
caffe

#caffe

Table of Contents

About 1

Chapter 1: Getting started with caffe 2

Remarks 2

Versions 2

Examples 2

Installation and setup 2

Ubuntu 2

Enable multithreading with Caffe 4

Regularization loss (weight decay) in Caffe 4

Chapter 2: Basic Caffe Objects - Solver, Net, Layer and Blob 6

Remarks 6

Examples 6

How these objects interact together. 6

Chapter 3: Batch normalization 8

Introduction 8

Parameters 8

Examples 8

Prototxt for training 8

Prototxt for deployment 9

Chapter 4: Custom Python Layers 10

Introduction 10

Parameters 10

Remarks 10

- Caffe build with Python layer 10

- Where should I save the class file? 10

References 10

Examples 11

Layer Template 11

- Setup method 11

- Reshape method 11

- Forward method 11

- Backward method 11

Prototxt Template 12

Passing parameters to the layer 12

Measure Layer 12

Data Layer 15

Chapter 5: Prepare Data for Training 17

Examples 17

Prepare image dataset for image classification task 17

A quick guide to Caffe's convert_imageset 17

Build 17

Prepare your data 17

Convert the dataset 17

Prepare arbitrary data in HDF5 format 18

Build the hdf5 binary file 18

Configuring "HDF5Data" layer 19

Chapter 6: Training a Caffe model with pycaffe 20

Examples 20

Training a network on the Iris dataset 20

Credits 29

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: caffe

It is an unofficial and free caffe ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official caffe.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/caffe
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with caffe

Remarks

Caffe is a library written in C++, to facilitate the experimentation with and use of Convolutional
Neural Networks (CNN). Caffe has been developed by Berkeley Vision and Learning Center
(BVLC).

Caffe is actually an abbreviation referring to "Convolutional Architectures for Fast Feature
Extraction". This acronym encapsulates an important scope of the library. Caffe in the form of a
library offers a general programming framework/architecture which can be used to perform
efficient training and testing of CNNs. "Efficiency" is a major hallmark of caffe, and stands as a
major design objective of Caffe.

Caffe is an open-source library released under BSD 2 Clause license.

Caffe is maintained on GitHub

Caffe can be used to :

Efficiently train and test multiple CNN architectures, specifically any architecture that can be
represented as a directed acyclic graph (DAG).

•

Utilize multiple GPUs (upto 4) for training and testing. It is recommended that all the GPUs
should be of the same type. Otherwise, performance is limited by the limits of the slowest
GPU in the system. For example, in case of TitanX and GTX 980, the performance will be
limited by the latter. Mixing multiple architectures is not supported, e.g. Kepler and Fermi 3.

•

Caffe has been written following efficient Object Oriented Programming (OOP) principles.

A good starting point to begin an introduction to caffe is to get a bird's eye view of how caffe works
through its fundamental objects.

Versions

Version Release Date

1.0 2017-04-19

Examples

Installation and setup

Ubuntu

https://riptutorial.com/ 2

https://github.com/BVLC/caffe/blob/master/LICENSE
https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/blob/master/docs/multigpu.md

Below are detailed instructions to install Caffe, pycaffe as well as its dependencies, on Ubuntu
14.04 x64 or 14.10 x64.

Execute the following script, e.g. "bash compile_caffe_ubuntu_14.sh" (~30 to 60 minutes on a new
Ubuntu).

This script installs Caffe and pycaffe.
CPU only, multi-threaded Caffe.

Usage:
0. Set up here how many cores you want to use during the installation:
By default Caffe will use all these cores.
NUMBER_OF_CORES=4

sudo apt-get install -y libprotobuf-dev libleveldb-dev libsnappy-dev
sudo apt-get install -y libopencv-dev libhdf5-serial-dev
sudo apt-get install -y --no-install-recommends libboost-all-dev
sudo apt-get install -y libatlas-base-dev
sudo apt-get install -y python-dev
sudo apt-get install -y python-pip git

For Ubuntu 14.04
sudo apt-get install -y libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler

Install LMDB
git clone https://github.com/LMDB/lmdb.git
cd lmdb/libraries/liblmdb
sudo make
sudo make install

More pre-requisites
sudo apt-get install -y cmake unzip doxygen
sudo apt-get install -y protobuf-compiler
sudo apt-get install -y libffi-dev python-pip python-dev build-essential
sudo pip install lmdb
sudo pip install numpy
sudo apt-get install -y python-numpy
sudo apt-get install -y gfortran # required by scipy
sudo pip install scipy # required by scikit-image
sudo apt-get install -y python-scipy # in case pip failed
sudo apt-get install -y python-nose
sudo pip install scikit-image # to fix https://github.com/BVLC/caffe/issues/50

Get caffe (http://caffe.berkeleyvision.org/installation.html#compilation)
cd
mkdir caffe
cd caffe
wget https://github.com/BVLC/caffe/archive/master.zip
unzip -o master.zip
cd caffe-master

Prepare Python binding (pycaffe)
cd python
for req in $(cat requirements.txt); do sudo pip install $req; done

to be able to call "import caffe" from Python after reboot:
echo "export PYTHONPATH=$(pwd):$PYTHONPATH " >> ~/.bash_profile
source ~/.bash_profile # Update shell
cd ..

https://riptutorial.com/ 3

Compile caffe and pycaffe
cp Makefile.config.example Makefile.config
sed -i '8s/.*/CPU_ONLY := 1/' Makefile.config # Line 8: CPU only
sudo apt-get install -y libopenblas-dev
sed -i '33s/.*/BLAS := open/' Makefile.config # Line 33: to use OpenBLAS
Note that if one day the Makefile.config changes and these line numbers may change
echo "export OPENBLAS_NUM_THREADS=($NUMBER_OF_CORES)" >> ~/.bash_profile
mkdir build
cd build
cmake ..
cd ..
make all -j$NUMBER_OF_CORES # 4 is the number of parallel threads for compilation: typically
equal to number of physical cores
make pycaffe -j$NUMBER_OF_CORES
make test
make runtest
#make matcaffe
make distribute

Afew few more dependencies for pycaffe
sudo pip install pydot
sudo apt-get install -y graphviz
sudo pip install scikit-learn

At the end, you need to run "source ~/.bash_profile" manually or start a new shell to be able to do
'python import caffe'.

