
coffeescript

#coffeescrip

t



Table of Contents

About 1

Chapter 1: Getting started with coffeescript 2

Remarks 2

Examples 2

Hello Word (Linux and OS X) 2

Chapter 2: Arrays 4

Examples 4

Mapping values 4

Method 1 - using .map 4

Method 2 - using comprehension 4

Filtering values 4

Method 1 - using .filter 4

Method 2 - using comprehension 4

Slicing 5

Concatenation 5

Method 1 - using .concat 5

Method 2 - using splats 5

Method 3 - using .concat with indeterminate number of arrays 5

Comprehensions 6

Chapter 3: Classes 7

Examples 7

Classes, Inheritance, and Super 7

Prototypes 7

Chapter 4: Conditionals 9

Examples 9

if, if / then, if / else, unless, ternary operator 9

Switch 10

Chapter 5: Destructuring Assignment 13

Examples 13

Swap 13



Extract Values from an Object 13

Named Function Parameters 13

First and Last Element 14

Chapter 6: Functions 15

Examples 15

Small Arrow functions 15

Chapter 7: Loops 16

Examples 16

Looping a Function 16

Method 1 - Standard 16

Method 2 - Compact 16

Chapter 8: Operators 17

Examples 17

Existential Operator 17

Full list of default operators 17

Chapter 9: Pro's & Con's of using Coffeescript 19

Examples 19

Pros 19

Simplicity 19

Loops 19

String Interpolation 19

Chapter 10: Strings 21

Examples 21

Placeholder replacements 21

Block strings 21

Multiline strings 21

Credits 22



About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version 
from: coffeescript

It is an unofficial and free coffeescript ebook created for educational purposes. All the content is 
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at 
Stack Overflow. It is neither affiliated with Stack Overflow nor official coffeescript.

The content is released under Creative Commons BY-SA, and the list of contributors to each 
chapter are provided in the credits section at the end of this book. Images may be copyright of 
their respective owners unless otherwise specified. All trademarks and registered trademarks are 
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor 
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/coffeescript
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com


Chapter 1: Getting started with coffeescript

Remarks

This section provides an overview of what coffeescript is, and why a developer might want to use 
it.

It should also mention any large subjects within coffeescript, and link out to the related topics. 
Since the Documentation for coffeescript is new, you may need to create initial versions of those 
related topics.

Examples

Hello Word (Linux and OS X)

CoffeeScript is a scripting language that compiles into JavaScript. Any code written in CoffeeScript 
can be translated into JavaScript with a one-to-one matching.

CoffeeScript can be easily installed with npm:

$ mkdir coffee && cd coffee 
$ npm install -g coffee-script

The -g flag will install CoffeeScript globally, so it will always be available on your CLI. Don't use 
the -g flag if you want a local installation:

$ mkdir coffee && cd coffee 
$ npm install coffee-script

When the package is installed, create a helloword.coffee file in the working directory and write 
some CoffeeScript code in it.

console.log 'Hello word!'

This code can be executed by calling the CoffeeScript binary. If you installed CoffeeScript globally, 
simply run:

$ coffee helloword.coffee

If you installed CoffeeScript locally, you will find the binary in the installation folder:

$ ./node_modules/coffee-script/bin/coffee helloword.coffee

In both cases, the result will be printed in the console: Hello word!

https://riptutorial.com/ 2



Read Getting started with coffeescript online: https://riptutorial.com/coffeescript/topic/4233/getting-
started-with-coffeescript

https://riptutorial.com/ 3

https://riptutorial.com/coffeescript/topic/4233/getting-started-with-coffeescript
https://riptutorial.com/coffeescript/topic/4233/getting-started-with-coffeescript


Chapter 2: Arrays

Examples

Mapping values

You want to convert all elements in an array to some other form.

For example, you have

theUsers = [ 
  {id: 1, username: 'john'} 
  {id: 2, username: 'lexy'} 
  {id: 3, username: 'pete'} 
]

and you want to have an array of usernames only, i.e.

