
Bosun

#bosun

Table of Contents

About 1

Chapter 1: Getting started with Bosun 2

Remarks 2

Versions 2

Examples 2

Sample Alert 2

Sample Configuration File 3

Docker Quick Start 3

Chapter 2: Alerts: Advanced Scoping 5

Examples 5

Understanding the transpose function: t() 5

Overview 5

Breaking down the function 5

What are those things? 5

Set, numberSets, and seriesSets 5

The meat of it 6

Lets step through an example: 6

Chapter 3: Complete Examples 11

Examples 11

SSL Certs Expiring 11

Template Def 11

Alert Definition 11

Alert Explanation 12

Notification Preview 12

Example Section of scollector.toml referencing the config for httpunit test cases: 12

Header Template 13

Header Template 13

Linux Bonding Health 14

Template Definition 14

Alert Definition 14

Notification Priview 15

Chapter 4: Expression Tips and Tricks 16

Examples 16

Avoiding Divide by Zero with NumberSet Operations 16

Avoiding Divide by Zero in SeriesSet Operations 16

Chapter 5: lscount 17

Parameters 17

Remarks 17

Deprecation 17

Caveats 17

Examples 18

Counting total number of documents in last 5 minutes 18

Chapter 6: lsstat 19

Parameters 19

Remarks 19

Deprecation 19

Caveats 19

Examples 20

The average value of a field over time 20

Chapter 7: Notifications: Chat Systems 21

Remarks 21

Examples 21

Slack Notifications 21

HipChat 21

Chapter 8: Notifications: Overview 23

Syntax 23

Remarks 23

Examples 23

SMS Notifications with plivo 23

Email Notifications 23

Overview 24

HTTP GET/POST Notifications 24

SMS Notifications with Twilio 25

PagerDuty Notifications 25

Changing Notification Using Lookup 25

Chapter 9: Packages and Initialization Scripts 27

Remarks 27

Examples 27

Scollector init.d script 27

Bosun init.d script 28

Bosun systemd unit file 30

Scollector systemd unit file 31

TSDBRelay systemd unit file 31

Scollector and Bosun Packages for Chef/Puppet/Vagrant/Ansible 32

Install scollector on CentOS 7 32

Chapter 10: Scollector: External Collectors 34

Remarks 34

Examples 34

Sample collector written in PowerShell 34

Twitter Collector written in Go 35

Hadoop HDFS disk usage written in Bash 36

StackExchange.Exceptional collector written in Go with Metadata 36

Powershell external collector script function 39

Chapter 11: Scollector: Overview 41

Remarks 41

Examples 41

Setup with sample scollector.toml file 41

Running Scollector as a service 42

Chapter 12: Scollector: Process and Service Monitoring 43

Remarks 43

Examples 43

Linux process and systemd service monitoring 43

Windows proccess and service monitoring 43

Windows .NET process monitoring 44

Monitoring Docker Containers 44

Chapter 13: Silencing and Squelching Alerts 46

Examples 46

Squelching a host 46

Chapter 14: Templates: Graph and GraphAll 47

Remarks 47

Examples 47

Graph using Alert Variable 47

GraphAll using Alert Variable 47

Graph or GraphAll using inline or dynamic query 48

Filter, Sort, Limit and Graph 49

Using Merge to Combine Series 49

Chapter 15: Templates: HTTPGet and HTTPGetJSON 51

Examples 51

HTTPGetJSON 51

Chapter 16: Templates: Overview 52

Syntax 52

Remarks 52

Examples 52

Low Memory Alert and Template 52

Embedded Templates and CSS Styles 54

Generic Template with optional Graphs 55

Credits 58

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: bosun

It is an unofficial and free Bosun ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official Bosun.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/bosun
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Bosun

Remarks

Bosun is an open-source, MIT licensed, monitoring and alerting system created by Stack
Overflow. It has an expressive domain specific language for evaluating alerts and creating detailed
notifications. It also lets you test your alerts against historical data for a faster development
experience. More details at http://bosun.org/.

Bosun uses a config file to store all the system settings, macros, lookups, notifications, templates,
and alert definitions. You specify the config file to use when starting the server, for example
/opt/bosun/bosun -c /opt/bosun/config/prod.conf. Changes to the file will not be activated until
bosun is restarted, and it is highly recommended that you store the file in version control.

Versions

Version Release Date

0.3.0 2015-06-13

0.4.0 2015-09-18

0.5.0 2016-03-15

Examples

Sample Alert

Bosun alerts are defined in the config file using a custom DSL. They use functions to evaluate time
series data and will generate alerts when the warn or crit expressions are non-zero. Alerts use
templates to include additional information in the notifications, which are usually an email message
and/or HTTP POST request.

template sample.alert {
 body = `<p>Alert: {{.Alert.Name}} triggered on {{.Group.host}}
 <hr>
 <p>Computation
 <table>
 {{range .Computations}}
 <tr><td>{{.Text}}</td><td>{{.Value}}</td></tr>
 {{end}}
 </table>
 <hr>
 {{ .Graph .Alert.Vars.metric }}`

 subject = {{.Last.Status}}: {{.Alert.Name}} cpu idle at {{.Alert.Vars.q | .E}}% on
{{.Group.host}}

https://riptutorial.com/ 2

http://bosun.org/
https://github.com/bosun-monitor/bosun/releases/tag/0.3.0
https://github.com/bosun-monitor/bosun/releases/tag/0.4.0
https://github.com/bosun-monitor/bosun/releases
http://bosun.org/configuration

}

notification sample.notification {
 email = alerts@example.com
}

alert sample.alert {
 template = sample.template
 $q = avg(q("sum:rate:linux.cpu{host=*,type=idle}", "1m"))
 crit = $q < 40
 notification = sample.notification
}

The alert would send an email with the subject Critical: sample.alert cpu idle at 25% on hostname
for any host who's Idle CPU usage has averaged less than 40% over the last 1 minute. This
example is a "host scoped" alert, but Bosun also supports cluster, datacenter, or globally scoped
alerts (see the fundamentals video series for more details).

Sample Configuration File

Here is an example of a Bosun config file used in a development environment:

tsdbHost = localhost:4242
httpListen = :8070
smtpHost = localhost:25
emailFrom = bosun@example.org
timeAndDate = 202,75,179,136
ledisDir = ../ledis_data
checkFrequency = 5m

notification example.notification {
 email = alerts@example.org
 print = true
}

In this case the config file indicates Bosun should connect to a local OpenTSDB instance on port
4242, listen for requests on port 8070 (on all IP addresses bound to the host), use the localhost
SMTP system for email, display additional time zones, use built in Ledis instead of external Redis
for system state, and default alerts to a 5 minute interval.

The config also defines an example.notification that can be assigned to alerts, which would usually
be included at the end of the config file (see sample alert example).

Docker Quick Start

The quick start guide includes information about using Docker to stand up a Bosun instance.

$ docker run -d -p 4242:4242 -p 80:8070 stackexchange/bosun

This will create a new instance of Bosun which you can access by opening a browser to
http://docker-server-ip. The docker image includes HBase/OpenTSDB for storing time series data,
the Bosun server, and Scollector for gathering metrics from inside the bosun container. You can

https://riptutorial.com/ 3

https://www.youtube.com/playlist?list=PLWetmRzVkFTdnjRmE-a-JRx2m8qgB6iu9
http://stackoverflow.com/questions/34394387/how-to-specify-timezones-for-world-clock-in-bosun
http://bosun.org/quickstart
http://docker-server-ip

then point additional scollector instances at the Bosun server and use Grafana to create
dashboards of OpenTSDB or Bosun metrics.

The Stackexchange/Bosun image is designed only for testing. There are no alerts defined in the
config file and the data will be deleted when the docker image is removed, but it is very helpful for
getting a feel for how bosun works. For details on creating a production instance of Bosun see
http://bosun.org/resources

Read Getting started with Bosun online: https://riptutorial.com/bosun/topic/565/getting-started-
with-bosun

https://riptutorial.com/ 4

http://bosun.org/resources
https://riptutorial.com/bosun/topic/565/getting-started-with-bosun
https://riptutorial.com/bosun/topic/565/getting-started-with-bosun

Chapter 2: Alerts: Advanced Scoping

Examples

Understanding the transpose function: t()

Overview

The transpose function is one of Bosun's more powerful functions, but it also takes effort to
understand. It is powerful because it lets us alert at different levels than the tag structure of the
underlying data.

Transpose changes the scope of your alert. This lets you scope things into larger collections. So
for example if you have queries that return a scope of host,cluster and want to alert based on
cluster health and not individual hosts, transpose can be used to do this.

What is scope?
Scope is the list of tag keys that make up your final result. For example:

If the scope is host, you get per host results in your alerts.•
If your scope is empty (no tag keys) then you could only possibly get one alert.•
If your scope is host,iface you could get alerts for every interface on every host in the result.•

So the alerts we get are tied to the tags for the data. The transpose function allows us to alert at
different scopes other than the metric tag structure. So we can query things that result in
host,cluster but alert at a cluster scope.

Breaking down the function

The signature of the transpose function is:

t(numberSet, group string) seriesSet

So it takes a numberSet, a scope a.k.a. group for the result, and returns a seriesSet

What are those things?

Set, numberSets, and seriesSets

The results of many functions in bosun are sets, usually a numberSet or seriesSet. The entire set
in the result shares the same tag keys. And each item in the set is unique to the value of each
corresponding key. If the value of each item in the set is a series
(timestamp:value,timestamp:value) then we have a seriesSet. If the value of each item is just a

https://riptutorial.com/ 5

number, then we have a numberSet.

The meat of it

Transpose takes a numberSet and returns a seriesSet with a larger scope (less tag keys). The
resulting seriesSet is a bit strange because the index is not time as is the usual case of a
seriesSet, so timevalue is no longer time and is just an index number. It should therefore be
ignored.

So we end up transposing set items into values of the resulting set, where the resulting set type (a
seriesSet) can hold multiple values:

Lets step through an example:

This returns a seriesSet of a scope of host,cluster
$connByHostCluster =
q("sum:rate{counter,,1}:elastic.http.total_opened{cluster=StackExchangeNetwork|LogStash,host=ny-
*}", "1h", "")

https://riptutorial.com/ 6

http://i.stack.imgur.com/4xMNL.jpg

Turn each item in the set into a numberSet by reducing it via average
$avgConnByHostCluster = avg($connByHostCluster)

https://riptutorial.com/ 7

http://i.stack.imgur.com/ExUnZ.jpg

Transpose to new scope
$clusterScope = t($avgConnByHostCluster, "cluster")

https://riptutorial.com/ 8

http://i.stack.imgur.com/rhAer.jpg

You can now do neat things with each item that represents the cluster. For example you could do
sum($clusterScope > 5) (Note that $clusterScope is a seriesSet) to get the count of items in the
cluster where each item has a rate above five. You could then alert if the count is greater than a
certain value. For example, you could also use len($clusterScope) to get the number of hosts in

https://riptutorial.com/ 9

http://i.stack.imgur.com/Wm7lD.jpg

each cluster, and alert on the count of hosts above the threshold relative to the number of hosts in
the cluster.

