
botframework

#botframew

ork

Table of Contents

About 1

Chapter 1: Getting started with botframework 2

Remarks 2

Versions 3

Bot Builder Latest Releases 3

Examples 4

Installation or Setup 4

Chapter 2: Adding Natural Language Processing 10

Introduction 10

Syntax 10

Examples 10

Initializing and Adding LUISRecognizer 10

Defining a LUIS Model with Intents 10

Adding Entities to LUIS Model 11

Chapter 3: Getting started with Azure Bot Service 14

Introduction 14

Examples 14

Getting started with Azure Bot Service 14

Chapter 4: Getting Started with QnA Services 25

Introduction 25

Examples 25

Creating our own QnA Service manually 25

Credits 29

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: botframework

It is an unofficial and free botframework ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official botframework.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/botframework
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with botframework

Remarks

Microsoft Bot Framework is a comprehensive offering to build and deploy high quality bots for your
users to enjoy in their favorite conversation experiences. Developers writing bots all face the same
problems: bots require basic I/O; they must have language and dialog skills; they must be
performant, responsive and scalable; and they must connect to users – ideally in any conversation
experience and language the user chooses. Bot Framework provides just what you need to build,
connect, manage and publish intelligent bots that interact naturally wherever your users are talking
– from text/sms to Skype, Slack, Facebook Messenger, Kik, Office 365 mail and other popular
services.

Bots (or conversation agents) are rapidly becoming an integral part of one’s digital experience –
they are as vital a way for users to interact with a service or application as is a web site or a
mobile experience. Developers writing bots all face the same problems: bots require basic I/O;
they must have language and dialog skills; and they must connect to users – preferably in any
conversation experience and language the user chooses. The Bot Framework provides tools to
easily solve these problems and more for developers e.g., automatic translation to more than 30
languages, user and conversation state management, debugging tools, an embeddable web chat
control and a way for users to discover, try, and add bots to the conversation experiences they
love.

The Bot Framework consists of a number of components including the Bot Builder SDK,
Developer Portal and the Bot Directory.

https://riptutorial.com/ 2

Versions

Bot Builder Latest Releases

Language Version Release Date

Node.js 3.7.0 2017-02-23

C# 3.5.5 2017-03-07

Previous releases can be found here.

https://riptutorial.com/ 3

https://i.stack.imgur.com/kz8wM.png
https://github.com/Microsoft/BotBuilder/releases/tag/botbuilder%403.7.0
https://www.nuget.org/packages/Microsoft.Bot.Builder/3.5.5
https://github.com/Microsoft/BotBuilder/releases

Examples

Installation or Setup

C#

Visual Studio 2015 (latest update) - you can download the community version here for free:
www.VisualStudio.com

1.

Important: update all VS extensions to their latest versions Tools->Extensions and
Updates->Updates

2.

Download the Bot Application template from here: Template Download Save the zip file to
your Visual Studio 2015 templates directory which is traditionally in
"%USERPROFILE%\Documents\Visual Studio 2015\Templates\ProjectTemplates\Visual C#"
Note: you will need to restart visual studio after this step, in order to use the template.

3.

https://riptutorial.com/ 4

https://www.visualstudio.com/downloads/
http://aka.ms/bf-bc-vstemplate
https://i.stack.imgur.com/8xBXo.png

Create a new C# project using the new Bot Application template4.

Once your bot is finished being created, you should have a solution similar to this:

https://riptutorial.com/ 5

https://i.stack.imgur.com/OOMjM.png

Run the application by hitting F5, or by clicking the green Run button in the tool bar. Since
our new bot is actually a WebAPI project, a browser window will be opened to the
default.htm page. The bot is now running, and exposed locally. Note the url ... it will be
needed to setup the Bot Framework Emulator in the next step.

5.

Node.js

Create a new node.js project by using npm init.1.
Install the botbuilder sdk and restify using the following npm commands:2.

npm install --save botbuilder
npm install --save restify

To create your bot, create a new file called index.js, and copy the following code to initialize
the bot.

