
aws-lambda

#aws-

lambda

Table of Contents

About 1

Chapter 1: Getting started with aws-lambda 2

Remarks 2

Triggers can include: 2

Lambda is best designed for real-time serverless data processing such as: 2

Examples 2

Installation or Setup 2

Java AWS-Lambda S3 Triggered 8

Chapter 2: alexa-skills-kit 11

Examples 11

Create Alexa Skills Kit Using Blueprint 11

Chapter 3: AWS Lambda triggered by S3 13

Examples 13

Echo Input Args in Java 13

Chapter 4: AWS Lambda using Python 14

Examples 14

Why AWS Lambda ? 14

Hello World - Lambda Function 14

Chapter 5: AWS Lambda with S3 26

Introduction 26

Examples 26

Cheatsheet 26

AWS-SDK for javascript 26

Sample function 26

Running S3 26

Use with Elasticache Redis 26

Chapter 6: aws-lambda triggered by S3 28

Syntax 28

Parameters 28

Remarks 28

File names 28

Records key 28

More Examples & Testing 28

Examples 28

S3 PUT Operation 29

Chapter 7: How to develop aws-lambda(C#) on a local machine 30

Introduction 30

Remarks 30

Install Required Components 30

Examples 30

Step 1. Create a new solution in Visual Studio 30

Step 2. Add and change code in your project 32

Step 3 - Install your Lambda Function into AWS 34

Step 4. Invoke your AWS Lambda function from within Visual Studio 35

Chapter 8: Serverless Framework 37

Introduction 37

Remarks 37

Examples 37

Serverless 37

Create Simple CRUD Operation 37

Credits 45

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: aws-lambda

It is an unofficial and free aws-lambda ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official aws-lambda.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/aws-lambda
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with aws-lambda

Remarks

AWS Lambda is a serverless setup for executing functions in the cloud. It leverages existing
Amazon Web Services technologies to infinitely scale and run only when necessary in it's own
isolated environment. Using Lambda, you can upload your code, configure it to run based on a
variety of triggers, and then automatically decommission the process when complete. It operates
on a pay-per-use model and is extremely cost effective and easy to scale.

AWS Lambda supports code written in Node.js (JavaScript), Python, Java (Java 8
compatible) and C# (.NET Core). Your code can include existing libraries, even native ones.

Triggers can include:

HTTP Endpoints

Mobile Apps•
Other AWS Services (Including REST implementation with Amazon API Gateway)•

Lambda is best designed for real-time
serverless data processing such as:

File processing of uploads
Transcoding○

Indexing○

Validation○

Resizing & Filtering○

•

Streaming data analysis•
Telemetry•
Run as a method-based mobile and web backend•
Extending and linking other AWS products•

Examples

Installation or Setup

Log into your AWS Console and click on Lambda under the Services tab.1.

Under Functions you'll be able to Create a Lambda function using the same-labeled
button.

2.

https://riptutorial.com/ 2

You'll be shown a screen where you can select a blueprint. These are simply starting points
to existing Lambda functions for quickly starting out with Lambda.

3.

https://riptutorial.com/ 3

http://i.stack.imgur.com/nlYn9.jpg

On the next screen you can configure any triggers you'd like to use to "set" this Lambda
function off. You can choose between no triggers (through manual setup later depending on
your task), API Gateway (for creating a serverless REST client), Alexa Skills, or a plethora of
other others to fire off the function you'll create.

4.

https://riptutorial.com/ 4

http://i.stack.imgur.com/pktAb.jpg

You'll finish configuration on the next screen by setting the Name, Description, choosing a
Runtime, opting to edit the function inline, upload a .zip file, or upload a file from Amazon
S3, choose a Role (useful for permissions-based interaction between AWS services), set the
memory and limits, and ready your app for live use.

5.

https://riptutorial.com/ 5

http://i.stack.imgur.com/8Bykj.jpg

https://riptutorial.com/ 6

http://i.stack.imgur.com/phQxo.jpg

Lastly, you'll review your function and create it. Since Lambda utilizes the Pay-Per-Use
model, no chargers are incurred until you start using your newly created function.

6.

https://riptutorial.com/ 7

http://i.stack.imgur.com/88dQG.jpg

Java AWS-Lambda S3 Triggered

An AWS-Lambda function can be attached to a certain bucket event. Whenever a file/folder is
created or removed, an event can trigger lambda function execution.