Read Alerts: Advanced Scoping online: https://riptutorial.com/bosun/topic/7213/alerts--advanced-
scoping

https://riptutorial.com/ 10

https://riptutorial.com/bosun/topic/7213/alerts--advanced-scoping
https://riptutorial.com/bosun/topic/7213/alerts--advanced-scoping

Chapter 3: Complete Examples

Examples

SSL Certs Expiring

This data is collected by the http_unit and scollector. It warns when an alert is going to expire
within a certain amount of days, and then goes critical if the cert has passed the expiration date.
This follows the recommended default of warn and crit usage in Bosun (warn: something is going
to fail, crit: something has failed).

Template Def

template ssl.cert.expiring {
 subject = {{.Last.Status}}: SSL Cert Expiring in {{.Eval .Alert.Vars.daysLeft | printf
"%.2f"}} Days for {{.Group.url_host}}
 body = `
 {{ template "header" . }}
 <table>
 <tr>
 <td>Url</td>
 <td>{{.Group.url_host}}</td>
 </tr>
 <tr>
 <td>IP Address Used for Test</td>
 <td>{{.Group.ip}}</td>
 </tr>
 <tr>
 <td>Days Remaining</td>
 <td>{{.Eval .Alert.Vars.daysLeft | printf "%.2f"}}</td>
 </tr>
 <tr>
 <td>Expiration Date</td>
 <td>{{.Last.Time.Add (parseDuration (.Eval .Alert.Vars.hoursLeft | printf "%vh"))
}}</td>
 </tr>
 </table>
 `
}

Alert Definition

alert ssl.cert.expiring {
 template = ssl.cert.expiring
 ignoreUnknown = true
 $notes = This alert exists to notify of us any SSL certs that will be expiring for hosts
monitored by our http unit test cases defined in the scollector configuration file.
 $expireEpoch = last(q("min:hu.cert.expires{host=ny-bosun01,url_host=*,ip=*}", "1h", ""))
 $hoursLeft = ($expireEpoch - epoch()) / d("1h")

https://riptutorial.com/ 11

 $daysLeft = $hoursLeft / 24
 warn = $daysLeft <= 50
 crit = $daysLeft <= 0
 warnNotification = default
 critNotification = default
}

Alert Explanation

q(..) (func doc) querties OpenTSDB, one of Bosun's supported backends. In returns a type
called a seriesSet (which is set of time series, each identified by tag).

•

last() (func doc) takes the last value of each series in the seriesSet and returns a
numberSet.

•

The metric, hu.cert.expires. is returning the Unix time stamp of when the cert will expire•
epoch() (func doc) returns the current unix timestamp. So subtracting current unix timestamp
from the expiration epoch gives is the remaining time.

•

d() (func doc) returns the number of seconds represented by the duration string, the duration
string uses the same units as OpenTSDB.

•

Notification Preview

Example Section of scollector.toml referencing the

https://riptutorial.com/ 12

http://bosun.org/expressions.html#qquery-string-startduration-string-endduration-string-seriesset
http://bosun.org/expressions.html#lastseriesset-numberset
http://bosun.org/expressions.html#epoch-scalar
http://bosun.org/expressions.html#dstring-scalar
http://opentsdb.net/docs/build/html/user_guide/query/dates.html
http://i.stack.imgur.com/xivKg.jpg

config for httpunit test cases:

[[HTTPUnit]]
 TOML = "/opt/httpunit/data/httpunit.toml"

Header Template

In Bosun templates can reference other templates. For emails notifications, you might have a
header template to show things you want in all alerts.

Header Template

template header {
 body = `
 <style>
 td, th {
 padding-right: 10px;
 }
 </style>
 <p style="font-weight: bold; text-decoration: underline;">
 Acknowledge
 View Alert in Bosun's Rule Editor
 {{if .Group.host}}
 <a style="padding-right: 10px;"
href="https://status.stackexchange.com/dashboard/node?node={{.Group.host}}">View
{{.Group.host}} in Opserver
 <a
href="http://kibana.ds.stackexchange.com/app/kibana?#/discover?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:now-
15m,mode:quick,to:now))&_a=(columns:!(_source),index:%5Blogstash-
%5DYYYY.MM.DD,interval:auto,query:(query_string:(analyze_wildcard:!t,query:'logsource:{{.Group.host}}')),sort:!('@timestamp',desc))">View
{{.Group.host}} in Kibana
 {{end}}
 </p>
 <table>
 <tr>
 <td>Key: </td>
 <td>{{printf "%s%s" .Alert.Name .Group }}</td>
 </tr>
 <tr>
 <td>Incident: </td>
 <td>#{{.Last.IncidentId}}</td>
 </tr>
 </table>

 {{if .Alert.Vars.notes}}
 <p>Notes: {{html .Alert.Vars.notes}}</p>
 {{end}}
 {{if .Alert.Vars.additionalNotes}}
 <p>
 {{if not .Alert.Vars.notes}}
 Notes:
 {{end}}
 {{ html .Alert.Vars.additionalNotes }}</p>
 {{end}}

https://riptutorial.com/ 13

https://github.com/StackExchange/httpunit

 `
}

Explanations:

<style>...: Although style blocks are not supported in email, bosun processes style blocks
and then inlines them into the html. So this is shared css for any templates that include this
template.

•

The .Ack link takes you to a Bosun view where you can acknowledge the alert. The .Rule link
takes you to Bosun's rule editor setting the template, rule, and time of the alert so you can
modify the alert, or run it at different times.

•

{{if .Group.host}}...: .Group is the tagset of the alert. So when the warn or crit expression
has tags like host=*, we know the alert is in reference to a specific host in our environment.
So we then show some links to host specific things.

•

The Alert name and key are included to ensure that at least the most basic information is in
any alert

•

.Alert.Vars.notes this is included so if in any alert someone defines the $notes variables it will
be show in the alert. The encourages people to write notes explaining the purpose of the
alert and how to interpret it.

•

.Alert.Vars.additionalNotes is there in case we want to define a macro with notes, and then
have instances of that macro with more notes added to the macro notes.

•

Linux Bonding Health

Template Definition

template linux.bonding {
 subject = {{.Last.Status}}: {{.Eval .Alert.Vars.by_host}} bad bond(s) on {{.Group.host}}
 body = `{{template "header" .}}
 <h2>Bond Status</h2>
 <table>
 <tr><th>Bond</th><th>Slave</th><th>Status</th></tr>
 {{range $r := .EvalAll .Alert.Vars.slave_status}}
 {{if eq $.Group.host .Group.host}}
 <tr>
 <td>{{$r.Group.bond}}</td>
 <td>{{$r.Group.slave}}</td>
 <td {{if lt $r.Value 1.0}} style="color: red;" {{end}}>{{$r.Value}}</td>
 </tr>
 {{end}}
 {{end}}
 </table>
 `
}

Alert Definition

alert linux.bonding {

https://riptutorial.com/ 14

 template = linux.bonding
 macro = host_based
 $notes = This alert triggers when a bond only has a single interface, or the status of a
slave in the bond is not up
 $slave_status = max(q("sum:linux.net.bond.slave.is_up{bond=*,host=*,slave=*}", "5m", ""))
 $slave_status_by_bond = sum(t($slave_status, "host,bond"))
 $slave_count = max(q("sum:linux.net.bond.slave.count{bond=*,host=*}", "5m", ""))
 $no_good = $slave_status_by_bond < $slave_count || $slave_count < 2
 $by_host = max(t($no_good, "host"))
 warn = $by_host
}

Notification Priview

Read Complete Examples online: https://riptutorial.com/bosun/topic/714/complete-examples

https://riptutorial.com/ 15

http://i.stack.imgur.com/8kolx.jpg
https://riptutorial.com/bosun/topic/714/complete-examples

Chapter 4: Expression Tips and Tricks

Examples

Avoiding Divide by Zero with NumberSet Operations

In order to avoid a divide by zero with a numberSet (what you get after a reduction like avg()) you
can short-circuit the logic:

$five = min(q("sum:rate{counter,,1}:haproxy.frontend.hrsp{}{status_code=5xx}", "1h", ""))
$two = avg(q("sum:rate{counter,,1}:haproxy.frontend.hrsp{}{status_code=2xx}", "1h", ""))

$five && $two / $five

If the above were just $two / $five then when $five is zero, the result will be +Inf which will cause
an error when used as warn or crit value in an alert expression.

Avoiding Divide by Zero in SeriesSet Operations

With series operations, things are dropped from the left side if there is no corresponding
timestamp/datapoint in the right side. You can mix this with the dropbool function to avoid divide
by zero:

$five = q("sum:rate{counter,,1}:haproxy.frontend.hrsp{}{status_code=5xx}", "1h", "")
$two = q("sum:rate{counter,,1}:haproxy.frontend.hrsp{}{status_code=2xx}", "1h", "")

$two / dropbool($five, ($five > 0))

It is possible after dropbool there will be an empty set which would also error. So series operations
are recommended for visualization and for alerting it is recommended to use reduction functions
earlier in the expression. Alternatively you could wrap the operation in the nv func after reduction:
nv(avg($two / dropbool($five, ($five > 0))), 0)

Read Expression Tips and Tricks online: https://riptutorial.com/bosun/topic/5487/expression-tips-
and-tricks

https://riptutorial.com/ 16

https://riptutorial.com/bosun/topic/5487/expression-tips-and-tricks
https://riptutorial.com/bosun/topic/5487/expression-tips-and-tricks

Chapter 5: lscount

Parameters

Parameter Details

indexRoot The root name of the index to hit, the format is expected to be
fmt.Sprintf("%s-%s", index_root, d.Format("2006.01.02"))

keyString
Creates groups (like tagsets) and can also filter those groups. It is the
format of "field:regex,field:regex...". The :regex can be ommited.

filterString
An Elastic regexp query that can be applied to any field. It is in the same
format as the keystring argument.

bucketDuration
The same format is an opentsdb duration, and is the size of buckets
returned (i.e. counts for every 10 minutes)

startDuration
set the time window from now - see the OpenTSDB q() function for more
details.

endDuration
set the time window from now - see the OpenTSDB q() function for more
details.

Remarks

Deprecation

The LogStash query functions are deprecated, and only for use with v1.x of ElasticSearch. If
you are running v2 or above of ElasticSearch, then you should refer to the Elastic Query functions.

Caveats

There is currently no escaping in the keystring, so if you regex needs to have a comma or
double quote you are out of luck.

•

The regexs in keystring are applied twice. First as a regexp filter to elastic, and then as a go
regexp to the keys of the result. This is because the value could be an array and you will get
groups that should be filtered. This means regex language is the intersection of the golang
regex spec and the elastic regex spec. Elastic uses lucene style regex. This means regexes
are always anchored (see the documentation).

•

If the type of the field value in Elastic (aka the mapping) is a number then the regexes won’t
act as a regex. The only thing you can do is an exact match on the number, ie
“eventlogid:1234”. It is recommended that anything that is a identifier should be stored as a

•

https://riptutorial.com/ 17

string since they are not numbers even if they are made up entirely of numerals.
Alerts using this information likely want to set ignoreUnknown, since only “groups” that
appear in the time frame are in the results

•

Examples

Counting total number of documents in last 5 minutes

lscount returns a time bucketed count of matching documents in the LogStash index, according to
the specified filter.