3.

var restify = require('restify');
var builder = require('botbuilder');

// Setup Restify Server
var server = restify.createServer();
server.listen(process.env.port || process.env.PORT || 3978, function () {
 console.log('%s listening to %s', server.name, server.url);
});

// Create chat connector for communicating with the Bot Framework Service
var connector = new builder.ChatConnector({
 appId: process.env.MICROSOFT_APP_ID,
 appPassword: process.env.MICROSOFT_APP_PASSWORD

https://riptutorial.com/ 6

https://i.stack.imgur.com/bWAXo.png

});

var bot = new builder.UniversalBot(connector);

You should now be able to run this file using node index.js.4.

This is a basic setup that will be required for all bots created with bot framework. You can treat this
as a blank template project to start with. It initializes a restify server for your bot and creates a
connector to connect local machines with your server.

Downloading Emulator for Debugging (Both for node and C#)

Download and install the Bot Framework Emulator Emulator Download1.

Run the emulator, and enter the url from step 5 (C#) into the Endpoint URL text box. Then,
click "Connect".

2.

https://riptutorial.com/ 7

https://i.stack.imgur.com/8tsD2.png
https://aka.ms/bf-bc-emulator

You should now be able to communicate with your bot using the chat window in the
emulator. You will see the conversation details logged in the bottom right, and you can click
on the Post and Get line items to see the json that has been passed back and forth.

3.

https://riptutorial.com/ 8

https://i.stack.imgur.com/Jw4aM.png

Congratulations on creating a Bot using the Microsoft Bot Framework!

Read Getting started with botframework online:
https://riptutorial.com/botframework/topic/7509/getting-started-with-botframework

https://riptutorial.com/ 9

https://i.stack.imgur.com/6uqSp.png
https://riptutorial.com/botframework/topic/7509/getting-started-with-botframework

Chapter 2: Adding Natural Language
Processing

Introduction

Bot Framework supports Recognizers. A recognizer is used to recognize what to do whenever a
user sends the bot any message. Therefore you can design your bot to recognize intents based on
the user input. The recognizer can be used with LUIS API in order to add natural language
understanding for the bot.

Syntax

var recognizer = new builder.LUISRecognizer('Your model's URL');•

var intents = new builder.IntentDialog({recognizers: [recognizer]});•

Examples

Initializing and Adding LUISRecognizer

Once you're up with a new project with the basic template provided in the Introduction, you should
be able to add a LUISRecognizer like so -

var model = '' // Your LUIS Endpoint link comes here
var recognizer = new builder.LuisRecognizer(model);

Now, recognizer is a LUISRecognizer and can pass intents based on your defined LUIS Model.
You can add the recognizer to your intents by

var intents = new builder.IntentDialog({recognizers: [recognizer]});

Your bot is now capable of handling intents from LUIS. Any named intents on LUIS can be
detected by using the matches property of IntentDialog class. So say, an intent named hi is defined
in the LUIS model, to recognize the intent on the bot,

intents.matches('hi', function(session) {
 session.send("Hey :-)");
});

Defining a LUIS Model with Intents

Creating a LUIS Model requires little to no programming experience. However, you need to be
familiar with 2 important terms that will be used extensively.

https://riptutorial.com/ 10

Intents - These are how you identify functions that need to be executed when the user types
in something. Eg - An intent named Hi will identify a function that needs to be executed
whenever the user sends "Hi". Intents are uniquely named in your program/model.

1.

Entities - These identify the nouns in a statement. Eg - "Set an alarm for 1:00 pm", here 1:00
pm is an entity that needs to be recognized by the chat-bot to set an alarm.

2.

Note: Images of the website are not provided as the front-end my change, but the core concept
remains the same.

To create a new model, go to LUIS.ai and sign-in with your Microsoft Account to be taken to the
app creation page. Where a blank project can be created.

Defining Intents:

Intents can be defined on the Intents tab. They identify what function you need to perform when
the user enters anything.

All applications have a default None intent, which is activated whenever the user input matches no
other intent.

To define an intent,

Give it a unique name relevant to the function you want to perform.1.
Once the naming is complete, you should add utterances to the intent. Utterances are what
you want the user to send in order to activate the intent that you are defining. Try feeding as
many different utterances as possible in order for LUIS to associate intents and utterances
properly.

2.

Train your LUIS Model, by clicking the Train button on Train and Test Tab. After training the
app can be tested in the panel below.

3.

Finally publish your app in the Publish App Tab. You should now get an endpoint URL that
should be put in while defining LUISRecognizer in your bot code.

