
core-data

#core-data

Table of Contents

About 1

Chapter 1: Getting started with core-data 2

Remarks 2

Examples 2

Creating Your First Model 2

Creating the project 6

Chapter 2: Core Data Stack 8

Remarks 8

Objective-C 8

Swift 2 8

Swift 3 8

NSManagedObjectModel 8

NSPersistentStoreCoordinator 8

NSManagedObjectContext 9

Examples 9

Objective-C Example 9

Swift 2 Example 10

iOS 10 Example in Swift 11

Chapter 3: Creating an Core Data Model 13

Remarks 13

Examples 13

Adding an Entity to Core Data Model 13

Adding Attributes to Entity 14

Adding Relationships to Core Data Model 16

Chapter 4: NSFetchedResultsController 18

Introduction 18

Examples 18

NSFetchedResultsController for UITableView 18

Chapter 5: Sort Descriptors 20

Examples 20

Ordering Data Returned By Fetch Requests 20

Multiple Sort Descriptors 20

Chapter 6: Using Predicates 21

Examples 21

Matching an exact string 21

Substitutions 21

Credits 22

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: core-data

It is an unofficial and free core-data ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official core-data.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/core-data
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with core-data

Remarks

Core Data is a framework in Apple’s various OS SDK including, but not limited to iOS and OS X. It
has two major roles a model layer and a persistence layer. The model layer is used in the
management of model objects and persist data. Simply you can store and manage data in an
object-oriented interface. Primary features include filtering, querying, sorting, persisting data and
creating relationships between data. Other subjects of interest to Core Data projects are
NSPredicate, threading, and among others.

An example application of Core Data could a Catalog app for your local library. In the Catalog app
a librarian could add or remove books. They could also filter books by genre, sort books by
publication date, or search for a specific authors work. An entity “Book” would have various
attributes such as title, author, publication date, isbn, call number, etc. Core Data including the
above example can also store data gathered from a server.

Major components of the framework include:

Data Models (entities, attributes, and relationships)•
Core Data Stack (NSPersistentStoreCoordinator,NSManagedObjectModel,
NSManagedObjectContext)

•

NSFetchRequest•
NSFetchedResultsController•

Sources:

Framework Documentation

Programming Guide

Core Data Release Notes 2016

CoreData & Concurrency

It's important to remember that CoreData is NOT thread-safe, which means that if it's necessary to
use for example a background-thread to work on ManagedObjects, there are new things to
consider, like PrivateQueue- / MainQueue-ManagedObjectContexts.

From Apples documentary: Core Data expects to be run on a single thread. You should never
share managed object contexts between threads. This is a hard rule you should not break.

Examples

Creating Your First Model

Select the .xcdatamodeld file. You will notice you have no entities. You will have to create one •

https://riptutorial.com/ 2

https://developer.apple.com/reference/coredata
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/CoreData/index.html#//apple_ref/doc/uid/TP40001075-CH2-SW1
https://developer.apple.com/library/prerelease/content/releasenotes/General/WhatNewCoreData2016/ReleaseNotes.html

yourself. At the bottom of Xcode you will notice a button that says "Add Entity" click it and
you will have a new entity for you to work with on the project.

https://riptutorial.com/ 3

In this step there are a few points to mention. First is that you changed your entity name here•

After you are satisfied with your model, you can create the NSManagedObject subclass.•

Here we can see two important things. First, that Person (same as your entity name) is a su•

https://riptutorial.com/ 4

http://i.stack.imgur.com/L0J3J.png
http://i.stack.imgur.com/ReQda.png
http://i.stack.imgur.com/jM5ln.png
http://i.stack.imgur.com/sW5Kp.png
http://i.stack.imgur.com/VadVy.png

All additions should be done in Person.swift, since if you ever change your model and re-run
the class generator, it will overwrite everything in Person+CoreDataProperties.swift.