A trivial use of this would be to check how many documents in total have been received in the 5
minutes, and alert if it is below a certain threshold.

A Bosun alert for this might look like:

alert logstash.docs {
 $notes = This alerts if there hasn't been any logstash documents in the past 5 minutes
 template = logstash.docs
 $count_by_minute = lscount("logstash", "", "", "5m", "5m", "")
 $count_graph = lscount("logstash", "", "", "1m", "60m", "")
 $q = avg($count_by_minute)
 crit = $q < 1
 critNotification = default
}

template logstash.docs {
 body = `{{template "header" .}}
 {{.Graph .Alert.Vars.count_graph }}
 {{template "def" .}}
 {{template "computation" .}}`
 subject = {{.Last.Status}}: Logstash docs per second: {{.Eval .Alert.Vars.q | printf
"%.2f"}} in the past 5 minutes
}

This has two instances of lscount:

$count_by_minute = lscount("logstash", "", "", "5m", "5m", "")
This counts the number of documents from the last 5 minutes, in a single 5 minute
bucket. You will get one data point in the returned seriesSet with the total number of
documents from the last 5 minutes, in the latest logstash index

○

•

$count_graph = lscount("logstash", "", "", "1m", "60m", "")
This counts the number of documents from the last hour, in 1 minute buckets. There
will be a total of 60 data points in the seriesSet returned, which in this instance is used
in a graph.

○

•

Read lscount online: https://riptutorial.com/bosun/topic/568/lscount

https://riptutorial.com/ 18

https://riptutorial.com/bosun/topic/568/lscount

Chapter 6: lsstat

Parameters

Parameter Details

indexRoot The root name of the index to hit, the format is expected to be
fmt.Sprintf("%s-%s", index_root, d.Format("2006.01.02"))

keyString
Creates groups (like tagsets) and can also filter those groups. It is the
format of "field:regex,field:regex...". The :regex can be ommited.

filterString
An Elastic regexp query that can be applied to any field. It is in the same
format as the keystring argument.

field
The field in ElasticSearch to perform the operation on. Must be a numeric
field.

rStat Can be one of avg, min, max, sum, sum_of_squares, variance, std_deviation

bucketDuration
The same format is an opentsdb duration, and is the size of buckets
returned (i.e. counts for every 10 minutes)

startDuration
set the time window from now - see the OpenTSDB q() function for more
details.

endDuration
set the time window from now - see the OpenTSDB q() function for more
details.

Remarks

Deprecation

The LogStash query functions are deprecated, and only for use with v1.x of ElasticSearch. If
you are running v2 or above of ElasticSearch, then you should refer to the Elastic Query functions.

Caveats

There is currently no escaping in the keystring, so if you regex needs to have a comma or
double quote you are out of luck.

•

The regexs in keystring are applied twice. First as a regexp filter to elastic, and then as a go
regexp to the keys of the result. This is because the value could be an array and you will get
groups that should be filtered. This means regex language is the intersection of the golang

•

https://riptutorial.com/ 19

regex spec and the elastic regex spec. Elastic uses lucene style regex. This means regexes
are always anchored (see the documentation).
If the type of the field value in Elastic (aka the mapping) is a number then the regexes won’t
act as a regex. The only thing you can do is an exact match on the number, ie
“eventlogid:1234”. It is recommended that anything that is a identifier should be stored as a
string since they are not numbers even if they are made up entirely of numerals.

•

Alerts using this information likely want to set ignoreUnknown, since only “groups” that
appear in the time frame are in the results

•

Examples

The average value of a field over time

lsstat returns various summary stats per bucket for the specified field. The field must be numeric
in elastic.

rStat can be one of avg, min, max, sum, sum_of_squares, variance, std_deviation.

The rest of the fields behave the same as lscount, except that there is no division based on
bucketDuration (since these are summary stats)

$max_querytime_by_minute = lsstat("logstash", "", "env:prod", "querytime", "max", "1m", "1h",
"")

The lsstat in this queries the logstash indexes, filters on a field env with the value prod, and gives
the max value of querytime for the last hour, in one minute buckets.

Read lsstat online: https://riptutorial.com/bosun/topic/569/lsstat

https://riptutorial.com/ 20

https://riptutorial.com/bosun/topic/569/lsstat

Chapter 7: Notifications: Chat Systems

Remarks

In Bosun notifications are used for both new alert incidents and when an alert is acked/closed/etc.
If you don't want the other events to trigger a notification add runOnActions = false to the
notification definition.

See Notification Overview for more examples.

Examples

Slack Notifications

#Post to a slack.com chatroom via their Incoming Webhooks integration
notification slack{
 post = https://hooks.slack.com/services/abcdefg/abcdefg/abcdefghijklmnopqrstuvwxyz
 body = {"text": {{.|json}}}
}
#To customize the icon and user use:
body = {"text": {{.|json}}, "icon_emoji": ":hammer_and_wrench:", "username": "Bosun"}

HipChat

Bosun notifications are assigned to alert definitions using warnNotification and critNotification and
indicate where to send the rendered alert template when a new incident occur. The
${env.VARIABLENAME} syntax can be used to load values from an Environmental Variable.

In order to post alerts to HipChat, start by creating an Integration named "Bosun". The Integration
will provide the URL necessary to post messages (including the token) as seen here:

All that's left is to setup the template and notification:

#Example template

https://riptutorial.com/ 21

http://www.riptutorial.com/bosun/topic/612/notifications--overview
https://bosun.org/configuration#notification
http://www.riptutorial.com/bosun/example/1991/overview
http://i.stack.imgur.com/LhJwf.png

template hipchat.bandwidth {
 subject = `{"color":{{if lt (.Eval .Alert.Vars.dlspeed) (.Eval .Alert.Vars.dlcritval)
}}"red"{{else}} {{if lt (.Eval .Alert.Vars.dlspeed) (.Eval .Alert.Vars.dlwarnval)
}}"yellow"{{else}}"green"{{end}}{{end}},"message":"Server: {{.Group.host}}
Metric:
{{.Alert.Name}}

DL speed: {{.Eval .Alert.Vars.dlspeed | printf "%.2f" }}
DL
Warning threshold: {{.Alert.Vars.dlwarnval}}
DL Critical threshold:
{{.Alert.Vars.dlcritval}}

Notes: {{.Alert.Vars.notes}}

RunBook: wiki article","notify":false,"message_format":"html"}`
}

#Example notification
notification hipchat {
 #Create an Integration in HipChat to generate the POST URL
 #Example URL: https://<YOURHIPCHATSERVER_FQDN>/v2/room/<ROOM_NUMBER>/<TOKEN>
 post = ${env.HIPCHAT_ROOM_ABC}
 body = {{.}}
 contentType = application/json
}

Read Notifications: Chat Systems online: https://riptutorial.com/bosun/topic/7153/notifications---
chat-systems

https://riptutorial.com/ 22

https://riptutorial.com/bosun/topic/7153/notifications---chat-systems
https://riptutorial.com/bosun/topic/7153/notifications---chat-systems

Chapter 8: Notifications: Overview

Syntax

notification name {
email = dev-alerts@example.com, prod-alerts@example.com, ...○

post = http://example.com○

get = http://example.com○

next = another-notification-definition○

timeout = 30m○

runOnActions = false○

body = {"text": {{.|json}}}○

contentType = application/json○

print = true○

•

}•

Remarks

In Bosun notifications are used for both new alert incidents and when an alert is acked/closed/etc.
If you don't want the other events to trigger a notification add runOnActions = false to the
notification definition.

See also:

Notifications: Chat Systems•

Examples

SMS Notifications with plivo

There are two ids you will need from your plivo account. Replace authid and authtoken in this
snippet with those values. The src value should also be a valid number assigned to your account.
dst can be any number you want, or multiple seperated by <.

notification sms {
 post = https://authid:authtoken@api.plivo.com/v1/Account/authid/Message/
 body = {"text": {{.|json}}, "dst":"15551234567","src":"15559876543"}
 contentType = application/json
 runOnActions = false
}

This will text the alert subject to all numbers in dst.

Email Notifications

To send email notifications you need to add the following settings to your config file:

https://riptutorial.com/ 23

http://example.com
http://example.com
http://www.riptutorial.com/bosun/topic/7153/notifications---chat-systems
https://www.plivo.com/sms-api/

#Using a company SMTP server (note only one can be define)
smtpHost = mail.example.com:25
emailFrom = bosun@example.com

#Using Gmail with TLS and username/password
smtpHost = smtp.gmail.com:587
emailFrom = myemail@gmail.com
smtpUsername = myemail@gmail.com
smtpPassword = ${env.EMAILPASSWORD}

#Chained notifications will escalate if an incident is not acked before the timeout
notification it {
 email = it-alerts@example.com
 next = oncall
 timeout = 30m
}

#Could set additional escalations here using any notification type (email/get/post)
#or set next = oncall to send another email after the timeout if alert is still not acked
notification oncall {
 email = escalated-alerts@example.com
}

#Multiple email addresses can be specified in one notification definition
#Use runOnActions = false to exclude updates on actions (ack/closed/forget)
notification engineering {
 email = core-alerts@example.com,qa-alerts@example.com,prod-alerts@example.com
 runOnActions = false
}

Overview

Bosun notifications are assigned to alert definitions using warnNotification and critNotification and
indicate where to send the rendered alert template when a new incident occur. Notifications can
be sent via email or use HTTP GET/POST requests. There also is a Print notification that just
adds information to the Bosun log file.

If you want to hide a URL, Password, or API Key from being in plain text you can use
${env.VARIABLENAME} to load the value from an Environmental Variable (usually exported from the
Bosun init script). Please note that there are no protections on who can access the variables (they
can easily be displayed in a template) but it does prevent them from being displayed directly on
the Rule Editor page or in the .conf file.

notification logfile {
 print = true
}

#print can be added to any notification type to help with debugging
notification email {
 email = sysadmins@example.com
 print = true
}

HTTP GET/POST Notifications

https://riptutorial.com/ 24

https://bosun.org/configuration#notification

Alert incidents can be sent to other system using HTTP GET or HTTP POST requests. You can
either send the rendered alert directly (using markdown in the template perhaps) or use body = ...
{{.|json}} ... and contentType to send the alert data over as part of a JSON object. Another
approach is to only send the basic incident information and then have the receiving system pull
additional details from the bosun API.

notification postjson {
 post = ${env.POSTURL}
 body = {"text": {{.|json}}, apiKey=${env.APIKEY}}
 contentType = application/json
}

The contentType for HTTP GET/POST requests is application/x-www-form-urlencoded by
default.