4.

Adding Entities to LUIS Model

An entity is the information that your bot extracts from a particular utterance conforming to an
intent.

Eg- Let My name is John Doe belong to an intent called introduction. For your bot to understand and
extract the name John Doe from the sentence, you need to define an entity which does so. You can
name the entity whatever you wish, but it is best to name it as something pertaining to what it
extracts. In our example, we can call our entity name.

Entities can be re-used between different intents, to extract different things. So the best principle
would be to make an entity that extracts only type of data and use it across different intents.
Therefore, in our above example, say Book a flight on Emirates belongs to the intent booking, then
the same entity, name, can be used to extract the flight name emirates.

You need to keep in mind two things before you go on defining entities -

https://riptutorial.com/ 11

Entities should be unique per utterance in an intent. An entity cannot be used twice in the
same utterance.

1.

LUIS is case insensitive. This implies that everything extracted and received through entity
extraction will be in lower-case. So extracting case-sensitive data through entities is probably
a bad idea.

2.

Adding pre-built entities

Pre-built entities are, as the name suggests, pre-built i.e. they are already configured to extract a
particular type of data across the intent they are added to. An example can be the entity number
that extracts numbers from the intent it is assigned to. The numbers can be either in numeric or
alphabetical like 10 or ten.

For a full list of all pre-built entities, you can visit [Pre-built Entities List][1].

To add pre-built entities,

Go to the entities tab.1.
Click Add pre-built entities and select the entity you want to add to the model and hit save.2.

Adding Custom Entities Custom Entities are of 4 types,

Simple: A simple entity extracts a particular data, name in the examples above is a simple
entity.

1.

Hierarchical: A parent entity with children entities (sub-types) which are dependent on the
parent.

2.

Composite: A group of 2 or more entities independent together.3.
List: An entity that recognizes words only from a given list.4.

Defining Simple Entities

Go the the entities tab.1.
Click on Add Custom Entities2.
Name your entity, check the required entity type and hit Save.3.

All other type of entities can be added in the same way by just changing the Entity Type to one of
the above types. In hierarchical and composite entity types, you'll also need to give the children
names along with the parent entity name. Defining List entities is a little different than the rest.

Defining List Entities

After you follow the above steps to create a List Entity by putting th Entity Type as List, you'll be
directed to the details page of the entity you just defined.

Define a canonical value. This is a standard value that the bot will receive when the user
types in any of the synonyms.

1.

Define synonyms to the canonical value. They will be converted to the canonical value upon
being encountered by the entity.

2.

You can also import entire lists by using an array of JSON Objects, of the form:

https://riptutorial.com/ 12

[
 {
 "canonicalForm": "Hey",
 "list": [
 "Howdy",
 "Hi"
]
 },
 .
 .
 .
]

Associating an entity with an intent

Pre-built and list entities already have a set of values defined which can be extracted from all
utterences, however, Simple, Hierarchical and Composite utterances need to be trained to pick up
values.

This can be done by

Go to the intents tab and choose the intent you'd like to add the entity to.1.
Add an utterance with a dummy value that you would like to be extracted. Say, you can add
My name is John Doe as an utterance.

2.

Click and drag the mouse over the words you want the entity to extract. You will need to
highlight john doe in the above example.

3.

A drop-down will open with a list of all entities available in your project. Select the
corresponding one as you see fit. Name will be the entity selected in the above example.

4.

Add more utterances with different dummy values each time and all possible structures you
can think of.

5.

Train and publish your LUIS Model.6.

Read Adding Natural Language Processing online:
https://riptutorial.com/botframework/topic/10004/adding-natural-language-processing

https://riptutorial.com/ 13

https://riptutorial.com/botframework/topic/10004/adding-natural-language-processing

Chapter 3: Getting started with Azure Bot
Service

Introduction

The Azure Bot Service provides an integrated environment that is purpose-built for bot
development, enabling you to build, connect, test, deploy and manage intelligent bots, all from one
place. You can write your bot in C# or Node.js directly in the browser using the Azure editor,
without any need for a tool chain. You can also increase the value of your bots with a few lines of
code by plugging into Cognitive Services to enable your bots to see, hear, interpret & interact in
more human ways

