
C# Language

#c#

Table of Contents

About 1

Chapter 1: Getting started with C# Language 2

Remarks 2

Versions 2

Examples 2

Creating a new console application (Visual Studio) 2

Explanation 3

Using the command line 3

Creating a new project in Visual Studio (console application) and Running it in Debug mode 5

Creating a new program using Mono 9

Creating a new program using .NET Core 10

Command Prompt output 11

Creating a new query using LinqPad 11

Creating a new project using Xamarin Studio 15

Chapter 2: .NET Compiler Platform (Roslyn) 22

Examples 22

Create workspace from MSBuild project 22

Syntax tree 22

Semantic model 22

Chapter 3: Access Modifiers 24

Remarks 24

Examples 24

public 24

private 24

internal 25

protected 25

protected internal 26

Access Modifiers Diagrams 28

Chapter 4: Access network shared folder with username and password 30

Introduction 30

Examples 30

Code to access network shared file 30

Chapter 5: Accessing Databases 33

Examples 33

ADO.NET Connections 33

Common Data Provider Classes 33

Common Access Pattern for ADO.NET Connections 33

Entity Framework Connections 34

Executing Entity Framework Queries 35

Connection Strings 35

Storing Your Connection String 36

Different Connections for Different Providers 36

Chapter 6: Action Filters 37

Examples 37

Custom Action Filters 37

Chapter 7: Aliases of built-in types 39

Examples 39

Built-In Types Table 39

Chapter 8: An overview of c# collections 41

Examples 41

HashSet 41

SortedSet 41

T[] (Array of T) 41

List 42

Dictionary 42

Duplicate key when using collection initialization 43

Stack 43

LinkedList 43

Queue 44

Chapter 9: Anonymous types 45

Examples 45

Creating an anonymous type 45

Anonymous vs dynamic 45

Generic methods with anonymous types 46

Instantiating generic types with anonymous types 46

Anonymous type equality 46

Implicitly typed arrays 47

Chapter 10: Arrays 48

Syntax 48

Remarks 48

Examples 48

Array covariance 49

Getting and setting array values 49

Declaring an array 49

Iterate over an array 50

Multi-dimensional arrays 51

Jagged arrays 51

Checking if one array contains another array 52

Initializing an array filled with a repeated non-default value 53

Copying arrays 54

Creating an array of sequential numbers 54

Usage: 55

Comparing arrays for equality 55

Arrays as IEnumerable<> instances 55

Chapter 11: ASP.NET Identity 57

Introduction 57

Examples 57

How to implement password reset token in asp.net identity using user manager. 57

Chapter 12: AssemblyInfo.cs Examples 61

Remarks 61

Examples 61

[AssemblyTitle] 61

[AssemblyProduct] 61

Global and local AssemblyInfo 61

[AssemblyVersion] 62

Reading Assembly Attributes 62

Automated versioning 62

Common fields 63

[AssemblyConfiguration] 63

[InternalsVisibleTo] 63

[AssemblyKeyFile] 64

Chapter 13: Async/await, Backgroundworker, Task and Thread Examples 65

Remarks 65

Examples 65

ASP.NET Configure Await 65

Blocking 65

ConfigureAwait 66

Async/await 67

BackgroundWorker 68

Task 69

Thread 70

Task "run and forget" extension 71

Chapter 14: Async-Await 72

Introduction 72

Remarks 72

Examples 72

Simple consecutive calls 72

Try/Catch/Finally 72

Web.config setup to target 4.5 for correct async behaviour. 73

Concurrent calls 74

Await operator and async keyword 75

Returning a Task without await 76

Blocking on async code can cause deadlocks 77

Async/await will only improve performance if it allows the machine to do additional work 78