SMS Notifications with Twilio

Swap out AccountSid, AuthToken, ToPhoneNumber and FromPhoneNumber for your credentials/intended
recipients. You need to ensure that if the ToPhoneNumber and FromPhoneNumber have + in them, they
are urlencoded (ie: as %2B)

notification sms {
 post = https://{AccountSid}:{Authtoken}@api.twilio.com/2010-04-
01/Accounts/{AccountSid}/Messages.json
 body = Body={{.}}&To={ToPhoneNumber}&From={FromPhoneNumber}
}

From gist: https://gist.github.com/aodj/58535c4c152b6073eaf5

PagerDuty Notifications

#Post to pagerduty.com
notification pagerduty {
 post = https://events.pagerduty.com/generic/2010-04-15/create_event.json
 contentType = application/json
 runOnActions = false
 body = `{
 "service_key": "myservicekey",
 "incident_key": {{.|json}},
 "event_type": "trigger",
 "description": {{.|json}},
 "client": "Bosun",
 "client_url": "http://bosun.example.com/"
 }`
}

Changing Notification Using Lookup

In some cases you may want to change which notification you use based on a tag in the Alert
keys. You can do this using the Lookup feature. Note: Lookup only works if you are using
OpenTSDB and sending data to the Bosun to be indexed. For other backends or non-indexed data

https://riptutorial.com/ 25

https://gist.github.com/aodj/58535c4c152b6073eaf5
http://bosun.org/expressions#lookuptable-string-key-string-numberset

you have to use lookupSeries instead.

notification default {
 email = team@example.com
}

notification JSmith{
 email = JSmith@example.com
}

#This will use the JSmith lookup for any alerts where the host tag starts with ny-jsmith
lookup host_base_contact {
 entry host=ny-jsmith* {
 main_contact = JSmith
 }
 entry host=* {
 main_contact = default
 }
}

alert blah {
 ...
 warn = q(...)
 warnNotification = lookup("host_base_contact", "main_contact")
 critNotification = lookup("host_base_contact", "main_contact")
}

This can also be applied to multiple alerts using Macros:

macro host.based.contacts {
 warnNotification = lookup("host_base_contact", "main_contact")
 critNotification = lookup("host_base_contact", "main_contact")
}

Read Notifications: Overview online: https://riptutorial.com/bosun/topic/612/notifications--overview

https://riptutorial.com/ 26

http://bosun.org/configuration#macro
https://riptutorial.com/bosun/topic/612/notifications--overview

Chapter 9: Packages and Initialization Scripts

Remarks

There currently aren't any installation packages provided for Bosun or Scollector, only binaries on
the Bosun release page. It is up to the end user to find the best way to deploy the files and run
them as a service.

Examples

Scollector init.d script

Example init script for scollector:

#!/bin/bash

scollector Startup script for scollector.

chkconfig: 2345 90 60
description: scollector is a replacement for OpenTSDB's TCollector \
and can be used to send metrics to a Bosun server

Source function library.
. /etc/init.d/functions

RETVAL=0
PIDFILE=/var/run/scollector.pid

prog=scollector
exec=/opt/scollector/scollector-linux-amd64
scollector_conf=/opt/scollector/scollector.toml
scollector_logs=/var/log/scollector
scollector_opts="-conf $scollector_conf -log_dir=$scollector_logs"

lockfile=/var/lock/subsys/$prog

Source config
if [-f /etc/sysconfig/$prog] ; then
 . /etc/sysconfig/$prog
fi

start() {
 [-x $exec] || exit 5
 umask 077
 echo -n $"Starting scollector: "
 daemon --check=$exec --pidfile="$PIDFILE" "{ $exec $scollector_opts & } ; echo \$! >|
$PIDFILE"
 RETVAL=$?
 echo
 [$RETVAL -eq 0] && touch $lockfile
 return $RETVAL
}
stop() {
 echo -n $"Shutting down scollector: "

https://riptutorial.com/ 27

https://github.com/bosun-monitor/bosun/releases

 killproc -p "$PIDFILE" $exec
 RETVAL=$?
 echo
 [$RETVAL -eq 0] && rm -f $lockfile
 return $RETVAL
}
rhstatus() {
 status -p "$PIDFILE" -l $prog $exec
}
restart() {
 stop
 start
}

case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart)
 restart
 ;;
 status)
 rhstatus
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart|status}"
 exit 3
esac

exit $?

Bosun init.d script

Here is an init.d script for Bosun that includes setting Environmental Variables that can be used to
hide secrets from the raw config. It uses http://software.clapper.org/daemonize/ to run the program
as a daemon.

#!/bin/sh

/etc/rc.d/init.d/bosun
bosun

chkconfig: - 98 02
description: bosun

BEGIN INIT INFO
Provides: bosun
Required-Start: networking
Required-Stop: networking
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Runs teh bosun
Description: bosun

END INIT INFO

https://riptutorial.com/ 28

http://software.clapper.org/daemonize/

Source function library.
. /etc/rc.d/init.d/functions

base_dir="/opt/bosun"
exec="/opt/bosun/bosun"
prog="bosun"
config="${base_dir}/config/prod.conf"

[-e /etc/sysconfig/$prog] && . /etc/sysconfig/$prog

lockfile=/var/lock/subsys/$prog
pidfile=/var/run/bosun.pid
logfile=/var/log/$prog.log

#These "secrets" can be used in the prod.conf using syntax like ${env.CHAT} or ${env.API_KEY}
export CHAT=https://chat.company.com/rooms/123?key=123456789012345678901234567890
export API_KEY=123456789012345678901234567890

check() {
 $exec -t -c $config
 if [$? -ne 0]; then
 echo "Errors found in configuration file, check it with '$exec -t'."
 exit 1
 fi
}

start() {
 [-x $exec] || exit 5
 [-f $config] || exit 6
 check
 echo -n $"Starting $prog: "
 # if not running, start it up here, usually something like "daemon $exec"
 ulimit -n 65536
 daemon daemonize -a -c $base_dir -e $logfile -o $logfile -p $pidfile -l $lockfile $exec -
c $config $OPTS
 retval=$?
 echo
 [$retval -eq 0] && touch $lockfile
 return $retval
}

stop() {
 echo -n $"Stopping $prog: "
 # stop it here, often "killproc $prog"
 killproc -p $pidfile -d 5m
 retval=$?
 echo
 [$retval -eq 0] && rm -f $lockfile
 return $retval
}

restart() {
 check
 stop
 start
}

reload() {
 restart
}

https://riptutorial.com/ 29

force_reload() {
 restart
}

rh_status() {
 # run checks to determine if the service is running or use generic status
 status $prog
}

rh_status_q() {
 rh_status >/dev/null 2>&1
}

case "$1" in
 start)
 rh_status_q && exit 0
 $1
 ;;
 stop)
 rh_status_q || exit 0
 $1
 ;;
 restart)
 $1
 ;;
 reload)
 rh_status_q || exit 7
 $1
 ;;
 force-reload)
 force_reload
 ;;
 status)
 rh_status
 ;;
 condrestart|try-restart)
 rh_status_q || exit 0
 restart
 ;;
 *)
 echo $"Usage: $0 {start|stop|status|restart|condrestart|try-restart|reload|force-
reload}"
 exit 2
esac

Bosun systemd unit file

#Create Bosun unit file at /etc/systemd/system/bosun.service
[Unit]
Description=Bosun Service
After=network.target
After=rsyslog.service

[Service]
Type=simple
User=root
ExecStart=/opt/bosun/bosun -c /opt/bosun/config/prod.conf
Restart=on-abort

https://riptutorial.com/ 30

[Install]
WantedBy=multi-user.target

#enable and start service
#systemctl enable bosun
#systemctl start bosun
#If you edit this file, be sure to run `systemctl daemon reload` so Systemd recognizes the
changes made

Scollector systemd unit file

#Create Scollector unit file at /etc/systemd/system/scollector.service
[Unit]
Description=Scollector Service
After=network.target

[Service]
Type=simple
User=root
ExecStart=/opt/scollector/scollector -h mybosunserver.example.com
Restart=on-abort

[Install]
WantedBy=multi-user.target

#enable and start service
#systemctl enable scollector
#systemctl start scollector
#If you edit this file, be sure to run `systemctl daemon reload` so Systemd recognizes the
changes made

TSDBRelay systemd unit file

TSDBRelay can be used to forward metrics to an OpenTSDB instance, send to Bosun for
indexing, and relay to another opentsdb compatible instance for backup/DR/HA. It also has
options to denormalize metrics with high tag cardinality or create redis/ledis backed external
counters.

#Create tsdbrelay unit file at /etc/systemd/system/tsdbrelay.service
[Unit]
Description=tsdbrelay Service
After=network.target

[Service]
Type=simple
User=root
ExecStart=/opt/tsdbrelay/tsdbrelay -b localhost:8070 -t localhost:4242 -l 0.0.0.0:5252 -r
localhost:4243 #Local tsdb/bosun and influxdb opentsdb endpoint at 4243
#For external counters add: -redis redishostname:6379 -db 0
#For denormalized metrics: -
denormalize=os.cpu__host,os.mem.used__host,os.net.bytes__host,os.net.bond.bytes__host,os.net.other.bytes__host,os.net.tunnel.bytes__host,os.net.virtual.bytes__host

Restart=on-abort

[Install]

https://riptutorial.com/ 31

https://godoc.org/bosun.org/cmd/tsdbrelay

WantedBy=multi-user.target

Scollector and Bosun Packages for Chef/Puppet/Vagrant/Ansible

Chef Scollector Cookbook: https://github.com/alexmbird/chef-scollector

Chef Bosun Cookbook: https://github.com/ptqa/chef-bosun

Puppet scollector module: https://github.com/axibase/axibase-puppet-modules

Bosun Ansible/Vagrant example: https://github.com/gnosek/bosun-deploy

Install scollector on CentOS 7

As a privileged user (root or sudo):

Create scollector directory:

mkdir /opt/scollector

In the /opt/scollector directory, download the latest binary build from the bosun/scollector site, [
http://bosun.org/scollector/][1]

wget https://github.com/bosun-monitor/bosun/releases/download/"version"/scollector-"OS"-"arch"

ex:
wget https://github.com/bosun-monitor/bosun/releases/download/0.5.0/scollector-linux-amd64

Create a symbolic link in /usr/local/bin:

ln -s /opt/scollector/scollector-linux-amd64 /usr/local/bin/scollector

Create the configuration directory;

mkdir /etc/scollector

Using this guide create your scollector configuration file, scollector.toml

The path for the configuration file is then /etc/scollector/scollector.conf

ex:

 Host = "http://xxx.xxx.xxx.xxx:8070" #replace xxx with the IP of your Bosun server
 Hostname = "DevOps-Bosun-Prod"
 [[ICMP]]
 Host = "some.hostname.here"
 [[ICMP]]
 Host = "some.other.hostname.here"
 [tags]
 hostgroup = "system"
 #[[GoogleAnalytics]]

https://riptutorial.com/ 32

https://github.com/alexmbird/chef-scollector
https://github.com/ptqa/chef-bosun
https://github.com/axibase/axibase-puppet-modules
https://github.com/gnosek/bosun-deploy
http://bosun.org/scollector/%5D%5B1%5D
http://www.riptutorial.com/bosun/topic/719/scollector--overview

 # ClientID = ""
 # Secret = ""
 # Token = ""

Create the Service file, /etc/systemd/system/scollector.service

ex:

[Unit]
Description=Scollector Service
After=network.target

[Service]
Type=simple
User=root
ExecStart=/usr/local/bin/scollector -conf=/etc/scollector/scollector.toml
Restart=on-abort

[Install]
WantedBy=multi-user.target

Tell Systemd that you have created a new service:

systemctl enable scollector.service

Start scollector:

systemctl start scollector

You can see if scollector has started by running:

systemctl status scollector

Alternatively, you can view the system message log, you're looking for something like:

Jul 29 23:19:27 bosun-prod systemd: Started Scollector Service.
Jul 29 23:19:27 bosun-prod systemd: Starting Scollector Service...
Jul 29 23:19:27 bosun-prod scollector[4363]: info: main.go:213: OpenTSDB host:
http://127.0.0.1:8070

Read Packages and Initialization Scripts online: https://riptutorial.com/bosun/topic/775/packages-
and-initialization-scripts

https://riptutorial.com/ 33

https://riptutorial.com/bosun/topic/775/packages-and-initialization-scripts
https://riptutorial.com/bosun/topic/775/packages-and-initialization-scripts

Chapter 10: Scollector: External Collectors

Remarks

Scollector supports tcollector style external collectors that can be used to send metrics to Bosun
via custom scripts or executables. External collectors are a great way to get started collecting
data, but when possible it is recommended for applications to send data directly to Bosun or to
update scollector so that it natively supports additional systems.