A simple Lambda function to print the name of an uploaded File

This is a one class lambda project to print the name of an uploaded file. For maven we need to
add those dependencies:

 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-core</artifactId>
 <version>1.1.0</version>
 <type>jar</type>

https://riptutorial.com/ 8

http://i.stack.imgur.com/KpTTs.jpg

 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-events</artifactId>
 <version>1.3.0</version>
 <type>jar</type>
 </dependency>
</dependencies>

Now let's go to our HelloWorld Class:

package com;
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.S3Event;
import com.amazonaws.services.s3.event.S3EventNotification;

public class HelloWorld implements RequestHandler< S3Event, String> {
 @Override
 public String handleRequest(S3Event event, Context ctx) {
 S3EventNotification.S3EventNotificationRecord record=event.getRecords().get(0);
 System.out.println("Bucket Name is "+record.getS3().getBucket().getName());
 System.out.println("File Path is "+record.getS3().getObject().getKey());
 return null;
 }
}

Next step is to build the project using mvn.

After building the project, we need to upload it to AWS-Lambda. Go to Lambda, choose "create a
lambda function". Skip the part where you choose the blueprint, because Java is usually not there.

Also, skip "Configure triggers" because we will configure it from a different location. The next
page, enter a name for your first lambda function, then a small description and choose Java as
runtime.

For the "Code entry type", choose "Upload from a .ZIP file" and then select your .zip file in the next
location to upload it.

The tricky part on this page is the Handler field. In the handler field, you have to specify the
location of the class the implements the RequestHandler. This class is the entry point for the
lambda and your Lambda function won't work if this is not specified correctly. For our case handler
is "com.HelloWorld"

Attaching a S3 trigger to Lambda:

Here we will attach a trigger to the S3 file upload

Go to S3, choose the bucket, then "Properties".•
In the "Properties" section, go to "Events".•
Add event details. In the "Events" field, choose how you want to trigger your Lambda. We
will choose "ObjectCreated(All)" Note that the lambda function and the bucket need to be on
the same amazon Region

•

https://riptutorial.com/ 9

For "Sends to", check Lambda Function, and choose your lambda function from the list.•

Monitoring Lambda Output

Now, we will upload a file to the bucket that has the lambda trigger. To see the lambda outputs
and logs, go to "CloudWatch", then choose "Logs", then choose your Lambda function. You might
see many entries under "Log Streams", choose the latest one and open it. You should be able to
see the output of the lambda execution there.

Read Getting started with aws-lambda online: https://riptutorial.com/aws-
lambda/topic/2357/getting-started-with-aws-lambda

https://riptutorial.com/ 10

https://riptutorial.com/aws-lambda/topic/2357/getting-started-with-aws-lambda
https://riptutorial.com/aws-lambda/topic/2357/getting-started-with-aws-lambda

Chapter 2: alexa-skills-kit

Examples

Create Alexa Skills Kit Using Blueprint

Log in to the AWS Management Console and navigate to AWS Lambda.

Click create new function then you will see this window.

Select Runtime environment but blueprint (sample code) only for node.js and python

There are two example conation for alexa skills kit. You can filter those thing.

By selection one of these blue print. You can view Configure triggers window you can next it by
filling required field.

In Configure function window you can add name for your lambda function and have to add role
for function execution.

https://riptutorial.com/ 11

https://i.stack.imgur.com/oXNga.png
https://i.stack.imgur.com/n7apm.png
https://i.stack.imgur.com/cQaWq.png

Now you can create function.

After the creation you can test your function. Click action button

In here select Configure test event

In ths window select alexa event template. Template name is depend on you selected blueprint

After selection this template you can test your code sample.

Read alexa-skills-kit online: https://riptutorial.com/aws-lambda/topic/7698/alexa-skills-kit

https://riptutorial.com/ 12

https://i.stack.imgur.com/jCR7R.png
https://i.stack.imgur.com/jGDSk.png
https://i.stack.imgur.com/djyaG.png
https://riptutorial.com/aws-lambda/topic/7698/alexa-skills-kit

Chapter 3: AWS Lambda triggered by S3

Examples

Echo Input Args in Java

You can get easily get this information by barfing out the input in your handler function. For
example, in Java:

public String handleRequest(String input, Context context) {
 context.getLogger().log("Input: " + input);

 String output = "Input:" + System.getProperty("line.separator") + input;

 return output;
}

Read AWS Lambda triggered by S3 online: https://riptutorial.com/aws-lambda/topic/6216/aws-
lambda-triggered-by-s3

https://riptutorial.com/ 13

https://riptutorial.com/aws-lambda/topic/6216/aws-lambda-triggered-by-s3
https://riptutorial.com/aws-lambda/topic/6216/aws-lambda-triggered-by-s3

Chapter 4: AWS Lambda using Python

Examples

Why AWS Lambda ?

