
backbone.js

#backbone.j

s

Table of Contents

About 1

Chapter 1: Getting started with backbone.js 2

Remarks 2

Examples 2

Basic Setup 2

Example showcasing the basic concepts 2

Example of Using Backbone (Primarily Backbone.Model) 3

Create your own flavors 4

Using a class 4

Hello Web (Basic "Hello World"-type setup) 5

Chapter 2: Collection 7

Syntax 7

Parameters 7

Remarks 7

Examples 7

Create a custom collection 7

Fetching and rendering data from the server 8

Collection.url() 9

Chapter 3: Model 11

Syntax 11

Parameters 11

Examples 11

Creating models 11

Extending models 12

Model.urlRoot & Model.url() 12

Chapter 4: Router 14

Examples 14

Creating a router 14

Chapter 5: Sync 17

Introduction 17

Syntax 17

Parameters 17

Examples 17

Basic Example 17

Chapter 6: url and urlRoot 19

Examples 19

Modifying Model.url() 19

Chapter 7: View 20

Syntax 20

Examples 20

A View Bound to Existing HTML 20

View's initialize function 20

Optional parameters 20

Immediately render pattern 21

Credits 23

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: backbone-js

It is an unofficial and free backbone.js ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official backbone.js.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/backbone-js
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with backbone.js

Remarks

Backbone is a simple but robust client-side JavaScript library for building applications. Data is
represented as Models, which can be gathered into Collections. Model state is displayed with
Views.

Backbone attempts to provide the minimal set of data structure and user interface primitives that
would be useful in a JavaScript web application. Its goal is to provide these tools without dictating
how to use them or what your use-case should look like. This means that the developer is given a
lot of freedom to design the full experience of their application.

Examples

Basic Setup

Backbone requires Underscore and (optionally) jQuery - for DOM manipulation (using
Backbone.View) and RESTful persistence.

The quickest way to get up and running with Backbone is to create an index.html file with simple
script tags in the HTML <head>:

<html>
 <head>
 <script src="https://code.jquery.com/jquery-3.1.0.min.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.8.3/underscore-
min.js"></script>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/backbone.js/1.3.3/backbone-
min.js"></script>
 </head>
 <body>
 </body>
</html>

Backbone is now available for use in the page.

Example showcasing the basic concepts

The following example is an introduction to:

Template compilation using underscore•
Accessing variables in a template•
Creating a view•
Rendering a view•
Showing a view•

https://riptutorial.com/ 2

http://www.riptutorial.com/backbone-js/topic/2728/view
http://underscorejs.org/
http://jquery.com/
http://underscorejs.org/#template

<html>
<head>
 <script src="https://code.jquery.com/jquery-3.1.0.min.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.8.3/underscore-
min.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/backbone.js/1.3.3/backbone-
min.js"></script>
</head>
<body>

 <div id="example_container"></div>

 <script type="text/template" id="example_template">
 <label><%= example_label %></label>
 <input type="text" id="example_input" />
 <input type="button" id="example_button" value="Search" />
 </script>
 <script type="text/javascript">
 var ExampleView = Backbone.View.extend({
 // Compile the template using underscore
 template: _.template($("#example_template").html()),
 events: {
 "click #example_button": "onButtonClick"
 },

 initialize: function(options) {
 this.customOption = options.customOption;
 },

 render: function() {
 // Load the compiled HTML into the Backbone "el"
 this.$el.html(this.template({
 example_label: "My Search"
 }));

 return this; // for chaining, a Backbone's standard for render
 },

 onButtonClick: function(event) {
 // Button clicked, you can access the button that
 // was clicked with event.currentTarget
 console.log("Searching for " + $("#example_input").val());
 }
 });
 $(function() {
 //show the view inside the div with id 'example_container'
 var exampleView = new ExampleView({
 el: $("#example_container"),
 customOption: 41,
 });
 exampleView.render();
 });
 </script>
</body>
</html>

Example of Using Backbone (Primarily Backbone.Model)

Backbone.js is made up of four separate components: Collections, Models, Routers, and Views.

https://riptutorial.com/ 3

Each of these serve different purposes:

Model - represents a single data object, but adds additional functionalities not provided by
native JavaScript objects, such as an event system and a more convenient way to retrieve
and send data to a remote server

•

Collection - represents a set or "collection" of Models and provides functionalities to manage
its models.

