
batch-file

#batch-file

Table of Contents

About 1

Chapter 1: Getting started with batch-file 2

Remarks 2

Examples 2

Opening a Command Prompt 2

Editing and Viewing Batch Files 3

Getting Help 3

Chapter 2: Add delay to Batch file 5

Introduction 5

Examples 5

Timeout 5

Timeout 5

Pause 6

Ping 6

Ping 6

Sleep 7

Sleep 7

Chapter 3: Batch and JSCript hybrids 8

Introduction 8

Examples 8

Embedded JScript In a Batch File 8

Run JScript With Temporary Files 8

Chapter 4: Batch and VBS hybrids 10

Introduction 10

Examples 10

Run VBS with temporary file(s) 10

Embed vbscript code into batch file without using temporary files 11

Chapter 5: Batch file command line arguments 12

Examples 12

Command line arguments supplied to batch files 12

Batch files with more than 9 arguments 12

Shifting arguments inside brackets 13

Chapter 6: Batch file macros 15

Introduction 15

Examples 15

Basic Macro 15

Comments 15

$ Character Usages 15

Command separator 15

Command-line arguments 15

Macros In Batch Script 16

Chapter 7: Batch files and Powershell hybrids 17

Examples 17

Run Powershell with Temporary Files 17

Use POWERSHELL Command To Execute 1-line Powershell Command 17

Powershell/batch hybrid without temp files 18

Chapter 8: Best Practices 19

Introduction 19

Examples 19

Quotes 19

Examples and Solutions 19

Example A 19

Solution A 19

Example B 19

Solution B 20

Spaghetti Code 20

Examples and Solutions 20

Example A 20

Solution A 20

Example B 20

Chapter 9: Bugs in cmd.exe processor 22

Introduction 22

Remarks 22

Examples 22

Parentheses Confusion 22

Cause 22

Solution 22

Improper Escape Character 23

Cause 23

Solutions 23

Extra 23

DEL File Extension 23

Cause 23

Solution 24

Chapter 10: Bypass arithmetic limitations in batch files 25

Introduction 25

Examples 25

Using powershell 25

Using jscript 25

Emulating pen and paper calculations, math functions implementations 26

Chapter 11: Changing Directories and Listing their Contents 27

Syntax 27

Remarks 27

Examples 27

To display the current directory 27

To change the current directory (without changing drives) 27

Navigating to a directory on a different drive 28

How to show all folders and in files in a directory 28

Changing drive without CD /D 28

To change the current directory to the root of the current drive 29

Chapter 12: Comments in Batch Files 30

Introduction 30

Syntax 30

Examples 30

Using REM for Comments 30

Using Labels as Comments 30

Using Variables as Comments 31

Block Comments 31

Comment on the code's line 31

Batch and WSF Hybrid Comment 32

Chapter 13: Creating Files using Batch 33

Introduction 33

Syntax 33

Remarks 33

Examples 33

Redirection 33

Echo to create files 34

Saving the output of many commands 35

Chapter 14: Deprecated batch commands and their replacements 37

Examples 37

DEBUG 37

APPEND 38

BITSADMIN 38

Chapter 15: Differences between Batch (Windows) and Terminal (Linux) 39

Introduction 39

Remarks 39

Examples 39

Batch Commands and Their Bash Equivalents 39

Batch Variables and Their Bash Equivalent 42

Chapter 16: Directory Stack 43

Syntax 43

Parameters 43

Remarks 43

Examples 43

Delete Text Files 43

Print Directory Stack 43

Chapter 17: Echo 45

Introduction 45

Syntax 45

Parameters 45

Remarks 45

Examples 45

Displaying Messages 45

Echo Setting 46

Getting and Setting 46

Echo outputs everything literally 47

Echo output to file 47

@Echo off 49

Turning echo on inside brackets 49

Chapter 18: Elevated Privileges in Batch Files 50

Examples 50

Requesting Elevate Privileges in a Shortcut 50

Requesting Elevated Privileges at Runtime 51

Requesting runtime elevated privileges without UAC prompt 51

Chapter 19: Escaping special characters 54

Introduction 54

Examples 54

Escape using caret(^) 54

Escaping the caret 54

Security issue 55

FIND and FINDSTR Special Characters 55

FIND 55

FINDSTR 55

FOR /F Special Characters 56

FOR /F 56

Extra Special Characters 56

Escaping through the pipeline 57

Chapter 20: File Handling in batch files 58

Introduction 58

Examples 58

Creating a File in Batch 58

How to Copy Files in Batch 58

Moving Files 58

Deleting Files 59

Copy Files Without xcopy 59

Editing Nth Line of a File 60

Chapter 21: For Loops in Batch Files 62

Syntax 62

Remarks 62

Examples 62

Looping through each line in a files set 62

Recursively Visit Directories in a Directory Tree 63

Renaming all files in the current directory 63

Iteration 64

Chapter 22: Functions 65

Remarks 65

Examples 65

Simple Function 65

Function With Parameters 66

Function Utilizing setlocal and endlocal 66

Combining them all 66

Anonymous functions in batch files 67

Calling functions from another batch file 67

Chapter 23: If statements 69

Syntax 69

Remarks 69

1-Line Syntaxes 69

Multiline Syntaxes 69

Examples 70

Comparing numbers with IF statement 70

Comparing strings 70

Comparing Errorlevel 70

Check if file exists 71

If variable exists / set 71

Chapter 24: Input and output redirection 72

Syntax 72

Parameters 72

Remarks 72

Examples 72

An Example... 72

Redirect special character with delayed expansion enabled 73

Write to a file 73

Chapter 25: Random In Batch Files 75

Examples 75

Random Numbers 75

Generating Random Numbers Within Specific Range 75

Generating Random Numbers larger than 32767 75

Pseudorandom 76

Random Alphabets 76

Pseudorandom And Uniform Random In Batch 76

Pseudorandom Distribution 76

Uniform Distribution 76

Chapter 26: Search strings in batch 78

Examples 78

Basic strings search 78

Using search results 78

Chapter 27: Using Goto 79

Introduction 79

Syntax 79

Parameters 79

Remarks 79

Examples 79

Example Programs 79

Goto with variable 80

Chapter 28: Variables in Batch Files 81

Examples 81

Declaration 81

Notes about quotation marks 81

Spaces in variables 81

Using quotation marks to eliminate spaces 81

Usage 82

Variable Substitution 82

Declare multiple variables 84

Using a Variable as an Array 84

Operations on Variables 85

Setting variables from an input 87

Credits 88

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: batch-file

It is an unofficial and free batch-file ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official batch-file.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/batch-file
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with batch-file

Remarks

From Microsoft Technet:

With batch files, which are also called batch programs or scripts, you can simplify
routine or repetitive tasks. A batch file is an unformatted text file that contains one or
more commands and has a .bat or .cmd file name extension. When you type the
filename at the command prompt, Cmd.exe runs the commands sequentially as they
appear in the file.

Batch File Names and Extensions

Extension Remarks

.bat This extension runs with MS-DOS and all versions of Windows

.cmd Used for batch files in Windows NT family

.btm The extension used by 4DOS and 4NT

To understand the difference between .cmd and .bat please see here.

Avoid names which are already the name of built-in commands. like tracert. There is a utility
called tracert.exe. So, avoid naming a batch file tracert.bat

Running Batch File

The easiest way to run a batch file is simply double-clicking its icon. Or paste the file full path into
a command prompt, or just its name if command Prompt was started from the batch file directory,
then enter.

Example:

C:\Foo\Bar>test.bat
C:\Foo\Bar>C:\Foo\Bar\Baz\test.bat

Examples

Opening a Command Prompt

The command prompt comes pre-installed on all Windows NT, Windows CE, OS/2 and
eComStation operating systems, and exists as cmd.exe, typically located in
C:\Windows\system32\cmd.exe

https://riptutorial.com/ 2

http://waynes-world-it.blogspot.in/2008/08/difference-between-bat-and-cmd.html

On Windows 7 the fastest ways to open the command prompt are:

Press Win �, type "cmd" and then press Enter.•

Press Win �+R, type "cmd" then then press Enter.•

If you have an explorer window open, type "cmd" in the address bar to open a prompt in the
currently selected directory.

•

Right-click a folder in Explorer while holding Shift and select "Open command window here".•

It can also be opened by navigating to the executable and double-clicking on it.

In some cases you might need to run cmd with elevated permissions, in this case right click and
select "Run as administrator". This can also be achieved by pressing Control+Shift+Enter instead
of Enter when using way 1 of the points above.

Editing and Viewing Batch Files

Any ASCII editor can edit batch files. A list of editors that can syntax highlight batch syntax can be
found here. You can also use the default notepad shipped with windows to edit and view a batch
file, although it does not offer syntax highlighting.

To open notepad:

Press Win �+R, type notepad and then press Enter.•

Alternatively, the most "primitive" way to create a batch file is to redirect output from the command
line to a file, eg.

echo echo hello world > first.bat

which writes echo hello world to the file first.bat.

You can edit a batch file by right clicking the file and selecting "Edit" from the context menu.

To view the contents of a batch file from within a command prompt, run the following command:

type first.bat

You can also start editing your batch file with notepad from the command prompt by typing

notepad first.bat

Getting Help

To get help on a batch file command you can use the built-in help.

Open a command prompt (whose executable is cmd.exe) and enter help to see all available

https://riptutorial.com/ 3

http://www.robvanderwoude.com/scripteditors.php
http://www.riptutorial.com/batch-file/topic/7129/creating-files-using-batch

commands.

To get help for any of these commands, type help followed by the name of the command.

For example:

help help

Will display:

Provides help information for Windows commands.

HELP [command]

 command - displays help information on that command.

Some commands will also display help if followed by /?.

Try:

help /?

Note:

Help will only display the help for internal commands.

Read Getting started with batch-file online: https://riptutorial.com/batch-file/topic/1277/getting-
started-with-batch-file

https://riptutorial.com/ 4

https://riptutorial.com/batch-file/topic/1277/getting-started-with-batch-file
https://riptutorial.com/batch-file/topic/1277/getting-started-with-batch-file

Chapter 2: Add delay to Batch file

Introduction

This topic will teach you one of the many useful things to know in the scripting language, batch file;
Adding a delay/pause/timeout to your batch file.

Examples

Timeout

Timeout

The simplest way to make a delay or pause for a certain amount of time, is with the standard
command TIMEOUT. To make a timeout that lasts exactly one minute we type:

timeout /t 60

Now what is going on here?

First off we use the command TIMEOUT with the parameter /T (which simply means timeout) then we
specify the amount of seconds to wait. In this case... 60 seconds.

Timeout with the parameter /NOBREAK

If we take the example from before and run that in a BATCH file: timeout /t 60 then while waiting
those 60 seconds, you are actually able to break the timeout by pressing any key on your
keyboard. To prevent this we simply add the parameter /NOBREAK to the end of it.

timeout /t 60 /nobreak

By doing this it will timeout for 60 seconds, and if you want to break the timeout you will have to
press (CTRL-C) on your keyboard.

Silent timeout

When it's doing a timeout it will display:

Waiting for X seconds, press a key to continue ...
or
Waiting for X seconds, press CTRL+C to quit ... [This is with the /NOBREAK parameter]

To hide the message use the NUL argument (For explanation of NUL: Click Here)

https://riptutorial.com/ 5

http://www.robvanderwoude.com/battech_redirection.php

timeout /t 60 > nul
or
timeout /t 60 /nobreak > nul

Pause

To make your script pause simply use the PAUSE command.

PAUSE

This will display the text Press any key to continue . . ., then add a newline on user input.

Let's say we want to create a "Hello World" program and after we click something on our
keyboard, we want it to exit the program with the EXIT command.

echo Hello World
pause
exit

Here it uses the ECHO command to say "Hello World". Then we use the PAUSE command which
displays Press any key to continue . . . and then we use the EXIT command to terminate the
current BATCH script.

When it's pausing it will display:

Press any key to continue . . .

Hide the "Press any key to continue... prompt

To hide the message we redirect the output to a special device called nul. This isn't actually a real
device, but whatever we send to it is thrown away.

pause > nul

Ping

Ping

One of the most used command to delay for a certain amount of time is ping.

Basic usage

PING -n 1 -w 1000 1.1.1.1

REM the -n 1 flag means to send 1 ping request.
REM the -w 1000 means when the IP(1.1.1.1) does not respond, go to the next command
REM 1.1.1.1 is an non-existing IP so the -w flag can ping a delay and go to next command

https://riptutorial.com/ 6

http://www.riptutorial.com/batch-file/topic/3981/echo
http://www.riptutorial.com/batch-file/topic/3981/echo

This would output the following on your batch file/console:

C:\Foo\Bar\Baz>ping -n -w 1000 1.1.1.1

Pinging 1.1.1.1 (Using 32 bytes of data)
Request timed out

Ping statistics for 1.1.1.1
 Packets: Sent = 2,Received = 0, Lost = 1(100% loss)

Hide the text echoed out

Just add >nul at the back of the command to redirect it to null.

ping -n w 1000 1.1.1.1 >nul

This would output nothing.

Sleep

Sleep

On older Windows system, timeout is not available. However, we can use the sleep command.

Usage

sleep 1

Very self-explanatory; sleep for 1 second. However, sleep is a deperacted command and should
be replaced by timeout.

Availability

This command is available on old Windows system. Also SLEEP.exe is included in 2003 Resource
Kit.

To use sleep.exe, put the executable file to %Windir%\System32 folder. Then you can use it as normal
command.

Read Add delay to Batch file online: https://riptutorial.com/batch-file/topic/9123/add-delay-to-batch-
file

https://riptutorial.com/ 7

http://www.riptutorial.com/batch-file/example/28328/timeout
https://riptutorial.com/batch-file/topic/9123/add-delay-to-batch-file
https://riptutorial.com/batch-file/topic/9123/add-delay-to-batch-file

Chapter 3: Batch and JSCript hybrids

Introduction

JScript is actually the superset of Javascript (it's 1.8.1 version - so some newer features are not
available), and they can be embedded into a batch script for extending batch script's functions.
Usually, techniques of embedding are using the JScript directives (not part of the official Javascript
standard) in order to separate the batch and JScript code. JScript allows you to work with
Com/ActiveX objects, as well as with WMI objects in addition to the standard Javascript.

Examples

Embedded JScript In a Batch File

This following example is created by user Michael Dillon from this answer.

Consider the following script:

@set @junk=1 /*
@echo off
cscript //nologo //E:jscript %0 %*
goto :eof
*/

//JScript aka Javascript here

This script snippet does:

Execute the cscript command which calls itself with all the arguments provided.•

As the part after @set @junk=1 is commented(/* and */ Are valid JScript comment),•

JScript will ignore them.•

Note: We need the @set @junk=1 part because the batch file does not recognize /* as a
command, but a set statement will be a workaround. JScript will recognize /* as a
comment so the other batch file will not be executed by JScript engine.

•

You can add your JScript after */ and start extending your batch file scripting!

Run JScript With Temporary Files

As mentioned here, the old-school method to run another script is by using temporary files. Simple
echo it into a file and then run it(and remove it optionally).

https://riptutorial.com/ 8

https://stackoverflow.com/questions/2325420/embed-javascript-in-bat-files
http://www.riptutorial.com/batch-file/topic/10061/batch-and-vbs-hybrids

Here's the basic concept:

@echo off
echo //A JS Comment > TempJS.js
echo //Add your code>>TempJS.js

cscript //nologo //e:cscript.exe TempJS.js

del /f /s /q TempJS.js

But this would require lots of echo statements to create a relatively large JScript. Here's a better
method by Aacini.

