
common-lisp

#common-

lisp

Table of Contents

About 1

Chapter 1: Getting started with common-lisp 2

Remarks 2

Versions 2

Examples 2

Hello World 2

Hello, Name 3

The simple Hello World program in REPL 5

Basic expressions 6

Sum of list of integers 6

Lambda Expressions and Anonymous Functions 7

Common Lisp Learning Resources 7

Chapter 2: ANSI Common Lisp, the language standard and its documentation 10

Examples 10

Common Lisp HyperSpec 10

EBNF syntax declarations in documentation 10

Common Lisp the Language, 2nd Edition, by Guy L. Steele Jr. 10

CLiki - Proposed ANSI Revisions and Clarifications 11

Common Lisp Quick Reference 11

The ANSI Common Lisp standard in Texinfo format (especially useful for GNU Emacs) 11

Chapter 3: ASDF - Another System Definition Facility 12

Remarks 12

Examples 12

Simple ASDF system with a flat directory structure 12

How to define a test operation for a system 13

In what package should I define my ASDF system? 13

Chapter 4: Basic loops 14

Syntax 14

Examples 14

dotimes 14

dolist 14

Simple loop 15

Chapter 5: Booleans and Generalized Booleans 16

Examples 16

True and False 16

Generalized Booleans 16

Chapter 6: CLOS - the Common Lisp Object System 18

Examples 18

Creating a basic CLOS class without parents 18

Mixins and Interfaces 19

Chapter 7: CLOS Meta-Object Protocol 21

Examples 21

Obtain the slot names of a Class 21

Update a slot when another slot is modified 21

Chapter 8: Cons cells and lists 23

Examples 23

Lists as a convention 23

What is a cons cell? 23

Sketching cons cells 24

Chapter 9: Control Structures 27

Examples 27

Conditional Constructs 27

The do loop 28

Chapter 10: Creating Binaries 30

Examples 30

Building Buildapp 30

Buildapp Hello World 30

Buildapp Hello Web World 31

Chapter 11: Customization 34

Examples 34

More features for the Read-Eval-Print-Loop (REPL) in a terminal 34

Initialization Files 34

Optimization settings 34

Chapter 12: Equality and other comparison predicates 36

Examples 36

The difference between EQ and EQL 36

Structural equality with EQUAL, EQUALP, TREE-EQUAL 37

Comparison operators on numeric values 38

Comparison operators on characters and strings 39

Overwiew 40

Chapter 13: format 42

Parameters 42

Remarks 42

Examples 42

Basic Usage and Simple Directives 42

Iterating over a list 43

Conditional expressions 44

Chapter 14: Functions 45

Remarks 45

Examples 45

Required Parameters 45

Optional Parameters 45

Default alue 45

Check if optional argument was given 46

Function without Parameters 46

Rest Parameter 47

Rest and Keyword Parameters together 47

Auxiliary Variables 48

RETURN-FROM, exit from a block or a function 48

Keyword Parameters 49

Chapter 15: Functions as first class values 50

Syntax 50

Parameters 50

Remarks 50

Examples 50

Defining anonymous functions 50

Referring to Existing Functions 51

Higher order functions 52

Summing a list 53

Implementing reverse and revappend 53

Closures 54

Defining functions that take functions and return functions 55

Chapter 16: Grouping Forms 56

Examples 56

When is grouping needed? 56

Progn 56

Implicit Progns 56

Prog1 and Prog2 57

Block 58

Tagbody 58

Which form to use? 59

Chapter 17: Hash tables 60

Examples 60

Creating a hash table 60

Iterating over the entries of a hash table with maphash 60

Iterating over the entries of a hash table with loop 60

Over keys and values 60

Over keys 61

Over values 61

Iterating over the entries of a hash table with a hash table iterator 61

Chapter 18: Lexical vs special variables 62

Examples 62

Global special variables are special everywhere 62

Chapter 19: LOOP, a Common Lisp macro for iteration 64

Examples 64

Bounded Loops 64

Looping over Sequences 64

Looping over Hash Tables 65

Simple LOOP form 65

Looping over Packages 65

Arithmetic Loops 66

Destructuring in FOR statements 66

LOOP as an Expression 67

Conditionally executing LOOP clauses 68

Parallel Iteration 69

Nested Iteration 69

RETURN clause versus RETURN form. 70

Looping over a window of a list 70

Chapter 20: macros 72

Remarks 72

The Purpose of Macros 72

Macroexpansion Order 72

Evaluation Order 72

Evaluate Once Only 72

Functions used by Macros, using EVAL-WHEN 72

Examples 73

Common Macro Patterns 73

FOOF 73

WITH-FOO 73

DO-FOO 74

FOOCASE, EFOOCASE, CFOOCASE 74

DEFINE-FOO, DEFFOO 75

Anaphoric Macros 75

MACROEXPAND 75

Backquote - writing code templates for macros 76

Unique symbols to prevent name clashes in macros 77

if-let, when-let, -let macros 78

Using Macros to define data structures 78

Chapter 21: Mapping functions over lists 80

Examples 80

Overview 80

Examples of MAPCAR 81

Examples of MAPLIST 81

Examples of MAPCAN and MAPCON 81

Examples of MAPC and MAPL 82

Chapter 22: Pattern matching 84

Examples 84

Overview 84

Dispatching Clack requests 84

defun-match 84

Constructor patterns 84

Guard-pattern 85

Chapter 23: Quote 86

Syntax 86

Remarks 86

Examples 86

Simple quote example 86

' is an alias for the special operator QUOTE 86

If quoted objects are destructively modified, the consequences are undefined! 86

Quote and self-evaluating objects 87

Chapter 24: Recursion 88

Remarks 88

Examples 88

Recursion template 2 multi-condition 88

Recursion template 1 single condition single tail recursion 89

Compute nth Fibonacci number 89

Recursively print the elements of a list 89

Compute the factorial of a whole number 90

Chapter 25: Regular Expressions 91

Examples 91

Using with pattern matching to bind captured groups 91

Binding register groups with CL-PPCRE 91

Chapter 26: sequence - how to split a sequence 92

Syntax 92

Examples 92

Split strings using regular expressions 92

SPLIT-SEQUENCE in LIspWorks 92

Using the split-sequence library 92

Chapter 27: Streams 94

Syntax 94

Parameters 94

Examples 94

Creating input streams from strings 94

Writing output to a string 95

Gray streams 95

Reading file 96

Writing to a file 96

Copying a file 97

Reading and writing entire files to and from strings 98

Chapter 28: Types of Lists 99

Examples 99

Plain Lists 99

Association Lists 99

Property Lists 101

Chapter 29: Unit testing 103

Examples 103

Using FiveAM 103

Loading the library 103

Define a test case 103

Run tests 103

Notes 104

Introduction 104

Chapter 30: Working with databases 105

Examples 105

Simple use of PostgreSQL with Postmodern 105

Chapter 31: Working with SLIME 107

Examples 107

Installation 107

Portale and multiplatform Emacs, Slime, Quicklisp, SBCL and Git 107

Manual install 107

Starting and finishing SLIME, special (comma) REPL commands 109

Using REPL 109

Error handling 110

Setting up a SWANK server over a SSH tunnel. 111

Credits 112

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: common-lisp

It is an unofficial and free common-lisp ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official common-lisp.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/common-lisp
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with common-lisp

Remarks

This is a simple hello world function in Common Lisp. Examples will print the text Hello, World!
(without quotation marks; followed by a newline) to the standard output.

Common Lisp is a programming language that is largely used interactively using an interface
known as a REPL. The REPL (Read Eval Print Loop) allows one to type code, have it evaluated
(run) and see the results immediately. The prompt for the REPL (at which point one types the code
to be run) is indicated by CL-USER>. Sometimes something other than CL-USER will appear before the
> but this is still a REPL.

After the prompt comes some code, usually either a single word (i.e. a variable name) or a form (a
list of words/forms enclosed between (and)) (i.e. a function call or declaration, etc). On the next
line will be any output that the program prints (or nothing if the program prints nothing) and then
the values returned by evaluating the expression. Normally an expression returns one value but if
it returns multiple values they appear once per line.

Versions

Version Release Date

Common Lisp 1984-01-01

ANSI Common Lisp 1994-01-01

Examples

Hello World

What follows is an excerpt from a REPL session with Common Lisp in which a "Hello, World!"
function is defined and executed. See the remarks at the bottom of this page for a more thorough
description of a REPL.

CL-USER> (defun hello ()
 (format t "Hello, World!~%"))
HELLO
CL-USER> (hello)
Hello, World!
NIL
CL-USER>

This defines the "function" of zero arguments named hello, which will write the string "Hello,
World!" followed by a newline to standard output, and return NIL.

https://riptutorial.com/ 2

To define a function we write

(defun name (parameters...)
 code...)

In this case the function is called hello, takes no parameters and the code it runs is to do one
function call. The returned value from a lisp function is the last bit of code in the function to run so
hello returns whatever (format t "Hello, World!~%") returns.

In lisp to call a function one writes (function-name arguments...) where function-name is the name of
the function and arguments... is the (space-separated) list of arguments to the call. There are
some special cases which look like function calls but are not, for example, in the above code there
is no defun function that gets called, it gets treated specially and defines a function instead.

At the second prompt of the REPL, after we have defined the hello function, we call it with no
parameters by writing (hello). This in turn will call the format function with the parameters t and
"Hello, World!~%". The format function produces formatted output based on the arguments which it
is given (a bit like an advanced version of printf in C). The first argument tells it where to output
to, with t meaning standard-output. The second argument tells it what to print (and how to interpret
any extra parameters). The directive (special code in the second argument) ~% tells format to print
a newline (i.e. on UNIX it might write \n and on windows \r\n). Format usually returns NIL (a bit like
NULL in other languages).

After the second prompt we see that Hello, World has been printed and on the next line that the
returned value was NIL.

Hello, Name

This is a slightly more advanced example that shows a few more features of common lisp. We
start with a simple Hello, World! function and demonstrate some interactive development at the
REPL. Note that any text from a semicolon, ;, to the rest of the line is a comment.

CL-USER> (defun hello ()
 (format t "Hello, World!~%")) ;We start as before
HELLO
CL-USER> (hello)
Hello, World!
NIL
CL-USER> (defun hello-name (name) ;A function to say hello to anyone
 (format t "Hello, ~a~%" name)) ;~a prints the next argument to format
HELLO-NAME
CL-USER> (hello-name "Jack")
Hello, Jack
NIL
CL-USER> (hello-name "jack") ;doesn't capitalise names
Hello, jack
NIL
CL-USER> (defun hello-name (name) ;format has a feature to convert to title case
 (format t "Hello, ~:(~a~)~%" name)) ;anything between ~:(and ~) gets it
WARNING: redefining COMMON-LISP-USER::HELLO-NAME in DEFUN
HELLO-NAME
CL-USER> (hello-name "jack")

https://riptutorial.com/ 3

Hello, Jack
NIL
CL-USER> (defun hello-name (name)
 (format t "Hello, ~:(~a~)!~%" name))
WARNING: redefining COMMON-LISP-USER::HELLO-NAME in DEFUN
HELLO-NAME
CL-USER> (hello-name "jack") ;now this works
Hello, Jack!
NIL
CL-USER> (defun hello (&optional (name "world")) ;we can take an optional argument
 (hello-name name)) ;name defaults to "world"
WARNING: redefining COMMON-LISP-USER::HELLO in DEFUN
HELLO
CL-USER> (hello)
Hello, World!
NIL
CL-USER> (hello "jack")
Hello, Jack!
NIL
CL-USER> (hello "john doe") ;note that this capitalises both names
Hello, John Doe!
NIL
CL-USER> (defun hello-person (name &key (number))
 (format t "Hello, ~a ~r" name number)) ;~r prints a number in English
HELLO-PERSON
CL-USER> (hello-person "Louis" :number 16) ;this doesn't quite work
Hello, Louis sixteen
NIL
CL-USER> (defun hello-person (name &key (number))
 (format t "Hello, ~:(~a ~:r~)!" name number)) ;~:r prints an ordinal
WARNING: redefining COMMON-LISP-USER::HELLO-PERSON in DEFUN
HELLO-PERSON
CL-USER> (hello-person "Louis" :number 16)
Hello, Louis Sixteenth!
NIL
CL-USER> (defun hello-person (name &key (number))
 (format t "Hello, ~:(~a ~@r~)!" name number)) ;~@r prints Roman numerals
WARNING: redefining COMMON-LISP-USER::HELLO-PERSON in DEFUN
HELLO-PERSON
CL-USER> (hello-person "Louis" :number 16)
Hello, Louis Xvi!
NIL
CL-USER> (defun hello-person (name &key (number)) ;capitalisation was wrong
 (format t "Hello, ~:(~a~) ~:@r!" name number))
WARNING: redefining COMMON-LISP-USER::HELLO-PERSON in DEFUN
HELLO-PERSON
CL-USER> (hello-person "Louis" :number 16) ;thats better
Hello, Louis XVI!
NIL
CL-USER> (hello-person "Louis") ;we get an error because NIL is not a number
Hello, Louis ; Evaluation aborted on #<SB-FORMAT:FORMAT-ERROR {1006641AB3}>.
CL-USER> (defun say-person (name &key (number 1 number-p)
 (title nil) (roman-number t))
 (let ((number (if number-p
 (typecase number
 (integer
 (format nil (if roman-number " ~:@r" " ~:(~:r~)") number))
 (otherwise
 (format nil " ~:(~a~)" number)))
 "")) ; here we define a variable called number
 (title (if title

https://riptutorial.com/ 4

 (format nil "~:(~a~) " title)
 ""))) ; and here one called title
 (format nil "~a~:(~a~)~a" title name number))) ;we use them here

SAY-PERSON
CL-USER> (say-person "John") ;some examples
"John"
CL-USER> (say-person "john doe")
"John Doe"
CL-USER> (say-person "john doe" :number "JR")
"John Doe Jr"
CL-USER> (say-person "john doe" :number "Junior")
"John Doe Junior"
CL-USER> (say-person "john doe" :number 1)
"John Doe I"
CL-USER> (say-person "john doe" :number 1 :roman-number nil) ;this is wrong
"John Doe First"
CL-USER> (defun say-person (name &key (number 1 number-p)
 (title nil) (roman-number t))
 (let ((number (if number-p
 (typecase number
 (integer
 (format nil (if roman-number " ~:@r" " the ~:(~:r~)") number))
 (otherwise
 (format nil " ~:(~a~)" number)))
 ""))
 (title (if title
 (format nil "~:(~a~) " title)
 "")))
 (format nil "~a~:(~a~)~a" title name number)))
WARNING: redefining COMMON-LISP-USER::SAY-PERSON in DEFUN
SAY-PERSON
CL-USER> (say-person "john doe" :number 1 :roman-number nil) ;thats better
"John Doe the First"
CL-USER> (say-person "louis" :title "king" :number 16 :roman-number nil)
"King Louis the Sixteenth"
CL-USER> (say-person "louis" :title "king" :number 16 :roman-number t)
"King Louis XVI"
CL-USER> (defun hello (&optional (name "World") &rest arguments) ;now we will just
 (apply #'hello-name name arguments)) ;pass all arguments to hello-name
WARNING: redefining COMMON-LISP-USER::HELLO in DEFUN
HELLO
CL-USER> (defun hello-name (name &rest arguments) ;which will now just use
 (format t "Hello, ~a!" (apply #'say-person name arguments))) ;say-person
WARNING: redefining COMMON-LISP-USER::HELLO-NAME in DEFUN
HELLO-NAME
CL-USER> (hello "louis" :title "king" :number 16) ;this works now
Hello, King Louis XVI!
NIL
CL-USER>

This highlights some of the advanced features of Common Lisp's format function as well as some
features like optional parameters and keyword arguments (e.g. :number). This also gives an
example of interactive development at a REPL in common lisp.

The simple Hello World program in REPL

Common Lisp REPL is an interactive environment. Every form written after the prompt is

https://riptutorial.com/ 5

evaluated, and its value is afterwards printed as result of the evaluation. So the simplest possible
“Hello, World!” program in Common Lisp is:

CL-USER> "Hello, World!"
"Hello, World!"
CL-USER>

What happens here is that a string costant is given in input to the REPL, it is evaluated and the
result is printed. What can be seen from this example is that strings, like numbers, special symbols
like NIL and T and a few other literals, are self-evaluating forms: that is they evaluate to
themselves.

Basic expressions

Let’s try some basic expression in the REPL:

CL-USER> (+ 1 2 3)
6
CL-USER> (- 3 1 1)
1
CL-USER> (- 3)
-3
CL-USER> (+ 5.3 (- 3 2) (* 2 2))
10.3
CL-USER> (concatenate 'string "Hello, " "World!")
"Hello, World!"
CL-USER>

The basic building block of a Common Lisp program is the form. In these examples we have
functions forms, that is expressions, written as list, in which the first element is an operator (or
function) and the rest of the elements are the operands (this is called “Prefix Notation”, or “Polish
Notation”). Writing forms in the REPL causes their evaluation. In the examples you can see simple
expressions whose arguments are constant numbers, strings and symbols (in the case of 'string,
which is the name of a type). You can also see that arithmetic operators can take any number of
arguments.

It is important to note that parentheses are an integral part of the syntax, and cannot be used
freely as in other programming languages. For instance the following is an error:

(+ 5 ((+ 2 4)))
> Error: Car of ((+ 2 4)) is not a function name or lambda-expression. ...

In Common Lisp forms can also be data, symbols, macro forms, special forms and lambda forms.
They can be written to be evaluated, returning zero, one, or more values, or can be given in input
to a macro, that transform them in other forms.

Sum of list of integers

(defun sum-list-integers (list)
 (reduce '+ list))

https://riptutorial.com/ 6

; 10
(sum-list-integers '(1 2 3 4))

; 55
(sum-list-integers '(1 2 3 4 5 6 7 8 9 10))

Lambda Expressions and Anonymous Functions

An anonymous function can be defined without a name through a Lambda Expression. For
defining these type of functions, the keyword lambda is used instead of the keyword defun. The
following lines are all equivalent and define anonymous functions which output the sum of two
numbers:

(lambda (x y) (+ x y))
(function (lambda (x y) (+ x y)))
#'(lambda (x y) (+ x y))

Their usefulness is noticeable when creating Lambda forms, i.e. a form that is a list where the first
element is the lambda expression and the remaining elements are the anonymous function's
arguments. Examples (online execution):

(print ((lambda (x y) (+ x y)) 1 2)) ; >> 3

(print (mapcar (lambda (x y) (+ x y)) '(1 2 3) '(2 -5 0))) ; >> (3 -3 3)

Common Lisp Learning Resources

Online Books

These are books that are freely accessible online.

Practical Common Lisp by Peter Seibel is a good introduction to CL for experienced
programmers, which tries to highlight from the very beginning what makes CL different to
other languages.

•

Common Lisp: A Gentle Introduction to Symbolic Computation by David S. Touretzky is a
good introduction for people new to programming.

•

Common Lisp: An interactive approach by Stuart C. Shapiro was used as a course textbook,
and course notes accompany the book on the website.

•

Common Lisp, the Language by Guy L. Steele is a description of the Common Lisp
language. According to the CLiki it is outdated, but it contains better descriptions of the loop
macro and format than the Common Lisp Hyperspec does.

•

On Lisp by Paul Graham is a great book for intermediately experienced Lispers.•
Let Over Lambda by Doug Hoyte is an advanced book on Lisp Macros. Several people
recommended that you be comfortable with On Lisp before reading this book, and that the
start is slow.

•

Online References

https://riptutorial.com/ 7

http://www.gnu.org/software/emacs/manual/html_node/elisp/Anonymous-Functions.html#Anonymous-Functions
http://stackoverflow.com/q/13213611/6225838
http://www.lispworks.com/documentation/HyperSpec/Body/03_ababd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_l.htm#lambda_form
http://rextester.com/DNB60705
http://www.gigamonkeys.com/book/
http://www-2.cs.cmu.edu/~dst/LispBook/
https://www.cse.buffalo.edu/~shapiro/Commonlisp/
https://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html
http://cliki.net/Getting+Started
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/clm/node235.html#SECTION003000000000000000000
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/clm/node235.html#SECTION003000000000000000000
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/clm/node200.html
http://www.paulgraham.com/onlisp.html
http://letoverlambda.com/
https://www.reddit.com/r/lisp/comments/3actsc/let_over_lambda/
https://www.reddit.com/r/lisp/comments/3actsc/let_over_lambda/

The Common Lisp Hyperspec is the language reference document for Common Lisp.•
The Common Lisp Cookbook is a list of useful Lisp recipes. Also contains a list of other
online sources of CL information.

•

Common Lisp Quick Reference has printable Lisp reference sheets.•
Lispdoc.com searches several sources of Lisp information (Practical Common Lisp,
Successful Lisp, On Lisp, the HyperSpec) for documentation.

•

L1sp.org is a redirect service for documentation.•

Offline Books

These are books that you'll likely have to buy, or lend from a library.

ANSI Common Lisp by Paul Graham.•
Common Lisp Recipes by Edmund Weitz.•
Paradigms of Artificial Intelligence Programming has many interesting applications of Lisp,
but is not a good reference for AI any more.

•

Online Communities

The CLiki has a great Getting Started Page. A great resource for all things CL. Has an
extensive list of Lisp books.

•

Common Lisp subreddit has loads of useful links and reference documents in the sidebar.•
IRC: #lisp, #ccl, #sbcl and others on Freenode.•
Common-Lisp.net provides hosting for many common lisp projects and user groups.•

Libraries

Quicklisp is library manager for Common Lisp, and has a long list of supported libraries.•
Quickdocs hosts library documentation for many CL libraries.•
Awesome CL is a community-driven curated list of libraries, frameworks and other shiny stuff
sorted by category.

•

Pre-packaged Lisp Environments

These are Lisp editing environments that are easy to install and get started with because
everything you need is pre-packaged and pre-configured.

Portacle is a portable and multiplatform Common Lisp environment. It ships a slightly
customized Emacs with Slime, SBCL (a popular Common Lisp implementation), Quicklisp
and Git. No installation needed, so it's a very quick and easy way to get going.

•

Lispbox is an IDE (Emacs + SLIME), Common Lisp environment (Clozure Common Lisp)
and library manager (Quicklisp), pre-packaged as archives for Windows, Mac OSX and
Linux. Descendant of "Lisp in a Box" Recommended in the Practical Common Lisp book.

•

Not pre-packed, but SLIME turns Emacs into a Common Lisp IDE, and has a user manual to
help you get started. Requires a separate Common Lisp implementation.

•

Common Lisp Implementations

This section lists some common CL implementations and their manuals. Unless otherwise noted,

https://riptutorial.com/ 8

http://www.lispworks.com/documentation/common-lisp.html
http://cl-cookbook.sourceforge.net/
http://clqr.boundp.org/
http://lispdoc.com/
http://l1sp.org/html/
http://www.paulgraham.com/acl.html
http://weitz.de/cl-recipes/
http://norvig.com/paip.html
http://www.cliki.net/index
http://cliki.net/Getting+Started
http://cliki.net/Lisp%20books
https://www.reddit.com/r/Common_Lisp/
http://www.cliki.net/IRC
https://freenode.net/
https://common-lisp.net/
https://common-lisp.net/phub/
https://www.quicklisp.org/beta/
https://www.quicklisp.org/beta/releases.html
http://quickdocs.org/
https://github.com/CodyReichert/awesome-cl
https://shinmera.github.io/portacle/
https://common-lisp.net/project/lispbox/
http://common-lisp.net/project/slime/
http://common-lisp.net/project/slime/doc/html/

these are free software implementations. See also the Cliki's list of free software Common Lisp
Implementations, and Wikipedia's list of commercial Common Lisp Implementations.

Allegro Common Lisp (ACL) and manual. Commercial, but has a free Express Edition and
training videos on Youtube.

•

CLISP and manual.•
Clozure Common Lisp (CCL) and manual.•
Carnegie Mellon University Common Lisp (CMUCL), has a manual and other useful
information page.

•

Embeddable Common Lisp (ECL) and manual.•
LispWorks and manual. Commercial, but has a Personal Edition with some limitations.•
Steel Bank Common Lisp (SBCL) and manual.•
Scieneer Common Lisp (SCL) and manual is a commercial Linux and Unix implementation,
but has an unrestricted free evaluation and non-commercial use version.