AWS Lambda supports

Transparent scalability and availability•
Developer friendly operations and no need to manage servers•
Native integration to AWS services•
No need to pay for idle time•
RESTful integration•
Monitoring the RESTful interface using AWS API gateway•

Hello World - Lambda Function

This is one of the simplest lambda function. It is equivalent to Hello World program.
To create your first program follow the below mentioned steps.

Login to AWS Console1.
Click Lambda under compute2.
Click create a Lambda Function 3.

https://riptutorial.com/ 14

http://i.stack.imgur.com/CBEBZ.png

Skip select blueprint section4.
In configure trigger click on the dotted rectangle 5.

https://riptutorial.com/ 15

https://riptutorial.com/ 16

http://i.stack.imgur.com/Zva8Z.png

Select API Gateway6.
Fill the required details as in the image. 7.

https://riptutorial.com/ 17

https://riptutorial.com/ 18

http://i.stack.imgur.com/1ERDk.png

API Name is the name of your API you are going to build. Resource Pattern is the URL
path which you can invoke your Lambda function. Select the required http method. In our
example we choose GET. In AWS staging can be done in different ways like prod,dev ... It
will help you to differentiate the functions from prod and dev. For demo purpose lets choose
security as Open(Its not recommended in production).Click next
API Name is the name of your API you are going to build. Resource Pattern is the URL
path which you can invoke your Lambda function. Select the required http method. In our
example we choose GET. In AWS staging can be done in different ways like prod,dev ... It
will help you to differentiate the functions from prod and dev. For demo purpose lets choose
security as Open(Its not recommended in production).Click next
Configure the function as below 8.

https://riptutorial.com/ 19

https://riptutorial.com/ 20

http://i.stack.imgur.com/vigbD.png

Provide the function name , description of your function and runtime environment. We are
choosing python as runtime environment.
Modify the code.

Here we are printing the aws lambda event in cloudtrail which is free. It is also returning a
string.

9.

Provide Lambda function handler and role 10.

https://riptutorial.com/ 21

http://i.stack.imgur.com/tgyX3.png

https://riptutorial.com/ 22

http://i.stack.imgur.com/O6U8b.png

Make sure that the handler name should start with lambda_function.. Also create a new role
for execute the lambda function. Select the amount of main memory required for execute
your function. Select the default timeout and click next
Click create function11.
Now your function is ready to execute. Click the link provided by the aws 12.

https://riptutorial.com/ 23

https://riptutorial.com/ 24

http://i.stack.imgur.com/XBdiS.png

When you click the link your lambda function will be executed in the background and you will
get output in the browser.

Read AWS Lambda using Python online: https://riptutorial.com/aws-lambda/topic/6698/aws-
lambda-using-python

https://riptutorial.com/ 25

http://i.stack.imgur.com/slO8B.png
https://riptutorial.com/aws-lambda/topic/6698/aws-lambda-using-python
https://riptutorial.com/aws-lambda/topic/6698/aws-lambda-using-python

Chapter 5: AWS Lambda with S3

Introduction

Lambda developers will handle issues that requires the use of other AWS resources. This topic
focuses on S3 (Simple Storage Service) which will commonly be used for storing static files and
other configurations. This documentation will consider using AWS-SDK in lambda, accessing files
in S3 from Lambda and triggering Lambda functions when an S3 event gets fired

Examples

Cheatsheet

AWS-SDK for javascript

Lambda contains aws-sdk (https://aws.amazon.com/sdk-for-node-js/) in its global so no need to
upload this node-module into the zip.

const AWS = require('aws-sdk');

Sample function

module.exports.myFunction = (event, context, callback) => {
 const response = {
 statusCode: 200,
 body: 'Hello Lambda!',
 };
 return callback(null, response);
};

Running S3

const s3 = new AWS.S3();