@echo off
setlocal

rem Get the number of the "<resource>" line
for /F "delims=:" %%a in ('findstr /N "<resource>" "%~F0"') do set "start=%%a"

rem Skip such number of lines and show the rest of this file
(for /F "usebackq skip=%start% delims=" %%a in ("%~F0") do echo %%a) > TempJS.js

cscript //nologo //e:cscript.txt TempJS.js
del /f /s /q TempJS.js

goto :EOF

<resource>
JScript
JScript
JScript

Read Batch and JSCript hybrids online: https://riptutorial.com/batch-file/topic/10578/batch-and-
jscript-hybrids

https://riptutorial.com/ 9

https://riptutorial.com/batch-file/topic/10578/batch-and-jscript-hybrids
https://riptutorial.com/batch-file/topic/10578/batch-and-jscript-hybrids

Chapter 4: Batch and VBS hybrids

Introduction

Batch are capable of running with VBS functionality further increasing their reliability. For example,
VBS can deal with decimals, spaces, and some other advanced operations that cannot be done in
batch. Also is capable of working with WMI and ActiveX objects.

Examples

Run VBS with temporary file(s)

The old-school method for running another script from batch is to echo the script into another
location, and then run it.

This method can be represented like this:

@echo off
rem VBS below
 echo your vbs > TempVBS.vbs
 echo other vbs>>TempVBS.vbs
rem End of VBS

cscript //nologo TempVBS.vbs
del /f /s /q TempVBS.vbs

The method above would require lots of echo (vbs) >> TempVBS.vbs, so here's a way to shorten it.
(code by Aacini)

@echo off
setlocal

rem Get the number of the "<resource>" line
for /F "delims=:" %%a in ('findstr /N "<resource>" "%~F0"') do set "start=%%a"

rem Skip such number of lines and show the rest of this file
(for /F "usebackq skip=%start% delims=" %%a in ("%~F0") do echo %%a) > Program.vbs

cscript //nologo Program.vbs
del /f /s /q Program.vbs
exit /b

<resource>
your vbs
another line of vbs

The last method is by using streams. A file can have a few streams. And every stream can contain
different information.

@echo off

https://riptutorial.com/ 10

 echo vbs >%0:stream1
 rem This command redirect "vbs" into the stream1 of this script, then we can call it later

cscript %0:stream1 //nologo
 rem if you like, you can clear the stream1 of this file by:
 type nul>%0:stream1

Embed vbscript code into batch file without using temporary files

Here's an example with the technique(hack) invented by the dostips forums' user Liviu:

@echo off
echo Printed by CMD.EXE
cscript //nologo "%~f0?.wsf" //job:JS //job:VBS

exit /b %errorlevel%

----END OF BATCH CODE---
<package>
 <job id="JS">
 <script language="VBScript">

 WScript.Echo("Printed by VBScript"):

 </script>
 </job>
 <job id="VBS">
 <script language="JScript">

 WScript.Echo("Printed by JScript");

 </script>
 </job>
</package>

As running wsf file with windows script host is extension sensitive you can run a file with any
extension by adding ?.wsf at the end of the file (which is the core of the hack). While the Liviu's
example is probably more robust the above code is more simplified version. As wsh does not care
much about the things outside the <package> node you are not obligated to put everything in xml
comments. Though it's to be careful with redirection symbols (< and >)

Read Batch and VBS hybrids online: https://riptutorial.com/batch-file/topic/10061/batch-and-vbs-
hybrids

https://riptutorial.com/ 11

http://www.dostips.com/forum/viewtopic.php?t=5543
https://en.wikipedia.org/wiki/Windows_Script_File
https://riptutorial.com/batch-file/topic/10061/batch-and-vbs-hybrids
https://riptutorial.com/batch-file/topic/10061/batch-and-vbs-hybrids

Chapter 5: Batch file command line
arguments

Examples

Command line arguments supplied to batch files

Batch file command line arguments are parameter values submitted when starting the batch. They
should be enclosed in quotes if they contain spaces. In a running batch file, the arguments are
used for various purposes, i.e. redirection to :labels, setting variables, or running commands.

The arguments are referred to in the batch file using %1, %2, ..., %9.

@echo off
setlocal EnableDelayedExpansion
if not "%1"=="" (
 set "dir=%~1" & set "file=%~2"
 type !dir!\!file! | find /n /i "True" >nul^
 && echo Success! || echo Failure
)
exit /b

C:\Users\UserName> test.bat "C:\Temp\Test Results" "Latest.log"
Success!

Notes:

In the above example, double quotes are removed by using the argument modifier %~1.•
Long strings are split to several lines using ^, and there is a space before the character on
the next line.

•

Batch files with more than 9 arguments

When more than 9 arguments are supplied, the shift [/n] command can be used, where /n
means start at the nth argument, n is between zero and eight.

Looping through arguments:

:args
set /a "i+=1"
set arg!i!=%~1
call echo arg!i! = %%arg!i!%%
shift
goto :args

Note, in the above example delayed expansion variable i is used to assign argument values to
variables array. The call command allows to display such variable values inside the loop.

https://riptutorial.com/ 12

Counting arguments:

for %%i in (%*) do (set /a ArgCount+=1)
echo %ArgCount%

Set a variable to n'th argument:

set i=5
call set "path%i%=%%~i"

Shifting arguments inside brackets

Lets have the following example.bat and call it with arguments 1 ,2 and 3:

@echo off

(
 shift
 shift
 echo %1
)

As the variable expansion will change after the the end brackets context is reached the output will
be:

1

As this might be an issue when shifting inside brackets to access the argument you'll need to use
call:

@echo off

(
 shift
 shift
 call echo %%1
)

now the output will be 3. As CALL command is used (which will lead to additional variable
expansion) with this technique the arguments accessing can be also parametrized:

@echo off

set argument=1

 shift
 shift
 call echo %%%argument%

with delayed expansion:

https://riptutorial.com/ 13

@echo off
setlocal enableDelayedExpansion
set argument=1

 shift
 shift
 call echo %%!argument!

the output will be

3

Read Batch file command line arguments online: https://riptutorial.com/batch-file/topic/4981/batch-
file-command-line-arguments

https://riptutorial.com/ 14

https://riptutorial.com/batch-file/topic/4981/batch-file-command-line-arguments
https://riptutorial.com/batch-file/topic/4981/batch-file-command-line-arguments

Chapter 6: Batch file macros

Introduction

In a command prompt, you can use DOSKEY for creating macros. In a batch file you can define a
variable that can be called as a piece of code and even pass arguments to it.

Examples

Basic Macro

Using DOSKEY, we can create macros to simplify typing many commands in command prompt. Take
a look at the following example.

DOSKEY macro=echo Hello World

Now if you type macro in the command prompt, it would return Hello World.

Comments

Unfortunately, DOSKEY macro doesn't support comment, but there's a workaround.

;= Comment
;= Comment
;= Remember to end your comment with ;=
;=

$ Character Usages

There are 3 usages of the $ character in a DOSKEY macro.

Command separator

$T is the equivalent of & in a batch script. One can join commands together like so.

DOSKEY test=echo hello $T echo world

Command-line arguments

Like bash(not batch), we use $ to indicate command-line argument.

https://riptutorial.com/ 15

$1 refers to the first command-line argument

$2 refers to second command-line argument, etc..

$* refers to all command-line argument

Macros In Batch Script

DOSKEY macros don't work in a batch script. However, we can use a little workaround.

set DOSKEYMacro=echo Hello World
%DOSKEYMacro%

This script can simulate the macro function. One can also use ampersands(&) to join commands,
like $T in DOSKEY.

If you want a relatively large "macro", you may try a simple function or take a look at other function
topics here.

Read Batch file macros online: https://riptutorial.com/batch-file/topic/10791/batch-file-macros

https://riptutorial.com/ 16

http://www.riptutorial.com/batch-file/example/25133/simple-function
http://www.riptutorial.com/batch-file/topic/7646/functions
https://riptutorial.com/batch-file/topic/10791/batch-file-macros

Chapter 7: Batch files and Powershell hybrids

Examples

Run Powershell with Temporary Files

This has been mentioned in other hybrid topics again and again. The old-school, but easy method
to run Powershell is by:

echoing the Powershell script into a temporary script•
Execute the temporary script•
Optionally remove the temporary script•

This is a sample script.

@echo off
echo powershell-command>Temp.ps1
echo another line>>Temp.ps1
 rem echo the script into a temporary file

powershell -File Temp.ps1
 rem execute the temporary script

del Temp.ps1
 rem Optionally remove the temporary script

The method above requires tons of echo statement if a long script is required, here is a better
method suggest by @Aacini

@echo off
setlocal

 rem Get the number of the "<resource>" line
for /F "delims=:" %%a in ('findstr /N "<resource>" "%~F0"') do set "start=%%a"

 rem Skip such number of lines and show the rest of this file
(for /F "usebackq skip=%start% delims=" %%a in ("%~F0") do echo %%a) > Temp.ps1

powershell -File Temp.ps1
del /f /s /q Temp.ps1

goto :EOF

<resource>
PS
Powershell script

Use POWERSHELL Command To Execute 1-line Powershell Command

Using the POWERSHELL command, we can execute a 1-line command directly from a batch script,

https://riptutorial.com/ 17

http://www.riptutorial.com/batch-file/topic/10061/batch-and-vbs-hybrids
http://www.riptutorial.com/batch-file/topic/10578/batch-and-jscript-hybrids

without any temporary file.

Here's the syntax.

powershell.exe -Command <yourPowershellCommandHere>

You may also want to include other flags, like -Nologo to improve the actual outcome.

Powershell/batch hybrid without temp files

This is the approach proposed by the stackoverflow's user rojo which also can handle the
command line arguments :

<# : batch portion
@echo off & setlocal

(for %%I in ("%~f0";%*) do @echo(%%~I) | ^
powershell -noprofile "$argv = $input | ?{$_}; iex (${%~f0} | out-string)"

goto :EOF
: end batch / begin powershell #>

"Result:"
$argv | %{ "`$argv[{0}]: $_" -f $i++ }

called like this:

psbatch.bat arg1 "This is arg2" arg3

will produce:

Result:
$argv[0]: C:\Users\rojo\Desktop\test.bat
$argv[1]: arg1
$argv[2]: This is arg2
$argv[3]: arg3

Read Batch files and Powershell hybrids online: https://riptutorial.com/batch-file/topic/10711/batch-
files-and-powershell-hybrids

https://riptutorial.com/ 18

http://www.dostips.com/forum/viewtopic.php?f=3&t=5526&start=15#p45095
https://stackoverflow.com/users/1683264/rojo
https://riptutorial.com/batch-file/topic/10711/batch-files-and-powershell-hybrids
https://riptutorial.com/batch-file/topic/10711/batch-files-and-powershell-hybrids

Chapter 8: Best Practices

Introduction

This topic will focus on the things that one should (not mandatory) do in a batch file. Using these
"best practices" can enhance the effect and the function of a batch file.

Examples

Quotes

Most online batch scripts come with a lot of quote issues.

Examples and Solutions

Example A

if %var%==abc echo Test

This code works - when the content of %var% does not contains space or other special characters.
Now let's assume %var% contains 1 whitespace. Now cmd.exe sees:

if ==abc echo Test

This would cause a failure because cmd.exe doesn't understand this syntax.

Solution A

if "%var%"=="abc" echo Test

Using quotes, cmd.exe sees the entire %var%(including space and special characters) as only one
normal string. Yet this is not the safest comparison method. The safest one uses echo, pipe, and
findstr.

Example B

cd C:\User\Spaced Name\Spaced FileName.txt

cd would only change directory to C:\User\Spaced, as cd only accepts one path argument.

https://riptutorial.com/ 19

Solution B

Simply by adding quotes around the path, the issue would be solved.

cd "C:\User\Spaced Name\Spaced FileName.txt"

There are also a few examples that work better using quotes, like the set /a statement, etc. But,
when one works on strings that contain spaces or special characters, it is usually much safe to use
quotes.

Spaghetti Code

Spaghetti code means a code snippet that uses many, and often confusing structures. Such as
GOTOs, exceptions and inconsistent code.

Examples and Solutions

Example A

@echo off
set /a counter=0

:Loop
set /a counter=%counter% + 1
echo %counter%

if %counter% equ 10 goto :exit
goto :Loop

:exit

This program comes with plenty of jumps, making us harder to know what exactly the script is
doing.

Solution A

@echo off
for /l %%G in (0,1,10) echo %%G

Using less GOTOs, we reduced the amount of code greatly, and we can focus on the actual code.

Example B

https://riptutorial.com/ 20

Consider the following statements.

:endGame
if %player1Score% gtr %player2Score% goto :player1wins
if %player1Score% lss %player2Score% goto :player2wins
goto :tie

:player1wins
echo player 1 wins
goto :eof

:player2wins
echo player 2 wins
goto :eof

:tie
echo tie
goto :eof

This snippet requires lots of goto statements and can be confusing to debug. To simplify these
statements, we can use call command. Here is the above script at a better condition.

:endGame
if %player1Score% gtr %player2Score% call :message player 1 wins
if %player1Score% lss %player2Score% call :message player 2 wins
if %player1Score% equ %player2Score% call :message tie

goto :eof

:message
echo %*
goto :eof

Both scripts output the exact same result, but the new script is much shorter and clearer.

Read Best Practices online: https://riptutorial.com/batch-file/topic/10746/best-practices

https://riptutorial.com/ 21

https://riptutorial.com/batch-file/topic/10746/best-practices

Chapter 9: Bugs in cmd.exe processor

Introduction

This topic will focus on errors caused by the processor bugs. Here are the things we would focus
on the cause and the solution of the issue.

Remarks

In the example DEL File Extension, user X. Liu notices that this bug will not occurs when the file
extension in the DEL command is less than 3 characters.

Examples

Parentheses Confusion

From this website, the OP has noticed a problem.

Cause

Consider the following code snippet.

if 1==1 (
 set /a result = 2*(3+4)
)

At your first glance, you may think CMD.exe would process it like so:

The condition is true, execute code block•
Set variable result's value to 14•
Continue•

However, CMD.exe process like so:

The condition is true, execute code block•
Calculate 2*(3+4, the) after 4 is processed at the end of if code block•
A random) has appeared!•

The second step would return Unbalanced parentheses error.

Solution

https://riptutorial.com/ 22

http://www.riptutorial.com/batch-file/example/32403/del-file-extension
https://www.pcreview.co.uk/threads/bug-in-cmd-exe-parentheses-confused.2916962/

According to a German CMD.exe's set /?, we would need to quote arithmetic operations. Here's
an example.

Previous Result

set /a result=2+5*4 set /a result="2+5*4"

By the way, according to an English CMD.exe set /?, quotes are required if logical or modulus
operators are present in the expression(although this is not a must-do step).

Improper Escape Character

In this Stack Overflow question, user txtechhelp found an issue with the ^ character which could
cause a security issue.

Cause

anyInvaildCommand ^

Note: Make sure the caret(^) is the last character! Any extra CR\LF won't work at all!