Enable multithreading with Caffe

Caffe can run on multiple cores. One way is to enable multithreading with Caffe to use OpenBLAS
instead of the default ATLAS. To do so, you can follow these three steps:

sudo apt-get install -y libopenblas-dev1.
Before compiling Caffe, edit Makefile.config, replace BLAS := atlas by BLAS := open2.
After compiling Caffe, running export OPENBLAS_NUM_THREADS=4 will cause Caffe to use 4 cores.3.

Regularization loss (weight decay) in Caffe

In the solver file, we can set a global regularization loss using the weight_decay and
regularization_type options.

In many cases we want different weight decay rates for different layers. This can be done by
setting the decay_mult option for each layer in the network definition file, where decay_mult is the
multiplier on the global weight decay rate, so the actual weight decay rate applied for one layer is
decay_mult*weight_decay.

For example, the following defines a convolutional layer with NO weight decay regardless of the
options in the solver file.

layer {
 name: "Convolution1"
 type: "Convolution"
 bottom: "data"

https://riptutorial.com/ 4

https://github.com/BVLC/caffe/blob/master/Makefile.config.example
http://caffe.berkeleyvision.org/tutorial/solver.html

 top: "Convolution1"
 param {
 decay_mult: 0
 }
 convolution_param {
 num_output: 32
 pad: 0
 kernel_size: 3
 stride: 1
 weight_filler {
 type: "xavier"
 }
 }
}

See this thread for more information.

Read Getting started with caffe online: https://riptutorial.com/caffe/topic/4382/getting-started-with-
caffe

https://riptutorial.com/ 5

http://stackoverflow.com/q/32177764/1714410
https://riptutorial.com/caffe/topic/4382/getting-started-with-caffe
https://riptutorial.com/caffe/topic/4382/getting-started-with-caffe

Chapter 2: Basic Caffe Objects - Solver, Net,
Layer and Blob

Remarks

A caffe user sends instructions to perform specific operations to caffe objects. These objects
interact with each other based on their design specifications and carry out the operation(s). This is
a basic principle OOP paradigm.

While there are many caffe object types (or C++ classes), for a beginning basic understanding we
focus upon 4 important caffe objects. Our objective at this stage is to simply observe the
interaction between these objects on a highly abstracted level where specific implementation and
design details are hazed out, and instead a bird's eye view of operation is focussed upon.

The 4 basic caffe objects are :

Solver•
Net•
Layer•
Blob•

A very basic introduction and a bird's eye view of their role in the working of caffe is presented in
concise points in the examples section.

After reading and getting a basic idea of how these caffe objects interact, each object type can be
read about in detail in their dedicated topics.

Examples

How these objects interact together.

A user is looking to use caffe for CNN training and testing. The user decides upon the CNN
architecture design (e.g - No. of layers, No. of filters and their details etc). The user also
decides the optimization technique for training and learning parameters in case training is to
be carried out. If the operation is of plain vanilla testing, a pre-trained model is specified by
the user. Using all this information, the user instantiates a Solver object and provides the
Solver object with an instruction (which decides operation(s) such as training and testing).

•

Solver : This object can be looked upon as an entity that oversees the training and testing of
a CNN. It is the actual contractor who gets a CNN up on processor and running. It is
specialised in carrying out the specific optimizations that lead to a CNN getting trained.

•

Net : Net can be thought of as a specialist object that represents the actual CNN over which
operation(s) are carried out. Net is instructed by Solver to actually allocate memory for the
CNN and instantiate it. Net is also responsible for giving instructions which actually lead to

•

https://riptutorial.com/ 6

forward or backpropagation being carried out over the CNN.

Layer : It is an object that represents a particular layer of a CNN. Thus a CNN is made up of
layers. As far as caffe is concerned, Net object instantiates each "Layer" type specified in
the architecture definition and it also connects different layers together. A specific layer
carries out a specific set of operation(s) (e.g - Max-Pooling, Min-Pooling, 2D Convolution
etc.)

•

Blob : Data flows through a CNN during training and testing. This data apart from containing
user data, also includes several intermediate computations that are performed over CNN.
This data is encapsulated in an object called Blob.

•

Read Basic Caffe Objects - Solver, Net, Layer and Blob online:
https://riptutorial.com/caffe/topic/5810/basic-caffe-objects---solver--net--layer-and-blob

https://riptutorial.com/ 7

https://riptutorial.com/caffe/topic/5810/basic-caffe-objects---solver--net--layer-and-blob

Chapter 3: Batch normalization

Introduction

From the docs:

"Normalizes the input to have 0-mean and/or unit (1) variance across the batch.

This layer computes Batch Normalization as described in [1].

[...]

[1] S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift." arXiv preprint arXiv:1502.03167 (2015)."

Parameters

Parameter Details

use_global_stats From rohrbach's post from 2nd March 2016 - maybe he knows:

(use_global_stats)

"By default, during training time, the network is computing global mean/
variance statistics via a running average, which is then used at test time
to allow deterministic outputs for each input. You can manually toggle
whether the network is accumulating or using the statistics via the
use_global_stats option. IMPORTANT: for this feature to work, you
MUST set the learning rate to zero for all three parameter blobs, i.e.,
param {lr_mult: 0} three times in the layer definition.