Chapter 15: Asynchronous Socket 80

Introduction 80

Remarks 80

Examples 81

Asynchronous Socket (Client / Server) example. 81

Chapter 16: Attributes 89

Examples 89

Creating a custom attribute 89

Using an attribute 89

Reading an attribute 89

DebuggerDisplay Attribute 90

Caller info attributes 91

Reading an attribute from interface 92

Obsolete Attribute 93

Chapter 17: BackgroundWorker 94

Syntax 94

Remarks 94

Examples 94

Assigning Event Handlers to a BackgroundWorker 94

Assigning Properties to a BackgroundWorker 95

Creating a new BackgroundWorker instance 95

Using a BackgroundWorker to complete a task. 96

The result is the following... 97

Chapter 18: BigInteger 98

Remarks 98

When To Use 98

Alternatives 98

Examples 98

Calculate the First 1,000-Digit Fibonacci Number 98

Chapter 19: Binary Serialization 100

Remarks 100

Examples 100

Making an object serializable 100

Controlling serialization behavior with attributes 100

Adding more control by implementing ISerializable 101

Serialization surrogates (Implementing ISerializationSurrogate) 102

Serialization Binder 104

Some gotchas in backward compatibility 106

Chapter 20: BindingList 109

Examples 109

Avoiding N*2 iteration 109

Add item to list 109

Chapter 21: Built-in Types 110

Examples 110

Immutable reference type - string 110

Value type - char 110

Value type - short, int, long (signed 16 bit, 32 bit, 64 bit integers) 110

Value type - ushort, uint, ulong (unsigned 16 bit, 32 bit, 64 bit integers) 111

Value type - bool 111

Comparisons with boxed value types 112

Conversion of boxed value types 112

Chapter 22: C# 3.0 Features 113

Remarks 113

Examples 113

Implicitly typed variables (var) 113

Language Integrated Queries (LINQ) 113

Lambda expresions 114

Anonymous types 115

Chapter 23: C# 4.0 Features 117

Examples 117

Optional parameters and named arguments 117

Variance 118

Optional ref keyword when using COM 118

Dynamic member lookup 118

Chapter 24: C# 5.0 Features 120

Syntax 120

Parameters 120

Remarks 120

Examples 120

Async & Await 120

Caller Information Attributes 122

Chapter 25: C# 6.0 Features 123

Introduction 123

Remarks 123

Examples 123

Operator nameof 123

Workaround for previous versions (more detail) 124

Expression-bodied function members 125

Properties 125

Indexers 125

Methods 126

Operators 126

Limitations 127

Exception filters 127

Using exception filters 128

Risky when clause 128

Logging as a side effect 130

The finally block 131

Example: finally block 131

Auto-property initializers 132

Introduction 132

Accessors With Different Visibility 132

Read-Only Properties 133

Old style (pre C# 6.0) 133

Usage 133

Cautionary notes 134

Index initializers 135

String interpolation 137

Basic Example 137

Using interpolation with verbatim string literals 138

Expressions 138

Escape sequences 140

FormattableString type 140

Implicit conversions 141

Current and Invariant Culture Methods 141

Behind the scenes 142

String Interpolation and Linq 142

Reusable Interpolated Strings 143

String interpolation and localization 143

Recursive interpolation 144

Await in catch and finally 145

Null propagation 146

Basics 146

Use with the Null-Coalescing Operator (??) 147

Use with Indexers 147

Use with void Functions 147

Use with Event Invocation 148

Limitations 148

Gotchas 148

Using static type 150

Improved overload resolution 150

Minor changes and bugfixes 151

Using an extension method for collection initialization 152

Disable Warnings Enhancements 153

Chapter 26: C# 7.0 Features 154

Introduction 154

Examples 154

out var declaration 154

Example 154

Limitations 155

References 156

Binary literals 156

Flags enumerations 156

Digit separators 157

Language support for Tuples 157

Basics 157

Tuple Deconstruction 158

Tuple Initialization 159

h11 160

Type inference 160

Reflection and Tuple Field Names 160

Use with generics and async 160

Use with collections 161

Differences between ValueTuple and Tuple 162

References 162

Local functions 162

Example 162

Example 163

Example 163

Pattern Matching 164

switch expression 164

is expression 165

Example 165

ref return and ref local 166

Ref Return 166

Ref Local 166

Unsafe Ref Operations 166

Links 167

throw expressions 167

Extended expression bodied members list 168

ValueTask 169

1. Performance increase 169

2. Increased implementation flexibility 169

Synchronous implementation: 170

Asynchronous implementation 170

Notes 170

Chapter 27: C# Authentication handler 172

Examples 172

Authentication handler 172

Chapter 28: C# Script 174

Examples 174

Simple code evaluation 174

Chapter 29: Caching 175

Examples 175

MemoryCache 175

Chapter 30: Casting 176

Remarks 176

Examples 176

Cast an object to a base type 176

Explicit Casting 177

Safe Explicit Casting (`as` operator) 177

Implicit Casting 177

Checking compatibility without casting 177

Explicit Numeric Conversions 178

Conversion Operators 178

LINQ Casting operations 179

Chapter 31: Checked and Unchecked 181

Syntax 181

Examples 181

Checked and Unchecked 181

Checked and Unchecked as a scope 181

Chapter 32: CLSCompliantAttribute 182

Syntax 182

Parameters 182

Remarks 182

Examples 182

Access Modifier to which CLS rules apply 182

Violation of CLS rule: Unsigned types / sbyte 183

Violation of CLS rule: Same naming 184

Violation of CLS rule: Identifier _ 184

Violation of CLS rule: Inherit from non CLSComplaint class 185

Chapter 33: Code Contracts 186

Syntax 186

Remarks 186

Examples 186

Preconditions 186

Postconditions 187

Invariants 187

Defining Contracts on Interface 188

Chapter 34: Code Contracts and Assertions 191

Examples 191

Assertions to check logic should always be true 191

Chapter 35: Collection Initializers 192

Remarks 192

Examples 192

Collection initializers 192

C# 6 Index Initializers 192

Dictionary Initialization 193

Collection initializers in custom classes 194

Collection Initializers with Parameter Arrays 194

Using collection initializer inside object initializer 195

Chapter 36: Comments and regions 197

Examples 197

Comments 197

Single line comments 197

Multi line or delimited comments 197

Regions 198

Documentation comments 199

Chapter 37: Common String Operations 201

Examples 201

Splitting a String by specific character 201

Getting Substrings of a given string 201

Determine whether a string begins with a given sequence 201

Trimming Unwanted Characters Off the Start and/or End of Strings. 201

String.Trim() 201

String.TrimStart() and String.TrimEnd() 202

Formatting a string 202

Joining an array of strings into a new one 202

Padding a string to a fixed length 202

Construct a string from Array 202

Formatting using ToString 203

Getting x characters from the right side of a string 203

Checking for empty String using String.IsNullOrEmpty() and String.IsNullOrWhiteSpace() 205

Getting a char at specific index and enumerating the string 206

Convert Decimal Number to Binary,Octal and Hexadecimal Format 206

Splitting a String by another string 207

Correctly reversing a string 207

Replacing a string within a string 209

Changing the case of characters within a String 209

Concatenate an array of strings into a single string 209

String Concatenation 210

Chapter 38: Conditional Statements 211