The caret looks for the next character to escape. However, the are no more character available to
escape, so cmd loops infinitely, looking for a character to escape. In this "loop" process, cmd.exe will
consume your computer memory. And gradually eating all memory, bringing the computer to
knees.

This issue can lead to more serious security worries as one could just enter the code into the
one's unlocked computer.

Solutions

Use codepage UTF-16 could solve this problem. Only UTF-8 or ASCII would cause the bug.•

Make sure there is an extra CR\LF in the file, or just simply don't use caret at the end of the
file.

•

Extra

This bug seems to be solved in Windows 10.

DEL File Extension

This bug was reported by steve2916 from this Microsoft Windows Forum thread.

https://riptutorial.com/ 23

https://stackoverflow.com/questions/23284131/cmd-exe-parsing-bug-leads-to-other-exploits
https://answers.microsoft.com/en-us/windows/forum/windows8_1-performance/bug-report-serious-del-command-from-command-prompt/511a6883-87c1-47a0-9f6f-3b32f12927db

Cause

Consider a folder with such files.

TestA.doc
TestB.doc
TestC.docx
TestD.docx

If we want to remove all .doc file in this directory, we usually would do:

del *.doc

However, this command also removes the .docx files. The same happens on file extensions with
this pattern.

File A File B

Anyname.abc AnotherName.abcd

As we can see, as long as the file extension string contains the string used in the del command,
the file will be deleted. Note that this bug only occurs when the extension string used in the del
command has at least three characters. For instance, del *.do doesn't delete A.doc or A.docx.

Solution

In the thread, user MicroCompsUnltd noticed that using Powershell would solve the issue.

Read Bugs in cmd.exe processor online: https://riptutorial.com/batch-file/topic/10694/bugs-in-cmd-
exe-processor

https://riptutorial.com/ 24

https://riptutorial.com/batch-file/topic/10694/bugs-in-cmd-exe-processor
https://riptutorial.com/batch-file/topic/10694/bugs-in-cmd-exe-processor

Chapter 10: Bypass arithmetic limitations in
batch files

Introduction

Batch files allows only 32bit integer calculations , though this can be bypassed with different
approaches.

Examples

Using powershell

As the powershell is installed by default on every windows system from 7/2008 and above it can
be used for more complex calculations:

@echo off
set "expression=(2+3)*10/1000"
for /f %%# in ('"powershell %expression%"') do set result=%%#
echo %result%

Mind the additional double quotes in the for /f which prevent brackets conflicts with the for
command syntax.

Potential issue is that powershell is much slower than using wsh/vbscript/jscript due to the loading
of the .net framerwork

Using jscript

WSH/JScript is installed on every windows system since NT so using it for more complex
calculations makes it pretty portable. JScript is easier for combining it with batch file :

@if (@codesection==@batch) @then
@echo off

set "expression=2*(2+3)/1000"
for /f %%# in ('cscript //nologo //e:jscript "%~f0" "%expression%"') do set
result=%%#
echo %result%
:: more batch code

exit /b %errorlevel%
@end
WScript.Echo(eval(WScript.Arguments(0)));

With this approach you can put your whole code in a single file.It is faster than using powershell.
Here and here more advanced scripts can be found (which can be used as external files).

https://riptutorial.com/ 25

http://www.dostips.com/forum/viewtopic.php?t=6212
https://stackoverflow.com/questions/21392487/batch-jscript-hybrid-calculator

Emulating pen and paper calculations, math functions implementations

Here can be found the most comprehensive math library that emulates pen and paper
calculations and allows working with bigger numbers.

1.

Here are another examples of pen and paper emulations: ADD , Comparison , Multiply2.
Some math functions implementations can be found here.3.

Read Bypass arithmetic limitations in batch files online: https://riptutorial.com/batch-
file/topic/10702/bypass-arithmetic-limitations-in-batch-files

https://riptutorial.com/ 26

https://github.com/Oatworm/MathLibrary.cmd
http://www.robvanderwoude.com/files/add_nt.txt
http://www.robvanderwoude.com/files/islarger_3rdparty_bat.txt
http://www.robvanderwoude.com/files/multiply_3rdparty_bat.txt
http://www.dostips.com/forum/viewtopic.php?t=5819
https://riptutorial.com/batch-file/topic/10702/bypass-arithmetic-limitations-in-batch-files
https://riptutorial.com/batch-file/topic/10702/bypass-arithmetic-limitations-in-batch-files

Chapter 11: Changing Directories and Listing
their Contents

Syntax

echo %cd% - displays the current path of the directory•

cd "C:\path\to\some\directory" -changes the path of the directory•

cd "%variable_containing_directory_path%" - also changes the path of the directory•

cd /d E: - change to E: drive from a different drive•

cd/ - changes directory back to current drive•

echo %__CD__% - displays the current path of the directory with trailing backslash
(undocumented)

•

echo %=C:% - The current directory of the C: drive (undocumented)•

echo %=D:% - The current directory of the D: drive if drive D: has been accessed in the
current CMD session (undocumented)

•

Remarks

Why is it important and what are they uses and advantages:

to open file or application in a directory using batch•
to create andwrite and read files in a directory using batch•
to know and list out all folders•
to know where your batch file is running•

Examples

To display the current directory

Format and Usage:

 echo %cd%

%cd% is a system variable that contains the current directory path

To change the current directory (without changing drives)

Format:

https://riptutorial.com/ 27

cd "<path>"

Example:

 cd "C:\Program Files (x86)\Microsoft Office"

cd is an abbreviation for chdir and the two commands behave in the exact same way. For the sake
of consistency, cd will be used throughout this topic.

To navigate to the directory one level above the current directory, specify the system directory ...

cd ..

To navigate to a directory that is inside of the current directory, simply cd to the folder name
without typing the full path (wrapping the directory name in quotes if it contains spaces).

For example, to enter C:\Program Files (x86)\Microsoft Office while in the C:\Program Files (x86)
directory, the following syntax may be used:

cd "Microsoft Office"

or

cd "C:\Program Files (x86)\Microsoft Office"

Navigating to a directory on a different drive

cd by itself will not allow a user to move between drives. To move to a different drive, the /d option
must be specified.

e.g. Moving from C:\Users\jdoe\Desktop to D:\Office Work

cd /d "D:\Office Work"

How to show all folders and in files in a directory

Usage to list all folders and files in the current directory: dir

A target directory can also be specified: dir C:\TargetPath

When specifying a path with spaces, it must be surrounded by quotes: dir "C:\Path With Spaces"

Changing drive without CD /D

Pushd "D:\Foo"
Dir

https://riptutorial.com/ 28

Popd

Pushd will change the directory to the directory following (in this case D:\Foo. Popd returns back to
the original directory.

To change the current directory to the root of the current drive

Format:

cd/

cd/ is set to change the current directory back to the root of the current drive

Read Changing Directories and Listing their Contents online: https://riptutorial.com/batch-
file/topic/7132/changing-directories-and-listing-their-contents

https://riptutorial.com/ 29

https://riptutorial.com/batch-file/topic/7132/changing-directories-and-listing-their-contents
https://riptutorial.com/batch-file/topic/7132/changing-directories-and-listing-their-contents

Chapter 12: Comments in Batch Files

Introduction

Comments are used to show information in a batch script.

Syntax

REM•

&REM•

::•

&::•

Goto :Label

 Comments. You can also use |>< ,etc.

:Label

•

Examples

Using REM for Comments

REM This is a comment

REM is the official comment command.•

Using Labels as Comments

::This is a label that acts as a comment

The double-colon :: comment shown above is not documented as being a comment command,
but it is a special case of a label that acts as a comment.

Caution: when labels are used as comments within a bracketed code block or for command, the
command processor expects every label to be followed by at least one command, so when a jump
is made to the label it will have something to execute.

The cmd shell will try to execute the second line even if it is formatted as a label (and this causes
an error):

(

https://riptutorial.com/ 30

echo This example will fail
:: some comment
)

When working within bracketed code blocks it is definitely safer to use REM for all comment lines.

Using Variables as Comments

It is also possible to use variables as comments. This can be useful to conditionally prevent
commands being executed:

@echo off
setlocal
if /i "%~1"=="update" (set _skip=) Else (set _skip=REM)
%_skip% copy update.dat
%_skip% echo Update applied
...

When using the above code snippet in a batch file the lines beginning with %_skip% are only
executed if the batch file is called with update as a parameter.

Block Comments

The batch file format does not have a block comment syntax, but there is an easy workaround for
this.

Normally each line of a batch file is read and then executed by the parser, but a goto statement
can be used to jump past a block of plain text (which can be used as a block comment):

@echo off
goto :start

A multi-line comment block can go here.
It can also include special characters such as | >

:start

Since the parser never sees the lines between the goto :start statement and :start label it can
contain arbitrary text (including control characters without the need to escape them) and the
parser will not throw an error.

Comment on the code's line

To comment on the same line as the code you can use &:: or &rem. You can also use && or || to
replace &.

Example :

@echo off
echo This is a test &::This is a comment
echo This is another test &rem This is another comment

https://riptutorial.com/ 31

http://www.riptutorial.com/batch-file/example/10744/using-rem-for-comments

pause

A curiosity: SET command allows limited inline comments without &rem:

set "varname=varvalue" limited inline comment here

Limitations:

syntax with double quotes set "varname=varvalue" or set "varname=",•
an inline comment may not contain any double quote,•
any cmd poisonous characters | < > & must be properly escaped as ^| ^< ^> ^&,•
parentheses () must be properly escaped as ^(^) within a bracketed code block.•

Batch and WSF Hybrid Comment

<!-- : Comment

This works with both batch script and WSF. The closing tag(-->), only works in WSF.

Code Sucessful in both batch and WSF?

<!--: Comment True

<!--: Comment --> False - The closing tag only works for WSF

--> False

Read Comments in Batch Files online: https://riptutorial.com/batch-file/topic/3152/comments-in-
batch-files

https://riptutorial.com/ 32

https://riptutorial.com/batch-file/topic/3152/comments-in-batch-files
https://riptutorial.com/batch-file/topic/3152/comments-in-batch-files

Chapter 13: Creating Files using Batch

Introduction

One useful feature of batch files is being able to create files with them. This section shows how to
create files using batch code.

Syntax

echo (type here whatever you want in the to be) >> (filename)•
echo (variable name) >> (filename)•

Remarks

If a file exists, > will overwrite the file and >> will append to the end of the file. If a file does not
exist, both will create a new file.

Also, the echo command automatically adds a newline after your string.

So

echo 1 > num.txt
echo 1 > num.txt
echo 2 >> num.txt

will create the following file:

1
2

Not this:

1 1 2

or

1 2

Furthermore, you cannot just modify a single line in a text file. You have to read the whole file,
modify it in your code and then write to the whole file again.

Examples

Redirection

https://riptutorial.com/ 33

Format:

[command] [> | >>] [filename]

> saves the output of [command] into [filename].

>> appends the output of [command] into [filename].

Examples:

echo Hello World > myfile.txt saves "Hello World" into myfile.txt1.

echo your name is %name% >> myfile.txt appends "your name is xxxx" into myfile.txt2.

dir C:\ > directory.txt saves the directory of C:\ to directory.txt3.

Echo to create files

Ways to create a file with the echo command:

ECHO. > example.bat (creates an empty file called "example.bat")

ECHO message > example.bat (creates example.bat containing "message")
ECHO message >> example.bat (adds "message" to a new line in example.bat)
(ECHO message) >> example.bat (same as above, just another way to write it)

If you want to create a file via the ECHO command, in a specific directory on your computer, you
might run into a problem.

ECHO Hello how are you? > C:\Program Files\example.bat

(This will NOT make a file in the folder "Program Files", and might show an error message)

But then how do we do it? Well it's actually extremely simple... When typing a path or file name
that has a space included in it's name, then remember to use "quotes"

ECHO Hello how are you? > "C:\Program Files\example.bat"
(This will create "example.bat" in the folder "Program Files")

But what if you want to make a file that outputs a new file?

ECHO message > file1.bat > example.bat

(example.bat is NOT going to contain "message > file1.bat")
example.bat will just contain "message"... nothing else

Then how do we do this? Well for this we use the ^ symbol.

ECHO message ^> file1.bat > example.bat

https://riptutorial.com/ 34

(example.bat is going to contain "message > file1.bat")

Same goes for other stuff in batch

The next step requires you to have some knowledge about variables and statements:

click here to learn about variables | click here to learn about if and else statements

Variables:

SET example="text"
ECHO %example% > file.bat
(This will output "text" to file.bat)

if we don't want it to output "text" but just plain %example% then write:

ECHO ^%example^% > file.bat
(This will output "%example%" to file.bat)

IF/ELSE statements:

ELSE statements are written with "pipes" ||

IF ^%example^%=="Hello" ECHO True || ECHO False > file.bat

(example.bat is going to contain "if %example%=="Hello" echo True")
[it ignores everything after the ELSE statement]

to output the whole line then we do the same as before.

IF ^%example^%=="Hello" ECHO True ^|^| ECHO False > file.bat

This will output:
IF %example%=="Hello" ECHO True || ECHO False

If the variable is equal to "Hello" then it will say "True", ELSE it will say "False"

Saving the output of many commands

Using many ECHO commands to create a batch file:

(
 echo echo hi, this is the date today
 echo date /T
 echo echo created on %DATE%
 echo pause >nul
)>hi.bat

The command interpreter treats the whole section in parenthesis as a single command, then
saves all the output to hi.bat.

hi.bat

https://riptutorial.com/ 35

http://www.riptutorial.com/batch-file/topic/3528/variables-in-batch-files
https://www.tutorialspoint.com/batch_script/batch_script_if_else_statement.htm

now contains:

echo hi, this is the date today
date /T
echo created on [date created]
pause >nul

Read Creating Files using Batch online: https://riptutorial.com/batch-file/topic/7129/creating-files-
using-batch

https://riptutorial.com/ 36

https://riptutorial.com/batch-file/topic/7129/creating-files-using-batch
https://riptutorial.com/batch-file/topic/7129/creating-files-using-batch

Chapter 14: Deprecated batch commands and
their replacements

Examples

DEBUG

DEBUG command was used to create binaries/executabled from batch file. The command is still
available in 32bit versions of windows , but is able to create binaries only with 16bit instructions
with makes it unusable for 64bit machines. Now CERTUTIL is used for that purpose which allows
to decode/encode binary/media files from HEX or BASE64 formats.Example with a file that creates
icon file:

@echo off

del /q /f pointer.jpg >nul 2>nul
certutil -decode "%~f0" pointer.jpg
hh.exe pointer.jpg
exit /b %errorlevel%

-----BEGIN CERTIFICATE-----
/9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAMgAA/+4ADkFkb2Jl
AGTAAAAAAf/bAIQACAYGBgYGCAYGCAwIBwgMDgoICAoOEA0NDg0NEBEMDg0NDgwR
DxITFBMSDxgYGhoYGCMiIiIjJycnJycnJycnJwEJCAgJCgkLCQkLDgsNCw4RDg4O
DhETDQ0ODQ0TGBEPDw8PERgWFxQUFBcWGhoYGBoaISEgISEnJycnJycnJycn/8AA
EQgACgAKAwEiAAIRAQMRAf/EAFsAAQEBAAAAAAAAAAAAAAAAAAAGBwEBAQAAAAAA
AAAAAAAAAAAAAAEQAAIBAwQDAAAAAAAAAAAAAAEDAgARBSExIwQSIhMRAQEBAAAA
AAAAAAAAAAAAAAARIf/aAAwDAQACEQMRAD8A13PZ5eIX3gO8ktKZfFPksvQ8r4uL
ecJmx1BMSbm8D6UVKVcg/9k=
-----END CERTIFICATE-----

