
beautifulsoup

#beautifulso

up

Table of Contents

About 1

Chapter 1: Getting started with beautifulsoup 2

Remarks 2

Versions 3

Examples 3

Installation or Setup 3

A BeautifulSoup "Hello World" scraping example 3

Chapter 2: Locating elements 5

Examples 5

Locate a text after an element in BeautifulSoup 5

Using CSS selectors to locate elements in BeautifulSoup 5

Locating comments 6

Filter functions 6

Basic usage 6

Providing additional arguments to filter functions 7

Accessing internal tags and their attributes of initially selected tag 7

Collecting optional elements and/or their attributes from series of pages 7

Credits 10

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: beautifulsoup

It is an unofficial and free beautifulsoup ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official beautifulsoup.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/beautifulsoup
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with beautifulsoup

Remarks

In this section, we discuss what Beautiful Soup is, what it is used for and a brief outline on how to
go about using it.

Beautiful Soup is a Python library that uses your pre-installed html/xml parser and converts the
web page/html/xml into a tree consisting of tags, elements, attributes and values. To be more
exact, the tree consists of four types of objects, Tag, NavigableString, BeautifulSoup and
Comment. This tree can then be "queried" using the methods/properties of the BeautifulSoup
object that is created from the parser library.

Your need : Often, you may have one of the following needs :

You might want to parse a web page to determine, how many of what tags are found, how
many elements of each tag are found and their values. You might want to change them.

1.

You might want to determine element names and values, so that you can use them in
conjunction with other libraries for web page automation, such as Selenium.

2.

You might want to transfer/extract data shown in a web page to other formats, such as a
CSV file or to a relational database such as SQLite or mysql. In this case, the library helps
you with the first step, of understanding the structure of the web page, although you will be
using other libraries to do the act of transfer.

3.

You might want to find out how many elements are styled with a certain CSS style and which
ones.

4.

Sequence for typical basic use in your Python code:

Import the Beautiful Soup library1.

Open a web page or html-text with the BeautifulSoup library, by mentioning which parser to
be used. The result of this step is a BeautifulSoup object. (Note: This parser name
mentioned, must be installed already as part of your Python pacakges. For instance,
html.parser, is an in-built, 'with-batteries' package shipped with Python. You could install
other parsers such as lxml or html5lib.)

2.

"Query" or search the BeautifulSoup object using the syntax 'object.method' and obtain the
result into a collection, such as a Python dictionary. For some methods, the output will be a
simple value.

3.

Use the result from the previous step to do whatever you want to do with it, in rest of your
Python code. You can also modify the element values or attribute values in the tree object.
Modifications don't affect the source of the html code, but you can call output formatting
methods (such as prettify) to create new output from the BeautifulSoup object.

4.

https://riptutorial.com/ 2

http://selenium-python.readthedocs.io/

Commonly used methods: Typically, the .find and .find_all methods are used to search the
tree, giving the input arguments.

The input arguments are : the tag name that is being sought, attribute names and other related
arguments. These arguments could be presented as : a string, a regular expression, a list or even
a function.

Common uses of the BeautifulSoup object include :

Search by CSS class1.
Search by Hyperlink address2.
Search by Element Id, tag3.
Search by Attribute name. Attribute value.4.

If you have a need to filter the tree with a combination of the above criteria, you could also write a
function that evaluates to true or false, and search by that function.

Versions

Version Remarks Package name Release date

3.x Version 3.2.1; Python 2 only beautifulsoup 2012-02-16

4.x Version 4.5.0; Python 2 and 3 beautifulsoup4 2016-07-20

Examples

Installation or Setup

pip may be used to install BeautifulSoup. To install Version 4 of BeautifulSoup, run the command:

pip install beautifulsoup4

Be aware that the package name is beautifulsoup4 instead of beautifulsoup, the latter name stands
for old release, see old beautifulsoup

A BeautifulSoup "Hello World" scraping example

from bs4 import BeautifulSoup
import requests

main_url = "https://fr.wikipedia.org/wiki/Hello_world"
req = requests.get(main_url)
soup = BeautifulSoup(req.text, "html.parser")

Finding the main title tag.
title = soup.find("h1", class_ = "firstHeading")
print title.get_text()

https://riptutorial.com/ 3

https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/BeautifulSoup

Finding the mid-titles tags and storing them in a list.
mid_titles = [tag.get_text() for tag in soup.find_all("span", class_ = "mw-headline")]