Examples 211

If-Else Statement 211

If-Else If-Else Statement 211

Switch statements 212

If statement conditions are standard boolean expressions and values 213

Chapter 39: Constructors and Finalizers 215

Introduction 215

Remarks 215

Examples 215

Default Constructor 215

Calling a constructor from another constructor 216

Static constructor 217

Calling the base class constructor 218

Finalizers on derived classes 219

Singleton constructor pattern 219

Forcing a static constructor to be called 220

Calling virtual methods in constructor 220

Generic Static Constructors 221

Exceptions in static constructors 221

Constructor and Property Initialization 222

Chapter 40: Creating a Console Application using a Plain-Text Editor and the C# Compiler (225

Examples 225

Creating a Console application using a Plain-Text Editor and the C# Compiler 225

Saving the Code 225

Compiling the Source Code 225

Chapter 41: Creating Own MessageBox in Windows Form Application 227

Introduction 227

Syntax 227

Examples 227

Creating Own MessageBox Control. 227

How to use own created MessageBox control in another Windows Form application. 229

Chapter 42: Creational Design Patterns 231

Remarks 231

Examples 231

Singleton Pattern 231

Factory Method pattern 233

Builder Pattern 235

Prototype Pattern 239

Abstract Factory Pattern 241

Chapter 43: Cryptography (System.Security.Cryptography) 245

Examples 245

Modern Examples of Symmetric Authenticated Encryption of a string 245

Introduction to Symmetric and Asymmetric Encryption 256

Symmetric Encryption 257

Asymmetric Encryption 257

Password Hashing 258

Simple Symmetric File Encryption 258

Cryptographically Secure Random Data 259

Fast Asymmetric File Encryption 260

Chapter 44: Data Annotation 266

Examples 266

DisplayNameAttribute (display attribute) 266

EditableAttribute (data modeling attribute) 267

Validation Attributes 269

Example: RequiredAttribute 269

Example: StringLengthAttribute 269

Example: RangeAttribute 269

Example: CustomValidationAttribute 270

Creating a custom validation attribute 270

Data Annotation Basics 271

Usage 271

Manually Execute Validation Attributes 271

Validation Context 271

Validate an Object and All of its Properties 272

Validate a Property of an Object 272

And More 272

Chapter 45: DateTime Methods 273

Examples 273

DateTime.Add(TimeSpan) 273

DateTime.AddDays(Double) 273

DateTime.AddHours(Double) 273

DateTime.AddMilliseconds(Double) 273

DateTime.Compare(DateTime t1, DateTime t2) 274

DateTime.DaysInMonth(Int32,Int32) 274

DateTime.AddYears(Int32) 274

Pure functions warning when dealing with DateTime 275

DateTime.Parse(String) 275

DateTime.TryParse(String, DateTime) 275

Parse and TryParse with culture info 276

DateTime as initializer in for-loop 276

DateTime ToString, ToShortDateString, ToLongDateString and ToString formatted 276

Current Date 277

DateTime Formating 277

DateTime.ParseExact(String,String,IFormatProvider) 278

DateTime.TryParseExact(String,String,IFormatProvider,DateTimeStyles,DateTime) 279

Chapter 46: Delegates 282

Remarks 282

Summary 282

In-built delegate types: Action<...>, Predicate<T> and Func<...,TResult> 282

Custom delegate types 282

Invoking delegates 282

Assigning to delegates 282

Combining delegates 282

Examples 283

Underlying references of named method delegates 283

Declaring a delegate type 283

The Func, Action and Predicate delegate types 285

Assigning a named method to a delegate 286

Delegate Equality 286

Assigning to a delegate by lambda 286

Passing delegates as parameters 287

Combine Delegates (Multicast Delegates) 287

Safe invoke multicast delegate 289

Closure inside a delegate 290

Encapsulating transformations in funcs 290

Chapter 47: Dependency Injection 292

Remarks 292

Examples 292

Dependency injection using MEF 292

Dependency Injection C# and ASP.NET with Unity 294

Chapter 48: Diagnostics 298

Examples 298

Debug.WriteLine 298

Redirecting log output with TraceListeners 298

Chapter 49: Dynamic type 299

Remarks 299

Examples 299

Creating a dynamic variable 299

Returning dynamic 299

Creating a dynamic object with properties 300

Handling Specific Types Unknown at Compile Time 300

Chapter 50: Enum 302

Introduction 302

Syntax 302

Remarks 302

Examples 302

Get all the members values of an enum 302

Enum as flags 303

Test flags-style enum values with bitwise logic 305

Enum to string and back 305

Default value for enum == ZERO 306

Enum basics 307

Bitwise Manipulation using enums 308

Using << notation for flags 308

Adding additional description information to an enum value 309

Add and remove values from flagged enum 310

Enums can have unexpected values 310

Chapter 51: Equality Operator 312

Examples 312

Equality kinds in c# and equality operator 312

Chapter 52: Equals and GetHashCode 313

Remarks 313

Examples 313

Default Equals behavior. 313

Writing a good GetHashCode override 314

Override Equals and GetHashCode on custom types 315

Equals and GetHashCode in IEqualityComparator 316

Chapter 53: Events 318

Introduction 318

Parameters 318

Remarks 318

Examples 319

Declaring and Raising Events 319

Declaring an Event 319

Raising the Event 319

Standard Event Declaration 320

Anonymous Event Handler Declaration 321

Non-Standard Event Declaration 322

Creating custom EventArgs containing additional data 322

Creating cancelable event 324

Event Properties 325

Chapter 54: Exception Handling 327

Examples 327

Basic Exception Handling 327

Handling specific exception types 327

Using the exception object 327

Finally block 329

Implementing IErrorHandler for WCF Services 330

Creating Custom Exceptions 333

Creating Custom Exception Class 333

re-throwing 333

serialization 334

Using the ParserException 334

Security Concerns 335

Conclusion 335

Exception Anti-patterns 336

Swallowing Exceptions 336

Baseball Exception Handling 336

catch (Exception) 337

Aggregate exceptions / multiple exceptions from one method 338

Nesting of Exceptions & try catch blocks. 339

Best Practices 340

Cheatsheet 340

DO NOT manage business logic with exceptions. 340

DO NOT re-throw Exceptions 341

DO NOT absorb exceptions with no logging 341

Do not catch exceptions that you cannot handle 342

Unhandled and Thread Exception 342

Throwing an exception 343

Chapter 55: Expression Trees 344

Introduction 344

Syntax 344

Parameters 344

Remarks 344

Intro to Expression Trees 344

Where we came from 344

How to avoid flow inversion's memory and latency problems 344

Expression trees save the day 345

Creating expression trees 345

Expression Trees and LINQ 346

Notes 346

Examples 346

Creating Expression Trees by Using the API 346

Compiling Expression Trees 346

Parsing Expression Trees 347

Create Expression Trees with a lambda expression 347

Understanding the expressions API 347

Expression Tree Basic 348

Examining the Structure of an Expression using Visitor 349

Chapter 56: Extension Methods 351

Syntax 351

Parameters 351

Remarks 351

Examples 352

Extension methods - overview 352

Explicitly using an extension method 355

When to call extension methods as static methods 355

Using static 356

Null checking 356

Extension methods can only see public (or internal) members of the extended class 356