Here's the same with hex format:

@echo off

(echo 0000 ff d8 ff e0 00 10 4a 46 49 46 00 01 02 00 00 64) >pointer.hex
(echo 0010 00 64 00 00 ff ec 00 11 44 75 63 6b 79 00 01 00) >>pointer.hex
(echo 0020 04 00 00 00 32 00 00 ff ee 00 0e 41 64 6f 62 65) >>pointer.hex
(echo 0030 00 64 c0 00 00 00 01 ff db 00 84 00 08 06 06 06) >>pointer.hex
(echo 0040 06 06 08 06 06 08 0c 08 07 08 0c 0e 0a 08 08 0a) >>pointer.hex
(echo 0050 0e 10 0d 0d 0e 0d 0d 10 11 0c 0e 0d 0d 0e 0c 11) >>pointer.hex
(echo 0060 0f 12 13 14 13 12 0f 18 18 1a 1a 18 18 23 22 22) >>pointer.hex
(echo 0070 22 23 27 27 27 27 27 27 27 27 27 27 01 09 08 08) >>pointer.hex
(echo 0080 09 0a 09 0b 09 09 0b 0e 0b 0d 0b 0e 11 0e 0e 0e) >>pointer.hex
(echo 0090 0e 11 13 0d 0d 0e 0d 0d 13 18 11 0f 0f 0f 0f 11) >>pointer.hex
(echo 00a0 18 16 17 14 14 14 17 16 1a 1a 18 18 1a 1a 21 21) >>pointer.hex
(echo 00b0 20 21 21 27 27 27 27 27 27 27 27 27 27 ff c0 00) >>pointer.hex
(echo 00c0 11 08 00 0a 00 0a 03 01 22 00 02 11 01 03 11 01) >>pointer.hex
(echo 00d0 ff c4 00 5b 00 01 01 01 00 00 00 00 00 00 00 00) >>pointer.hex
(echo 00e0 00 00 00 00 00 00 06 07 01 01 01 00 00 00 00 00) >>pointer.hex
(echo 00f0 00 00 00 00 00 00 00 00 00 00 01 10 00 02 01 03) >>pointer.hex
(echo 0100 04 03 00 00 00 00 00 00 00 00 00 00 01 03 02 00) >>pointer.hex

https://riptutorial.com/ 37

http://www.robvanderwoude.com/debug.php
https://ss64.org/viewtopic.php?id=1562

(echo 0110 11 05 21 31 23 04 12 22 13 11 01 01 01 00 00 00) >>pointer.hex
(echo 0120 00 00 00 00 00 00 00 00 00 00 00 11 21 ff da 00) >>pointer.hex
(echo 0130 0c 03 01 00 02 11 03 11 00 3f 00 d7 73 d9 e5 e2) >>pointer.hex
(echo 0140 17 de 03 bc 92 d2 99 7c 53 e4 b2 f4 3c af 8b 8b) >>pointer.hex
(echo 0150 79 c2 66 c7 50 4c 49 b9 bc 0f a5 15 29 57 20 ff) >>pointer.hex
(echo 0160 d9) >>pointer.hex

certutil -decodehex "pointer.hex" pointer.jpg
hh.exe pointer.jpg
exit /b %errorlevel%

As you can see hex requires additional temp file and hex format expansions is bigger

APPEND

APPEND was command in msdos that allowed to use resource/media files like they are in the same
directory.The command is still available in 32bit versions of windows but seems is not working. In
some sources (including microsofts') it is pointed that the command is replaced by DPATH ,but it
is not entirely true. Despite the DPATH help message points to APPEND command it's syntnax is
the same as PATH.The directories listed in DPATH can be used with input redirection or type
command :

@echo off
dpath %windir%

set /p var=<win.ini
echo using dpath with input redirection:
echo %var%
echo.
echo using dpath with type command:
type win.ini

BITSADMIN

BITSADMIN was used to transfer documents, download website, download files from websites, etc...
This command is a deprecated command, and may be removed on next Windows updates. To
prevent this issue, use the new Powershell BIT cmdlet.

Here is a sample code utilizing BITSADMIN.

@echo off
Bitsadmin /create /download Stackoverflow.com
rem download the website StackOverflow.com

Read Deprecated batch commands and their replacements online: https://riptutorial.com/batch-
file/topic/10109/deprecated-batch-commands-and-their-replacements

https://riptutorial.com/ 38

https://technet.microsoft.com/en-us/library/bb491049.aspx
https://ss64.com/nt/path.html
https://ss64.org/viewtopic.php?id=1875
https://ss64.org/viewtopic.php?id=1876
https://ss64.org/viewtopic.php?id=1876
https://ss64.com/nt/bitsadmin.html
https://ss64.com/ps/bits.html
https://ss64.com/ps/bits.html
https://riptutorial.com/batch-file/topic/10109/deprecated-batch-commands-and-their-replacements
https://riptutorial.com/batch-file/topic/10109/deprecated-batch-commands-and-their-replacements

Chapter 15: Differences between Batch
(Windows) and Terminal (Linux)

Introduction

Batch and bash are quite different. Batch flags are indicated with a /, while bash flags use a -.
Capitalization matters in bash, but (almost) not at all in batch. Batch variable names can contain
spaces, bash variable names can not. Ultimately, both are ways of manipulating and interacting
with the command line. Not surprisingly, there is a reasonably-sized amount of overlap between
the capabilities of the two systems.

Remarks

bitsadmin is deprecated in favor of the PowerShell cmdlet BITS but still works as of Windows
10 version 1607

•

certutil separates pairs of hexadecimal digits with a space, so md5sum will return an example
value of d41d8cd98f00b204e9800998ecf8427e, while certutil displays the same value as d4 1d 8c
d9 8f 00 b2 04 e9 80 09 98 ec f8 42 7e

•

To cd to another drive (for example, from C: to D:) the /d flag must be used•
del can not delete folders, use rm instead•
grep is so much more powerful than find and findstr, it's almost not fair to compare them;
find has no regex capabilities and findstr has extremely limited regex capabilities ([a-z]{2}
is not valid syntax, but [a-z][a-z] is)

•

for loops on the Windows command prompt can only use single-character variable names;
this is the only time batch variable names are case-sensitive

•

for loops on the command prompt also use the variable form %A instead of %A% - forloops in
batch scripts use the variable form %%A

•

md automatically creates any necessary parent directories, while mkdir needs the -p flag to do
so

•

rem may not be used as an inline comment character unless it is preceded by a &•
:: may not be used as an inline comment at all, and should also not be used inside of a code
block (set of parentheses)

•

Note that some Windows command like ping still uses - as flags•

Examples

Batch Commands and Their Bash Equivalents

Batch Bash Description

command /? man command Shows the help for command

bitsadmin wget or curl Downloads a remote file

https://riptutorial.com/ 39

Batch Bash Description

certutil -hashfile file_name
MD5 md5sum file_name

Gets the MD5 checksum of
file_name

cd pwd Displays the current directory

cd directory cd directory
Changes the current
directory to the specified one

cls clear Clears the screen

copy cp
Copies a file or files from a
source path to a target path

date date
Displays the date or sets it
based on user input

del rm Deletes a file or files

dir ls
displays a list of files and
directories in the current
directory

echo echo Displays text on the screen

exit return Exits a script or subroutine

exit logout
Closes the command prompt
or terminal

fc diff
Compares the contents of
two files

find "string" file_name grep "string" file_name
Searches file_name for
string

findstr "string" file_name grep "string" file_name
Searches file_name for
string

for /F %A in (fileset*) do
something

for item in fileset*; do;
something; done

Do something for every file in
a set of files

for /F %A in ('command') do
something `command`

Returns the output of a
command

for /L %A in
(first,increment,last) do
something

for item in `seq first
increment last`; do;
something; done

Starts at first and counts by
increment until it reaches last

Searches for files that match forfiles find

https://riptutorial.com/ 40

Batch Bash Description

a certain criteria

if "%variable%"=="value" (if ["variable"="value"];
then Compares two values

ipconfig ifconfig Displays IP information

md mkdir Creates new folders

mklink ln -s Creates a symbolic link

more more
Displays one screen of
output at a time

move mv
Moves a file or files from a
source path to a target path

pause read -p "Press any key to
continue"

Pauses script execution until
the user presses a button

popd popd
Removes the top entry from
the directory stack and goes
to the new top directory

pushd pushd
Adds the current directory to
the directory stack and goes
to the new top directory

ren mv Renames files

rem or :: # Comments a line of code

rd rmdir Removes empty directories

rd /s rm -rf
Removes directories
regardlesss of whether or not
they were empty

set variable=value variable=value
Sets the value of variable to
value

set /a variable=equation variable=$((equation))
Performs math (batch can
only use 32-bit integers)

set /p variable=promptstring read -p "promptstring"
variable

Gets user input and stores it
in variable

shift shift
Shifts arguments by 1 (or n if
provided)

https://riptutorial.com/ 41

Batch Bash Description

sort sort
Sorts output alphabetically
by line

tasklist ps
Shows a list of running
processes

taskkill /PID processid kill processid
Kills the process with PID
processid

time /t date Displays the current time

type cat
Displays the contents of a
file

where which
Searches the current
directory and the PATH for a
file or command

whoami id
Displays the name and
group of the current user

Batch Variables and Their Bash Equivalent

Batch Bash Description

%variable% $variable A regular variable

!variable! $variable
A variable inside of a code block when setlocal
enabledelayedexpansion is on

%errorlevel% or
ERRORLEVEL

$?
Returns the status of the previous command: 0 if
successful, 1 (or something else) if not

%1, %2, %3, etc.
$1, $2, $3,
etc.

The parameters given to a script

%* $* All parameters given to a script

Read Differences between Batch (Windows) and Terminal (Linux) online:
https://riptutorial.com/batch-file/topic/8362/differences-between-batch--windows--and-terminal--
linux-

https://riptutorial.com/ 42

https://riptutorial.com/batch-file/topic/8362/differences-between-batch--windows--and-terminal--linux-
https://riptutorial.com/batch-file/topic/8362/differences-between-batch--windows--and-terminal--linux-

Chapter 16: Directory Stack

Syntax

PUSHD [path]•
POPD•

Parameters

Parameter Details

path The directory to navigate to

Remarks

Using pushd without parameters will print the stack.•
The popd command will overwrite the current Current Directory value.•

Examples

Delete Text Files

The following example shows how you can use the pushd command and the popd
command in a batch program to change the current directory from the one in which the
batch program was run and then change it back:

@echo off
rem This batch file deletes all .txt files in a specified directory
pushd %1
del *.txt
popd
cls
echo All text files deleted in the %1 directory

Sourced from https://technet.microsoft.com/en-us/library/cc771180%28v=ws.11%29.aspx

Print Directory Stack

To print the directory stack, use the command pushd without any parameters:

@echo off

cd C:\example\
pushd one
pushd ..\two

https://riptutorial.com/ 43

https://technet.microsoft.com/en-us/library/cc771180%28v=ws.11%29.aspx

pushd ..\..

pushd
echo Current Directory: %cd%

echo:
popd
pushd three

pushd
echo Current Directory: %cd%

Output:

C:\example\two
C:\example\one
C:\example
Current Directory: C:\

C:\example\two
C:\example\one
C:\example
Current Directory: C:\example\two\three

Read Directory Stack online: https://riptutorial.com/batch-file/topic/4288/directory-stack

https://riptutorial.com/ 44

https://riptutorial.com/batch-file/topic/4288/directory-stack

Chapter 17: Echo

Introduction

echo can be used to control and produce output.

Syntax

ECHO [ON | OFF]•
ECHO message•
ECHO(message•
ECHO(•

Parameters

Parameter Details

ON | OFF Can either be ON or OFF (case insensitive)

message Any string (except ON or OFF when used without ()

Remarks

echo. will also display an empty string. However, this is slower than echo(as echo. will search
for a file named "echo". Only if this file does not exist will the command work, but this check
makes it slower.

•

echo: will behave just like echo(, unless message looks like a file path, e.g. echo:foo\..\test.bat
. In this case, the interpreter will see echo:foo as a folder name, strip echo:foo\..\ (because it
appears just to enter the directory echo:foo then leave it again) then execute test.bat, which
is not the desired behaviour.

•

Examples

Displaying Messages

To display "Some Text", use the command:

echo Some Text

This will output the string Some Text followed by a new line.

To display the strings On and Off (case insensitive) or the empty string, use a (instead of white-
space:

https://riptutorial.com/ 45

echo(ON
echo(
echo(off

This will output:

ON

off

It is also common to use echo. to output a blank line, but please see the remarks for why this is not
the best idea.

To display text without including a CR/LF, use the following command:

<nul set/p=Some Text

This command will attempt to set the variable called the empty string to the user input following a
prompt. The nul file is redirected to the command with <nul, so the command will give up as soon
as it tries to read from it and only the prompt string will be left. Because the user never typed a
new line, there is no linefeed.

Echo Setting

The echo setting determines whether command echoing is on or off. This is what a sample
program looks like with command echoing on (default):

C:\Windows\System32>echo Hello, World!
Hello, World!

C:\Windows\System32>where explorer
C:\Windows\System32\explorer.exe

C:\Windows\System32>exit

This is what it looks like with echo off:

Hello, World!
C:\Windows\System32\explorer.exe

Getting and Setting

To get (display) the echo setting, use echo with no parameters:

> echo
ECHO is on.

To set the echo setting, use echo with on or off:

https://riptutorial.com/ 46

> echo off

> echo
ECHO is off.

> echo on

> echo
ECHO is on.

Note that with these examples, the prompt has been represented by >. When changing the echo
setting, the prompt will appear and disappear, but that makes for unclear examples.

Note that it is possible to prevent a command from being echoed even when echo is on, by placing
an @ character before the command.

Echo outputs everything literally

Quotes will be output as-is:

echo "Some Text"

"Some Text"

Comment tokens are ignored:

echo Hello World REM this is not a comment because it is being echoed!

Hello World REM this is not a comment because it is being echoed!

