}

And then run it with:

awk -f print_fields.awk /etc/passwd #-f advises awk which program file to load

Or More generally:

awk -f program-file input-file1 input-file2 ...

The advantage of having the program in a seperate file is that you can write the programm with
correct identation to make sense, you can include comments with # , etc

AWK by examples

AWK is string manipulation language, used largely in UNIX systems. The idea behind AWK was to
create a versatile language to use when working on files, which wasn't too complex to understand.

AWK has some other variants, but the main concept is the same, just with additional features.
These other variants are NAWK and GAWK. GAWK contains all of the features of both, whilst
NAWK is one step above AWK, if you like.

https://riptutorial.com/ 3

The most simple way to think of AWK, is to consider that it has 2 main parts. The pattern, and the
action.

Probably the most basic example of AWK: (See also: Hello World)

BEGIN {print "START"}
 {print }
END {print "STOP" }

Here, the keywords BEGIN and END are the pattern, whilst the action is inside the {}. This example
would be useless, but it would only take minor changes to actually make this into a useful function.

BEGIN {print "File\tAuthor"}
 {print $8, "\t", $3}
END {print " - DONE - "}

Here, \t represents a Tab character, and is used to even up the output line boundaries. $8 and $3
are similar to the use that is seen in Shell Scripts, but instead of using the 3rd and 8th arguments,
it uses the 3rd and 8th column of the input line.

So, this example would print: File Author on the top line, whilst the second line is to do with the file
paths. $8 is the name of the file, $3 is the owner (When looking at the directory path, this will be
more clear). Finally, the bottom line would print, as you would expect - DONE -

Credit for the above example goes to http://www.grymoire.com/Unix/Awk.html

Reference file

coins.txt from Greg Goebel:

gold 1 1986 USA American Eagle
gold 1 1908 Austria-Hungary Franz Josef 100 Korona
silver 10 1981 USA ingot
gold 1 1984 Switzerland ingot
gold 1 1979 RSA Krugerrand
gold 0.5 1981 RSA Krugerrand
gold 0.1 1986 PRC Panda
silver 1 1986 USA Liberty dollar
gold 0.25 1986 USA Liberty 5-dollar piece
silver 0.5 1986 USA Liberty 50-cent piece
silver 1 1987 USA Constitution dollar
gold 0.25 1987 USA Constitution 5-dollar piece
gold 1 1988 Canada Maple Leaf

Minimal theory

General awk one-liner:

awk <awk program> <file>

https://riptutorial.com/ 4

http://www.grymoire.com/Unix/Awk.html

or:

<shell-command> | awk <awk program>

<shell-command> and <file> are addressed as awk input.

<awk program> is a code following this template (single, not double, quotes):

'BEGIN {<init actions>};
 <cond1> {<program actions>};
 <cond2> {<program actions>};
 ...
 END {<final actions>}'

where:

<condX> condition is most often a regular expression /re/, to be matched with awk input lines;•
<* actions> are sequence of statements, similar to shell commands, equipped with C-like
constructs.

•

`` is processed according to the following rules:

BEGIN ... and END ... are optional and executed before or after processing awk input lines.1.
For each line in the awk input, if condition <condN> is meat, then the related <program actions>
block is executed.

2.

{<program actions>} defaults to {print $0}.3.

Conditions can be combined with standard logical operators:

 /gold/ || /USA/ && !/1986/

where && has precedence over ||;

Theprint statement. print item1 item2 statement prints items on STDOUT.
Items can be variables (X, $0), strings ("hello") or numbers.
item1, item2 are collated with the value of the OFS variable;
item1 item2 are justapoxed! Use item1 " " item2 for spaces or printf for more features.

Variables do not need $, i.e.: print myVar;
The following special variables are builtin in awk:

FS: acts as field separator to splits awk input lines in fields. I can be a single character, FS="c"
; a null string, FS="" (then each individual character becomes a separate field); a regular
expression without slashes, FS="re"; FS=" " stands for runs of spaces and tabs and is
defaults value.

•

NF: the number of fields to read;•
$1, $2, ...: 1st field, 2nd field. etc. of the current input line,•
$0: current input line;•
NR•

https://riptutorial.com/ 5

: current put line number.
OFS: string to collate fields when printed.•
ORS: output record separator, by default a newline.•
RS: Input line (record) separator. Defaults to newline. Set as FS.•
IGNORECASE: affects FS and RS when are regular expression;•

Examples

Filter lines by regexp gold and count them:

awk 'BEGIN {print "Coins"} /gold/{i++; print $0} END {print i " lines out of " NR}'
coins.txt
Coins
gold 1 1986 USA American Eagle
gold 1 1908 Austria-Hungary Franz Josef 100 Korona
gold 1 1984 Switzerland ingot
gold 1 1979 RSA Krugerrand
gold 0.5 1981 RSA Krugerrand
gold 0.1 1986 PRC Panda
gold 0.25 1986 USA Liberty 5-dollar piece
gold 0.25 1987 USA Constitution 5-dollar piece
gold 1 1988 Canada Maple Leaf
9 lines out of 13

Default print $0 action and condition based on internal awk variable NR:

awk 'BEGIN {print "First 3 coins"} NR<4' coins.txt
First 3 coins
gold 1 1986 USA American Eagle
gold 1 1908 Austria-Hungary Franz Josef 100 Korona
silver 10 1981 USA ingot

Formatting with C-style `printf`:

awk '{printf ("%s \t %3.2f\n", $1, $2)}' coins.txt
gold 1.00
gold 1.00
silver 10.00
gold 1.00
gold 1.00
gold 0.50
gold 0.10
silver 1.00
gold 0.25
silver 0.50
silver 1.00
gold 0.25
gold 1.00