Generic Extension Methods 357

Extension methods dispatch based on static type 358

Extension methods aren't supported by dynamic code. 360

Extension methods as strongly typed wrappers 361

Extension methods for chaining 361

Extension methods in combination with interfaces 362

IList Extension Method Example: Comparing 2 Lists 362

Extension methods with Enumeration 363

Extensions and interfaces together enable DRY code and mixin-like functionality 365

Extension methods for handling special cases 365

Using Extension methods with Static methods and Callbacks 366

Extension methods on Interfaces 368

Using Extension methods to create beautiful mapper classes 368

Using Extension methods to build new collection types (e.g. DictList) 369

Chapter 57: File and Stream I/O 371

Introduction 371

Syntax 371

Parameters 371

Remarks 371

Examples 372

Reading from a file using the System.IO.File class 372

Writing lines to a file using the System.IO.StreamWriter class 372

Writing to a file using the System.IO.File class 372

Lazily reading a file line-by-line via an IEnumerable 373

Create File 373

Copy File 374

Move File 374

Delete File 375

Files and Directories 375

Async write text to a file using StreamWriter 375

Chapter 58: FileSystemWatcher 376

Syntax 376

Parameters 376

Examples 376

Basic FileWatcher 376

IsFileReady 377

Chapter 59: Func delegates 378

Syntax 378

Parameters 378

Examples 378

Without parameters 378

With multiple variables 379

Lambda & anonymous methods 379

Covariant & Contravariant Type Parameters 380

Chapter 60: Function with multiple return values 381

Remarks 381

Examples 381

"anonymous object" + "dynamic keyword" solution 381

Tuple solution 381

Ref and Out Parameters 382

Chapter 61: Functional Programming 383

Examples 383

Func and Action 383

Immutability 383

Avoid Null References 385

Higher-Order Functions 386

Immutable collections 386

Creating and adding items 386

Creating using the builder 386

Creating from an existing IEnumerable 387

Chapter 62: Garbage Collector in .Net 388

Examples 388

Large Object Heap compaction 388

Weak References 388

Chapter 63: Generating Random Numbers in C# 391

Syntax 391

Parameters 391

Remarks 391

Examples 391

Generate a random int 391

Generate a Random double 392

Generate a random int in a given range 392

Generating the same sequence of random numbers over and over again 392

Create multiple random class with different seeds simultaneously 392

Generate a random character 393

Generate a number that is a percentage of a max value 393

Chapter 64: Generic Lambda Query Builder 394

Remarks 394

Examples 394

QueryFilter class 394

GetExpression Method 395

GetExpression Private overload 396

For one filter: 396

For two filters: 397

ConstantExpression Method 397

Usage 398

Output: 398

Chapter 65: Generics 399

Syntax 399

Parameters 399

Remarks 399

Examples 399

Type Parameters (Classes) 399

Type Parameters (Methods) 400

Type Parameters (Interfaces) 400

Implicit type inference (methods) 401

Type constraints (classes and interfaces) 402

Type constraints (class and struct) 403

Type constraints (new-keyword) 404

Type inference (classes) 404

Reflecting on type parameters 405

Explicit type parameters 405

Using generic method with an interface as a constraint type. 406

Covariance 407

Contravariance 408

Invariance 409

Variant interfaces 410

Variant delegates 411

Variant types as parameters and return values 411

Checking equality of generic values. 412

Generic type casting 412

Configuration reader with generic type casting 413

Chapter 66: Getting Started: Json with C# 415

Introduction 415

Examples 415

Simple Json Example 415

First things First: Library to work with Json 415

C# Implementation 415

Serialization 416

Deserialization 416

Serialization & De-Serialization Common Utilities function 417

Chapter 67: Guid 418

Introduction 418

Remarks 418

Examples 418

Getting the string representation of a Guid 418

Creating a Guid 418

Declaring a nullable GUID 419

Chapter 68: Handling FormatException when converting string to other types 420

Examples 420

Converting string to integer 420

Chapter 69: Hash Functions 422

Remarks 422

Examples 422

MD5 422

SHA1 423

SHA256 423

SHA384 424

SHA512 424

PBKDF2 for Password Hashing 425

Complete Password Hashing Solution using Pbkdf2 426

Chapter 70: How to use C# Structs to create a Union type (Similar to C Unions) 430

Remarks 430

Examples 430

C-Style Unions in C# 430

Union Types in C# can also contain Struct fields 431

Chapter 71: ICloneable 433

Syntax 433

Remarks 433

Examples 433

Implementing ICloneable in a class 433

Implementing ICloneable in a struct 434

Chapter 72: IComparable 436

Examples 436

Sort versions 436

Chapter 73: IDisposable interface 438

Remarks 438

Examples 438

In a class that contains only managed resources 438

In a class with managed and unmanaged resources 438

IDisposable, Dispose 439

In an inherited class with managed resources 440

using keyword 440

Chapter 74: IEnumerable 442

Introduction 442

Remarks 442

Examples 442

IEnumerable 442

IEnumerable with custom Enumerator 442

Chapter 75: ILGenerator 444

Examples 444

Creates a DynamicAssembly that contains a UnixTimestamp helper method 444

Create method override 446

Chapter 76: Immutability 447

Examples 447

System.String class 447

Strings and immutability 447

Chapter 77: Implementing Decorator Design Pattern 449

Remarks 449

Examples 449

Simulating cafeteria 449

Chapter 78: Implementing Flyweight Design Pattern 451

Examples 451

Implementing map in RPG game 451

Chapter 79: Import Google Contacts 454

Remarks 454

Examples 454

Requirements 454

Source code in the controller 454

Source code in the view. 457

Chapter 80: Including Font Resources 458

Parameters 458

Examples 458

Instantiate 'Fontfamily' from Resources 458

Integration method 458

Usage with a 'Button' 459

Chapter 81: Indexer 460

Syntax 460

Remarks 460

Examples 460

A simple indexer 460

Indexer with 2 arguments and interface 460

Overloading the indexer to create a SparseArray 461

Chapter 82: Inheritance 462

Syntax 462

Remarks 462

Examples 462

Inheriting from a base class 462

Inheriting from a class and implementing an interface 463

Inheriting from a class and implementing multiple interfaces 463

Testing and navigating inheritance 464

Extending an abstract base class 465

Constructors In A Subclass 465

Inheritance. Constructors' calls sequence 466

Inheriting methods 468

Inheritance Anti-patterns 469

Improper Inheritance 469

Base class with recursive type specification 470

Chapter 83: Initializing Properties 473

Remarks 473

Examples 473

C# 6.0: Initialize an Auto-Implemented Property 473

Initializing Property with a Backing Field 473

Initializing Property in Constructor 473

Property Initialization during object instantiation 473

Chapter 84: INotifyPropertyChanged interface 475

Remarks 475

Examples 475

Implementing INotifyPropertyChanged in C# 6 475

INotifyPropertyChanged With Generic Set Method 476

Chapter 85: Interfaces 478

Examples 478

Implementing an interface 478

Implementing multiple interfaces 478

Explicit interface implementation 479

Hint: 480

Note: 480

Why we use interfaces 480

Interface Basics 482

"Hiding" members with Explicit Implementation 484

IComparable as an Example of Implementing an Interface 485

Chapter 86: Interoperability 487

Remarks 487

Examples 487

Import function from unmanaged C++ DLL 487

Finding the dynamic library 487

Simple code to expose class for com 488

C++ name mangling 488

Calling conventions 489

Dynamic loading and unloading of unmanaged DLLs 490

Dealing with Win32 Errors 491

Pinned Object 492

Reading structures with Marshal 493

Chapter 87: IQueryable interface 495

Examples 495

Translating a LINQ query to a SQL query 495

Chapter 88: Iterators 496

Remarks 496

Examples 496

Simple Numeric Iterator Example 496

Creating Iterators Using Yield 496

Chapter 89: Keywords 499

Introduction 499

Remarks 499

Examples 501

stackalloc 501

volatile 502

fixed 504

Fixed Variables 504

Fixed Array Size 504

default 504

readonly 505

as 506

is 507

typeof 508

const 508

namespace 510

try, catch, finally, throw 510

continue 511

ref, out 512

checked, unchecked 513

goto 515

goto as a: 515

Label: 515

Case statement: 515

Exception Retry 515

enum 516

base 517

foreach 519

params 520

break 521

abstract 522

float, double, decimal 524

float 524

double 524

decimal 524

uint 525

this 525

for 526

while 527

return 529

in 529

using 529

sealed 530

sizeof 530

static 531

Drawbacks 533

int 533

long 533

ulong 533

dynamic 534

virtual, override, new 535

virtual and override 535

new 536

The usage of override is not optional 537

Derived classes can introduce polymorphism 537

Virtual methods cannot be private 538

async, await 538

char 539

lock 540

null 541

internal 542

where 543

The previous examples show generic constraints on a class definition, but constraints can 545