•

View - represents a single part of the user interface; each View wraps an HTML DOM
element, and provides structure for working with that element as well as convenience
features like simple event binding.

•

Router - enables a "single page application" by allowing an application to trigger different
logic (e.g. show different pages) in response to the URL changes.

•

Create your own flavors

Before we look at how to use each of these components, let's first take a quick look at Backbone's
class system. To create a new sub-class of a Backbone class, you simply call the extend method
of the original class, and pass it the instance properties and (static) class properties as objects:

const MyModelClass = Backbone.Model.extend({
 instanceMethod: function() { console.log('Instance method!'); },
}, {
 staticMethod: function() { console.log('Static method!'); },
});

Just as with any other class system, instance methods can be called on instances (objects) of the
class, while static methods are called directly on the class itself (the constructor):

var myInstance = new MyModelClass();

// Call an instance method on our instance
myInstance.instanceMethod(); // logs "Instance method!"

// Call a static method on our class
MyModelClass.staticMethod(); // logs "Static method!"

Using a class

Now, let's look at a quick example of how you can use each class. We'll start with a Model of a
book.

const Book = Backbone.Model.extend({
 idAttribute: 'isbn',
 urlRoot: '/book'
});

https://riptutorial.com/ 4

Let's break down what just happened there. First, we created a Book subclass of Model, and we
gave it two instance properties.

idAttribute tells Backbone to use the "isbn" attribute of the model as its ID when performing
AJAX operations.

•

urlRoot, tells Backbone to look for book data on www.example.com/book.•

Now let's create an instance of a book, and get its data from the server:

var huckleberryFinn = new Book({ isbn: '0486403491' });
huckleberryFinn.fetch({
 // the Backbone way
 success: (model, response, options) => {
 console.log(model.get('name')); // logs "Huckleberry Finn"
 }
}).done(() => console.log('the jQuery promise way'));

When we created a new Book we passed it an object, and Backbone uses this object as the initial
"attributes" (the data) of the Model. Because Backbone knows the idAttribute is isbn, it knows that
the URL for our new Book is /book/0486403491. When we tell it to fetch, Backbone will use jQuery to
make an AJAX request for the book's data. fetch returns a promise (just like $.ajax), which you
can use to trigger actions once the fetch has completed.

Attributes can be accessed or modified by using the get or set methods:

huckleberryFinn.get('numberOfPages'); // returns 64

huckleberryFinn.set('numberOfPages', 1); // changes numberOfPages to 1

Models also have an event system that you can use to react when things happen to a Model. For
instance, to log a message whenever the numberOfPages changes, you could do:

huckleberryFinn.on('change:numberOfPages', () => console.log('Page change!'));

For a more detailed introduction to the other Backbone classes, view their individual
documentation pages.

Hello Web (Basic "Hello World"-type setup)

<html>
 <head>
 <script src="https://code.jquery.com/jquery-3.1.0.min.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.8.3/underscore-
min.js"></script>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/backbone.js/1.3.3/backbone-
min.js"></script>

 <script>
 $(function(){
 (function(){
 var View = Backbone.View.extend({

https://riptutorial.com/ 5

 "el": "body",
 "template": _.template("<p>Hello, Web!</p>"),

 "initialize": function(){
 this.render();
 },
 "render": function(){
 this.$el.html(this.template());
 }
 });

 new View();
 })()
 });
 </script>
 </head>
 <body>
 </body>
</html>

Read Getting started with backbone.js online: https://riptutorial.com/backbone-
js/topic/1619/getting-started-with-backbone-js

https://riptutorial.com/ 6

https://riptutorial.com/backbone-js/topic/1619/getting-started-with-backbone-js
https://riptutorial.com/backbone-js/topic/1619/getting-started-with-backbone-js