Now using css selectors to retrieve the article shortcut links
links_tags = soup.select("li.toclevel-1")
for tag in links_tags:
 print tag.a.get("href")

Retrieving the side page links by "blocks" and storing them in a dictionary
side_page_blocks = soup.find("div",
 id = "mw-panel").find_all("div",
 class_ = "portal")
blocks_links = {}
for num, block in enumerate(side_page_blocks):
 blocks_links[num] = [link.get("href") for link in block.find_all("a", href = True)]

print blocks_links[0]

Output:

"Hello, World!" program
#Purpose
#History
#Variations
#See_also
#References
#External_links
[u'/wiki/Main_Page', u'/wiki/Portal:Contents', u'/wiki/Portal:Featured_content',
u'/wiki/Portal:Current_events', u'/wiki/Special:Random',
u'https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en',
u'//shop.wikimedia.org']

Entering your prefered parser when instanciating Beautiful Soup avoids the usual Warning
declaring that no parser was explicitely specified.

Different methods can be used to find an element within the webpage tree.

Although a handful of other methods exist, CSS classes and CSS selectors are two handy ways to
find elements in the tree.

It should be noted that we can look for tags by setting their attribute value to True when searching
them.

get_text() allows us to retrieve text contained within a tag. It returns it as a single Unicode string.
tag.get("attribute") allows to get a tag's attribute value.

Read Getting started with beautifulsoup online:
https://riptutorial.com/beautifulsoup/topic/1817/getting-started-with-beautifulsoup

https://riptutorial.com/ 4

https://riptutorial.com/beautifulsoup/topic/1817/getting-started-with-beautifulsoup

Chapter 2: Locating elements

Examples

Locate a text after an element in BeautifulSoup

Imagine you have the following HTML:

<div>
 <label>Name:</label>
 John Smith
</div>

And you need to locate the text "John Smith" after the label element.

In this case, you can locate the label element by text and then use .next_sibling property:

from bs4 import BeautifulSoup

data = """
<div>
 <label>Name:</label>
 John Smith
</div>
"""

soup = BeautifulSoup(data, "html.parser")

label = soup.find("label", text="Name:")
print(label.next_sibling.strip())

Prints John Smith.

Using CSS selectors to locate elements in BeautifulSoup

BeautifulSoup has a limited support for CSS selectors, but covers most commonly used ones. Use
select() method to find multiple elements and select_one() to find a single element.

Basic example:

from bs4 import BeautifulSoup

data = """

 <li class="item">item1
 <li class="item">item2
 <li class="item">item3

"""

soup = BeautifulSoup(data, "html.parser")

https://riptutorial.com/ 5

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#next-sibling-and-previous-sibling
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#next-sibling-and-previous-sibling
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#css-selectors

for item in soup.select("li.item"):
 print(item.get_text())

Prints:

item1
item2
item3

Locating comments

To locate comments in BeautifulSoup, use the text (or string in the recent versions) argument
checking the type to be Comment:

from bs4 import BeautifulSoup
from bs4 import Comment

data = """
<html>
 <body>
 <div>
 <!-- desired text -->
 </div>
 </body>
</html>
"""

soup = BeautifulSoup(data, "html.parser")
comment = soup.find(text=lambda text: isinstance(text, Comment))
print(comment)

Prints desired text.

Filter functions

BeautifulSoup allows you to filter results by providing a function to find_all and similar functions.
This can be useful for complex filters as well as a tool for code reuse.

Basic usage

Define a function that takes an element as its only argument. The function should return True if the
argument matches.

def has_href(tag):
 '''Returns True for tags with a href attribute'''
 return bool(tag.get("href"))

soup.find_all(has_href) #find all elements with a href attribute
#equivilent using lambda:
soup.find_all(lambda tag: bool(tag.get("href")))

https://riptutorial.com/ 6

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#the-string-argument
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#comments-and-other-special-strings

Another example that finds tags with a href value that do not start with

Providing additional arguments to filter
functions

Since the function passed to find_all can only take one argument, it's sometimes useful to make
'function factories' that produce functions fit for use in find_all. This is useful for making your tag-
finding functions more flexible.

def present_in_href(check_string):
 return lambda tag: tag.get("href") and check_string in tag.get("href")

soup.find_all(present_in_href("/partial/path"))