•

Read Getting started with common-lisp online: https://riptutorial.com/common-
lisp/topic/534/getting-started-with-common-lisp

https://riptutorial.com/ 9

http://www.cliki.net/Common%20Lisp%20implementation
http://www.cliki.net/Common%20Lisp%20implementation
https://en.wikipedia.org/wiki/Common_Lisp#Commercial_implementations
http://franz.com/products/allegrocl/
http://www.franz.com/support/documentation/
http://franz.com/downloads/clp/survey
https://www.youtube.com/channel/UCN36UrxtyNBJPaG0kmBJNRw
http://clisp.org/
http://www.clisp.org/impnotes.html
http://ccl.clozure.com/
http://ccl.clozure.com/manual/
https://www.cons.org/cmucl/
http://www.cons.org/cmucl/doc/index.html
http://www.cons.org/cmucl/doc/index.html
https://common-lisp.net/project/ecl/
https://common-lisp.net/project/ecl/static/manual/
http://www.lispworks.com/products/index.html
http://www.lispworks.com/documentation/index.html
http://www.lispworks.com/downloads/index.html
http://www.sbcl.org/
http://www.sbcl.org/manual/index.html
http://www.scieneer.com/scl/
http://www.scieneer.com/scl/doc/
http://www.scieneer.com/scl/free.html
https://riptutorial.com/common-lisp/topic/534/getting-started-with-common-lisp
https://riptutorial.com/common-lisp/topic/534/getting-started-with-common-lisp

Chapter 2: ANSI Common Lisp, the language
standard and its documentation

Examples

Common Lisp HyperSpec

Common Lisp has a standard, which was initially published in 1994 as an ANSI standard.

The Common Lisp HyperSpec, short CLHS, provided by LispWorks is an often used HTML
documentation, which is derived from the standard document. The HyperSpec can also be
downloaded and locally used.

Common Lisp development environments usually allow lookup of the HyperSpec documentation
for Lisp symbols.

For GNU Emacs there is clhs.el.•
SLIME for GNU Emacs provides a version of hyperspec.el.•

See also: cliki on CLHS

EBNF syntax declarations in documentation

The ANSI CL standard uses an extended EBNF syntax notation. The documentation duplicated on
Stackoverflow should use the same syntax notation to reduce confusion.

Example:

specialized-lambda-list::=
 ({var | (var parameter-specializer-name)}*
 [&optional {var | (var [initform [supplied-p-parameter]])}*]
 [&rest var]
 [&key{var | ({var | (keywordvar)} [initform [supplied-p-parameter]])}*
 [&allow-other-keys]]
 [&aux {var | (var [initform])}*])

Notation:

[foo] -> zero or one foo•
{foo}* -> zero or more foo•
foo | bar ->foo or bar•

Common Lisp the Language, 2nd Edition, by Guy L. Steele Jr.

This book is known as CLtL2.

This is the second edition of the book Common Lisp the Language. It was published in 1990,

https://riptutorial.com/ 10

http://www.lispworks.com/documentation/HyperSpec/Front/
http://www.lispworks.com/
http://www.lispworks.com/documentation/common-lisp.html
http://www.lispworks.com/documentation/common-lisp.html
https://www.gnu.org/software/emacs/
https://sourceforge.net/p/clisp/clisp/ci/default/tree/emacs/clhs.el
https://common-lisp.net/project/slime/
https://github.com/slime/slime/blob/master/lib/hyperspec.el
http://cliki.net/CLHS

before the ANSI CL standard was final. It took the original language definition from the first edition
(published in 1984) and described all changes in the standardization process up to 1990 plus
some extensions (like the SERIES iteration facility).

Note: CLTL2 describes a version of Common Lisp which is slightly different from the
published standard from 1994. Thus always use the standard, and not CLtL2, as a
reference.

CLtL2 still can be useful, because it provides information not found in the Common Lisp
specification document.

There is a HTML version of Common Lisp the Language, 2nd Edition.

CLiki - Proposed ANSI Revisions and Clarifications

On CLiki, a Wiki for Common Lisp and free Common Lisp software, a list of Proposed ANSI
Revisions and Clarifications is being maintained.

Since the Common Lisp standard has not changed since 1994, users have found several
problems with the specification document. These are documented on the CLiki page.

Common Lisp Quick Reference

The Common Lisp Quick Reference is a document which can be printed and bound as a booklet in
various layouts to have a printed quick reference for Common Lisp.

The ANSI Common Lisp standard in Texinfo format (especially useful for GNU
Emacs)

GNU Emacs uses a special format for documentation: info.

The Common Lisp standard has been converted to the Texinfo format, which can be used to
create documentation browsable with the info reader in GNU Emacs.

See here: dpans2texi.el converts the TeX sources of the draft ANSI Common Lisp standard
(dpANS) to the Texinfo format.

Another version has been done for for GCL: gcl.info.tgz.

Read ANSI Common Lisp, the language standard and its documentation online:
https://riptutorial.com/common-lisp/topic/2900/ansi-common-lisp--the-language-standard-and-its-
documentation

https://riptutorial.com/ 11

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/cltl2.html
http://www.cliki.net/Proposed%20ANSI%20Revisions%20and%20Clarifications
http://www.cliki.net/Proposed%20ANSI%20Revisions%20and%20Clarifications
http://clqr.boundp.org
https://github.com/RobBlackwell/dpans2texi
https://github.com/RobBlackwell/dpans2texi
ftp://ftp.gnu.org/pub/gnu/gcl/gcl.info.tgz
https://riptutorial.com/common-lisp/topic/2900/ansi-common-lisp--the-language-standard-and-its-documentation
https://riptutorial.com/common-lisp/topic/2900/ansi-common-lisp--the-language-standard-and-its-documentation

Chapter 3: ASDF - Another System Definition
Facility

Remarks

ASDF - Another System Definition Facility

ASDF is a tool for specifying how systems of Common Lisp software are made up of components
(sub-systems and files), and how to operate on these components in the right order so that they
can be compiled, loaded, tested, etc.

Examples

Simple ASDF system with a flat directory structure

Consider this simple project with a flat directory structure:

example
|-- example.asd
|-- functions.lisp
|-- main.lisp
|-- packages.lisp
`-- tools.lisp

The example.asd file is really just another Lisp file with little more than an ASDF-specific function
call. Assuming your project depends on the drakma and clsql systems, its contents can be
something like this:

(asdf:defsystem :example
 :description "a simple example project"
 :version "1.0"
 :author "TheAuthor"
 :depends-on (:clsql
 :drakma)
 :components ((:file "packages")
 (:file "tools" :depends-on ("packages"))
 (:file "functions" :depends-on ("packages"))
 (:file "main" :depends-on ("packages"
 "functions"))))

When you load this Lisp file, you tell ASDF about your :example system, but you're not loading the
system itself yet. That is done either by (asdf:require-system :example) or (ql:quickload :example).

And when you load the system, ASDF will:

Load the dependencies - in this case the ASDF systems clsql and drakma1.
Compile and load the components of your system, i.e. the Lisp files, based on the given
dependencies

2.

https://riptutorial.com/ 12

https://common-lisp.net/project/asdf/
http://www.weitz.de/drakma/
http://quickdocs.org/clsql/

packages first (no dependencies)1.
functions after packages (as it only depends on packages), but before main (which
depends on it)

2.

main after functions (as it depends on packages and functions)3.
tools anytime after packages4.

Keep in mind:

Enter the dependencies as they are needed (e.g. macro definitions are needed before
usage). If you don't, ASDF will error when loading your system.

•

All files listed end on .lisp but this postfix should be dropped in the asdf script•
If your system is named the same as its .asd file, and you move (or symlink) its folder into
quicklisp/local-projects/ folder, you can then load the project using (ql:quickload
"example").

•

Libraries your system depends on have to be known to either ASDF (via the ASDF:*CENTRAL-
REGISTRY variable) or Quicklisp (either via the QUICKLISP-CLIENT:*LOCAL-PROJECT-DIRECTORIES*
variable or available in any of its dists)

•

How to define a test operation for a system

(in-package #:asdf-user)

(defsystem #:foo
 :components ((:file "foo"))
 :in-order-to ((asdf:test-op (asdf:load-op :foo)))
 :perform (asdf:test-op (o c)
 (uiop:symbol-call :foo-tests 'run-tests)))

(defsystem #:foo-tests
 :name "foo-test"
 :components ((:file "tests")))

;; Afterwards to run the tests we type in the REPL
(asdf:test-system :foo)

Notes:

We are assuming that the system :foo-tests defines a package named "FOO-TESTS"•
run-tests is the entry point for the test runner•
uoip:symbol-call allows as to define a method that calls a function that hasn't been read yet.
The package the function is defined in doesn't exist when we define the system

•

In what package should I define my ASDF system?

ASDF provides the package ASDF-USER for developers to define their packages in.

Read ASDF - Another System Definition Facility online: https://riptutorial.com/common-
lisp/topic/670/asdf---another-system-definition-facility

https://riptutorial.com/ 13

https://riptutorial.com/common-lisp/topic/670/asdf---another-system-definition-facility
https://riptutorial.com/common-lisp/topic/670/asdf---another-system-definition-facility

Chapter 4: Basic loops

Syntax

(do ({var | (var [init-form [step-form]])}*) (end-test-form result-form*) declaration* {tag |
statement}*)

•

(do* ({var | (var [init-form [step-form]])}*) (end-test-form result-form*) declaration* {tag |
statement}*)

•

(dolist (var list-form [result-form]) declaration* {tag | statement}*)•
(dotimes (var count-form [result-form]) declaration* {tag | statement}*)•

Examples

dotimes

dotimes is a macro for integer iteration over a single variable from 0 below some parameter value.
One of the simples examples would be:

CL-USER> (dotimes (i 5)
 (print i))

0
1
2
3
4
NIL

Note that NIL is the returned value, since we did not provide one ourselves; the variable starts from
0 and throughout the loop becomes values from 0 to N-1. After the loop, the variable becomes the
N:

CL-USER> (dotimes (i 5 i))
5

CL-USER> (defun 0-to-n (n)
 (let ((list ()))
 (dotimes (i n (nreverse list))
 (push i list))))
0-TO-N
CL-USER> (0-to-n 5)
(0 1 2 3 4)

dolist

dolist is a looping macro created to easily loop through the lists. One of the simplest uses would
be:

https://riptutorial.com/ 14

CL-USER> (dolist (item '(a b c d))
 (print item))

A
B
C
D
NIL ; returned value is NIL

Note that since we did not provide return value, NIL is returned (and A,B,C,D are printed to
standard-output).

dolist can also return values:

;;This may not be the most readable summing function.
(defun sum-list (list)
 (let ((sum 0))
 (dolist (var list sum)
 (incf sum var))))

CL-USER> (sum-list (list 2 3 4))
9

Simple loop

The loop macro has two forms: the "simple" form and the "extended" form. The extended form is
covered in another documentation topic, but the simple loop is useful for very basic loop.

The simple loop form takes a number of forms and repeats them until the loop is exited using
return or some other exit (e.g., throw).

(let ((x 0))
 (loop
 (print x)
 (incf x)
 (unless (< x 5)
 (return))))

0
1
2
3
4
NIL

Read Basic loops online: https://riptutorial.com/common-lisp/topic/2053/basic-loops

https://riptutorial.com/ 15

http://www.lispworks.com/documentation/HyperSpec/Body/m_loop.htm
https://riptutorial.com/common-lisp/topic/2053/basic-loops

Chapter 5: Booleans and Generalized
Booleans

Examples

True and False

The special symbol T represents the value true in Common Lisp, while the special symbol NIL
represents false:

CL-USER> (= 3 3)
T
CL-USER> (= 3 4)
NIL

They are called “Constant Variables” (sic!) in the standard, since they are variables whose value
cannot be modified. As a consequence, you cannot use their names for normal variables, like in
the following, incorrect, example:

CL-USER> (defun my-fun(t)
 (+ t 1))
While compiling MY-FUN :
Can't bind or assign to constant T.

Actually, one can consider them simply as constants, or as self-evaluated symbols. T and NIL are
specials in other senses, too. For instance, T is also a type (the supertype of any other type), while
NIL is also the empty list:

CL-USER> (eql NIL '())
T
CL-USER> (cons 'a (cons 'b nil))
(A B)

Generalized Booleans

Actually any value different from NIL is considered a true value in Common Lisp. For instance:

CL-USER> (let ((a (+ 2 2)))
 (if a
 a
 "Oh my! 2 + 2 is equal to NIL!"))
4

This fact can be combined with the boolean operators to make programs more concise. For
instance, the above example is equivalent to:

https://riptutorial.com/ 16

CL-USER> (or (+ 2 2) "Oh my! 2 + 2 is equal to NIL!")
4

The macro OR evaluates its arguments in order from left to right and stops as soon as it finds a
non-NIL value, returning it. If all of them are NIL, the value returned is NIL:

CL-USER> (or (= 1 2) (= 3 4) (= 5 6))
NIL

Analogously, the macro AND evaluates its arguments from left to right and returns the value of the
last, if all of them are evaluated to non-NIL, otherwise stops the evaluation as soon as it finds NIL,
returning it:

CL-USER> (let ((a 2)
 (b 3))
 (and (/= b 0) (/ a b)))
2/3
CL-USER> (let ((a 2)
 (b 0))
 (and (/= b 0) (/ a b)))
NIL

For these reasons, AND and OR can be considered more similar to control structures of other
languages, rather than to boolean operators.

Read Booleans and Generalized Booleans online: https://riptutorial.com/common-
lisp/topic/3292/booleans-and-generalized-booleans

https://riptutorial.com/ 17

https://riptutorial.com/common-lisp/topic/3292/booleans-and-generalized-booleans
https://riptutorial.com/common-lisp/topic/3292/booleans-and-generalized-booleans

Chapter 6: CLOS - the Common Lisp Object
System

Examples

Creating a basic CLOS class without parents

A CLOS class is described by:

a name•
a list of superclasses•
a list of slots•
further options like documentation•

Each slot has:

a name•
an initialization form (optional)•
an initialization argument (optional)•
a type (optional)•
a documentation string (optional)•
accessor, reader and/or writer functions (optional)•
further options like allocation•

Example:

(defclass person ()
 ((name
 :initform "Erika Mustermann"
 :initarg :name
 :type string
 :documentation "the name of a person"
 :accessor person-name)
 (age
 :initform 25
 :initarg :age
 :type number
 :documentation "the age of a person"
 :accessor person-age))
 (:documentation "a CLOS class for persons with name and age"))

A default print method:

(defmethod print-object ((p person) stream)
 "The default print-object method for a person"
 (print-unreadable-object (p stream :type t :identity t)
 (with-slots (name age) p
 (format stream "Name: ~a, age: ~a" name age))))

https://riptutorial.com/ 18

Creating instances:

CL-USER > (make-instance 'person)
#<PERSON Name: Erika Mustermann, age: 25 4020169AB3>

CL-USER > (make-instance 'person :name "Max Mustermann" :age 24)
#<PERSON Name: Max Mustermann, age: 24 4020169FEB>

Mixins and Interfaces

Common Lisp does not have interfaces in the sense that some languages (e.g., Java) do, and
there is less need for that type of interface given that Common Lisp supports multiple inheritance
and generic functions. However, the same type of patterns can be realized easily using mixin
classes. This example shows the specification of a collection interface with several corresponding
generic functions.

;; Specification of the COLLECTION "interface"

(defclass collection () ()
 (:documentation "A collection mixin."))

(defgeneric collection-elements (collection)
 (:documentation "Returns a list of the elements in the collection."))

(defgeneric collection-add (collection element)
 (:documentation "Adds an element to the collection."))

(defgeneric collection-remove (collection element)
 (:documentation "Removes the element from the collection, if it is present."))

(defgeneric collection-empty-p (collection)
 (:documentation "Returns whether the collection is empty or not."))

(defmethod collection-empty-p ((c collection))
 "A 'default' implementation of COLLECTION-EMPTY-P that tests
whether the list returned by COLLECTION-ELEMENTS is the empty
list."
 (endp (collection-elements c)))

An implementation of the interface is just a class that has the mixin as one of its super classes,
and definitions of the appropriate generic functions. (At this point, notice that the mixin class is
really only for signalling the intent that the class implements the "interface". This example would
work just as well with a few generic functions and documentation that states that there are
methods on the function for the class.)

;; Implementation of a sorted-set class

(defclass sorted-set (collection)
 ((predicate
 :initarg :predicate
 :reader sorted-set-predicate)
 (test
 :initarg :test
 :initform 'eql

https://riptutorial.com/ 19

 :reader sorted-set-test)
 (elements
 :initform '()
 :accessor sorted-set-elements
 ;; We can "implement" the COLLECTION-ELEMENTS function, that is,
 ;; define a method on COLLECTION-ELEMENTS, simply by making it
 ;; a reader (or accessor) for the slot.
 :reader collection-elements)))

(defmethod collection-add ((ss sorted-set) element)
 (unless (member element (sorted-set-elements ss)
 :test (sorted-set-test ss))
 (setf (sorted-set-elements ss)
 (merge 'list
 (list element)
 (sorted-set-elements ss)
 (sorted-set-predicate ss)))))

(defmethod collection-remove ((ss sorted-set) element)
 (setf (sorted-set-elements ss)
 (delete element (sorted-set-elements ss))))

Finally, we can see what using an instance of the sorted-set class looks like when using the
"interface" functions:

(let ((ss (make-instance 'sorted-set :predicate '<)))
 (collection-add ss 3)
 (collection-add ss 4)
 (collection-add ss 5)
 (collection-add ss 3)
 (collection-remove ss 5)
 (collection-elements ss))
;; => (3 4)

Read CLOS - the Common Lisp Object System online: https://riptutorial.com/common-
lisp/topic/673/clos---the-common-lisp-object-system

https://riptutorial.com/ 20

https://riptutorial.com/common-lisp/topic/673/clos---the-common-lisp-object-system
https://riptutorial.com/common-lisp/topic/673/clos---the-common-lisp-object-system

Chapter 7: CLOS Meta-Object Protocol

Examples

Obtain the slot names of a Class

Lets say we have a class as

(defclass person ()
 (name email age))

To obtain the names of the slots of the class we use the function class-slots. This can be found in
the closer-mop package, provided by the closer-mop system. To load it the running lisp image we
use (ql:quickload :closer-mop). We also have to make sure the class is finalized before calling
class-slots.

(let ((class (find-class 'person)))
 (c2mop:ensure-finalized class)
 (c2mop:class-slots class))

which returns a list of effective slot definition objects:

(#<SB-MOP:STANDARD-EFFECTIVE-SLOT-DEFINITION S/TRANSFORMATIONS::NAME>
 #<SB-MOP:STANDARD-EFFECTIVE-SLOT-DEFINITION S/TRANSFORMATIONS::EMAIL>
 #<SB-MOP:STANDARD-EFFECTIVE-SLOT-DEFINITION S/TRANSFORMATIONS::AGE>)

Update a slot when another slot is modified

The CLOS MOP provides the hook slot-value-using-class, that is called when a slot is value is
accessed, read or modified. Because we only care for modifications in this case we define a
method for (setf slot-value-using-class).

(defclass document ()
 ((id :reader id :documentation "A hash computed with the contents of every other slot")
 (title :initarg :title :accessor title)
 (body :initarg :body :accessor body)))

(defmethod (setf c2mop:slot-value-using-class) :after
 (new class (object document) (slot c2mop:standard-effective-slot-definition))
 ;; To avoid this method triggering a call to itself, we check that the slot
 ;; the modification occurred in is not the slot we are updating.
 (unless (eq (slot-definition-name slot) 'id)
 (setf (slot-value object 'id) (hash-slots object))))

Note that because at instance creation slot-value is not called it may be necessary to duplicate
the code in the initialize-instance :after method

(defmethod initialize-instance :after ((obj document) &key)

https://riptutorial.com/ 21

 (setf (slot-value obj 'id)
 (hash-slots obj)))

Read CLOS Meta-Object Protocol online: https://riptutorial.com/common-lisp/topic/2901/clos-
meta-object-protocol

https://riptutorial.com/ 22

https://riptutorial.com/common-lisp/topic/2901/clos-meta-object-protocol
https://riptutorial.com/common-lisp/topic/2901/clos-meta-object-protocol

Chapter 8: Cons cells and lists

Examples

Lists as a convention

Some languages include a list data structure. Common Lisp, and other languages in the Lisp
family, make extensive use of lists (and the name Lisp is based on the idea of a LISt Processor).
However, Common Lisp doesn't actually include a primitive list datatype. Instead, lists exist by
convention. The convention depends on two principles:

The symbol nil is the empty list.1.
A non empty list is a cons cell whose car is the first element of the list, and whose cdr is the
rest of the list.

2.

That's all that there is to lists. If you've read the example called What is a cons cell?, then you
know that a cons cell whose car is X and whose cdr is Y can be written as (X . Y). That means that
we can write some lists based on the principles above. The list of the elements 1, 2, and 3 is
simply:

(1 . (2 . (3 . nil)))

However, because lists are so common in the Lisp family of languages, there are special printing
conventions beyond the simple dotted pair notation for cons cells.

The symbol nil can also be written as ().1.
When the cdr of one cons cell is another list (either () or a cons cell), instead of writing the
one cons cell with the dotted pair notation, the "list notation" is used.

2.

The list notation is shown most clearly by several examples:

(x . (y . z)) === (x y . z)
(x . NIL) === (x)
(1 . (2 . NIL)) === (1 2)
(1 . ()) === (1)

The idea is that the elements of the list are written in successive order within parenthesis until the
final cdr in the list is reached. If the final cdr is nil (the empty list), then the final parenthesis is
written. If the final cdr is not nil (in which case the list is called an improper list), then a dot is
written, and then that final cdr is written.

What is a cons cell?

A cons cell, also known as a dotted pair (because of its printed representation), is simply a pair of
two objects. A cons cell is created by the function cons, and elements in the pair are extracted
using the functions car and cdr.

https://riptutorial.com/ 23

(cons "a" 4)

For instance, this returns a pair whose first element (which can be extracted with car) is "a", and
whose second element (which can be extracted with cdr), is 4.

(car (cons "a" 4))
;;=> "a"

(cdr (cons "a" 4))
;;=> 3

Cons cells can be printed in dotted pair notation:

(cons 1 2)
;;=> (1 . 2)

Cons cells can also be read in dotted pair notation, so that

(car '(x . 5))
;;=> x

(cdr '(x . 5))
;;=> 5

(The printed form of cons cells can be a bit more complicated, too. For more about that, see the
example about cons cells as lists.)

That's it; cons cells are just pairs of elements created by the function cons, and the elements can
be extracted with car and cdr. Because of their simplicity, cons cells can be a useful building block
for more complex data structures.

Sketching cons cells

To better understand the semantics of conses and lists, a graphical representation of this kind of
structures is often used. A cons cell is usually represented with two boxes in contact, that contain
either two arrows that point to the car and cdr values, or directly the values. For instance, the
result of:

(cons 1 2)
;; -> (1 . 2)

can be represented with one of these drawings:

Note that these representations are purely conceptual, and do not denote the fact that the values
are contained into the cell, or are pointed from the cell: in general this depends on the

https://riptutorial.com/ 24

implementation, the type of the values, the level of optimization, etc. In the rest of the example we
will use the first kind of drawing, which is the one more commonly used.

So, for instance:

(cons 1 (cons 2 (cons 3 4))) ; improper “dotted” list
;; -> (1 2 3 . 4)

is represented as:

while:

(cons 1 (cons 2 (cons 3 (cons 4 nil)))) ;; proper list, equivalent to: (list 1 2 3 4)
;; -> (1 2 3 4)

is represented as:

Here is a tree-like structure:

(cons (cons 1 2) (cons 3 4))
;; -> ((1 . 2) 3 . 4) ; note the printing as an improper list

The final example shows how this notation can help us to understand important semantics aspects
of the language. First, we write an expression similar to the previous one:

(cons (cons 1 2) (cons 1 2))
;; -> ((1 . 2) 1 . 2)

that can be represented in the usual way as:

https://riptutorial.com/ 25

Then, we write a different expression, which is apparently equivalent to the previous one, and this
seems confirmed by printed representation of the result:

(let ((cell-a (cons 1 2)))
 (cons cell-a cell-a))
;; -> ((1 . 2) 1 . 2)

But, if we draw the diagram, we can see that the semantics of the expression is different, since the
same cell is the value both of the car part and the cdr part of the outer cons (this is, cell-a is
shared):

and the fact that the semantics of the two results is actually different at the language level can be
verified by the following tests:

(let ((c1 (cons (cons 1 2) (cons 1 2)))
 (c2 (let ((cell-a (cons 1 2)))
 (cons cell-a cell-a))))
 (list (eq (car c1) (cdr c1))
 (eq (car c2) (cdr c2)))
;; -> (NIL T)

The first eq is false since the car and cdr of c1 are structurally equal (that is true by equal), but are
not “identical” (i.e. “the same shared structure”), while in the second test the result is true since the
car and cdr of c2 are identical, that is they are the same structure.

Read Cons cells and lists online: https://riptutorial.com/common-lisp/topic/2622/cons-cells-and-
lists

https://riptutorial.com/ 26

https://riptutorial.com/common-lisp/topic/2622/cons-cells-and-lists
https://riptutorial.com/common-lisp/topic/2622/cons-cells-and-lists

Chapter 9: Control Structures

Examples

Conditional Constructs

In Common Lisp, if is the simplest conditional construct. It has the form (if test then [else]) and
is evaluated to then if test is true and else otherwise. The else part can be omitted.