Chapter 2: Collection

Syntax

// New custom collection
var MyCollection = Backbone.Collection.extend(properties, [classProperties]);

•

// New collection instance
var collection = new Backbone.Collection([models], [options]);

•

Parameters

Parameter Details

properties Instance properties.

classProperties
Optional. Properties that exist and are shared with every collection instance
of this type.

models
Optional. The initial array of models (or objects). If this parameter is left out,
the collection will be empty.

options
Optional. Object which serves to configure the collection and is then passed
to the initialize function.

Remarks

Collections are ordered sets of models. You can bind "change" events to be notified when any
model in the collection has been modified, listen for "add" and "remove" events, fetch the collection
from the server, and use a full suite of Underscore.js methods.

Any event that is triggered on a model in a collection will also be triggered on the collection
directly, for convenience. This allows you to listen for changes to specific attributes in any model in
a collection.

Examples

Create a custom collection

To create a new collection "class":

var Books = Backbone.Collection.extend({
 // books will be sorted by title
 comparator: "title",

https://riptutorial.com/ 7

http://backbonejs.org/#Collection-Underscore-Methods

 initialize: function(models, options) {
 options = options || {};

 // (Optional) you can play with the models here
 _.each(models, function(model) {
 // do things with each model
 }, this);

 this.customProperty = options.property;
 },
});

All the properties are optional and are there only as a demonstration. A Backbone.Collection can be
used as-is.

Then using it is as simple as:

var myBookArray = [
 { id: 1, title: "Programming frontend application with backbone" },
 { id: 2, title: "Backbone for dummies" },
];

var myLibrary = new Books(myBookArray, {
 property: "my custom property"
});

myLibrary.each(function(book){
 console.log(book.get('title'));
});

Will output:

Programming frontend application with backbone
Backbone for dummies

Fetching and rendering data from the server

We need to define a collection with a url property. This is the url to an API endpoint which should
return a json formatted array.

var Books = Backbone.Collection.extend({
 url: "/api/book",
 comparator: "title",
});

Then, within a view, we'll fetch and render asynchronously:

var LibraryView = Backbone.View.extend({
 // simple underscore template, you could use
 // whatever you like (mustache, handlebar, etc.)
 template: _.template("<p><%= title %></p>"),

https://riptutorial.com/ 8

 initialize: function(options) {
 this.collection.fetch({
 context: this,
 success: this.render,
 error: this.onError
 });
 },

 // Remember that "render" should be idempotent.
 render: function() {
 this.$el.empty();
 this.addAll();

 // Always return "this" inside render to chain calls.
 return this;
 },

 addAll: function() {
 this.collection.each(this.addOne, this);
 },

 addOne: function(model) {
 this.$el.append(this.template(model.toJSON()));
 },

 onError: function(collection, response, options) {
 // handle errors however you want
 },
});

Simplest way to use this view:

var myLibrary = new LibraryView({
 el: "body",
 collection: new Books(),
});

Collection.url()

By default, the url property is not defined. Calling fetch() (while using the default Backbone.sync)
will result in a GET request to the results of url.

var Users = Backbone.Collection.extend({

 url: '/api/users',

 // or

 url: function () {
 return '/api/users'
 }

});

var users = new Users();
users.fetch() // GET http://webroot/api/users

https://riptutorial.com/ 9

Read Collection online: https://riptutorial.com/backbone-js/topic/6022/collection

https://riptutorial.com/ 10

https://riptutorial.com/backbone-js/topic/6022/collection

Chapter 3: Model

Syntax

var MyModel = Backbone.Model.extend(properties, [classProperties]); // Create a custom
model

•

var model = new Backbone.Model([attributes], [options]); // Instanciate a model object•

Parameters

Parameter Details

properties Instance properties.

classProperties
Optional. Properties that exist and are shared with every model instance of
this type.

attributes
Optional. Initial values of the model's attributes. If this parameter is left out,
the model will be initialized with the values specified by the model's defaults
property.

options
Optional. Object which serves to configure the model and is then passed to
the initialize function.