Condition Examples

awk 'NR % 6' # prints all lines except those divisible by 6
awk 'NR > 5' # prints from line 6 onwards (like tail -n +6, or sed '1,5d')

https://riptutorial.com/ 6

awk '$2 == "foo"' # prints lines where the second field is "foo"
awk '$2 ~ /re/' # prints lines where the 2nd field mateches the regex /re/
awk 'NF >= 6' # prints lines with 6 or more fields
awk '/foo/ && !/bar/' # prints lines that match /foo/ but not /bar/
awk '/foo/ || /bar/' # prints lines that match /foo/ or /bar/ (like grep -e 'foo' -e 'bar')
awk '/foo/,/bar/' # prints from line matching /foo/ to line matching /bar/, inclusive
awk 'NF' # prints only nonempty lines (or: removes empty lines, where NF==0)
awk 'NF--' # removes last field and prints the line

By adding an action {...} one can print a specific field, rather than the whole line, e.g.:

awk '$2 ~ /re/{print $3 " " $4}'

prints the third and fourth field of lines where the second field mateches the regex /re/.

Some string functions

substr() function:

awk '{print substr($3,3) " " substr($4,1,3)}'
86 USA
08 Aus
81 USA
84 Swi
79 RSA
81 RSA
86 PRC
86 USA
86 USA
86 USA
87 USA
87 USA
88 Can

match(s, r [, arr]) returns the position in s where the regex r occurs and sets the values of RSTART
and RLENGTH. If the argument arr is provided, it returns the array arr where elements are set to the
matched parenthesized subexpression. The 0’th element matches of arr is set to the entire regex
match. Also expressions arr[n, "start"] and arr[n, "length"] provide the starting position and
length of each matching substring.

More string functions:

sub(/regexp/, "newstring"[, target])
gsub(/regexp/, "newstring"[, target])
toupper("string")
tolower("string")

Statements

A simple statement is often any of the following:

https://riptutorial.com/ 7

variable = expression
print [expression-list]
printf format [, expression-list]
next # skip remaining patterns on this input line
exit # skip the rest of the input

If stat1 and stat2 are statements, the following are also statements:

{stat}

{stat1; stat2}

{stat1
stat2}

if (conditional) statement [else statement]

The following standard C-like are constructs are statements:

if (conditional) statement [else statement]
while (conditional) statement
for (expression ; conditional ; expression) statement
break # usual C meaning
continue # usual C meaning

A C-style loop to print the variable length description element, starting with field 4:

awk '{out=""; for(i=4;i<=NF;i++){out=out" "$i}; print out}' coins.txt
USA American Eagle
Austria-Hungary Franz Josef 100 Korona
USA ingot
Switzerland ingot
RSA Krugerrand
RSA Krugerrand
PRC Panda
USA Liberty dollar
USA Liberty 5-dollar piece
USA Liberty 50-cent piece
USA Constitution dollar
USA Constitution 5-dollar piece
Canada Maple Leaf

Note that i is initialized to 0.

If conditions and calculations applied to nuneric fields:

awk '/gold/ {if($3<1980) print $0 "$" 425*$2}' coins.txt
gold 1 1908 Austria-Hungary Franz Josef 100 Korona $425
gold 1 1979 RSA Krugerrand $425

AWK executable script

#!/usr/bin/gawk -f

https://riptutorial.com/ 8

This is a comment
(pattern) {action}
...

Passing shell variables

var="hello"
awk -v x="$var" 'BEGIN {print x}'
hello

Read Getting started with awk online: https://riptutorial.com/awk/topic/937/getting-started-with-awk

https://riptutorial.com/ 9

https://riptutorial.com/awk/topic/937/getting-started-with-awk

Chapter 2: Arrays

Examples

Array basics

Creating a new array is slightly confusing, as there is no real identifier for an array in awk. So, an
array cannot really be initialised with our AWK code.

An array in awk is associative, meaning that any string or number can be a key. This means that
the array is more like a key-value pair dictionary, map etc. On another note, the arrays do not have
a maximum size.

Creating an array in AWK is really easy, as you take a variable name, a proper key and assign it to
a variable. This means when the following code is executed, we already have created an array
called myArray:

BEGIN {
 myArray["key"] = "value"
}

We our not bound to creating arrays in the begin only. Lets say we have the following input
stream:

A b c
D e f
G h i

And execute the following code with this:

{
 myOtherArray[$1] = $2 "-" $3
}
The array will look like this:
myOtherArray["A"] = "b-c"
myOtherArray["D"] = "e-f"
myOtherArray["G"] = "h-i"

When an array is filled with key value pairs, one can retrieve the value with the key only. This
means that if we use key "A" in myOtherArray we get "b-c".

END {
 print(myOtherArray["A"])
}

We also have the option to loop through each key to get each value. Looping through each key of
an array is a simple thing to do, however it has on downfall: it is unsorted. The following loop is like
a for-each loop, which retrieves the key:

https://riptutorial.com/ 10

END {
 for (key in myOtherArray) {
 print "myOtherArray[\"" key "\"] = " myOtherArray[key]
 }
}
Outputs (literal strings):
myOtherArray["A"] = "b-c"
myOtherArray["D"] = "e-f"
myOtherArray["G"] = "h-i"

Read Arrays online: https://riptutorial.com/awk/topic/7209/arrays

https://riptutorial.com/ 11

https://riptutorial.com/awk/topic/7209/arrays

Chapter 3: Built-in functions

Examples

length([String])

Returns the number of characters of the given String

Considerations

If a number is given instead a String, the result will be the length of the String representing
the given number. I.e. If we execute length(12345) the result will be the same as
length("12345"), that is 5

•

If no value is given, the result will be the length of the actual row being processed, that is
length($0)