(if (> 3 2)
 "Three is bigger!"
 "Two is bigger!")
;;=> "Three is bigger!"

One very important difference between if in Common Lisp and if in many other programming
languages is that CL's if is an expression, not a statement. As such, if forms return values, which
can be assigned to variables, used in argument lists, etc:

;; Use a different format string depending on the type of x
(format t (if (numberp x)
 "~x~%"
 "~a~%")
 x)

Common Lisp's if can be considered equivalent to the ternary operator ?: in C# and other "curly
brace" languages.

For example, the following C# expression:

year == 1990 ? "Hammertime" : "Not Hammertime"

Is equivalent to the following Common Lisp code, assuming that year holds an integer:

(if (eql year 1990) "Hammertime" "Not Hammertime")

cond is another conditional construct. It is somewhat similar to a chain of if statements, and has
the form:

(cond (test-1 consequent-1-1 consequent-2-1 ...)
 (test-2)
 (test-3 consequent-3-1 ...)
 ...)

More precisely, cond has zero or more clauses, and each clause has one test followed by zero or
more consequents. The entire cond construct selects the first clause whose test does not evaluate
to nil and evaluates its consequents in order. It returns the value of the last form in the
consequents.

https://riptutorial.com/ 27

http://www.riptutorial.com/csharp/example/6029/----ternary-operator

(cond ((> 3 4) "Three is bigger than four!")
 ((> 3 3) "Three is bigger than three!")
 ((> 3 2) "Three is bigger than two!")
 ((> 3 1) "Three is bigger than one!"))
;;=> "Three is bigger than two!"

To provide a default clause to evaluate if no other clause evaluates to t, you can add a clause that
is true by default using t. This is very similar in concept to SQL's CASE...ELSE, but it uses a literal
boolean true rather than a keyword to accomplish the task.

(cond
 ((= n 1) "N equals 1")
 (t "N doesn't equal 1")
)

An if construct can be written as a cond construct. (if test then else) and (cond (test then) (t
else)) are equivalent.

If you only need one clause, use when or unless:

(when (> 3 4)
 "Three is bigger than four.")
;;=> NIL

(when (< 2 5)
 "Two is smaller than five.")
;;=> "Two is smaller than five."

(unless (> 3 4)
 "Three is bigger than four.")
;;=> "Three is bigger than four."

(unless (< 2 5)
 "Two is smaller than five.")
;;=> NIL

The do loop

Most looping and conditional constructs in Common Lisp are actually macros that hide away more
basic constructs. For example, dotimes and dolist are built upon the do macro. The form for do
looks like this:

(do (varlist)
 (endlist)
 &body)

varlist is composed of the variables defined in the loop, their initial values, and how they
change after each iteration. The 'change' portion is evaluated at the end of the loop.

•

endlist contains the end conditions and the values returned at the end of the loop. The end
condition is evaluated at the beginning of the loop.

•

Here's one that starts at 0 and goes upto (not including) 10.

https://riptutorial.com/ 28

http://www.riptutorial.com/common-lisp/topic/1257/macros

;;same as (dotimes (i 10))
(do ((i (+ 1 i))
 ((< i 10) i)
 (print i))

And here's one that moves through a list:

;;same as (dolist (item given-list)
(do ((item (car given-list))
 (temp list (cdr temp))
 (print item))

The varlist portion is similar the one in a let statement. You can bind more than one variable, and
they only exist inside the loop. Each variable declared is in its own set of parenthesis. Here's one
that counts how many 1's and 2's are in a list.

(let ((vars (list 1 2 3 2 2 1)))
 (do ((ones 0)
 (twos 0)
 (temp vars (cdr temp)))
 ((not temp) (list ones twos))
 (when (= (car temp) 1)
 (setf ones (+ 1 ones)))
 (when (= (car temp) 2)
 (setf twos (+ 1 twos)))))
-> (2 3)

And if a while loop macro hasn't been implemented:

(do ()
 (t)
 (when task-done
 (break)))

For the most common applications, the more specific dotimes and doloop macros are much more
succinct.

Read Control Structures online: https://riptutorial.com/common-lisp/topic/3229/control-structures

https://riptutorial.com/ 29

https://riptutorial.com/common-lisp/topic/3229/control-structures

Chapter 10: Creating Binaries

Examples

Building Buildapp

Standalone Common Lisp binaries can be built with buildapp. Before we can use it to generate
binaries, we need to install and build it.

The easiest way I know how is using quicklisp and a Common Lisp (this example uses [sbcl], but
it shouldn't make a difference which one you've got).

$ sbcl

This is SBCL 1.3.5.nixos, an implementation of ANSI Common Lisp.
More information about SBCL is available at <http://www.sbcl.org/>.

SBCL is free software, provided as is, with absolutely no warranty.
It is mostly in the public domain; some portions are provided under
BSD-style licenses. See the CREDITS and COPYING files in the
distribution for more information.

* (ql:quickload :buildapp)
To load "buildapp":
 Load 1 ASDF system:
 buildapp
; Loading "buildapp"

(:BUILDAPP)

* (buildapp:build-buildapp)
;; loading system "buildapp"
[undoing binding stack and other enclosing state... done]
[saving current Lisp image into /home/inaimathi/buildapp:
writing 4800 bytes from the read-only space at 0x20000000
writing 3216 bytes from the static space at 0x20100000
writing 47349760 bytes from the dynamic space at 0x1000000000
done]
NIL

* (quit)

$ ls -lh buildapp
-rwxr-xr-x 1 inaimathi inaimathi 46M Aug 13 20:12 buildapp
$

Once you have that binary built, you can use it to construct binaries of your Common Lisp
programs. If you intend to do this a lot, you should also probably put it somewhere on your PATH so
that you can just run it with buildapp from any directory.

Buildapp Hello World

The simplest possible binary you could build

https://riptutorial.com/ 30

http://www.xach.com/lisp/buildapp/
https://www.quicklisp.org/beta/

Has no dependencies1.
Takes no command line arguments2.
Just writes "Hello world!" to stdout3.

After you've built buildapp, you can just...

$ buildapp --eval '(defun main (argv) (declare (ignore argv)) (write-line "Hello, world!"))' -
-entry main --output hello-world
[undoing binding stack and other enclosing state... done]
[saving current Lisp image into hello-world:
writing 4800 bytes from the read-only space at 0x20000000
writing 3216 bytes from the static space at 0x20100000
writing 43220992 bytes from the dynamic space at 0x1000000000
done]

$./hello-world
Hello, world!

$

Buildapp Hello Web World

A more realistic example involves a project you're building with multiple files on disk (rather than
an --eval option passed to buildapp), and some dependencies to pull in.

Because arbitrary things can happen during the finding and loading of asdf systems (including
loading other, potentially unrelated systems), it's not enough to just inspect the asd files of the
projects you're depending on in order to find out what you need to load. The general approach is
to use quicklisp to load the target system, then call ql:write-asdf-manifest-file to write out a full
manifest of everything that's loaded.

Here's a toy system built with hunchentoot to illustrate how that might happen in practice:

;;;; buildapp-hello-web-world.asd

(asdf:defsystem #:buildapp-hello-web-world
 :description "An example application to use when getting familiar with buildapp"
 :author "inaimathi <leo.zovic@gmail.com>"
 :license "Expat"
 :depends-on (#:hunchentoot)
 :serial t
 :components ((:file "package")
 (:file "buildapp-hello-web-world"))

;;;; package.lisp

(defpackage #:buildapp-hello-web-world
 (:use #:cl #:hunchentoot))

;;;; buildapp-hello-web-world.lisp

(in-package #:buildapp-hello-web-world)

https://riptutorial.com/ 31

http://weitz.de/hunchentoot/

(define-easy-handler (hello :uri "/") ()
 (setf (hunchentoot:content-type*) "text/plain")
 "Hello Web World!")

(defun main (argv)
 (declare (ignore argv))
 (start (make-instance 'easy-acceptor :port 4242))
 (format t "Press any key to exit...~%")
 (read-char))

;;;; build.lisp
(ql:quickload :buildapp-hello-web-world)
(ql:write-asdf-manifest-file "/tmp/build-hello-web-world.manifest")
(with-open-file (s "/tmp/build-hello-web-world.manifest" :direction :output :if-exists
:append)
 (format s "~a~%" (merge-pathnames
 "buildapp-hello-web-world.asd"
 (asdf/system:system-source-directory
 :buildapp-hello-web-world))))

build.sh
sbcl --load "build.lisp" --quit

buildapp --manifest-file /tmp/build-hello-web-world.manifest --load-system hunchentoot --load-
system buildapp-hello-web-world --output hello-web-world --entry buildapp-hello-web-world:main

Once you have those files saved in a directory named buildapp-hello-web-world, you can do

$ cd buildapp-hello-web-world/

$ sh build.sh
This is SBCL 1.3.7.nixos, an implementation of ANSI Common Lisp.
More information about SBCL is available at <http://www.sbcl.org/>.

SBCL is free software, provided as is, with absolutely no warranty.
It is mostly in the public domain; some portions are provided under
BSD-style licenses. See the CREDITS and COPYING files in the
distribution for more information.
To load "cffi":
 Load 1 ASDF system:
 cffi
; Loading "cffi"
........
To load "buildapp-hello-web-world":
 Load 1 ASDF system:
 buildapp-hello-web-world
; Loading "buildapp-hello-web-world"
....
;; loading system "cffi"
;; loading system "hunchentoot"
;; loading system "buildapp-hello-web-world"
[undoing binding stack and other enclosing state... done]
[saving current Lisp image into hello-web-world:
writing 4800 bytes from the read-only space at 0x20000000
writing 4624 bytes from the static space at 0x20100000
writing 66027520 bytes from the dynamic space at 0x1000000000
done]

https://riptutorial.com/ 32

$ ls -lh hello-web-world
-rwxr-xr-x 1 inaimathi inaimathi 64M Aug 13 21:17 hello-web-world

This produces a binary that does exactly what you think it should, given the above.

$./hello-web-world
Press any key to exit...

You should then be able to fire up another shell, do curl localhost:4242 and see the plaintext
response of Hello Web World! get printed out.

Read Creating Binaries online: https://riptutorial.com/common-lisp/topic/5457/creating-binaries

https://riptutorial.com/ 33

https://riptutorial.com/common-lisp/topic/5457/creating-binaries

Chapter 11: Customization

Examples

More features for the Read-Eval-Print-Loop (REPL) in a terminal

CLISP has an integration with GNU Readline.

For improvements for other implementations see: How to customize the SBCL REPL.

Initialization Files

Most Common Lisp implementations will try to load an init file on startup:

Implementation Init file Site/System Init file

ABCL $HOME/.abclrc

Allegro CL $HOME/.clinit.cl

ECL $HOME/.eclrc

Clasp $HOME/.clasprc

CLISP $HOME/.clisprc.lisp

Clozure CL home:ccl-init.lisp or home:ccl-init.fasl or
home:.ccl-init.lisp

CMUCL $HOME/.cmucl-init.lisp

LispWorks $HOME/.lispworks

MKCL $HOME/.mkclrc

SBCL $HOME/.sbclrc $SBCL_HOME/sbclrc or
/etc/sbclrc

SCL $HOME/.scl-init.lisp

Sample Initialization files:

Implementation Sample Init file

LispWorks Library/lib/7-0-0-0/config/a-dot-lispworks.lisp

Optimization settings

https://riptutorial.com/ 34

http://stackoverflow.com/questions/11109249/how-to-customize-the-sbcl-repl
http://ccl.clozure.com/manual/chapter2.4.html
http://www.sbcl.org/manual/#Initialization-Files

Common Lisp has a way to influence the compilation strategies. It makes sense to define your
preferred values.

Optimization values are between 0 (unimportant) and 3 (extremely important). 1 is the neutral
value.

It's useful to always use safe code (safety = 3) with all runtime checks enabled.

Note that the interpretation of values is implementation specific. Most Common Lisp
implementations make some use of these values.

Setting Explanation
useful default
value

useful delivery
value

compilation-
speed

speed of the compilation
process

2 0

debug ease of debugging 2 1 or 0

safety run-time error checking 3 2

space
both code size and run-time
space

2 2

speed speed of the object code 2 3

An optimize declaration for use with declaim, declare and proclaim:

(optimize (compilation-speed 2)
 (debug 2)
 (safety 3)
 (space 2)
 (speed 2))

Note that you can also apply special optimization settings to portions of the code in a function
using the macro LOCALLY.

Read Customization online: https://riptutorial.com/common-lisp/topic/5679/customization

https://riptutorial.com/ 35

https://riptutorial.com/common-lisp/topic/5679/customization

Chapter 12: Equality and other comparison
predicates

Examples

The difference between EQ and EQL

EQ checks if two values have the same address of memory: in other words, it checks if the
two values are are actually the same, identical object. So, it is can be considered the identity
test, and should be applied only to structures: conses, arrays, structures, objects, typically to
see if you are dealing in fact with the same object “reached” through different paths, or
aliased through different variables.

1.

EQL checks if two structures are the same object (like EQ) or if they are the same non-
structured values (that is, the same numeric values for numbers of the same type or the
character values). Since it includes the EQ operator and can be used also on non-structured
values, is the most important and most commonly used operator, and almost all the primitive
functions that require an equality comparison, like MEMBER, use by default this operator.

2.

So, it is always true that (EQ X Y) implies (EQL X Y), while the viceversa does not hold.

A few examples can clear the difference between the two operators:

(eq 'a 'a)
T ;; => since two s-expressions (QUOTE A) are “internalized” as the same symbol by the reader.
(eq (list 'a) (list 'a))
NIL ;; => here two lists are generated as different objects in memory
(let* ((l1 (list 'a))
 (l2 l1))
 (eq l1 l2))
T ;; => here there is only one list which is accessed through two different variables
(eq 1 1)
?? ;; it depends on the implementation: it could be either T or NIL if integers are “boxed”
(eq #\a #\a)
?? ;; it depends on the implementation, like for numbers
(eq 2d0 2d0)
?? ;; => dependes on the implementation, but usually is NIL, since numbers in double
 ;; precision are treated as structures in many implementations
(let ((a1 2d0)
 (a2 2d0))
 (eq a1 a2))
?? ;; => also in this case the results depends on the implementation

Let’s try the same examples with EQL:

(eql 'a 'a)
T ;; => equal because they are the same value, as for EQ
(eql (list 'a) (list 'a))
NIL ;; => different because they different objects in memory, as for EQ
(let* ((l1 (list 'a))

https://riptutorial.com/ 36

 (l2 l1))
 (eql l1 l2))
T ;; => as above
(eql 1 1)
T ;; they are the same number, even if integers are “boxed”
(eql #\a #\a)
T ;; they are the same character
(eql 2d0 2d0)
T ;; => they are the same number, even if numbers in double precision are treated as
 ;; structures in many implementations
(let ((a1 2d0)
 (a2 2d0))
 (eql a1 a2))
T ;; => as before
(eql 2 2.0)
NIL;; => since the two values are of a different numeric type

From the examples we can see why the EQL operator should be used to portably check for
“sameness” for all the values, structured and non-structured, and why actually many experts
advise against the use of EQ in general.

Structural equality with EQUAL, EQUALP, TREE-EQUAL

These three operators implement structural equivalence, that is they check if different, complex
objects have equivalent structure with equivalent component.

EQUAL behaves like EQL for non-structured data, while for structures built by conses (lists and trees),
and the two special types of arrays, strings and bit vectors, it performs structural equivalence,
returning true on two structures that are isomorphic and whose elementary components are
correspondingly equal by EQUAL. For instance:

(equal (list 1 (cons 2 3)) (list 1 (cons 2 (+ 2 1))))
T ;; => since the two arguments are both equal to (1 (2 . 3))
(equal "ABC" "ABC")
T ;; => equality on strings
(equal "Abc" "ABC")
NIL ;; => case sensitive equality on strings
(equal '(1 . "ABC") '(1 . "ABC"))
T ;; => equal since it uses EQL on 1 and 1, and EQUAL on "ABC" and "ABC"
(let* ((a (make-array 3 :initial-contents '(1 2 3)))
 (b (make-array 3 :initial-contents '(1 2 3)))
 (c a))
 (values (equal a b)
 (equal a c)))
NIL ;; => the structural equivalence is not used for general arrays
T ;; => a and c are alias for the same object, so it is like EQL

EQUALP returns true on all cases in which EQUAL is true, but it uses also structural equivalence for
arrays of any kind and dimension, for structures and for hash tables (but not for class instances!).
Moreover, it uses case insensitive equivalence for strings.

(equalp "Abc" "ABC")
T ;; => case insensitive equality on strings
(equalp (make-array 3 :initial-contents '(1 2 3))

https://riptutorial.com/ 37

 (make-array 3 :initial-contents (list 1 2 (+ 2 1))))
T ;; => the structural equivalence is used also for any kind of arrays
(let ((hash1 (make-hash-table))
 (hash2 (make-hash-table)))
 (setf (gethash 'key hash1) 42)
 (setf (gethash 'key hash2) 42)
 (print (equalp hash1 hash2))
 (setf (gethash 'another-key hash1) 84)
 (equalp hash1 hash2))
T ;; => after the first two insertions, hash1 and hash2 have the same keys and values
NIL ;; => after the third insertion, hash1 and hash2 have different keys and values
(progn (defstruct s) (equalp (make-s) (make-s)))
T ;; => the two values are structurally equal
(progn (defclass c () ()) (equalp (make-instance 'c) (make-instance 'c)))
NIL ;; => two structurally equivalent class instances returns NIL, it's up to the user to
 ;; define an equality method for classes

Finally, TREE-EQUAL can be applied to structures built through consand checks if they are isomorphic,
like EQUAL, but leaving to the user the choice of which function to use to compare the leafs, i.e. the
non-cons (atom) encountered, that can be of any other data type (by default, the test used on
atom is EQL). For instance:

(let ((l1 '(1 . ("A" . 2)))
 (l2 '(1 . ("A" . 2))))
 (tree-equal l1 l2 :test #'eql))
NIL ;; => since (eql "A" "A") gives NIL
(let ((l1 '(1 . ("A" . 2)))
 (l2 '(1 . ("A" . 2))))
 (tree-equal l1 l2 :test #'equal))
T ;; since (equal "A" "A") gives T

Comparison operators on numeric values

Numeric values can compared with = and the other numeric comparison operators (/=, <, <=, >, >=)
that ignore the difference in the physical representation of the different types of numbers, and
perform the comparison of the corresponding mathematical values. For instance:

(= 42 42)
T ;; => both number have the sme numeric type and the same value
(= 1 1.0 1d0)
T ;; => all the tree values represent the number 1, while for instance (eql 1 1d0) => NIL
 ;; since it returns true only if the operands have the same numeric type
(= 0.0 -0.0)
T ;; => again, the value is the same, while (eql 0.0 -0.0) => NIL
(= 3.0 #c(3.0 0.0))
T ;; => a complex number with 0 imaginary part is equal to a real number
(= 0.33333333 11184811/33554432)
T ;; => since a float number is passed to RATIONAL before comparing it to another number
 ;; => and (RATIONAL 0.33333333) => 11184811/33554432 in 32-bit IEEE floats architectures
(= 0.33333333 0.33333334)
T ;; => since the result of RATIONAL on both numbers is equal in 32-bit IEEE floats
architectures
(= 0.33333333d0 0.33333334d0)
NIL ;; => since the RATIONAL of the two numbers in double precision is different

https://riptutorial.com/ 38

From these examples, we can conclude that = is the operator that should normally be used to
perform comparison between numeric values, unless we want to be strict on the fact that two
numeric values are equal only if they have also the same numeric type, in which case EQL should
be used.

Comparison operators on characters and strings

Common Lisp has 12 type specific operators to compare two characters, 6 of them case sensitives
and the others case insensitives. Their names have a simple pattern to make easy to remember
their meaning:

Case Sensitive Case Insensitive

CHAR= CHAR-EQUAL

CHAR/= CHAR-NOT-EQUAL

CHAR< CHAR-LESSP

CHAR<= CHAR-NOT-GREATERP

CHAR> CHAR-GREATERP

CHAR>= CHAR-NOT-LESSP

Two characters of the same case are in the same order as the corresponding codes obtained by
CHAR-CODE, while for case insensitive comparisons the relative order between any two characters
taken from the two ranges a..z, A..Z is implementation dependent. Examples:

(char= #\a #\a)
T ;; => the operands are the same character
(char= #\a #\A)
NIL ;; => case sensitive equality
(CHAR-EQUAL #\a #\A)
T ;; => case insensitive equality
(char> #\b #\a)
T ;; => since in all encodings (CHAR-CODE #\b) is always greater than (CHAR-CODE #\a)
(char-greaterp #\b \#A)
T ;; => since for case insensitive the ordering is such that A=a, B=b, and so on,
 ;; and furthermore either 9<A or Z<0.
(char> #\b #\A)
?? ;; => the result is implementation dependent

For strings the specific operators are STRING=, STRING-EQUAL, etc. with the word STRING instead of
CHAR. Two strings are equal if they have the same number of characters and the correspending
characters are equal according to CHAR= or CHAR-EQUAL if the test is case sensitive or not.

The ordering between strings is tje lexicographic order on the characters of the two strings. When
an ordering comparison succeeds, the result is not T, but the index of the first character in which
the two strings differ (which is equivalent to true, since every non-NIL object is a “generalized

https://riptutorial.com/ 39

boolean” in Common Lisp).

An important thing is that all the comparison operators on string accept four keywords parameters:
start1, end1, start2, end2, that can be used to restrict the comparison to only a contiguous run of
characters inside one or both strings. The start index if omitted is 0, the end index is omitted is
equal to the length of the string, and the comparison in performed on the substring starting at
character with index :start and terminating with the character with index :end - 1 included.

Finally, note that a string, even with a single character, cannot be compared to a character.

Examples:

(string= "foo" "foo")
T ;; => both strings have the same lenght and the characters are `CHAR=` in order
(string= "Foo" "foo")
NIL ;; => case sensitive comparison
(string-equal "Foo" "foo")
T ;; => case insensitive comparison
(string= "foobar" "barfoo" :end1 3 :start2 3)
T ;; => the comparison is perform on substrings
(string< "fooarr" "foobar")
3 ;; => the first string is lexicographically less than the second one and
 ;; the first character different in the two string has index 3
(string< "foo" "foobar")
3 ;; => the first string is a prefix of the second and the result is its length

As a special case, the string comparison operators can also be applied to symbols, and the
comparison is made on the SYMBOL-NAME of the symbol. For instance:

(string= 'a "A")
T ;; since (SYMBOL-NAME 'a) is "A"
(string-equal '|a| 'a)
T ;; since the the symbol names are "a" and "A" respectively

As final note, EQL on characters is equivalent to CHAR=; EQUAL on strings is equivalent to STRING=,
while EQUALP on strings is equivalent to STRING-EQUAL.

Overwiew

In Common Lisp there are many different predicates for comparing values. They can be classified
in the following categories:

Generic equality operators: EQ, EQL, EQUAL, EQUALP. They can be used for values of any
type and return always a boolean value T or NIL.

1.

Type specific equality operators: = and = for numbers, CHAR= CHAR= CHAR-EQUAL
CHAR-NOT-EQUAL for characters, STRING= STRING= STRING-EQUAL STRING-NOT-
EQUAL for strings, TREE-EQUAL for conses.

2.

Comparison operators for numeric values: <, <=, >, >=. They can be applied to any type of
number and compare the mathematical value of the number, independently from the actual
type.

3.

Comparison operators for characters, like CHAR<, CHAR-LESSP, etc., that compare 4.

https://riptutorial.com/ 40

characters either in a case sensitive way or in a case insensitive way, according to an
implementation depending order that preserves the natural alphabetical ordering.
Comparison operators for strings, like STRING<, STRING-LESSP, etc., that compare strings
lexicographically, either in a case sensitive way or in a case insensitive way, by using the
character comparison operators.

5.

Read Equality and other comparison predicates online: https://riptutorial.com/common-
lisp/topic/10064/equality-and-other-comparison-predicates

https://riptutorial.com/ 41

https://riptutorial.com/common-lisp/topic/10064/equality-and-other-comparison-predicates
https://riptutorial.com/common-lisp/topic/10064/equality-and-other-comparison-predicates

Chapter 13: format

Parameters

Lambda-List (format DESTINATION CONTROL-STRING &REST FORMAT-ARGUMENTS)

DESTINATION
the thing to write to. This can be an output stream, t (shorthand for *standard-
output*), or nil (which creates a string to write to)

CONTROL-
STRING

the template string. It might be a primitive string, or it might contain tilde-
prefixed command directives that specify, and somehow transform additional
arguments.