Use with Elasticache Redis

//make sure redis node-module is added in zip
const redis = require('redis');
//the redis information should be stored in the environment, not hard coded
const redis_options = {
 host: process.env.REDIS_HOST,
 port: process.env.REDIS_PORT
};

module.exports.myFunction = (event, context, callback) => {

https://riptutorial.com/ 26

https://aws.amazon.com/sdk-for-node-js/)

 try {
 let client = redis.createClient(redis_options);
 context.callbackWaitsForEmptyEventLoop = false;

 client.on('connect', () => {
 console.log('Connected:', client.connected);
 });

 client.on('end', () => {
 console.log('Connection closed.');
 });

 client.on('ready', function () {
 console.log('Connection ready.');
 client.keys('*', (err, keys) => {
 //always quit the redis client when no longer needed
 //else the connection will be used up
 client.quit();

 const response = {
 statusCode: 200,
 body: keys,
 };

 return callback(null, response);
 });
 } catch (err) {
 if (client) { client.quit();}
 console.log('Error!: ' + err.message);
 callback(err);
 }
};

Read AWS Lambda with S3 online: https://riptutorial.com/aws-lambda/topic/9286/aws-lambda-
with-s3

https://riptutorial.com/ 27

https://riptutorial.com/aws-lambda/topic/9286/aws-lambda-with-s3
https://riptutorial.com/aws-lambda/topic/9286/aws-lambda-with-s3

Chapter 6: aws-lambda triggered by S3

Syntax

Deserialized JSON based object•
"Records" key has one or more actual events•
Each sub event object contains all information you need to determine what changed•

Parameters

Parameter Details

Records -> [] -> s3 -> bucket -> name The name of the S3 bucket

Records -> [] -> s3 -> object -> key The path and name of the file.

Remarks

File names

Unlike most file paths, the S3 key name (JSON Schema: $.Records[0].s3.object.key) does not
include a leading slash. So, if you have a file in the path s3://mybucket/path/file.txt, the key will
be path/file.txt

In Python at least, the key field value is UTF-8 URL encoded. This is noticeable when the filename
contains spaces or non-ascii characters. The field needs to be URL decoded, then UTF-8 decoded
- See Get non-ASCII filename from S3 notification event in Lambda

Records key

It is possible to have multiple of the same (or different) actions inside of the "Records" key of the
event; however, in practice, you will usually see one event per invocation of your Lambda function.

More Examples & Testing

There are actually sample events in the Lambda console, if you choose Actions -> Configure Test
Event. However, You can see the PUT operation in the examples above.

You can modify and submit test events from the AWS Lambda console to see how your function
responds.

Examples

https://riptutorial.com/ 28

http://stackoverflow.com/questions/39465220/get-non-ascii-filename-from-s3-notification-event-in-lambda

S3 PUT Operation

{
 "Records": [
 {
 "eventVersion": "2.0",
 "eventTime": "1970-01-01T00:00:00.000Z",
 "requestParameters": {
 "sourceIPAddress": "127.0.0.1"
 },
 "s3": {
 "configurationId": "testConfigRule",
 "object": {
 "eTag": "0123456789abcdef0123456789abcdef",
 "sequencer": "0A1B2C3D4E5F678901",
 "key": "HappyFace.jpg",
 "size": 1024
 },
 "bucket": {
 "arn": "arn:aws:s3:::mybucket",
 "name": "sourcebucket",
 "ownerIdentity": {
 "principalId": "EXAMPLE"
 }
 },
 "s3SchemaVersion": "1.0"
 },
 "responseElements": {
 "x-amz-id-2": "EXAMPLE123/5678abcdefghijklambdaisawesome/mnopqrstuvwxyzABCDEFGH",
 "x-amz-request-id": "EXAMPLE123456789"
 },
 "awsRegion": "us-east-1",
 "eventName": "ObjectCreated:Put",
 "userIdentity": {
 "principalId": "EXAMPLE"
 },
 "eventSource": "aws:s3"
 }
]
}

Read aws-lambda triggered by S3 online: https://riptutorial.com/aws-lambda/topic/6618/aws-
lambda-triggered-by-s3

https://riptutorial.com/ 29

https://riptutorial.com/aws-lambda/topic/6618/aws-lambda-triggered-by-s3
https://riptutorial.com/aws-lambda/topic/6618/aws-lambda-triggered-by-s3

Chapter 7: How to develop aws-lambda(C#)
on a local machine

Introduction

As part of the Serverless movement, AWS recently announced C# support for AWS Lambda
functions. In this article, I will show you how to develop, install and call a simple C# AWS Lambda
Function using Visual Studio 2015.