Examples

Creating models

Backbone models describe how data is stored using JavaScript objects. Each model is a hash of
fields called attributes and the behaviour of the model including validation is described by options.

A model of Todo item in a TodoApp would be

var ToDo = Backbone.Model.extend({
 defaults: {
 assignee: '',
 task: ''
 },

 validate: function(attrs) {
 var errors = {},
 hasError = false;

 if(!attrs.assignee) {
 errors.assignee = 'assignee must be set';
 hasError = true;
 }

https://riptutorial.com/ 11

 if(!attrs.task) {
 errors.task = 'task must be set';
 hasError = true;
 }

 if(hasError) {
 return errors;
 }
 }
});

Extending models

var Vehicle = Backbone.Model.extend({

 description: function () {
 return 'I have ' + this.get('wheels') + ' wheels';
 }

});

var Bicycle = Vehicle.extend({

 defaults: {
 wheels: 2
 }

});

var Car = Vehicle.extend({

 defaults: {
 wheels: 4
 }

});

var bike = new Bicycle();
bike.description() // I have 2 wheels;

var car = new Car();
car.description() // I have 4 wheels;;

Model.urlRoot & Model.url()

By default, the urlRoot property is not defined. This urlRoot property is used by the url method to
create a relative URL where the model's resource would be located on the server.

var User = Backbone.Model.extend({

 urlRoot: '/api/users',

 // or

 urlRoot: function () {
 return '/api/users'

https://riptutorial.com/ 12

 }

});

var user = new User();

The url method will firstly check if the model's idAttribute (defaulted at 'id') has been defined. If
not, the model isNew and url will simply return the results of urlRoot.

user.url() // /api/users

If the model's idAttribute has been defined, url will return the urlRoot + the model's idAttribute

user.set('id', 1);
user.url() // /api/users/1

Calling save on a new model will result in a POST request to the results of url

var user = new User({ username: 'johngalt' });
user.save() // POST http://webroot/api/users

Calling save on an existing model will result in a PUT request to the results of url

user.set('id', 1);
user.set('username', 'dagnytaggart');
user.save() // PUT http://webroot/api/users/1

Calling fetch on an existing model will result in a GET request to the results of url

user.fetch() // GET http://webroot/api/users/1

Calling destroy on an existing model will result in a DELETE request to the results of url

user.destroy() // DELETE http://webroot/api/users/1

Read Model online: https://riptutorial.com/backbone-js/topic/4056/model

https://riptutorial.com/ 13

https://riptutorial.com/backbone-js/topic/4056/model

Chapter 4: Router

Examples

Creating a router

The web server serves the user based on the request sent by the browser but how the user will tell
the browser what he/she is looking for, that's when we need URL. Every web page on the internet
has got a URL that can be bookmarked, copied, shared, and saved for future reference. In single
page Backbone app, everything we see is a view, views are formed and rendered to show specific
page but what if the user want's to see the same information again. To achieve this we need to
implement a Backbone router based app which will render views based on the route name and
parameters.

A very simple example of a Backbone router:

var UserList = Backbone.Router.extend({
 routes: {//List of URL routes with the corresponding function name which will get called
when user will visit a page having URL containing this route
 "list": "list", // localhost:8080/#list
 "search/:name": "search", // localhost:8080/#search/saurav
 "search/:name/p:page": "search", // localhost:8080/#search/kiwis/p7
 "profile/:userId": "profile" // localhost:8080/#profile/92
 },
 list: function() {
 var userCollection = new UserCollection();
 var userCollectionView = new UserCollectionView();
 userCollection.fetch({remove : true, data:{}, success: function(){
 for(var i = 0; i < userCollection.length; i++){
 var userModel = userCollection.at(i);
 var userView = new UserView({ model: userModel });
 userView.render();
 userCollectionView.$el.append(userView.$el);
 }
 }});
 },
 search: function(name, page) {
 var userCollection = new UserCollection();
 var userCollectionView = new UserCollectionView();
 userCollection.fetch({remove : true, data:{pageNo: page, name: name}, success:
function(){
 for(var i = 0; i < userCollection.length; i++){
 var userModel = userCollection.at(i);
 var userView = new UserView({ model: userModel });
 userView.render();
 userCollectionView.$el.append(userView.$el);
 }
 }});
 },
 profile: function(userId){
 var userModel = new UserModel({id: userId});
 userModel.fetch({success: function(){
 var userView = new UserView({model: userModel});
 userView.render();