extern 545

bool 546

when 546

unchecked 547

When is this useful? 547

void 547

if, if...else, if... else if 548

Important to note that if a condition is met in the above example , the control skips othe 549

do 549

operator 550

struct 551

switch 553

interface 553

unsafe 554

implicit 556

true, false 556

string 557

ushort 557

sbyte 557

var 558

delegate 559

event 560

partial 560

Chapter 90: Lambda expressions 563

Remarks 563

Examples 563

Passing a Lambda Expression as a Parameter to a Method 563

Lambda Expressions as Shorthand for Delegate Initialization 563

Lambdas for both `Func` and `Action` 563

Lambda Expressions with Multiple Parameters or No Parameters 564

Put Multiple Statements in a Statement Lambda 564

Lambdas can be emitted both as `Func` and `Expression` 564

Lambda Expression as an Event Handler 565

Chapter 91: Lambda Expressions 567

Remarks 567

Closures 567

Examples 567

Basic lambda expressions 567

Basic lambda expressions with LINQ 568

Using lambda syntax to create a closure 568

Lambda syntax with statement block body 569

Lambda expressions with System.Linq.Expressions 569

Chapter 92: LINQ Queries 570

Introduction 570

Syntax 570

Remarks 572

Examples 572

Where 572

Method syntax 572

Query syntax 573

Select - Transforming elements 573

Chaining methods 573

Range and Repeat 574

Range 574

Repeat 575

Skip and Take 575

First, FirstOrDefault, Last, LastOrDefault, Single, and SingleOrDefault 576

First() 576

FirstOrDefault() 576

Last() 577

LastOrDefault() 577

Single() 578

SingleOrDefault() 578

Recommendations 579

Except 580

SelectMany: Flattening a sequence of sequences 581

SelectMany 583

All 584

1. Empty parameter 584

2. Lambda expression as parameter 584

3. Empty collection 584

Query collection by type / cast elements to type 585

Union 585

JOINS 586

(Inner) Join 586

Left outer join 586

Right Outer Join 586

Cross Join 587

Full Outer Join 587

Practical example 587

Distinct 588

GroupBy one or multiple fields 589

Using Range with various Linq methods 589

Query Ordering - OrderBy() ThenBy() OrderByDescending() ThenByDescending() 590

Basics 591

GroupBy 592

Simple Example 592

More Complex Example 592

Any 593

1. Empty parameter 593

2. Lambda expression as parameter 593

3. Empty collection 593

ToDictionary 594

Aggregate 595

Defining a variable inside a Linq query (let keyword) 595

SkipWhile 596

DefaultIfEmpty 596

Usage in Left Joins: 597

SequenceEqual 598

Count and LongCount 598

Incrementally building a query 598

Zip 600

GroupJoin with outer range variable 600

ElementAt and ElementAtOrDefault 601

Linq Quantifiers 601

Joining multiple sequences 602

Joining on multiple keys 604

Select with Func selector - Use to get ranking of elements 604

TakeWhile 606

Sum 606

ToLookup 606

Build your own Linq operators for IEnumerable 607

Using SelectMany instead of nested loops 608

Any and First(OrDefault) - best practice 608

GroupBy Sum and Count 609

Reverse 610

Enumerating the Enumerable 611

OrderBy 613

OrderByDescending 614

Concat 615

Contains 615

Chapter 93: Linq to Objects 617

Introduction 617

Examples 617

How LINQ to Object executes queries 617

Using LINQ to Objects in C# 617

Chapter 94: LINQ to XML 622

Examples 622

Read XML using LINQ to XML 622

Chapter 95: Literals 624

Syntax 624

Examples 624

int literals 624

uint literals 624

string literals 624

char literals 625

byte literals 625

sbyte literals 625

decimal literals 625

double literals 625

float literals 625

long literals 626

ulong literal 626

short literal 626

ushort literal 626

bool literals 626

Chapter 96: Lock Statement 627

Syntax 627

Remarks 627

Examples 628

Simple usage 628

Throwing exception in a lock statement 628

Return in a lock statement 629

Using instances of Object for lock 629

Anti-Patterns and gotchas 629

Locking on an stack-allocated / local variable 629

Assuming that locking restricts access to the synchronizing object itself 630

Expecting subclasses to know when to lock 630

Locking on a boxed ValueType variable does not synchronize 632

Using locks unnecessarily when a safer alternative exists 633

Chapter 97: Looping 635

Examples 635

Looping styles 635

break 636

Foreach Loop 637

While loop 638

For Loop 638

Do - While Loop 639

Nested loops 640

continue 640

Chapter 98: Making a variable thread safe 641

Examples 641

Controlling access to a variable in a Parallel.For loop 641

Chapter 99: Methods 642

Examples 642

Declaring a Method 642

Calling a Method 642

Parameters and Arguments 643

Return Types 643

Default Parameters 644

Method overloading 644

Anonymous method 646

Access rights 646

Chapter 100: Microsoft.Exchange.WebServices 648

Examples 648

Retrieve Specified User's Out of Office Settings 648

Update Specific User's Out of Office Settings 649

Chapter 101: Named and Optional Arguments 651

Remarks 651

Examples 651

Named Arguments 651

Optional Arguments 653

Chapter 102: Named Arguments 656

Examples 656

Named Arguments can make your code more clear 656

Named arguments and optional paramaters 656

Argument order is not necessary 657

Named Arguments avoids bugs on optional parameters 657

Chapter 103: nameof Operator 659

Introduction 659

Syntax 659

Examples 659

Basic usage: Printing a variable name 659

Printing a parameter name 659

Raising PropertyChanged event 660

Handling PropertyChanged events 660

Applied to a generic type parameter 661

Applied to qualified identifiers 662

Argument Checking and Guard Clauses 662

Strongly typed MVC action links 663

Chapter 104: Naming Conventions 664

Introduction 664

Remarks 664

Choose easily readable identifier names 664

Favor readability over brevity 664

Do not use Hungarian notation 664

Abbreviations and acronyms 664

Examples 664

Capitalization conventions 664

Pascal Casing 665

Camel Casing 665

Uppercase 665

Rules 665

Interfaces 666

Private fields 666

Camel case 666

Camel case with underscore 666

Namespaces 667

Enums 667

Use a singular name for most Enums 667

Use a plural name for Enum types that are bit fields 667

Do not add 'enum' as a suffix 667

Do not use the enum name in each entry 668

Exceptions 668

Add 'exception' as a suffix 668

Chapter 105: Networking 669

Syntax 669

Remarks 669

Examples 669

Basic TCP Communication Client 669

Download a file from a web server 669

Async TCP Client 670

Basic UDP Client 671

Chapter 106: Nullable types 673

Syntax 673

Remarks 673

Examples 673

Initialising a nullable 674

Check if a Nullable has a value 674

Get the value of a nullable type 674

Getting a default value from a nullable 675

Check if a generic type parameter is a nullable type 675

Default value of nullable types is null 675

Effective usage of underlying Nullable argument 676

Chapter 107: Null-Coalescing Operator 678

Syntax 678

Parameters 678

Remarks 678

Examples 678

Basic usage 678

Null fall-through and chaining 679

Null coalescing operator with method calls 680

Use existing or create new 680

Lazy properties initialization with null coalescing operator 681

Thread safety 681

C# 6 Syntactic Sugar using expression bodies 681

Example in the MVVM pattern 681

Chapter 108: Null-conditional Operators 682

Syntax 682

Remarks 682

Examples 682

Null-Conditional Operator 682

Chaining the Operator 683

Combining with the Null-Coalescing Operator 683

The Null-Conditional Index 683

Avoiding NullReferenceExceptions 683

Null-conditional Operator can be used with Extension Method 684

Chapter 109: NullReferenceException 685

Examples 685

NullReferenceException explained 685

Chapter 110: O(n) Algorithm for circular rotation of an array 687

Introduction 687

Examples 687

Example of a generic method that rotates an array by a given shift 687

Chapter 111: Object initializers 689

Syntax 689

Remarks 689

Examples 689

Simple usage 689

Usage with anonymous types 689

Usage with non-default constructors 690

Chapter 112: Object Oriented Programming In C# 691

Introduction 691

Examples 691

Classes: 691

Chapter 113: ObservableCollection 692

Examples 692

Initialize ObservableCollection 692

Chapter 114: Operators 693

Introduction 693

Syntax 693

Parameters 693

Remarks 693

Operator Precedence 693

Examples 695

Overloadable Operators 695

Relational Operators 697

Short-circuiting Operators 699

sizeof 700

Overloading equality operators 700

Class Member Operators: Member Access 701

Class Member Operators: Null Conditional Member Access 702

Class Member Operators: Function Invocation 702

Class Member Operators: Aggregate Object Indexing 702

Class Member Operators: Null Conditional Indexing 702

"Exclusive or" Operator 702

Bit-Shifting Operators 702

Implicit Cast and Explicit Cast Operators 703

Binary operators with assignment 704

? : Ternary Operator 704

typeof 706

default Operator 706

Value Type (where T : struct) 706

Reference Type (where T : class) 707

nameof Operator 707

?. (Null Conditional Operator) 707

Postfix and Prefix increment and decrement 708

=> Lambda operator 708

Assignment operator '=' 709

?? Null-Coalescing Operator 709

Chapter 115: Overflow 711

Examples 711

Integer overflow 711

Overflow during operation 711

Ordering matters 711

Chapter 116: Overload Resolution 713

Remarks 713

Examples 713

Basic Overloading Example 713

"params" is not expanded, unless necessary. 714

Passing null as one of the arguments 714

Chapter 117: Parallel LINQ (PLINQ) 716

Syntax 716

Examples 718

Simple example 718

WithDegreeOfParallelism 718

AsOrdered 718

AsUnordered 719

Chapter 118: Partial class and methods 720

Introduction 720

Syntax 720

Remarks 720

Examples 720

Partial classes 720

Partial methods 721

Partial classes inheriting from a base class 721

Chapter 119: Performing HTTP requests 723

Examples 723

Creating and sending an HTTP POST request 723

Creating and sending an HTTP GET request 723

Error handling of specific HTTP response codes (such as 404 Not Found) 724

Sending asynchronous HTTP POST request with JSON body 724

Sending asynchronous HTTP GET request and reading JSON request 725

Retrieve HTML for Web Page (Simple) 725

Chapter 120: Pointers 726

Remarks 726

Pointers and unsafe 726

Undefined behavior 726

Types that support pointers 726

Examples 726

Pointers for array access 726

Pointer arithmetic 727

The asterisk is part of the type 727

void* 728

Member access using -> 728

Generic pointers 729

Chapter 121: Pointers & Unsafe Code 730

Examples 730

Introduction to unsafe code 730

Retrieving the Data Value Using a Pointer 731

Passing Pointers as Parameters to Methods 731

Accessing Array Elements Using a Pointer 732

Compiling Unsafe Code 733

Chapter 122: Polymorphism 734

Examples 734

Another Polymorphism Example 734

Types of Polymorphism 735

Ad hoc polymorphism 735

Subtyping 736

Chapter 123: Preprocessor directives 738

Syntax 738

Remarks 738

Conditional Expressions 738

Examples 739

Conditional Expressions 739

Generating Compiler Warnings and Errors 739

Defining and Undefining Symbols 740

Region Blocks 741

Other Compiler Instructions 741

Line 741

Pragma Checksum 741

Using the Conditional attribute 742

Disabling and Restoring Compiler Warnings 742

Custom Preprocessors at project level 743

Chapter 124: Properties 745

Remarks 745

Examples 745

Various Properties in Context 745

Public Get 746

Public Set 746

Accessing Properties 746

Default Values for Properties 748

Auto-implemented properties 748

Read-only properties 749

Declaration 749

Using read-only properties to create immutable classes 749

Chapter 125: Reactive Extensions (Rx) 751

Examples 751

Observing TextChanged event on a TextBox 751

Streaming Data from Database with Observable 751

Chapter 126: Read & Understand Stacktraces 753

Introduction 753

Examples 753

Stack trace for a simple NullReferenceException in Windows Forms 753

Chapter 127: Reading and writing .zip files 755

Syntax 755

Parameters 755

Examples 755

Writing to a zip file 755

Writing Zip Files in-memory 755

Get files from a Zip file 756

The following example shows how to open a zip archive and extract all .txt files to a fold 756

Chapter 128: Recursion 758

Remarks 758

Examples 758

Recursively describe an object structure 758

Recursion in plain English 759

Using Recursion to Get Directory Tree 760

Fibonacci Sequence 762

Factorial calculation 763

PowerOf calculation 763

Chapter 129: Reflection 765

Introduction 765

Remarks 765

Examples 765

Get a System.Type 765

Get the members of a type 765

Get a method and invoke it 766

Getting and setting properties 767

Custom Attributes 767

Looping through all the properties of a class 769

Determining generic arguments of instances of generic types 769

Get a generic method and invoke it 770

Create an instance of a Generic Type and invoke it's method 771

Instantiating classes that implement an interface (e.g. plugin activation) 771

Creating an instance of a Type 771

With Activator class 772

Without Activator class 772

Get a Type by name with namespace 775

Get a Strongly-Typed Delegate to a Method or Property via Reflection 776

Chapter 130: Regex Parsing 777

Syntax 777

Parameters 777

Remarks 777

Examples 778

Single match 778

Multiple matches 778

Chapter 131: Runtime Compile 779

Examples 779

RoslynScript 779

CSharpCodeProvider 779

Chapter 132: Singleton Implementation 780

Examples 780

Statically Initialized Singleton 780

Lazy, thread-safe Singleton (using Double Checked Locking) 780

Lazy, thread-safe Singleton (using Lazy) 781

Lazy, thread safe singleton (for .NET 3.5 or older, alternate implementation) 781