Before you start this example, first go to the Remarks section of this document and make sure you
have all of the required components installed.

Remarks

Install Required Components

At the time of this writing (Jan 2017), the following components will need to be installed on your
machine in this order. The machine I used had Windows 10 Home installed.

Visual Studio 2015 update 31.
AWS Toolkit for Visual Studio 2015 - version 1.11.2.02.
Microsoft .NET Core Tools (Preview 2) - version 14.1.21111.03.

Each of these components are actively developed and released, so double check the links and
versions and update this document when needed.

Each of these can take some time to install, so be patient, do one at a time to minimize mistakes.

Lastly, rebooting Windows before starting development is sad, but always a good idea after doing
major development tool installations on a Windows box.

Examples

Step 1. Create a new solution in Visual Studio

Open Visual Studio and Select File -> New Project1.
Select AWS Lambda Project with Tests (.NET Core) 2.

https://riptutorial.com/ 30

https://en.wikipedia.org/wiki/Serverless_computing
https://www.visualstudio.com/vs/community/
https://aws.amazon.com/visualstudio/
https://go.microsoft.com/fwlink/?LinkId=827546
http://stackoverflow.com/questions/28788574/visual-studio-2015-installer-hangs-during-install

Next the Select Blueprint screen will display. Select Empty Function and Click the Finish
button:

3.

Go to Tools -> NuGet Package Manager -> Package Manager Console.4.
In the console window, type Install-Package Amazon.Lambda.Core5.
Right-click your project in the solution explorer and select Restore Packages. This is the final 6.

https://riptutorial.com/ 31

https://i.stack.imgur.com/WnOPj.png
https://i.stack.imgur.com/WOATD.png
https://www.nuget.org/packages/Amazon.Lambda.Core/

preparation step before you start writing code.

Step 2. Add and change code in your project

Open Function.cs and replace the class code with the following:

public class Function
{

/// <summary>
/// A simple function that takes a birth date and returns Age in years
/// </summary>
/// <param name="input"></param>
/// <returns>Age is years</returns>
///
[LambdaSerializer(typeof(SimpleSerializer))]
public string FunctionHandler(Dictionary<string, int> input)
{
 var defaultMessage = "Age could not be determined.";

 var birthDate = new DateTime(input["year"], input["month"], input["day"]);
 var ageInYears = DateTime.Today.Year - birthDate.Year;
 if (birthDate.DayOfYear > DateTime.Today.DayOfYear)
 ageInYears--;

 defaultMessage = $"Age in years: {ageInYears}";

 return defaultMessage;
}
}

1.

You will need to add the following using statements near the top:

using System.Collections.Generic;
using Amazon.Lambda.Core;

https://riptutorial.com/ 32

https://i.stack.imgur.com/Dkkpx.png

Add a file to the project named SimpleSerializer.cs2.
Place the following code in that file:3.

using System;

using System.IO;
using Amazon.Lambda.Core;
using Newtonsoft.Json;

namespace AWSLambdaFunctionAgeInYears
{
public class SimpleSerializer : ILambdaSerializer
{
 public T Deserialize<T>(Stream requestStream)
 {
 string text;
 using (var reader = new StreamReader(requestStream))
 text = reader.ReadToEnd();

 try
 {
 return JsonConvert.DeserializeObject<T>(text);
 }
 catch (Exception ex)
 {
 if (typeof(T) == typeof(System.String))
 return (T)Convert.ChangeType(text, typeof(T));

 throw ex;
 }

 }

 public void Serialize<T>(T response, Stream responseStream)
 {
 StreamWriter streamWriter = new StreamWriter(responseStream);
 try
 {
 string text = JsonConvert.SerializeObject(response);
 streamWriter.Write(text);
 streamWriter.Flush();
 }
 catch (Exception ex)
 {
 if (typeof(T) == typeof(System.String))
 {
 streamWriter.Write(response);
 streamWriter.Flush();
 return;
 }

 throw ex;
 }

 }
}
}

In the Test Project, change line 23 of the FunctionTest.cs to the following:4.

https://riptutorial.com/ 33

 var upperCase = function.FunctionHandler(null);

Build your solution - you should have no build errors.5.

Step 3 - Install your Lambda Function into AWS

Right Click your project and select Publish to AWS Lambda...1.