The ColDir configuration key specifies the external collector directory, which is usually set to
something like /opt/scollector/collectors/ in Linux or C:\Program Files\scollector\collectors\ in
Windows. It should contain numbered directories just like the ones used in OpenTSDB tcollector.
Each directory represents how often scollector will try to invoke the collectors in that folder
(example: 60 = every 60 seconds). Use a directory named 0 for any executables or scripts that will
run continuously and create output on their own schedule. Any non-numeric named directories will
be ignored, and a lib and etc directory are often used for library and config data shared by all
collectors.

External collectors can use either the simple data output format from tcollector or they can send
JSON data if they want to include metadata.

Examples

Sample collector written in PowerShell

#Example of a PowerShell external collector. See http://bosun.org/scollector/external-
collectors for details
#This file should be saved in C:\Program Files\scollector\collectors\0\mymetrics.ps1 since it
is a continuous output script
#scollector.toml should have ColDir = 'C:\Program Files\scollector\collectors'

#Setup format strings and other variables
$epoch = New-Object DateTime (1970,1,1)
$MetricMetadata='{{"metric":"{0}","name":"{1}","value":"{2}"}}'
$MetricData='{{"metric":"{0}","timestamp":{1:F0},"value":{2:G}{3}}}'
$MetricTags=',"tags":{{{0}}}'
$Base="mymetric"

#Send metadata for each metric once on startup (Scollector will resend to Bosun periodically)
Write-Output ($MetricMetadata -f "$Base.test","rate","gauge") #See
https://godoc.org/bosun.org/metadata#RateType
Write-Output ($MetricMetadata -f "$Base.test","unit","item") #See
https://godoc.org/bosun.org/metadata#Unit
Write-Output ($MetricMetadata -f "$Base.test","desc","A test metric")

#Create tags and send metrics
$tags=$MetricTags -f '"mykey":"myvalue"' #generate static tags here. Can append additional
tags in the loop if needed.
#Use $tags="" to exclude all tags but those added by Scollector.
Write-Output ($MetricData -f

https://riptutorial.com/ 34

http://opentsdb.net/docs/build/html/user_guide/utilities/tcollector.html#collecting-lots-of-metrics-with-tcollector
http://bosun.org/scollector/external-collectors
http://www.riptutorial.com/bosun/example/2424/setup-with-sample-scollector-toml-file
http://bosun.org/scollector/external-collectors#simple-data-output-format
http://bosun.org/scollector/external-collectors#json-data-output-format

"$Base.test",[datetime]::UtcNow.Subtract($epoch).TotalSeconds,42.123,$tags)
do {
 $delay = Get-Random -Minimum 5 -Maximum 25
 sleep -Seconds $delay
 Write-Output ($MetricData -f
"$Base.test",[datetime]::UtcNow.Subtract($epoch).TotalSeconds,$delay,$tags)
} while ($true)

#If a continuous output script ever exits scollector will restart it. If you just want
periodic data every 60 seconds you
#can use a /60/ folder instead of /0/ and allow the script to exit when finished sending a
batch of metrics.

Twitter Collector written in Go

The following can be saved as main.go. After you update the EDITME settings and build the
executable it can be used as a continuous external collector.

package main

import (
 "fmt"
 "log"
 "net/url"
 "strconv"
 "time"

 "github.com/ChimeraCoder/anaconda"
)

func main() {
 anaconda.SetConsumerKey("EDITME")
 anaconda.SetConsumerSecret("EDITME")
 api := anaconda.NewTwitterApi("EDITME", "EDITME")
 v := url.Values{}
 sr, err := api.GetSearch("stackoverflow", nil)
 if err != nil {
 log.Println(err)
 }
 var since_id int64 = 0
 for _, tweet := range sr {
 if tweet.Id > since_id {
 since_id = tweet.Id
 }
 }
 count := 0
 for {
 now := time.Now().Unix()
 v.Set("result_type", "recent")
 v.Set("since_id", strconv.FormatInt(since_id, 10))
 sr, err := api.GetSearch("stackoverflow", nil)
 if err != nil {
 log.Println(err)
 }
 for _, tweet := range sr {
 if tweet.Id > since_id {
 count += 1
 since_id = tweet.Id
 }

https://riptutorial.com/ 35

 }
 fmt.Println("twitter.tweet_count", now, count, "query=stackoverflow")
 time.Sleep(time.Second * 30)
 }
}

Hadoop HDFS disk usage written in Bash

This is a continuous collector that uses the hadoop fs -du -s /hbase/* command to get details
about the HDFS disk usage. This metric is very useful for tracking space in an OpenTSDB system.

#!/bin/bash
while true; do
 while read -r bytes raw_bytes path; do
 echo "hdfs.du $(date +"%s") $bytes path=$path"
 #https://community.cloudera.com/t5/Storage-Random-Access-HDFS/hdfs-du-format-
change/td-p/27192 KMB 2015-08-24T12:01:20Z
 echo "hdfs.du.raw $(date +"%s") $raw_bytes path=$path"
 done < <(hadoop fs -du -s /hbase/*)
 sleep 30
done

StackExchange.Exceptional collector written in Go with Metadata

The following Go file can be compiled into a continuous external collector that will query a MSSQL
server database that uses the StackExchange.Exceptional schema. It will query multiple
servers/databases for all exceptions since UTC 00:00 to convert the raw entries into a counter. It
also uses the bosun.org/metadata package to include metadata for the
exceptional.exceptions.count metric.

/*
Exceptional is an scollector external collector for StackExchange.Exceptional.
*/
package main

import (
 "database/sql"
 "encoding/json"
 "fmt"
 "log"
 "strings"
 "time"

 "bosun.org/metadata"
 "bosun.org/opentsdb"

 _ "github.com/denisenkom/go-mssqldb"
)

func mssqlConnect(server, database, user, pass, port string) (*sql.DB, error) {
 dsn := fmt.Sprintf("server=%s;port=%s;database=%s;user id=%s;password=%s", server, port,
database, user, pass)
 return sql.Open("mssql", dsn)
}

https://riptutorial.com/ 36

https://github.com/NickCraver/StackExchange.Exceptional

type Exceptions struct {
 GUID string
 ApplicationName string
 MachineName string
 CreationDate time.Time
 Type string
 IsProtected int
 Host string
 Url string
 HTTPMethod string
 IPAddress string
 Source string
 Message string
 Detail string
 StatusCode int
 SQL string
 DeletionDate time.Time
 FullJson string
 ErrorHash int
 DuplicateCount int
}

type ExceptionsCount struct {
 ApplicationName string
 MachineName string
 Count int64
 Source string
}

type ExceptionsDB struct {
 Server string
 DBName string
 DBPassword string
 DBPort string
 Source string
}

const (
 defaultPassword = "EnterPasswordHere"
 defaultPort = "1433"

 metric = "exceptional.exceptions.count"
 descMetric = "The number of exceptions thrown per second by applications and machines.
Data is queried from multiple sources. See status instances for details on exceptions."
)

func main() {
 mds := []metadata.Metasend{
 {
 Metric: metric,
 Name: "rate",
 Value: "counter",
 },
 {
 Metric: metric,
 Name: "unit",
 Value: metadata.Error,
 },
 {
 Metric: metric,
 Name: "desc",

https://riptutorial.com/ 37

 Value: descMetric,
 },
 }
 for _, m := range mds {
 b, err := json.Marshal(m)
 if err != nil {
 log.Fatal(err)
 }
 fmt.Println(string(b))
 }
 instances := [...]ExceptionsDB{
 {"NY_AG", "NY.Exceptions", defaultPassword, defaultPort, "NY_Status"},
 {"CO-SQL", "CO.Exceptions", defaultPassword, defaultPort, "CO_Status"},
 {"NY-INTSQL", "Int.Exceptions", defaultPassword, defaultPort, "INT_Status"},
 }
 for _, exdb := range instances {
 go run(exdb)
 }
 select {}
}

func run(exdb ExceptionsDB) {
 const interval = time.Second * 30

 query := func() {
 // Database name is the same as the username
 db, err := mssqlConnect(exdb.Server, exdb.DBName, exdb.DBName, exdb.DBPassword,
exdb.DBPort)
 if err != nil {
 log.Println(err)
 }
 defer db.Close()
 var results []ExceptionsCount
 sqlQuery := `
 SELECT ApplicationName, MachineName, MAX(Count) as Count FROM
 (
 --New since UTC rollover
 SELECT ApplicationName, MachineName, Sum(DuplicateCount) as Count from Exceptions
 WHERE CreationDate > CONVERT (date, GETUTCDATE())
 GROUP BY MachineName, ApplicationName
 UNION --Zero out any app/machine combos that had exceptions in last 24 hours
 SELECT DISTINCT ex.ApplicationName, ex.MachineName, 0 as Count from Exceptions ex
WHERE ex.CreationDate Between Convert(Date, GETUTCDATE()-1) And Convert(Date, GETUTCDATE())
) as T
 GROUP By T.MachineName, T.ApplicationName`
 rows, err := db.Query(sqlQuery)
 if err != nil {
 log.Println(err)
 return
 }
 defer rows.Close()
 for rows.Next() {
 var r ExceptionsCount
 if err := rows.Scan(&r.ApplicationName, &r.MachineName, &r.Count); err != nil {
 log.Println(err)
 continue
 }
 r.Source = exdb.Source
 results = append(results, r)
 }
 if err := rows.Err(); err != nil {

https://riptutorial.com/ 38

 log.Println(err)
 }
 if len(results) > 0 {
 now := time.Now().Unix()
 for _, r := range results {
 application, err := opentsdb.Clean(r.ApplicationName)
 if err != nil {
 log.Println(err)
 continue
 }
 db := opentsdb.DataPoint{
 Metric: metric,
 Timestamp: now,
 Value: r.Count,
 Tags: opentsdb.TagSet{
 "application": application,
 "machine": strings.ToLower(r.MachineName),
 "source": r.Source,
 },
 }
 b, err := db.MarshalJSON()
 if err != nil {
 log.Println(err)
 continue
 }
 fmt.Println(string(b))
 }
 }
 }

 for {
 wait := time.After(interval)
 query()
 <-wait
 }
}

Powershell external collector script function

<#
 .DESCRIPTION
 Writes the metric out in bosun external collector format which is compatible with
scollector external scripts
 .PARAMETER metric
 Name of the metric (eg : my.metric)
 .PARAMETER type
 Type of metric (counter, gauge, etc)
 .PARAMETER unit
 Type of unit (connections, operations, etc)
 .PARAMETER desc
 Description of the metric
 .PARAMETER value
 The current value for the metric
#>
function Write-Metric
{
param(
 [string]$metric,
 [string]$type,

https://riptutorial.com/ 39

 [string]$unit,
 [string]$desc,
 $value
)