Disposing of the Singleton instance when it is no longer needed 782

Chapter 133: Static Classes 784

Examples 784

Static keyword 784

Static Classes 784

Static class lifetime 785

Chapter 134: Stopwatches 787

Syntax 787

Remarks 787

Examples 787

Creating an Instance of a Stopwatch 787

IsHighResolution 787

Chapter 135: Stream 789

Examples 789

Using Streams 789

Chapter 136: String Concatenate 791

Remarks 791

Examples 791

+ Operator 791

Concatenate strings using System.Text.StringBuilder 791

Concat string array elements using String.Join 791

Concatenation of two strings using $ 792

Chapter 137: String Escape Sequences 793

Syntax 793

Remarks 793

Examples 793

Unicode character escape sequences 793

Escaping special symbols in character literals 793

Escaping special symbols in string literals 794

Unrecognized escape sequences produce compile-time errors 794

Using escape sequences in identifiers 794

Chapter 138: String Interpolation 796

Syntax 796

Remarks 796

Examples 796

Expressions 796

Format dates in strings 796

Simple Usage 797

Behind the scenes 797

Padding the output 797

Left Padding 797

Right Padding 798

Padding with Format Specifiers 798

Formatting numbers in strings 798

Chapter 139: String Manipulation 800

Examples 800

Changing the case of characters within a String 800

Finding a string within a string 800

Removing (Trimming) white-space from a string 801

Replacing a string within a string 801

Splitting a string using a delimiter 801

Concatenate an array of strings into a single string 802

String Concatenation 802

Chapter 140: String.Format 803

Introduction 803

Syntax 803

Parameters 803

Remarks 803

Examples 803

Places where String.Format is 'embedded' in the framework 803

Using custom number format 804

Create a custom format provider 804

Align left/ right, pad with spaces 805

Numeric formats 805

Currency Formatting 805

Precision 805

Currency Symbol 806

Position of Currency Symbol 806

Custom Decimal Separator 806

Since C# 6.0 806

Escaping curly brackets inside a String.Format() expression 807

Date Formatting 807

ToString() 809

Relationship with ToString() 809

Caveats & Formatting Restrictions 810

Chapter 141: StringBuilder 811

Examples 811

What a StringBuilder is and when to use one 811

Use StringBuilder to create string from a large number of records 812

Chapter 142: Structs 813

Remarks 813

Examples 813

Declaring a struct 813

Struct usage 814

Struct implementing interface 815

Structs are copied on assignment 815

Chapter 143: Structural Design Patterns 817

Introduction 817

Examples 817

Adapter Design Pattern 817

Chapter 144: Synchronization Context in Async-Await 821

Examples 821

Pseudocode for async/await keywords 821

Disabling synchronization context 821

Why SynchronizationContext is so important? 822

Chapter 145: System.DirectoryServices.Protocols.LdapConnection 824

Examples 824

Authenticated SSL LDAP connection, SSL cert does not match reverse DNS 824

Super Simple anonymous LDAP 825

Chapter 146: System.Management.Automation 826

Remarks 826

Examples 826

Invoke simple synchronous pipeline 826

Chapter 147: T4 Code Generation 828

Syntax 828

Examples 828

Runtime Code Generation 828

Chapter 148: Task Parallel Library 829

Examples 829

Parallel.ForEach 829

Parallel.For 829

Parallel.Invoke 830

An async cancellable polling Task that waits between iterations 830

A cancellable polling Task using CancellationTokenSource 831

Async version of PingUrl 832

Chapter 149: Task Parallel Library (TPL) Dataflow Constructs 833

Examples 833

JoinBlock 833

BroadcastBlock 834

WriteOnceBlock 835

BatchedJoinBlock 836

TransformBlock 836

ActionBlock 837

TransformManyBlock 838

BatchBlock 839

BufferBlock 840

Chapter 150: Threading 842

Remarks 842

Examples 842

Simple Complete Threading Demo 842

Simple Complete Threading Demo using Tasks 843

Explicit Task Parallism 844

Implicit Task Parallelism 844

Creating and Starting a Second Thread 844

Starting a thread with parameters 845

Creating One Thread Per Processor 845

Avoiding Reading and Writing Data Simultaneously 845

Parallel.ForEach Loop 847

Deadlocks (two threads waiting on eachother) 847

Deadlocks (hold resource and wait) 849

Chapter 151: Timers 852

Syntax 852

Remarks 852

Examples 852

Multithreaded Timers 852

Features: 853

Creating an Instance of a Timer 854

Assigning the "Tick" event handler to a Timer 854

Example: Using a Timer to perform a simple countdown. 854

Chapter 152: Tuples 857

Examples 857

Creating tuples 857

Accessing tuple elements 857

Comparing and sorting Tuples 857

Return multiple values from a method 858

Chapter 153: Type Conversion 859

Remarks 859

Examples 859

MSDN implicit operator example 859

Explicit Type Conversion 860

Chapter 154: Unsafe Code in .NET 861

Remarks 861

Examples 861

Unsafe Array Index 861

Using unsafe with arrays 862

Using unsafe with strings 862

Chapter 155: Using Directive 864

Remarks 864

Examples 864

Basic Usage 864

Reference a Namespace 864

Associate an Alias with a Namespace 864

Access Static Members of a Class 865

Associate an Alias to Resolve Conflicts 865

Using alias directives 866

Chapter 156: Using json.net 867

Introduction 867

Examples 867

Using JsonConverter on simple values 867

JSON (http://www.omdbapi.com/?i=tt1663662) 867

Movie Model 868

RuntimeSerializer 868

Calling It 869

Collect all fields of JSON object 869

Chapter 157: Using SQLite in C# 872

Examples 872

Creating simple CRUD using SQLite in C# 872

Executing Query 876

Chapter 158: Using Statement 877

Introduction 877

Syntax 877

Remarks 877

Examples 877

Using Statement Basics 877

Returning from using block 878

Multiple using statements with one block 879

Gotcha: returning the resource which you are disposing 880

Using statements are null-safe 880

Gotcha: Exception in Dispose method masking other errors in Using blocks 881

Using Statements and Database Connections 881

Common IDisposable Data Classes 882

Common Access Pattern for ADO.NET Connections 882

Using Statements with DataContexts 883

Using Dispose Syntax to define custom scope 883

Executing code in constraint context 884

Chapter 159: Value type vs Reference type 886

Syntax 886

Remarks 886

Introduction 886

Value types 886

Reference types 886

Major Differences 886

Value types exist on the stack, reference types exist on the heap 886

Value types don't change when you change them in a method, reference types do 887

Value types cannot be null, reference types can 887

Examples 887

Changing values elsewhere 887

Passing by reference 888

Passing by reference using ref keyword. 889

Assignment 890

Difference with method parameters ref and out 890

ref vs out parameters 891

Chapter 160: Verbatim Strings 893

Syntax 893

Remarks 893

Examples 893

Multiline Strings 893

Escaping Double Quotes 894

Interpolated Verbatim Strings 894

Verbatim strings instruct the compiler to not use character escapes 894

Chapter 161: Windows Communication Foundation 896

Introduction 896

Examples 896

Getting started sample 896

Chapter 162: XDocument and the System.Xml.Linq namespace 899

Examples 899

Generate an XML document 899

Modify XML File 899

Generate an XML document using fluent syntax 901

Chapter 163: XML Documentation Comments 902

Remarks 902

Examples 902

Simple method annotation 902

Interface and class documentation comments 902

Method documentation comment with param and returns elements 903

Generating XML from documentation comments 903

Referencing another class in documentation 905

Chapter 164: XmlDocument and the System.Xml namespace 907

Examples 907

Basic XML document interaction 907

Reading from XML document 907

XmlDocument vs XDocument (Example and comparison) 908

Chapter 165: Yield Keyword 911

Introduction 911

Syntax 911

Remarks 911

Examples 911

Simple Usage 911

More Pertinent Usage 912

Early Termination 912

Correctly checking arguments 913

Return another Enumerable within a method returning Enumerable 915

Lazy Evaluation 915

Try...finally 916

Using yield to create an IEnumerator when implementing IEnumerable 917

Eager evaluation 918

Lazy Evaluation Example: Fibonacci Numbers 918

The difference between break and yield break 919

Credits 921

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: csharp-language

It is an unofficial and free C# Language ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official C# Language.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/csharp-language
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with C# Language

Remarks

C# is a multi-paradigm, C-descendant programming language from Microsoft. C# is a managed
language that compiles to CIL, intermediate bytecode which can be executed on Windows, Mac
OS X and Linux.

Versions 1.0, 2.0 and 5.0 were standardized by ECMA (as ECMA-334), and standardization efforts
for modern C# are underway.

Versions

Version Release Date

1.0 2002-01-01

1.2 2003-04-01

2.0 2005-09-01

3.0 2007-08-01

4.0 2010-04-01

5.0 2013-06-01

6.0 2015-07-01

7.0 2017-03-07

Examples

Creating a new console application (Visual Studio)

Open Visual Studio1.
In the toolbar, go to File → New Project2.
Select the Console Application project type3.
Open the file Program.cs in the Solution Explorer4.
Add the following code to Main():5.

public class Program
{
 public static void Main()
 {
 // Prints a message to the console.

https://riptutorial.com/ 2

https://en.wikipedia.org/wiki/Common_Intermediate_Language
http://www.ecma-international.org/publications/standards/Ecma-334.htm
https://msdn.microsoft.com/en-us/library/aa289527(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/7cz8t42e(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/bb308966.aspx
https://msdn.microsoft.com/en-us/library/ms171868(v=VS.100).aspx
https://blogs.msdn.microsoft.com/mvpawardprogram/2012/03/26/an-introduction-to-new-features-in-c-5-0/
https://msdn.microsoft.com/en-us/magazine/dn802602.aspx
https://msdn.microsoft.com/en-us/magazine/mt790184.aspx

 System.Console.WriteLine("Hello, World!");

 /* Wait for the user to press a key. This is a common
 way to prevent the console window from terminating
 and disappearing before the programmer can see the contents
 of the window, when the application is run via Start from within VS. */
 System.Console.ReadKey();
 }
}

In the toolbar, click Debug -> Start Debugging or hit F5 or ctrl + F5 (running without
debugger) to run the program.

6.

Live Demo on ideone

Explanation

class Program is a class declaration. The class Program contains the data and method
definitions that your program uses. Classes generally contain multiple methods. Methods
define the behavior of the class. However, the Program class has only one method: Main.

•

static void Main() defines the Main method, which is the entry point for all C# programs. The
Main method states what the class does when executed. Only one Main method is allowed per
class.

•

System.Console.WriteLine("Hello, world!"); method prints a given data (in this example,
Hello, world!) as an output in the console window.

•

System.Console.ReadKey(), ensures that the program won't close immediately after displaying
the message. It does this by waiting for the user to press a key on the keyboard. Any key
press from the user will terminate the program. The program terminates when it has finished
the last line of code in the main() method.

•

Using the command line

To compile via command line use either MSBuild or csc.exe (the C# compiler), both part of the
Microsoft Build Tools package.

To compile this example, run the following command in the same directory where HelloWorld.cs is
located:

%WINDIR%\Microsoft.NET\Framework64\v4.0.30319\csc.exe HelloWorld.cs

It can also be possible that you have two main methods inside one application. In this case, you
have to tell the compiler which main method to execute by typing the following command in the
console.(suppose Class ClassA also has a main method in the same HelloWorld.cs file in

https://riptutorial.com/ 3

https://ideone.com/3OhmnG
https://www.visualstudio.com/downloads/download-visual-studio-vs#d-build-tools

HelloWorld namespace)

%WINDIR%\Microsoft.NET\Framework64\v4.0.30319\csc.exe HelloWorld.cs /main:HelloWorld.ClassA

where HelloWorld is namespace

Note: This is the path where .NET framework v4.0 is located in general. Change the path
according to your .NET version. In addition, the directory might be framework instead of
framework64 if you're using the 32-bit .NET Framework. From the Windows Command Prompt,
you can list all the csc.exe Framework paths by running the following commands (the first for 32-
bit Frameworks):

dir %WINDIR%\Microsoft.NET\Framework\csc.exe /s/b
dir %WINDIR%\Microsoft.NET\Framework64\csc.exe /s/b

There should now be an executable file named HelloWorld.exe in the same directory. To execute
the program from the command prompt, simply type the executable's name and hit Enter as
follows:

HelloWorld.exe

This will produce:

Hello, world!