(use_global_stats)
This means by default (as the following is set in batch_norm_layer.cpp),
you don't have to set use_global_stats at all in the prototxt.
use_global_stats_ = this->phase_ == TEST;"

Examples

Prototxt for training

The following is an example definition for training a BatchNorm layer with channel-wise scale and
bias. Typically a BatchNorm layer is inserted between convolution and rectification layers. In this
example, the convolution would output the blob layerx and the rectification would receive the
layerx-bn blob.

layer { bottom: 'layerx' top: 'layerx-bn' name: 'layerx-bn' type: 'BatchNorm'
 batch_norm_param {
 use_global_stats: false # calculate the mean and variance for each mini-batch

https://riptutorial.com/ 8

http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BatchNormLayer.html
https://github.com/BVLC/caffe/issues/3347

 moving_average_fraction: .999 # doesn't effect training
 }
 param { lr_mult: 0 }
 param { lr_mult: 0 }
 param { lr_mult: 0 }}
channel-wise scale and bias are separate
layer { bottom: 'layerx-bn' top: 'layerx-bn' name: 'layerx-bn-scale' type: 'Scale',
 scale_param {
 bias_term: true
 axis: 1 # scale separately for each channel
 num_axes: 1 # ... but not spatially (default)
 filler { type: 'constant' value: 1 } # initialize scaling to 1
 bias_filler { type: 'constant' value: 0.001 } # initialize bias
}}

More information can be found in this thread.

Prototxt for deployment

The main change needed is to switch use_global_stats to true. This switches to using the moving
average.

layer { bottom: 'layerx' top: 'layerx-bn' name: 'layerx-bn' type: 'BatchNorm'
 batch_norm_param {
 use_global_stats: true # use pre-calculated average and variance
 }
 param { lr_mult: 0 }
 param { lr_mult: 0 }
 param { lr_mult: 0 }}
channel-wise scale and bias are separate
layer { bottom: 'layerx-bn' top: 'layerx-bn' name: 'layerx-bn-scale' type: 'Scale',
 scale_param {
 bias_term: true
 axis: 1 # scale separately for each channel
 num_axes: 1 # ... but not spatially (default)
}}

Read Batch normalization online: https://riptutorial.com/caffe/topic/6575/batch-normalization

https://riptutorial.com/ 9

http://stackoverflow.com/q/41269570/1714410
https://riptutorial.com/caffe/topic/6575/batch-normalization

Chapter 4: Custom Python Layers

Introduction

This tutorial will guide through the steps to create a simple custom layer for Caffe using python. By
the end of it, there are some examples of custom layers. Usually you would create a custom layer
to implement a functionality that isn't available in Caffe, tuning it for your requirements.

Creating a python custom layer adds some overhead to your network and probably isn't as
efficient as a C++ custom layer. However, this way, you won't have to compile the whole caffe with
your new layer.

Parameters

Parameter Details

top
An array with the top blobs of your layer. Access data passed to it by using
top[i].data, where i is the index of a specific blob

bottom
An array with the bottom blobs of your layer. Access data passed to it by using
bottom[i].data, where i is the index of a specific blob

Remarks

- Caffe build with Python layer

Caffe needs to be compiled with WITH_PYTHON_LAYER option:

WITH_PYTHON_LAYER=1 make && make pycaffe

- Where should I save the class file?

You have two options (at least that I know of). Either you can save the custom layer file in the
same folder as you are going to run the caffe command (probably where your prototxt files would
be). Another way, also my favorite one, is to save all your custom layers in a folder and adding this
folder to your PYTHONPATH.

References

Christopher Bourez's blog1.

https://riptutorial.com/ 10

http://christopher5106.github.io/deep/learning/2015/09/04/Deep-learning-tutorial-on-Caffe-Technology.html

Caffe Github2.
StackOverflow3.

Examples

Layer Template

import caffe

class My_Custom_Layer(caffe.Layer):
 def setup(self, bottom, top):
 pass

 def forward(self, bottom, top):
 pass

 def reshape(self, bottom, top):
 pass

 def backward(self, bottom, top):
 pass

So important things to remember:

Your custom layer has to inherit from caffe.Layer (so don't forget to import caffe);•
You must define the four following methods: setup, forward, reshape and backward;•
All methods have a top and a bottom parameters, which are the blobs that store the input
and the output passed to your layer. You can access it using top[i].data or bottom[i].data,
where i is the index of the blob in case you have more than one upper or lower blob.

•

- Setup method

The Setup method is called once during the lifetime of the execution, when Caffe is instantiating all
layers. This is where you will read parameters, instantiate fixed-size buffers.

- Reshape method

Use the reshape method for initialization/setup that depends on the bottom blob (layer input) size.
It is called once when the network is instantiated.

- Forward method

The Forward method is called for each input batch and is where most of your logic will be.