•

It can be used inside a pattern or inside code-blocks.•

Examples

Here are a few examples demonstrating how length()works

$ cat file
AAAAA
BBBB
CCCC
DDDD
EEEE

Inside a pattern

Filter all lines with a length bigger than 4 characters

$ awk ' length($0) > 4 ' file
AAAAA

Inside a code block

Will print the size of the current line

$ awk '{ print length($0) }' file
5
4
4
4

https://riptutorial.com/ 12

4

With no data given

Will print the size of the current line

$ awk '{ print length }' file
5
4
4
4
4

Will print the size of the current line

$ awk '{ print length() }' file
5
4
4
4
4

Number given instead of String

Will print the size of the String representing the number

$ awk '{ print length(12345) }' file
5
5
5
5
5

Fixed String given

Will print the size of the String

$ awk '{ print length("12345") }' file
5
5
5
5
5

Read Built-in functions online: https://riptutorial.com/awk/topic/4922/built-in-functions

https://riptutorial.com/ 13

https://riptutorial.com/awk/topic/4922/built-in-functions

Chapter 4: Built-in Variables

Examples

FS - Field Separator

Used by awk to split each record into multiple fields:

echo "a-b-c
d-e-f" | awk 'BEGIN {FS="-"} {print $2}'

will result in:

b
e

The variable FS can also be set using the option -F:

echo "a-b-c
d-e-f" | awk -F '-' '{print $2}'

By default, the fields are separated by whitespace (spaces and tabs) and multiple spaces and tabs
count as a single separator.

RS - Record Separator

Used by awk to split the input into multiple records. For example:

echo "a b c|d e f" | awk 'BEGIN {RS="|"} {print $0}'

produces:

a b c
d e f

By default, the record separator is the newline character.

Similarly: echo "a b c|d e f" | awk 'BEGIN {RS="|"} {print $2}'

produces:

b
e

OFS - Output Field Separator

https://riptutorial.com/ 14

Used by awk to separate fields output by the print statement. For example:

echo "a b c
d e f" | awk 'BEGIN {OFS="-"} {print $2, $3}'

produces:

b-c
e-f

The default value is , a string consisting of a single space.

ORS - Output Record Separator

Used by awk to separate records and is output at the end of every print statement. For example:

echo "a b c
d e f" | awk 'BEGIN {ORS="|"} {print $2, $3}'

produces:

b c|e f

The default value is \n (newline character).

ARGV, ARGC - Array of Command Line Arguments

Command line arguments passed to awk are stored in the internal array ARGV of ARGC elements.
The first element of the array is the program name. For example:

awk 'BEGIN {
 for (i = 0; i < ARGC; ++i) {
 printf "ARGV[%d]=\"%s\"\n", i, ARGV[i]
 }
}' arg1 arg2 arg3

produces:

ARGV[0]="awk"
ARGV[1]="arg1"
ARGV[2]="arg2"
ARGV[3]="arg3"

FS - Field Separator

The variable FS is used to set the input field separator. In awk, space and tab act as default field
separators. The corresponding field value can be accessed through $1, $2, $3... and so on.

awk -F'=' '{print $1}' file

https://riptutorial.com/ 15

-F - command-line option for setting input field separator.•

awk 'BEGIN { FS="=" } { print $1 }' file

OFS - Output Field Separator

This variable is used to set the output field separator which is a space by default.

awk -F'=' 'BEGIN { OFS=":" } { print $1 }' file

Example:

$ cat file.csv
col1,col2,col3,col4
col1,col2,col3
col1,col2
col1
col1,col2,col3,col4,col5

$ awk -F',' 'BEGIN { OFS="|" } { $1=$1 } 1' file.csv
col1|col2|col3|col4
col1|col2|col3
col1|col2
col1
col1|col2|col3|col4|col5

Assigning $1 to $1 in $1=$1 modifies a field ($1 in this case) and that results in awk rebuilding the
record $0. Rebuilding the record replaces the delimiters FS with OFS.

RS - Input Record Separator

This variable is used to set input record separator, by default a newline.

awk 'BEGIN{RS=","} {print $0}' file

ORS - Output Record Separator

This variable is used to set output record separator, by default a newline.

awk 'BEGIN{ORS=","} {print $0}' file

NF - Number of Fields

This variable will give you a total number of fields in the current input record.

awk -F',' '{print NF}' file.csv

Example:

https://riptutorial.com/ 16

$ cat file.csv
col1,col2,col3,col4
col1,col2,col3
col1,col2
col1
col1,col2,col3,col4,col5

$ awk -F',' '{print NF}' file.csv
4
3
2
1
5

NR - Total Number of Records

Will provide the total number of records processed in the current awk instance.

cat > file1
suicidesquad
harley quinn
joker
deadshot

cat > file2
avengers
ironman
captainamerica
hulk

awk '{print NR}' file1 file2
1
2
3
4
5
6
7
8

A total on 8 records were processed in the instance.

FNR - Number of Records in File

Provides the total number of records processed by the awk instance relative to the files awk is
processing

cat > file1
suicidesquad
harley quinn
joker
deadshot

cat > file2
avengers
ironman

https://riptutorial.com/ 17

captainamerica
hulk

awk '{print FNR}' file1 file2
1
2
3
4
1
2
3
4

Each file had 4 lines each, so whenever awk encountered an EOF FNR was reset to 0.

NF - Number of Fields

Provides the number of columns or fields in each record (record corresponds to each line). Each
line is demarcated by RS which defaults to newline.

cat > file1
Harley Quinn Loves Joker
Batman Loves Wonder Woman
Superman is not dead
Why is everything I type four fielded!?

awk '{print NF}' file1
4
4
4
7

FS (somewhere up there) defaults to tab or space. So Harley, Quinn, Loves, Joker are each
considered as columns. The case holds for the next two lines, but the last line has 7 space
separated words, which means 7 columns.

FNR - The Current Record Number being processed

FNR contains the number of the input file row being processed. In this example you will see awk
starting on 1 again when starting to process the second file.