$epoch = New-Object DateTime (1970,1,1)

$obj = @{
 metric = $metric
 name = "rate"
 value = $type
}

Write-Host (ConvertTo-Json $obj -Compress)

$obj.name="unit"
$obj.value=$unit

Write-Host (ConvertTo-Json $obj -Compress)

$obj.name="desc"
$obj.value=$desc

Write-Host (ConvertTo-Json $obj -Compress)

$output = @{
 metric = $metric
 timestamp= [int]([datetime]::UtcNow.Subtract($epoch).TotalSeconds)
 value=$value
 tags= @{
 host=$env:computername.ToLower()
 }
}

Write-Host (ConvertTo-Json $output -Compress)

}

Read Scollector: External Collectors online: https://riptutorial.com/bosun/topic/720/scollector--
external-collectors

https://riptutorial.com/ 40

https://riptutorial.com/bosun/topic/720/scollector--external-collectors
https://riptutorial.com/bosun/topic/720/scollector--external-collectors

Chapter 11: Scollector: Overview

Remarks

Scollector is a monitoring agent that can be used to send metrics to Bosun or any system that
accepts OpenTSDB style metrics. It is modelled after OpenTSDB's tcollector data collection
framework but is written in Go and compiled into a single binary. One of the design goals is to
auto-detect services so that metrics will be sent with minimal or no configuration needed. You also
can create external collectors that generate metrics using a script or executable and use
Scollector to queue and send the metrics to the server.

You are NOT required to use Scollector when using Bosun, as you can also send metrics directly
to the /api/put route, use another monitoring agent, or use a different backend like Graphite,
InfluxDB, or ElasticSearch.

Examples

Setup with sample scollector.toml file

Scollector binaries for Windows, Mac, and Linux are available from the Bosun release page and
can be saved to /opt/scollector/ or C:\Program Files\scollector\. The Scollector configuration
file uses TOML v0.2.0 to specify various settings and defaults to being named scollector.toml in
the same folder as the binary. The configuration file is optional and only required if you need to
override a default value or include settings to activate a specific collector.

#Where to send metrics. If omitted the default is bosun:80.
#Config file setting can also be overridden using -h bosunhostname on command line
Host = "mybosunserver.example.com:8080"

#Optional folder where to find external collector scripts/binaries
ColDir = 'C:\Program Files\scollector\collectors'

#Number of data points to include in each batch. Default is 500, should be set higher if you
are sending a lot of metrics.
BatchSize = 5000

You can then either install Scollector as a service or just run it manually via:

#Override default configuration file location
scollector -conf /path/to/myconfig.toml

#List all built-in collectors
scollector -l

#-p will print metrics to the screen instead of sending to Bosun.
#-f "..." will only run specific collectors. Add DisableSelf = true to toml file to exclude
scollector.* self metrics
scollector -p -f "c_cpu_windows,c_network_"

https://riptutorial.com/ 41

http://bosun.org/scollector/
https://github.com/OpenTSDB/tcollector
http://www.riptutorial.com/bosun/topic/720/scollector--external-collectors
https://github.com/bosun-monitor/bosun/releases
http://godoc.org/bosun.org/cmd/scollector
http://godoc.org/bosun.org/cmd/scollector
https://github.com/toml-lang/toml/blob/master/versions/en/toml-v0.2.0.md

Running Scollector as a service

On Windows you can install Scollector as a service using the -winsvc="install" flag. On Mac and
Linux you must manually create a service or init script. For example here is a basic systemd unit
file:

#Scollector unit file saved to /etc/systemd/system/scollector.service
[Unit]
Description=Scollector Service
After=network.target

[Service]
Type=simple
User=root
ExecStart=/opt/scollector/scollector -h mybosunserver.example.com
Restart=on-abort

[Install]
WantedBy=multi-user.target

Read Scollector: Overview online: https://riptutorial.com/bosun/topic/719/scollector--overview

https://riptutorial.com/ 42

https://riptutorial.com/bosun/topic/719/scollector--overview

Chapter 12: Scollector: Process and Service
Monitoring

Remarks

Scollector can be used to monitor processes and services in Windows and Linux. Some processes
like IIS application pools are monitored automatically, but usually you need to specify which
processes and services you want to monitor.

Examples

Linux process and systemd service monitoring

Scollector will monitor Linux processes specified in the configuration file.

[[Process]]
 Command = "/opt/bosun/bosun"
 Name = "bosun"

[[Process]]
 Command = "ruby"
 Name = "puppet-agent"
 Args = "puppet"

[[Process]]
 Command = "/haproxy$"
 Name = "haproxy-t1"
 Args = "/etc/haproxy-t1/haproxy-t1.cfg"

[[Process]]
 Command = '/usr/bin/redis-server *:16389'
 Name = "redis-bosun-dev"
 IncludeCount = true

Scollector can also use the D-Bus API to determine the state of services managed by systemd
and specified in the configuration file.

[[SystemdService]]
 Name = "^(puppet|redis-.*|keepalived|haproxy-t.*)$"
 WatchProc = false

[[SystemdService]]
 Name = "^(scollector|memcached)$"
 WatchProc = true

Windows proccess and service monitoring

Scollector will monitor any Windows processes or services specified in the configuration file.

https://riptutorial.com/ 43

http://bosun.org/scollector/process-monitoring
http://bosun.org/scollector/process-monitoring#linux
http://bosun.org/scollector/process-monitoring#systemd-services
http://bosun.org/scollector/process-monitoring#windows

[[Process]]
 Name = "^scollector"

[[Process]]
 Name = "^chrome"

[[Process]]
 Name = "^(MSSQLSERVER|SQLSERVERAGENT)$"

Windows .NET process monitoring

Scollector can also monitor any Windows processes using the .NET framework. If no
ProcessDotNet settings are specified it will default to just monitoring the w3wp worker processes
for IIS. You can specify which applications to monitor in the configuration file.

[[ProcessDotNet]]
 Name = "^w3wp"

[[ProcessDotNet]]
 Name = "LINQPad"

Matching process will be monitored under the dotnet.* metrics, and if there is more than one
matching process they will be assigned incrementing id tag values starting at 1. Where possible
the w3wp names will be changed to match the iis_pool-names used for process monitoring.

Monitoring Docker Containers

Scollector has built in support for using cAdvisor to generate container.* metrics in Bosun for
each Docker container on a host. To get started you will need to start a new container on each
docker host:

docker run --name cadvisor --restart=always -d -p 8080:8080 google/cadvisor

And then from an external source poll for metrics using scollector with the Cadvisor configuration
option. If you are using Kubernetes to manage containers you may also want to use the
TagOverride option to override the docker_id tags (shorten to 12 chars), add a container_name and
pod_name tag, and remove the docker_name and name tag:

[[Cadvisor]]
 URL = "http://mydockerhost01:8080"

[[Cadvisor]]
 URL = "http://mydockerhost02:8080"

#Override tags for Kubernetes containers
[[TagOverride]]
 CollectorExpr = "cadvisor"
 [TagOverride.MatchedTags]
 docker_name = 'k8s_(?P<container_name>[^\.]+)\.[0-9a-z]+_(?P<pod_name>[^-]+)'
 docker_id = '^(?P<docker_id>.{12})'
 [TagOverride.Tags]
 docker_name = ''

https://riptutorial.com/ 44

http://bosun.org/scollector/process-monitoring#net-processes
https://github.com/google/cadvisor

 name = ''

You may also want to send the metrics to a test instance of Bosun (maybe using the Bosun
Docker Container) to verify the metrics look correct before sending them to a production Bosun
instance (hard to clean up data after it is sent).

Read Scollector: Process and Service Monitoring online:
https://riptutorial.com/bosun/topic/721/scollector--process-and-service-monitoring

https://riptutorial.com/ 45

http://www.riptutorial.com/bosun/example/1889/docker-quick-start
http://www.riptutorial.com/bosun/example/1889/docker-quick-start
https://riptutorial.com/bosun/topic/721/scollector--process-and-service-monitoring

Chapter 13: Silencing and Squelching Alerts

Examples

Squelching a host

If one does not want to receive any alert for a specific host or service - at least momentarily - one
can squelch it.

alert thisis.down {
 macro = host.mymacro
 template = mytemplate
 $notes = This alert will...
 $metric = "avg:os.service.running{host=*,name=...
 warn = min(a($metric, ...

 squelch = host=sqldev01,flavor=amq
 squelch = host=test01
}

This alert won't appear in the dashboard for service amq on host sqldev01, and won't appear at all
for any service running on host test01.

Read Silencing and Squelching Alerts online: https://riptutorial.com/bosun/topic/6791/silencing-
and-squelching-alerts

https://riptutorial.com/ 46

https://riptutorial.com/bosun/topic/6791/silencing-and-squelching-alerts
https://riptutorial.com/bosun/topic/6791/silencing-and-squelching-alerts

Chapter 14: Templates: Graph and GraphAll

Remarks

Bosun Templates can include graphs to provide more information when sending a notification. The
graphs can use variables from the alert and filter base on the tagset for the alert instance or use
the GraphAll function to graph all series. When viewed on the Dashboard or in an email you can
click on the graph to load it in the Expression page.

You can also create a Generic Template with optional Graphs that can be shared across multiple
alerts.