['john', 'lexy', 'pete']

Method 1 - using .map

theUsernames = theUsers.map (user) -> user.username

Method 2 - using comprehension

theUsernames = (user.username for user in theUsers)

Filtering values

theUsers = [ 
  {id: 1, username: 'john'} 
  {id: 2, username: 'lexy'} 
  {id: 3, username: 'pete'} 
]

To retain only users whose id is greather than 2, use the following:

[{id: 3, username: 'pete'}]

Method 1 - using .filter

filteredUsers = theUsers.filter (user) -> user.id >= 2

Method 2 - using comprehension

https://riptutorial.com/ 4



filteredUsers = (user for user in theUsers when user.id >= 2)

Slicing

If you want to extract a subset of an array (i.e. numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]) you can 
easily do this with one of the following examples:

numbers[0..2] will return [1, 2, 3]•
numbers[3...-2] will return [3, 4, 5, 6]•
numbers[-2..] will return [8, 9]•
numbers[..] will return [1, 2, 3, 4, 5, 6, 7, 8, 9]•

With two dots (3..6), the range is inclusive [3, 4, 5, 6] 
With three dots (3...6), the range excludes the end [3, 4, 5] 
Adding a - to the range will start the count at the end of the array 
An omitted first index defaults to zero 
An omitted second index defaults to the size of the array

The same syntax can be used with assignment to replace a segment of an array with new values

numbers[3..6] = [-3, -4, -5, -6]

The above row will replace the numbers array with the following : [1, 2, -3, -4, -5, -6, 7, 8, 9]

Concatenation

You want to combine arrays into one.

For example, you have

fruits = ['Broccoli', 'Carrots'] 
spices = ['Thyme', 'Cinnamon']

and you want to combine them into

ingredients = ['Broccoli', 'Carrots', 'Thyme', 'Cinnamon']

Method 1 - using .concat

ingredients = fruits.concat spices

Method 2 - using splats

ingredients = [fruits..., spices...] 

Method 3 - using .concat with indeterminate number of arrays

https://riptutorial.com/ 5



If the number of arrays can vary, e.g. you have array of arrays:

arrayOfArrays = [[1], [2,3], [4]] 
[].concat.apply([], arrayOfArrays) # [1, 2, 3, 4]

Comprehensions

You can do neat things via the results of Array "comprehensions"...

Like assign multiple variables... from the result of a looping for statement...

[express,_] = (require x for x in ['express','underscore'])

Or a syntactically sweet version of a "mapped" function call, etc...

console.log (x.nme for x in [{nme:'Chad',rnk:99}, {nme:'Raul', rnk:9}])

[ 'Chad', 'Raul' ]

Notice the ( ) surrounding these statements. These parenthesis are required to make the 
enclosed comprehension "work".

Read Arrays online: https://riptutorial.com/coffeescript/topic/4459/arrays

https://riptutorial.com/ 6

https://riptutorial.com/coffeescript/topic/4459/arrays


Chapter 3: Classes

Examples

Classes, Inheritance, and Super

CoffeeScript provides a basic class structure that allows you to name your class, set the 
superclass, assign prototypal properties, and define the constructor, in a single assignable 
expression.

Small example below:

class Animal 
  constructor: (@name) -> 
 
  move: (meters) -> 
    alert @name + " moved #{meters}m." 
 
class Snake extends Animal 
  move: -> 
    alert "Slithering..." 
    super 5 
 
class Horse extends Animal 
  move: -> 
    alert "Galloping..." 
    super 45 
 
sam = new Snake "Sammy the Python" 
tom = new Horse "Tommy the Palomino" 
 
sam.move() 
tom.move()

This will show 4 popups:

Slithering...1. 
Sammy the Python moved 5m.2. 
Galloping...3. 
Tommy the Palomino moved 45m.4. 

Prototypes

If you feel the need to extend an object's prototype, :: gives you quick access to an it so you can 
add methods to it and later use this method on all instances of that method.

String::dasherize = -> 
  this.replace /_/g, "-"

The above example will give you the ability to use the dasherize method on all Strings. This will 

https://riptutorial.com/ 7



replace all underscores to dashes.