- Backward method

The Backward method is called during the backward pass of the network. For example, in a
convolution-like layer, this would be where you would calculate the gradients. This is optional (a
layer can be forward-only).

https://riptutorial.com/ 11

https://github.com/BVLC/caffe/issues/684
https://github.com/BVLC/caffe/issues/684

Prototxt Template

Ok, so now you have your layer designed! This is how you define it in your .prototxt file:

layer {
 name: "LayerName"
 type: "Python"
 top: "TopBlobName"
 bottom: "BottomBlobName"
 python_param {
 module: "My_Custom_Layer_File"
 layer: "My_Custom_Layer_Class"
 param_str: '{"param1": 1,"param2":True, "param3":"some string"}'
 }
 include{
 phase: TRAIN
 }
}

Important remarks:

type must be Python;•
You must have a python_param dictionary with at least the module and layer parameters;•
module refers to the file where you implemented your layer (without the .py);•
layer refers to the name of your class;•
You can pass parameters to the layer using param_str (more on accessing them bellow);•
Just like any other layer, you can define in which phase you want it to be active (see the
examples to see how you can check the current phase);

•

Passing parameters to the layer

You can define the layer parameters in the prototxt by using param_str. Once you've done it, here
is an example on how you access these paremeters inside the layer class:

def setup(self, bottom, top):
 params = eval(self.param_str)
 param1 = params["param1"]
 param2 = params.get('param2', False) #I usually use this when fetching a bool
 param3 = params["param3"]

 #Continue with the setup
 # ...

Measure Layer

In this example we will design a "measure" layer, that outputs the accuracy and a confusion matrix
for a binary problem during training and the accuracy, false positive rate and false negative rate
during test/validation. Although Caffe already has a Accuracy layer, sometimes you want
something more, like a F-measure.

This is my measureLayer.py with my class definition:

https://riptutorial.com/ 12

#Remark: This class is designed for a binary problem, where the first class would be the
'negative'
and the second class would be 'positive'

import caffe
TRAIN = 0
TEST = 1

class Measure_Layer(caffe.Layer):
 #Setup method
 def setup(self, bottom, top):
 #We want two bottom blobs, the labels and the predictions
 if len(bottom) != 2:
 raise Exception("Wrong number of bottom blobs (prediction and label)")

 #And some top blobs, depending on the phase
 if self.phase = TEST and len(top) != 3:
 raise Exception("Wrong number of top blobs (acc, FPR, FNR)")
 if self.phase = TRAIN and len(top) != 5:
 raise Exception("Wrong number of top blobs (acc, tp, tn, fp and fn)")

 #Initialize some attributes
 self.TPs = 0.0
 self.TNs = 0.0
 self.FPs = 0.0
 self.FNs = 0.0
 self.totalImgs = 0

 #Forward method
 def forward(self, bottom, top):
 #The order of these depends on the prototxt definition
 predictions = bottom[0].data
 labels = bottom[1].data

 self.totalImgs += len(labels)

 for i in range(len(labels)): #len(labels) is equal to the batch size
 pred = predictions[i] #pred is a tuple with the normalized probability
 #of a sample i.r.t. two classes
 lab = labels[i]

 if pred[0] > pred[1]:
 if lab == 1.0:
 self.FNs += 1.0
 else:
 self.TNs += 1.0
 else:
 if lab == 1.0:
 self.TPs += 1.0
 else:
 self.FPs += 1.0

 acc = (self.TPs + self.TNs) / self.totalImgs

 try: #just assuring we don't divide by 0
 fpr = self.FPs / (self.FPs + self.TNs)
 except:
 fpr = -1.0

 try: #just assuring we don't divide by 0
 fnr = self.FNs / (self.FNs + self.TPs)

https://riptutorial.com/ 13

 except:
 fnr = -1.0

 #output data to top blob
 top[0].data = acc
 if self.phase == TRAIN:
 top[1].data = self.TPs
 top[2].data = self.TNs
 top[3].data = self.FPs
 top[4].data = self.FNs
 elif self.phase == TEST:
 top[1].data = fpr
 top[2].data = fnr

 def reshape(self, bottom, top):
 """
 We don't need to reshape or instantiate anything that is input-size sensitive
 """
 pass

 def backward(self, bottom, top):
 """
 This layer does not back propagate
 """
 pass

And this is an example of a prototxt with it:

layer {
 name: "metrics"
 type: "Python"
 top: "Acc"
 top: "TPs"
 top: "TNs"
 top: "FPs"
 top: "FNs"

 bottom: "prediction" #let's supose we have these two bottom blobs
 bottom: "label"

 python_param {
 module: "measureLayer"
 layer: "Measure_Layer"
 }
 include {
 phase: TRAIN
 }
}

layer {
 name: "metrics"
 type: "Python"
 top: "Acc"
 top: "FPR"
 top: "FNR"

 bottom: "prediction" #let's supose we have these two bottom blobs
 bottom: "label"

 python_param {

https://riptutorial.com/ 14

 module: "measureLayer"
 layer: "Measure_Layer"
 }
 include {
 phase: TEST
 }
}

Data Layer

This example is a custom data layer, that receives a text file with image paths, loads a batch of
images and preprocesses them. Just a quick tip, Caffe already has a big range of data layers and
probably a custom layer is not the most efficient way if you just want something simple.

My dataLayer.py could be something like:

import caffe

class Custom_Data_Layer(caffe.Layer):
 def setup(self, bottom, top):
 # Check top shape
 if len(top) != 2:
 raise Exception("Need to define tops (data and label)")

 #Check bottom shape
 if len(bottom) != 0:
 raise Exception("Do not define a bottom.")