You may also double click the executable and launch a new console window with the message "
Hello, world!"

https://riptutorial.com/ 4

Creating a new project in Visual Studio (console application) and Running it in
Debug mode

Download and install Visual Studio. Visual Studio can be downloaded from
VisualStudio.com. The Community edition is suggested, first because it is free, and second
because it involves all the general features and can be extended further.

1.

Open Visual Studio.2.

Welcome. Go to File → New → Project. 3.

Click Templates → Visual C# → Console Application4.

https://riptutorial.com/ 5

https://www.visualstudio.com/products/vs-2015-product-editions
http://www.visualstudio.com
https://i.stack.imgur.com/fpvTX.png

After selecting Console Application, Enter a name for your project, and a location to save
and press OK. Don't worry about the Solution name.

5.

Project created. The newly created project will look similar to:6.

https://riptutorial.com/ 6

https://i.stack.imgur.com/kKGls.png

https://riptutorial.com/ 7

https://i.stack.imgur.com/WVkeF.png

(Always use descriptive names for projects so that they can easily be distinguished from
other projects. It is recommended not to use spaces in project or class name.)

Write code. You can now update your Program.cs to present "Hello world!" to the user.

using System;

namespace ConsoleApplication1
{
 public class Program
 {
 public static void Main(string[] args)
 {
 }
 }
}

Add the following two lines to the public static void Main(string[] args) object in Program.cs:
(make sure it's inside the braces)

7.

: (make sure it's inside the braces)

Console.WriteLine("Hello world!");
Console.Read();

Why Console.Read()? The first line prints out the text "Hello world!" to the console, and the
second line waits for a single character to be entered; in effect, this causes the program to
pause execution so that you're able to see the output while debugging. Without
Console.Read();, when you start debugging the application it will just print "Hello world!" to the
console and then immediately close. Your code window should now look like the following:

using System;

namespace ConsoleApplication1
{
 public class Program
 {
 public static void Main(string[] args)
 {
 Console.WriteLine("Hello world!");
 Console.Read();
 }
 }
}

Debug your program. Press the Start Button on the toolbar near the top of the window

 or press F5 on your keyboard to run your application. If the button is not present,
you can run the program from the top menu: Debug → Start Debugging. The program will
compile and then open a console window. It should look similar to the following screenshot:

8.

https://riptutorial.com/ 8

https://i.stack.imgur.com/odDu6.png

Stop the program. To close the program, just press any key on your keyboard. The
Console.Read() we added was for this same purpose. Another way to close the program is by
going to the menu where the Start button was, and clicking on the Stop button.

9.

Creating a new program using Mono

First install Mono by going through the install instructions for the platform of your choice as
described in their installation section.

Mono is available for Mac OS X, Windows and Linux.

After installation is done, create a text file, name it HelloWorld.cs and copy the following content
into it:

public class Program
{
 public static void Main()
 {
 System.Console.WriteLine("Hello, world!");
 System.Console.WriteLine("Press any key to exit..");
 System.Console.Read();
 }
}

If you are using Windows, run the Mono Command Prompt which is included in the Mono
installation and ensures that the necessary environment variables are set. If on Mac or Linux,
open a new terminal.

To compile the newly created file, run the following command in the directory containing
HelloWorld.cs:

https://riptutorial.com/ 9

https://i.stack.imgur.com/ZD5MF.png
http://www.mono-project.com/
http://www.mono-project.com/docs/getting-started/install/

mcs -out:HelloWorld.exe HelloWorld.cs

The resulting HelloWorld.exe can then be executed with:

mono HelloWorld.exe

which will produce the output:

Hello, world!
Press any key to exit..

Creating a new program using .NET Core

First install the .NET Core SDK by going through the installation instructions for the platform of
your choice:

Windows•
OSX•
Linux•
Docker•

After the installation has completed, open a command prompt, or terminal window.

Create a new directory with mkdir hello_world and change into the newly created directory
with cd hello_world.

1.

Create a new console application with dotnet new console.
This will produce two files:

hello_world.csproj

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

</Project>

•

Program.cs

using System;

namespace hello_world
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");

•

2.

https://riptutorial.com/ 10

https://docs.microsoft.com/en-us/dotnet/articles/core/
https://www.microsoft.com/net/core#windows
https://www.microsoft.com/net/core#macos
https://www.microsoft.com/net/core#linuxubuntu
https://www.microsoft.com/net/core#dockercmd

 }
 }
}

Restore the needed packages with dotnet restore.3.

Optional Build the application with dotnet build for Debug or dotnet build -c Release for
Release. dotnet run will also run the compiler and throw build errors, if any are found.

4.

Run the application with dotnet run for Debug or dotnet run
.\bin\Release\netcoreapp1.1\hello_world.dll for Release.

5.

Command Prompt output

Creating a new query using LinqPad

https://riptutorial.com/ 11

https://i.stack.imgur.com/arqCl.png

LinqPad is a great tool that allows you to learn and test features of .Net languages (C#, F# and
VB.Net.)

Install LinqPad1.

Create a new Query (Ctrl + N) 2.

Under language, select "C# statements" 3.

https://riptutorial.com/ 12

http://www.linqpad.net/
http://i.stack.imgur.com/D0tSi.png
http://i.stack.imgur.com/kC5Ur.jpg

Type the following code and hit run (F5)

string hw = "Hello World";

hw.Dump(); //or Console.WriteLine(hw);

4.

You should see "Hello World" printed out in the results screen. 5.

Now that you have created your first .Net program, go and check out the samples included in
LinqPad via the "Samples" browser. There are many great examples that will show you
many different features of the .Net languages.

6.

https://riptutorial.com/ 13

http://i.stack.imgur.com/LO4kD.jpg
http://i.stack.imgur.com/GzsrS.jpg

Notes:

If you click on "IL", you can inspect the IL code that your .net code generates. This is a great
learning tool.

1.

https://riptutorial.com/ 14

http://i.stack.imgur.com/yucuf.jpg

When using LINQ to SQL or Linq to Entities you can inspect the SQL that's being generated
which is another great way to learn about LINQ.

2.

Creating a new project using Xamarin Studio

Download and install Xamarin Studio Community.1.
Open Xamarin Studio.2.
Click File → New → Solution.3.

https://riptutorial.com/ 15

http://i.stack.imgur.com/XPumO.jpg
https://store.xamarin.com/

Click .NET → Console Project and choose C#.4.
Click Next to proceed.5.

https://riptutorial.com/ 16

http://i.stack.imgur.com/hHjMM.png

Enter the Project Name and Browse... for a Location to Save and then click Create.6.

https://riptutorial.com/ 17

http://i.stack.imgur.com/s58Ju.png

The newly created project will look similar to:7.

https://riptutorial.com/ 18

http://i.stack.imgur.com/lrK8L.png

This is the code in the Text Editor:8.

using System;

namespace FirstCsharp
{
 public class MainClass
 {
 public static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 Console.ReadLine();
 }
 }

https://riptutorial.com/ 19

http://i.stack.imgur.com/vva82.png

}

To run the code, press F5 or click the Play Button as shown below:9.

Following is the Output:10.

https://riptutorial.com/ 20

http://i.stack.imgur.com/6q4ZN.png

Read Getting started with C# Language online: https://riptutorial.com/csharp/topic/15/getting-
started-with-csharp-language

https://riptutorial.com/ 21

http://i.stack.imgur.com/cqBsK.png
https://riptutorial.com/csharp/topic/15/getting-started-with-csharp-language
https://riptutorial.com/csharp/topic/15/getting-started-with-csharp-language

Chapter 2: .NET Compiler Platform (Roslyn)

Examples

Create workspace from MSBuild project

First obtain the Microsoft.CodeAnalysis.CSharp.Workspaces nuget before continuing.

var workspace = Microsoft.CodeAnalysis.MSBuild.MSBuildWorkspace.Create();
var project = await workspace.OpenProjectAsync(projectFilePath);
var compilation = await project.GetCompilationAsync();

foreach (var diagnostic in compilation.GetDiagnostics()
 .Where(d => d.Severity == Microsoft.CodeAnalysis.DiagnosticSeverity.Error))
{
 Console.WriteLine(diagnostic);
}

To load existing code to the workspace, compile and report errors. Afterwards the code will be
located in memory. From here, both the syntactic and semantic side will be available to work with.

Syntax tree

A Syntax Tree is an immutable data structure representing the program as a tree of names,
commands and marks (as previously configured in the editor.)