Read Classes online: https://riptutorial.com/coffeescript/topic/5158/classes

https://riptutorial.com/ 8

https://riptutorial.com/coffeescript/topic/5158/classes


Chapter 4: Conditionals

Examples

if, if / then, if / else, unless, ternary operator

The most basic instance of an if construct evaluates a condition and executes some code 
according to the condition outcome. If the condition returns true, the code within the conditional is 
executed.

counter = 10 
if counter is 10 
  console.log 'This will be executed!'

The if construct can be enriched with an else statement. The code within the else statement will 
be executed whenever the if condition is not met.

counter = 9 
if counter is 10 
  console.log 'This will not be executed...' 
else 
  console.log '... but this one will!'

if constructs can be chained using else, without any limitation on how many can be chained. The 
first conditional that returns true will run its code and stop the check: no conditional below that 
point will be evaluated thereafter, and no code block from withing those conditionals will be 
executed.

if counter is 10 
  console.log 'I counted to 10' 
else if counter is 9 
  console.log 'I counted to 9' 
else if counter < 7 
  console.log 'Not to 7 yet' 
else 
  console.log 'I lost count'

The opposite form of if is unless. Unlike if, unless will only run if the conditional returns false.

counter = 10 
unless counter is 10 
  console.log 'This will not be executed!

The if statements can be placed in a single line, but in this case, the then keyword is required.

if counter is 10 then console.log 'Counter is 10'

An alternative syntax is the Ruby-like:

https://riptutorial.com/ 9



console.log 'Counter is 10' if counter is 10

The last two blocks of code are equivalent.

The ternary operator is a compression of an if / then / else construct, and can be used when 
assigning values to variables. The final value assigned to the variable will be the one defined after 
the then when the if condition is met. Otherwise, the value after the else will be assigned.

outcome = if counter is 10 then 'Done counting!' else 'Still counting'

Switch

TL; DR: CoffeeScript switch statements use when for each case and else for the default case. They 
use then for one-line cases and commas for multiple cases with a single outcome. They 
intentionally disallow fallthrough and so don't need an explicit break (since it's always there 
implicitly). A switch statement can be used as a returnable, assignable expression.

CoffeeScript switch statements are a sort of control statement that allows you to take different 
actions based on a value. They are like if statements, but where an if statement usually takes 
one of two actions based on whether something is true or false, switch statements take one of any 
number of actions depending on the value of any expression - a string, number, or anything at all.

CoffeeScript switch start with the keyword switch followed by the expression to switch on. Then, 
each case is represented by the keyword when followed by the value for that case.

switch name 
  when "Alice" 
    # Code here will run when name is Alice 
    callAlice() 
  when "Bob" 
    # Code here will run when name is Bob 
    giveBobSandwich()

There is also a shorthand syntax for when each case is one line, using the then keyword instead of 
a newline:

livesLeft = 2 
switch livesLeft 
  when 3 then fullHealth() 
  when 2 then healthAt 2 
  when 1 then healthAt 1 
  when 0 then playerDie()

You can mix and match the two formats as necessary:

livesLeft = 2 
switch livesLeft 
  when 3 then fullHealth() 
  when 2 then healthAt 2 
  when 1 
    healthAt 1 

https://riptutorial.com/ 10



    alert "Warning! Health low!" 
  when 0 then playerDie()

Although the most common things to switch on are a variable (as in the previous example) or the 
result of a functoin, you can switch on any expression you choose:

indexOfAnswer = 0 
switch indexOfAnswer + 1 
  when 1 then console.log "The answer is the 1st item" 
  when 2 then console.log "The answer is the 2nd item" 
  when 3 then console.log "The answer is the 3rd item"

You can also have multiple cases lead to the same action:

switch password 
  when "password", "123456", "letmein" then console.log "Wrong!" 
  when "openpoppyseed" then console.log "Close, but no cigar." 
  when "opensesame" then console.log "You got it!"

A very useful feature is a default or catch-all case, that will only execute if none of the other criteria 
are met. CoffeeScript signifies this with the else keyword:

switch password 
  when "password", "123456", "letmein" then console.log "Wrong!" 
  when "openpoppyseed" then console.log "Close, but no cigar." 
  when "opensesame" then console.log "You got it!" 
  else console.log "Not even close..."