Accessing internal tags and their attributes of initially selected tag

Let's assume you got an html after selecting with soup.find('div', class_='base class'):

from bs4 import BeautifulSoup

soup = BeautifulSoup(SomePage, 'lxml')
html = soup.find('div', class_='base class')
print(html)

<div class="base class">
 <div>Sample text 1</div>
 <div>Sample text 2</div>
 <div>
 URL text
 </div>
</div>

<div class="Confusing class"></div>
'''

And if you want to access <a> tag's href, you can do it this way:

a_tag = html.a
link = a_tag['href']
print(link)

https://example.com

This is useful when you can't directly select <a> tag because it's attrs don't give you unique
identification, there are other "twin" <a> tags in parsed page. But you can uniquely select a parent
tag which contains needed <a>.

Collecting optional elements and/or their attributes from series of pages

Let's consider situation when you parse number of pages and you want to collect value from

https://riptutorial.com/ 7

element that's optional (can be presented on one page and can be absent on another) for a
paticular page.

Moreover the element itself, for example, is the most ordinary element on page, in other words no
specific attributes can uniquely locate it. But you see that you can properly select its parent
element and you know wanted element's order number in the respective nesting level.

from bs4 import BeautifulSoup

soup = BeautifulSoup(SomePage, 'lxml')
html = soup.find('div', class_='base class') # Below it refers to html_1 and html_2

Wanted element is optional, so there could be 2 situations for html to be:

html_1 = '''
<div class="base class"> # №0
 <div>Sample text 1</div> # №1
 <div>Sample text 2</div> # №2
 <div>!Needed text!</div> # №3
</div>

<div>Confusing div text</div> # №4
'''

html_2 = '''
<div class="base class"> # №0
 <div>Sample text 1</div> # №1
 <div>Sample text 2</div> # №2
</div>

<div>Confusing div text</div> # №4
'''

If you got html_1 you can collect !Needed text! from tag №3 this way:

wanted tag = html_1.div.find_next_sibling().find_next_sibling() # this gives you whole tag №3

It initially gets №1 div, then 2 times switches to next div on same nesting level to get to №3.

wanted_text = wanted_tag.text # extracting !Needed text!

Usefulness of this approach comes when you get html_2 - approach won't give you error, it will
give None:

print(html_2.div.find_next_sibling().find_next_sibling())
None

Using find_next_sibling() here is crucial because it limits element search by respective nesting
level. If you'd use find_next() then tag №4 will be collected and you don't want it:

print(html_2.div.find_next().find_next())
<div>Confusing div text</div>

https://riptutorial.com/ 8

You also can explore find_previous_sibling() and find_previous() which work straight opposite
way.

All described functions have their miltiple variants to catch all tags, not just the first one:

find_next_siblings()
find_previous_siblings()
find_all_next()
find_all_previous()

Read Locating elements online: https://riptutorial.com/beautifulsoup/topic/1940/locating-elements

https://riptutorial.com/ 9

https://riptutorial.com/beautifulsoup/topic/1940/locating-elements

Credits

S.
No

Chapters Contributors

1
Getting started with
beautifulsoup

Antti Haapala, Community, Dair, DMPierre, Larry Cai, vikingben,
Whirl Mind

2 Locating elements alecxe, Dmitriy Fialkovskiy, sytech

https://riptutorial.com/ 10

https://riptutorial.com/contributor/918959/antti-haapala
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/667648/dair
https://riptutorial.com/contributor/7158927/dmpierre
https://riptutorial.com/contributor/308174/larry-cai
https://riptutorial.com/contributor/1807669/vikingben
https://riptutorial.com/contributor/4382823/whirl-mind
https://riptutorial.com/contributor/771848/alecxe
https://riptutorial.com/contributor/5908433/dmitriy-fialkovskiy
https://riptutorial.com/contributor/5747944/sytech

	About
	Chapter 1: Getting started with beautifulsoup
	Remarks
	Versions
	Examples
	Installation or Setup
	A BeautifulSoup "Hello World" scraping example

	Chapter 2: Locating elements
	Examples
	Locate a text after an element in BeautifulSoup
	Using CSS selectors to locate elements in BeautifulSoup
	Locating comments
	Filter functions

	Basic usage
	Providing additional arguments to filter functions
	Accessing internal tags and their attributes of initially selected tag
	Collecting optional elements and/or their attributes from series of pages

	Credits