The Upload to AWS Lambda screen will appear. Make sure the correct region is selected.
Keep all of the defaults. Then only enter the Function Name:
AWSLambdaFunctionAgeInYears and then click next.

2.

On the next page, select AWSLambdaRole for the Role Name field. Click Upload and the
function should upload without error.

3.

https://riptutorial.com/ 34

https://i.stack.imgur.com/pAt9w.png

Step 4. Invoke your AWS Lambda function from within Visual Studio

After Step 3 above, Visual Studio will open the View Function window with your function
loaded.

1.

On the bottom left of this screen, enter the following json into the Sample Input box:2.

{
"month": "10",
"day": "28",
"year": "1979"
}

https://riptutorial.com/ 35

https://i.stack.imgur.com/O4DTI.png

Last step: Click the green Invoke button. The function will run on AWS and the response will
be displayed in the bottom right hand Response window.

3.

Read How to develop aws-lambda(C#) on a local machine online: https://riptutorial.com/aws-
lambda/topic/8937/how-to-develop-aws-lambda-csharp--on-a-local-machine

https://riptutorial.com/ 36

https://i.stack.imgur.com/kgCPb.png
https://riptutorial.com/aws-lambda/topic/8937/how-to-develop-aws-lambda-csharp--on-a-local-machine
https://riptutorial.com/aws-lambda/topic/8937/how-to-develop-aws-lambda-csharp--on-a-local-machine

Chapter 8: Serverless Framework

Introduction

The open-source, application framework to easily build serverless architectures on AWS Lambda
& more. This section includes, how to setup serverless framework for application development
with relevant examples.

Remarks

"Serverless" is a framework: https://serverless.com/

Examples

Serverless

Install serverless globally

npm install serverless -g

Create an AWS Lamdba function in Node.js

serverless create --template aws-nodejs

Example of a handler.js

'use strict';

// Your first function handler
module.exports.hello = (event, context, cb) => cb(null,
 { message: 'Go Serverless v1.0! Your function executed successfully!', event }
);

// You can add more handlers here, and reference them in serverless.yml

Deploy to live AWS account

serverless deploy

Create Simple CRUD Operation

Create simple CRUD Operation Using Serverless Framework

Install Serverless framework globally

https://riptutorial.com/ 37

https://serverless.com/

npm install serverless -g

Create simple Lambda Service

serverless create --template aws-nodejs --path myService

Go to the myService Directory it should contain

serverless.yml1.
handler.js2.
event.json3.

All Serverless service configuration is managed by serverless.yml
Change its contents to define CRUD service.

Example serverless.yml file

service: serverless-crud

provider:
 name: aws
 runtime: nodejs4.3
 region: us-east-1
 stage: dev
 iamRoleStatements:
 - Effect: Allow
 Action:
 - dynamodb:DescribeTable
 - dynamodb:Query
 - dynamodb:Scan
 - dynamodb:GetItem
 - dynamodb:PutItem
 - dynamodb:UpdateItem
 - dynamodb:DeleteItem
 Resource: "arn:aws:dynamodb:us-east-1:*:*"

functions:
 create:
 handler: handler.create
 events:
 - http:
 path: todos
 method: post
 cors: true
 readAll:
 handler: handler.readAll
 events:
 - http:
 path: todos
 method: get
 cors: true
 readOne:
 handler: handler.readOne
 events:

https://riptutorial.com/ 38

 - http:
 path: todos/{id}
 method: get
 cors: true
 update:
 handler: handler.update
 events:
 - http:
 path: todos/{id}
 method: put
 cors: true
 delete:
 handler: handler.delete
 events:
 - http:
 path: todos/{id}
 method: delete
 cors: true

resources:
 Resources:
 TodosDynamoDbTable:
 Type: 'AWS::DynamoDB::Table'
 DeletionPolicy: Retain
 Properties:
 AttributeDefinitions:
 -
 AttributeName: id
 AttributeType: S
 KeySchema:
 -
 AttributeName: id
 KeyType: HASH
 ProvisionedThroughput:
 ReadCapacityUnits: 1
 WriteCapacityUnits: 1
 TableName: 'todos'

This file define

Lambda function programming Language1.
Lambda function execution policy2.
Dynamodb table creation and it's policy3.
HTTP end point (API Gateway End Point)4.

Then you have to define lambda function (ex. node.js) in handler.js file you can define it.