However, echo will still output variables - see Variable Usage - and special characters still take
effect:

echo hello && echo world

hello
world

Echo output to file

Ways to create a file with the echo command:

echo. > example.bat (creates an empty file called "example.bat")

echo message > example.bat (creates example.bat containing "message")
echo message >> example.bat (adds "message" to a new line in example.bat)
(echo message) >> example.bat (same as above, just another way to write it)

Output to path

https://riptutorial.com/ 47

http://www.riptutorial.com/batch-file/example/12184/usage

A little problem you might run into when doing this:

echo Hello how are you? > C:\Users\Ben Tearzz\Desktop\example.bat

(This will NOT make a file on the Desktop, and might show an error message)

But then how do we do it? Well it's actually extremely simple... When typing a path or file name
that has a space included in it's name, then remember to use "quotes"

echo Hello how are you? > "C:\Users\Ben Tearzz\Desktop\example.bat"
(This will make a file on MY Desktop)

But what if you want to make a file that outputs a new file?

echo message > file1.bat > example.bat

(This is NOT going to output:
"message > file1.bat" to example.bat

Then how do we do this?

echo message ^> file1.bat > example.bat

(This will output:
"message > file1.bat" to example.bat

Same goes for other stuff in batch

If you haven't learned what variables and statements are, then you most likely won't
understand the following: click here to learn about variables | click here to learn about "if"
statements

Variables:

set example="text"
echo %example% > file.bat
(This will output "text" to file.bat)

if we don't want it to output "text" but just plain %example% then write:

echo ^%example^% > file.bat
(This will output "%example%" to file.bat)

else statements:

else = ||
if ^%example^%=="Hello" echo True || echo False > file.bat

(This will output:
if %example%=="Hello" echo True

https://riptutorial.com/ 48

http://www.riptutorial.com/batch-file/topic/3528/variables-in-batch-files
http://www.riptutorial.com/batch-file/topic/5475/if-statements
http://www.riptutorial.com/batch-file/topic/5475/if-statements

to output the whole line we write:

if ^%example^%=="Hello" echo True ^|^| echo False > file.bat

This will output:
if %example%=="Hello" echo True || echo False

If the variable is equal to "Hello" then it will say "True", else it will say "False"

@Echo off

@echo off prevents the prompt and contents of the batch file from being displayed, so that only the
output is visible. The @ makes the output of the echo off command hidden as well.

Turning echo on inside brackets

In the following example echo on will take effect after the end of the brackets context is reached:

@echo off
(
 echo on
 echo ##
)
echo $$

In order to "activate" echo on in a brackets context (including FOR and IF commands) you can use
FOR /f macro :

@echo off
setlocal

:: echo on macro should followed by the command you want to execute with echo turned on
set "echo_on=echo on&for %%. in (.) do"

(
 %echo_on% echo ###
)

Read Echo online: https://riptutorial.com/batch-file/topic/3981/echo

https://riptutorial.com/ 49

https://stackoverflow.com/questions/34853229/why-isnt-echo-on-off-working-within-a-batch-file-if-block
https://riptutorial.com/batch-file/topic/3981/echo

Chapter 18: Elevated Privileges in Batch Files

Examples

Requesting Elevate Privileges in a Shortcut

Many tasks require elevated privileges. You can elevate user privileges to Administrator level for
your batch runtime using a shortcut:

Press alt+ and the batch file to a selected folder to create a shortcut.1.

Right click and select "Properties".2.

Select the "Shortcut" tab.3.

Click "Advanced".4.

Enable "Run as Administrator".5.

https://riptutorial.com/ 50

http://i.stack.imgur.com/9Fbi5.png

Click "OK" twice.6.

Requesting Elevated Privileges at Runtime

The following batch file will popup a UAC Prompt allowing you to accept elevated Administrator
privileges for the batch session. Add your tasks code to :usercode section of the batch, so they run
with elevated privileges.

@echo off
setlocal EnableDelayedExpansion
:: test and acquire admin rights
cd /d %~dp0 & echo/
if not "%1"=="UAC" (
 >nul 2>&1 net file && echo Got admin rights || (echo No admin rights & ^
MSHTA "javascript: var shell = new ActiveXObject('shell.application');
shell.ShellExecute("%~snx0", 'UAC', '', 'runas', 1);close();"))
:: re-test admin rights
echo/ & >nul 2>&1 net file && (echo Got admin rights & echo/) || (echo No admin rights.
Exiting... & goto :end)

:usercode
:: add your code here
echo Performing admin tasks
echo Hello >C:\test.txt

:end
timeout /t 5 >nul
exit /b

Requesting runtime elevated privileges without UAC prompt

As previous example, this script request elevation if needed. We ask the user for credentials
avoiding the UAC prompt.

@echo off

cls & set "user=" & set "pass="

https://riptutorial.com/ 51

http://i.stack.imgur.com/IFNbI.png

:: check if we have administrative access
:: --
whoami /groups | find "S-1-5-32-544">NUL 2>&1 && goto:gotAdmin

echo/
echo/ Testing administrative privileges
echo/
echo/ Please enter administrative credentials
echo/

:: get user
:: --
set/P user="* User:: "
if "%user%" EQU "" exit/B 1
:: get password
:: --
<NUL set/p=* password& call:getPass pass || exit/B 1
if "%pass%" EQU "" exit/B 1

:: check if credential has administrative privileges
:: this call can be removed
:: --
call:askIsAdmin "%user%", "%pass%" || goto:notAdmin

:: run elevated without UAC prompt
:: with the previous call enabled, we are sure credentials are right
:: without it, this will fail if credentials are invalid
:: --
call:elevateScript "%user%", "%pass%"

exit/B 0

:gotAdmin
echo(
echo(You have administrative rights.
echo(
timeout /T 7
exit/B 0

:notAdmin
echo(
echo(Invalid credential or non administrative account privileges
echo(
timeout /T 7
exit/B 1

:: invoke powershell to get the password
:: --
:getPass
SetLocal
set "psCmd=powershell -Command "$pwd = read-host ':' -AsSecureString;
$BSTR=[System.Runtime.InteropServices.Marshal]::SecureStringToBSTR($pwd);
[System.Runtime.InteropServices.Marshal]::PtrToStringAuto($BSTR)""
for /F "usebackq delims=" %%# in (`%psCmd%`) do set "pwd=%%#"
if "%pwd%" EQU "" EndLocal & exit/B 1
EndLocal & set "%1=%pwd%"
doskey /listsize=0 >NUL 2>&1 & doskey /listsize=50 >NUL 2>&1 & rem empty keyboard
buffer
exit/B 0

https://riptutorial.com/ 52

:: check if credential has administrative privileges
:: --
:askIsAdmin
SetLocal & set "u=%~1" & set "p=%~2" & set/A ret=1
set "psCmd=powershell -Command "$p='%p%'^|convertto-securestring -asplaintext -force;$c=new-
object -typename system.management.automation.pscredential('%u%',$p^);start-process
'powershell' '-Command "write-host ([Security.Principal.WindowsPrincipal]
[Security.Principal.WindowsIdentity]::GetCurrent(^)^).IsInRole([Security.Principal.WindowsBuiltInRole]::Administrator^)"'
-credential $c -passthru -wait;""
for /F "usebackq delims=" %%# in (`%psCmd%`) do @set "result=%%#"
echo %result% | find /I "true">NUL 2>&1 && set/A ret=0
EndLocal & exit/B %ret%
exit/B 1

:: run elevated without UAC prompt
:: --
:elevateScript
SetLocal & set "u=%~1" & set "p=%~2"
set "_vbs_file_=%TEMP%\runadmin.vbs"
echo set oWS ^= CreateObject^("wScript.Shell"^)>"%_vbs_file_%"
echo strcmd="C:\Windows\system32\runas.exe /user:%COMPUTERNAME%\%u% " +
"""%~dpnx0""">>"%_vbs_file_%"
echo oWS.run strcmd, 2, false>>"%_vbs_file_%"
echo wScript.Sleep 100>>%_vbs_file_%
echo oWS.SendKeys "%p%{ENTER}">>%_vbs_file_%
if exist "%TEMP%\runadmin.vbs" (set "_spawn_=%TEMP%\runadmin.vbs") else (set
"_spawn_=runadmin.vbs")
ping 1.1.1.1 -n 1 -w 50 >NUL
start /B /WAIT cmd /C "cls & "%_spawn_%" & del /F /Q "%_spawn_%" 2>NUL"
EndLocal & set "pass="
exit/B 0

Read Elevated Privileges in Batch Files online: https://riptutorial.com/batch-
file/topic/4898/elevated-privileges-in-batch-files

https://riptutorial.com/ 53

https://riptutorial.com/batch-file/topic/4898/elevated-privileges-in-batch-files
https://riptutorial.com/batch-file/topic/4898/elevated-privileges-in-batch-files

Chapter 19: Escaping special characters

Introduction

In all cmd.exe and DOS version, some characters are reserved for specific usage(e.g. command
redirection). This topic will talk about how to use the special characters without issues.

Examples

Escape using caret(^)

Most special characters can be escaped using the caret(^). Take a look at the following example.

echo > Hi
echo ^> Hi

This first command would not output > Hi because > is a special character, which means redirect
output to a file. In this case, the file is named "Hi"

However in the second command, > Hi would be outputted without any issue because the caret(^)
tells the > to stop functioning as "redirect output to file" command, now > is just a normal character.

Here's a list of special characters that can be escaped(taken, and edited from Rob van der
Woude's page)

Character Escaped Result Remarks

^ ^^

& ^&

< ^<

> ^>

| ^|

\ ^\

! ^^! Only required when DelayedExpansion is on

Escaping the caret

Carets can be stacked up to the escape other carets, consider the following example.

https://riptutorial.com/ 54

Input Output

^& &

^^^& ^&

^^^^^& ^^&

Note: The carets in bold form are escaped.

Security issue

A bit off topic here, but this is very important! An unwanted caret escape at the end of the file could
cause a memory leak!

any-invalid-command-you-like-here ^

This command would leak all the memory, rendering the system completely unusable! See
here for more information.

FIND and FINDSTR Special Characters

In find and findstr, there are some special characters that require some caution on it.

FIND

There is only one character that needs escaping - " quote. To escape it, simply add another quote
next to it. So " becomes "". Pretty simple.

FINDSTR

Findstr comes with plenty of characters to escape, so please be very cautious. Using \, we can
escape special characters. Here's a list of special characters to escape

Character Escaped Result

\ \\

[\[

] \]

https://riptutorial.com/ 55

https://stackoverflow.com/questions/15466298/simple-caret-at-end-of-windows-batch-file-consumes-all-memory

Character Escaped Result

" \"

. \.

* *

? \?

FOR /F Special Characters

FOR /F

In a FOR /F statement, some characters needs escaping, here a list(taken and edited from Rob van
der Woude's page)

Character
Escaped
Result

Remarks

' ^' Only needed in FOR /F's brackets, unless usebackq is specified.

` ^` Only needed in FOR /F's brackets, when usebackq is specified

, ^, ┒

; ^; ┃

= ^=
┣ Must be escaped in FOR /F's brackets, even if it is double-
quoted

(^(┃

) ^) ┙

Extra Special Characters

Here is a list of other special character(s), that require(s)/may need escaping, but not mentioned
above.

Character
Escaped
Result

Remarks

% %%

[LF] ^[LF]
This trick is metioned by Mark Stang in the alt.msdos.batch
news group.

https://riptutorial.com/ 56

Escaping through the pipeline

When there's an expression with a pipe the cmd starts two threads on both sides of the pipe and
the expression is parsed twice (for each side of the pipe) so carets need to be doubled.

On the left side:

echo ^^^&|more

On the right side:

break|echo ^^^&

Read Escaping special characters online: https://riptutorial.com/batch-file/topic/10693/escaping-
special-characters

https://riptutorial.com/ 57

https://riptutorial.com/batch-file/topic/10693/escaping-special-characters
https://riptutorial.com/batch-file/topic/10693/escaping-special-characters

Chapter 20: File Handling in batch files

Introduction

In this topic you will learn how to create, edit, copy, move, and delete files in batch.

Examples

Creating a File in Batch

There may be multiple reason why you want to create a text file in batch. But whatever the reason
may be, this is how you do it.

If you want to overwrite an existing text file use >. Example:

@echo off
echo info to save > text.txt

But if you want to append text to an already existing text file use >>. Example:

@echo off
echo info to save >> text.txt

If you need to save multiple lines of text to a file use ()>text.txt Example:

@echo off
(echo username
 echo password)>text.txt

How to Copy Files in Batch

You may want to copy files from one place to another. In this example we'll teach you.

You can use the command xcopy. The syntax is xcopy c:\From C:\To

Example:

@echo off
xcopy C:\Folder\text.txt C:\User\Username\Desktop

There are also switches you can use. If you want to view them open up command prompt by Start
Menu -> Accessories -> Command Prompt and then type xcopy /?

Moving Files

Using the move command, you can move files:

https://riptutorial.com/ 58

@echo off
cd C:\Foo\Bat\Baz
move /Y Meow.bat "Meow Folder" >nul

Meow.bat stands for which file to move. The "Meow Folder" moves Meow.bat to the Meow Folder. /Y
says to not prompt for confirmation. Replacing that with /-Y makes the batch file prompt for
confirmation. The >nul hides the command output. If it didn't have >nul, it would output:

 1 File Moved

Deleting Files

Using the DEL(alias for ERASE) command, one can remove files.

@echo off
del foo.ext

This command will delete foo.ext from the current directory. One can also specify path and file,
such as:

del C:\Foo\Bar\Baz.ext

But it is always ideal to put quotes (") around paths, see here for the reason.

There are a few flags available for DEL.

Flag Function

/P Prompts user before deleting file(s)

/F Forcefully remove read-only file(s)

/S Remove file(s) in subdirectories

/Q Prevents the user prompt

/A Filter: Only remove specific attributed file,

using the - character means not attributed as that type.

Copy Files Without xcopy

In this example, user BoeNoe showed how to use the command xcopy to copy files. There is also
an extra command called copy.

Here is a simple example:

https://riptutorial.com/ 59

http://www.riptutorial.com/batch-file/example/32237/quotes
http://www.riptutorial.com/batch-file/example/28704/how-to-copy-files-in-batch

copy foo.ext bar.ext

This copies foo.ext to bar.ext, and create bar.ext when it doesn't exist. We can also specify paths
to the file, but it is always ideal to put quotes (") around paths, see here for the reason.

There are also many flags available for copy, see copy /? or help copy on a command prompt to
see more.

Editing Nth Line of a File

Batch file does not come with a built-in method for replacing nth line of a file except replace and
append(> and >>). Using for loops, we can emulate this kind of function.

@echo off
set file=new2.txt

call :replaceLine "%file%" 3 "stringResult"

type "%file%"
pause
exit /b

:replaceLine <fileName> <changeLine> <stringResult>
setlocal enableDelayedExpansion

set /a lineCount=%~2-1

for /f %%G in (%~1) do (
 if !lineCount! equ 0 pause & goto :changeLine
 echo %%G>>temp.txt
 set /a lineCount-=1
)

:changeLine
echo %~3>>temp.txt

for /f "skip=%~2" %%G in (%~1) do (
 echo %%G>>temp.txt
)

type temp.txt>%~1
del /f /q temp.txt

endlocal
exit /b

The main script calls the function replaceLine, with the filename/ which line to change/ and
the string to replace.