Example with one file

$ cat file1
AAAA
BBBB
CCCC
$ awk '{ print FNR }' file1
1
2
3

Example with two files

https://riptutorial.com/ 18

$ cat file1
AAAA
BBBB
CCCC
$ cat file2
WWWW
XXXX
YYYY
ZZZZ
$ awk '{ print FNR, FILENAME, $0 }' file1 file2
1 file1 AAAA
2 file1 BBBB
3 file1 CCCC
1 file2 WWWW
2 file2 XXXX
3 file2 YYYY
4 file2 ZZZZ

Extended example with two files

FNR can be used to detect if awk is processing the first file since NR==FNR is true only for the first file.
For example, if we want to join records from files file1 and file2 on their FNR:

$ awk 'NR==FNR { a[FNR]=$0; next } (FNR in a) { print FNR, a[FNR], $1 }' file1 file2
1 AAAA WWWW
2 BBBB XXXX
3 CCCC YYYY

Record ZZZZ from file2 is missing as FNR has different max value for file1 and file2 and there is
no join for differing FNRs.

Read Built-in Variables online: https://riptutorial.com/awk/topic/3227/built-in-variables

https://riptutorial.com/ 19

https://riptutorial.com/awk/topic/3227/built-in-variables

Chapter 5: Fields

Examples

Looping trough fields

awk '{ for(f=1; f<=NF; f++) { print $f; } }' file

Read Fields online: https://riptutorial.com/awk/topic/6245/fields

https://riptutorial.com/ 20

https://riptutorial.com/awk/topic/6245/fields

Chapter 6: Patterns

Examples

Regexp Patterns

Patterns can be specified as regular expressions:

/regular expression/ {action}

For example:

echo "user@hostname.com
not an email" | awk '/[^@]+@.+/ {print}'

Produces:

user@hostname.com

Note that an action consisting only of the print statement can be omitted entirely. The above
example is equivalent to:

echo "user@hostname.com
not an email" | awk '/[^@]+@.+/'

Read Patterns online: https://riptutorial.com/awk/topic/3475/patterns

https://riptutorial.com/ 21

https://riptutorial.com/awk/topic/3475/patterns

Chapter 7: Patterns and Actions

Examples

Introduction

An awk consists of patterns and actions, enclosed in curly brackets, to be taken if a pattern
matches. The most basic pattern is the empty pattern, which matches any record. The most basic
action is the empty action, which is equivalent to { print }, which is, in turn, equivalent to { print
$0 }. If both the pattern and the action are empty, awk will simply do nothing.

The following program will simply echo its input, for example:

awk '{ print }' /etc/passwd

Since { print } is the default action, and since a true value matches any record, that program
could be re-written as:

awk '1' /etc/passwd

The most common type of pattern is probably a regular expression enclosed in slashes. The
following program will print all records that contain at least two subsequent occurrences of the
letter o, for example:

awk '/oo+/ { print }' /etc/passwd

However, you can use arbitrary expressions as patterns. The following program prints the names
(field one) of users in group zero (field four), for example:

awk -F: '$4 == 0 { print $1 }' /etc/passwd

Instead of matching exactly, you can also match against a regular expression. The following
program prints the names of all users in a group with at least one zero in its group id:

awk -F: '$4 ~ /0/ { print $1 }' /etc/passwd

Filter Lines by length

This pattern will allow you to filter lines depending on its length

$cat file
AAAAA
BBBB
CCCC
DDDD
EEEE

https://riptutorial.com/ 22

$awk 'length($0) > 4 { print $0 }' file
AAAAA
$

Anyway, the pattern will allow the next code block to be executed, then, as the default action for
AWK is printing the current line {print}, we´ll see the same result when executing this:

$awk 'length($0) > 4 ' file
AAAAA

Read Patterns and Actions online: https://riptutorial.com/awk/topic/3987/patterns-and-actions

https://riptutorial.com/ 23

https://riptutorial.com/awk/topic/3987/patterns-and-actions

Chapter 8: Row Manipulation

Examples

Extract specific lines from a text file

Suppose we have a file

cat -n lorem_ipsum.txt
 1 Lorem Ipsum is simply dummy text of the printing and typesetting industry.
 2 Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an
unknown printer took a galley of type and scrambled it to make a type specimen book.
 3 It has survived not only five centuries, but also the leap into electronic typesetting,
remaining essentially unchanged.
 4 It was popularised in the 1960s with the release of Letraset sheets containing Lorem
Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker
including versions of Lorem Ipsum

We want to extract lines 2 and 3 from this file

awk 'NR==2,NR==3' lorem_ipsum.txt

This will print lines 2 and 3:

 2 Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an
unknown printer took a galley of type and scrambled it to make a type specimen book.
 3 It has survived not only five centuries, but also the leap into electronic typesetting,
remaining essentially unchanged.

Extract specific column/field from specific line

If you have the following data file

cat data.csv
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

maybe you need to read the fourth column of the third line, this would be "24"

awk 'NR==3 { print $4 }' data.csv

gives

24

https://riptutorial.com/ 24

Modifying rows on-the-fly (e.g. to fix Windows line-endings)

If a file may contain Windows or Unix-like line endings (or even a mixture of both) then the
intended text replacement may not work as expected.

Sample:

$ echo -e 'Entry 1\nEntry 2.1\tEntry 2.2\r\nEntry 3\r\n\r\n' \
> | awk -F'\t' '$1 != "" { print $1 }' \
> | hexdump -c
0000000 E n t r y 1 \n E n t r y 2 .
0000010 1 \n E n t r y 3 \r \n \r \n
000001d

This can be easily fixed by an additional rule which is inserted at the beginning of the awk script:

/\r$/ { $0 = substr($0, 1, length($0) - 1) }

Because the action does not end with next, the following rules are applied as before.