Examples

Graph using Alert Variable

Using .Graph will filter the results to only include those that match the tagset for the alert. For
instance an alert for os.low.memory{host=ny-web01} would only include series with the host=ny-
web01 tags. If multiple series match then only the first matching result will be used.

template graph.template {
 subject = ...

 body = `{{template "header" .}}

 Graph
 <div>{{.Graph .Alert.Vars.graph}}</div>

 Graph With Y Axis Label Literal
 <div>{{.Graph .Alert.Vars.graph "Free Memory in GB"}}</div>

 Graph With Y Axis Label From Variable
 <div>{{.Graph .Alert.Vars.graph .Alert.Vars.graph_unit}}</div>

 `
}

alert os.low.memory {
 template = graph.template
 ...
 $graph = q("avg:300s-avg:os.mem.percent_free{host=$host}", "1d", "")
 $graph_unit = Percent Free Memory (Including Buffers and Cache)
 ...
}

GraphAll using Alert Variable

Using .GraphAll will include all the results in the graph.

template graph.template {

https://riptutorial.com/ 47

https://bosun.org/configuration#template
http://www.riptutorial.com/bosun/example/2404/generic-template-with-optional-graphs

 subject = ...

 body = `{{template "header" .}}

 GraphAll
 <div>{{.GraphAll .Alert.Vars.graph}}</div>

 GraphAll With Y Axis Label Literal
 <div>{{.GraphAll .Alert.Vars.graph "All Systems Free Memory in GB"}}</div>

 GraphAll With Y Axis Label From Variable
 <div>{{.GraphAll .Alert.Vars.graph .Alert.Vars.graph_unit}}</div>

 `
}

alert os.low.memory {
 template = graph.template
 ...
 $graph = q("avg:300s-avg:os.mem.percent_free{host=$host}", "1d", "")
 $graph_unit = All Systems Percent Free Memory (Including Buffers and Cache)
 ...
}

Graph or GraphAll using inline or dynamic query

Graph queries can be defined inline if you don't want to use an Alert variable.

template graph.template {
 subject = ...

 body = `{{template "header" .}}

 Graph With Inline Query
 <div>{{.Graph "q(\"avg:300s-avg:os.mem.percent_free{host=specifichost}\", \"1d\", \"\")"
"Free Memory in GB"}}</div>

 GraphAll with Inline Query
 <div>{{.GraphAll "q(\"avg:300s-avg:os.mem.percent_free{host=host1|host2|host3}\", \"1d\",
\"\")" "All Systems Free Memory in GB"}}</div>

 `
}

Sometimes you may want to create the query for a graph dynamically in the template itself by
combining one or more variables. For instance a host down alert might want to include the Bosun
known hosts ping metric using the dst_host tag.

template host.down {
 subject = ...

 body = `{{template "header" .}}

 Graph from one variable
 <div>{{printf "q(\"sum:bosun.ping.timeout{dst_host=%s}\", \"8h\", \"\")" (.Group.host) |
.Graph}}</div>

https://riptutorial.com/ 48

 Graph from multiple variables
 <div>{{printf "q(\"sum:%s{host=%s,anothertag=%s}\", \"8h\", \"\")" "some.metric.name"
.Group.host "anothervalue" | .Graph}}</div>
 `
}

The printf statement will generate q("sum:bosun.ping.timeout{dst_host=alerthostname}", "8h", "")
when that host triggers an alert and then use that to create the graph in the notification.

Filter, Sort, Limit and Graph

When using GraphAll you may still want to filter the results, in which case you can use an Alert
variable with the Filter, Sort, and Limit functions.

template graph.template {
 subject = ...

 body = `{{template "header" .}}

 Graph Filtered Variable
 <div>{{.Graph .Alert.Vars.graph_below_5 .Alert.Vars.graph_unit}}</div>

 Graph Filter+Sort+Limit Variable (Maximum of 10 series)
 <div>{{.Graph .Alert.Vars.graph_lowest_10 .Alert.Vars.graph_unit2}}</div>

 `
}

alert os.low.memory {
 template = graph.template
 ...
 $graph_all = q("avg:300s-avg:os.mem.percent_free{host=ny-*}", "1d", "")
 $graph_unit = All Systems with Less than 5 Percent Free Memory
 $graph_below_5 = filter($graph_all, min($graph_all) < 5)

 $graph_unit2 = Ten Systems with lowest Percent Free Memory
 $graph_lowest_10 = filter($graph_all, limit(sort(min($graph_min_5),"asc"),10))
 ...
}

Using Merge to Combine Series

If you want to graph two series on one graph, you can use the Merge function. This can also be
combined with the Series function to manipulate the Y axis (like forcing it to start at zero).

template graph.template {
 subject = ...

 body = `{{template "header" .}}

 Graph With Merge+Series so Y Axis Starts At Zero
 <div>{{.Graph .Alert.Vars.graph_merged .Alert.Vars.graph_unit}}</div>
 `
}

https://riptutorial.com/ 49

https://bosun.org/expressions#filterseriesset-numberset-seriesset
https://bosun.org/expressions#sortnumberset-ascdesc-string-numberset
https://bosun.org/expressions#limitnumberset-count-scalar-numberset
https://bosun.org/expressions#mergeseriesset-seriesset
https://bosun.org/expressions#seriestagset-string-epoch-value--seriesset

alert os.low.memory {
 template = graph.template
 ...
 $graph_time = "1d"
 $graph_host = q("avg:300s-avg:os.mem.percent_free{host=myhost}", $graph_time, "")
 $graph_unit = Notice the Y axis always starts at zero now
 $graph_series = series("value=zero", epoch()-d($graph_time), 0, epoch(),0)
 $graph_merged = merge($graph_host,$graph_series)
 ...
}

Read Templates: Graph and GraphAll online: https://riptutorial.com/bosun/topic/716/templates--
graph-and-graphall

https://riptutorial.com/ 50

https://riptutorial.com/bosun/topic/716/templates--graph-and-graphall
https://riptutorial.com/bosun/topic/716/templates--graph-and-graphall

Chapter 15: Templates: HTTPGet and
HTTPGetJSON

Examples

HTTPGetJSON

HTTPGetJSON performs an HTTP request to the specified URL and returns a jsonq.JsonQuery
object for use in the alert template. Example:

template example {
 {{ $ip := 8.8.8.8 }}
 {{ $whoisURL := printf "http://whois.arin.net/rest/ip/%s" $ip }}
 {{ $whoisJQ := $.HTTPGetJSON $whoisURL }}
 IP {{$ip}} owner from ARIN is {{ $whoisJQ.String "net" "orgRef" "@name" }}
}

In this case the $ip address is hard coded but in a real alert it would usually come from the alert
tags using something like {{ $ip := .Group.client_ip}} where client_ip is a tag key whose value is
an IP address.

The jsonq results are similar to the results generated by the jq JSON processor, so you can test in
a BASH shell using:

$ curl -H "Accept: application/json" http://whois.arin.net/rest/ip/8.8.8.8 | jq ".net.orgRef"
{
 "@handle": "GOGL",
 "@name": "Google Inc.",
 "$": "https://whois.arin.net/rest/org/GOGL"
}

Read Templates: HTTPGet and HTTPGetJSON online:
https://riptutorial.com/bosun/topic/578/templates--httpget-and-httpgetjson

https://riptutorial.com/ 51

https://godoc.org/github.com/jmoiron/jsonq
https://stedolan.github.io/jq/
https://riptutorial.com/bosun/topic/578/templates--httpget-and-httpgetjson

Chapter 16: Templates: Overview

Syntax

#See https://golang.org/pkg/text/template/ for Go Template Action and Function syntax•
expression = alert status {{.Last.Status}} and a variable {{.Eval .Alert.Vars.q | printf "%.2f"}}•
expression = `Use backticks to span•
multiple lines with line breaks•
in the Bosun config file`•
template name {

subject = expression○

body = expression○

•

}•

Remarks

Bosun templates are based on the Go html/template package and can be shared across multiple
alerts, but a single template is used to render all Bosun Notifications for that alert. Alerts reference
which template to use via the template directive and specify which notifications to use via the
warnNotification and critNotification directives (can have multiple warn/crit notifications defined
for each alert).

Templates are rendered when an alert instance is triggered and can:

Use variables defined in the alert to display text or graphs•
Use Go Template Actions and Functions like if, range, and, not, index, and printf•
Access Bosun metadata to display additional details about a system•
Access other Bosun Template Variables and Functions•
Pull information from other systems via HTTPGet and HTTPGetJSON•
Use Images, HTML, and CSS styles for rich notifications (CSS can be inlined for better email
support)

•

The template subject will be displayed as headers on the dashboard, as the subject line of email
notifications, and as the default contents of HTTP POST notifications. The template body will be
displayed when an alert instance is expanded and as the body of email notifications.

Examples

Low Memory Alert and Template

Templates can be previewed and edited using the Rule Editor tab in Bosun. Use the Jump to links
to select the alert you want to edit, then you can use the template button next to macro to switch
between the alert an template sections of the configuration. If an alert has multiple instances you
can use host=xxx,name=xxx in the Template Group section to specify for which tagset you want to

https://riptutorial.com/ 52

https://golang.org/pkg/text/template/
https://golang.org/pkg/html/template/
http://www.riptutorial.com/bosun/topic/612/notifications--overview
https://golang.org/pkg/text/template/
https://bosun.org/configuration#template
http://www.riptutorial.com/bosun/topic/578/templates--httpget-and-httpgetjson

see the template rendered.

template os.low.memory {
 subject = {{.Last.Status}}: Low Memory: {{.Eval .Alert.Vars.q | printf "%.0f"}}% Free
Memory on {{.Group.host}} ({{.Eval .Alert.Vars.free | bytes }} Free of {{.Eval
.Alert.Vars.total | bytes }} Total)

 body = `
 <p>Acknowledge | View Alert in Bosun's Rule
Editor</p>
 <p>Alert Key: {{printf "%s%s" .Alert.Name .Group }}</p>
 <p>Incident: #{{.Last.IncidentId}}</p>
 <p>Notes: {{html .Alert.Vars.notes}}</p>

 Graph
 <div>{{.Graph .Alert.Vars.graph .Alert.Vars.graph_unit}}</div>
 `
}

notification sample.notification {
 email = alerts@example.com
}

alert os.low.memory {
 template = os.low.memory
 $notes = Alerts when less than 5% free, or less than 500MB (when total > 2GB). In Linux,
Buffers and Cache are considered "Free Memory".

 $default_time = "2m"
 $host = wildcard(*)
 $graph = q("avg:300s-avg:os.mem.percent_free{host=$host}", "1d", "")
 $graph_unit = Percent Free Memory (Including Buffers and Cache)
 $q = avg(q("avg:os.mem.percent_free{host=$host}", $default_time, ""))
 $total = last(q("sum:os.mem.total{host=$host}", $default_time, ""))
 $free = last(q("sum:os.mem.free{host=$host}", $default_time, ""))

 #Warn when less than 5% free or total > 2GB and free < 500MB
 warn = $q < 5 || ($total > 2147483648 && $free < 524288000)
 #Crit when less than 0.5% free
 crit = $q <= .5
 critNotification = sample.notification
}

After you test the alert on the Rule Editor page you can use the Results tab to see computations,
Template to see the rendered alert notification, and Timeline to see all alert incidents (only when
From and To dates are specified).

https://riptutorial.com/ 53

Embedded Templates and CSS Styles

You can embed another template body into your template via {{template "mysharedtemplate" .}} to
reuse shared components. Here is an example that creates a header template that can be reused
at the top of all other template bodies. It also uses CSS to stylize the output so that it is easier to
read. Note that any <style>...</style> blocks will be converted to inline CSS on each element so
that email clients like Gmail will render the output correctly.

template header {
 body = `
 <style>
 td, th {
 padding-right: 10px;
 }
 a.rightpad {
 padding-right: 10px;
 }
 </style>
 <p style="font-weight: bold; text-decoration: underline;">
 Acknowledge
 View Alert in Bosun's Rule Editor
 {{if .Group.host}}
 <a class="rightpad"

https://riptutorial.com/ 54

http://i.stack.imgur.com/eVCJS.png

href="https://opserver/dashboard/node?node={{.Group.host}}">View {{.Group.host}} in
Opserver
 <a
href="http://kibana/app/kibana?#/discover?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:now-
15m,mode:quick,to:now))&_a=(columns:!(_source),index:%5Blogstash-
%5DYYYY.MM.DD,interval:auto,query:(query_string:(analyze_wildcard:!t,query:'logsource:{{.Group.host}}')),sort:!('@timestamp',desc))">View
{{.Group.host}} in Kibana
 {{end}}
 </p>
 <table>
 <tr>
 <td>Key: </td>
 <td>{{printf "%s%s" .Alert.Name .Group }}</td>
 </tr>
 <tr>
 <td>Incident: </td>
 <td>#{{.Last.IncidentId}}</td>
 </tr>
 </table>

 {{if .Alert.Vars.notes}}
 <p>Notes: {{html .Alert.Vars.notes}}</p>
 {{end}}

 <p>Tags
 <table>
 {{range $k, $v := .Group}}
 {{if eq $k "host"}}
 <tr><td>{{$k}}</td><td>{{$v}}</td></tr>
 {{else}}
 <tr><td>{{$k}}</td><td>{{$v}}</td></tr>
 {{end}}
 {{end}}
 </table></p>
 `
}

After which you can add start your templates with body = `{{template "header" .}} to get the
following output at the top:

Generic Template with optional Graphs

It often is faster to use a generic template when first creating a new alert and only specialize the

https://riptutorial.com/ 55

http://i.stack.imgur.com/SbHXc.png

template when you need to display more information. The following template will display a subject
with a numerical value, custom formatting, and description string and then a body with up to two
graphs. If no graph variables are specified it will instead list the computations used in the alert.
The generic template also uses the name of the alert to generate the subject (replacing dots with
spaces) and checks for variables to exist before using them to prevent errors.