•

, since if you ever change your model and re-run the class generator, it will overwrite
everything in Person+CoreDataProperties.swift.

https://riptutorial.com/ 5

Creating the project

First action to take is to create a new project File > New > Project. Here Single View Application is

The next step in setup of core data is adding the information to your project. The important part in

Read Getting started with core-data online:

https://riptutorial.com/ 6

http://i.stack.imgur.com/sWcR0.png
http://i.stack.imgur.com/nG43y.png
http://i.stack.imgur.com/90mFB.png
http://i.stack.imgur.com/P22vR.png

https://riptutorial.com/core-data/topic/1718/getting-started-with-core-data

https://riptutorial.com/ 7

https://riptutorial.com/core-data/topic/1718/getting-started-with-core-data

Chapter 2: Core Data Stack

Remarks

This is an implementation of the Core Data Stack which is initially placed in the AppDelegate file if
the project is created with Core Data when project is created. These functions can also
implemented in separate class for CoreDataStack.swift. One of the major functions is to get the
NSManagedObjectContext.

Objective-C

- (NSManagedObjectContext *)managedObjectContext {...}

Swift 2

lazy var managedObjectContext: NSManagedObjectContext = {...}

Swift 3

lazy var persistentContainer: NSPersistentContainer = {...)
let managedObjectContext = persistentContainer.viewContext

The Core Data stack that communicates between the objects in your application and external data
stores. The Core Data stack handles all of the interactions with the external data stores so that
your application can focus on its business logic. The stack consists of three primary objects: the
managed object context (NSManagedObjectContext), the persistent store coordinator (
NSPersistentStoreCoordinator), and the managed object model (NSManagedObjectModel).

NSManagedObjectModel

The NSManagedObjectModel instance describes the data that is going to be accessed by the Core
Data stack. NSManagedObjectModel (often referred to as the “mom”) is loaded into memory as the first
step in the creation of the stack. An example of the NSManagedObjectModel is DataModel.momd. The
NSManagedObjectModel defines the structure of the data

NSPersistentStoreCoordinator

The NSPersistentStoreCoordinator realizes objects from the data in the persistent store and passes
those objects off to the requesting NSManagedObjectContext. It creates new instances of the entities
in the model, and it retrieves existing instances from a persistent store (NSPersistentStore). The
NSPersistentStoreCoordinator also verifies that the data is in a consistent state that matches the
definitions in the NSManagedObjectModel.

https://riptutorial.com/ 8

NSManagedObjectContext

When you fetch objects from a persistent store, you bring temporary copies onto the scratch pad
where they form an object graph (or a collection of object graphs). You can then modify those
objects, unless you actually save those changes, however, the persistent store remains unaltered.

All managed objects must be registered with a managed object context. You use the context to
add objects to the object graph and remove objects from the object graph. The context tracks the
changes you make, both to individual objects’ attributes and to the relationships between objects.
By tracking changes, the context is able to provide undo and redo support for you. It also ensures
that if you change relationships between objects, the integrity of the object graph is maintained.

When you save changes the context ensures that your objects are in a valid state. The changes
are written to the persistent store (or stores), new records are added for objects you created, and
records are removed for objects you deleted.

Source: Apple Core Data Programming: Initializing the Core Data Stack

Examples

Objective-C Example

This is a simple but robust core-data set-up for iOS 10+. There are exactly two way to access
core-data:

viewContext. The viewContext can only be used from the main thread, and only for reading.1.
strong enqueueCoreDataBlock. All writing should be done using enqueueCoreDataBlock.
There is no need to save at the end it will automatically save. All writes are enqueued in an
operationQueue so there can never be be write conflicts.

2.

Make sure to NEVER use any managedObjects from context in another context. Also discard all
objects that are created or fetched in enqueueCoreDataBlock as the context that backs them will be
destroyed after the block is executed.

