" LEARNING
azure-webjobs

Free unaffiliated eBook created from
Stack Overflow contributors.

Hazure-

Table of Contents

A OUL . .. 1
Chapter 1: Getting started with azure-webjobs......................... . 2
REMIAIKS . . 2
Y4157 0] I P 2
AzZUrE WeEDJ0DS SDK 2
= 1] 0] [3
Creating a WebJob inthe Azure POrtal. e 3
Chapter 2: Azure Webhjobs SDK 7
= 10] 0] [T 7
JODH O . . 7

QI o o =T 5T (o] G 11 1T 1 7
THOOEIS fOr BlODS . .o 7
LT [L= 65 ¢) 2R 1102 =S U 8
THQOEIS DY BITOrS . . e e e e 8

S CAlING . et 9

LAY 11 o T o o = U 9
Dependency Injection USiNg NINJECT. o i e e e e 10

(04 (=T | C 7P 12

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: azure-webjobs

It is an unofficial and free azure-webjobs ebook created for educational purposes. All the content
is extracted from Stack Overflow Documentation, which is written by many hardworking individuals
at Stack Overflow. It is neither affiliated with Stack Overflow nor official azure-webjobs.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/azure-webjobs
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

C_hapter 1: Getting started with azure-
webjobs

Remarks

Azure WebJobs provide an easy way to run scripts or programs as background processes in the
context of an App Service web app, API app, or mobile app. You can upload and run an
executable file such as:

e .cmd, .bat, .exe (using Windows cmd)
* .psl (using PowerShell)

 .sh (using bash)

* .php (using PHP)

* .py (using Python)

* .js (using Node.|s)

» .jar (using Java)

These programs run as WebJobs on a schedule (cron) or continuously.

You can use the WebJobs SDK is to simplify the code you write for common tasks that a WebJob
can perform, such as image processing, queue processing, RSS aggregation, file maintenance,
and sending emails. The WebJobs SDK has built-in features for working with Azure Storage and
Service Bus, for scheduling tasks and handling errors, and for many other common scenarios.

Versions

Azure WebJobs SDK

Version Release Date

2.0.0-betal 2016-07-14

1.1.2 2016-04-22
111 2016-01-13
1.1.0 2015-11-19

1.1.0-rcl 2015-11-02
1.1.0-betal 2015-09-16
1.1.0-alpha2 2015-08-12

1.1.0-alphal 2015-07-10

https://riptutorial.com/

http://www.riptutorial.com/powershell/topic/822/getting-started-with-powershell
http://www.riptutorial.com/bash/topic/300/getting-started-with-bash
http://www.riptutorial.com/php/example/773/hello--world-
http://www.riptutorial.com/python/topic/193/getting-started-with-python-language
http://www.riptutorial.com/node-js/topic/340/getting-started-with-node-js
http://www.riptutorial.com/java/topic/84/getting-started-with-java-language
http://www.riptutorial.com/azure-webjobs/topic/2662/azure-webjobs-sdk
http://www.riptutorial.com/azureservicebus/topic/1122/getting-started-with-azureservicebus
https://www.nuget.org/packages/Microsoft.Azure.WebJobs/2.0.0-beta1
https://www.nuget.org/packages/Microsoft.Azure.WebJobs/1.1.2
https://www.nuget.org/packages/Microsoft.Azure.WebJobs/1.1.1
https://www.nuget.org/packages/Microsoft.Azure.WebJobs/1.1.0
https://www.nuget.org/packages/Microsoft.Azure.WebJobs/1.1.0-rc1
https://www.nuget.org/packages/Microsoft.Azure.WebJobs/1.1.0-beta1
https://www.nuget.org/packages/Microsoft.Azure.WebJobs/1.1.0-alpha2
https://www.nuget.org/packages/Microsoft.Azure.WebJobs/1.1.0-alpha1

Version Release Date

1.0.1 2015-03-19
1.0.1-alphal 2015-02-18
1.0.0 2014-10-17
1.0.0-rcl 2014-09-22
0.6.0-beta 2014-09-13
0.5.0-beta 2014-09-05
0.4.1-beta 2014-08-30
0.4.0-beta 2014-08-21
Examples

Creating a WebJob in the Azure Portal

1. In the Web App blade of the Azure Portal, click All settings > WebJobs to show the
WebJobs blade:

WebJobs

sosample

D Refresh

== Add

NAME TYPE STATUS Tk

You haven't added any WebJobs. Click ADD to get started.