FORMAT-
ARGUMENTS potential additional arguments required by the given CONTROL-STRING.

Remarks

The CLHS documentation for FORMAT directives can be found in Section 22.3. With SLIME, you can
type C-c C-d ~ to look up the CLHS documentation for a specific format directive.

Examples

Basic Usage and Simple Directives

The first two arguments to format are an output stream and a control string. Basic use does not
require additional arguments. Passing t as the stream writes to *standard-output*.

> (format t "Basic Message")
Basic Message
nil

That expression will write Basic Message to standard output, and return nil.

Passing nil as the stream creates a new string, and returns it.

> (format nil "Basic Message")
"Basic Message"

Most control string directives require additional arguments. The ~a directive ("aesthetic") will print
any argument as though by the princ procedure. This prints the form without any escape
characters (keywords are printed without the leading colon, strings without their surrounding
quotes and so forth).

> (format nil "A Test: ~a" 42)

https://riptutorial.com/ 42

http://www.lispworks.com/documentation/HyperSpec/Body/22_c.htm

"A Test: 42"
> (format nil "Multiples: ~a ~a ~a ~a" 1 (list 2 3) "four five" :six)
"Multiples: 1 (2 3) four five SIX"
> (format nil "A Test: ~a" :test)
"A Test: TEST"
> (format nil "A Test: ~a" "Example")
"A Test: Example"

~a optionally right or left-pads input based on additional inputs.

> (format nil "A Test: ~10a" "Example")
"A Test: Example "
> (format nil "A Test: ~10@a" "Example")
"A Test: Example"

The ~s directive is like ~a, but it prints escape characters.

> (format nil "A Test: ~s" 42)
"A Test: 42"
> (format nil "Multiples: ~s ~s ~s ~s" 1 (list 2 3) "four five" :six)
"Multiples: 1 (2 3) \"four five\" :SIX"
> (format nil "A Test: ~s" :test)
"A Test: :TEST"
> (format nil "A Test: ~s" "Example")
"A Test: \"Example\""

Iterating over a list

One can iterate over a list using ~{ and ~} directives.

CL-USER> (format t "~{~a, ~}~%" '(1 2 3 4 5))
1, 2, 3, 4, 5,

~^ can be used to escape if there are no more elements left.

CL-USER> (format t "~{~a~^, ~}~%" '(1 2 3 4 5))
1, 2, 3, 4, 5

A numeric argument can be given to ~{ to limit how many iterations can be done:

CL-USER> (format t "~3{~a~^, ~}~%" '(1 2 3 4 5))
1, 2, 3,

~@{ will iterate over remaining arguments, instead of a list:

CL-USER> (format t "~a: ~@{~a~^, ~}~%" :foo 1 2 3 4 5)
FOO: 1, 2, 3, 4, 5

Sublists can be iterated over by using ~:{:

CL-USER> (format t "~:{(~a, ~a) ~}~%" '((1 2) (3 4) (5 6)))

https://riptutorial.com/ 43

http://www.lispworks.com/documentation/HyperSpec/Body/22_cgd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/22_cge.htm
http://www.lispworks.com/documentation/HyperSpec/Body/22_cib.htm

(1, 2) (3, 4) (5, 6)

Conditional expressions

Conditional expressions can be done with ~[and ~]. The clauses of the expression are separated
using ~;.

By default, ~[takes an integer from the argument list, and picks the corresponding clause. The
clauses start at zero.

(format t "~@{~[First clause~;Second clause~;Third clause~;Fourth clause~]~%~}"
 0 1 2 3)
; First clause
; Second clause
; Third clause
; Fourth clause

The last clause can be separated with ~:; instead to make it the else-clause.

(format t "~@{~[First clause~;Second clause~;Third clause~:;Too high!~]~%~}"
 0 1 2 3 4 5)
; First clause
; Second clause
; Third clause
; Too high!
; Too high!
; Too high!

If the conditional expression starts with ~:[, it will expect a generalized boolean instead of an
integer. It can only have two clauses; the first one is printed if the boolean was NIL, and the
second clause if it was truthy.

(format t "~@{~:[False!~;True!~]~%~}"
 t nil 10 "Foo" '())
; True!
; False!
; True!
; True!
; False!

If the conditional expression starts with ~@[, there should only be one clause, which is printed if the
input, a generalized boolean, was truthy. The boolean will not be consumed if it is truthy.

(format t "~@{~@[~s is truthy!~%~]~}"
 t nil 10 "Foo" '())
; T is truthy!
; 10 is truthy!
; "Foo" is truthy!

Read format online: https://riptutorial.com/common-lisp/topic/687/format

https://riptutorial.com/ 44

http://www.lispworks.com/documentation/HyperSpec/Body/22_cgb.htm
http://www.lispworks.com/documentation/HyperSpec/Body/22_cgc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/22_cia.htm
http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_g.htm#generalized_boolean
https://riptutorial.com/common-lisp/topic/687/format

Chapter 14: Functions

Remarks

Anonymous functions can be created using LAMBDA. Local functions can be defined using LABELS or
FLET. Their parameters are defined the same was as in global named functions.

Examples

Required Parameters

(defun foobar (x y)
 (format t "X: ~s~@
 Y: ~s~%"
 x y))

(foobar 10 20)
; X: 10
; Y: 20
;=> NIL

Optional Parameters

Optional parameters can be specified after required parameters, by using &OPTIONAL keyword.
There may be multiple optional parameters after it.

(defun foobar (x y &optional z)
 (format t "X (~s) and Y (~s) are required.~@
 Z (~s) is optional.~%"
 x y z))

(foobar 10 20)
; X (10) and Y (20) are required.
; Z (NIL) is optional.
;=> NIL
(foobar 10 20 30)
; X (10) and Y (20) are required.
; Z (30) is optional.
;=> NIL

Default alue

A default value can be given for optional parameters by specifying the parameter with a list; the
second value is the default. The default value form will only be evaluated if the argument was
given, so it can be used for side-effects, such as signalling an error.

(defun foobar (x y &optional (z "Default"))

https://riptutorial.com/ 45

http://www.lispworks.com/documentation/HyperSpec/Body/m_lambda.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm

 (format t "X (~s) and Y (~s) are required.~@
 Z (~s) is optional.~%"
 x y z))

(foobar 10 20)
; X (10) and Y (20) are required.
; Z ("Default") is optional.
;=> NIL
(foobar 10 20 30)
; X (10) and Y (20) are required.
; Z (30) is optional.
;=> NIL

Check if optional argument was given

A third member can be added to the list after the default value; a variable name that is true if the
argument was given, or NIL if it wasn't given (and the default is used).

(defun foobar (x y &optional (z "Default" zp))
 (format t "X (~s) and Y (~s) are required.~@
 Z (~s) is optional. It ~:[wasn't~;was~] given.~%"
 x y z zp))

(foobar 10 20)
; X (10) and Y (20) are required.
; Z ("Default") is optional. It wasn't given.
;=> NIL
(foobar 10 20 30)
; X (10) and Y (20) are required.
; Z (30) is optional. It was given.
;=> NIL

Function without Parameters

Global named functions are defined with DEFUN.

(defun foobar ()
 "Optional documentation string. Can contain line breaks.

Must be at the beginning of the function body. Some will format the
docstring so that lines are indented to match the first line, although
the built-in DESCRIBE-function will print it badly indented that way.

Ensure no line starts with an opening parenthesis by escaping them
\(like this), otherwise your editor may have problems identifying
toplevel forms."
 (format t "No parameters.~%"))

(foobar)
; No parameters.
;=> NIL

(describe #'foobar) ; The output is implementation dependant.
; #<FUNCTION FOOBAR>
; [compiled function]

https://riptutorial.com/ 46

http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm

;
; Lambda-list: ()
; Derived type: (FUNCTION NIL (VALUES NULL &OPTIONAL))
; Documentation:
; Optional documentation string. Can contain line breaks.
;
; Must be at the beginning of the function body. Some will format the
; docstring so that lines are indented to match the first line, although
; the built-in DESCRIBE-function will print it badly indented that way.
; Source file: /tmp/fileInaZ1P
;=> No values

The function body may contain any number of forms. The values from the last form will be
returned from the function.

Rest Parameter

A single rest-parameter can be given with the keyword &REST after the required arguments. If such
a parameter exists, the function can take a number of arguments, which will be grouped into a list
in the rest-parameter. Note that the variable CALL-ARGUMENTS-LIMIT determines the maximum
number of arguments which can be used in a function call, thus the number of arguments is limited
to an implementation specific value of minimum 50 or more arguments.

(defun foobar (x y &rest rest)
 (format t "X (~s) and Y (~s) are required.~@
 The function was also given following arguments: ~s~%"
 x y rest))

(foobar 10 20)
; X (10) and Y (20) are required.
; The function was also given following arguments: NIL
;=> NIL
(foobar 10 20 30 40 50 60 70 80)
; X (10) and Y (20) are required.
; The function was also given following arguments: (30 40 50 60 70 80)
;=> NIL

Rest and Keyword Parameters together

The rest-parameter may be before keyword parameters. In that case it will contain the property list
given by the user. The keyword values will still be bound to the corresponding keyword parameter.

(defun foobar (x y &rest rest &key (z 10 zp))
 (format t "X (~s) and Y (~s) are required.~@
 Z (~s) is a keyword argument. It ~:[wasn't~;was~] given.~@
 The function was also given following arguments: ~s~%"
 x y z zp rest))

(foobar 10 20)
; X (10) and Y (20) are required.
; Z (10) is a keyword argument. It wasn't given.
; The function was also given following arguments: NIL
;=> NIL

https://riptutorial.com/ 47

(foobar 10 20 :z 30)
; X (10) and Y (20) are required.
; Z (30) is a keyword argument. It was given.
; The function was also given following arguments: (:Z 30)
;=> NIL

Keyword &ALLOW-OTHER-KEYS can be added at the end of the lambda-list to allow the user to give
keyword arguments not defined as parameters. They will go in the rest-list.

(defun foobar (x y &rest rest &key (z 10 zp) &allow-other-keys)
 (format t "X (~s) and Y (~s) are required.~@
 Z (~s) is a keyword argument. It ~:[wasn't~;was~] given.~@
 The function was also given following arguments: ~s~%"
 x y z zp rest))

(foobar 10 20 :z 30 :q 40)
; X (10) and Y (20) are required.
; Z (30) is a keyword argument. It was given.
; The function was also given following arguments: (:Z 30 :Q 40)
;=> NIL

Auxiliary Variables

The &AUX keyword can be used to define local variables for the function. They are not parameters;
the user cannot supply them.

&AUX variables are seldomly used. You can always use LET instead, or some other way of defining
local variables in the function body.

&AUX variables have the advantages that local variables of the whole function body move to the top
and it makes one indentation level (for example introduced by a LET) unnecessary.

(defun foobar (x y &aux (z (+ x y)))
 (format t "X (~d) and Y (~d) are required.~@
 Their sum is ~d."
 x y z))

(foobar 10 20)
; X (10) and Y (20) are required.
; Their sum is 30.
;=> NIL

One typical usage may be resolving "designator" parameters. Again, you need not do it this way;
using let is just as idiomatic.

(defun foo (a b &aux (as (string a)))
 "Combines A and B in a funny way. A is a string designator, B a string."
 (concatenate 'string as " is funnier than " b))

RETURN-FROM, exit from a block or a function

Functions always establish a block around the body. This block has the same name as the

https://riptutorial.com/ 48

function name. This means you can use RETURN-FROM with this block name to return from the
function and return values.

You should avoid returning early whenever possible.

(defun foobar (x y)
 (when (oddp x)
 (format t "X (~d) is odd. Returning immediately.~%" x)
 (return-from foobar "return value"))
 (format t "X: ~s~@
 Y: ~s~%"
 x y))

(foobar 10 20)
; X: 10
; Y: 20
;=> NIL
(foobar 9 20)
; X (9) is odd. Returning immediately.
;=> "return value"

Keyword Parameters

Keyword parameters can be defined with the &KEY keyword. They are always optional (see the
Optional Parameters example for details of the definition). There may be multiple keyword
parameters.

(defun foobar (x y &key (z "Default" zp))
 (format t "X (~s) and Y (~s) are required.~@
 Z (~s) is a keyword argument. It ~:[wasn't~;was~] given.~%"
 x y z zp))

(foobar 10 20)
; X (10) and Y (20) are required.
; Z ("Default") is a keyword argument. It wasn't given.
;=> NIL
(foobar 10 20 :z 30)
; X (10) and Y (20) are required.
; Z (30) is a keyword argument. It was given.
;=> NIL

Read Functions online: https://riptutorial.com/common-lisp/topic/2126/functions

https://riptutorial.com/ 49

https://riptutorial.com/common-lisp/topic/2126/functions

Chapter 15: Functions as first class values

Syntax

(function name) ; retrieves the function object of that name•
#'name ; syntactic sugar for (function name)•
(symbol-function symbol) ; returns the function bound to symbol•
(funcall function args...) ; call function with args•
(apply function arglist) ; call function with arguments given in a list•
(apply function arg1 arg2 ... argn arglist) ; call function with arguments given by arg1, arg2,
..., argn, and the rest in the list arglist

•

Parameters

Parameter Details

name some (unevaluated) symbol which names a function

symbol a symbol

function a function which is to be called

args... zero or more arguments (not a list of arguments)

arglist a list containing arguments to be passed to a function

arg1, arg2, ..., argn each is a single argument to be passed to a function

Remarks

When talking about Lisp-like languages there is a common distinction between what is known as a
Lisp-1 and a Lisp-2. In a Lisp-1, symbols only have a value and if a symbol refers to a function
then the value of that symbol will be that function. In a Lisp-2, symbols can have separate
associated values and functions and so a special form is required to refer to the function stored in
a symbol instead of the value.

Common Lisp is basically a Lisp-2 however there are in fact more than 2 namespaces (things that
symbols can refer to) -- symbols can refer to values, functions, types and tags, for example.

Examples

Defining anonymous functions

Functions in Common Lisp are first class values. An anonymous function can be created by using

https://riptutorial.com/ 50

lambda. For example, here is a function of 3 arguments which we then call using funcall

CL-USER> (lambda (a b c) (+ a (* b c)))
#<FUNCTION (LAMBDA (A B C)) {10034F484B}>
CL-USER> (defvar *foo* (lambda (a b c) (+ a (* b c))))
FOO
CL-USER> (funcall *foo* 1 2 3)
7

Anonymous functions can also be used directly. Common Lisp provides a syntax for it.

((lambda (a b c) (+ a (* b c))) ; the lambda expression as the first
 ; element in a form
 1 2 3) ; followed by the arguments

Anonymous functions can also be stored as global functions:

(let ((a-function (lambda (a b c) (+ a (* b c))))) ; our anonymous function
 (setf (symbol-function 'some-function) a-function)) ; storing it

(some-function 1 2 3) ; calling it with the name

Quoted lambda expressions are not functions

Note that quoted lambda expressions are not functions in Common Lisp. This does not work:

(funcall '(lambda (x) x)
 42)

To convert a quoted lambda expression to a function use coerce, eval or funcall:

CL-USER > (coerce '(lambda (x) x) 'function)
#<anonymous interpreted function 4060000A7C>

CL-USER > (eval '(lambda (x) x))
#<anonymous interpreted function 4060000B9C>

CL-USER > (compile nil '(lambda (x) x))
#<Function 17 4060000CCC>

Referring to Existing Functions

Any symbol in Common Lisp has a slot for a variable to be bound and a separate slot for a
function to be bound.

Note that the naming in this example is only for illustration. Global variables should not be named
foo, but *foo*. The latter notation is a convention to make it clear that the variable is a special
variable using dynamic binding.

CL-USER> (boundp 'foo) ;is FOO defined as a variable?
NIL

https://riptutorial.com/ 51

CL-USER> (defvar foo 7)
FOO
CL-USER> (boundp 'foo)
T
CL-USER> foo
7
CL-USER> (symbol-value 'foo)
7
CL-USER> (fboundp 'foo) ;is FOO defined as a function?
NIL
CL-USER> (defun foo (x y) (+ (* x x) (* y y)))
FOO
CL-USER> (fboundp 'foo)
T
CL-USER> foo
7
CL-USER> (symbol-function 'foo)
#<FUNCTION FOO>
CL-USER> (function foo)
#<FUNCTION FOO>
CL-USER> (equalp (quote #'foo) (quote (function foo)))
T
CL-USER> (eq (symbol-function 'foo) #'foo)
T
CL-USER> (foo 4 3)
25
CL-USER> (funcall foo 4 3)
;get an error: 7 is not a function
CL-USER> (funcall #'foo 4 3)
25
CL-USER> (defvar bar #'foo)
BAR
CL-USER> bar
#<FUNCTION FOO>
CL-USER> (funcall bar 4 3)
25
CL-USER> #'+
#<FUNCTION +>
CL-USER> (funcall #'+ 2 3)
5

Higher order functions

Common Lisp contains many higher order functions which are passed functions for arguments and
call them. Perhaps the most fundamental are funcall and apply:

CL-USER> (list 1 2 3)
(1 2 3)
CL-USER> (funcall #'list 1 2 3)
(1 2 3)
CL-USER> (funcall #'list 1 2 3 4 5)
(1 2 3 4 5)
CL-USER> (apply #'list '(1 2 3))
(1 2 3)
CL-USER> (apply #'list 1 2 '(4 5))
(1 2 3 4 5)
CL-USER> (apply #'+ 1 (list 2 3))
6
CL-USER> (defun my-funcall (function &rest args)

https://riptutorial.com/ 52

http://www.lispworks.com/documentation/HyperSpec/Body/f_funcal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_apply.htm#apply

 (apply function args))
MY-FUNCALL
CL-USER> (my-funcall #'list 1 2 3)
(1 2 3)

There are many other higher order-function which, for example, apply a function many times to
elements of a list.

CL-USER> (map 'list #'/ '(1 2 3 4))
(1 1/2 1/3 1/4)
CL-USER> (map 'vector #'+ '(1 2 3 4 5) #(5 4 3 2 10))
#(6 6 6 6 15)
CL-USER> (reduce #'+ '(1 2 3 4 5))
15
CL-USER> (remove-if #'evenp '(1 2 3 4 5))
(1 3 5)

Summing a list

The reduce function can be used to sum the elements in a list.

(reduce '+ '(1 2 3 4))
;;=> 10

By default, reduce performs a left-associative reduction, meaning that the sum 10 is computed as

(+ (+ (+ 1 2) 3) 4)

The first two elements are summed first, and then that result (3) is added to the next element (3) to
produce 6, which is in turn added to 4, to produce the final result.

This is safer than using apply (e.g., in (apply '+ '(1 2 3 4)) because the length of the argument list
that can be passed to apply is limited (see call-arguments-limit), and reduce will work with
functions that only take two arguments.

By specifying the from-end keyword argument, reduce will process the list in the other direction,
which means that the sum is computed in the reverse order. That is

(reduce '+ (1 2 3 4) :from-end t)
;;=> 10

is computing

(+ 1 (+ 2 (+ 3 4)))

Implementing reverse and revappend

Common Lisp already has a reverse function, but if it didn't, then it could be implemented easily
using reduce. Given a list like

https://riptutorial.com/ 53

(1 2 3) === (cons 1 (cons 2 (cons 3 '())))

the reversed list is

(cons 3 (cons 2 (cons 1 '()))) === (3 2 1)

That may not be an obvious use of reduce, but if we have a "reversed cons" function, say xcons,
such that

(xcons 1 2) === (2 . 1)

Then

(xcons (xcons (xcons () 1) 2) 3)

which is a reduction.

(reduce (lambda (x y)
 (cons y x))
 '(1 2 3 4)
 :initial-value '())
;=> (4 3 2 1)

Common Lisp has another useful function, revappend, which is a combination of reverse and
append. Conceptually, it reverses a list and appends it to some tail:

(revappend '(3 2 1) '(4 5 6))
;;=> (1 2 3 4 5 6)

This can also be implemented with reduce. It fact, it's the same as the implementation of reverse
above, except that the initial-value would need to be (4 5 6) instead of the empty list.

(reduce (lambda (x y)
 (cons y x))
 '(3 2 1)
 :initial-value '(4 5 6))
;=> (1 2 3 4 5 6)

Closures

Functions remember the lexical scope they where defined in. Because of this, we can enclose a
lambda in a let to define closures.

(defvar *counter* (let ((count 0))
 (lambda () (incf count))))

(funcall *counter*) ;; => 1
(funcall *counter*) ;; = 2

https://riptutorial.com/ 54

http://www.lispworks.com/documentation/lw50/CLHS/Body/f_revapp.htm#revappend

In the example above, the counter variable is only accessible to the anonymous function. This is
more clearly seen in the following example

(defvar *counter-1* (make-counter))
(defvar *counter-2* (make-counter))

(funcall *counter-1*) ;; => 1
(funcall *counter-1*) ;; => 2
(funcall *counter-2*) ;; => 1
(funcall *counter-1*) ;; => 3

Defining functions that take functions and return functions

A simple example:

CL-USER> (defun make-apply-twice (fun)
 "return a new function that applies twice the function`fun' to its argument"
 (lambda (x)
 (funcall fun (funcall fun x))))
MAKE-APPLY-TWICE
CL-USER> (funcall (make-apply-twice #'1+) 3)
5
CL-USER> (let ((pow4 (make-apply-twice (lambda (x) (* x x)))))
 (funcall pow4 3))
81

The classical example of function composition: (f ∘ g ∘ h)(x) = f (g (h (x)):

CL-USER> (defun compose (&rest funs)
 "return a new function obtained by the functional compositions of the parameters"
 (if (null funs)
 #'identity
 (let ((rest-funs (apply #'compose (rest funs))))
 (lambda (x) (funcall (first funs) (funcall rest-funs x))))))
COMPOSE
CL-USER> (defun square (x) (* x x))
SQUARE
CL-USER> (funcall (compose #'square #'1+ #'square) 3)
100 ;; => equivalent to (square (1+ (square 3)))

Read Functions as first class values online: https://riptutorial.com/common-
lisp/topic/1259/functions-as-first-class-values

https://riptutorial.com/ 55

https://en.wikipedia.org/wiki/Function_composition
https://riptutorial.com/common-lisp/topic/1259/functions-as-first-class-values
https://riptutorial.com/common-lisp/topic/1259/functions-as-first-class-values

Chapter 16: Grouping Forms

Examples

When is grouping needed?

In some places in Common Lisp, a series of forms are evaluated in order. For instance, in the
body of a defun or lambda, or the body of a dotimes. In those cases, writing multiple forms in
order works as expected. In a few places, however, such as the then and else parts of an if
expressions, only a single form is allowed. Of course, one may want to actually evaluate multiple
expressions in those places. For those situations, some kind of implicit of explicit grouping form is
needed.

Progn

The general purpose special operator progn is used for evaluating zero or more forms. The value
of the last form is returned. For instance, in the following, (print 'hello) is evaluated (and its result
is ignored), and then 42 is evaluated and its result (42) is returned:

(progn
 (print 'hello)
 42)
;=> 42

If there are no forms within the progn, then nil is returned:

(progn)
;=> NIL

In addition to grouping a series of forms, progn also has the important property that if the progn
form is a top-level form, then all the forms within it are processed as top level forms. This can be
important when writing macros that expand into multiple forms that should all be processed as top
level forms.

Progn is also valuable in that it returns all the values of the last form. For instance,

(progn
 (print 'hello)
 (values 1 2 3))
;;=> 1, 2, 3

In contrast, some grouping expressions only return the primary value of the result-producing form.

Implicit Progns

Some forms use implicit progns to describe their behavior. For instance, the when and unless

https://riptutorial.com/ 56

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_t.htm#top_level_form
http://www.lispworks.com/documentation/HyperSpec/Body/m_when_.htm#when
http://www.lispworks.com/documentation/HyperSpec/Body/m_when_.htm#when
http://www.lispworks.com/documentation/HyperSpec/Body/m_when_.htm#when

macros, which are essentially one-sided if forms, describe their behavior in terms of an implicit
progn. This means that a form like

(when (foo-p foo)
 form1
 form2)

is evaluated and the condition (foo-p foo) is true, then the form1 and form2 are grouped as
though they were contained within a progn. The expansion of the when macro is essentially:

(if (foo-p foo)
 (progn
 form1
 form2)
 nil)

Prog1 and Prog2

Often times, it is helpful to evaluate multiple expressions and to return the result from the first or
second form rather than the last. This is easy to accomplish using let and, for instance:

(let ((form1-result form1))
 form2
 form3
 ;; ...
 form-n-1
 form-n
 form1-result)

Because this form is common in some applications, Common Lisp includes prog1 and prog2 that
are like progn, but return the result of the first and second forms, respectively. For instance:

(prog1
 42
 (print 'hello)
 (print 'goodbye))
;; => 42

(prog2
 (print 'hello)
 42
 (print 'goodbye))
;; => 42

An important distinction between prog1/prog2 and progn, however, is that progn returns all the
values of the last form, whereas prog1 and prog2 only return the primary value of the first and
second form. For instance:

(progn
 (print 'hello)
 (values 1 2 3))
;;=> 1, 2, 3

https://riptutorial.com/ 57

http://www.lispworks.com/documentation/HyperSpec/Body/m_prog1c.htm#prog1
http://www.lispworks.com/documentation/HyperSpec/Body/m_prog1c.htm#prog1
http://www.lispworks.com/documentation/HyperSpec/Body/m_prog1c.htm#prog1

(prog1
 (values 1 2 3)
 (print 'hello))
;;=> 1 ; not 1, 2, 3

For multiple values with prog1 style evaluation, use multiple-value-prog1 instead. There is no
similar multiple-value-prog2, but it is not difficult to implement if you need it.