// CoreDataManager.h

@interface CoreDataManager : NSObject
@property (nonatomic, readonly) NSManagedObjectContext * viewContext;
- (void)enqueueCoreDataBlock:(void (^)(NSManagedObjectContext* context))block;
@end

// CoreDataManager.m

@implementation NSManagedObjectContext(SaveIfNeeded)
-(BOOL) saveIfNeeded{
 BOOL toReturn = YES;
 if ([self hasChanges]) {
 NSError *error;
 toReturn = [self save:&error];
 if (toReturn == NO || error)

https://riptutorial.com/ 9

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/CoreData/InitializingtheCoreDataStack.html#//apple_ref/doc/uid/TP40001075-CH4-SW1

 {
 //Here you should log to your analytics service
 NSLog(@"--- Failed to commit data\n error: %@", error);
 }
 }
 return toReturn;
}
@end
@interface CoreDataManager ()
@property (nonatomic, strong) NSPersistentContainer* persistentContainer;
@property (nonatomic, strong) NSOperationQueue* persistentContainerQueue;
@end
@implementation CoreDataManager

- (id)init
{
 self = [super init]
 if (self)
 {
 self.persistentContainer = [[NSPersistentContainer alloc]
initWithName:@"PROJECT_NAME_ALSO_NAME_OF_MODEL" managedObjectModel:managedObjectModel];
 [self.persistentContainer
loadPersistentStoresWithCompletionHandler:^(NSPersistentStoreDescription * description,
NSError * error) {
 }];
 self.persistentContainer.viewContext.automaticallyMergesChangesFromParent = YES;
 _persistentContainerQueue = [[NSOperationQueue alloc] init];
 _persistentContainerQueue.maxConcurrentOperationCount = 1;
 _persistentContainerQueue.name = @"persistentContainerQueue";
 dispatch_queue_t queue =
dispatch_queue_create("persistentContainerQueue.dispatchQueue", DISPATCH_QUEUE_SERIAL);
 _persistentContainerQueue.underlyingQueue = queue;
 }
}

- (void)enqueueCoreDataBlock:(void (^)(NSManagedObjectContext* context))block{
 void (^blockCopy)(NSManagedObjectContext*) = [block copy];

 [self.persistentContainerQueue addOperation:[NSBlockOperation blockOperationWithBlock:^{
 NSManagedObjectContext* context = self.persistentContainer.newBackgroundContext;
 [context performBlockAndWait:^{
 blockCopy(context);
 [context saveIfNeeded];
 }];
 }]];
}

-(NSManagedObjectContext*) viewContext{
 if (![NSThread mainThread]) {
 //here you should log to you analytics service. If you are in developer mode you
should crash to force you to fix this
 NSLog(@"access context on wrong thread!!");
 }
 return self.persistentContainer.viewContext;
}

Swift 2 Example

// Core Data stack

https://riptutorial.com/ 10

lazy var applicationDocumentsDirectory: NSURL = {
 let urls = NSFileManager.defaultManager().URLsForDirectory(.DocumentDirectory, inDomains:
.UserDomainMask)
 return urls[urls.count-1]
}()

lazy var managedObjectModel: NSManagedObjectModel = {
 let modelURL = NSBundle.mainBundle().URLForResource("ProjectName", withExtension: "momd")!
 return NSManagedObjectModel(contentsOfURL: modelURL)!
}()

lazy var persistentStoreCoordinator: NSPersistentStoreCoordinator = {

 let coordinator = NSPersistentStoreCoordinator(managedObjectModel:
self.managedObjectModel)
 let url =
self.applicationDocumentsDirectory.URLByAppendingPathComponent("SingleViewCoreData.sqlite")
 var failureReason = "There was an error creating or loading the application's saved data."
 do {
 try coordinator.addPersistentStoreWithType(NSSQLiteStoreType, configuration: nil, URL:
url, options: nil)
 } catch {
 var dict = [String: AnyObject]()
 dict[NSLocalizedDescriptionKey] = "Failed to initialize the application's saved data"
 dict[NSLocalizedFailureReasonErrorKey] = failureReason

 dict[NSUnderlyingErrorKey] = error as NSError
 let wrappedError = NSError(domain: "YOUR_ERROR_DOMAIN", code: 9999, userInfo: dict)
 print("Unresolved error \(wrappedError), \(wrappedError.userInfo)")
 abort()
 }

 return coordinator
}()

lazy var managedObjectContext: NSManagedObjectContext = {
 let coordinator = self.persistentStoreCoordinator
 var managedObjectContext = NSManagedObjectContext(concurrencyType:
.MainQueueConcurrencyType)
 managedObjectContext.persistentStoreCoordinator = coordinator
 return managedObjectContext
}()