 #Read parameters
 params = eval(self.param_str)
 src_file = params["src_file"]
 self.batch_size = params["batch_size"]
 self.im_shape = params["im_shape"]
 self.crop_size = params.get("crop_size", False)

 #Reshape top
 if self.crop_size:
 top[0].reshape(self.batch_size, 3, self.crop_size, self.crop_size)
 else:
 top[0].reshape(self.batch_size, 3, self.im_shape, self.im_shape)

 top[1].reshape(self.batch_size)

 #Read source file
 #I'm just assuming we have this method that reads the source file
 #and returns a list of tuples in the form of (img, label)
 self.imgTuples = readSrcFile(src_file)

 self._cur = 0 #use this to check if we need to restart the list of imgs

 def forward(self, bottom, top):
 for itt in range(self.batch_size):
 # Use the batch loader to load the next image.
 im, label = self.load_next_image()

 #Here we could preprocess the image
 # ...

https://riptutorial.com/ 15

 # Add directly to the top blob
 top[0].data[itt, ...] = im
 top[1].data[itt, ...] = label

 def load_next_img(self):
 #If we have finished forwarding all images, then an epoch has finished
 #and it is time to start a new one
 if self._cur == len(self.imgTuples):
 self._cur = 0
 shuffle(self.imgTuples)

 im, label = self.imgTuples[self._cur]
 self._cur += 1

 return im, label

 def reshape(self, bottom, top):
 """
 There is no need to reshape the data, since the input is of fixed size
 (img shape and batch size)
 """
 pass

 def backward(self, bottom, top):
 """
 This layer does not back propagate
 """
 pass

And the prototxt would be like:

layer {
 name: "Data"
 type: "Python"
 top: "data"
 top: "label"

 python_param {
 module: "dataLayer"
 layer: "Custom_Data_Layer"
 param_str: '{"batch_size": 126,"im_shape":256, "crop_size":224, "src_file":
"path_to_TRAIN_file.txt"}'
 }
}

Read Custom Python Layers online: https://riptutorial.com/caffe/topic/10535/custom-python-layers

https://riptutorial.com/ 16

https://riptutorial.com/caffe/topic/10535/custom-python-layers

Chapter 5: Prepare Data for Training

Examples

Prepare image dataset for image classification task

Caffe has a build-in input layer tailored for image classification tasks (i.e., single integer label per
input image). This input "Data" layer is built upon an lmdb or leveldb data structure. In order to use
"Data" layer one has to construct the data structure with all training data.

A quick guide to Caffe's convert_imageset

Build

First thing you must do is build caffe and caffe's tools (convert_imageset is one of these tools).
After installing caffe and makeing it make sure you ran make tools as well.
Verify that a binary file convert_imageset is created in $CAFFE_ROOT/build/tools.

Prepare your data

Images: put all images in a folder (I'll call it here /path/to/jpegs/).
Labels: create a text file (e.g., /path/to/labels/train.txt) with a line per input image <path/to/file> .
For example:

img_0000.jpeg 1
img_0001.jpeg 0
img_0002.jpeg 0

In this example the first image is labeled 1 while the other two are labeled 0.

Convert the dataset

Run the binary in shell

~$ GLOG_logtostderr=1 $CAFFE_ROOT/build/tools/convert_imageset \
 --resize_height=200 --resize_width=200 --shuffle \
 /path/to/jpegs/ \
 /path/to/labels/train.txt \
 /path/to/lmdb/train_lmdb

Command line explained:

GLOG_logtostderr flag is set to 1 before calling convert_imageset indicates the logging
mechanism to redirect log messages to stderr.

•

--resize_height and --resize_width resize all input images to same size 200x200.•
--shuffle randomly change the order of images and does not preserve the order in the •

https://riptutorial.com/ 17

/questions/tagged/lmdb
/questions/tagged/leveldb

/path/to/labels/train.txt file.
Following are the path to the images folder, the labels text file and the output name. Note
that the output name should not exist prior to calling convert_imageset otherwise you'll get a
scary error message.

•

Other flags that might be useful:

--backend - allows you to choose between an lmdb dataset or levelDB.•
--gray - convert all images to gray scale.•
--encoded and --encoded_type - keep image data in encoded (jpg/png) compressed form in the
database.

•

--help - shows some help, see all relevant flags under Flags from
tools/convert_imageset.cpp

•

You can check out $CAFFE_ROOT/examples/imagenet/convert_imagenet.sh for an example how to use
convert_imageset.

see this thread for more information.

Prepare arbitrary data in HDF5 format

In addition to image classification datasets, Caffe also have "HDF5Data" layer for arbitrary inputs.
This layer requires all training/validation data to be stored in hdf5 format files.
This example shows how to use python h5py module to construct such hdf5 file and how to setup
caffe "HDF5Data" layer to read that file.

Build the hdf5 binary file

Assuming you have a text file 'train.txt' with each line with an image file name and a single
floating point number to be used as regression target.

import h5py, os
import caffe
import numpy as np

SIZE = 224 # fixed size to all images
with open('train.txt', 'r') as T :
 lines = T.readlines()
If you do not have enough memory split data into
multiple batches and generate multiple separate h5 files
X = np.zeros((len(lines), 3, SIZE, SIZE), dtype='f4')
y = np.zeros((1,len(lines)), dtype='f4')
for i,l in enumerate(lines):
 sp = l.split(' ')
 img = caffe.io.load_image(sp[0])
 img = caffe.io.resize(img, (SIZE, SIZE, 3)) # resize to fixed size
 # you may apply other input transformations here...
 # Note that the transformation should take img from size-by-size-by-3 and transpose it to
3-by-size-by-size
 X[i] = img
 y[i] = float(sp[1])
with h5py.File('train.h5','w') as H:
 H.create_dataset('X', data=X) # note the name X given to the dataset!

https://riptutorial.com/ 18

https://github.com/BVLC/caffe/blob/master/examples/imagenet/create_imagenet.sh
http://stackoverflow.com/a/31431716/1714410
http://www.riptutorial.com/caffe/example/19019/prepare-image-dataset-for-image-classification-task
/questions/tagged/hdf5

 H.create_dataset('y', data=y) # note the name y given to the dataset!
with open('train_h5_list.txt','w') as L:
 L.write('train.h5') # list all h5 files you are going to use

Configuring "HDF5Data" layer

Once you have all h5 files and the corresponding test files listing them you can add an HDF5 input
layer to your train_val.prototxt:

 layer {
 type: "HDF5Data"
 top: "X" # same name as given in create_dataset!
 top: "y"
 hdf5_data_param {
 source: "train_h5_list.txt" # do not give the h5 files directly, but the list.
 batch_size: 32
 }
 include { phase:TRAIN }
 }

You can find more information here and here.