Block

The special operator block allows grouping of several Lisp forms (like an implicit progn) and it also
takes a name to name the block. When the forms within the block are evaluated, the special
operator return-from can be used to leave the block. For instance:

(block foo
 (print 'hello) ; evaluated
 (return-from foo)
 (print 'goodbye)) ; not evaluated
;;=> NIL

return-from can also be provided with a return value:

(block foo
 (print 'hello) ; evaluated
 (return-from foo 42)
 (print 'goodbye)) ; not evaluated
;;=> 42

Named blocks are useful when a chunk of code has a meaningful name, or when blocks are
nested. In some context, only the ability to return from a block early is important. In that case, you
can use nil as the block name, and return. Return is just like return-from, except that the block
name is always nil.

Note: enclosed forms are not top-level forms. That's different from progn, where the enclosed
forms of a top-level progn form are still considered top-level forms.

Tagbody

For lots of control in a group forms, the tagbody special operator can be very helpful. The forms
inside a tagbody form are either go tags (which are just symbols or integers) or forms to execute.
Within a tagbody, the go special operator is used to transfer execution to a new location. This
type of programming can be considered fairly low-level, as it allows arbitrary execution paths. The
following is a verbose example of what a for-loop might look like when implemented as a tagbody:

(let (x) ; for (x = 0; x < 5; x++) { print(hello); }
 (tagbody
 (setq x 0)
 prologue
 (unless (< x 5)
 (go end))

https://riptutorial.com/ 58

http://www.lispworks.com/documentation/HyperSpec/Body/s_mult_1.htm#multiple-value-prog1
http://www.lispworks.com/documentation/HyperSpec/Body/s_block.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_ret_fr.htm#return-from
http://www.lispworks.com/documentation/HyperSpec/Body/m_return.htm#return
http://www.lispworks.com/documentation/HyperSpec/Body/s_tagbod.htm
http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_g.htm#go_tag
http://www.lispworks.com/documentation/HyperSpec/Body/s_go.htm#go

 begin
 (print (list 'hello x))
 epilogue
 (incf x)
 (go prologue)
 end))

While tagbody and go are not commonly used, perhaps due to "GOTO considered harmful", but
can be helpful when implementing complex control structures like state machines. Many iteration
constructs also expand into an implicit tagbody. For instance, the body of a dotimes is specified
as a series of tags and forms.

Which form to use?

When writing macros that expand into forms that might involve grouping, it is worthwhile spending
some time considering what grouping construction to expand into.

For definition style forms, for instance, a define-widget macro that will usually appear as a top-
level form, and that several defuns, defstructs, etc., it usually makes sense to use a progn, so
that child forms are processed as top-level forms. For iteration forms, an implicit tagbody is more
common.

For instance, the body of dotimes, dolist, and do each expand into an implicit tagbody.

For forms that define a named "chunk" of code, an implicit block is often useful. For instance,
while the body of a defun is inside an implicit progn, that implicit progn is within a block sharing
the name of the function. That means that return-from can be used to exit from the function. Such
a comp

Read Grouping Forms online: https://riptutorial.com/common-lisp/topic/4892/grouping-forms

https://riptutorial.com/ 59

http://www.lispworks.com/documentation/HyperSpec/Body/m_dotime.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_dotime.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_dolist.htm#dolist
http://www.lispworks.com/documentation/HyperSpec/Body/m_do_do.htm#do
http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm#defun
https://riptutorial.com/common-lisp/topic/4892/grouping-forms

Chapter 17: Hash tables

Examples

Creating a hash table

Hash tables are created by make-hash-table:

(defvar *my-table* (make-hash-table))

The function may take keyword parameters to further specify the behavior of the resulting hash
table:

test: Selects the function used to compare keys for equality. Maybe a designator for one of
the functions eq, eql, equal or equalp. The default is eq.

•

size: A hint to the implementation about the space that may initially be required.•
rehash-size: If an integer (>= 1), then when doing a rehash, the hash table will increase its
capacity by the specified number. If otherwise an float (> 1.0), then the hash table will
increase its capacity to the product of the rehash-size and the previous capacity.

•

rehash-threshold: Specifies how full the hash table has to be in order to trigger a rehash.•

Iterating over the entries of a hash table with maphash

(defun print-entry (key value)
 (format t "~A => ~A~%" key value))

(maphash #'print-entry *my-table*) ;; => NIL

Using maphash allows to iterate over the entries of a hash table. The order of iteration is
unspecified. The first argument is a function accepting two parameters: the key and the value of
the current entry.

maphash always returns NIL.

Iterating over the entries of a hash table with loop

The loop macro supports iteration over the keys, the values, or the keys and values of a hash
table. The following examples show possibilities, but the full loop syntax allows more
combinations and variants.

Over keys and values

(let ((ht (make-hash-table)))
 (setf (gethash 'a ht) 1
 (gethash 'b ht) 2)
 (loop for k being each hash-key of ht

https://riptutorial.com/ 60

http://www.lispworks.com/documentation/lw51/CLHS/Body/m_loop.htm

 using (hash-value v)
 collect (cons k v)))
;;=> ((A . 1) (B . 2))

(let ((ht (make-hash-table)))
 (setf (gethash 'a ht) 1
 (gethash 'b ht) 2)
 (loop for v being each hash-value of ht
 using (hash-key k)
 collect (cons k v)))
;;=> ((A . 1) (B . 2))

Over keys

(let ((ht (make-hash-table)))
 (setf (gethash 'a ht) 1
 (gethash 'b ht) 2)
 (loop for k being each hash-key of ht
 collect k))
;;=> (A B)

Over values

(let ((ht (make-hash-table)))
 (setf (gethash 'a ht) 1
 (gethash 'b ht) 2)
 (loop for v being each hash-value of ht
 collect v))
;;=> (1 2)

Iterating over the entries of a hash table with a hash table iterator

The keys and values of a hash table can be iterated over using the macro with-hash-table-
iterator. This may be a bit more complex than maphash or loop, but it could be used to
implement the iteration constructs used in those methods. with-hash-table-iterator takes a name
and a hash table and binds the name within a body such that successive calls to the name
produce multiple values: (i) a boolean indicating whether a value is present; (ii) the key of the
entry; and (iii) the value of the entry.

(let ((ht (make-hash-table)))
 (setf (gethash 'a ht) 1
 (gethash 'b ht) 2)
 (with-hash-table-iterator (iterator ht)
 (print (multiple-value-list (iterator)))
 (print (multiple-value-list (iterator)))
 (print (multiple-value-list (iterator)))))

;; (T A 1)
;; (T B 2)
;; (NIL)

Read Hash tables online: https://riptutorial.com/common-lisp/topic/4482/hash-tables

https://riptutorial.com/ 61

http://www.lispworks.com/documentation/HyperSpec/Body/m_w_hash.htm#with-hash-table-iterator
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_hash.htm#with-hash-table-iterator
http://www.riptutorial.com/common-lisp/example/15676/iterating-over-the-entries-of-a-hash-table-with-maphash
http://www.riptutorial.com/common-lisp/example/18893/iterating-over-the-entries-of-a-hash-table-with-loop
https://riptutorial.com/common-lisp/topic/4482/hash-tables

Chapter 18: Lexical vs special variables

Examples

Global special variables are special everywhere

Thus these variables will use dynamic binding.

(defparameter count 0)
;; All uses of count will refer to this one

(defun handle-number (number)
 (incf count)
 (format t "~&~d~%" number))

(dotimes (count 4)
 ;; count is shadowed, but still special
 (handle-number count))

(format t "~&Calls: ~d~%" count)
==>
0
2
Calls: 0

Give special variables distinct names to avoid this problem:

(defparameter *count* 0)

(defun handle-number (number)
 (incf *count*)
 (format t "~&~d~%" number))

(dotimes (count 4)
 (handle-number count))

(format t "~&Calls: ~d~%" *count*)
==>
0
1
2
3
Calls: 4

Note 1: it is not possible to make a global variable non-special in a certain scope. There is no
declaration to make a variable lexical.

Note 2: it is possible to declare a variable special in a local context using the special declaration. If
there is no global special declaration for that variable, the declaration is only locally and can be
shadowed.

(defun bar ()

https://riptutorial.com/ 62

 (declare (special a))
 a) ; value of A is looked up from the dynamic binding

(defun foo ()
 (let ((a 42)) ; <- this variable A is special and
 ; dynamically bound
 (declare (special a))
 (list (bar)
 (let ((a 0)) ; <- this variable A is lexical
 (bar)))))

> (foo)
(42 42)

Read Lexical vs special variables online: https://riptutorial.com/common-lisp/topic/3362/lexical-vs-
special-variables

https://riptutorial.com/ 63

https://riptutorial.com/common-lisp/topic/3362/lexical-vs-special-variables
https://riptutorial.com/common-lisp/topic/3362/lexical-vs-special-variables

Chapter 19: LOOP, a Common Lisp macro for
iteration

Examples

Bounded Loops

We can repeat an action some number of times using repeat.

CL-USER> (loop repeat 10 do (format t "Hello!~%"))
Hello!
Hello!
Hello!
Hello!
Hello!
Hello!
Hello!
Hello!
Hello!
Hello!
NIL
CL-USER> (loop repeat 10 collect (random 50))
(28 46 44 31 5 33 43 35 37 4)

Looping over Sequences

(loop for i in '(one two three four five six)
 do (print i))
(loop for i in '(one two three four five six) by #'cddr
 do (print i)) ;prints ONE THREE FIVE

(loop for i on '(a b c d e f g)
 do (print (length i))) ;prints 7 6 5 4 3 2 1
(loop for i on '(a b c d e f g) by #'cddr
 do (print (length i))) ;prints 7 5 3 1
(loop for i on '(a b c)
 do (print i)) ;prints (a b c) (b c) (c)

(loop for i across #(1 2 3 4 5 6)
 do (print i)) ; prints 1 2 3 4 5 6
(loop for i across "foo"
 do (print i)) ; prints #\f #\o #\o
(loop for element across "foo"
 for i from 0
 do (format t "~a ~a~%" i element)) ; prints 0 f\n1 o\n1 o

Here is a summary of the keywords

Keyword Sequence type Variable type

in list element of list

https://riptutorial.com/ 64

Keyword Sequence type Variable type

on list some cdr of list

across vector element of vector

Looping over Hash Tables

(defvar *ht* (make-hash-table))
(loop for (sym num) on
 '(one 1 two 2 three 3 four 4 five 5 six 6 seven 7 eight 8 nine 9 ten 10)
 by #'cddr
 do (setf (gethash sym *ht*) num))

(loop for k being each hash-key of *ht*
 do (print k)) ; iterate over the keys
(loop for k being the hash-keys in *ht* using (hash-value v)
 do (format t "~a=>~a~%" k v))
(loop for v being the hash-value in *ht*
 do (print v))
(loop for v being each hash-values of *ht* using (hash-key k)
 do (format t "~a=>~a~%" k v))

Simple LOOP form

Simple LOOP form without special keywords:

(loop forms...)

To break out of the loop we can use (return <return value>) `

Some examples:

(loop (format t "Hello~%")) ; prints "Hello" forever
(loop (print (eval (read)))) ; your very own REPL
(loop (let ((r (read)))
 (typecase r
 (number (return (print (* r r))))
 (otherwise (format t "Not a number!~%")))))

Looping over Packages

(loop for s being the symbols in 'cl
 do (print s))
(loop for s being the present-symbols in :cl
 do (print s))
(loop for s being the external-symbols in (find-package "COMMON LISP")
 do (print s))
(loop for s being each external-symbols of "COMMON LISP"
 do (print s))
(loop for s being each external-symbol in pack ;pack is a variable containing a package
 do (print s))

https://riptutorial.com/ 65

Arithmetic Loops

(loop for i from 0 to 10
 do (print i)) ; prints 0 1 2 3 4 5 6 7 8 9 10
(loop for i from 0 below 10
 do (print i)) ; prints 0 1 2 3 4 5 6 7 8 9 10
(loop for i from 10 above 0
 do (print i)) ; prints 10 9 8 7 6 5 4 3 2 1
(loop for i from 10 to 0
 do (print i)) ; prints nothing
(loop for i from 10 downto 0
 do (print i)) ; prints 10 9 8 7 6 5 4 3 2 1 0
(loop for i downfrom 10 to 0
 do (print i)) ; same as above
(loop for i from 1 to 100 by 10
 do (print i)) ; prints 1 11 21 31 41 51 61 71 81 91
(loop for i from 100 downto 0 by 10
 do (print i)) ; prints 100 90 80 70 60 50 40 30 20 10 0
(loop for i from 1 to 10 by (1+ (random 3))
 do (print i)) ; note that (random 3) is evaluated only once
(let ((step (random 3)))
 (loop for i from 1 to 10 by (+ step 1)
 do (print i))) ; equivalent to the above
(loop for i from 1 to 10
 for j from 11 by 11
 do (format t "~2d ~3d~%" i j)) ;prints 1 11\n2 22\n...10 110

Destructuring in FOR statements

We can destructure lists of compound objects

CL-USER> (loop for (a . b) in '((1 . 2) (3 . 4) (5 . 6)) collect a)
(1 3 5)
CL-USER> (loop for (a . b) in '((1 . 2) (3 . 4) (5 . 6)) collect b)
(2 4 6)
CL-USER> (loop for (a b c) in '((1 2 3) (4 5 6) (7 8 9) (10 11 12)) collect b)
(2 5 8 11)

We can also destructure a list itself

CL-USER> (loop for (a . b) on '(1 2 3 4 5 6) collect a)
(1 2 3 4 5 6)
CL-USER> (loop for (a . b) on '(1 2 3 4 5 6) collect b)
((2 3 4 5 6) (3 4 5 6) (4 5 6) (5 6) (6) NIL)

This is useful when we want to iterate through only certain elements

CL-USER> (loop for (a . b) on '(1 2 3 4 5 6) by #'cddr collect a)
(1 3 5)
CL-USER> (loop for (a . b) on '(1 2 3 4 5 6) by #'cdddr collect a)
(1 4)

Using NIL to ignore a term:

https://riptutorial.com/ 66

(loop for (a nil . b) in '((1 2 . 3) (4 5 . 6) (7 8 . 9))
 collect (list a b)) ;=> ((1 3) (4 6) (7 9))
(loop for (a b) in '((1 2) (3 4) (5 6)) ;(a b) == (a b . nil)
 collect (+ a b)) ;=> (3 7 11)

; iterating over a window in a list
(loop for (pre x post) on '(1 2 3 4 5 3 2 1 2 3 4)
 for nth from 1
 while (and x post) ; checks that we have three elements of the list
 if (and (<= post x) (<= pre x)) collect (list :max x nth)
 if (and (>= post x) (>= pre x)) collect (list :min x nth))
; The above collects local minima/maxima

LOOP as an Expression

Unlike the loops in nearly every other programming language in use today, the LOOP in Common
Lisp can be used as an expression:

(let ((doubled (loop for x from 1 to 10
 collect (* 2 x))))
 doubled) ;; ==> (2 4 6 8 10 12 14 16 18 20)

(loop for x from 1 to 10 sum x)

MAXIMIZE causes the LOOP to return the largest value that was evaluated. MINIMIZE is the opposite of
MAXIMIZE.

(loop repeat 100
 for x = (random 1000)
 maximize x)

COUNT tells you how many times an expression evaluated to non-NIL during the loop:

(loop repeat 100
 for x = (random 1000)
 count (evenp x))

LOOP also has equivalents of the some, every, and notany functions:

(loop for ch across "foobar"
 thereis (eq ch #\a))

(loop for x in '(a b c d e f 1)
 always (symbolp x))

(loop for x in '(1 3 5 7)
 never (evenp x))

...except they're not limited to iterating over sequences:

(loop for value = (read *standard-input* nil :eof)
 until (eq value :eof)
 never (stringp value))

https://riptutorial.com/ 67

LOOP value-generating verbs can also be written with an -ing suffix:

(loop repeat 100
 for x = (random 1000)
 minimizing x)

It is also possible to capture the value generated by these verbs into variables (which are created
implicitly by the LOOP macro), so you can generate more than one value at a time:

 (loop repeat 100
 for x = (random 1000)
 maximizing x into biggest
 minimizing x into smallest
 summing x into total
 collecting x into xs
 finally (return (values biggest smallest total xs)))

You can have more than one collect, count, etc. clause that collects into the same output value.
They will be executed in sequence.

The following converts an association list (which you can use with assoc) into a property list (which
you can use with getf):

(loop for (key . value) in assoc-list
 collect key
 collect value)

Although this is better style:

(loop for (key . value) in assoc-list
 append (list key value))

Conditionally executing LOOP clauses

LOOP has its own IF statement that can control how the clauses are executed:

(loop repeat 1000
 for x = (random 100)
 if (evenp x)
 collect x into evens
 else
 collect x into odds
 finally (return (values evens odds)))

Combining multiple clauses in an IF body requires special syntax:

 (loop repeat 1000
 for x = (random 100)
 if (evenp x)
 collect x into evens
 and do (format t "~a is even!~%" x)
 else

https://riptutorial.com/ 68

 collect x into odds
 and count t into n-odds
 finally (return (values evens odds n-odds)))

Parallel Iteration

Multiple FOR clauses are allowed in a LOOP. The loop finishes when the first of these clauses
finishes:

(loop for a in '(1 2 3 4 5)
 for b in '(a b c)
 collect (list a b))
;; Evaluates to: ((1 a) (2 b) (3 c))

Other clauses that determine if the loop should continue can be combined:

(loop for a in '(1 2 3 4 5 6 7)
 while (< a 4)
 collect a)
;; Evaluates to: (1 2 3)

(loop for a in '(1 2 3 4 5 6 7)
 while (< a 4)
 repeat 1
 collect a)
;; Evaluates to: (1)

Determine which list is longer, cutting off iteration as soon as the answer is known:

(defun longerp (list-1 list-2)
 (loop for cdr1 on list-1
 for cdr2 on list-2
 if (null cdr1) return nil
 else if (null cdr2) return t
 finally (return nil)))

Numbering the elements of a list:

(loop for item in '(a b c d e f g)
 for x from 1
 collect (cons x item))
;; Returns ((1 . a) (2 . b) (3 . c) (4 . d) (5 . e) (6 . f) (7 . g))

Ensure that all the numbers in a list are even, but only for the first 100 items:

(assert
 (loop for number in list
 repeat 100
 always (evenp number)))

Nested Iteration

https://riptutorial.com/ 69

The special LOOP NAMED foo syntax allows you to create a loop that you can exit early from. The exit
is performed using return-from, and can be used from within nested loops.

The following uses a nested loop to look for a complex number in a 2D array:

(loop named top
 for x from 0 below (array-dimension *array* 1)
 do (loop for y from 0 below (array-dimension *array* 0))
 for n = (aref *array* y x)
 when (complexp n)
 do (return-from top (values n x y))))

RETURN clause versus RETURN form.

Within a LOOP, you can use the Common Lisp (return) form in any expression, which will cause the
LOOP form to immediately evaluate to the value given to return.

LOOP also has a return clause which works almost identically, the only difference being that you
don't surround it with parentheses. The clause is used within LOOP's DSL, while the form is used
within expressions.

(loop for x in list
 do (if (listp x) ;; Non-barewords after DO are expressions
 (return :x-has-a-list)))

;; Here, both the IF and the RETURN are clauses
(loop for x in list
 if (listp x) return :x-has-a-list)

;; Evaluate the RETURN expression and assign it to X...
;; except RETURN jumps out of the loop before the assignment
;; happens.
(loop for x = (return :nothing-else-happens)
 do (print :this-doesnt-print))

The thing after finally must be an expression, so the (return) form must be used and not the
return clause:

 (loop for n from 1 to 100
 when (evenp n) collect n into evens
 else collect n into odds
 finally return (values evens odds)) ;; ERROR!

 (loop for n from 1 to 100
 when (evenp n) collect n into evens
 else collect n into odds
 finally (return (values evens odds))) ;; Correct usage.

Looping over a window of a list

Some examples for a window of size 3:

;; Naïve attempt:

https://riptutorial.com/ 70

(loop for (first second third) on '(1 2 3 4 5)
 do (print (* first second third)))
;; prints 6 24 60 then Errors on (* 4 5 NIL)

;; We will try again and put our attempt into a function
(defun loop-3-window1 (function list)
 (loop for (first second third) on list
 while (and second third)
 do (funcall function first second third)))
(loop-3-window1 (lambda (a b c) (print (* a b c))) '(1 2 3 4 5))
;; prints 6 24 60 and returns NIL
(loop-3-window1 (lambda (a b c) (print (list a b c))) '(a b c d nil nil e f))
;; prints (a b c) (b c d) then returns NIL

;; A second attempt
(defun loop-3-window2 (function list)
 (loop for x on list
 while (nthcdr 2 x) ;checks if there are at least 3 elements
 for (first second third) = x
 do (funcall function first second third)))
(loop-3-window2 (lambda (a b c) (print (list a b c))) '(a b c d nil nil e f))
;; prints (a b c) (b c d) (c d nil) (c nil nil) (nil nil e) (nil e f)

;; A (possibly) more efficient function:
(defun loop-3-window2 (function list)
 (let ((f0 (pop list))
 (s0 (pop list)))
 (loop for first = f0 then second
 and second = s0 then third
 and third in list
 do (funcall function first second third))))

;; A more general function:
(defun loop-n-window (n function list)
 (loop for x on list
 while (nthcdr (1- n) x)
 do (apply function (subseq x 0 n))))
;; With potentially efficient implementation:
(define-compiler-macro loop-n-window (n function list &whole w)
 (if (typep n '(integer 1 #.call-arguments-limit))
 (let ((vars (loop repeat n collect (gensym)))
 (vars0 (loop repeat (1- n) collect (gensym)))
 (lst (gensym)))
 `(let ((,lst ,list))
 (let ,(loop for v in vars0 collect `(,v (pop ,lst)))
 (loop for
 ,@(loop for v0 in vars0 for (v vn) on vars
 collect v collect '= collect v0 collect 'then collect vn
 collect 'and)
 ,(car (last vars)) in ,lst
 do ,(if (and (consp function) (eq 'function (car function))
 w

Read LOOP, a Common Lisp macro for iteration online: https://riptutorial.com/common-
lisp/topic/1369/loop--a-common-lisp-macro-for-iteration

https://riptutorial.com/ 71

https://riptutorial.com/common-lisp/topic/1369/loop--a-common-lisp-macro-for-iteration
https://riptutorial.com/common-lisp/topic/1369/loop--a-common-lisp-macro-for-iteration

Chapter 20: macros

Remarks

The Purpose of Macros

Macros are intended for generating code, transforming code and providing new notations. These
new notations can be more suited to better express the program, for example by providing
domain-level constructs or entire new embedded languages.

Macros can make source code more self-explanatory, but debugging can be made more difficult.
As a rule of thumb, one should not use macros when a regular function will do. When you do use
them, avoid the usual pitfalls, try to stick to the commonly used patterns and naming conventions.

Macroexpansion Order

Compared to functions, macros are expanded in a reverse order; outmost first, inmost last. This
means that by default one cannot use an inner macro to generate syntax required for an outer
macro.

Evaluation Order

Sometimes macros need to move user-supplied forms around. One must make sure not to change
the order in which they are evaluated. The user may be relying on side effects happening in order.

Evaluate Once Only

The expansion of a macro often needs to use the value of the same user-supplied form more than
once. It is possible that the form happens to have side-effects, or it might be calling an expensive
function. Thus the macro must make sure to only evaluate such forms once. Usually this will be
done by assigning the value to a local variable (whose name is GENSYMed).

Functions used by Macros, using EVAL-
WHEN

Complex macros often have parts of their logic implemented in separate functions. One must
remember, however, that macros are expanded before the actual code is compiled. When
compiling a file, then by default, functions and variables defined in the same file will not be

https://riptutorial.com/ 72

available during macro execution. All function and variable definitions, in the same file, used by a
macro must be wrapped inside an EVAL-WHEN-form. The EVAL-WHEN should have all three times
specified, when the enclosed code also should be evaluated during load and runtime.