// Core Data Saving support

func saveContext () {
 if managedObjectContext.hasChanges {
 do {
 try managedObjectContext.save()
 } catch {
 let nserror = error as NSError
 print("Unresolved error \(nserror), \(nserror.userInfo)")
 abort()
 }
 }
}

iOS 10 Example in Swift

https://riptutorial.com/ 11

lazy var persistentContainer: NSPersistentContainer = {

 let container = NSPersistentContainer(name: "ProjectName")
 container.loadPersistentStores(completionHandler: { (storeDescription, error) in

 if let error = error {
 fatalError("Unresolved error \(error), \(error.userInfo)")
 }
 })
 return container
}()

func saveContext () {
 let context = persistentContainer.viewContext

 do {
 try context.save()
 } catch {
 let nserror = error as NSError
 fatalError("Unresolved error \(nserror), \(nserror.userInfo)")
 }

 if context.hasChanges {
 print("changes occured")
 }else {
 print("no changes occured")
 }

}

Read Core Data Stack online: https://riptutorial.com/core-data/topic/2596/core-data-stack

https://riptutorial.com/ 12

https://riptutorial.com/core-data/topic/2596/core-data-stack

Chapter 3: Creating an Core Data Model

Remarks

Attribute types include: Undefined, Integer 16, Integer 32, Integer 64, Decimal, Double, Float,
String, Boolean, Date, Binary, Data, or Transformable

When defining an Entity as abstract you won't be creating any instances of that entity. For
example a Person would be abstract and a Employee or Customer would be a concrete
subentities.

Transient attributes are properties that you define as part of the model, but which are not saved to
the persistent store as part of an entity instance’s data. Core Data does track changes you make
to transient properties, so they are recorded for undo operations. You use transient properties for
a variety of purposes, including keeping calculated values and derived values.

The Destination field defines what object (or objects) are returned when the relationship is
accessed in code.

The Inverse field defines the other half of a relationship. Because each relationship is defined from
one direction, this field joins two relationships together to create a fully bidirectional relationship.

Source: Core Data Programming Guide

Examples

Adding an Entity to Core Data Model

First it is important to understand that the Core Data Model is the *.xcdatamodeld file. You will
notice you have not entities. You will have to create one yourself. At the bottom of Xcode you
will notice a button that says "Add Entity" click it and you will have a new entity in the
navigator area for you to work with on the project.

1.

https://riptutorial.com/ 13

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/CoreData/KeyConcepts.html#//apple_ref/doc/uid/TP40001075-CH30-SW1

Adding Attributes to Entity

Under the attributes section you add the attributes to your model. This button is a plus located at

This is the Inspector Panel which allows you to add properties to the Attribute

https://riptutorial.com/ 14

http://i.stack.imgur.com/L0J3J.png
http://i.stack.imgur.com/ReQda.png

for example if you were adding an email you could provide a regex string ".+@([A-Za-z0-9-
]+\\.)+[A-Za-z]{2}[A-Za-z]*" to prevent postal addresses from being added to your email Attribute.
Validation could allow for a min and max character for a phone number.

https://riptutorial.com/ 15

Adding Relationships to Core Data Model

Relationships are relationship between entities that can be one-to-one or one-to-many. Creating a

Read Creating an Core Data Model online:

https://riptutorial.com/ 16

http://i.stack.imgur.com/EWxY3.png
http://i.stack.imgur.com/YyjEe.png
http://i.stack.imgur.com/Y64rO.png

https://riptutorial.com/core-data/topic/2853/creating-an-core-data-model

https://riptutorial.com/ 17

https://riptutorial.com/core-data/topic/2853/creating-an-core-data-model

Chapter 4: NSFetchedResultsController

Introduction

NSFetchedResultsController is a connection between core-data table (entity in core-data, table in
sqlite) and UITableView. UITableView can be attached to any core-data entity using
NSFetchedResultsController and UITableView will be updated as and when core-data updates
that entity/table.