Examples

Getting started with Azure Bot Service

Create a new bot in Azure following this documentation

Login into Azure and from Intelligence + Analytics category, select Bot Service and provide
required information.

https://riptutorial.com/ 14

https://docs.botframework.com/en-us/azure-bots/build/first-bot/

Enter the required details for the bot, they are identical to the required details of an App Service,for

https://riptutorial.com/ 15

https://i.stack.imgur.com/52DP4.png

example App Name, Subscription, Resource Group and Location. Once entered, click the Create
button.

https://riptutorial.com/ 16

https://i.stack.imgur.com/PogQA.png

Once created/deployed, navigate to the Bot by clicking on the link either from the main page, if you
pinned it to the dashboard or open the resource group and click the link.

Remember that there may be a slight delay before the splash screen displays indicating that the
Bot Service is generating your bot; don’t click Create bot again.

After confirming the deployment generate and configure microsoft app ID and app password.

https://riptutorial.com/ 17

https://i.stack.imgur.com/sm1VI.png

Select programming language of your choice (I selected C#) and select Question and Answer
template.

https://riptutorial.com/ 18

https://i.stack.imgur.com/2fGOa.png

This will further give options such as existing knowledge base already created or to

https://riptutorial.com/ 19

https://i.stack.imgur.com/Fv2B2.png

generate a new one. As I had already created a knowledge base with my subscription, I selected
it. This made my work much easier, reducing the time required to include all the keys in the Azure
bot code related to the Knowledge base.

https://riptutorial.com/ 20

After clicking create bot, the Azure editor will contain all files and we can test

https://riptutorial.com/ 21

https://i.stack.imgur.com/tRyus.png

the functional bot in the chat control. The default code is generated when you create Bot Azure
Service. You can change the logic of the code based on your requirements.

https://riptutorial.com/ 22

Create a new repository in the github to configure continuous deployment with Azure and copy the

Clone the repository in visual studio using the SSH key copied in github.

Download files from Azure Bot Service to the repository cloned location.

Select configure continuous integration tab to configure the settings.

Select the deployment source. I selected Github and the repository to be synced.

Configure the project and the branch to the code be pushed.

Configure the performance test using Team Services Account.

Configure with all subscription, location details etc.

Once all the deployment settings are configured, the initial commit is deployed.

Create a new html file in visual studio to customize all the configured channels embed codes.

Configure it with different channels we want the bot to work with. To configure it with skype, add to

The test skype preview looks as below.

Configure with the email as below.

Get the embed code of different channels so that the users can have access to bot through confi

Configure the Web Chat by customizing the name of the site.

Get the embed code including secret key.

Once all the code is updated in visual studio, push it to github and then sync the code in Azure wi

The code sync reflects in both Azure as well as github as below.

All deployment and performance details can be visualized in Azure Bot Service.

You can set the breakpoints in Visual Studio and run locally in the emulator and debug

https://riptutorial.com/ 23

https://i.stack.imgur.com/RbWyt.png
https://i.stack.imgur.com/AEWCm.png
https://i.stack.imgur.com/gYYfh.png
https://i.stack.imgur.com/eroMh.png
https://i.stack.imgur.com/stTCn.png
https://i.stack.imgur.com/A7LeW.png
https://i.stack.imgur.com/xJgiL.png
https://i.stack.imgur.com/1dKau.png
https://i.stack.imgur.com/ka0zD.png
https://i.stack.imgur.com/5fahf.png
https://i.stack.imgur.com/AZpi4.png
https://i.stack.imgur.com/PZREe.png
https://i.stack.imgur.com/t3jwZ.png
https://i.stack.imgur.com/jtGy9.png
https://i.stack.imgur.com/Fwjur.png
https://i.stack.imgur.com/kKXRL.png
https://i.stack.imgur.com/h70o1.png
https://i.stack.imgur.com/L3Ftv.png
https://i.stack.imgur.com/Sq3l4.png
https://i.stack.imgur.com/0YZrX.png

following this documentation.

You can track the build updates and errors using Azure Analytics.

Looking forward to update the Bot and move to next level.