(eval-when (:compile-toplevel :load-toplevel :execute)
 (defun foobar () ...))

This does not apply to functions called from the expansion of the macro, only the ones called by
the macro itself.

Examples

Common Macro Patterns

TODO: Maybe move the explanations to remarks and add examples separately

FOOF

In Common Lisp, there is a concept of Generalized References. They allow a programmer to setf
values to various "places" as if they were variables. Macros that make use of this ability often have
a F-postfix in the name. The place is usually the first argument to the macro.

Examples from the standard: INCF, DECF, ROTATEF, SHIFTF, REMF.

A silly example, a macro that flips the sign of a number store in a place:

(defmacro flipf (place)
 `(setf ,place (- ,place)))

WITH-FOO

Macros that acquire and safely release a resource are usually named with a WITH--prefix. The
macro should usually use syntax like:

(with-foo (variable details-of-the-foo...)
 body...)

Examples from the standard: WITH-OPEN-FILE, WITH-OPEN-STREAM, WITH-INPUT-FROM-STRING, WITH-OUTPUT-
TO-STRING.

One approach to implementing this type of macro that can avoid some of the pitfalls of name
pollution and unintended multiple evaluation is by implementing a functional version first. For
instance, the first step in implementing a with-widget macro that safely creates a widget and
cleans up afterward might be a function:

https://riptutorial.com/ 73

http://www.lispworks.com/documentation/HyperSpec/Body/s_eval_w.htm
http://www.lispworks.com/documentation/HyperSpec/Body/05_a.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm#decf
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm#decf
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm#decf
http://www.lispworks.com/documentation/HyperSpec/Body/m_rotate.htm#rotatef
http://www.lispworks.com/documentation/HyperSpec/Body/m_shiftf.htm#shiftf
http://www.lispworks.com/documentation/HyperSpec/Body/m_remf.htm#remf
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_open.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_op_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_in_f.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_out_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_out_.htm

(defun call-with-widget (args function)
 (let ((widget (apply #'make-widget args))) ; obtain WIDGET
 (unwind-protect (funcall function widget) ; call FUNCTION with WIDGET
 (cleanup widget) ; cleanup

Because this is a function, there are no concerns about the scope of names within function or
supplier, and it makes it easy to write a corresponding macro:

(defmacro with-widget ((var &rest args) &body body)
 `(call-with-widget (list ,@args) (lambda (,var) ,@body)))

DO-FOO

Macros that iterate over something are often named with a DO-prefix. The macro syntax should
usually be in form

(do-foo (variable the-foo-being-done return-value)
 body...)

Examples from the standard: DOTIMES, DOLIST, DO-SYMBOLS.

FOOCASE, EFOOCASE, CFOOCASE

Macros that match an input against certain cases are often named with a CASE-postfix. There is
often a E...CASE-variant, which signals an error if the input doesn't match any of the cases, and
C...CASE, which signals a continuable error. They should have syntax like

(foocase input
 (case-to-match-against (optionally-some-params-for-the-case)
 case-body-forms...)
 more-cases...
 [(otherwise otherwise-body)])

Examples from the standard: CASE, TYPECASE, HANDLER-CASE.

For example, a macro that matches a string against regular expressions and binds the register
groups to variables. Uses CL-PPCRE for regular expressions.

(defmacro regexcase (input &body cases)
 (let ((block-sym (gensym "block"))
 (input-sym (gensym "input")))
 `(let ((,input-sym ,input))
 (block ,block-sym
 ,@(loop for (regex vars . body) in cases
 if (eql regex 'otherwise)
 collect `(return-from ,block-sym (progn ,vars ,@body))
 else
 collect `(cl-ppcre:register-groups-bind ,vars
 (,regex ,input-sym)

https://riptutorial.com/ 74

http://www.lispworks.com/documentation/HyperSpec/Body/m_dotime.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_dolist.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_do_sym.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_case_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tpcase.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_hand_1.htm
http://weitz.de/cl-ppcre/

 (return-from ,block-sym
 (progn ,@body))))))))

(defun test (input)
 (regexcase input
 ("(\\d+)-(\\d+)" (foo bar)
 (format t "Foo: ~a, Bar: ~a~%" foo bar))
 ("Foo: (\\w+)$" (foo)
 (format t "Foo: ~a.~%" foo))
 (otherwise (format t "Didn't match.~%"))))

(test "asd 23-234 qwe")
; Foo: 23, Bar: 234
(test "Foo: Foobar")
; Foo: Foobar.
(test "Foo: 43 - 23")
; Didn't match.

DEFINE-FOO, DEFFOO

Macros that define things are usually named either with DEFINE- or DEF -prefix.

Examples from the standard: DEFUN, DEFMACRO, DEFINE-CONDITION.

Anaphoric Macros

An Anaphoric Macro is a macro that introduces a variable (often IT) that captures the result of a
user-supplied form. A common example is the Anaphoric If, which is like a regular IF, but also
defines the variable IT to refer to the result of the test-form.

(defmacro aif (test-form then-form &optional else-form)
 `(let ((it ,test-form))
 (if it ,then-form ,else-form)))

(defun test (property plist)
 (aif (getf plist property)
 (format t "The value of ~s is ~a.~%" property it)
 (format t "~s wasn't in ~s!~%" property plist)))

(test :a '(:a 10 :b 20 :c 30))
; The value of :A is 10.
(test :d '(:a 10 :b 20 :c 30))
; :D wasn't in (:A 10 :B 20 :C 30)!

MACROEXPAND

Macro expansion is the process of turning macros into actual code. This usually happens as part
of the compilation process. The compiler will expand all macro forms before actually compiling
code. Macro expansion also happens during interpretation of Lisp code.

One can call MACROEXPAND manually to see what a macro form expands to.

https://riptutorial.com/ 75

http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmac.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defi_5.htm
https://en.wikipedia.org/wiki/Anaphoric_macro
http://www.lispworks.com/documentation/HyperSpec/Body/f_mexp_.htm

CL-USER> (macroexpand '(with-open-file (file "foo")
 (do-something-with file)))
(LET ((FILE (OPEN "foo")) (#:G725 T))
 (UNWIND-PROTECT
 (MULTIPLE-VALUE-PROG1 (PROGN (DO-SOMETHING-WITH FILE)) (SETQ #:G725 NIL))
 (WHEN FILE (CLOSE FILE :ABORT #:G725))))

MACROEXPAND-1 is the same, but only expands once. This s useful when trying to make sense of a
macro form that expands to another macro form.

CL-USER> (macroexpand-1 '(with-open-file (file "foo")
 (do-something-with file)))
(WITH-OPEN-STREAM (FILE (OPEN "foo")) (DO-SOMETHING-WITH FILE))

Note that neither MACROEXPAND nor MACROEXPAND-1 expand the Lisp code on all levels. They only
expand the top-level macro form. To macroexpand a form fully on all levels, one needs a code
walker to do so. This facility is not provided in the Common Lisp standard.

Backquote - writing code templates for macros

Macros return code. Since code in Lisp consists of lists, one can use the regular list manipulation
functions to generate it.

;; A pointless macro
(defmacro echo (form)
 (list 'progn
 (list 'format t "Form: ~a~%" (list 'quote form))
 form))

This is often very hard to read, especially in longer macros. The Backquote reader macro allows
one to write quoted templates that are filled in by selectively evaluating elements.

(defmacro echo (form)
 `(progn
 (format t "Form: ~a~%" ',form)
 ,form))

(macroexpand '(echo (+ 3 4)))
;=> (PROGN (FORMAT T "Form: ~a~%" '(+ 3 4)) (+ 3 4))

This version looks almost like regular code. The commas are used to evaluate FORM; everything
else is returned as is. Notice that in ',form the single quote is outside the comma, so it will be
returned.

One can also use ,@ to splice a list in the position.

(defmacro echo (&rest forms)
 `(progn
 ,@(loop for form in forms collect `(format t "Form: ~a~%" ,form))
 ,@forms))

(macroexpand '(echo (+ 3 4)

https://riptutorial.com/ 76

http://www.lispworks.com/documentation/HyperSpec/Body/02_df.htm

 (print "foo")
 (random 10)))
;=> (PROGN
; (FORMAT T "Form: ~a~%" (+ 3 4))
; (FORMAT T "Form: ~a~%" (PRINT "foo"))
; (FORMAT T "Form: ~a~%" (RANDOM 10))
; (+ 3 4)
; (PRINT "foo")
; (RANDOM 10))

Backquote can be used outside macros too.

Unique symbols to prevent name clashes in macros

The expansion of a macro often needs to use symbols that weren't passed as arguments by the
user (as names for local variables, for example). One must make sure that such symbols cannot
conflict with a symbol that the user is using in the surrounding code.

This is usually achieved by using GENSYM, a function that returns a fresh uninterned symbol.

Bad

Consider the macro below. It makes a DOTIMES-loop that also collects the result of the body into a
list, which is returned at the end.

(defmacro dotimes+collect ((var count) &body body)
 `(let ((result (list)))
 (dotimes (,var ,count (nreverse result))
 (push (progn ,@body) result))))

(dotimes+collect (i 5)
 (format t "~a~%" i)
 (* i i))
; 0
; 1
; 2
; 3
; 4
;=> (0 1 4 9 16)

This seems to work in this case, but if the user happened to have a variable name RESULT, which
they use in the body, the results would probably not be what the user expects. Consider this
attempt to write a function that collects a list of sums of all integers up to N:

(defun sums-upto (n)
 (let ((result 0))
 (dotimes+collect (i n)
 (incf result i))))

(sums-upto 10) ;=> Error!

Good

To fix the problem, we need to use GENSYM to generate a unique name for the RESULT-variable in the

https://riptutorial.com/ 77

http://www.lispworks.com/documentation/HyperSpec/Body/f_gensym.htm

macro expansion.

(defmacro dotimes+collect ((var count) &body body)
 (let ((result-symbol (gensym "RESULT")))
 `(let ((,result-symbol (list)))
 (dotimes (,var ,count (nreverse ,result-symbol))
 (push (progn ,@body) ,result-symbol)))))

(sums-upto 10) ;=> (0 1 3 6 10 15 21 28 36 45)

TODO: How to make symbols from strings

TODO: Avoiding problems with symbols in different packages

if-let, when-let, -let macros

These macros merge control flow and binding. They are an improvement over anaphoric
anaphoric macros because they let the developer communicate meaning through naming. As such
their use is recommended over their anaphoric counterparts.

(if-let (user (get-user user-id))
 (show-dashboard user)
 (redirect 'login-page))

FOO-LET macros bind one or more variables, and then use those variables as the test form for the
corresponding conditional (IF, WHEN). Multiple variables are combined with AND. The chosen branch
is executed with the bindings in effect. A simple one variable implementation of IF-LET might look
something like:

(defmacro if-let ((var test-form) then-form &optional else-form)
 `(let ((,var ,test-form))
 (if ,var ,then-form ,else-form)))

(macroexpand '(if-let (a (getf '(:a 10 :b 20 :c 30) :a))
 (format t "A: ~a~%" a)
 (format t "Not found.~%")))
; (LET ((A (GETF '(:A 10 :B 20 :C 30) :A)))
; (IF A
; (FORMAT T "A: ~a~%" A)
; (FORMAT T "Not found.~%")))

A version that supports multiple variables is available in the Alexandria library.

Using Macros to define data structures

A common use of macros is to create templates for data structures which obey common rules but
may contain different fields. By writing a macro, you can allow the detailed configuration of the
data structure to be specified without needing to repeat boilerplate code, nor to use a less efficient
structure (such as a hash) in memory purely to simplify programming.

For example, suppose that we wish to define a number of classes which have a range of different

https://riptutorial.com/ 78

https://common-lisp.net/project/alexandria/

properties, each with a getter and setter. In addition, for some (but not all) of these properties, we
wish to have the setter call a method on the object notifying it that the property has been changed.
Although Common LISP already has a shorthand for writing getters and setters, writing a standard
custom setter in this way would normally require duplicating the code that calls the notification
method in every setter, which could be a pain if there are a large number of properties involved.
However, by defining a macro it becomes much easier:

(defmacro notifier (class slot)
 "Defines a setf method in (class) for (slot) which calls the object's changed method."
 `(defmethod (setf ,slot) (val (item ,class))
 (setf (slot-value item ',slot) val)
 (changed item ',slot)))

(defmacro notifiers (class slots)
 "Defines setf methods in (class) for all of (slots) which call the object's changed method."
 `(progn
 ,@(loop for s in slots collecting `(notifier ,class ,s))))

(defmacro defclass-notifier-slots (class nslots slots)
 "Defines a class with (nslots) giving a list of slots created with notifiers, and (slots)
giving a list of slots created with regular accessors."
 `(progn
 (defclass ,class ()
 (,@(loop for s in nslots collecting `(,s :reader ,s))
 ,@(loop for s in slots collecting `(,s :accessor ,s))))
 (notifiers ,class ,nslots)))

We can now write (defclass-notifier-slots foo (bar baz qux) (waldo)) and immediately define a
class foo with a regular slot waldo (created by the second part of the macro with the specification
(waldo :accessor waldo)), and slots bar, baz, and qux with setters that call the changed method
(where the getter is defined by the first part of the macro, (bar :reader bar), and the setter by the
invoked notifier macro).

In addition to allowing us to quickly define multiple classes that behave this way, with large
numbers of properties, without repetition, we have the usual benefit of code reuse: if we later
decide to change how the notifier methods work, we can simply change the macro, and the
structure of every class using it will change.

Read macros online: https://riptutorial.com/common-lisp/topic/1257/macros

https://riptutorial.com/ 79

https://riptutorial.com/common-lisp/topic/1257/macros

Chapter 21: Mapping functions over lists

Examples

Overview

A set of high-level mapping functions is available in Common Lisp, to apply a function to the
elements of one or more lists. They differ in the way in which the function is applied to the lists and
how the final result is obtained. The following table summarize the differences and shows for each
of them the equivalent LOOP form. f is the function to be applied, that must have a number of
arguments equal to the number of lists; “applied to car” means that it is applied in turn to the
elements of the lists, “applied to cdr” means that it is applied in turn to the lists, their cdr, their cddr,
etc.; the “returns” column shows if the global result is the obtained by listing the results,
concatenating them (so they must be lists!), or simply used for side-effects (and in this case the
first list is returned).

Function
Applied
to

Returns Equivalent LOOP

(mapcar f l1…
ln)

car list of results
(loop for x1 in l1… for xn in ln collect (f x1
… xn))

(maplist f l1…
ln)

cdr list of results
(loop for x1 on l1… for xn on ln collect (f x1
… xn))

(mapcan f l1
… ln)

car
concatenation of
results

(loop for x1 in l1… for xn in ln nconc (f x1
… xn))

(mapcon f l1
… ln)

cdr
concatenation of
results

(loop for x1 on l1… for xn on ln nconc (f x1
… xn))

(mapc f l1… ln
)

car l1
(loop for x1 in l1… for xn in ln do (f x1… xn
) finally (return l1))

(mapl f l1… ln) cdr l1
(loop for x1 on l1… for xn on ln do (f x1…
xn) finally (return l1))

Note that, in all the cases, the lists can be of different lengths, and the application terminates when
the shortest list is terminated.

Another couple of map functions are available: map, that can be applied to sequences (strings,
vectors, lists), analogous to mapcar, and that can return any type of sequence, specified as first
argument, and map-into, analogous to map, but that destructively modifies its first sequence
argument to keep the results of the application of the function.

https://riptutorial.com/ 80

http://www.lispworks.com/documentation/HyperSpec/Body/f_mapc_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_map.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_map_in.htm

Examples of MAPCAR

MAPCAR is the most used function of the family:

CL-USER> (mapcar #'1+ '(1 2 3))
(2 3 4)
CL-USER> (mapcar #'cons '(1 2 3) '(a b c))
((1 . A) (2 . B) (3 . C))
CL-USER> (mapcar (lambda (x y z) (+ (* x y) z))
 '(1 2 3)
 '(10 20 30)
 '(100 200 300))
(110 240 390)
CL-USER> (let ((list '(a b c d e f g h i))) ; randomize this list
 (mapcar #'cdr
 (sort (mapcar (lambda (x)
 (cons (random 100) x))
 list)
 #'<=
 :key #'car)))
(I D A G B H E C F)

An idiomatic use of mapcar is to transpose a matrix represented as a list of lists:

CL-USER> (defun transpose (list-of-lists)
 (apply #'mapcar #'list list-of-lists))
ROTATE
CL-USER> (transpose '((a b c) (d e f) (g h i)))
((A D G) (B E H) (C F I))

; +---+---+---+ +---+---+---+
; | A | B | C | | A | D | G |
; +---+---+---+ +---+---+---+
; | D | E | F | becomes | B | E | H |
; +---+---+---+ +---+---+---+
; | G | H | I | | C | F | I |
; +---+---+---+ +---+---+---+

For an explanation, see this answer.

Examples of MAPLIST

CL-USER> (maplist (lambda (list) (cons 0 list)) '(1 2 3 4))
((0 1 2 3 4) (0 2 3 4) (0 3 4) (0 4))
CL-USER> (maplist #'append
 '(a b c d -)
 '(1 2 3))
((A B C D - 1 2 3) (B C D - 2 3) (C D - 3))

Examples of MAPCAN and MAPCON

MAPCAN:

CL-USER> (mapcan #'reverse '((1 2 3) (a b c) (100 200 300)))

https://riptutorial.com/ 81

http://stackoverflow.com/a/3513158/2382734

(3 2 1 C B A 300 200 100)
CL-USER> (defun from-to (min max)
 (loop for i from min to max collect i))
FROM-TO
CL-USER> (from-to 1 5)
(1 2 3 4 5)
CL-USER> (mapcan #'from-to '(1 2 3) '(5 5 5))
(1 2 3 4 5 2 3 4 5 3 4 5)

One of the uses of MAPCAN is to create a result list without NIL values:

CL-USER> (let ((l1 '(10 20 40)))
 (mapcan (lambda (x)
 (if (member x l1)
 (list x)
 nil))
 '(2 4 6 8 10 12 14 16 18 20
 18 16 14 12 10 8 6 4 2)))
(10 20 10)

MAPCON:

CL-USER> (mapcon #'copy-list '(1 2 3))
(1 2 3 2 3 3)
CL-USER> (mapcon (lambda (l1 l2) (list (length l1) (length l2))) '(a b c d) '(d e f))
(4 3 3 2 2 1)

Examples of MAPC and MAPL

MAPC:

CL-USER> (mapc (lambda (x) (print (* x x))) '(1 2 3 4))

1
4
9
16
(1 2 3 4)
CL-USER> (let ((sum 0))
 (mapc (lambda (x y) (incf sum (* x y)))
 '(1 2 3)
 '(100 200 300))
 sum)
1400 ; => (1 x 100) + (2 x 200) + (3 x 300)

MAPL:

CL-USER> (mapl (lambda (list) (print (reduce #'+ list))) '(1 2 3 4 5))

15
14
12
9
5
(1 2 3 4 5)

https://riptutorial.com/ 82

Read Mapping functions over lists online: https://riptutorial.com/common-lisp/topic/6064/mapping-
functions-over-lists

https://riptutorial.com/ 83

https://riptutorial.com/common-lisp/topic/6064/mapping-functions-over-lists
https://riptutorial.com/common-lisp/topic/6064/mapping-functions-over-lists

Chapter 22: Pattern matching

Examples

Overview

The two main libraries providing pattern matching in Common Lisp are Optima and Trivia. Both
provide a similar matching API and syntax. However trivia provides a unified interface to extend
matching, defpattern.

Dispatching Clack requests

Because a clack request is represented as a plist, we can use pattern matching as the entry point
to the clack app as a way to route request to their appropriate controllers

(defvar *app*
 (lambda (env)
 (match env
 ((plist :request-method :get
 :request-uri uri)
 (match uri
 ("/" (top-level))
 ((ppcre "/tag/(\\w+)/$" name) (tag-page name)))))))

Note: To start *app* we pass it to clackup. ej (clack:clackup *app*)

defun-match

Using pattern matching one can intertwine function definition and pattern matching, similar to SML.

(trivia:defun-match fib (index)
 "Return the corresponding term for INDEX."
 (0 1)
 (1 1)
 (index (+ (fib (1- index)) (fib (- index 2)))))

(fib 5)
;; => 8

Constructor patterns

Cons-cells, structures, vectors, lists and such can be matched with constructor patterns.

(loop for i from 1 to 30
 do (format t "~5<~a~;~>"
 (match (cons (mod i 3)
 (mod i 5))
 ((cons 0 0) "Fizzbuzz")
 ((cons 0 _) "Fizz")

https://riptutorial.com/ 84

https://github.com/m2ym/optima
https://github.com/guicho271828/trivia

 ((cons _ 0) "Buzz")
 (_ i)))
 when (zerop (mod i 5)) do (terpri))
; 1 2 Fizz 4 Buzz
; Fizz 7 8 Fizz Buzz
; 11 Fizz 13 14 Fizzbuzz
; 16 17 Fizz 19 Buzz
; Fizz 22 23 Fizz Buzz
; 26 Fizz 28 29 Fizzbuzz

Guard-pattern

Guard patterns can be used to check that a value satisfies an arbitrary test-form.

(dotimes (i 5)
 (format t "~d: ~a~%"
 i (match i
 ((guard x (oddp x)) "Odd!")
 (_ "Even!"))))
; 0: Even!
; 1: Odd!
; 2: Even!
; 3: Odd!
; 4: Even!

Read Pattern matching online: https://riptutorial.com/common-lisp/topic/2933/pattern-matching

https://riptutorial.com/ 85

https://riptutorial.com/common-lisp/topic/2933/pattern-matching

Chapter 23: Quote

Syntax

(quote object) -> object•

Remarks

There are some objects (for example keyword symbols) that don't need to be quoted since they
evaluate to themselves.

Examples

Simple quote example

Quote is a special operator that prevents evaluation of its argument. It returns its argument,
unevaluated.

CL-USER> (quote a)
A

CL-USER> (let ((a 3))
 (quote a))
A

' is an alias for the special operator QUOTE

The notation 'thing is equal to (quote thing).

The reader will do the expansion:

> (read-from-string "'a")
(QUOTE A)

Quoting is used to prevent further evaluation. The quoted object evaluates to itself.

> 'a
A

> (eval '+ 1 2)
3

If quoted objects are destructively modified, the consequences are undefined!

Avoid destructive operations on quoted objects. Quoted objects are literal objects. They are
possibly embedded in the code in some way. How this works and the effects of modifications are

https://riptutorial.com/ 86

unspecified in the Common Lisp standard, but it can have unwanted consequences like modifying
shared data, trying to modify write protected data or creating unintended side-effects.

(delete 5 '(1 2 3 4 5))

Quote and self-evaluating objects

Note that many datatypes don't need to be quoted, since they evaluate to themselves. QUOTE is
especially useful for symbols and lists, to prevent evaluation as Lisp forms.

Example for other datatypes not needed to be quoted to prevent evaluation: strings, numbers,
characters, CLOS objects, ...

Here an example for strings. The evaluation results are strings, whether they are quoted in the
source or not.

> (let ((some-string-1 "this is a string")
 (some-string-2 '"this is a string with a quote in the source")
 (some-string-3 (quote "this is another string with a quote in the source")))
 (list some-string-1 some-string-2 some-string-3))

("this is a string"
 "this is a string with a quote in the source"
 "this is another string with a quote in the source")

Quoting for the objects thus is optional.

Read Quote online: https://riptutorial.com/common-lisp/topic/1315/quote

https://riptutorial.com/ 87

https://riptutorial.com/common-lisp/topic/1315/quote

Chapter 24: Recursion

Remarks

Lisp is often used in educational contexts, where students learn to understand and implement
recursive algorithms.

Production code written in Common Lisp or portable code has several issues with recursion: They
do not make use of implementation-specific features like tail call optimization, often making it
necessary to avoid recursion altogether. In these cases, implementations:

Usually have a recursion depth limit due to limits in stack sizes. Thus recursive algorithms
will only work for data of limited size.

•

Do not always provide optimization of tail calls, especially in combination with dynamically
scoped operations.

•

Only provide optimization of tail calls at certain optimization levels.•
Do not usually provide tail call optimization.•
Usually do not provide tail call optimization on certain platforms. For example,
implementations on JVM may not do so, since the JVM itself does not support tail call
optimization.

