
compiler-construction

#compiler-

construction

Table of Contents

About 1

Chapter 1: Getting started with compiler-construction 2

Examples 2

Getting Started: Introduction 2

Prerequisites 2

Language Categories 2

Resources 2

Chapter 2: Basics of Compiler Construction 4

Introduction 4

Syntax 4

Examples 4

Simple Lexical Analyser 4

What does the lexical analyser do? 4

Let's break it down 5

Simple Parser 6

What is a parser? 6

Let's break it down 7

Credits 8

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: compiler-construction

It is an unofficial and free compiler-construction ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official compiler-
construction.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/compiler-construction
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with compiler-
construction

Examples

Getting Started: Introduction

Prerequisites

Have a strong grasp of a programming language such as Python, C, C++, Ruby, or any
of the other languages out there.

•

Have your favorite code editor or IDE installed (one such example is VSCode)•
Stay motivated. Constructing a compiler is not easy, so keep pushing; it's worth the effort.•

Language Categories

When making a compiler, you need to decide which of 2 types of language the
compiler will be.

Toy language: This is when you make a programming language which doesn't fix an issue,
but is for learning. Fun examples of these are Whitespace, Lolcode, and Brainfuck.

•

Programming language: These are the languages which aim to solve a problem or bring
something new and unique to the table. These can be compared to languages like Swift, C++,
and Python.

•

Resources

During your journey, it is inevitable that you will stumble over something which you
have no idea about, but hopefully, one of these resources will aid you.

Create Your Own Programming Language (Ebook)
+Friendly to beginners○

+Short○

+Aided the creation of Coffeescript and Rubby○

•

Compilers: Principles, Techniques, and Tools (The Dragon Book)
Contains everything you'd ever want to know about a compiler, but it's advanced and a
long read

○

•

Modern Compiler Design (Ebook)
This is another highly praised book on compiler design○

•

Read Getting started with compiler-construction online: https://riptutorial.com/compiler-

https://riptutorial.com/ 2

https://code.visualstudio.com
http://createyourproglang.com
http://createyourproglang.com
https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools
http://rads.stackoverflow.com/amzn/click/0471976970
http://rads.stackoverflow.com/amzn/click/0471976970
https://riptutorial.com/compiler-construction/topic/6845/getting-started-with-compiler-construction

construction/topic/6845/getting-started-with-compiler-construction

https://riptutorial.com/ 3

https://riptutorial.com/compiler-construction/topic/6845/getting-started-with-compiler-construction

Chapter 2: Basics of Compiler Construction

Introduction

This topic will contain all the basics in compiler construction that you will need to know so that you
can get started in making your own compiler. This documentation topic will contain the first 2 out of
4 sections in compiler constructions and the rest will be in a different topic.

The topics which will be covered are:

Lexical Analysis

Parsing

Syntax

Lexical Analysis the source text is converted to type and value tokens.•

Parsing the source tokens are converted to an abstract syntax tree (AST).•

Examples

Simple Lexical Analyser

In this example I will show you how to make a basic lexer which will create the tokens
for a integer variable declaration in python.

What does the lexical analyser do?

The purpose of a lexer (lexical analyser) is to scan the source code and break up each word into a
list item. Once done it takes these words and creates a type and value pair which looks like this
['INTEGER', '178'] to form a token.

These tokens are created in order to identify the syntax for your language so the whole point of the
lexer is to create the syntax of your language as it all depends on how you want to identify and
interpret different items.

Example source code for this lexer:

int result = 100;

Code for lexer in python:

https://riptutorial.com/ 4

import re # for performing regex expressions

tokens = [] # for string tokens
source_code = 'int result = 100;'.split() # turning source code into list of words

Loop through each source code word
for word in source_code:

 # This will check if a token has datatype decleration
 if word in ['str', 'int', 'bool']:
 tokens.append(['DATATYPE', word])

 # This will look for an identifier which would be just a word
 elif re.match("[a-z]", word) or re.match("[A-Z]", word):
 tokens.append(['IDENTIFIER', word])

 # This will look for an operator
 elif word in '*-/+%=':
 tokens.append(['OPERATOR', word])

 # This will look for integer items and cast them as a number
 elif re.match(".[0-9]", word):
 if word[len(word) - 1] == ';':
 tokens.append(["INTEGER", word[:-1]])
 tokens.append(['END_STATEMENT', ';'])
 else:
 tokens.append(["INTEGER", word])

print(tokens) # Outputs the token array

When running this code snippet the output should be the following:

[['DATATYPE', 'int'], ['IDENTIFIER', 'result'], ['OPERATOR', '='], ['INTEGER', '100'],
['END_STATEMENT', ';']]

As you can see all we did is turn a piece of source code such as the integer variable declaration
into a token stream of type and value pair tokens.