As shown in above, we pass into Caffe a list of HDF5 files. That is because in the current version
there's a size limit of 2GB for a single HDF5 data file. So if the training data exceeds 2GB, we'll
need to split it into separate files.

If a single HDF5 data file exceeds 2GB we'll get an error message like

Check failed: shape[i] <= 2147483647 / count_ (100 vs. 71) blob size exceeds INT_MAX

If the total amount of data is less than 2GB, shall we split the data into separate files or not?

According to a piece of comment in Caffe's source code, a single file would be better,

If shuffle == true, the ordering of the HDF5 files is shuffled, and the ordering of data
within any given HDF5 file is shuffled, but data between different files are not
interleaved.

Read Prepare Data for Training online: https://riptutorial.com/caffe/topic/5344/prepare-data-for-
training

https://riptutorial.com/ 19

http://stackoverflow.com/a/31808324/1714410
http://stackoverflow.com/a/33166461/1714410
https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto#L743-L755
https://riptutorial.com/caffe/topic/5344/prepare-data-for-training
https://riptutorial.com/caffe/topic/5344/prepare-data-for-training

Chapter 6: Training a Caffe model with
pycaffe

Examples

Training a network on the Iris dataset

Given below is a simple example to train a Caffe model on the Iris data set in Python, using
PyCaffe. It also gives the predicted outputs given some user-defined inputs.

iris_tuto.py

import subprocess
import platform
import copy

from sklearn.datasets import load_iris
import sklearn.metrics
import numpy as np
from sklearn.cross_validation import StratifiedShuffleSplit
import matplotlib.pyplot as plt
import h5py
import caffe
import caffe.draw

def load_data():
 '''
 Load Iris Data set
 '''
 data = load_iris()
 print(data.data)
 print(data.target)
 targets = np.zeros((len(data.target), 3))
 for count, target in enumerate(data.target):
 targets[count][target]= 1
 print(targets)

 new_data = {}
 #new_data['input'] = data.data
 new_data['input'] = np.reshape(data.data, (150,1,1,4))
 new_data['output'] = targets
 #print(new_data['input'].shape)
 #new_data['input'] = np.random.random((150, 1, 1, 4))
 #print(new_data['input'].shape)
 #new_data['output'] = np.random.random_integers(0, 1, size=(150,3))
 #print(new_data['input'])

 return new_data

def save_data_as_hdf5(hdf5_data_filename, data):
 '''
 HDF5 is one of the data formats Caffe accepts
 '''

https://riptutorial.com/ 20

 with h5py.File(hdf5_data_filename, 'w') as f:
 f['data'] = data['input'].astype(np.float32)
 f['label'] = data['output'].astype(np.float32)

def train(solver_prototxt_filename):
 '''
 Train the ANN
 '''
 caffe.set_mode_cpu()
 solver = caffe.get_solver(solver_prototxt_filename)
 solver.solve()

def print_network_parameters(net):
 '''
 Print the parameters of the network
 '''
 print(net)
 print('net.inputs: {0}'.format(net.inputs))
 print('net.outputs: {0}'.format(net.outputs))
 print('net.blobs: {0}'.format(net.blobs))
 print('net.params: {0}'.format(net.params))

def get_predicted_output(deploy_prototxt_filename, caffemodel_filename, input, net = None):
 '''
 Get the predicted output, i.e. perform a forward pass
 '''
 if net is None:
 net = caffe.Net(deploy_prototxt_filename,caffemodel_filename, caffe.TEST)

 #input = np.array([[5.1, 3.5, 1.4, 0.2]])
 #input = np.random.random((1, 1, 1))
 #print(input)
 #print(input.shape)
 out = net.forward(data=input)
 #print('out: {0}'.format(out))
 return out[net.outputs[0]]

import google.protobuf
def print_network(prototxt_filename, caffemodel_filename):
 '''
 Draw the ANN architecture
 '''
 _net = caffe.proto.caffe_pb2.NetParameter()
 f = open(prototxt_filename)
 google.protobuf.text_format.Merge(f.read(), _net)
 caffe.draw.draw_net_to_file(_net, prototxt_filename + '.png')
 print('Draw ANN done!')

def print_network_weights(prototxt_filename, caffemodel_filename):
 '''
 For each ANN layer, print weight heatmap and weight histogram
 '''
 net = caffe.Net(prototxt_filename,caffemodel_filename, caffe.TEST)
 for layer_name in net.params:
 # weights heatmap
 arr = net.params[layer_name][0].data
 plt.clf()

https://riptutorial.com/ 21

 fig = plt.figure(figsize=(10,10))
 ax = fig.add_subplot(111)
 cax = ax.matshow(arr, interpolation='none')
 fig.colorbar(cax, orientation="horizontal")
 plt.savefig('{0}_weights_{1}.png'.format(caffemodel_filename, layer_name), dpi=100,
format='png', bbox_inches='tight') # use format='svg' or 'pdf' for vectorial pictures
 plt.close()

 # weights histogram
 plt.clf()
 plt.hist(arr.tolist(), bins=20)
 plt.savefig('{0}_weights_hist_{1}.png'.format(caffemodel_filename, layer_name),
dpi=100, format='png', bbox_inches='tight') # use format='svg' or 'pdf' for vectorial pictures
 plt.close()

def get_predicted_outputs(deploy_prototxt_filename, caffemodel_filename, inputs):
 '''
 Get several predicted outputs
 '''
 outputs = []
 net = caffe.Net(deploy_prototxt_filename,caffemodel_filename, caffe.TEST)
 for input in inputs:
 #print(input)
 outputs.append(copy.deepcopy(get_predicted_output(deploy_prototxt_filename,
caffemodel_filename, input, net)))
 return outputs

def get_accuracy(true_outputs, predicted_outputs):
 '''