https://riptutorial.com/ 14

 }});
 }
});
var userList = new UserList();
Backbone.history.start();

The above code is only an example code which demonstrates how you can create a Backbone
router and get parameters from URL to render corresponding views.

Explanation of how the above router will work and behave:

Cases by URLs:

localhost:8080/#search/saurav - router's "search" route (function) will get triggered with
parameters name = "saurav" and page = null, now userCollection.fetch() function will fetch
all the users having name = "saurav" from backend and it will render each user's details one
by one.

•

localhost:8080/#search/saurav/p6 - router's "search" route (function) will get triggered with
parameters name = "saurav" and page = 6, now userCollection.fetch() function will fetch all
the users having name = "saurav" of page 6 from backend and it will render each user's
details one by one.

•

localhost:8080/#list - router's "list" route (function) will get triggered, now
userCollection.fetch() function will fetch all the users from backend and it will render each
user's details one by one.

•

localhost:8080/#profile/92 - router's "profile" route (function) will get triggered, we will
create a new instance of userModel with id = userId i.e. 92 and we will fetch the user's
details from backend and render the userView with that data.

•

An easy to experiment example:

Visit http://backbonejs.org in chrome browser, open the developer tools console and paste the
below code-

var Workspace = Backbone.Router.extend({

 routes: {
 "help": "help", // #help
 "search/:query": "search", // #search/kiwis
 "search/:query/p:page": "search" // #search/kiwis/p7
 },

 help: function() {
 console.log("help");
 },

 search: function(query, page) {
 console.log("searched " + query + " " + page);
 }
});
var work = new Workspace();

https://riptutorial.com/ 15

http://backbonejs.org

Backbone.history.start();

Now, replace the URL in the browser with "http://backbonejs.org/#search/kiwis/p9" and hit the
enter key. This will trigger "search" route (function) with parameters query = "kiwis" and page = 9
and you will see an output in the browser console i.e. "searched kiwis 9".

Changing the route through code:

Case 1: execute code work.navigate("search/kiwis/p7", {trigger: true}); in the console and
it will print output "searched kiwis 7" but if you will try to execute the same code with the
same parameter then nothing will happen, see next case.

•

Case 2: execute code work.navigate("search/kiwis/p7", {trigger: false}); in the console it
will not print anything because route will not get triggered.

•

Case 3: In case if you need to reload the current route once again then you will need to
execute this code Backbone.history.loadUrl("search/kiwis/p7");.

•

Case 4: Executing the code work.navigate("search/kiwis/p15"); will just change the URL but
it will not trigger the corresponding route (function).

•

Case 5: Executing the code work.navigate("search/kiwis/p11", {trigger: true}); will change
the URL and trigger the route.

•

Case 6: Executing code work.navigate("search/kiwis/p17", {trigger: true, replace: true})
will replace the existing route with this route hence clicking browser's back button will take
you 2 routes back to "search/kiwis/p15".