(Note that you don't need the then keyword for the else case because there is no condition.)

Now here's an example of all the features of switch in action!

switch day 
  when "Mon" then go work 
  when "Tue" then go relax 
  when "Thu" then go iceFishing 
  when "Fri", "Sat" 
    if day is bingoDay 
      go bingo 
      go dancing 
  when "Sun" then go church 
  else go work

You can also have the condition of a case be an expression:

switch fullName 
  when myFullName() then alert "Doppelgänger detected" 
  when presidentFirstName + " " + presidentLastName 
    alert "Get down Mr. president!" 
    callSecretService() 
  when "Joey Bonzo" then alert "Joey Bonzo everybody"

CoffeeScript switch statements also have a unique trait: they can return values like a function. If 

https://riptutorial.com/ 11



you assign a variable to a switch statement, then it will be assigned whatever the statement 
returns.

address = switch company 
  when "Apple" then "One Infinite Loop" 
  when "Google" then "1600 Amphitheatre Parkway" 
  when "ACME" 
    if isReal 
      "31918 Hayman St" 
    else 
      "Unknown desert location" 
  else lookUpAddress company

(Remember that the last statement in a block is implicitly returned. You can also use the return 
keyword manually.)

Switch statements can also be used without a control expression, turning them in to a cleaner 
alternative to if/else chains.

score = 76 
grade = switch 
  when score < 60 then 'F' 
  when score < 70 then 'D' 
  when score < 80 then 'C' 
  when score < 90 then 'B' 
  else 'A'

(This is functionally equivalent to grade = switch true because the first case that evaluates to true 
will match. However, since each case implicitly breaks at the end, only the first case to match will 
be executed.)

Read Conditionals online: https://riptutorial.com/coffeescript/topic/4317/conditionals

https://riptutorial.com/ 12

https://riptutorial.com/coffeescript/topic/4317/conditionals


Chapter 5: Destructuring Assignment

Examples

Swap

When you assign an array or object literal to a value, CoffeeScript breaks up and matches both 
sides against each other, assigning the values on the right to the variables on the left.

# Swap 
[x, y] = [y, x]

Extract Values from an Object

person = 
  name: "Duder von Broheim" 
  age: 27 
  address: "123 Fake St" 
  phoneNumber: "867-5309" 
 
{name, age, address, phoneNumber} = person

Named Function Parameters

CoffeeScript allows to deconstruct objects and arrays when they are fed to functions as 
arguments.

A function that leverages deconstruction will specify in its signature all the fields that are expected 
within its body. When invoking such function, an object or array containing all the expected fields 
has to be passed as argument.

drawRect = ({x, y, width, height}) -> 
  # here you can use the passed parameters 
  # color will not be visible here! 
 
myRectangle = 
  x: 10 
  y: 10 
  width: 20 
  height: 20 
  color: 'blue' 
 
drawRect myRectangle

printTopThree = ([first, second, third]) -> 
  # here you can use the passed parameters 
  # 'Scrooge McDuck' will not be visible here! 
 
ranking = ['Huey', 'Dewey', 'Louie', 'Scrooge McDuck'] 
 

https://riptutorial.com/ 13



printTopThree ranking

First and Last Element

array = [1, 2, 3, 4] 
 
[first] = array # 1 
 
[..., last] = array # 4 
 
[first, middle..., last] = array # first is 1, middle is [2, 3], last is 4 

Read Destructuring Assignment online: https://riptutorial.com/coffeescript/topic/4461/destructuring-
assignment

https://riptutorial.com/ 14

https://riptutorial.com/coffeescript/topic/4461/destructuring-assignment
https://riptutorial.com/coffeescript/topic/4461/destructuring-assignment


Chapter 6: Functions

Examples

Small Arrow functions

# creates a function with no arguments, which returns 3 
get_three = () -> 
    return 3 
 
# same as above 
get_three = -> 3 
 
# creates a function with arguments 
add_three = (num) -> num + 3 
 
# multiple arguments, etc. 
add = (a, b) -> a + b

Read Functions online: https://riptutorial.com/coffeescript/topic/5723/functions

https://riptutorial.com/ 15

https://riptutorial.com/coffeescript/topic/5723/functions


Chapter 7: Loops

Examples

Looping a Function

The following codes will output the numbers 1 through 10 in the console, although console.log 
could be any function that accepts an input.