https://riptutorial.com/ 3

https://www.nuget.org/packages/Microsoft.Azure.WebJobs/1.0.1
https://www.nuget.org/packages/Microsoft.Azure.WebJobs/1.0.1-alpha1
https://www.nuget.org/packages/Microsoft.Azure.WebJobs/1.0.0
https://www.nuget.org/packages/Microsoft.Azure.WebJobs/1.0.0-rc1
https://www.nuget.org/packages/Microsoft.Azure.WebJobs/0.6.0-beta
https://www.nuget.org/packages/Microsoft.Azure.WebJobs/0.5.0-beta
https://www.nuget.org/packages/Microsoft.Azure.WebJobs/0.4.1-beta
https://www.nuget.org/packages/Microsoft.Azure.WebJobs/0.4.0-beta
https://portal.azure.com/
http://i.stack.imgur.com/2r22H.png

2. Click Add. The Add WebJob dialog appears.

https://riptutorial.com/

Add WeblJob

sosample

* Name ©
File Upload
Type ©
Continuous v
Scale ©@
Multi Instance v

https://riptutorial.com/

http://i.stack.imgur.com/50mRZ.png

, provide a name for the WebJob. The name must start with a letter or a number and cannot
contain any special characters other than "-" and "_".

4. In the How to Run box, choose your preferred option Continuous or Triggered (the trigger
can be using a cron schedule or a WebHook).

5. In the File Upload box, click the folder icon and browse to the zip file that contains your
script. The zip file should contain your executable (.exe .cmd .bat .sh .php .py .js) as well as
any supporting files needed to run the program or script.

6. Check Create to upload the script to your web app. The name you specified for the WebJob
appears in the list on the WebJobs blade.

Read Getting started with azure-webjobs online: https://riptutorial.com/azure-
webjobs/topic/1311/getting-started-with-azure-webjobs

https://riptutorial.com/

https://riptutorial.com/azure-webjobs/topic/1311/getting-started-with-azure-webjobs
https://riptutorial.com/azure-webjobs/topic/1311/getting-started-with-azure-webjobs

C_hapter 2. Azure Webjobs SDK

Examples

JobHost

The Azure Webjobs SDK is a framework distributed as a Nuget package aimed at helping you
define Functions that are run by Triggers and use Bindings to other Azure services (like Azure
Storage and Service Bus) in a declarative fashion.

The SDK uses a JobHost to coordinate your coded Functions. In a tipical scenario, your Webjob
is a Console Application that initializes the JobHost this way:

class Program
{
static void Main ()
{
JobHostConfiguration config = new JobHostConfiguration();
config.StorageConnectionString = "Your_Azure_Storage_ConnectionString";
config.DashboardConnectionString = "Your_ Azure_Storage_ConnectionString";
JobHost host = new JobHost (config);
host .RunAndBlock () ;

The JobHostConfiguration lets you personalize more settings for different triggers:

config.Queues.BatchSize = 8;
config.Queues.MaxDequeueCount = 4;

config.Queues.MaxPollingInterval TimeSpan.FromSeconds (15) ;

config.JobActivator = new MyCustomJobActivator();

Triggers for Queues
A simple example defining a Function that gets triggered by a Queue message:

public static void StringMessage ([QueueTrigger ("my_queue")] string plainText)

{
Il oo

It also supports POCO serialization:

public static void POCOMessage ([QueueTrigger ("my_queue")] MyPOCOClass aMessage)

{
Il ooo

Triggers for Blobs

https://riptutorial.com/

https://www.nuget.org/packages/Microsoft.Azure.WebJobs
https://en.wikipedia.org/wiki/Plain_Old_CLR_Object

A simple example of a Function that gets triggered when a Azure Storage Blob is modified:

public static async Task BlobTrigger (
[BlobTrigger ("my_container/{name}.{ext}")] Stream input,
string name,
string ext)
{
//Blob with name {name} and extension {ext}

using (StreamReader reader = new StreamReader (input))
{
//Read the blob content
string blobContent = await reader.ReadToEndAsync();

Triggers by time

The SDK supports time triggered based on CRON expressions with 6 fields ({second} {minute}
{hour} {day} {month} {day of the week}). It requires an extra Setting on the JobHostConfiguration.

config.UseTimers () ;

Your time triggered functions respond to this syntax:

// Runs once every 5 minutes

public static void CronJdob ([TimerTrigger ("0 */5 * * * *")] TimerInfo timer)

{

// Runs immediately on startup, then every two hours thereafter

public static void StartupJdob ([TimerTrigger ("0 0 */2 * * *" RunOnStartup = true)] TimerInfo
timerInfo)

{

Triggers by errors

Error handling is extremely important, we can define functions to be triggered when an execution
error happens in one of your triggered functions:

//Fires when 10 errors occur in the last 30 minutes (sliding)
public static void ErrorMonitor ([ErrorTrigger ("0:30:00", 10)] TraceFilter filter)
{

// get the last 5 errors

filter.GetDetailedMessage (10);

It's specially useful for centralizing error handling.

https://riptutorial.com/

http://en.wikipedia.org/wiki/Cron#CRON_expression

ErrorTrigger requires an additional setting on the JobHostConfiguration:

config.UseCore();

You also must install the NuGet package Microsoft.Azure.WebJobs.Extensions.
Scaling

Azure Webjobs run on an Azure App Service. If we scale our App Service horizontally (add new
instances), each instance will have its own JobHost.