•

Function receives the input

It loops through all the lines and echo them to a temporary file before the replacement
line

○

•

https://riptutorial.com/ 60

http://www.riptutorial.com/batch-file/example/28704/how-to-copy-files-in-batch

It echoes the replacement line to the file○

It continues to output to rest of the file○

It copies the temporary file to the original file○

And removes the temporary file.○

The main script gets the control back, and type the result.•

Read File Handling in batch files online: https://riptutorial.com/batch-file/topic/9253/file-handling-in-
batch-files

https://riptutorial.com/ 61

https://riptutorial.com/batch-file/topic/9253/file-handling-in-batch-files
https://riptutorial.com/batch-file/topic/9253/file-handling-in-batch-files

Chapter 21: For Loops in Batch Files

Syntax

for /l %%p in (startNumber, increment, endNumber) do command•
for /f %%p in (filename) do command•
for /f %%p in ("textStrings") do command•
for /f %%p in ('command') do command•
for /r drive:\path %%p in (set) do command•
for /d %%p in (directory) do command•

Remarks

The for command accepts options when the /f flag is used. Here's a list of options that can be
used:

delims=x Delimiter character(s) to separate tokens•

skip=n Number of lines to skip at the beginning of file and text strings•

eol=; Character at the start of each line to indicate a comment•

tokens=n Numbered items to read from each line or string to process•

usebackq Use another quoting style:

Use double quotes for long file names in "files"

Use single quotes for 'textStrings'

Use back quotes for `command`

•

Examples

Looping through each line in a files set

The following will echo each line in the file C:\scripts\testFile.txt. Blank lines will not be
processed.

for /F "tokens=*" %%A in (C:\scripts\testFile.txt) do (
 echo %%A
 rem do other stuff here
)

More advanced example shows, how derived in FOR loop from a restricted files set data can be
used to redirect batch execution, while saving the searched content to a file:

https://riptutorial.com/ 62

@echo off
setlocal enabledelayedexpansion

for /f %%i in ('dir "%temp%\test*.log" /o:-d /t:w /b') do (
 set "last=%temp%\%%i"
 type !last! | find /n /i "Completed" >nul 2>&1 >> %temp%\Completed.log ^
 && (echo Found in log %%i & goto :end) || (echo Not found in log %%i & set "result=1"))

:: add user tasks code here
if defined result echo Performing user tasks...

:end
echo All tasks completed
exit /b

Note, how long command strings are split into several code lines, and command groups are
separated by parentheses.

Recursively Visit Directories in a Directory Tree

for /r command can be used to recursively visit all the directories in a directory tree and perform
a command.

@echo off
rem start at the top of the tree to visit and loop though each directory
for /r %%a in (.) do (
 rem enter the directory
 pushd %%a
 echo In directory:
 cd
 rem leave the directory
 popd
)

Notes:

for /r - Loop through files (Recurse subfolders).•
pushd - Change the current directory/folder and store the previous folder/path for use by the
POPD command.

•

popd - Change directory back to the path/folder most recently stored by the PUSHD
command.

•

Renaming all files in the current directory

The following uses a variable with a for loop to rename a group of files.

SetLocal EnableDelayedExpansion

for %%j in (*.*) do (
 set filename=%%~nj
 set filename=!filename:old=new!
 set filename=Prefix !filename!
 set filename=!filename! Suffix
 ren "%%j" "!filename!%%~xj"

https://riptutorial.com/ 63

http://ss64.com/nt/for_r.html
http://ss64.com/nt/pushd.html
http://ss64.com/nt/popd.html

)

By defining the variable name %%j and associating it with all current files (*.*), we can use the
variable in a for loop to represent each file in the current directory.

Every iteration (or pass) through the loop thereby processes a different file from the defined group
(which might equally have been any group, e.g. *.jpg or *.txt).

In the first example, we substitute text: the text string "old" is replaced by the text string "new" (if,
but only if, the text "old" is present in the file's name).

In the second example, we add text: the text "Prefix " is added to the start of the file name. This is
not a substitution. This change will be applied to all files in the group.

In the third example, again we add text: the text " Suffix" is added to the end of the file name.
Again, this is not a substitution. This change will be applied to all files in the group.

The final line actually handles the renaming.

Iteration

for /L %%A in (1,2,40) do echo %%A

This line will iterate from 1 to 39, increasing by 2 each time.

The first parameter, 1, is the starting number.

The second parameter, 2, is the increment.

The third parameter, 40, is the maximum.

Read For Loops in Batch Files online: https://riptutorial.com/batch-file/topic/3695/for-loops-in-
batch-files

https://riptutorial.com/ 64

https://riptutorial.com/batch-file/topic/3695/for-loops-in-batch-files
https://riptutorial.com/batch-file/topic/3695/for-loops-in-batch-files

Chapter 22: Functions

Remarks

You can add starting variables to the function by adding <parameter> to it's label. These starting
variables can be accessed with %n where n is the starting variable's number (%1 for the first, %2 for
the second. This %n method works for %1 - %9. For parameter 10 - 255, you will need to use the
Shift command).
For example:

:function <var1> <var2>

Once you use call :function param1 param2, param1 can be accessed with %1, and param2 with %2.
Note: the <parameter> isn't strictly necessary, but it helps with readability.

A neat trick that is useful when many variable are flying about is to use setlocal and endlocal in
tandem with %n. setlocal and endlocal essentially make the function it's own separate instance of
the command prompt, variables set in it only stick around while it's in the frame.

If you are using setlocal and endlocal, and you are returning global values use this.

endlocal & set var=variable

This sets the global value var to variable. You can chain these together for multiple variables.

endlocal & set var=variable & set var2=variable number 2

This sets the global variable var to variable and the global value var2 to variable number 2.
Since code in code blocks are also performed simultaneously, you can do this as well.

if "%var%"=="" (
 endlocal
 set %~2=10
)

But, you cannot do this.

if "%var%"=="" (
 set %~2=10
 endlocal
)

Examples

Simple Function

https://riptutorial.com/ 65

http://www.riptutorial.com/batch-file/topic/4981/batch-file-command-line-arguments

call :FunctionX
rem More code...

:FunctionX
rem Some code here.
goto :eof

This is a very simple function. Functions are in-program commands that do multiple commands at
a time. Functions are made by creating a label and putting code in it, and once it is done, you add
a goto :eof or exit /b <ErrorlevelYou'dLike> which returns to where it was invoked. Functions are
invoked with call :functionname adparams.

Function With Parameters

call :tohex 14 result
rem More code...

:tohex <innum> <outvar>
set dec=%1
set outvar=%~2
rem %n and %~n are functionally identical, but %~n is slightly safer.
goto :eof

This takes the additional parameters from the call as if the function was a separate Batch file.
Note: the <parameter> isn't necessary, but it helps with readability.

Function Utilizing setlocal and endlocal

set var1=123456789
set var2=abcdef
call :specialvars
echo %var1%, %var2%
rem More code...

:specialvars
setlocal
set var1=987654321
set var2=fedcba
endlocal
goto :eof

When inside the section setlocal , endlocal section, variables are seperate from the caller's
variables, hence why %var1% and %var2% weren't changed.

Combining them all

set importantvar=importantstuff
call :stuff 123 var1
rem More code...

:stuff <arg1> <arg2>
setlocal
set importantvar=%~1

https://riptutorial.com/ 66

echo Writing some stuff into %~2!
endlocal
set %~2=some stuff
setlocal
set importantvar=junk
endlocal
goto :eof

This utilizes the basic function, setlocal and endlocal and arguments to create an odd little
function.

Anonymous functions in batch files

Anonymous functions technique uses the fact that CALL command uses internally GOTO when
subroutine is called and abusing help message printing with variable double expansion:

@echo off
setlocal
set "anonymous=/?"

call :%%anonymous%% a b c 3>&1 >nul

if "%0" == ":%anonymous%" (
 echo(
 echo Anonymous call:
 echo %%1=%1 %%2=%2 %%3=%3
 exit /b 0
)>&3

You can call an anonymous function only if it is defined after the CALL (or after finishing brackets
context if the CALL is executed within brackets). It cannot be called from an outside script ,but is a
slower than normal function call.

Calling functions from another batch file

Lets have the following file called library.cmd :

@echo off

echo -/-/- Batch Functions Library -/-/-

:function1
 echo argument1 - %1
 goto :eof

To execute only the :function1 without the code of the rest of the file you should put a label
:function1 in the caller bat and use it like this:

@echo off

call :function1 ###
exit /b %errorlevel%

https://riptutorial.com/ 67

http://www.dostips.com/forum/viewtopic.php?f=3&t=3803&start=15#p42446
https://stackoverflow.com/questions/31987023/why-call-prints-the-goto-help-message-in-this-scriptand-why-command-after-that
https://stackoverflow.com/a/30170342/388389

:function1
 library.bat %*

the output will be (the code outside the function in library.cmd is not executed):

argument1 - ###

For more info check this.

Read Functions online: https://riptutorial.com/batch-file/topic/7646/functions

https://riptutorial.com/ 68

https://stackoverflow.com/questions/30168091/call-a-subroutine-in-a-batch-from-another-batch-file
https://riptutorial.com/batch-file/topic/7646/functions

Chapter 23: If statements

Syntax

if [/i] StringToCompare1 == StringToCompare2 (commandA) else (commandB)•

if errorlevel 1 (commandA) else (commandB)•

if %errorlevel% == 1 (commandA) else (commandB)•

if exist Filename (commandA) else (commandB)•

if defined VariableName (commandA) else (commandB)•

Remarks

There are a few syntax to choose from in an if statement. We will use if string1==string2 as an
example.

1-Line Syntaxes
if string1==string2 commandA•
if string1==string2 (commandA)•

if string1==string2 (commandA) else (commandB)•
if string1==string2 (commandA) else commandB•

if string1==string2 (commandA)else (commandB)•
if string1==string2 (commandA)else commandB•

Multiline Syntaxes

if string1==string2 (
 commandA
)

Or

if string1==string2 (
 commandA
) else (
 commandB
)

There are still some extra syntaxes available.

https://riptutorial.com/ 69

Examples

Comparing numbers with IF statement

SET TEST=0

IF %TEST% == 0 (
 echo TEST FAILED
) ELSE IF %TEST% == 1 (
 echo TEST PASSED
) ELSE (
 echo TEST INVALID
)

Comparing strings

IF "%~1" == "-help" (
 ECHO "Hello"
)

where %1 refers to the first command line argument and ~ removes any quotes that were included
when the script was called.

Comparing Errorlevel

If Errorlevel 1 (
 Echo Errorlevel is 1 or higher

 REM The phrase "1 or higher" is used because If Errorlevel 1 statement means:
 REM If %Errorlevel% GEQ 1
 REM Not If %Errorlevel% EQU 1
)

or

If "%Errorlevel%"=="1" (
 Echo Errorlevel is 1
)

The script above would check the variable Errorlevel(built-in). The not operator can be used.

Set "Test=%Errorlevel%"

If "%Test%" == "1" (
 Echo Errorlevel is 1
)

This one also works.

Please note that some commands do not affect the errorlevel:

https://riptutorial.com/ 70

Break•
Echo•
Endlocal•
For•
If•
Pause•
Rem•
Rd / Rmdir•
Set•
Title•

The following commands set but not clear errorlevel:

Cls•
Goto•
Keys•
Popd•
Shift•

The following commands set exit codes but not the errorlevel:

Rd / Rmdir•

The following commands set errorlevel but not the exit codes:

Md / Mkdir•

Check if file exists

If exist "C:\Foo\Bar.baz" (
 Echo File exist
)

This checks if the file C:\Foo\Bar.baz's existence. If this exist, it echos File exist The Not operator
can also be added.

If variable exists / set

If Defined Foo (
 Echo Foo is defined
)

This would check if a variable is defined or not. Again, the Not operator can be used.

Read If statements online: https://riptutorial.com/batch-file/topic/5475/if-statements

https://riptutorial.com/ 71

https://riptutorial.com/batch-file/topic/5475/if-statements

Chapter 24: Input and output redirection

Syntax

[command] [[> | >> | < | 2> | 2>>] file]•
[[> | >> | < | 2> | 2>>] file] [command]•

Parameters

Parameter Details

command Any valid command.

> Write STDOUT to file.

>> Append STDOUT to file.

< Read file to STDIN.

2> Write STDERR to file.

2>> Append STDERR to file.

file The path to a file.

Remarks

You can add as many different redirections as you want, so long as the redirection symbol
and file remain together and in the correct order.

•

Examples

An Example...

@echo off
setlocal
set /p "_myvar=what is your name?"
echo HELLO!>file.txt
echo %_myvar%!>>file.txt
echo done!
pause
type file.txt
endlocal
exit

Now file.txt looks like:

https://riptutorial.com/ 72

HELLO!
John Smith!

(assuming you typed John Smith as your name.)

Now your batch file's console looks like:

what is your name?John Smith
done!
Press any key to continue...
HELLO!
John Smith!

(and it should exit so quickly that you may not be able to see anything after the prompt Press any
key to coninue...)

Redirect special character with delayed expansion enabled

This example echoes the special character ! into a file. This would only work when
DelayedExpansion is disabled. When delayed expansion in enabled, you will need to use three
carets and an exclamation mark like this:

@echo off
setlocal enabledelayedexpansion

echo ^^^!>file
echo ^>>>file

goto :eof

 ^> is the text
 >> is the redirect operator

pause
endlocal
exit /b

This code will echo the following text into the file

!
>

as

^^^ escapes the ! and echos it into the file
^> escapes the > and echos it into the file

Write to a file

@echo off

https://riptutorial.com/ 73

http://www.riptutorial.com/batch-file/example/24757/an-example---

cls
echo Please input the file path, surrounded by "double quotation marks" if necessary.
REM If you don't want to redirect, escape the > by preceding it with ^
set /p filepath=^>

echo Writing a random number
echo %RANDOM% > %filepath%
echo Reading the random number
type %filepath%

REM Successive file writes will overwrite the previous file contents
echo Writing the current directory tree:
> %filepath% tree /A
echo Reading the file
type %filepath%

REM nul is a special file. It is always empty, no matter what you write to it.
echo Writing to nul
type %windir%\win.ini > nul
echo Reading from nul
type nul

echo Writing nul's contents to the file
type nul > %filepath%
echo Reading the file
type %filepath%

Read Input and output redirection online: https://riptutorial.com/batch-file/topic/7502/input-and-
output-redirection

https://riptutorial.com/ 74

https://riptutorial.com/batch-file/topic/7502/input-and-output-redirection
https://riptutorial.com/batch-file/topic/7502/input-and-output-redirection

Chapter 25: Random In Batch Files

Examples

Random Numbers

Using the dynamic variable %Random%, we can get a random integer from 0 to 32767. For example:

echo %random%

This obviously, returns an integer from 0 to 32767. But sometimes we want it to be in a specific
range, say from 1 to 100.

Generating Random Numbers Within Specific Range

The basic method to do so is listed below.

set /a result=(%RANDOM%*max/32768)+min

where max is the top number that can be generated, and min is the smallest number that can be
generated. Note that you will not get any decimal numbers because set /a rounds down
automatically. To generate a decimal random number, try this:

set /a whole=(%RANDOM%*max/32768)+min
set /a decimal=(%RANDOM%*max/32768)+min
echo %whole%.%decimal%

Generating Random Numbers larger than 32767

If you try

set /a whole=(%RANDOM%*65536/32768)+1

you will most likely get random numbers that are odd.

To generate numbers larger than 32767, here is a better method.

set /a result=%random:~-1%%random:~-1%%random:~-1%%random:~-1%%random:~-1%%random:~-1%

The previous code extracts the 1 character from each %random%. But this is done on purpose.

Since the random number could be one digit number, extracting the last 2 digit won't work. That's
why we extract only the last character. In this case, we have 6 %random:~-1%, generating the

https://riptutorial.com/ 75

maximum of 999999, and the minimum at 000000, you may need to adjust this to suit your needs.

Pseudorandom

cmd.exe generate the seed based on the time the cmd section started, so if you start mutliple section
at the nearly same time, the result may not be 'random' enough.

Random Alphabets

Unfortunately, batch does not have a built-in method to generate alphabets, but using %random% and
for loop, we can 'generate' alphabets.