Examples

NSFetchedResultsController for UITableView

class ConversationsTableViewController: UITableViewController,
NSFetchedResultsControllerDelegate {

private var fetchedResultsController: NSFetchedResultsController<Conversation>!

override func viewDidLoad() {
 super.viewDidLoad()
 initializeFetchedResultsController()
}
private func initializeFetchedResultsController() {
 let request = NSFetchRequest<Conversation>(entityName: "Conversation")
 let timeSort = NSSortDescriptor(key: "lastMessageTime", ascending: false)
 request.sortDescriptors = [timeSort]

 let MOC = AppManagedObjectContext()//It should be main thread MOC
 fetchedResultsController = NSFetchedResultsController(fetchRequest: request,
managedObjectContext: MOC, sectionNameKeyPath: nil, cacheName: nil)
 fetchedResultsController.delegate = self

 do {
 try fetchedResultsController.performFetch()
 } catch {
 print("Failed to initialize FetchedResultsController: \(error)")
 }
}

//table view methods
override func numberOfSections(in tableView: UITableView) -> Int {
 if let n = fetchedResultsController?.sections!.count {
 return n
 }
 return 0
}
override func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
 let sectionInfo = fetchedResultsController.sections![section]
 let n = sectionInfo.numberOfObjects
 return n
}
override func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {
 let cell = tableView.dequeueReusableCell(withIdentifier: "identifier", for: indexPath)

https://riptutorial.com/ 18

 //configure cell
 return cell
}

//NSFetchedResultsController Delegates
func controllerWillChangeContent(_ controller:
NSFetchedResultsController<NSFetchRequestResult>) {
 tableView.beginUpdates()
}

func controller(_ controller: NSFetchedResultsController<NSFetchRequestResult>, didChange
sectionInfo: NSFetchedResultsSectionInfo, atSectionIndex sectionIndex: Int, for type:
NSFetchedResultsChangeType) {
 switch type {
 case .insert:
 tableView.insertSections(IndexSet(integer: sectionIndex), with: .fade)
 case .delete:
 tableView.deleteSections(IndexSet(integer: sectionIndex), with: .fade)
 case .move:
 break
 case .update:
 break
 }
}

func controller(_ controller: NSFetchedResultsController<NSFetchRequestResult>, didChange
anObject: Any, at indexPath: IndexPath?, for type: NSFetchedResultsChangeType, newIndexPath:
IndexPath?) {
 switch type {
 case .insert:
 tableView.insertRows(at: [newIndexPath!], with: .fade)
 case .delete:
 tableView.deleteRows(at: [indexPath!], with: .fade)
 case .update:
 tableView.reloadRows(at: [indexPath!], with: .none)
 case .move:
 tableView.deleteRows(at: [indexPath!], with: .fade)
 tableView.insertRows(at: [newIndexPath!], with: .fade)
 }
}

func controllerDidChangeContent(_ controller:
NSFetchedResultsController<NSFetchRequestResult>) {
 tableView.endUpdates()
}
}

Read NSFetchedResultsController online: https://riptutorial.com/core-
data/topic/9985/nsfetchedresultscontroller

https://riptutorial.com/ 19

https://riptutorial.com/core-data/topic/9985/nsfetchedresultscontroller
https://riptutorial.com/core-data/topic/9985/nsfetchedresultscontroller

Chapter 5: Sort Descriptors

Examples

Ordering Data Returned By Fetch Requests

Set the NSFetchRequest property sortDescriptors to determine how data is returned.

let fetchRequest = NSFetchRequest(entityName: "NAME_OF_ENTITY")
let sortDescriptor = NSSortDescriptor(key: "NAME_OF_ATTRIBUTE", ascending: true)
fetchRequest.sortDescriptors = [sortDescriptor]