Sample (with fix of line-endings):

$ echo -e 'Entry 1\nEntry 2.1\tEntry 2.2\r\nEntry 3\r\n\r\n' \
> | awk -F'\t' '/\r$/ { $0 = substr($0, 1, length($0) - 1) } $1 != "" { print $1 }' \
> | hexdump -c
0000000 E n t r y 1 \n E n t r y 2 .
0000010 1 \n E n t r y 3 \n
000001a

Read Row Manipulation online: https://riptutorial.com/awk/topic/3947/row-manipulation

https://riptutorial.com/ 25

https://riptutorial.com/awk/topic/3947/row-manipulation

Chapter 9: String manipulation functions

Syntax

index(big, little)•
length or length()•
length(string)•
match(string, regex)•
split(string, array, separator)•
split(string, array)•
sprintf(format, ...)•
sub(regex, subst, string)•
sub(regex, subst)•
gsub(regex, subst)•
gsub(regex, subst, string)•
substr(string, start, end)•
substr(string, start)•
tolower(string)•
toupper(string)•

Parameters

Parameter Details

big The string which is scanned for "little".

end The index at which to end the sub-string.

format A printf format string.

little The string to scan for in "big".

regex An Extended-Regular-Expression.

start The index at which to start the sub-string.

string A string.

subst The string to substitute in for the matched portion.

Examples

Converting string to upper case

https://riptutorial.com/ 26

http://www.riptutorial.com/c/topic/3750/formatted-input-output
http://www.riptutorial.com/awk/topic/3475/patterns

The function toupper will convert a string to upper case (capital letters). For example:

BEGIN {
 greeting = "hello"
 loud_greeting = toupper(greeting)
 print loud_greeting
}

This code will output "HELLO" when run.

String Concatenation

String concatenation is done simply by writing expressions next to one another without any
operator. For example:

BEGIN {
 user = "root"
 print "Hello "user "!"
}

will print: Hello root!

Note that expressions do not have to be separated by whitespace.

Computing a hash of a string

While implementing one of the standard hashing algorithm in awk is probably a tedious task,
defining a hash function that can be used as a handle to text documents is much more tractable. A
practical situation where such a function is useful is to assign short ids to items given their
description, for instance test cases, so that the short id can be given as reference to the item by
the user instead of supplying its long description.

The hash function needs to convert characters to numeric codes, which is accomplished by using
a lookup table initialised at the beginning of the script. The hash function is then computed using
modular arithmetic transformations, a very classical approach to the computation of hashes.

For demonstration purposes, we add a rule to decorate input lines with their hash, but this rule is
not needed to use the function:

BEGIN{
 for(n=0;n<256;n++) {
 ord[sprintf("%c",n)] = n
 }
}

function hash(text, _prime, _modulo, _ax, _chars, _i)
{
 _prime = 104729;
 _modulo = 1048576;
 _ax = 0;
 split(text, _chars, "");
 for (_i=1; _i <= length(text); _i++) {

https://riptutorial.com/ 27

 _ax = (_ax * _prime + ord[_chars[_i]]) % _modulo;
 };
 return sprintf("%05x", _ax)
}

Rule to demonstrate the function
These comments and the following line are not relevant
to the definition of the hash function but illustrate
its use.

{ printf("%s|%s\n", hash($0), $0) }

We save the program above to the file hash.awk and demonstrate it on a short list of classical
english book titles:

awk -f hash.awk <<EOF
Wuthering Heights
Jane Eyre
Pride and Prejudice
The Mayor of Casterbridge
The Great Gatsby
David Copperfield
Great Expectations
The Return of the Soldier
Alice's Adventures in Wonderland
Animal Farm
EOF

The output is

6d6b1|Wuthering Heights
7539b|Jane Eyre
d8fba|Pride and Prejudice
fae95|The Mayor of Casterbridge
17fae|The Great Gatsby
c0005|David Copperfield
7492a|Great Expectations
12871|The Return of the Soldier
c3ab6|Alice's Adventures in Wonderland
46dc0|Animal Farm

When applied on each of the 6948 non-blank lines of my favourite novel this hash function does
not generate any collision.

Convert string to lower case

AWK often used for manipulating entire files containing a list of strings. Let's say file
awk_test_file.txt contains:

First String
Second String
Third String

To convert all the strings to lower case execute:

https://riptutorial.com/ 28

http://www.gutenberg.org/cache/epub/32596/pg32596.txt

awk '{ print tolower($0) }' awk_test_file.txt

This will result:

first string
second string
third string

String text substitution

SUB function allows to substitute text inside awk

sub(regexp, replacement, target)

where regexp could be a full regular expression

$ cat file
AAAAA
BBBB
CCCC
DDDD
EEEE
FFFF
GGGG
$ awk '{sub("AAA","XXX", $0); print}' file
XXXAA
BBBB
CCCC
DDDD
EEEE
FFFF
GGGG

Substring extraction

GNU awk supports a sub-string extraction function to return a fixed length character sequence from
a main string. The syntax is

substr(string, start [, length])

where, string is source string and start marks the start of the sub-string position you want the
extraction to be done for an optional length length characters. If the length is not specified, the
extraction is done up to the end of the string.

The first character of the string is treated as character number one.

awk '
BEGIN {
 testString = "MyTESTstring"
 substring = substr(testString, 3, 4) # Start at character 3 for a length of 4
characters
 print substring

https://riptutorial.com/ 29

http://www.regular-expressions.info/

}'

will output the sub-string TEST.

awk '
BEGIN {
 testString = "MyTESTstring"
 substring = substr(testString, 3) # Start at character 3 till end of the string
 print substring
}'

this extracts the sub-string from character position 3 to end of the whole string, returning
TESTstring

Note:-

If start is given a negative value, GNU awk prints the whole string and if length is given a non-
zero value GNU awk behavior returns a null string and the behavior varies among different
implementations of awk.