 '''
 number_of_samples = true_outputs.shape[0]
 number_of_outputs = true_outputs.shape[1]
 threshold = 0.0 # 0 if SigmoidCrossEntropyLoss ; 0.5 if EuclideanLoss
 for output_number in range(number_of_outputs):
 predicted_output_binary = []
 for sample_number in range(number_of_samples):
 #print(predicted_outputs)
 #print(predicted_outputs[sample_number][output_number])
 if predicted_outputs[sample_number][0][output_number] < threshold:
 predicted_output = 0
 else:
 predicted_output = 1
 predicted_output_binary.append(predicted_output)

 print('accuracy: {0}'.format(sklearn.metrics.accuracy_score(true_outputs[:,
output_number], predicted_output_binary)))
 print(sklearn.metrics.confusion_matrix(true_outputs[:, output_number],
predicted_output_binary))

def main():
 '''
 This is the main function
 '''

 # Set parameters
 solver_prototxt_filename = 'iris_solver.prototxt'
 train_test_prototxt_filename = 'iris_train_test.prototxt'

https://riptutorial.com/ 22

 deploy_prototxt_filename = 'iris_deploy.prototxt'
 deploy_prototxt_filename = 'iris_deploy.prototxt'
 deploy_prototxt_batch2_filename = 'iris_deploy_batchsize2.prototxt'
 hdf5_train_data_filename = 'iris_train_data.hdf5'
 hdf5_test_data_filename = 'iris_test_data.hdf5'
 caffemodel_filename = 'iris__iter_5000.caffemodel' # generated by train()

 # Prepare data
 data = load_data()
 print(data)
 train_data = data
 test_data = data
 save_data_as_hdf5(hdf5_train_data_filename, data)
 save_data_as_hdf5(hdf5_test_data_filename, data)

 # Train network
 train(solver_prototxt_filename)

 # Print network
 print_network(deploy_prototxt_filename, caffemodel_filename)
 print_network(train_test_prototxt_filename, caffemodel_filename)
 print_network_weights(train_test_prototxt_filename, caffemodel_filename)

 # Compute performance metrics
 #inputs = input = np.array([[[[5.1, 3.5, 1.4, 0.2]]],[[[5.9, 3. , 5.1, 1.8]]]])
 inputs = data['input']
 outputs = get_predicted_outputs(deploy_prototxt_filename, caffemodel_filename, inputs)
 get_accuracy(data['output'], outputs)

if __name__ == "__main__":
 main()

It requires the two following iris_train_test.prototxt and iris_deploy.prototxt to be in the same
folder.

iris_train_test.prototxt:

name: "IrisNet"
layer {
 name: "iris"
 type: "HDF5Data"
 top: "data"
 top: "label"
 include {
 phase: TRAIN
 }
 hdf5_data_param {
 source: "iris_train_data.txt"
 batch_size: 1

 }
}

layer {
 name: "iris"
 type: "HDF5Data"
 top: "data"
 top: "label"

https://riptutorial.com/ 23

 include {
 phase: TEST
 }
 hdf5_data_param {
 source: "iris_test_data.txt"
 batch_size: 1

 }
}

layer {
 name: "ip1"
 type: "InnerProduct"
 bottom: "data"
 top: "ip1"
 param {
 lr_mult: 1 # the learning rate multiplier for weights
 }
 param {
 lr_mult: 2 # the learning rate multiplier for biases
 }
 inner_product_param {
 num_output: 50
 weight_filler {
 type: "xavier"
 }
 bias_filler {
 type: "constant"
 }
 }
}
layer {
 name: "relu1"
 type: "ReLU"
 bottom: "ip1"
 top: "ip1"
}
layer {
 name: "drop1"
 type: "Dropout"
 bottom: "ip1"
 top: "ip1"
 dropout_param {
 dropout_ratio: 0.5
 }
}

layer {
 name: "ip2"
 type: "InnerProduct"
 bottom: "ip1"
 top: "ip2"
 param {
 lr_mult: 1
 }
 param {
 lr_mult: 2

https://riptutorial.com/ 24

 }
 inner_product_param {
 num_output: 50
 weight_filler {
 type: "xavier"
 }
 bias_filler {
 type: "constant"
 }
 }
}
layer {
 name: "drop2"
 type: "Dropout"
 bottom: "ip2"
 top: "ip2"
 dropout_param {
 dropout_ratio: 0.4
 }
}

layer {
 name: "ip3"
 type: "InnerProduct"
 bottom: "ip2"
 top: "ip3"
 param {
 lr_mult: 1
 }
 param {
 lr_mult: 2
 }
 inner_product_param {
 num_output: 3
 weight_filler {
 type: "xavier"
 }
 bias_filler {
 type: "constant"
 }
 }
}

layer {
 name: "drop3"
 type: "Dropout"
 bottom: "ip3"
 top: "ip3"
 dropout_param {
 dropout_ratio: 0.3
 }
}

layer {
 name: "loss"
 type: "SigmoidCrossEntropyLoss"
 # type: "EuclideanLoss"
 # type: "HingeLoss"
 bottom: "ip3"

https://riptutorial.com/ 25

 bottom: "label"
 top: "loss"
}

iris_deploy.prototxt:

name: "IrisNet"
input: "data"
input_dim: 1 # batch size
input_dim: 1
input_dim: 1
input_dim: 4