Multiple Sort Descriptors

You can also set multiple sort descriptors, to sort by one attribute within another. For example,
return all entries ordered by date, and by name within each date:

let fetchRequest = NSFetchRequest(entityName: "NAME_OF_ENTITY")
let sortDescriptor1 = NSSortDescriptor(key: "name", ascending: true)
let sortDescriptor2 = NSSortDescriptor(key: "date", ascending: true)
fetchRequest.sortDescriptors = [sortDescriptor1, sortDescriptor2]

Read Sort Descriptors online: https://riptutorial.com/core-data/topic/5971/sort-descriptors

https://riptutorial.com/ 20

https://riptutorial.com/core-data/topic/5971/sort-descriptors

Chapter 6: Using Predicates

Examples

Matching an exact string

let fetchRequest = NSFetchRequest(entityName: "Foo")
var thePredicate: NSPredicate?
thePredicate = NSPredicate(format: "message == 'example'")

The entity Foo has a message string attribute

Substitutions

Rather than passing a static string as a predicate's criteria. It is possible to substitute values by
using format specifiers. There are five format specifiers:

%K is a var arg substitution for a key path.•
%@ is a var arg substitution for an object value-often a string, number, date, or an array.•
%ld is a var arg substitution for an int value.•
%la is a var arg substitution for a double.•
%a is a var arg substitution for a float.•

In the following example, the %K format specifier serves as the left-hand argument which passes in
the "message" property dynamically. The %@ format specifier serves as the right-hand argument to
dynamically pass in a string containing the word "example".

let predicate = NSPredicate(format:"%K == %@", "message", "example")

Read Using Predicates online: https://riptutorial.com/core-data/topic/4283/using-predicates

https://riptutorial.com/ 21

https://riptutorial.com/core-data/topic/4283/using-predicates

Credits

S.
No

Chapters Contributors

1
Getting started with core-
data

Asdrubal, Community, Josh Caswell, rgeorge, Santa
Claus, TMob

2 Core Data Stack Asdrubal, Jon Rose, Santa Claus

3
Creating an Core Data
Model

Asdrubal

4 NSFetchedResultsController D4ttatraya

5 Sort Descriptors Jonas

6 Using Predicates Dan Beaulieu, David

https://riptutorial.com/ 22

https://riptutorial.com/contributor/1176706/asdrubal
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/603977/josh-caswell
https://riptutorial.com/contributor/50294/rgeorge
https://riptutorial.com/contributor/2446155/santa-claus
https://riptutorial.com/contributor/2446155/santa-claus
https://riptutorial.com/contributor/3981769/tmob
https://riptutorial.com/contributor/1176706/asdrubal
https://riptutorial.com/contributor/1143046/jon-rose
https://riptutorial.com/contributor/2446155/santa-claus
https://riptutorial.com/contributor/1176706/asdrubal
https://riptutorial.com/contributor/5546312/d4ttatraya
https://riptutorial.com/contributor/6219051/jonas
https://riptutorial.com/contributor/1664443/dan-beaulieu
https://riptutorial.com/contributor/5230046/david

	About
	Chapter 1: Getting started with core-data
	Remarks
	Examples
	Creating Your First Model
	Creating the project

	Chapter 2: Core Data Stack
	Remarks
	Objective-C
	Swift 2
	Swift 3
	NSManagedObjectModel
	NSPersistentStoreCoordinator
	NSManagedObjectContext
	Examples
	Objective-C Example
	Swift 2 Example
	iOS 10 Example in Swift

	Chapter 3: Creating an Core Data Model
	Remarks
	Examples
	Adding an Entity to Core Data Model
	Adding Attributes to Entity
	Adding Relationships to Core Data Model

	Chapter 4: NSFetchedResultsController
	Introduction
	Examples
	NSFetchedResultsController for UITableView

	Chapter 5: Sort Descriptors
	Examples
	Ordering Data Returned By Fetch Requests
	Multiple Sort Descriptors

	Chapter 6: Using Predicates
	Examples
	Matching an exact string
	Substitutions

	Credits