•

Read String manipulation functions online: https://riptutorial.com/awk/topic/2284/string-
manipulation-functions

https://riptutorial.com/ 30

https://riptutorial.com/awk/topic/2284/string-manipulation-functions
https://riptutorial.com/awk/topic/2284/string-manipulation-functions

Chapter 10: Two-file processing

Examples

Check matching fields in two files

Given these two CSV files:

$ cat file1
1,line1
2,line2
3,line3
4,line4
$ cat file2
1,line3
2,line4
3,line5
4,line6

To print those lines in file2 whose second column occurs also in the first file we can say:

$ awk -F, 'FNR==NR {lines[$2]; next} $2 in lines' file1 file2
1,line3
2,line4

Here, lines[] holds an array that gets populated when reading file1 with the contents of the
second field of each line.

Then, the condition $2 in lines checks, for every line in file2, if the 2nd field exists in the array. If
so, the condition is True and awk performs its default action, consisting in printing the full line.

If just one field was needed to be printed, then this could be the expression:

$ awk -F, 'FNR==NR {lines[$2]; next} $2 in lines {print $1}' file1 file2
1
2

Print awk variables when reading two files

I hope this example will help everyone to understand how awk internal variables like NR, FNR etc
change when awk is processing two files.

awk '{print "NR:",NR,"FNR:",FNR,"fname:",FILENAME,"Field1:",$1}' file1 file2
NR: 1 FNR: 1 fname: file1 Field1: f1d1
NR: 2 FNR: 2 fname: file1 Field1: f1d5
NR: 3 FNR: 3 fname: file1 Field1: f1d9
NR: 4 FNR: 1 fname: file2 Field1: f2d1
NR: 5 FNR: 2 fname: file2 Field1: f2d5
NR: 6 FNR: 3 fname: file2 Field1: f2d9

https://riptutorial.com/ 31

Where file1 and file2 look like:

$ cat file1
f1d1 f1d2 f1d3 f1d4

$ cat file2
f2d1 f2d2 f2d3 f2d4

Notice how NR value keeps increasing among all files, while FNR resets on each file. This is why the
expression NR==FNR always refer to the first file fed to awk, since only in first file is possible to have
NR equal to FNR.

Read Two-file processing online: https://riptutorial.com/awk/topic/4486/two-file-processing

https://riptutorial.com/ 32

https://riptutorial.com/awk/topic/4486/two-file-processing

Chapter 11: Useful one-liners - calculating
average from a CSV etc

Examples

Robust processing tabular data (CSV et al.)

Processing tabular data with awk is very easy, provided that the input is correctly formatted. Most
software producing tabular data use specific features of this family of formats, and awk programs
processing tabular data are often specific to a data produced by a specific software. If a more
generic or robust solution is required, most popular languages provide libraries accommodating
with a lot of features found in tabular data:

optional column names on the first line•
mixture of quoted and unquoted column values•
various delimiters•
localised formats for floating numbers•

While it definitely possible to handle all these features cleanly and generically with awk this is
probably not worth the effort.

Exchanging two columns in tabular data

Given a file using ; as a column delimiter. Permuting the first and the second column is
accomplished by

awk -F';' -v 'OFS=;' '{ swap = $2; $2 = $1; $1 = swap; print }'

Compute the average of values in a column from tabular data

Given a file using ; as a column delimiter. We compute the mean of the values in the second
column with the following program, the provided input is the list of grades of a student group:

awk -F';' '{ sum += $2 } END { print(sum / NR) }' <<EOF
Alice;2
Victor;1
Barbara;1
Casper;4
Deborah;0
Ernest;1
Fabiola;4
Giuseppe;4
EOF

The output of this program is 2.125.

https://riptutorial.com/ 33

Remember that NR holds the number of the line being processed, in the END block it therefore hold
the total number of lines in the file.

Remember that in many applications (monitoring, statistics), the median is a much more useful
information. See the corresponding example.

Selecting specific columns in tabular data

We assume a file using ; as a column delimiter. Selecting a specific set of columns only requires a
print statement. For instance, the following program selects the columns 3, 4 and 7 from its input:

awk -F';' -v 'OFS=;' '{ print $3, $4, $7 }'

It is as usual possible to more carefully choose lines to print. The following program selects the
columns 3, 4 and 7 from its input when the first field is Alice or Bob:

awk -F';' -v 'OFS=;' '($1 == "Alice") || ($1 == "Bob") { print $3, $4, $7 }'

Compute the median of values in a column from tabular data

Given a file using ; as a column delimiter. We compute the median of the values in the second
column with the following program, written for GNU awk. The provided input is the list of grades of
a student group:

gawk -F';' '{ sample[NR] = $2 }
 END {
 asort(sample);
 if(NR % 2 == 1) {
 print(sample[int(NR/2) + 1])
 } else {
 print(sample[NR/2])
 }
}' <<EOF
Alice;2
Victor;1
Barbara;1
Casper;4
Deborah;0
Ernest;1
Fabiola;4
Giuseppe;4
EOF

The output of this program is 1.

Remember that NR holds the number of the line being processed, in the END block it therefore hold
the total number of lines in the file.

Many implementations of awk do not have a function to sort arrays, which therefore need to be
defined before the code above could be used.

https://riptutorial.com/ 34

Selecting a set of lines between two patterns

Pattern matching can be used effectively with awk as it controls the actions that follows it i.e. {
pattern } { action }. One cool use of the pattern-matching is to select multiple between two
patterns in a file say patternA and patternB

$ awk '/patternA/,/patternB/' file

Assume my file contents are as follows, and I want to extract the lines only between the above
pattern:-

$ cat file
This is line - 1
This is line - 2
patternA
This is line - 3
This is line - 4
This is line - 5
patternB
This is line - 6

$ awk '/patternA/,/patternB/' file
patternA
This is line - 3
This is line - 4
This is line - 5
patternB

The above command doesn't do any specific { action } other than to print the lines matching, but
any specific actions within the subset of lines can be applied with an action block ({}).