Let's break it down

We begin of by import regex library because it will be needed when checking if certain words
match a certain regex pattern.

1.

We create an empty list called tokens. This will be used to store all of the tokens we create.2.

We split our source code which is a string into a list of words where every word in the string
separated by a space is a list item. We then store those in a variable called source_code.

3.

We start looping through our source_code list word by word.4.

We now perform our first check:5.

https://riptutorial.com/ 5

if word in ['str', 'int', 'bool']:
 tokens.append(['DATATYPE', word])

What we check for here is a datatype which will tell us what type our variable will be.

After that we perform more checks like the one above identifying each word in our source
code and creating a token for it. These tokens will then be passed on to the parser to create
an Abstract Syntax Tree (AST).

6.

If you want to interact with this code and play with it here is a link to the code in an
online compiler https://repl.it/J9Hj/latest

Simple Parser

This is a simple parser which will parse an integer variable declaration token stream
which we created in the previous example Simple Lexical Analyser. This parser will
also be coded in python.

What is a parser?

The parser is the process in which the source text is converted to an abstract syntax tree (AST). It
is also in charge of performing semantical validation which is weeding out syntactically correct
statements that make no sense, e.g. unreachable code or duplicate declarations.

Example tokens:

[['DATATYPE', 'int'], ['IDENTIFIER', 'result'], ['OPERATOR', '='], ['INTEGER', '100'],
['END_STATEMENT', ';']]

Code for parser in 'python3':

ast = { 'VariableDecleration': [] }

tokens = [['DATATYPE', 'int'], ['IDENTIFIER', 'result'], ['OPERATOR', '='],
 ['INTEGER', '100'], ['END_STATEMENT', ';']]

Loop through the tokens and form ast
for x in range(0, len(tokens)):

 # Create variable for type and value for readability
 token_type = tokens[x][0]
 token_value = tokens[x][1]

 # This will check for the end statement which means the end of var decl
 if token_type == 'END_STATEMENT': break

 # This will check for the datatype which should be at the first token
 if x == 0 and token_type == 'DATATYPE':
 ast['VariableDecleration'].append({'type': token_value})

https://riptutorial.com/ 6

https://repl.it/J9Hj/latest

 # This will check for the name which should be at the second token
 if x == 1 and token_type == 'IDENTIFIER':
 ast['VariableDecleration'].append({'name': token_value})

 # This will check to make sure the equals operator is there
 if x == 2 and token_value == '=': pass

 # This will check for the value which should be at the third token
 if x == 3 and token_type == 'INTEGER' or token_type == 'STRING':
 ast['VariableDecleration'].append({'value': token_value})

print(ast)

The following piece of code should output this as a result:

{'VariableDecleration': [{'type': 'int'}, {'name': 'result'}, {'value': '100'}]}

As you can see all that the parser does is from the source code tokens finds a pattern for the
variable declaration (in this case) and creates an object with it which holds its properties like type,
name and value.

Let's break it down

We created the ast variable which will hold the complete AST.1.

We created the examples token variable which holds the tokens that were created by our
lexer which now needs to be parsed.

2.

Next, we loop through each token and perform some checks to find certain tokens and form
our AST with them.

3.

We create variable for type and value for readability4.

We now perform checks like this one:

if x == 0 and token_type == 'DATATYPE':
 ast['VariableDecleration'].append({'type': token_value})

which looks for a datatype and adds it to the AST. We keep doing this for the value and
name which will then result in a full VariableDecleration AST.

5.

If you want to interact with this code and play with it here is a link to the code in an
online compiler https://repl.it/J9IT/latest

Read Basics of Compiler Construction online: https://riptutorial.com/compiler-
construction/topic/10816/basics-of-compiler-construction

https://riptutorial.com/ 7

https://repl.it/J9IT/latest
https://riptutorial.com/compiler-construction/topic/10816/basics-of-compiler-construction
https://riptutorial.com/compiler-construction/topic/10816/basics-of-compiler-construction

Credits

S.
No

Chapters Contributors

1
Getting started with
compiler-
construction

Community, RyanM, TriskalJM

2
Basics of Compiler
Construction

RyanM

https://riptutorial.com/ 8

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5476495/ryanm
https://riptutorial.com/contributor/4433546/triskaljm
https://riptutorial.com/contributor/5476495/ryanm

	About
	Chapter 1: Getting started with compiler-construction
	Examples
	Getting Started: Introduction

	Prerequisites

	Language Categories
	Resources
	Chapter 2: Basics of Compiler Construction
	Introduction
	Syntax
	Examples
	Simple Lexical Analyser

	What does the lexical analyser do?
	Let's break it down
	Simple Parser

	What is a parser?
	Let's break it down
	Credits