Method 1 - Standard

for x in [1..10] 
    console.log x

Method 2 - Compact

console.log x for x in [1..10]

Read Loops online: https://riptutorial.com/coffeescript/topic/6006/loops

https://riptutorial.com/ 16

https://riptutorial.com/coffeescript/topic/6006/loops


Chapter 8: Operators

Examples

Existential Operator

CoffeeScript's existential operator ? check if the variable is null or undefined.

1. Check for null or undefined.

alert "Hello CoffeeScript!" if myVar?

javascript equivalent:

if (typeof myVar !== "undefined" && myVar !== null) { 
  alert("Hello CoffeeScript!"); 
}

2. Safer conditional assignment

You can also use this operator safer conditional assignment

language = favoriteLanguage ? "coffeescript"

javascript equivalent:

language = typeof favoriteLanguage !== "undefined" && favoriteLanguage !== null ? 
favoriteLanguage : "coffeescript";

3. Safe chaining of methods

Instead of chaining the methods with . chain them with ?. to avoid raising the TypeError.

firstName = user?.profile?.firstname

javascript equivalent:

firstName = typeof user !== "undefined" && user !== null ? (ref = user.profile) != null ? 
ref.firstname() : void 0 : void 0;

If all of the properties exist then you'll get the expected result if the chain is broken, undefined is 
returned

Full list of default operators

https://riptutorial.com/ 17



CoffeeScript JavaScript

is, == ===

isnt, != !==

not !

and &&

or ||

true, yes, on true

false, no, off false

@, this this

of in

in No equivalent

a ** b Math.pow(a, b)

a // b Math.floor(a / b)

a %% b (a % b + b) % b

Read Operators online: https://riptutorial.com/coffeescript/topic/4915/operators

https://riptutorial.com/ 18

https://riptutorial.com/coffeescript/topic/4915/operators


Chapter 9: Pro's & Con's of using 
Coffeescript

Examples

Pros

Simplicity

Probably the best part of CoffeeScript is its simplicity. CoffeeScript allows for a more concise and 
simplistic syntax than plain JavaScript. One simple but surprisingly time-saving feature is that 
CoffeeScript has no need for ; or {}, eliminating the need to spend hours finding out the place 
from which a } is missing.

Loops

Creating a loop that outputs the value of each item in an array unless the value is "monkey" in 
CoffeeScript is very easy.

animals = ["dog", "cat", "monkey", "squirrel"] 
for item in animals when item isnt "monkey" 
    console.log item

in CoffeeScript compiles to

var animals, i, item, len; 
 
animals = ["dog", "cat", "monkey", "squirrel"]; 
 
for (i = 0, len = animals.length; i < len; i++) { 
    item = animals[i]; 
    if (item !== "monkey") { 
        console.log(item); 
    } 
}

in JavaScript, but they both output

dog 
cat 
squirrel

String Interpolation

https://riptutorial.com/ 19



CoffeeScript:

"Hello, #{user}, how are you today?"

JavaScript:

"Hello, " + user + ", how are you today?";

Read Pro's & Con's of using Coffeescript online: https://riptutorial.com/coffeescript/topic/6278/pro-
s---con-s-of-using-coffeescript

https://riptutorial.com/ 20

https://riptutorial.com/coffeescript/topic/6278/pro-s---con-s-of-using-coffeescript
https://riptutorial.com/coffeescript/topic/6278/pro-s---con-s-of-using-coffeescript


Chapter 10: Strings

Examples

Placeholder replacements

Placeholders can be used in strings to automatically substitute the values in the final string.

container = "cup" 
liquid = "coffee" 
string = "Filling the #{container} with #{liquid}..."

The above String - when printed - will say: Filling the cup with coffee...