Read Useful one-liners - calculating average from a CSV etc online:
https://riptutorial.com/awk/topic/3331/useful-one-liners---calculating-average-from-a-csv-etc

https://riptutorial.com/ 35

https://riptutorial.com/awk/topic/3331/useful-one-liners---calculating-average-from-a-csv-etc

Chapter 12: Variables

Examples

Command-line variable assignment

To assign variables from the command-line, -v can be used:

$ awk -v myvar="hello" 'BEGIN {print myvar}'
hello

Note that there are no spaces around the equal sign.

This allows to use shell variables:

$ shell_var="hello"
$ awk -v myvar="$shell_var" 'BEGIN {print myvar}'
hello

Also, this allows to set built-in variables that control awk:

See an example with FS (field separator):

$ cat file
1,2;3,4
$ awk -v FS="," '{print $2}' file
2;3
$ awk -v FS=";" '{print $2}' file
3,4

Or with OFS (output field separator):

$ echo "2 3" | awk -v OFS="--" '{print $1, $2}'
2--3
$ echo "2 3" | awk -v OFS="+" '{print $1, $2}'
2+3

Passing parameters to a program using the -v option

The option -v followed by an assignment of the form variable=value can be used to pass
parameters to an awk program. This is illustrated by the punishment program below, whose job
is to write count times the sentence “I shall not talk in class.” on standard output. The following
example uses the value 100, which is very popular among teachers:

awk -v count=100 'BEGIN {
 for(i = 1; i <= count; ++i) {
 print("I shall not talk in class.")
 }

https://riptutorial.com/ 36

 exit
}'

It is possible to pass multiple parameters with repeated usage of the -v flag:

awk -v count=100 -v "sentence=I shall not talk in class." 'BEGIN {
 for(i = 1; i <= count; ++i) {
 print(sentence)
 }
 exit
}'

There is no built-in support for array or list parameters, these have to be handled manually. A
classical approach to pass a list parameter is to concatenate the list using a delimiter, popular
choices are :, | or ,. The split function then allows to recover the list as an awk array:

awk -v 'serialised_list=a:b:c:d:e:f' 'BEGIN {
 list_sz = split(serialised_list, list, ":")
 for(i = 1; i <= list_sz; ++i) {
 printf("list: %d: %s\n", i, list[i])
 }
 exit
}'

The output of this awk program is

list: 1: a
list: 2: b
list: 3: c
list: 4: d
list: 5: e
list: 6: f

Sometimes it is more convenient to recover list items as keys of an awk array, as this allows easy
membership verification. For instance, the following program print each line whose first word does
not belong to a fixed list of exceptions:

awk -v 'serialised_exception_list=apple:pear:cherry' 'BEGIN {
 _list_sz = split(serialised_exception_list, _list, ":")
 for(i = 1; i <= _list_sz; ++i) {
 exception[_list[i]]
 }
}

! ($1 in exception) { print }' <<EOF
apple Apples are yummy, I like them.
pineapple Do you like pineapple?
EOF

The output of this program is

pineapple Do you like pineapple?

https://riptutorial.com/ 37

As a final example, we show how to wrap the punishment program into a shell script, as this
illustrates how a shell script conveys parameters to an auxiliary awk script:

#!/bin/sh

usage()
{
 cat <<EOF
Usage: punishment [-c COUNT][-s SENTENCE]
 Prepare your punishments for you
EOF
}

punishment_count='100'
punishment_sentence='I shall not talk in class.'
while getopts "c:hs:" OPTION; do
 case "${OPTION}" in
 c) punishment_count="${OPTARG}";;
 s) punishment_sentence="${OPTARG}";;
 h) usage; exit 0;;
 *) usage; exit 64;;
 esac
done

awk -v "count=${punishment_count}" -v "sentence=${punishment_sentence}" 'BEGIN {
 for(i = 1; i <= count; ++i) {
 print(sentence)
 }
 exit
}'

Local variables

The awk language does not directly support variables local to functions. It is however easy
emulate them by adding extra arguments to functions. It is traditional to prefix these variables by a
_ to indicate that they are not actual parameters.

We illustrate this technique with the definition of a single_quote function that adds single quotes
around a string:

single_quote(TEXT)
Return a string made of TEXT surrounded by single quotes

function single_quote(text, _quote) {
 _quote = sprintf("%c", 39)
 return sprintf("%s%s%s", _quote, text, _quote);
}

The simpler approach of using sprintf("'%s'", text) leads to practical problems because awk
scripts are usually passed as single quoted arguments to the awk program.

Assignment Arguments

Assignment arguments appear at the end of an awk invocation, in the same area as file variables,

https://riptutorial.com/ 38

both -v assignments and argument assignments must match the following regular expression.
(assuming a POSIX locale)

^[[:alpha:]_][[:alnum:]_]*=

The following example assumes a file file containing the following: 1 2 3 (white space separated)

$ awk '{$1=$1}1' file OFS=, file OFS=- file
1 2 3
1,2,3
1-2-3

Read Variables online: https://riptutorial.com/awk/topic/1403/variables

https://riptutorial.com/ 39

https://riptutorial.com/awk/topic/1403/variables

Credits

S.
No

Chapters Contributors

1
Getting started with
awk

Andrea, antonio, AstraSerg, Community, David, fedorqui,
George Vasiliou, kdhp, Michael Vehrs

2 Arrays engineercoding

3 Built-in functions Alejandro Teixeira Muñoz, Armali

4 Built-in Variables
Alejandro Teixeira Muñoz, Andrzej Pronobis, FoldedChromatin,
George Vasiliou, James Brown, sat

5 Fields chaos

6 Patterns Andrzej Pronobis

7 Patterns and Actions Alejandro Teixeira Muñoz, Michael Vehrs

8 Row Manipulation pacomet, Scheff, UNagaswamy

9
String manipulation
functions

Alejandro Teixeira Muñoz, Andrzej Pronobis, AstraSerg,
fedorqui, Inian, kdhp, Michael Le Barbier Grünewald, schot,
Thor