This is a simple idea of how this works.

set /a result=(%random%*26/32768)+1
for /f "tokens=%result%" %%I in ("A B C D E F G H I J K L M N O P Q R S T U V W X Y Z") do (
 echo %%I
)

The first set /a statement generate a random number N between 1 to 26•
The for /f statement picks the Nth item from a list of A to Z.

Return the result○

•

One can put a total 31 items in 1 for loop, and practically unlimited items using [this method].(
Batch - for loop parameter order

Pseudorandom And Uniform Random In Batch

Pseudorandom Distribution

Accorinding to this Stack Overflow answer, user CherryDT pointed out this code:

set /a num=%random% %% 100

does not give a uniform distribution.

The internal dynamic variable %random% does gives a uniform distribution, but the above code will
not be a uniformed random. This code generates a random number between 0 ~ 99, but the result
will not be uniform. 0 ~ 67 will occur more than 68 ~ 99 since 32767 MOD 100 = 67.

To generate a uniform distributed random using the above code, then 100 must be changed. Here
is a method to get a number that creates a uniform distribution.

32767 mod (32767 / n)

where n is an integer, between 0 ~ 32767, the result may be decimal and may not work in batch.

https://riptutorial.com/ 76

https://stackoverflow.com/questions/43139660/batch-for-loop-parameter-order)
https://stackoverflow.com/questions/5777400/how-to-use-random-in-batch-script/5777608#5777608

Uniform Distribution

set /a result=(%RANDOM%*100/32768)+1

This method will generate a uniform distribution. It avoids using %, which is more like "remainder"
then "modulus" in a batch script. Without using %, the result will be uniform.

Alternatively, here is an inefficient, but uniform method.

set /a test=%random%

if %test% geq [yourMinNumber] (
 if %test% leq [yourMaxNumber] (

 rem do something with your random number that is in the range.

)
)

Change [yourMinNumber] and [yourMaxNumber] accordingly to your own values.

Read Random In Batch Files online: https://riptutorial.com/batch-file/topic/10841/random-in-batch-
files

https://riptutorial.com/ 77

https://riptutorial.com/batch-file/topic/10841/random-in-batch-files
https://riptutorial.com/batch-file/topic/10841/random-in-batch-files

Chapter 26: Search strings in batch

Examples

Basic strings search

FIND command can scan large files line-by-line to find a certain string. It doesn't support wildcards
in the search string.

find /i "Completed" "%userprofile%\Downloads*.log" >> %targetdir%\tested.log

TYPE scan2.txt | FIND "Failed" /c && echo Scan failed || echo Scan Succeeded

FINDSTR command is more feature reach, and supports Regular Expressions (REGEX) search
with wildcards in the search string.

FINDSTR /L /C:"Completed" Results.txt

echo %%G | findstr /r /b /c:"[]*staff.*" >nul && echo Found!

See FIND and FINDSTR help sources for more information.

Using search results

The following script shows more advanced split file technique, where FOR function loops through
a list of files in a directory, and each file content is piped to FINDSTR that looks for a string
containing substring var preceded by undefined number of spaces and superseded by any extra
text. Once found, the searched file is replaced with a new one that contains only the text portion
above the search string.

@echo off
setlocal enabledelayedexpansion
pushd "%temp%\Test"
for %%G in ("*.txt") do (set "break="
 (for /f "tokens=*" %%H in (%%~G) do (
 if not defined break (
 echo %%H | findstr /r /b /c:"[]*var.*" >nul && set break=TRUE || echo %%H)
)) >> %%~nG_mod.txt
 del %%~G & ren %%~nG_mod.txt %%G)
popd
exit /b

Note, how setting break=TRUE allows to exit FOR loop from the file searched, once the 1st
occurrence of the search string is found.

Read Search strings in batch online: https://riptutorial.com/batch-file/topic/5476/search-strings-in-
batch

https://riptutorial.com/ 78

http://ss64.com/nt/find.html
http://ss64.com/nt/findstr.html
https://riptutorial.com/batch-file/topic/5476/search-strings-in-batch
https://riptutorial.com/batch-file/topic/5476/search-strings-in-batch

Chapter 27: Using Goto

Introduction

Goto Is simple. By using simple goto statements, you can move anywhere you want to in your
code. It can be also used to make functions (Showed in how to make functions).

Syntax

goto :Label•
goto Label•
goto :EOF•

Parameters

Parameter Details

:Label Any label that is valid (defined by :<LabelName>)

:EOF A pre-defined label that exits the current script of function(same as exit /b)

Remarks

So in other words, if the number the player inserted is 1, it'll go back to the :Name part of the code.

so if the input is equal to 1, go back to the line with :Name

Make Sure if you use this, the word begins with the Colen (:).

Examples

Example Programs

For Example:

echo Hello!
pause >nul
:Name
echo What Is Your Name
set /p Input=Name:
echo so %Input% Is Your Name, right?
echo Rename?
echo 1 For Yes
echo 2 For No
set /p Input=Rename:

https://riptutorial.com/ 79

if %Input%=1 goto Name

Another Example:

@echo off
echo 1 or 2?
set /p input=Choice:
if %input%=1 goto Skip
echo You Chose 1
pause >nul
echo So time for stuff
pause >nul
echo Random Stuf
pause >nul
:Skip
echo So that's it.
pause >nul

Goto with variable

Goto accepts the use of variable value to act as the label to goto.

Example:

@echo off

echo a = 1
echo b = 2

set /p "foo=Enter option:"
goto %foo%

However, you should check the input so it will not go to somewhere that does not exist. Going to
an undefined label will terminate your batch script instantly.

Read Using Goto online: https://riptutorial.com/batch-file/topic/9164/using-goto

https://riptutorial.com/ 80

https://riptutorial.com/batch-file/topic/9164/using-goto

Chapter 28: Variables in Batch Files

Examples

Declaration

To create a simple variable and assign it to a value or string use the SET command:

SET var=10

Here, the code declares a new variable var with a value of 10. By default all variables are stored
internally as strings; this means that the value 10 is no different to foo1234 or Hello, World!

Notes about quotation marks

Quotation marks used will be included in the variable's value:

SET var="new value" <-- %var% == '"new value"'

Spaces in variables

Batch language considers spaces to be acceptable parts of variable names. For instance, set var
= 10 will result in a variable called var that contains the value 10 (note the extra space to the right
of var and the left of the 10).

Using quotation marks to eliminate spaces

In order to prevent spaces, use quotation marks around the entire assignment; the variable name
and value. This also prevents accidental trailing spaces at the end of the line (the ␣ character
denotes a space):

SET␣var=my␣new␣value␣ <-- '%var%' == 'my new value '
SET␣"var=my␣new␣value"␣ <-- '%var%' == 'my new value'

Also, use quotation marks when joining multiple statements with & or | - alternatively, put the
symbol directly after the end of the variable's value:

SET var=val & goto :next <-- '%var%' == 'val '
SET "var=val" & goto :next <-- '%var%' == 'val'
SET var=val& goto :next <-- '%var%' == 'val'

https://riptutorial.com/ 81

Usage

echo %var%

This code will echo the value of var

If setLocal EnableDelayedExpansion is used, the following will echo the value of var (the standard
expression %var% will not work in that context).

echo !var!

In batch files, variables can be used in any context, including as parts of commands or parts of
other variables. You may not call a variable prior to defining it.

Using variables as commands:

set var=echo
%var% This will be echoed

Using variables in other variables:

set var=part1
set %var%part2=Hello
echo %part1part2%

Variable Substitution

Unlike other programming languages, in a batch file a variable is substituted by its actual value
before the batch script is run. In other words, the substitution is made when the script is read into
memory by the command processor, not when the script is later run.

This enables the use of variables as commands within the script, and as part of other variable
names in the script, etc. The "script" in this context being a line - or block - of code, surrounded by
round brackets: ().

But this behaviour does mean that you cannot change a variable's value inside a block!

SET VAR=Hello
FOR /L %%a in (1,1,2) do (
 ECHO %VAR%
 SET VAR=Goodbye
)

will print

Hello
Hello

since (as you see, when watching the script run in the command window) it is evaluated to:

https://riptutorial.com/ 82

SET VAR=Hello
FOR /L %%a in (1,1,2) do (
 echo Hello
 SET VAR=Goodbye
)

In the above example, the ECHO command is evaluated as Hello when the script is read into
memory, so the script will echo Hello forever, however many passes are made through the script.

The way to achieve the more "traditional" variable behaviour (of the variable being expanded
whilst the script is running) is to enable "delayed expansion". This involves adding that command
into the script prior to the loop instruction (usually a FOR loop, in a batch script), and using an
exclamation mark (!) instead of a percent sign (%) in the variable's name:

setlocal enabledelayedexpansion
SET VAR=Hello
FOR /L %%a in (1,1,2) do (
 echo !VAR!
 SET VAR=Goodbye
)
endlocal

will print

Hello
Goodbye

The syntax %%a in (1,1,2) causes the loop to run 2 times: on the first occasion, the variable bears
its initial value of 'Hello', but on the second pass through the loop - having executed the second
SET instruction as the last action on the 1st pass - this has changed to the revised value
'Goodbye'.

Advanced variable substitution

Now, an advanced technique. Using the CALL command allows the batch command processor to
expand a variable located on the same line of the script. This can deliver multilevel expansion, by
repeated CALL and modifier use.

This is useful in, for example, a FOR loop. As in the following example, where we have a
numbered list of variables:

"c:\MyFiles\test1.txt" "c:\MyFiles\test2.txt" "c:\MyFiles\test3.txt"

We can achieve this using the following FOR loop:

setlocal enabledelayedexpansion
for %%x in (%*) do (
 set /a "i+=1"
 call set path!i!=%%~!i!
 call echo %%path!i!%%
)
endlocal

https://riptutorial.com/ 83

Output:

c:\MyFiles\test1.txt
c:\MyFiles\test2.txt
c:\MyFiles\test3.txt

Note that the variable !i! is first expanded to its initial value, 1, then the resulting variable, %1, is
expanded to its actual value of c:\MyFiles\test1.txt. This is double expansion of the variable i. On
the next line, i is again double expanded, by use of the CALL ECHO command together with the %%
variable prefix, then printed to the screen (i.e. displayed on screen).

On each successive pass through the loop, the initial number is increased by 1 (due to the code
i+=1). Thus it increases to 2 on the 2nd pass through the loop, and to 3 on the 3rd pass. Thus the
string echoed to the screen alters with each pass.

Declare multiple variables

When multiple variables are defined at the beginning of the batch, a short definition form may be
used by employing a replacement string.

@echo off
set "vars=_A=good,_B=,_E=bad,_F=,_G=ugly,_C=,_H=,_I=,_J=,_K=,_L=,_D=6
set "%vars:,=" & set "%"

for /f %%l in ('set _') do echo %%l
exit /b

_A=good
_D=6
_E=bad
_G=ugly

Note in the above example, variables are natively alphabetically sorted, when printed to screen.

Using a Variable as an Array

It is possible to create a set of variables that can act similar to an array (although they are not an
actual array object) by using spaces in the SET statement:

@echo off
SET var=A "foo bar" 123
for %%a in (%var%) do (
 echo %%a
)
echo Get the variable directly: %var%

Result:

A
"foo bar"
123
Get the variable directly: A "foo bar" 123

https://riptutorial.com/ 84

http://ss64.com/nt/syntax-replace.html

It is also possible to declare your variable using indexes so you may retrieve specific information.
This will create multiple variables, with the illusion of an array:

@echo off
setlocal enabledelayedexpansion
SET var[0]=A
SET var[1]=foo bar
SET var[2]=123
for %%a in (0,1,2) do (
 echo !var[%%a]!
)
echo Get one of the variables directly: %var[1]%

Result:

A
foo bar
123
Get one of the variables directly: foo bar

Note that in the example above, you cannot reference var without stating what the desired index
is, because var does not exist in its own. This example also uses setlocal enabledelayedexpansion
in conjunction with the exclamation points at !var[%%a]!. You can view more information about this
in the Variable Substitution Scope Documentation.

Operations on Variables

set var=10
set /a var=%var%+10
echo %var%

The final value of var is 20.

The second line is not working within a command block used for example on an IF condition or on
a FOR loop as delayed expansion would be needed instead of standard environment variable
expansion.

Here is another, better way working also in a command block:

set var=10
set /A var+=10
echo %var%

The command prompt environment supports with signed 32-bit integer values:

addition + and +=•
subtraction - and -=•
multiplication * and *=•
division / and /=•
modulus division % and %=•
bitwise AND &•

https://riptutorial.com/ 85

http://www.riptutorial.com/batch-file/example/12859/variable-substitution

bitwise OR |•
bitwise NOT ~•
bitwise XOR ^•
bitwise left shift <<•
bitwise right shift >>•
logical NOT !•
unary minus -•
grouping with (and)•

The Windows command interpreter does not support 64-bit integer values or floating point values
in arithmetic expressions.

Note: The operator % must be written in a batch file as %% to be interpreted as operator.

In a command prompt window executing the command line set /A Value=8 % 3 assigns the value 2
to environment variable Value and additionally outputs 2.

In a batch file must be written set /A Value=8 %% 3 to assign the value 2 to environment variable
Value and nothing is output respectively written to handle STDOUT (standard output). A line set /A
Value=8 % 3 in a batch file would result in error message Missing operator on execution of the
batch file.

The environment requires the switch /A for arithmetic operations only, not for ordinary string
variables.

Every string in the arithmetic expression after set /A being whether a number nor an operator is
automatically interpreted as name of an environment variable.

For that reason referencing the value of a variable with %variable% or with !variable! is not
necessary when the variable name consists only of word characters (0-9A-Za-z_) with first
character not being a digit which is especially helpful within a command block starting with (and
ending with a matching).

Numbers are converted from string to integer with C/C++ function strtol with base being zero which
means automatic base determination which can easily result in unexpected results.

Example:

set Divided=11
set Divisor=3

set /A Quotient=Divided / Divisor
set /A Remainder=Divided %% Divisor

echo %Divided% / %Divisor% = %Quotient%
echo %Divided% %% %Divisor% = %Remainder%

set HexValue1=0x14
set HexValue2=0x0A
set /A Result=(HexValue1 + HexValue2) * -3

echo (%HexValue1% + %HexValue2%) * -3 = (20 + 10) * -3 = %Result%

https://riptutorial.com/ 86

http://www.cplusplus.com/reference/cstdlib/strtol/

set /A Result%%=7
echo -90 %%= 7 = %Result%

set OctalValue=020
set DecimalValue=12
set /A Result=OctalValue - DecimalValue

echo %OctalValue% - %DecimalValue% = 16 - 12 = %Result%

The output of this example is:

11 / 3 = 3
11 % 3 = 2
(0x14 + 0x0A) * -3 = (20 + 10) * -3 = -90
-90 %= 7 = -6
020 - 12 = 16 - 12 = 4

Variables not defined on evaluation of the arithmetic expression are substituted with value 0.

Setting variables from an input

Using the /p switch with the SET command you can define variables from an Input.