Read Getting started with Azure Bot Service online:
https://riptutorial.com/botframework/topic/9557/getting-started-with-azure-bot-service

https://riptutorial.com/ 24

https://docs.botframework.com/en-us/azure-bot-service/manage/debug/#debugging-c-bots-built-using-the-azure-bot-service-on-windows
https://riptutorial.com/botframework/topic/9557/getting-started-with-azure-bot-service

Chapter 4: Getting Started with QnA Services

Introduction

The QnA Maker is a free, easy-to-use, REST API- and web-based service that trains AI to
respond to users’ questions in a more natural, conversational way. With optimized machine
learning logic and the ability to integrate industry-leading language processing, QnA Maker distills
semi-structured data like question and answer pairs into distinct, helpful answers.

Examples

Creating our own QnA Service manually

Providing your microsoft account credentials you can authenticate and receive subscription keys
to start with the services. This document describes the various flows in the tool to create your own
knowledge base.

https://riptutorial.com/ 25

https://qnamaker.ai/Documentation/Authentication
https://i.stack.imgur.com/o0SVc.png

QnA Maker works in three steps: extraction, training and publishing. To start, feed it anything from
existing FAQ URLs to documents and editorial content. I created my own question and answers
manually.

https://riptutorial.com/ 26

QnA Maker extracts all possible pairs of questions and answers, and through the easy-to-use web
The train feature lets you evaluate the correctness of the responses and correct them and re-train

There are two ways you can improve the relevance of the responses.

a. Chat with your KB:
Chat with your knowledge base, to see the relevance of the responses. You can add a variation to

b. Replay live chat logs:
A very useful feature is to see what responses the service returns for live traffic, and then train it

Once you’re satisfied with the scope of responses, you can publish your knowledge base as an A

We can review the changes made to the QnA Bot Service and click on "Publish" button.

Our QnA Bot Service will be deployed successfully. It will show the sample HTTP request with kn

Even after publishing, you can review interactions in real time and refine responses as needed. Q
Through settings tab you can update the changes requires and make you save and train it every t
By using other Cognitive Services with QnA Maker, you can create something as elegantly simple

If you have feedback or questions about the service, share your comments by going here

https://riptutorial.com/ 27

https://i.stack.imgur.com/IcuWI.png
https://i.stack.imgur.com/KlZvU.png
https://i.stack.imgur.com/lPold.png
https://i.stack.imgur.com/3RCx2.png
https://i.stack.imgur.com/TQl1F.png
https://i.stack.imgur.com/4OmAO.png
https://qnamaker.ai/

and clicking on “Feedback” in the top navigation.

Read Getting Started with QnA Services online:
https://riptutorial.com/botframework/topic/9520/getting-started-with-qna-services

https://riptutorial.com/ 28

https://riptutorial.com/botframework/topic/9520/getting-started-with-qna-services

Credits

S.
No

Chapters Contributors

1
Getting started with
botframework

Community, Eric Dahlvang, Ezequiel Jadib, Mr. Kaffe Kup, Rajat
Jain

2
Adding Natural
Language
Processing

Rajat Jain

3
Getting started with
Azure Bot Service

Eric Dahlvang, Jyo Fanidam

4
Getting Started with
QnA Services

Jyo Fanidam

https://riptutorial.com/ 29

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/86646/eric-dahlvang
https://riptutorial.com/contributor/90081/ezequiel-jadib
https://riptutorial.com/contributor/6337490/mr--kaffe-kup
https://riptutorial.com/contributor/4773320/rajat-jain
https://riptutorial.com/contributor/4773320/rajat-jain
https://riptutorial.com/contributor/4773320/rajat-jain
https://riptutorial.com/contributor/86646/eric-dahlvang
https://riptutorial.com/contributor/5508654/jyo-fanidam
https://riptutorial.com/contributor/5508654/jyo-fanidam

	About
	Chapter 1: Getting started with botframework
	Remarks
	Versions

	Bot Builder Latest Releases
	Examples
	Installation or Setup

	Chapter 2: Adding Natural Language Processing
	Introduction
	Syntax
	Examples
	Initializing and Adding LUISRecognizer
	Defining a LUIS Model with Intents
	Adding Entities to LUIS Model

	Chapter 3: Getting started with Azure Bot Service
	Introduction
	Examples
	Getting started with Azure Bot Service

	Chapter 4: Getting Started with QnA Services
	Introduction
	Examples
	Creating our own QnA Service manually

	Credits