•

Read Router online: https://riptutorial.com/backbone-js/topic/7566/router

https://riptutorial.com/ 16

http://backbonejs.org/#search/kiwis/p9
https://riptutorial.com/backbone-js/topic/7566/router

Chapter 5: Sync

Introduction

sync is a function that Backbone uses to handle all sending or receiving of data to/from a remote
server. The default implementation uses jQuery (or Zepto) to perform AJAX operations when data
is synced. However, this method can be overriden to apply different syncing behavior, such as: -
Using setTimeout to batch multiple updates into a single request - Sending model data as XML
instead of JSON - Using WebSockets instead of Ajax

Syntax

sync(method, model, options)•

Parameters

parameter details

method create , read , update , delete

model the model to be saved (or collection to be read)

options success and error callbacks, and all other jQuery request options

Examples

Basic Example

The sync() method reads and fetched the model data

 Backbone.sync = function(method, model) {
 document.write("The state of the model is:");
 document.write("
");

 //The 'method' specifies state of the model
 document.write(method + ": " + JSON.stringify(model));
 };

 //'myval' is a collection instance and contains the values which are to be fetched in the
collection
 var myval = new Backbone.Collection({
 site:"mrfarhad.ir",
 title:"Farhad Mehryari Official Website"
 });

 //The myval.fetch() method displays the model's state by delegating to sync() method
 myval.fetch();

https://riptutorial.com/ 17

this code will outputs :

The state of the model is:
read: [{"site":"mrfarhad.ir","title":"Farhad Mehryari Official Website"}]

Read Sync online: https://riptutorial.com/backbone-js/topic/8178/sync

https://riptutorial.com/ 18

https://riptutorial.com/backbone-js/topic/8178/sync

Chapter 6: url and urlRoot

Examples

Modifying Model.url()

Model.url and Collection.url are only used internally by the default Backbone.sync method. The
default method assumes you are tying into a RESTful API. If you are using a different endpoint
design, you will want to override the sync method and may want utilize the url method.

var Model = Backbone.Model.extend({

 urlRoot: '/path-to-model',

 url: function (path) {
 var url = this.urlRoot + '/' + path;
 if (this.isNew()) {
 return url;
 }
 return url + '/' + this.get(this.idAttribute);
 }

});

var model = new Model();
model.url('create'); // /path-to-model/create
model.set('id', 1);
model.url('read'); // /path-to-model/read/1
model.url('update'); // /path-to-model/update/1
model.url('delete'); // /path-to-model/delete/1

Read url and urlRoot online: https://riptutorial.com/backbone-js/topic/6430/url-and-urlroot

https://riptutorial.com/ 19

https://riptutorial.com/backbone-js/topic/6430/url-and-urlroot

Chapter 7: View

Syntax

Create: var View = Backbone.View.extend({ /* properties */ });•
Construct: var myView = new View(/* options */);•
initialize: method automatically called after construction•
render: method used to update this.el with new content•

Examples

A View Bound to Existing HTML

Assuming this HTML in the page:

<body>
 <div id="myPage">
 </div>
</body>

A view can be bound to it with:

var MyPageView = Backbone.View.extend({
 "el": "#myPage",
 "template": _.template("<p>This is my page.</p>"),

 "initialize": function(){
 this.render();
 },

 "render": function(){
 this.$el.html(this.template());
 }
});

new MyPageView();

The HTML in the browser will now show:

<body>
 <div id="myPage">
 <p>This is my page.</p>
 </div>
</body>

View's initialize function

initialize is called by Backbone right after a View is constructed.

https://riptutorial.com/ 20

http://backbonejs.org/docs/backbone.html#section-152

Optional parameters

The initialize function receives any arguments passed to the view's constructor. Commonly, the
options hash that is used to pass the view's default options:

['model', 'collection', 'el', 'id', 'attributes', 'className', 'tagName', 'events']

You can add any custom attributes to the options hash, and/or custom parameters.

var MyView = Backbone.View.extend({
 initialize: function(options, customParam){
 // ensure that the 'options' is a hash to avoid errors if undefined.
 options = options || {};
 this.customAttribute = options.customAttribute;
 this.customParam = customParam;
 },
});

And constructing the view:

var view = new MyView({
 model: new Backbone.Model(),
 template: "<p>a template</p>",
 customAttribute: "our custom attribute"
}, "my custom param");

Note that the all the default view options are automatically added to the view object, so it's
unnecessary to do that in the initialize function.