•

Replacing tail calls with jumps usually makes debugging more difficult; Adding jumps will cause
stack frames to become unavailable in a debugger. As alternatives Common Lisp provides:

Iteration constructs, like DO, DOTIMES, LOOP, and others•
Higher-order functions, like MAP, REDUCE, and others•
Various control structures, including low-level go to•

Examples

Recursion template 2 multi-condition

 (defun fn (x)
 (cond (test-condition1 the-value1)
 (test-condition2 the-value2)
 ...
 ...
 ...
 (t (fn reduced-argument-x))))

 CL-USER 2788 > (defun my-fib (n)
 (cond ((= n 1) 1)
 ((= n 2) 1)
 (t (+
 (my-fib (- n 1))
 (my-fib (- n 2))))))
MY-FIB

https://riptutorial.com/ 88

CL-USER 2789 > (my-fib 1)
1

CL-USER 2790 > (my-fib 2)
1

CL-USER 2791 > (my-fib 3)
2

CL-USER 2792 > (my-fib 4)
3

CL-USER 2793 > (my-fib 5)
5

CL-USER 2794 > (my-fib 6)
8

CL-USER 2795 > (my-fib 7)
13

Recursion template 1 single condition single tail recursion

(defun fn (x)
 (cond (test-condition the-value)
 (t (fn reduced-argument-x))))

Compute nth Fibonacci number

;;Find the nth Fibonacci number for any n > 0.
;; Precondition: n > 0, n is an integer. Behavior undefined otherwise.
(defun fibonacci (n)
 (cond
 (;; Base case.
 ;; The first two Fibonacci numbers (indices 1 and 2) are 1 by definition.
 (<= n 2) ;; If n <= 2
 1 ;; then return 1.
)
 (t ;; else
 (+ ;; return the sum of
 ;; the results of calling
 (fibonacci (- n 1)) ;; fibonacci(n-1) and
 (fibonacci (- n 2)) ;; fibonacci(n-2).
 ;; This is the recursive case.
)
)
)
)

Recursively print the elements of a list

;;Recursively print the elements of a list
(defun print-list (elements)
 (cond
 ((null elements) '()) ;; Base case: There are no elements that have yet to be printed.
Don't do anything and return a null list.

https://riptutorial.com/ 89

 (t
 ;; Recursive case
 ;; Print the next element.
 (write-line (write-to-string (car elements)))
 ;; Recurse on the rest of the list.
 (print-list (cdr elements))
)
)
)

To test this, run:

(setq test-list '(1 2 3 4))
(print-list test-list)

The result will be:

1
2
3
4

Compute the factorial of a whole number

One easy algorithm to implement as a recursive function is factorial.

;;Compute the factorial for any n >= 0. Precondition: n >= 0, n is an integer.
(defun factorial (n)
 (cond
 ((= n 0) 1) ;; Special case, 0! = 1
 ((= n 1) 1) ;; Base case, 1! = 1
 (t
 ;; Recursive case
 ;; Multiply n by the factorial of n - 1.
 (* n (factorial (- n 1)))
)
)
)

Read Recursion online: https://riptutorial.com/common-lisp/topic/3190/recursion

https://riptutorial.com/ 90

https://riptutorial.com/common-lisp/topic/3190/recursion

Chapter 25: Regular Expressions

Examples

Using with pattern matching to bind captured groups

The pattern matching library trivia provides a system trivia.ppcre that allows captured groups to
be bound through pattern matching

(trivia:match "John Doe"
 ((trivia.ppcre:ppcre "(.*)\\W+(.*)" first-name last-name)
 (list :first-name first-name :last-name last-name)))

;; => (:FIRST-NAME "John" :LAST-NAME "Doe")

Note: the library Optima provides a similar facility in the system optima.ppcre•

Binding register groups with CL-PPCRE

CL-PPCRE:REGISTER-GROUPS-BIND will match a string against a regular expression, and if it matches,
bind register groups in the regex to variables. If the string does not match, NIL is returned.

(defun parse-date-string (date-string)
 (cl-ppcre:register-groups-bind
 (year month day)
 ("(\\d{4})-(\\d{2})-(\\d{2})" date-string)
 (list year month day)))

(parse-date-string "2016-07-23") ;=> ("2016" "07" "23")
(parse-date-string "foobar") ;=> NIL
(parse-date-string "2016-7-23") ;=> NIL

Read Regular Expressions online: https://riptutorial.com/common-lisp/topic/2897/regular-
expressions

https://riptutorial.com/ 91

https://riptutorial.com/common-lisp/topic/2897/regular-expressions
https://riptutorial.com/common-lisp/topic/2897/regular-expressions

Chapter 26: sequence - how to split a
sequence

Syntax

split regex target-string &key start end limit with-registers-p omit-unmatched-p sharedp =>
list

1.

lispworks:split-sequence separator-bag sequence &key start end test key coalesce-
separators => sequences

2.

split-sequence delimiter sequence &key start end from-end count remove-empty-subseqs
test test-not key => list of subsequences

3.

Examples

Split strings using regular expressions

The library CL-PPCRE provides the function split which allows us to split strings in substrings that
match a regular expression, discarding the parts of the string that do not.

(cl-ppcre:split "\\." "127.0.0.1")
;; => ("127" "0" "0" "1")

SPLIT-SEQUENCE in LIspWorks

Simple split of an IP number string.

> (lispworks:split-sequence "." "127.0.0.1")
 ("127" "0" "0" "1")

Simple split of an URL:

> (lispworks:split-sequence ".:/" "http://127.0.0.1/foo/bar.html"
 :coalesce-separators t)
("http" "127" "0" "0" "1" "foo" "bar" "html")

Using the split-sequence library

The split-sequence library provides a function split-sequence, which allows to split on elements of
a sequence

(split-sequence:split-sequence #\Space "John Doe II")
;; => ("John" "Doe" "II")

Read sequence - how to split a sequence online: https://riptutorial.com/common-

https://riptutorial.com/ 92

https://riptutorial.com/common-lisp/topic/1454/sequence---how-to-split-a-sequence

lisp/topic/1454/sequence---how-to-split-a-sequence

https://riptutorial.com/ 93

https://riptutorial.com/common-lisp/topic/1454/sequence---how-to-split-a-sequence

Chapter 27: Streams

Syntax

(read-char &optional stream eof-error-p eof-value recursive-p) => character•
(write-char character &optional stream) => character•
(read-line &optional stream eof-error-p eof-value recursive-p) => line, missing-newline-p•
(write-line line &optional stream) => line•

Parameters

Parameter Detail

stream The stream to read from or write to.

eof-error-
p Should an error be signalled if end of file is encountered.

eof-value What value should be returned if eof is encountered, and eof-error-p is false.

recursive-
p

Is the read-operation called recursively from READ. Usually this should be left as
NIL.

character The character to write, or the character that was read.

line The line to write, or the line that was read.

Examples

Creating input streams from strings

The macro WITH-INPUT-FROM-STRING can be used to make a stream from a string.

(with-input-from-string (str "Foobar")
 (loop for i from 0
 for char = (read-char str nil nil)
 while char
 do (format t "~d: ~a~%" i char)))
; 0: F
; 1: o
; 2: o
; 3: b
; 4: a
; 5: r
;=> NIL

The same can be done manually using MAKE-STRING-INPUT-STREAM.

https://riptutorial.com/ 94

http://www.lispworks.com/documentation/HyperSpec/Body/m_w_in_f.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_s_1.htm

(let ((str (make-string-input-stream "Foobar")))
 (loop for i from 0
 for char = (read-char str nil nil)
 while char
 do (format t "~d: ~a~%" i char)))

Writing output to a string

The macro WITH-OUTPUT-TO-STRING can be used to create a string output stream, and return the
resulting string at the end.

(with-output-to-string (str)
 (write-line "Foobar!" str)
 (write-string "Barfoo!" str))
;=> "Foobar!
; Barfoo!"

The same can be done manually using MAKE-STRING-OUTPUT-STREAM and GET-OUTPUT-STREAM-STRING.

(let ((str (make-string-output-stream)))
 (write-line "Foobar!" str)
 (write-string "Barfoo!" str)
 (get-output-stream-string str))

Gray streams

Gray streams are a non-standard extension that allows user defined streams. It provides classes
and methods that the user can extend. You should check your implementations manual to see if it
provides Gray streams.

For a simple example, a character input stream that returns random characters could be
implemented like this:

(defclass random-character-input-stream (fundamental-character-input-stream)
 ((character-table
 :initarg :character-table
 :initform "abcdefghijklmnopqrstuvwxyz
" ; The newline is necessary.
 :accessor character-table))
 (:documentation "A stream of random characters."))

(defmethod stream-read-char ((stream random-character-input-stream))
 (let ((table (character-table stream)))
 (aref table (random (length table)))))

(let ((stream (make-instance 'random-character-input-stream)))
 (dotimes (i 5)
 (print (read-line stream))))
; "gyaexyfjsqdcpciaaftoytsygdeycrrzwivwcfb"
; "gctnoxpajovjqjbkiqykdflbhfspmexjaaggonhydhayvknwpdydyiabithpt"
; "nvfxwzczfalosaqw"
; "sxeiejcovrtesbpmoppfvvjfvx"
; "hjplqgstbodbalnmxhsvxdox"
;=> NIL

https://riptutorial.com/ 95

http://www.lispworks.com/documentation/HyperSpec/Body/m_w_out_.htm#with-output-to-string
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_s_2.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_get_ou.htm#get-output-stream-string

Reading file

A file can be opened for reading as a stream using WITH-OPEN-FILE macro.

(with-open-file (file #P"test.file")
 (loop for i from 0
 for line = (read-line file nil nil)
 while line
 do (format t "~d: ~a~%" i line)))
; 0: Foobar
; 1: Barfoo
; 2: Quuxbar
; 3: Barquux
; 4: Quuxfoo
; 5: Fooquux
;=> T

The same can be done manually using OPEN and CLOSE.

(let ((file (open #P"test.file"))
 (aborted t))
 (unwind-protect
 (progn
 (loop for i from 0
 for line = (read-line file nil nil)
 while line
 do (format t "~d: ~a~%" i line))
 (setf aborted nil))
 (close file :abort aborted)))

Note that READ-LINE creates a new string for each line. This can be slow. Some implementations
provide a variant, which can read a line into a string buffer. Example: READ-LINE-INTO for Allegro
CL.

Writing to a file

A file can be opened for writing as a stream using WITH-OPEN-FILE macro.

(with-open-file (file #P"test.file" :direction :output
 :if-exists :append
 :if-does-not-exist :create)
 (dolist (line '("Foobar" "Barfoo" "Quuxbar"
 "Barquux" "Quuxfoo" "Fooquux"))
 (write-line line file)))

The same can be done manually with OPEN and CLOSE.

(let ((file (open #P"test.file" :direction :output
 :if-exists :append
 :if-does-not-exist :create)))
 (dolist (line '("Foobar" "Barfoo" "Quuxbar"
 "Barquux" "Quuxfoo" "Fooquux"))
 (write-line line file))
 (close file))

https://riptutorial.com/ 96

http://www.lispworks.com/documentation/HyperSpec/Body/m_w_open.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_close.htm
http://franz.com/support/documentation/current/doc/operators/excl/read-line-into.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_open.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_close.htm

Copying a file

Copy byte-per-byte of a file

The following function copies a file into another by performing an exact byte-per-byte copy,
ignoring the kind of content (which can be either lines of characters in some encoding or binary
data):

(defun byte-copy (infile outfile)
 (with-open-file (instream infile :direction :input :element-type '(unsigned-byte 8)
 :if-does-not-exist nil)
 (when instream
 (with-open-file (outstream outfile :direction :output :element-type '(unsigned-byte 8)
 :if-exists :supersede)
 (loop for byte = (read-byte instream nil)
 while byte
 do (write-byte byte outstream))))))

The type (unsigned-byte 8) is the type of 8-bit bytes. The functions read-byte and write-byte work
on bytes, instead of read-char and write-char that work on characters. read-byte returns a byte
read from the stream, or NIL at the end of the file if the second optional parameter is NIL (otherwise
it signals an error).

Bulk copy

An exact copy, more efficient the the previous one. can be done by reading and writing the files
with large chunks of data each time, instead of single bytes:

(defun bulk-copy (infile outfile)
 (with-open-file (instream infile :direction :input :element-type '(unsigned-byte 8)
 :if-does-not-exist nil)
 (when instream
 (with-open-file (outstream outfile :direction :output :element-type '(unsigned-byte 8)
 :if-exists :supersede)
 (let ((buffer (make-array 8192 :element-type '(unsigned-byte 8))))
 (loop for bytes-read = (read-sequence buffer instream)
 while (plusp bytes-read)
 do (write-sequence buffer outstream :end bytes-read)))))))

read-sequence and write-sequence are used here with a buffer which is a vector of bytes (they can
operate on sequences of bytes or characters). read-sequence fills the array with the bytes read
each time, and returns the numbers of bytes read (that can be less than the size of the array when
the end of file is reached). Note that the array is destructively modified at each iteration.

Exact copy line-per-line of a file

The final example is a copy performed by reading each line of characters of the input file, and
writing it to the output file. Note that, since we want an exact copy, we must check if the last line of
the input file is terminated or not by an end of line character(s). For this reason, we use the two
values returned by read-line: a new string containing the characters of the next line, and a
boolean value that is true if the line is the last of the file and does not contain the final newline
character(s). In this case write-string is used instead of write-line, since the former does not add

https://riptutorial.com/ 97

a newline at the end of the line.

(defun line-copy (infile outfile)
 (with-open-file (instream infile :direction :input :if-does-not-exist nil)
 (when instream
 (with-open-file (outstream outfile :direction :output :if-exists :supersede)
 (let (line missing-newline-p)
 (loop
 (multiple-value-setq (line missing-newline-p)
 (read-line instream nil nil))
 (cond (missing-newline-p ; we are at the end of file
 (when line (write-string line outstream)) ; note `write-string`
 (return)) ; exit from simple loop
 (t (write-line line outstream)))))))))

Note that this program is platform independent, since the newline character(s) (varying in different
operating systems) is automatically managed by the read-line and write-line functions.

Reading and writing entire files to and from strings

The following function reads an entire file into a new string and returns it:

(defun read-file (infile)
 (with-open-file (instream infile :direction :input :if-does-not-exist nil)
 (when instream
 (let ((string (make-string (file-length instream))))
 (read-sequence string instream)
 string))))

The result is NIL if the file does not exists.

The following function writes a string to a file. A keyword parameter is used to specify what to do if
the file already exists (by default it causes an error, the values admissible are those of the with-
open-file macro).

(defun write-file (string outfile &key (action-if-exists :error))
 (check-type action-if-exists (member nil :error :new-version :rename :rename-and-delete
 :overwrite :append :supersede))
 (with-open-file (outstream outfile :direction :output :if-exists action-if-exists)
 (write-sequence string outstream)))

In this case write-sequence can be substituted with write-string.

Read Streams online: https://riptutorial.com/common-lisp/topic/3028/streams

https://riptutorial.com/ 98

https://riptutorial.com/common-lisp/topic/3028/streams

Chapter 28: Types of Lists

Examples

Plain Lists

Plain lists are the simplest type of list in Common Lisp. They are an ordered sequence of
elements. They support basic operations like getting the first element of a list and the rest of a list
in constant time, support random access in linear time.

(list 1 2 3)
;=> (1 2 3)

(first (list 1 2 3))
;=> 1

(rest (list 1 2 3))
;=> (2 3)

There are many functions that operate on "plain" lists, insofar as they only care about the
elements of the list. These include find, mapcar, and many others. (Many of those functions will
also work on 17.1 Sequence Concepts for some of these functions.

Association Lists

Plain lists are useful for representing a sequence of elements, but sometimes it is more helpful to
represent a kind of key to value mapping. Common Lisp provides several ways to do this,
including genuine hash tables (see 18.1 Hash Table Concepts). There are two primary ways or
representing key to value mappings in Common Lisp: property lists and association lists. This
example describes association lists.

An association list, or alist is a "plain" list whose elements are dotted pairs in which the car of each
pair is the key and the cdr of each pair is the associated value. For instance,

(defparameter *ages* (list (cons 'john 34) (cons 'mary 23) (cons 'tim 72)))

can be considered as an association list that maps symbols indicating a personal name with an
integer indicating age. It is possible to implement some retrieval functions using plain list functions,
like member. For instance, to retrieve the age of john, one could write

(cdr (first (member 'mary *age* :key 'car)))
;=> 23

The member function returns the tail of the list beginning with with a cons cell whose car is mary,
that is, ((mary . 23) (tim . 72)), first returns the first element of that list, which is (mary . 23), and
cdr returns the right side of that pair, which is 23. While this is one way to access values in an
association list, the purpose of a convention like association lists is to abstract away from the

https://riptutorial.com/ 99

http://www.lispworks.com/documentation/HyperSpec/Body/17_a.htm
http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_p.htm#property_list
http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_p.htm#property_list
http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_a.htm#association_list

underlying representation (a list) and to provide higher-level functions for working with the data
structure.

For association lists, the retrieval function is assoc, which takes a key, an association list and
optional testing keywords (key, test, test-not), and returns the pair for the corresponding key:

(assoc 'tim *ages*)
;=> (tim . 72)

Since the result will always be a cons cell if an item is present, if assoc returns nil, then the item
was not in the list:

(assoc 'bob *ages*)
;=> nil

For updating values in an association list, setf may be used along with cdr. For instance, when
john's birthday arrives and his age increases, either of the following could be performed:

(setf (cdr (assoc 'john *ages*) 35)

(incf (cdr (assoc 'john *ages*)))

incf works in this case because it is based on setf.

Association lists can also be used as a type of bidirectional map, since key to value mappings be
retrieved based on the value by using the reversed assoc function, rassoc.

In this example, the association list was created by using list and cons explicitly, but association
lists can also be created by using pairlis, which takes a list of keys and data and creates an
association list based on them:

(pairlis '(john mary tim) '(23 67 82))
;=> ((john . 23) (mary . 67) (tim . 82))

A single key and value pair can be added to an association list using acons:

(acons 'john 23 '((mary . 67) (tim . 82)))
;=> ((john . 23) (mary . 67) (tim . 82))

The assoc function searches through the list from left to right, which means that is is possible to
"mask" values in an association list without removing them from a list or updating any of the
structure of the list, just by adding new elements to the beginning of the list. The acons function is
provided for this:

(defvar *ages* (pairlis '(john mary tim) '(34 23 72)))

(defvar *new-ages* (acons 'mary 29 *ages*))

new-ages
;=> ((mary . 29) (john . 34) (mary . 23) (tim . 72))

https://riptutorial.com/ 100

http://www.lispworks.com/documentation/HyperSpec/Body/f_assocc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rassoc.htm#rassoc
http://www.lispworks.com/documentation/lw50/CLHS/Body/f_pairli.htm
http://www.lispworks.com/documentation/lw50/CLHS/Body/f_acons.htm#acons
http://www.lispworks.com/documentation/lw50/CLHS/Body/f_acons.htm

And now, a lookup for mary will return the first entry:

(assoc 'mary *new-ages*)
;=> 29

Property Lists

Plain lists are useful for representing a sequence of elements, but sometimes it is more helpful to
represent a kind of key to value mapping. Common Lisp provides several ways to do this,
including genuine hash tables (see 18.1 Hash Table Concepts). There are two primary ways or
representing key to value mappings in Common Lisp: property lists and association lists. This
example describes property lists.

A property list, or plist, is a "plain" list in which alternating values are interpreted as keys and their
associated values. For instance:

(defparameter *ages* (list 'john 34 'mary 23 'tim 72))

can be considered as a property list that maps symbols indicating a personal name with an integer
indicating age. It is possible to implement some retrieval functions using plain list functions, like
member. For instance, to retrieve the age of john, one could write

(second (member 'mary *age*))
;=> 23

The member function returns the tail of the list beginning with mary, that is, (mary 23 tim 72), and
second returns the second element of that list, that is 23. While this is one way to access values
in a property list, the purpose of a convention like property lists is to abstract away from the
underlying representation (a list) and to provide higher-level functions for working with the data
structure.

For property lists, the retrieval function is getf, which takes the property list, a key (more
commonly called an indicator), and an optional default value to return in case the property list does
not contain a value for the key.

(getf *ages* 'tim)
;=> 72

(getf *ages* 'bob -1)
;=> -1

For updating values in a property list, setf may be used. For instance, when john's birthday
arrives and his age increases, either of the following could be performed:

(setf (getf *ages* 'john) 35)

(incf (getf *ages* 'john))

incf works in this case because it is based on setf.

https://riptutorial.com/ 101

http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_p.htm#property_list
http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_p.htm#property_list
http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_a.htm#association_list
http://www.lispworks.com/documentation/lw50/CLHS/Body/f_getf.htm

To look up multiple properties in a property list as once, use get-properties.

The getf function searches through the list from left to right, which means that is is possible to
"mask" values in a property list without removing them from a list or updating any of the structure
of the list. For instance, using list*:

(defvar *ages* '(john 34 mary 23 tim 72))

(defvar *new-ages* (list* 'mary 29 *ages*))

new-ages
;=> (mary 29 john 34 mary 23 tim 72)

And now, a lookup for mary will return the first entry:

(getf *new-ages* 'mary)
;=> 29

Read Types of Lists online: https://riptutorial.com/common-lisp/topic/3744/types-of-lists

https://riptutorial.com/ 102

http://www.lispworks.com/documentation/lw50/CLHS/Body/f_get_pr.htm#get-properties
https://riptutorial.com/common-lisp/topic/3744/types-of-lists

Chapter 29: Unit testing

Examples

Using FiveAM

Loading the library

(ql:quickload "fiveam")

Define a test case

(fiveam:test sum-1
 (fiveam:is (= 3 (+ 1 2))))

;; We'll also add a failing test case
(fiveam:test sum2
 (fiveam:is (= 4 (+ 1 2))))

Run tests

(fiveam:run!)

which reports

Running test suite NIL
 Running test SUM2 f
 Running test SUM1 .
 Did 2 checks.
 Pass: 1 (50%)
 Skip: 0 (0%)
 Fail: 1 (50%)
 Failure Details:

 SUM2 []:

(+ 1 2)

 evaluated to

3

 which is not

=

https://riptutorial.com/ 103

 to

4

..

NIL

Notes

Tests are grouped by test-suites•
By defaults tests are added to the global test-suite•

Introduction

There are a few libraries for unit testing in Common Lisp

FiveAM•
Prove, with a few unique features like extensive test reporters, colored output, report of test
duration and asdf integration.

•

Lisp-Unit2, similar to JUnit•
Fiasco, focusing on providing a good testing experience from the REPL. Successor to
hu.dwim.stefil

•

Read Unit testing online: https://riptutorial.com/common-lisp/topic/2349/unit-testing

https://riptutorial.com/ 104

https://github.com/sionescu/fiveam
https://github.com/fukamachi/prove
https://github.com/AccelerationNet/lisp-unit2
https://github.com/joaotavora/fiasco
http://dwim.hu/darcsweb/darcsweb.cgi?r=HEAD%20hu.dwim.stefil;a=summary
https://riptutorial.com/common-lisp/topic/2349/unit-testing

Chapter 30: Working with databases

Examples

Simple use of PostgreSQL with Postmodern

Postmodern is a library to interface the relational database PostgreSQL. It offers several levels of
access to PostgreSQL, from the execution of SQL queries represented as strings, or as lists, to an
object-relational mapping.

The database used in the following examples can be created with these SQL statements:

create table employees
 (empid integer not null primary key,
 name text not null,
 birthdate date not null,
 skills text[] not null);
insert into employees (empid, name, birthdate, skills) values
 (1, 'John Orange', '1991-07-26', '{C, Java}'),
 (2, 'Mary Red', '1989-04-14', '{C, Common Lisp, Hunchentoot}'),
 (3, 'Ron Blue', '1974-01-17', '{JavaScript, Common Lisp}'),
 (4, 'Lucy Green', '1968-02-02', '{Java, JavaScript}');

The first example shows the result of a simple query returning a relation:

CL-USER> (ql:quickload "postmodern") ; load the system postmodern (nickname: pomo)
("postmodern")
CL-USER> (let ((parameters '("database" "dbuser" "dbpass" "localhost")))
 (pomo:with-connection parameters
 (pomo:query "select name, skills from employees")))
(("John Orange" #("C" "Java")) ; output manually edited!
 ("Mary Red" #("C" "Common Lisp" "Hunchentoot"))
 ("Ron Blue" #("JavaScript" "Common Lisp"))
 ("Lucy Green" #("Java" "JavaScript")))
4 ; the second value is the size of the result

Note that the result can be returned as list of alists or plists adding the optional parameters :alists
or :plists to the query function.