'use strict';

const todosCreate = require('./todos-create.js');
const todosReadAll = require('./todos-read-all.js');
const todosReadOne = require('./todos-read-one.js');
const todosUpdate = require('./todos-update.js');
const todosDelete = require('./todos-delete.js');

module.exports.create = (event, context, callback) => {
 todosCreate(event, (error, result) => {

https://riptutorial.com/ 39

 const response = {
 statusCode: 200,
 headers: {
 "Access-Control-Allow-Origin" : "*"
 },
 body: JSON.stringify(result),
 };

 context.succeed(response);
 });
};

module.exports.readAll = (event, context, callback) => {
 todosReadAll(event, (error, result) => {
 const response = {
 statusCode: 200,
 headers: {
 "Access-Control-Allow-Origin" : "*"
 },
 body: JSON.stringify(result),
 };

 context.succeed(response);
 });
};

module.exports.readOne = (event, context, callback) => {
 todosReadOne(event, (error, result) => {
 const response = {
 statusCode: 200,
 headers: {
 "Access-Control-Allow-Origin" : "*"
 },
 body: JSON.stringify(result),
 };

 context.succeed(response);
 });
};

module.exports.update = (event, context, callback) => {
 todosUpdate(event, (error, result) => {
 const response = {
 statusCode: 200,
 headers: {
 "Access-Control-Allow-Origin" : "*"
 },
 body: JSON.stringify(result),
 };

 context.succeed(response);
 });
};

module.exports.delete = (event, context, callback) => {
 todosDelete(event, (error, result) => {
 const response = {
 statusCode: 200,
 headers: {
 "Access-Control-Allow-Origin" : "*"
 },

https://riptutorial.com/ 40

 body: JSON.stringify(result),
 };

 context.succeed(response);
 });
};

Then you have to create new files for define your CRUD functions
Create these files

todos-create.js1.
todos-read-all.js2.
todos-read-one.js3.
todos-update.js4.
todos-delete.js5.

Then define these functions in each file.

for todos-create.js

'use strict';

const AWS = require('aws-sdk');
const dynamoDb = new AWS.DynamoDB.DocumentClient();
const uuid = require('uuid');

module.exports = (event, callback) => {
 const data = JSON.parse(event.body);

 data.id = uuid.v1();
 data.updatedAt = new Date().getTime();

 const params = {
 TableName: 'todos',
 Item: data
 };

 return dynamoDb.put(params, (error, data) => {
 if (error) {
 callback(error);
 }
 callback(error, params.Item);
 });
};

For todos-read-all.js

 'use strict';

 const AWS = require('aws-sdk');
 const dynamoDb = new AWS.DynamoDB.DocumentClient();

 module.exports = (event, callback) => {
 const params = {

https://riptutorial.com/ 41

 TableName: 'todos',
 };

 return dynamoDb.scan(params, (error, data) => {
 if (error) {
 callback(error);
 }
 callback(error, data.Items);
 });
 };

For todos-read-one.js

'use strict';

const AWS = require('aws-sdk');
const dynamoDb = new AWS.DynamoDB.DocumentClient();

module.exports = (event, callback) => {
 const params = {
 TableName: 'todos',
 Key: {
 id: event.pathParameters.id
 }
 };

 return dynamoDb.get(params, (error, data) => {
 if (error) {
 callback(error);
 }
 callback(error, data.Item);
 });
};

For todos-update.js

'use strict';

const AWS = require('aws-sdk');
const dynamoDb = new AWS.DynamoDB.DocumentClient();

module.exports = (event, callback) => {
 const data = JSON.parse(event.body);

 data.id = event.pathParameters.id;
 data.updatedAt = new Date().getTime();

 const params = {
 TableName : 'todos',
 Item: data
 };

 return dynamoDb.put(params, (error, data) => {
 if (error) {
 callback(error);
 }
 callback(error, params.Item);
 });
};

https://riptutorial.com/ 42

For todos-delete.js

'use strict';

const AWS = require('aws-sdk');
const dynamoDb = new AWS.DynamoDB.DocumentClient();

module.exports = (event, callback) => {
 const params = {
 TableName : 'todos',
 Key: {
 id: event.pathParameters.id
 }
 };

 return dynamoDb.delete(params, (error, data) => {
 if (error) {
 callback(error);
 }
 callback(error, params.Key);
 });
};

For the run these application you need install npm dependencies

npm init npm initialization1.
npm install aws-sdk --save install aws-sdk2.
npm install uuid --save3.