This input can be a user Input (keyboard) :

echo Enter your name :
set /p name=
echo Your name is %name%

Which can be simplified like this :

set /p name=Enter your name :
echo Your name is %name%

Or you can get the input from a file :

set /p name=< file.txt

in this case you'll get the value of the first line from file.txt

Getting the value of various line in a file :

(
 set /p line1=
 set /p line2=
 set /p line3=

) < file.txt

Read Variables in Batch Files online: https://riptutorial.com/batch-file/topic/3528/variables-in-
batch-files

https://riptutorial.com/ 87

https://riptutorial.com/batch-file/topic/3528/variables-in-batch-files
https://riptutorial.com/batch-file/topic/3528/variables-in-batch-files

Credits

S.
No

Chapters Contributors

1
Getting started with
batch-file

BoeNoe, Clijsters, Community, DavidPostill, Derpcode,
geisterfurz007, Jeffrey Lin, loadingnow, Mee, rudicangiotti,
sambul35, Scott Beeson, Sourav Ghosh, stark, SteveFest, ths

2
Add delay to Batch
file

SteveFest, Tearzz, wizzwizz4

3
Batch and JSCript
hybrids

npocmaka, SteveFest

4
Batch and VBS
hybrids

npocmaka, SteveFest

5
Batch file command
line arguments

DavidPostill, LotPings, npocmaka, sambul35

6 Batch file macros SteveFest

7
Batch files and
Powershell hybrids

npocmaka, SteveFest

8 Best Practices SteveFest

9
Bugs in cmd.exe
processor

SteveFest, X. Liu

10
Bypass arithmetic
limitations in batch
files

npocmaka

11
Changing Directories
and Listing their
Contents

Aravind .KEN, SomethingDark, SteveFest, wizzwizz4

12
Comments in Batch
Files

0x90h, BoeNoe, DavidPostill, Gábor Bakos, JosefZ, LotPings,
SachaDee, SomethingDark, Sourav Ghosh, Stephan, SteveFest
, wasatchwizard

13
Creating Files using
Batch

Aravind .KEN, David Starkey, fruitSalad266, J03L, LeoDog896,
loadingnow, Tearzz

Deprecated batch
commands and their

14 npocmaka, SteveFest

https://riptutorial.com/ 88

https://riptutorial.com/contributor/6887731/boenoe
https://riptutorial.com/contributor/4068240/clijsters
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3536342/davidpostill
https://riptutorial.com/contributor/5412719/derpcode
https://riptutorial.com/contributor/6707985/geisterfurz007
https://riptutorial.com/contributor/1440897/jeffrey-lin
https://riptutorial.com/contributor/4291215/loadingnow
https://riptutorial.com/contributor/3359226/mee
https://riptutorial.com/contributor/3837788/rudicangiotti
https://riptutorial.com/contributor/1162436/sambul35
https://riptutorial.com/contributor/736893/scott-beeson
https://riptutorial.com/contributor/4040525/sourav-ghosh
https://riptutorial.com/contributor/1507325/stark
https://riptutorial.com/contributor/6250760/stevefest
https://riptutorial.com/contributor/3961759/ths
https://riptutorial.com/contributor/6250760/stevefest
https://riptutorial.com/contributor/7572104/tearzz
https://riptutorial.com/contributor/5223757/wizzwizz4
https://riptutorial.com/contributor/388389/npocmaka
https://riptutorial.com/contributor/6250760/stevefest
https://riptutorial.com/contributor/388389/npocmaka
https://riptutorial.com/contributor/6250760/stevefest
https://riptutorial.com/contributor/3536342/davidpostill
https://riptutorial.com/contributor/6811411/lotpings
https://riptutorial.com/contributor/388389/npocmaka
https://riptutorial.com/contributor/1162436/sambul35
https://riptutorial.com/contributor/6250760/stevefest
https://riptutorial.com/contributor/388389/npocmaka
https://riptutorial.com/contributor/6250760/stevefest
https://riptutorial.com/contributor/6250760/stevefest
https://riptutorial.com/contributor/6250760/stevefest
https://riptutorial.com/contributor/6581662/x--liu
https://riptutorial.com/contributor/388389/npocmaka
https://riptutorial.com/contributor/6873330/aravind--ken
https://riptutorial.com/contributor/4158862/somethingdark
https://riptutorial.com/contributor/6250760/stevefest
https://riptutorial.com/contributor/5223757/wizzwizz4
https://riptutorial.com/contributor/2309386/0x90h
https://riptutorial.com/contributor/6887731/boenoe
https://riptutorial.com/contributor/3536342/davidpostill
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/3439404/josefz
https://riptutorial.com/contributor/6811411/lotpings
https://riptutorial.com/contributor/2414894/sachadee
https://riptutorial.com/contributor/4158862/somethingdark
https://riptutorial.com/contributor/4040525/sourav-ghosh
https://riptutorial.com/contributor/2152082/stephan
https://riptutorial.com/contributor/6250760/stevefest
https://riptutorial.com/contributor/139793/wasatchwizard
https://riptutorial.com/contributor/6873330/aravind--ken
https://riptutorial.com/contributor/1618257/david-starkey
https://riptutorial.com/contributor/6153667/fruitsalad266
https://riptutorial.com/contributor/6933436/j03l
https://riptutorial.com/contributor/7589775/leodog896
https://riptutorial.com/contributor/4291215/loadingnow
https://riptutorial.com/contributor/7572104/tearzz
https://riptutorial.com/contributor/388389/npocmaka
https://riptutorial.com/contributor/6250760/stevefest

replacements

15
Differences between
Batch (Windows)
and Terminal (Linux)

SomethingDark, SteveFest

16 Directory Stack DavidPostill, wizzwizz4

17 Echo
DavidPostill, fruitSalad266, Keith Hall, npocmaka,
SomethingDark, Tearzz, wizzwizz4

18
Elevated Privileges
in Batch Files

DavidPostill, elzooilogico, sambul35

19
Escaping special
characters

npocmaka, SteveFest

20
File Handling in
batch files

BoeNoe, LeoDog896, SteveFest

21
For Loops in Batch
Files

David Starkey, DavidPostill, Ed999, Mee, sambul35,
SomethingDark, SteveFest

22 Functions ender_scythe, npocmaka, SteveFest

23 If statements npocmaka, Ozair Kafray, SomethingDark, SteveFest

24
Input and output
redirection

cascading-style, SomethingDark, SteveFest, wizzwizz4

25
Random In Batch
Files

SteveFest

26
Search strings in
batch

sambul35

27 Using Goto LeoDog896, SteveFest

28
Variables in Batch
Files

DavidPostill, Ed999, Jay, Jeffrey Lin, Mee, Mofi, SachaDee,
sambul35, SomethingDark, SteveFest, Tearzz, ths, Toomaja,
wasatchwizard, wizzwizz4

https://riptutorial.com/ 89

https://riptutorial.com/contributor/4158862/somethingdark
https://riptutorial.com/contributor/6250760/stevefest
https://riptutorial.com/contributor/3536342/davidpostill
https://riptutorial.com/contributor/5223757/wizzwizz4
https://riptutorial.com/contributor/3536342/davidpostill
https://riptutorial.com/contributor/6153667/fruitsalad266
https://riptutorial.com/contributor/4473405/keith-hall
https://riptutorial.com/contributor/388389/npocmaka
https://riptutorial.com/contributor/4158862/somethingdark
https://riptutorial.com/contributor/7572104/tearzz
https://riptutorial.com/contributor/5223757/wizzwizz4
https://riptutorial.com/contributor/3536342/davidpostill
https://riptutorial.com/contributor/6404553/elzooilogico
https://riptutorial.com/contributor/1162436/sambul35
https://riptutorial.com/contributor/388389/npocmaka
https://riptutorial.com/contributor/6250760/stevefest
https://riptutorial.com/contributor/6887731/boenoe
https://riptutorial.com/contributor/7589775/leodog896
https://riptutorial.com/contributor/6250760/stevefest
https://riptutorial.com/contributor/1618257/david-starkey
https://riptutorial.com/contributor/3536342/davidpostill
https://riptutorial.com/contributor/1863462/ed999
https://riptutorial.com/contributor/3359226/mee
https://riptutorial.com/contributor/1162436/sambul35
https://riptutorial.com/contributor/4158862/somethingdark
https://riptutorial.com/contributor/6250760/stevefest
https://riptutorial.com/contributor/5038238/ender-scythe
https://riptutorial.com/contributor/388389/npocmaka
https://riptutorial.com/contributor/6250760/stevefest
https://riptutorial.com/contributor/388389/npocmaka
https://riptutorial.com/contributor/365188/ozair-kafray
https://riptutorial.com/contributor/4158862/somethingdark
https://riptutorial.com/contributor/6250760/stevefest
https://riptutorial.com/contributor/6939690/cascading-style
https://riptutorial.com/contributor/4158862/somethingdark
https://riptutorial.com/contributor/6250760/stevefest
https://riptutorial.com/contributor/5223757/wizzwizz4
https://riptutorial.com/contributor/6250760/stevefest
https://riptutorial.com/contributor/1162436/sambul35
https://riptutorial.com/contributor/7589775/leodog896
https://riptutorial.com/contributor/6250760/stevefest
https://riptutorial.com/contributor/3536342/davidpostill
https://riptutorial.com/contributor/1863462/ed999
https://riptutorial.com/contributor/151152/jay
https://riptutorial.com/contributor/1440897/jeffrey-lin
https://riptutorial.com/contributor/3359226/mee
https://riptutorial.com/contributor/3074564/mofi
https://riptutorial.com/contributor/2414894/sachadee
https://riptutorial.com/contributor/1162436/sambul35
https://riptutorial.com/contributor/4158862/somethingdark
https://riptutorial.com/contributor/6250760/stevefest
https://riptutorial.com/contributor/7572104/tearzz
https://riptutorial.com/contributor/3961759/ths
https://riptutorial.com/contributor/5220391/toomaja
https://riptutorial.com/contributor/139793/wasatchwizard
https://riptutorial.com/contributor/5223757/wizzwizz4

	About
	Chapter 1: Getting started with batch-file
	Remarks
	Examples
	Opening a Command Prompt
	Editing and Viewing Batch Files
	Getting Help

	Chapter 2: Add delay to Batch file
	Introduction
	Examples
	Timeout

	Timeout
	Pause
	Ping

	Ping
	Sleep

	Sleep

	Chapter 3: Batch and JSCript hybrids
	Introduction
	Examples
	Embedded JScript In a Batch File
	Run JScript With Temporary Files

	Chapter 4: Batch and VBS hybrids
	Introduction
	Examples
	Run VBS with temporary file(s)
	Embed vbscript code into batch file without using temporary files

	Chapter 5: Batch file command line arguments
	Examples
	Command line arguments supplied to batch files
	Batch files with more than 9 arguments
	Shifting arguments inside brackets

	Chapter 6: Batch file macros
	Introduction
	Examples
	Basic Macro
	Comments
	$ Character Usages

	Command separator
	Command-line arguments
	Macros In Batch Script

	Chapter 7: Batch files and Powershell hybrids
	Examples
	Run Powershell with Temporary Files
	Use POWERSHELL Command To Execute 1-line Powershell Command
	Powershell/batch hybrid without temp files

	Chapter 8: Best Practices
	Introduction
	Examples
	Quotes

	Examples and Solutions
	Example A
	Solution A
	Example B
	Solution B
	Spaghetti Code

	Examples and Solutions
	Example A
	Solution A
	Example B

	Chapter 9: Bugs in cmd.exe processor
	Introduction
	Remarks
	Examples
	Parentheses Confusion

	Cause
	Solution
	Improper Escape Character

	Cause
	Solutions
	Extra
	DEL File Extension

	Cause
	Solution
	Chapter 10: Bypass arithmetic limitations in batch files
	Introduction
	Examples
	Using powershell
	Using jscript
	Emulating pen and paper calculations, math functions implementations

	Chapter 11: Changing Directories and Listing their Contents
	Syntax
	Remarks
	Examples
	To display the current directory
	To change the current directory (without changing drives)
	Navigating to a directory on a different drive
	How to show all folders and in files in a directory
	Changing drive without CD /D
	To change the current directory to the root of the current drive

	Chapter 12: Comments in Batch Files
	Introduction
	Syntax
	Examples
	Using REM for Comments
	Using Labels as Comments
	Using Variables as Comments
	Block Comments
	Comment on the code's line
	Batch and WSF Hybrid Comment

	Chapter 13: Creating Files using Batch
	Introduction
	Syntax
	Remarks
	Examples
	Redirection
	Echo to create files
	Saving the output of many commands

	Chapter 14: Deprecated batch commands and their replacements
	Examples
	DEBUG
	APPEND
	BITSADMIN

	Chapter 15: Differences between Batch (Windows) and Terminal (Linux)
	Introduction
	Remarks
	Examples
	Batch Commands and Their Bash Equivalents
	Batch Variables and Their Bash Equivalent

	Chapter 16: Directory Stack
	Syntax
	Parameters
	Remarks
	Examples
	Delete Text Files
	Print Directory Stack

	Chapter 17: Echo
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Displaying Messages
	Echo Setting

	Getting and Setting
	Echo outputs everything literally
	Echo output to file
	@Echo off
	Turning echo on inside brackets

	Chapter 18: Elevated Privileges in Batch Files
	Examples
	Requesting Elevate Privileges in a Shortcut
	Requesting Elevated Privileges at Runtime
	Requesting runtime elevated privileges without UAC prompt

	Chapter 19: Escaping special characters
	Introduction
	Examples
	Escape using caret(^)

	Escaping the caret
	Security issue
	FIND and FINDSTR Special Characters

	FIND
	FINDSTR
	FOR /F Special Characters

	FOR /F
	Extra Special Characters
	Escaping through the pipeline

	Chapter 20: File Handling in batch files
	Introduction
	Examples
	Creating a File in Batch
	How to Copy Files in Batch
	Moving Files
	Deleting Files
	Copy Files Without xcopy
	Editing Nth Line of a File

	Chapter 21: For Loops in Batch Files
	Syntax
	Remarks
	Examples
	Looping through each line in a files set
	Recursively Visit Directories in a Directory Tree
	Renaming all files in the current directory
	Iteration

	Chapter 22: Functions
	Remarks
	Examples
	Simple Function
	Function With Parameters
	Function Utilizing setlocal and endlocal
	Combining them all
	Anonymous functions in batch files
	Calling functions from another batch file

	Chapter 23: If statements
	Syntax
	Remarks

	1-Line Syntaxes
	Multiline Syntaxes
	Examples
	Comparing numbers with IF statement
	Comparing strings
	Comparing Errorlevel
	Check if file exists
	If variable exists / set

	Chapter 24: Input and output redirection
	Syntax
	Parameters
	Remarks
	Examples
	An Example...
	Redirect special character with delayed expansion enabled
	Write to a file

	Chapter 25: Random In Batch Files
	Examples
	Random Numbers

	Generating Random Numbers Within Specific Range
	Generating Random Numbers larger than 32767
	Pseudorandom
	Random Alphabets
	Pseudorandom And Uniform Random In Batch

	Pseudorandom Distribution
	Uniform Distribution
	Chapter 26: Search strings in batch
	Examples
	Basic strings search
	Using search results

	Chapter 27: Using Goto
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Example Programs
	Goto with variable

	Chapter 28: Variables in Batch Files
	Examples
	Declaration

	Notes about quotation marks
	Spaces in variables
	Using quotation marks to eliminate spaces
	Usage
	Variable Substitution
	Declare multiple variables
	Using a Variable as an Array
	Operations on Variables
	Setting variables from an input

	Credits