#See Embedded Templates and CSS Styles example for header template
template header { ... }

template computation {
 body = `
 <p>Computation
 <table>
 {{range .Computations}}
 <tr><td>{{.Text}}</td><td>{{.Value}}</td></tr>
 {{end}}
 </table></p>`
}

template generic_template {
 subject = {{.Last.Status}}: {{replace .Alert.Name "." " " -1}}: {{if
.Alert.Vars.value}}{{if .Alert.Vars.value_format}}{{.Eval .Alert.Vars.value | printf
.Alert.Vars.value_format}}{{else}}{{.Eval .Alert.Vars.value | printf
"%.1f"}}{{end}}{{end}}{{if .Alert.Vars.value_string}}{{.Alert.Vars.value_string}}{{end}}{{if
.Group.host}} on {{.Group.host}}{{end}}

 body = `{{template "header" .}}

 {{if or .Alert.Vars.generic_graph .Alert.Vars.generic_graph_all}}
 Graph
 {{if and .Alert.Vars.graph_unit .Alert.Vars.generic_graph}}
 <div>{{.Graph .Alert.Vars.generic_graph .Alert.Vars.graph_unit}}</div>
 {{else if .Alert.Vars.generic_graph}}
 <div>{{.Graph .Alert.Vars.generic_graph}}</div>
 {{end}}
 {{if and .Alert.Vars.graph_unit2 .Alert.Vars.generic_graph2}}
 <div>{{.Graph .Alert.Vars.generic_graph2 .Alert.Vars.graph_unit2}}</div>
 {{else if .Alert.Vars.generic_graph2}}
 <div>{{.Graph .Alert.Vars.generic_graph2}}</div>
 {{end}}
 {{if and .Alert.Vars.generic_graph_all .Alert.Vars.graph_unit}}
 <div>{{.GraphAll .Alert.Vars.generic_graph_all .Alert.Vars.graph_unit}}</div>
 {{else if .Alert.Vars.generic_graph_all}}
 <div>{{.GraphAll .Alert.Vars.generic_graph_all}}</div>
 {{end}}
 {{if and .Alert.Vars.generic_graph_all2 .Alert.Vars.graph_unit2}}
 <div>{{.GraphAll .Alert.Vars.generic_graph_all2 .Alert.Vars.graph_unit2}}</div>
 {{else if .Alert.Vars.generic_graph_all2}}
 <div>{{.GraphAll .Alert.Vars.generic_graph_all2}}</div>
 {{end}}
 {{else}}
 {{template "computation" .}}
 {{end}}`
}

alert puppet.last.run {
 template = generic_template
 $timethreshold = 60

https://riptutorial.com/ 56

 $timegraph = 24h
 $notes = Checks if puppet has not run in at least ${timethreshold} minutes. Doesn't
include hosts which have puppet disabled.

 $generic_graph = q("sum:300s-max:puppet.last_run{host=*}", "$timegraph", "") / 60
 $graph_unit = Minutes since Last Puppet Run
 $generic_graph2 = q("sum:300s-max:puppet.disabled{host=*}", "$timegraph", "")
 $graph_unit2 = Puppet Disabled=1 Enabled=0

 $value = last(q("sum:puppet.last_run{host=*}", "6h", "")) / 60
 $value_format = It has been %.0f
 $value_string = ` minutes since last run`
 $disabled = max(q("sum:puppet.disabled{host=*}", "60m", ""))
 warn = ($value > $timethreshold) && ! $disabled
 warnNotification = default
 runEvery = 15
}

Which will produce a subject like "warning: puppet last run: It has been 62 minutes since last run
on co-lb04" and include a graphs of last_run and disabled for that host. If you want to graph all
results for a query instead of just the matching tagsets you can use $generic_graph_all and
$generic_graph_all2 as the variable names.

Read Templates: Overview online: https://riptutorial.com/bosun/topic/715/templates--overview

https://riptutorial.com/ 57

https://riptutorial.com/bosun/topic/715/templates--overview

Credits

S.
No

Chapters Contributors

1
Getting started with
Bosun

Community, Greg Bray, RamenChef

2
Alerts: Advanced
Scoping

Kyle Brandt, Whisk

3 Complete Examples Kyle Brandt, Trent Scholl

4
Expression Tips and
Tricks

Kyle Brandt

5 lscount Mark Henderson

6 lsstat Mark Henderson

7
Notifications: Chat
Systems

Andy Kruta, Greg Bray

8
Notifications:
Overview

captncraig, Greg Bray

9
Packages and
Initialization Scripts

Greg Bray, Mark V, Vincent Flesouras

10
Scollector: External
Collectors

Gary W, Greg Bray

11 Scollector: Overview Greg Bray

12
Scollector: Process
and Service
Monitoring

Greg Bray

13
Silencing and
Squelching Alerts

Xavier Nicollet

14
Templates: Graph
and GraphAll

Greg Bray

15
Templates: HTTPGet
and HTTPGetJSON

Greg Bray

16 Templates: Overview Greg Bray, Vitor

https://riptutorial.com/ 58

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/17373/greg-bray
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/107156/kyle-brandt
https://riptutorial.com/contributor/908/whisk
https://riptutorial.com/contributor/107156/kyle-brandt
https://riptutorial.com/contributor/607580/trent-scholl
https://riptutorial.com/contributor/107156/kyle-brandt
https://riptutorial.com/contributor/69683/mark-henderson
https://riptutorial.com/contributor/69683/mark-henderson
https://riptutorial.com/contributor/6905798/andy-kruta
https://riptutorial.com/contributor/17373/greg-bray
https://riptutorial.com/contributor/121660/captncraig
https://riptutorial.com/contributor/17373/greg-bray
https://riptutorial.com/contributor/17373/greg-bray
https://riptutorial.com/contributor/1570785/mark-v
https://riptutorial.com/contributor/4602887/vincent-flesouras
https://riptutorial.com/contributor/85202/gary-w
https://riptutorial.com/contributor/17373/greg-bray
https://riptutorial.com/contributor/17373/greg-bray
https://riptutorial.com/contributor/17373/greg-bray
https://riptutorial.com/contributor/995368/xavier-nicollet
https://riptutorial.com/contributor/17373/greg-bray
https://riptutorial.com/contributor/17373/greg-bray
https://riptutorial.com/contributor/17373/greg-bray
https://riptutorial.com/contributor/800328/vitor

	About
	Chapter 1: Getting started with Bosun
	Remarks
	Versions
	Examples
	Sample Alert
	Sample Configuration File
	Docker Quick Start

	Chapter 2: Alerts: Advanced Scoping
	Examples
	Understanding the transpose function: t()

	Overview
	Breaking down the function
	What are those things?
	Set, numberSets, and seriesSets
	The meat of it

	Lets step through an example:
	Chapter 3: Complete Examples
	Examples
	SSL Certs Expiring

	Template Def
	Alert Definition
	Alert Explanation

	Notification Preview
	Example Section of scollector.toml referencing the config for httpunit test cases:
	Header Template

	Header Template
	Linux Bonding Health

	Template Definition
	Alert Definition
	Notification Priview
	Chapter 4: Expression Tips and Tricks
	Examples
	Avoiding Divide by Zero with NumberSet Operations
	Avoiding Divide by Zero in SeriesSet Operations

	Chapter 5: lscount
	Parameters
	Remarks

	Deprecation
	Caveats
	Examples
	Counting total number of documents in last 5 minutes

	Chapter 6: lsstat
	Parameters
	Remarks

	Deprecation
	Caveats
	Examples
	The average value of a field over time

	Chapter 7: Notifications: Chat Systems
	Remarks
	Examples
	Slack Notifications
	HipChat

	Chapter 8: Notifications: Overview
	Syntax
	Remarks
	Examples
	SMS Notifications with plivo
	Email Notifications
	Overview
	HTTP GET/POST Notifications
	SMS Notifications with Twilio
	PagerDuty Notifications
	Changing Notification Using Lookup

	Chapter 9: Packages and Initialization Scripts
	Remarks
	Examples
	Scollector init.d script
	Bosun init.d script
	Bosun systemd unit file
	Scollector systemd unit file
	TSDBRelay systemd unit file
	Scollector and Bosun Packages for Chef/Puppet/Vagrant/Ansible
	Install scollector on CentOS 7

	Chapter 10: Scollector: External Collectors
	Remarks
	Examples
	Sample collector written in PowerShell
	Twitter Collector written in Go
	Hadoop HDFS disk usage written in Bash
	StackExchange.Exceptional collector written in Go with Metadata
	Powershell external collector script function

	Chapter 11: Scollector: Overview
	Remarks
	Examples
	Setup with sample scollector.toml file
	Running Scollector as a service

	Chapter 12: Scollector: Process and Service Monitoring
	Remarks
	Examples
	Linux process and systemd service monitoring
	Windows proccess and service monitoring
	Windows .NET process monitoring
	Monitoring Docker Containers

	Chapter 13: Silencing and Squelching Alerts
	Examples
	Squelching a host

	Chapter 14: Templates: Graph and GraphAll
	Remarks
	Examples
	Graph using Alert Variable
	GraphAll using Alert Variable
	Graph or GraphAll using inline or dynamic query
	Filter, Sort, Limit and Graph
	Using Merge to Combine Series

	Chapter 15: Templates: HTTPGet and HTTPGetJSON
	Examples
	HTTPGetJSON

	Chapter 16: Templates: Overview
	Syntax
	Remarks
	Examples
	Low Memory Alert and Template
	Embedded Templates and CSS Styles
	Generic Template with optional Graphs

	Credits