An alternative to query is doquery, to iterate over the results of a query. Its parameters are query
(&rest names) &body body, where names are bound to the values in the row at each iteration:

CL-USER> (let ((parameters '("database" "dbuser" "dbpass" "localhost")))
 (pomo:with-connection parameters
 (format t "The employees that knows Java are:~%")
 (pomo:doquery "select empid, name from employees where skills @> '{Java}'" (i n)
 (format t "~a (id = ~a)~%" n i))))
The employees that knows Java are:
John Orange (id = 1)
Lucy Green (id = 4)
NIL
2

https://riptutorial.com/ 105

http://marijnhaverbeke.nl/postmodern/
https://postgresql.org

When the query requires parameters, one can use prepared statements:

CL-USER> (let ((parameters '("database" "dbuser" "dbpass" "localhost")))
 (pomo:with-connection parameters
 (funcall
 (pomo:prepare "select name, skills from employees where skills @> $1")
 #("Common Lisp")))) ; find employees with skills including Common Lisp
(("Mary Red" #("C" "Common Lisp" "Hunchentoot"))
 ("Ron Blue" #("JavaScript" "Common Lisp")))
2

The function prepare receives a query with placeholders $1, $2, etc. and returns a new function that
requires one parameter for each placeholder and executes the query when called with the right
number of arguments.

In case of updates, the function exec returns the number of tuples modified (the two DDL
statements are enclosed in a transaction):

CL-USER> (let ((parameters '("database" "dbuser" "dbpass" "localhost")))
 (pomo:with-connection parameters
 (pomo:ensure-transaction
 (values
 (pomo:execute "alter table employees add column salary integer")
 (pomo:execute "update employees set salary =
 case when skills @> '{Common Lisp}'
 then 100000 else 50000 end")))))
0
4

In addition to writing SQL queries as strings, one can use of lists of keywords, symbols and
constants, with a syntax reminiscent of lisp (S-SQL):

CL-USER> (let ((parameters '("database" "dbuser" "dbpass" "localhost")))
 (pomo:with-connection parameters
 (pomo:query (:select 'name :from 'employees :where (:> 'salary 60000)))))
(("Mary Red") ("Ron Blue"))
2

Read Working with databases online: https://riptutorial.com/common-lisp/topic/4558/working-with-
databases

https://riptutorial.com/ 106

https://riptutorial.com/common-lisp/topic/4558/working-with-databases
https://riptutorial.com/common-lisp/topic/4558/working-with-databases

Chapter 31: Working with SLIME

Examples

Installation

It is best to use latest SLIME from Emacs MELPA repository: the packages may be a bit unstable,
but you get the latest features.

Portale and multiplatform Emacs, Slime, Quicklisp, SBCL and Git

You can download a portable and multiplatform version of Emacs25 already configured with Slime,
SBCL, Quicklisp and Git: Portacle. It's a quick and easy way to get going. If you want to learn how
to install everything yourself, read on.

Manual install

In GNU Emacs (>= 24.5) initialization file (~/.emacs or ~/.emacs.d/init.el) add the following:

;; Use Emacs package system
(require 'package)
;; Add MELPA repository
(add-to-list 'package-archives
 '("melpa" . "http://melpa.milkbox.net/packages/") t)
;; Reload package list
(package-initialize)
(unless package-archive-contents
 (package-refresh-contents))
;; List of packages to install:
(setq package-list
 '(magit ; git interface (OPTIONAL)
 auto-complete ; auto complete (RECOMMENDED)
 auto-complete-pcmp ; programmable completion
 idle-highlight-mode ; highlight words in programming buffer (OPTIONAL)
 rainbow-delimiters ; highlight parenthesis (OPTIONAL)
 ac-slime ; auto-complete for SLIME
 slime ; SLIME itself
 eval-sexp-fu ; Highlight evaluated form (OPTIONAL)
 smartparens ; Help with many parentheses (OPTIONAL)
))

;; Install if are not installed
(dolist (package package-list)
 (unless (package-installed-p package)
 (package-install package)))

;; Parenthesis - OPTIONAL but recommended
(show-paren-mode t)
(require 'smartparens-config)
(sp-use-paredit-bindings)
(sp-pair "(" ")" :wrap "M-(")
(define-key smartparens-mode-map (kbd "C-<right>") 'sp-forward-slurp-sexp)
(define-key smartparens-mode-map (kbd "C-<left>") 'sp-backward-slurp-sexp)

https://riptutorial.com/ 107

https://shinmera.github.io/portacle/

(define-key smartparens-mode-map (kbd "C-S-<right>") 'sp-forward-barf-sexp)
(define-key smartparens-mode-map (kbd "C-S-<left>") 'sp-backward-barf-sexp)

(define-key smartparens-mode-map (kbd "C-)") 'sp-forward-slurp-sexp)
(define-key smartparens-mode-map (kbd "C-(") 'sp-backward-slurp-sexp)
(define-key smartparens-mode-map (kbd "C-}") 'sp-forward-barf-sexp)
(define-key smartparens-mode-map (kbd "C-{") 'sp-backward-barf-sexp)

(sp-pair "(" ")" :wrap "M-(")
(sp-pair "[" "]" :wrap "M-[")
(sp-pair "{" "}" :wrap "M-{")

;; MAIN Slime setup
;; Choose lisp implementation:
;; The first option uses roswell with default sbcl
;; the second option - uses ccl directly
(setq slime-lisp-implementations
 '((roswell ("ros" "-L" "sbcl-bin" "run"))
 (ccl ("ccl64"
 "-K" "utf-8"))))
;; Other settings...

SLIME on its own is OK, but it works better with Quicklisp package manager. To install Quicklisp,
follow the instruction on the website (if you use roswell, follow roswell instructions). Once installed,
in your lisp invoke:

(ql:quickload :quicklisp-slime-helper)

and add the following lines to Emacs init file:

;; Find where quicklisp is installed to
;; Add your own location if quicklisp is installed somewhere else
(defvar quicklisp-directories
 '("~/.roswell/lisp/quicklisp/" ;; default roswell location for quicklisp
 "~/quicklisp/") ;; default quicklisp location
 "Possible locations of QUICKLISP")

;; Load slime-helper
(let ((continue-p t)
 (dirs quicklisp-directories))
 (while continue-p
 (cond ((null dirs) (message "Cannot find slime-helper.el"))
 ((file-directory-p (expand-file-name (car dirs)))
 (message "Loading slime-helper.el from %s" (car dirs))
 (load (expand-file-name "slime-helper.el" (car dirs)))
 (setq continue-p nil))
 (t (setq dirs (cdr dirs))))))

;; Autocomplete in SLIME
(require 'slime-autoloads)
(slime-setup '(slime-fancy))

;; (require 'ac-slime)
 (add-hook 'slime-mode-hook 'set-up-slime-ac)
 (add-hook 'slime-repl-mode-hook 'set-up-slime-ac)
 (eval-after-load "auto-complete"
 '(add-to-list 'ac-modes 'slime-repl-mode))

https://riptutorial.com/ 108

https://www.quicklisp.org/beta/
https://github.com/roswell/roswell

(eval-after-load "auto-complete"
 '(add-to-list 'ac-modes 'slime-repl-mode))

;; Hooks
(add-hook 'lisp-mode-hook (lambda ()
 (rainbow-delimiters-mode t)
 (smartparens-strict-mode t)
 (idle-highlight-mode t)
 (auto-complete-mode)))

(add-hook 'slime-mode-hook (lambda ()
 (set-up-slime-ac)
 (auto-complete-mode)))

(add-hook 'slime-repl-mode-hook (lambda ()
 (rainbow-delimiters-mode t)
 (smartparens-strict-mode t)
 (set-up-slime-ac)
 (auto-complete-mode)))

After the restart, GNU Emacs will install and set up all the necessary packages.

Starting and finishing SLIME, special (comma) REPL commands

In Emacs M-x slime will start slime with the default (first) Common Lisp implementation. If there are
multiple implementations provided (via variable slime-lisp-implementations), other implementations
can be accessed via M-- M-x slime, which will offer the choice of available implementations in mini-
buffer.

M-x slime will open REPL buffer which will look as follows:

; SLIME 2016-04-19
CL-USER>

SLIME REPL buffer accepts a few special commands. All of them start with ,. Once , is typed, the
list of options will be shown in mini-buffer. They include:

,quit•
,restart-inferior-lisp•
,pwd - prints current directory from where Lisp is running•
,cd - will change current directory•

Using REPL

CL-USER> (+ 2 3)
5
CL-USER> (sin 1.5)
0.997495
CL-USER> (mapcar (lambda (x) (+ x 2)) '(1 2 3))
(3 4 5)

The result that is printed after evaluation is not only a string: there is full-on Lisp object behind it
which can be inspected by right-clicking on it and choosing Inspect.

https://riptutorial.com/ 109

Multi-line input is also possible: use C-j to put new line. Enter-key will cause the entered form to be
evaluated and if the form is not finished, will likely cause an error:

CL-USER> (mapcar (lambda (x y)
 (declare (ignore y))
 (* x 2))
 '(1 2 3)
 '(:a :b :c))
(2 4 6)

Error handling

If evaluation causes an error:

CL-USER> (/ 3 0)

This will pop up a debugger buffer with the following content (in SBCL lisp):

arithmetic error DIVISION-BY-ZERO signalled
Operation was /, operands (3 0).
 [Condition of type DIVISION-BY-ZERO]

Restarts:
 0: [RETRY] Retry SLIME REPL evaluation request.
 1: [*ABORT] Return to SLIME's top level.
 2: [ABORT] abort thread (#<THREAD "repl-thread" RUNNING {1004FA8033}>)

Backtrace:
 0: (SB-KERNEL::INTEGER-/-INTEGER 3 0)
 1: (/ 3 0)
 2: (SB-INT:SIMPLE-EVAL-IN-LEXENV (/ 3 0) #<NULL-LEXENV>)
 3: (EVAL (/ 3 0))
 4: (SWANK::EVAL-REGION "(/ 3 0) ..)
 5: ((LAMBDA NIL :IN SWANK-REPL::REPL-EVAL))
--- more ---

Moving cursor down passed --- more --- will cause the backtrace to expand further.

At each line of the backtrace pressing Enter will show more information about a particular call (if
available).

Pressing Enter on the line of restarts will cause a particular restart to be invoked. Alternatively, the
restart can be chosen by number 0, 1 or 2 (press corresponding key anywhere in the buffer). The
default restart is marked by a star and can be invoked by pressing key q (for "quit"). Pressing q will
close the debugger and show the following in REPL

; Evaluation aborted on #<DIVISION-BY-ZERO {10064CCE43}>.
CL-USER>

Finally, quite rarely, but Lisp might encounter an error that cannot be handled by Lisp debugger, in
which case it will drop into low-level debugger or finish abnormally. To see the cause of this kind of

https://riptutorial.com/ 110

error, switch to *inferior-lisp* buffer.

Setting up a SWANK server over a SSH tunnel.

Install a Common Lisp implementation on the server. (E.g. sbcl, clisp, etc...)1.
Install quicklisp on the server.2.
Load SWANK with (ql:quickload :swank)3.
Start the server with (swank:create-server). The default port is 4005.4.
[On your local machine] Create a SSH tunnel with ssh -L4005:127.0.0.1:4005 [remote
machine]

5.

Connect to the running remote swank server with M-x slime-connect. The host should be
127.0.0.1 and the port 4005.

6.

Read Working with SLIME online: https://riptutorial.com/common-lisp/topic/4097/working-with-
slime

https://riptutorial.com/ 111

https://www.quicklisp.org/beta/#installation
https://riptutorial.com/common-lisp/topic/4097/working-with-slime
https://riptutorial.com/common-lisp/topic/4097/working-with-slime

Credits

S.
No

Chapters Contributors

1
Getting started with
common-lisp

blambert, Community, CPHPython, Dan Robertson, Ehvince,
Gustav Bertram, Inaimathi, JAL, Rainer Joswig, Renzo, Robert
Columbia, WarFox

2

ANSI Common Lisp,
the language
standard and its
documentation

Rainer Joswig, sds

3
ASDF - Another
System Definition
Facility

Inaimathi, jkiiski, Joao Tavora, PuercoPop, Rainer Joswig, Sim,
Svante

4 Basic loops Joshua Taylor, MatthewRock, Rainer Joswig, sadfaf, Svante

5
Booleans and
Generalized
Booleans

Rainer Joswig, Renzo, Terje D.

6
CLOS - the Common
Lisp Object System

Joshua Taylor, PuercoPop, Rainer Joswig, Sim

7
CLOS Meta-Object
Protocol

PuercoPop, Rainer Joswig

8 Cons cells and lists eyqs, Joshua Taylor, Rainer Joswig, Renzo

9 Control Structures
eyqs, Rainer Joswig, Robert Columbia, Soupy, Svante,
Throwaway Account 3 Million

10 Creating Binaries Inaimathi

11 Customization Daniel Kochmański, Rainer Joswig

12
Equality and other
comparison
predicates

Renzo

13 format Dan Robertson, Inaimathi, jkiiski, otyn, Renzo

14 Functions jkiiski, Rainer Joswig, Svante

Functions as first Dan Robertson, Joshua Taylor, PuercoPop, Rainer Joswig, 15

https://riptutorial.com/ 112

https://riptutorial.com/contributor/2034301/blambert
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6225838/cphpython
https://riptutorial.com/contributor/4942760/dan-robertson
https://riptutorial.com/contributor/1506338/ehvince
https://riptutorial.com/contributor/1005039/gustav-bertram
https://riptutorial.com/contributor/190887/inaimathi
https://riptutorial.com/contributor/2415822/jal
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/2382734/renzo
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/598444/warfox
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/850781/sds
https://riptutorial.com/contributor/190887/inaimathi
https://riptutorial.com/contributor/5747548/jkiiski
https://riptutorial.com/contributor/177259/joao-tavora
https://riptutorial.com/contributor/357198/puercopop
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/919434/sim
https://riptutorial.com/contributor/31615/svante
https://riptutorial.com/contributor/1281433/joshua-taylor
https://riptutorial.com/contributor/2373609/matthewrock
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/2918613/sadfaf
https://riptutorial.com/contributor/31615/svante
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/2382734/renzo
https://riptutorial.com/contributor/1577260/terje-d-
https://riptutorial.com/contributor/1281433/joshua-taylor
https://riptutorial.com/contributor/357198/puercopop
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/919434/sim
https://riptutorial.com/contributor/357198/puercopop
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/5452232/eyqs
https://riptutorial.com/contributor/1281433/joshua-taylor
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/2382734/renzo
https://riptutorial.com/contributor/5452232/eyqs
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/4458609/soupy
https://riptutorial.com/contributor/31615/svante
https://riptutorial.com/contributor/4230643/throwaway-account-3-million
https://riptutorial.com/contributor/190887/inaimathi
https://riptutorial.com/contributor/4533993/daniel-kochmanski
https://riptutorial.com/contributor/4533993/daniel-kochmanski
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/2382734/renzo
https://riptutorial.com/contributor/4942760/dan-robertson
https://riptutorial.com/contributor/190887/inaimathi
https://riptutorial.com/contributor/5747548/jkiiski
https://riptutorial.com/contributor/1196989/otyn
https://riptutorial.com/contributor/2382734/renzo
https://riptutorial.com/contributor/5747548/jkiiski
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/31615/svante
https://riptutorial.com/contributor/4942760/dan-robertson
https://riptutorial.com/contributor/1281433/joshua-taylor
https://riptutorial.com/contributor/357198/puercopop
https://riptutorial.com/contributor/69545/rainer-joswig

class values Renzo

16 Grouping Forms Joshua Taylor, Rainer Joswig

17 Hash tables Daniel Jour, Joshua Taylor

18
Lexical vs special
variables

Rainer Joswig, Terje D.

19
LOOP, a Common
Lisp macro for
iteration

Dan Robertson, Elias Mårtenson, Inaimathi, PuercoPop, Rainer
Joswig, RamenChef, Renzo, Throwaway Account 3 Million

20 macros
JAL, jkiiski, Joshua Taylor, Mark Green, PuercoPop, Rainer
Joswig

21
Mapping functions
over lists

Aaron, Rainer Joswig, Renzo

22 Pattern matching jkiiski, PuercoPop

23 Quote MatthewRock, Rainer Joswig, Svante

24 Recursion 4444, Rainer Joswig, Robert Columbia, sadfaf

25 Regular Expressions jkiiski, PuercoPop

26
sequence - how to
split a sequence

PuercoPop, Rainer Joswig, sadfaf

27 Streams jkiiski, Rainer Joswig, Renzo, Svante

28 Types of Lists jkiiski, Joshua Taylor

29 Unit testing Ehvince, PuercoPop, Rainer Joswig, sadfaf

30
Working with
databases

Renzo

31 Working with SLIME Ehvince, mobiuseng, tsikov

https://riptutorial.com/ 113

https://riptutorial.com/contributor/2382734/renzo
https://riptutorial.com/contributor/1281433/joshua-taylor
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/1116364/daniel-jour
https://riptutorial.com/contributor/1281433/joshua-taylor
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/1577260/terje-d-
https://riptutorial.com/contributor/4942760/dan-robertson
https://riptutorial.com/contributor/415755/elias-martenson
https://riptutorial.com/contributor/190887/inaimathi
https://riptutorial.com/contributor/357198/puercopop
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2382734/renzo
https://riptutorial.com/contributor/4230643/throwaway-account-3-million
https://riptutorial.com/contributor/2415822/jal
https://riptutorial.com/contributor/5747548/jkiiski
https://riptutorial.com/contributor/1281433/joshua-taylor
https://riptutorial.com/contributor/2890451/mark-green
https://riptutorial.com/contributor/357198/puercopop
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/8243460/aaron
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/2382734/renzo
https://riptutorial.com/contributor/5747548/jkiiski
https://riptutorial.com/contributor/357198/puercopop
https://riptutorial.com/contributor/2373609/matthewrock
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/31615/svante
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/2918613/sadfaf
https://riptutorial.com/contributor/5747548/jkiiski
https://riptutorial.com/contributor/357198/puercopop
https://riptutorial.com/contributor/357198/puercopop
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/2918613/sadfaf
https://riptutorial.com/contributor/5747548/jkiiski
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/2382734/renzo
https://riptutorial.com/contributor/31615/svante
https://riptutorial.com/contributor/5747548/jkiiski
https://riptutorial.com/contributor/1281433/joshua-taylor
https://riptutorial.com/contributor/1506338/ehvince
https://riptutorial.com/contributor/357198/puercopop
https://riptutorial.com/contributor/69545/rainer-joswig
https://riptutorial.com/contributor/2918613/sadfaf
https://riptutorial.com/contributor/2382734/renzo
https://riptutorial.com/contributor/1506338/ehvince
https://riptutorial.com/contributor/4507649/mobiuseng
https://riptutorial.com/contributor/861493/tsikov

	About
	Chapter 1: Getting started with common-lisp
	Remarks
	Versions
	Examples
	Hello World
	Hello, Name
	The simple Hello World program in REPL
	Basic expressions
	Sum of list of integers
	Lambda Expressions and Anonymous Functions
	Common Lisp Learning Resources

	Chapter 2: ANSI Common Lisp, the language standard and its documentation
	Examples
	Common Lisp HyperSpec
	EBNF syntax declarations in documentation
	Common Lisp the Language, 2nd Edition, by Guy L. Steele Jr.
	CLiki - Proposed ANSI Revisions and Clarifications
	Common Lisp Quick Reference
	The ANSI Common Lisp standard in Texinfo format (especially useful for GNU Emacs)

	Chapter 3: ASDF - Another System Definition Facility
	Remarks
	Examples
	Simple ASDF system with a flat directory structure
	How to define a test operation for a system
	In what package should I define my ASDF system?

	Chapter 4: Basic loops
	Syntax
	Examples
	dotimes
	dolist
	Simple loop

	Chapter 5: Booleans and Generalized Booleans
	Examples
	True and False
	Generalized Booleans

	Chapter 6: CLOS - the Common Lisp Object System
	Examples
	Creating a basic CLOS class without parents
	Mixins and Interfaces

	Chapter 7: CLOS Meta-Object Protocol
	Examples
	Obtain the slot names of a Class
	Update a slot when another slot is modified

	Chapter 8: Cons cells and lists
	Examples
	Lists as a convention
	What is a cons cell?
	Sketching cons cells

	Chapter 9: Control Structures
	Examples
	Conditional Constructs
	The do loop

	Chapter 10: Creating Binaries
	Examples
	Building Buildapp
	Buildapp Hello World
	Buildapp Hello Web World

	Chapter 11: Customization
	Examples
	More features for the Read-Eval-Print-Loop (REPL) in a terminal
	Initialization Files
	Optimization settings

	Chapter 12: Equality and other comparison predicates
	Examples
	The difference between EQ and EQL
	Structural equality with EQUAL, EQUALP, TREE-EQUAL
	Comparison operators on numeric values
	Comparison operators on characters and strings
	Overwiew

	Chapter 13: format
	Parameters
	Remarks
	Examples
	Basic Usage and Simple Directives
	Iterating over a list
	Conditional expressions

	Chapter 14: Functions
	Remarks
	Examples
	Required Parameters
	Optional Parameters

	Default alue
	Check if optional argument was given
	Function without Parameters
	Rest Parameter

	Rest and Keyword Parameters together
	Auxiliary Variables
	RETURN-FROM, exit from a block or a function
	Keyword Parameters

	Chapter 15: Functions as first class values
	Syntax
	Parameters
	Remarks
	Examples
	Defining anonymous functions
	Referring to Existing Functions
	Higher order functions
	Summing a list
	Implementing reverse and revappend
	Closures
	Defining functions that take functions and return functions

	Chapter 16: Grouping Forms
	Examples
	When is grouping needed?
	Progn

	Implicit Progns
	Prog1 and Prog2
	Block
	Tagbody
	Which form to use?

	Chapter 17: Hash tables
	Examples
	Creating a hash table
	Iterating over the entries of a hash table with maphash
	Iterating over the entries of a hash table with loop
	Over keys and values
	Over keys
	Over values
	Iterating over the entries of a hash table with a hash table iterator

	Chapter 18: Lexical vs special variables
	Examples
	Global special variables are special everywhere

	Chapter 19: LOOP, a Common Lisp macro for iteration
	Examples
	Bounded Loops
	Looping over Sequences
	Looping over Hash Tables
	Simple LOOP form
	Looping over Packages
	Arithmetic Loops
	Destructuring in FOR statements
	LOOP as an Expression
	Conditionally executing LOOP clauses
	Parallel Iteration
	Nested Iteration
	RETURN clause versus RETURN form.
	Looping over a window of a list

	Chapter 20: macros
	Remarks

	The Purpose of Macros
	Macroexpansion Order
	Evaluation Order
	Evaluate Once Only
	Functions used by Macros, using EVAL-WHEN
	Examples
	Common Macro Patterns

	FOOF
	WITH-FOO
	DO-FOO
	FOOCASE, EFOOCASE, CFOOCASE
	DEFINE-FOO, DEFFOO
	Anaphoric Macros
	MACROEXPAND
	Backquote - writing code templates for macros
	Unique symbols to prevent name clashes in macros
	if-let, when-let, -let macros
	Using Macros to define data structures

	Chapter 21: Mapping functions over lists
	Examples
	Overview
	Examples of MAPCAR
	Examples of MAPLIST
	Examples of MAPCAN and MAPCON
	Examples of MAPC and MAPL

	Chapter 22: Pattern matching
	Examples
	Overview
	Dispatching Clack requests
	defun-match
	Constructor patterns
	Guard-pattern

	Chapter 23: Quote
	Syntax
	Remarks
	Examples
	Simple quote example
	' is an alias for the special operator QUOTE
	If quoted objects are destructively modified, the consequences are undefined!
	Quote and self-evaluating objects

	Chapter 24: Recursion
	Remarks
	Examples
	Recursion template 2 multi-condition
	Recursion template 1 single condition single tail recursion
	Compute nth Fibonacci number
	Recursively print the elements of a list
	Compute the factorial of a whole number

	Chapter 25: Regular Expressions
	Examples
	Using with pattern matching to bind captured groups
	Binding register groups with CL-PPCRE

	Chapter 26: sequence - how to split a sequence
	Syntax
	Examples
	Split strings using regular expressions
	SPLIT-SEQUENCE in LIspWorks
	Using the split-sequence library

	Chapter 27: Streams
	Syntax
	Parameters
	Examples
	Creating input streams from strings
	Writing output to a string
	Gray streams
	Reading file
	Writing to a file
	Copying a file
	Reading and writing entire files to and from strings

	Chapter 28: Types of Lists
	Examples
	Plain Lists
	Association Lists
	Property Lists

	Chapter 29: Unit testing
	Examples
	Using FiveAM

	Loading the library
	Define a test case
	Run tests
	Notes
	Introduction

	Chapter 30: Working with databases
	Examples
	Simple use of PostgreSQL with Postmodern

	Chapter 31: Working with SLIME
	Examples
	Installation
	Portale and multiplatform Emacs, Slime, Quicklisp, SBCL and Git
	Manual install
	Starting and finishing SLIME, special (comma) REPL commands
	Using REPL

	Error handling
	Setting up a SWANK server over a SSH tunnel.

	Credits