Immediately render pattern

One common pattern for the initialize method is to call the render method so that any newly
constructed View is immediately rendered

This pattern should only be used in instances where constructing the object should immediately
render it to the HTML document, bind all of the event listeners, and perform all the other actions
associated with placing content in the DOM.

var MyView = Backbone.View.extend({
 initialize: function() {
 this.render();
 },

 render: function() {
 this.$el.html("<p>I'm running!</p>");
 }
});

It should be noted, however, that some Views should not be immediately rendered until .render is

https://riptutorial.com/ 21

called manually (or by some other method).

Another common initialize pattern is to add things to the View object that will be needed later:

var MyView = Backbone.View.extend({
 el: "body",
 template: _.template("<p>This is <%= name %>'s page</p>"),

 initialize: function(){
 this.name = "Bill";

 this.render();
 },

 render: function(){
 var viewTemplateData = {
 name: this.name
 };

 this.$el.html(this.template(viewTemplateData));
 }
});

The DOM will now contain <p>This is Bill's page</p> in the body.

Read View online: https://riptutorial.com/backbone-js/topic/2728/view

https://riptutorial.com/ 22

https://riptutorial.com/backbone-js/topic/2728/view

Credits

S.
No

Chapters Contributors

1
Getting started with
backbone.js

Community, Emile Bergeron, machineghost, Nighon, nikhil
mehta, Peter, rockerest

2 Collection Cakes, Emile Bergeron

3 Model Cakes, Emile Bergeron, Louis, Peter, RamenChef

4 Router saurav

5 Sync Braiam, Farhad, machineghost

6 url and urlRoot Cakes, Emile Bergeron

7 View Emile Bergeron, Louis, rockerest, T J

https://riptutorial.com/ 23

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1218980/emile-bergeron
https://riptutorial.com/contributor/5921/machineghost
https://riptutorial.com/contributor/2862195/nighon
https://riptutorial.com/contributor/2503826/nikhil-mehta
https://riptutorial.com/contributor/2503826/nikhil-mehta
https://riptutorial.com/contributor/95055/peter
https://riptutorial.com/contributor/597122/rockerest
https://riptutorial.com/contributor/3112730/cakes
https://riptutorial.com/contributor/1218980/emile-bergeron
https://riptutorial.com/contributor/3112730/cakes
https://riptutorial.com/contributor/1218980/emile-bergeron
https://riptutorial.com/contributor/1906307/louis
https://riptutorial.com/contributor/95055/peter
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3896066/saurav
https://riptutorial.com/contributor/792066/braiam
https://riptutorial.com/contributor/2210325/farhad
https://riptutorial.com/contributor/5921/machineghost
https://riptutorial.com/contributor/3112730/cakes
https://riptutorial.com/contributor/1218980/emile-bergeron
https://riptutorial.com/contributor/1218980/emile-bergeron
https://riptutorial.com/contributor/1906307/louis
https://riptutorial.com/contributor/597122/rockerest
https://riptutorial.com/contributor/2333214/t-j

	About
	Chapter 1: Getting started with backbone.js
	Remarks
	Examples
	Basic Setup
	Example showcasing the basic concepts
	Example of Using Backbone (Primarily Backbone.Model)

	Create your own flavors
	Using a class
	Hello Web (Basic "Hello World"-type setup)

	Chapter 2: Collection
	Syntax
	Parameters
	Remarks
	Examples
	Create a custom collection
	Fetching and rendering data from the server
	Collection.url()

	Chapter 3: Model
	Syntax
	Parameters
	Examples
	Creating models
	Extending models
	Model.urlRoot & Model.url()

	Chapter 4: Router
	Examples
	Creating a router

	Chapter 5: Sync
	Introduction
	Syntax
	Parameters
	Examples
	Basic Example

	Chapter 6: url and urlRoot
	Examples
	Modifying Model.url()

	Chapter 7: View
	Syntax
	Examples
	A View Bound to Existing HTML
	View's initialize function

	Optional parameters
	Immediately render pattern
	Credits