Deployment
Now you can deploy these project
cd myService verify you are in project directory then you can deploy your code

serverless deploy

Use End Point
If you successfully deployed you view api gateway end pont names in your console.

Test Create End Point

curl -X POST https://XXXX.execute-api.region.amazonaws.com/dev/todos --data '{ "body" : "Learn
Serverless" }'

Test for Read End Point (Read All)

curl https://XXXX.execute-api.region.amazonaws.com/dev/todos

Test for Read End Point (Read One)

curl https://XXXX.execute-api.region.amazonaws.com/dev/todos/<id>

Test for Update End Point

https://riptutorial.com/ 43

curl -X PUT https://XXXX.execute-api.region.amazonaws.com/dev/todos/<id> --data '{ "body" :
"Understand Serverless" }'

Test for Delete End Point

`curl -X DELETE https://XXXX.execute-api.region.amazonaws.com/dev/todos/<id`>

Read Serverless Framework online: https://riptutorial.com/aws-lambda/topic/6719/serverless-
framework

https://riptutorial.com/ 44

https://riptutorial.com/aws-lambda/topic/6719/serverless-framework
https://riptutorial.com/aws-lambda/topic/6719/serverless-framework

Credits

S.
No

Chapters Contributors

1
Getting started with
aws-lambda

Ahmed Abouhegaza, alatar, Community

2 alexa-skills-kit Niroshan Ranapathi

3
AWS Lambda
triggered by S3

Doug Schwartz

4
AWS Lambda using
Python

Nithin K Anil

5
AWS Lambda with
S3

Adonis Lee Villamor

6
aws-lambda
triggered by S3

Alastair McCormack, Marshall Anschutz

7
How to develop aws-
lambda(C#) on a
local machine

Taterhead

8
Serverless
Framework

Alastair McCormack, Ashan, Eric Nord, Luc Boissaye, Niroshan
Ranapathi

https://riptutorial.com/ 45

https://riptutorial.com/contributor/5294064/ahmed-abouhegaza
https://riptutorial.com/contributor/1644291/alatar
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5051423/niroshan-ranapathi
https://riptutorial.com/contributor/6082795/doug-schwartz
https://riptutorial.com/contributor/1112259/nithin-k-anil
https://riptutorial.com/contributor/5072008/adonis-lee-villamor
https://riptutorial.com/contributor/1554386/alastair-mccormack
https://riptutorial.com/contributor/1000090/marshall-anschutz
https://riptutorial.com/contributor/819019/taterhead
https://riptutorial.com/contributor/1554386/alastair-mccormack
https://riptutorial.com/contributor/1549165/ashan
https://riptutorial.com/contributor/2639817/eric-nord
https://riptutorial.com/contributor/1607015/luc-boissaye
https://riptutorial.com/contributor/5051423/niroshan-ranapathi
https://riptutorial.com/contributor/5051423/niroshan-ranapathi

	About
	Chapter 1: Getting started with aws-lambda
	Remarks

	Triggers can include:
	Lambda is best designed for real-time serverless data processing such as:
	Examples
	Installation or Setup
	Java AWS-Lambda S3 Triggered

	Chapter 2: alexa-skills-kit
	Examples
	Create Alexa Skills Kit Using Blueprint

	Chapter 3: AWS Lambda triggered by S3
	Examples
	Echo Input Args in Java

	Chapter 4: AWS Lambda using Python
	Examples
	Why AWS Lambda ?
	Hello World - Lambda Function

	Chapter 5: AWS Lambda with S3
	Introduction
	Examples
	Cheatsheet

	AWS-SDK for javascript
	Sample function
	Running S3
	Use with Elasticache Redis

	Chapter 6: aws-lambda triggered by S3
	Syntax
	Parameters
	Remarks
	File names
	Records key
	More Examples & Testing
	Examples
	S3 PUT Operation

	Chapter 7: How to develop aws-lambda(C#) on a local machine
	Introduction
	Remarks
	Install Required Components
	Examples
	Step 1. Create a new solution in Visual Studio
	Step 2. Add and change code in your project
	Step 3 - Install your Lambda Function into AWS
	Step 4. Invoke your AWS Lambda function from within Visual Studio

	Chapter 8: Serverless Framework
	Introduction
	Remarks
	Examples
	Serverless
	Create Simple CRUD Operation

	Credits