layer {
 name: "ip1"
 type: "InnerProduct"
 bottom: "data"
 top: "ip1"
 param {
 lr_mult: 1
 }
 param {
 lr_mult: 2
 }
 inner_product_param {
 num_output: 50
 weight_filler {
 type: "xavier"
 }
 bias_filler {
 type: "constant"
 }
 }
}
layer {
 name: "relu1"
 type: "ReLU"
 bottom: "ip1"
 top: "ip1"
}
layer {
 name: "drop1"
 type: "Dropout"
 bottom: "ip1"
 top: "ip1"
 dropout_param {
 dropout_ratio: 0.5
 }
}

layer {
 name: "ip2"
 type: "InnerProduct"
 bottom: "ip1"
 top: "ip2"
 param {
 lr_mult: 1
 }

https://riptutorial.com/ 26

 param {
 lr_mult: 2
 }
 inner_product_param {
 num_output: 50
 weight_filler {
 type: "xavier"
 }
 bias_filler {
 type: "constant"
 }
 }
}
layer {
 name: "drop2"
 type: "Dropout"
 bottom: "ip2"
 top: "ip2"
 dropout_param {
 dropout_ratio: 0.4
 }
}

layer {
 name: "ip3"
 type: "InnerProduct"
 bottom: "ip2"
 top: "ip3"
 param {
 lr_mult: 1
 }
 param {
 lr_mult: 2
 }
 inner_product_param {
 num_output: 3
 weight_filler {
 type: "xavier"
 }
 bias_filler {
 type: "constant"
 }
 }
}

layer {
 name: "drop3"
 type: "Dropout"
 bottom: "ip3"
 top: "ip3"
 dropout_param {
 dropout_ratio: 0.3
 }
}

iris_solver.prototxt:

The train/test net protocol buffer definition
net: "iris_train_test.prototxt"

https://riptutorial.com/ 27

test_iter specifies how many forward passes the test should carry out.
test_iter: 1
Carry out testing every test_interval training iterations.
test_interval: 1000
The base learning rate, momentum and the weight decay of the network.
base_lr: 0.0001
momentum: 0.001
weight_decay: 0.0005
The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
Display every 100 iterations
display: 1000
The maximum number of iterations
max_iter: 5000
snapshot intermediate results
snapshot: 5000
snapshot_prefix: "iris_"
solver mode: CPU or GPU
solver_mode: CPU # GPU

Read Training a Caffe model with pycaffe online: https://riptutorial.com/caffe/topic/4618/training-a-
caffe-model-with-pycaffe

https://riptutorial.com/ 28

https://riptutorial.com/caffe/topic/4618/training-a-caffe-model-with-pycaffe
https://riptutorial.com/caffe/topic/4618/training-a-caffe-model-with-pycaffe

Credits

S.
No

Chapters Contributors

1
Getting started with
caffe

Community, dontloo, Franck Dernoncourt, GoodDeeds, Parag
S. Chandakkar, Shai, Tahir Shahzad, Ujjwal Aryan

2
Basic Caffe Objects -
Solver, Net, Layer
and Blob

Ujjwal Aryan

3 Batch normalization dasWesen, Jonathan, Shai

4
Custom Python
Layers

Fernanda Andalo, rafaspadilha

5
Prepare Data for
Training

dontloo, malreddysid, Shai, Stephen Leppik

6
Training a Caffe
model with pycaffe

Franck Dernoncourt, Parag S. Chandakkar

https://riptutorial.com/ 29

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3041068/dontloo
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/5987698/gooddeeds
https://riptutorial.com/contributor/1586200/parag-s--chandakkar
https://riptutorial.com/contributor/1586200/parag-s--chandakkar
https://riptutorial.com/contributor/1714410/shai
https://riptutorial.com/contributor/2281786/tahir-shahzad
https://riptutorial.com/contributor/2711403/ujjwal-aryan
https://riptutorial.com/contributor/2711403/ujjwal-aryan
https://riptutorial.com/contributor/4726173/daswesen
https://riptutorial.com/contributor/249226/jonathan
https://riptutorial.com/contributor/1714410/shai
https://riptutorial.com/contributor/3942427/fernanda-andalo
https://riptutorial.com/contributor/3441975/rafaspadilha
https://riptutorial.com/contributor/3041068/dontloo
https://riptutorial.com/contributor/5907474/malreddysid
https://riptutorial.com/contributor/1714410/shai
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/1586200/parag-s--chandakkar

	About
	Chapter 1: Getting started with caffe
	Remarks
	Versions
	Examples
	Installation and setup

	Ubuntu
	Enable multithreading with Caffe
	Regularization loss (weight decay) in Caffe

	Chapter 2: Basic Caffe Objects - Solver, Net, Layer and Blob
	Remarks
	Examples
	How these objects interact together.

	Chapter 3: Batch normalization
	Introduction
	Parameters
	Examples
	Prototxt for training
	Prototxt for deployment

	Chapter 4: Custom Python Layers
	Introduction
	Parameters
	Remarks

	- Caffe build with Python layer
	- Where should I save the class file?
	References
	Examples
	Layer Template
	- Setup method
	- Reshape method
	- Forward method
	- Backward method
	Prototxt Template
	Passing parameters to the layer
	Measure Layer
	Data Layer

	Chapter 5: Prepare Data for Training
	Examples
	Prepare image dataset for image classification task

	A quick guide to Caffe's convert_imageset
	Build
	Prepare your data
	Convert the dataset
	Prepare arbitrary data in HDF5 format
	Build the hdf5 binary file
	Configuring "HDF5Data" layer

	Chapter 6: Training a Caffe model with pycaffe
	Examples
	Training a network on the Iris dataset

	Credits