Note that this only applies to WebJobs running in Continuous mode. On-demand and scheduled
WebJobs are not affected by horizontal scaling, they always run a single instance.

If you have a continuous WebJob processing queue messages, and you scale the App Service
Plan to 3 instances, you will have 3 instances of the WebJob running.

There might be WebJobs that you want to run in a single instance, because you might need to
ensure that exactly one processing pipeline exists. For those WebJobs, you can add the
Singleton attribute.

[Singleton]
public static void SingletonQueueProcessing([QueueTrigger ("my_qgqueue")] MyPOCOClass aMessage)
{
VA
}

This is achieved by Azure Blob Leases for distributed locking.
Writing Logs

The WebJobs Dashboard shows logs in two places: the page for the WebJob, and the page for a
particular WebJob invocation.

Output from Console methods that you call in a function or in the main () method appears in the
Dashboard page for the WebJob, not in the page for a particular method invocation. Output from
the TextWriter object that you get from a parameter in your method signature appears in the
Dashboard page for a method invocation.

To write application tracing logs, use console.out (creates logs marked as INFO) and console.Error
(creates logs marked as ERROR).

public static void WriteLog ([QueueTrigger ("logqueue")] string message, TextWriter logger)
{

Console.Writeline ("Console.Write - " + message);

Console.Out.WritelLine ("Console.Out - " + message);

Console.Error.WritelLine ("Console.Error — " + message);

logger.Writeline ("TextWriter - " + message);

https://riptutorial.com/ 9

http://justazure.com/azure-blob-storage-part-8-blob-leases/

Which will result in these messages in the Dashboard for the WebJob:

[07/28/2016 22:29:18 > 0alc35: INFO] Console.Write - Hello world!
[07/28/2016 22:29:18 > 0alc35: INFO] Console.Out - Hello world!
[07/28/2016 22:29:18 > 0alc35: ERR] Console.Error — Hello world!

And this message in the Dashboard page for the method:

TextWriter - Hello world!

Dependency Injection using Ninject

The following example shows how to set up Dependency Injection using Ninject as an 1oC
container.

First add a CustomModule class to your WebJob project, and add any dependency bindings there.

public class CustomModule : NinjectModule
{
public override void Load()
{
Bind<IMyInterface> () .To<MyService> () ;

Then create a JobActivator class:

class JobActivator : IJobActivator

{
private readonly IKernel _container;
public JobActivator (IKernel container)
{

_container = container;

public T Createlnstance<T> ()

{

return _container.Get<T>();

When you set up the JobHost in the Program class' Main function, add the JobActivator to the
JobHostConfiguration

public class Program
{
private static void Main(string[] args)
{
//Set up DI
var module

new CustomModule () ;
var kernel = new StandardKernel (module) ;

//Configure JobHost

https://riptutorial.com/ 10

var storageConnectionString = "connection_string_goes_here";

var config = new JobHostConfiguration (storageConnectionString) { JobActivator = new
JobActivator (kernel) };

//Pass configuration to JobJost
var host = new JobHost (configqg);

// The following code ensures that the WebJob will be running continuously
host .RunAndBlock () ;

Finally in the Functions.cs class, inject your services.

public class Functions
{

private readonly IMylInterface _myService;

public Functions (IMyInterface myService)
{

_myService = myService;

public void ProcessItem([QueueTrigger ("queue_name")] string item)
{

_myService .Process(item);

Read Azure Webjobs SDK online: https://riptutorial.com/azure-webjobs/topic/2662/azure-webjobs-
sdk

https://riptutorial.com/ 11

https://riptutorial.com/azure-webjobs/topic/2662/azure-webjobs-sdk
https://riptutorial.com/azure-webjobs/topic/2662/azure-webjobs-sdk

Credits

Chapters

Getting started with
azure-webjobs

2 Azure Webjobs SDK

Contributors

Community, gbellmann

gbellmann, juunas, lopezbertoni, Matias Quaranta

https://riptutorial.com/

12

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3465108/gbellmann
https://riptutorial.com/contributor/3465108/gbellmann
https://riptutorial.com/contributor/1658906/juunas
https://riptutorial.com/contributor/1138731/lopezbertoni
https://riptutorial.com/contributor/5641598/matias-quaranta

	About
	Chapter 1: Getting started with azure-webjobs
	Remarks
	Versions
	Azure WebJobs SDK
	Examples
	Creating a WebJob in the Azure Portal

	Chapter 2: Azure Webjobs SDK
	Examples
	JobHost
	Triggers for Queues
	Triggers for Blobs
	Triggers by time
	Triggers by errors
	Scaling
	Writing Logs
	Dependency Injection using Ninject

	Credits