You can even use Coffee-script inside these placeholders

sentence = "#{ 22 / 7 } is a decent approximation of π"

Block strings

Block strings can be used to hold formatted or indentation-sensitive text (or, if you just don't feel 
like escaping quotes and apostrophes). The indentation level that begins the block is maintained 
throughout, so you can keep it all aligned with the body of your code.

html = """ 
       <strong> 
         cup of coffeescript 
       </strong> 
       """

Multiline strings

Multiline strings are allowed in CoffeeScript. Lines are joined by a single space unless they end 
with a backslash. Indentation is ignored.

mobyDick = "Call me Ishmael. Some years ago -- 
  never mind how long precisely -- having little 
  or no money in my purse, and nothing particular 
  to interest me on shore, I thought I would sail 
  about a little and see the watery part of the 
  world..."

Read Strings online: https://riptutorial.com/coffeescript/topic/5062/strings

https://riptutorial.com/ 21

https://riptutorial.com/coffeescript/topic/5062/strings


Credits

S. 
No

Chapters Contributors

1
Getting started with 
coffeescript

Artisan72, b3by, Badacadabra, Community, Kevin Chavez

2 Arrays 4444, Alex Gray, fracz, fzzle, Molske

3 Classes Molske

4 Conditionals b3by, c0d3rman, Molske, Vyren

5
Destructuring 
Assignment

b3by, Daniel X Moore

6 Functions Kevin Chavez

7 Loops Vyren

8 Operators Deepak Mahakale, fzzle, Molske

9
Pro's & Con's of 
using Coffeescript

Vyren

10 Strings Max Dudzinski, Molske

https://riptutorial.com/ 22

https://riptutorial.com/contributor/3862511/artisan72
https://riptutorial.com/contributor/609002/b3by
https://riptutorial.com/contributor/6910253/badacadabra
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/654575/kevin-chavez
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/547214/alex-gray
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/2984068/fzzle
https://riptutorial.com/contributor/401667/molske
https://riptutorial.com/contributor/401667/molske
https://riptutorial.com/contributor/609002/b3by
https://riptutorial.com/contributor/2674563/c0d3rman
https://riptutorial.com/contributor/401667/molske
https://riptutorial.com/contributor/4470674/vyren
https://riptutorial.com/contributor/609002/b3by
https://riptutorial.com/contributor/68210/daniel-x-moore
https://riptutorial.com/contributor/654575/kevin-chavez
https://riptutorial.com/contributor/4470674/vyren
https://riptutorial.com/contributor/4758119/deepak-mahakale
https://riptutorial.com/contributor/2984068/fzzle
https://riptutorial.com/contributor/401667/molske
https://riptutorial.com/contributor/4470674/vyren
https://riptutorial.com/contributor/7213535/max-dudzinski
https://riptutorial.com/contributor/401667/molske

	About
	Chapter 1: Getting started with coffeescript
	Remarks
	Examples
	Hello Word (Linux and OS X)


	Chapter 2: Arrays
	Examples
	Mapping values
	Method 1 - using .map
	Method 2 - using comprehension
	Filtering values
	Method 1 - using .filter
	Method 2 - using comprehension
	Slicing
	Concatenation
	Method 1 - using .concat
	Method 2 - using splats
	Method 3 - using .concat with indeterminate number of arrays
	Comprehensions


	Chapter 3: Classes
	Examples
	Classes, Inheritance, and Super
	Prototypes


	Chapter 4: Conditionals
	Examples
	if, if / then, if / else, unless, ternary operator
	Switch


	Chapter 5: Destructuring Assignment
	Examples
	Swap
	Extract Values from an Object
	Named Function Parameters
	First and Last Element


	Chapter 6: Functions
	Examples
	Small Arrow functions


	Chapter 7: Loops
	Examples
	Looping a Function


	Method 1 - Standard
	Method 2 - Compact
	Chapter 8: Operators
	Examples
	Existential Operator
	Full list of default operators


	Chapter 9: Pro's & Con's of using Coffeescript
	Examples
	Pros


	Simplicity
	Loops
	String Interpolation

	Chapter 10: Strings
	Examples
	Placeholder replacements
	Block strings
	Multiline strings


	Credits