10 Two-file processing fedorqui, George Vasiliou

11
Useful one-liners -
calculating average
from a CSV etc

Chris Seymour, Inian, karakfa, Michael Le Barbier Grünewald

12 Variables
Andrzej Pronobis, anishsane, fedorqui, karakfa, kdhp, Michael
Le Barbier Grünewald, Michael Vehrs

https://riptutorial.com/ 40

https://riptutorial.com/contributor/909742/andrea
https://riptutorial.com/contributor/1851270/antonio
https://riptutorial.com/contributor/2733113/astraserg
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6530111/david
https://riptutorial.com/contributor/1983854/fedorqui
https://riptutorial.com/contributor/3988526/george-vasiliou
https://riptutorial.com/contributor/4206439/kdhp
https://riptutorial.com/contributor/6165935/michael-vehrs
https://riptutorial.com/contributor/3554071/engineercoding
https://riptutorial.com/contributor/3617531/alejandro-teixeira-munoz
https://riptutorial.com/contributor/2413201/armali
https://riptutorial.com/contributor/3617531/alejandro-teixeira-munoz
https://riptutorial.com/contributor/1576602/andrzej-pronobis
https://riptutorial.com/contributor/1390752/foldedchromatin
https://riptutorial.com/contributor/3988526/george-vasiliou
https://riptutorial.com/contributor/4162356/james-brown
https://riptutorial.com/contributor/874178/sat
https://riptutorial.com/contributor/2768341/chaos
https://riptutorial.com/contributor/1576602/andrzej-pronobis
https://riptutorial.com/contributor/3617531/alejandro-teixeira-munoz
https://riptutorial.com/contributor/6165935/michael-vehrs
https://riptutorial.com/contributor/709777/pacomet
https://riptutorial.com/contributor/7478597/scheff
https://riptutorial.com/contributor/1588032/unagaswamy
https://riptutorial.com/contributor/3617531/alejandro-teixeira-munoz
https://riptutorial.com/contributor/1576602/andrzej-pronobis
https://riptutorial.com/contributor/2733113/astraserg
https://riptutorial.com/contributor/1983854/fedorqui
https://riptutorial.com/contributor/5291015/inian
https://riptutorial.com/contributor/4206439/kdhp
https://riptutorial.com/contributor/2654678/michael-le-barbier-grunewald
https://riptutorial.com/contributor/251122/schot
https://riptutorial.com/contributor/1331399/thor
https://riptutorial.com/contributor/1983854/fedorqui
https://riptutorial.com/contributor/3988526/george-vasiliou
https://riptutorial.com/contributor/1066031/chris-seymour
https://riptutorial.com/contributor/5291015/inian
https://riptutorial.com/contributor/1435869/karakfa
https://riptutorial.com/contributor/2654678/michael-le-barbier-grunewald
https://riptutorial.com/contributor/1576602/andrzej-pronobis
https://riptutorial.com/contributor/793796/anishsane
https://riptutorial.com/contributor/1983854/fedorqui
https://riptutorial.com/contributor/1435869/karakfa
https://riptutorial.com/contributor/4206439/kdhp
https://riptutorial.com/contributor/2654678/michael-le-barbier-grunewald
https://riptutorial.com/contributor/2654678/michael-le-barbier-grunewald
https://riptutorial.com/contributor/6165935/michael-vehrs

	About
	Chapter 1: Getting started with awk
	Remarks
	Resources
	Versions
	Examples
	Hello world
	How to run AWK programs
	AWK by examples

	Reference file
	Minimal theory
	Examples
	Condition Examples
	Some string functions
	Statements
	AWK executable script

	Chapter 2: Arrays
	Examples
	Array basics

	Chapter 3: Built-in functions
	Examples
	length([String])

	Considerations
	Examples

	Chapter 4: Built-in Variables
	Examples
	FS - Field Separator
	RS - Record Separator
	OFS - Output Field Separator
	ORS - Output Record Separator
	ARGV, ARGC - Array of Command Line Arguments
	FS - Field Separator
	OFS - Output Field Separator
	RS - Input Record Separator
	ORS - Output Record Separator
	NF - Number of Fields
	NR - Total Number of Records
	FNR - Number of Records in File
	NF - Number of Fields
	FNR - The Current Record Number being processed

	Chapter 5: Fields
	Examples
	Looping trough fields

	Chapter 6: Patterns
	Examples
	Regexp Patterns

	Chapter 7: Patterns and Actions
	Examples
	Introduction
	Filter Lines by length

	Chapter 8: Row Manipulation
	Examples
	Extract specific lines from a text file
	Extract specific column/field from specific line
	Modifying rows on-the-fly (e.g. to fix Windows line-endings)

	Chapter 9: String manipulation functions
	Syntax
	Parameters
	Examples
	Converting string to upper case
	String Concatenation
	Computing a hash of a string
	Convert string to lower case
	String text substitution
	Substring extraction

	Chapter 10: Two-file processing
	Examples
	Check matching fields in two files
	Print awk variables when reading two files

	Chapter 11: Useful one-liners - calculating average from a CSV etc
	Examples
	Robust processing tabular data (CSV et al.)
	Exchanging two columns in tabular data
	Compute the average of values in a column from tabular data
	Selecting specific columns in tabular data
	Compute the median of values in a column from tabular data
	Selecting a set of lines between two patterns

	Chapter 12: Variables
	Examples
	Command-line variable assignment
	Passing parameters to a program using the -v option
	Local variables
	Assignment Arguments

	Credits