For example, assume a Microsoft.CodeAnalysis.Compilation instance named compilation has been
configured. There are multiple ways to list the names of every variable declared in the loaded
code. To do so naively, take all pieces of syntax in every document (the DescendantNodes method)
and use Linq to select nodes that describe variable declaration:

foreach (var syntaxTree in compilation.SyntaxTrees)
{
 var root = await syntaxTree.GetRootAsync();
 var declaredIdentifiers = root.DescendantNodes()
 .Where(an => an is VariableDeclaratorSyntax)
 .Cast<VariableDeclaratorSyntax>()
 .Select(vd => vd.Identifier);

 foreach (var di in declaredIdentifiers)
 {
 Console.WriteLine(di);
 }
}

Every type of C# construct with a corresponding type will exist in the syntax tree. To quickly find
specific types, use the Syntax Visualizer window from Visual Studio. This will interpret the current
opened document as a Roslyn syntax tree.

Semantic model

https://riptutorial.com/ 22

A Semantic Model offers a deeper level of interpretation and insight of code compare to a syntax
tree. Where syntax trees can tell the names of variables, semantic models also give the type and
all references. Syntax trees notice method calls, but semantic models give references to the
precise location the method is declared (after overload resolution has been applied.)

var workspace = Microsoft.CodeAnalysis.MSBuild.MSBuildWorkspace.Create();
var sln = await workspace.OpenSolutionAsync(solutionFilePath);
var project = sln.Projects.First();
var compilation = await project.GetCompilationAsync();

foreach (var syntaxTree in compilation.SyntaxTrees)
{
 var root = await syntaxTree.GetRootAsync();

 var declaredIdentifiers = root.DescendantNodes()
 .Where(an => an is VariableDeclaratorSyntax)
 .Cast<VariableDeclaratorSyntax>();

 foreach (var di in declaredIdentifiers)
 {
 Console.WriteLine(di.Identifier);
 // => "root"

 var variableSymbol = compilation
 .GetSemanticModel(syntaxTree)
 .GetDeclaredSymbol(di) as ILocalSymbol;

 Console.WriteLine(variableSymbol.Type);
 // => "Microsoft.CodeAnalysis.SyntaxNode"

 var references = await SymbolFinder.FindReferencesAsync(variableSymbol, sln);
 foreach (var reference in references)
 {
 foreach (var loc in reference.Locations)
 {
 Console.WriteLine(loc.Location.SourceSpan);
 // => "[1375..1379)"
 }
 }
 }
}

This outputs a list of local variables using a syntax tree. Then it consults the semantic model to get
the full type name and find all references of every variable.

Read .NET Compiler Platform (Roslyn) online: https://riptutorial.com/csharp/topic/4886/-net-
compiler-platform--roslyn-

https://riptutorial.com/ 23

https://riptutorial.com/csharp/topic/4886/-net-compiler-platform--roslyn-
https://riptutorial.com/csharp/topic/4886/-net-compiler-platform--roslyn-

Chapter 3: Access Modifiers

Remarks

If the access modifier is omitted,

classes are by default internal•
methods are by deault private•
getters and setters inherit the modifier of the property, by default this is private•

Access modifiers on setters or getters of properties can only restrict access, not widen it: public
string someProperty {get; private set;}

Examples

public

The public keyword makes a class (including nested classes), property, method or field available
to every consumer:

public class Foo()
{
 public string SomeProperty { get; set; }

 public class Baz
 {
 public int Value { get; set; }
 }
}

public class Bar()
{
 public Bar()
 {
 var myInstance = new Foo();
 var someValue = foo.SomeProperty;
 var myNestedInstance = new Foo.Baz();
 var otherValue = myNestedInstance.Value;
 }
}

private

The private keyword marks properties, methods, fields and nested classes for use inside the class
only:

public class Foo()
{
 private string someProperty { get; set; }

https://riptutorial.com/ 24

 private class Baz
 {
 public string Value { get; set; }
 }

 public void Do()
 {
 var baz = new Baz { Value = 42 };
 }
}

public class Bar()
{
 public Bar()
 {
 var myInstance = new Foo();

 // Compile Error - not accessible due to private modifier
 var someValue = foo.someProperty;
 // Compile Error - not accessible due to private modifier
 var baz = new Foo.Baz();
 }
}

internal

The internal keyword makes a class (including nested classes), property, method or field available
to every consumer in the same assembly:

internal class Foo
{
 internal string SomeProperty {get; set;}
}

internal class Bar
{
 var myInstance = new Foo();
 internal string SomeField = foo.SomeProperty;

 internal class Baz
 {
 private string blah;
 public int N { get; set; }
 }
}

This can be broken to allow a testing assembly to access the code via adding code to
AssemblyInfo.cs file:

using System.Runtime.CompilerServices;

[assembly:InternalsVisibleTo("MyTests")]

protected

The protected keyword marks field, methods properties and nested classes for use inside the

https://riptutorial.com/ 25

same class and derived classes only:

public class Foo()
{
 protected void SomeFooMethod()
 {
 //do something
 }

 protected class Thing
 {
 private string blah;
 public int N { get; set; }
 }
}

public class Bar() : Foo
{
 private void someBarMethod()
 {
 SomeFooMethod(); // inside derived class
 var thing = new Thing(); // can use nested class
 }
}

public class Baz()
{
 private void someBazMethod()
 {
 var foo = new Foo();
 foo.SomeFooMethod(); //not accessible due to protected modifier
 }
}

protected internal

The protected internal keyword marks field, methods, properties and nested classes for use
inside the same assembly or derived classes in another assembly:

Assembly 1

public class Foo
{
 public string MyPublicProperty { get; set; }
 protected internal string MyProtectedInternalProperty { get; set; }

 protected internal class MyProtectedInternalNestedClass
 {
 private string blah;
 public int N { get; set; }
 }
}

public class Bar
{
 void MyMethod1()
 {
 Foo foo = new Foo();

https://riptutorial.com/ 26

 var myPublicProperty = foo.MyPublicProperty;
 var myProtectedInternalProperty = foo.MyProtectedInternalProperty;
 var myProtectedInternalNestedInstance =
 new Foo.MyProtectedInternalNestedClass();
 }
}

Assembly 2

public class Baz : Foo
{
 void MyMethod1()
 {
 var myPublicProperty = MyPublicProperty;
 var myProtectedInternalProperty = MyProtectedInternalProperty;
 var thing = new MyProtectedInternalNestedClass();
 }

 void MyMethod2()
 {
 Foo foo = new Foo();
 var myPublicProperty = foo.MyPublicProperty;

 // Compile Error
 var myProtectedInternalProperty = foo.MyProtectedInternalProperty;
 // Compile Error
 var myProtectedInternalNestedInstance =
 new Foo.MyProtectedInternalNestedClass();
 }

}

public class Qux
{
 void MyMethod1()
 {
 Baz baz = new Baz();
 var myPublicProperty = baz.MyPublicProperty;

 // Compile Error
 var myProtectedInternalProperty = baz.MyProtectedInternalProperty;
 // Compile Error
 var myProtectedInternalNestedInstance =
 new Baz.MyProtectedInternalNestedClass();
 }

 void MyMethod2()
 {
 Foo foo = new Foo();
 var myPublicProperty = foo.MyPublicProperty;

 //Compile Error
 var myProtectedInternalProperty = foo.MyProtectedInternalProperty;
 // Compile Error
 var myProtectedInternalNestedInstance =
 new Foo.MyProtectedInternalNestedClass();
 }
}

https://riptutorial.com/ 27

Access Modifiers Diagrams

Here are all access modifiers in venn diagrams, from more limiting to more accessible:

Access Modifier Diagram

private

internal

protected

protected internal

https://riptutorial.com/ 28

Access Modifier Diagram

public

Below you could find more information.

Read Access Modifiers online: https://riptutorial.com/csharp/topic/960/access-modifiers

https://riptutorial.com/ 29

https://riptutorial.com/csharp/topic/960/access-modifiers

Chapter 4: Access network shared folder with
username and password

Introduction

Accessing network share file using PInvoke.

Examples

Code to access network shared file

 public class NetworkConnection : IDisposable
 {
 string _networkName;

 public NetworkConnection(string networkName,
 NetworkCredential credentials)
 {
 _networkName = networkName;

 var netResource = new NetResource()
 {
 Scope = ResourceScope.GlobalNetwork,
 ResourceType = ResourceType.Disk,
 DisplayType = ResourceDisplaytype.Share,
 RemoteName = networkName
 };

 var userName = string.IsNullOrEmpty(credentials.Domain)
 ? credentials.UserName
 : string.Format(@"{0}\{1}", credentials.Domain, credentials.UserName);

 var result = WNetAddConnection2(
 netResource,
 credentials.Password,
 userName,
 0);

 if (result != 0)
 {
 throw new Win32Exception(result);
 }
 }

 ~NetworkConnection()
 {
 Dispose(false);
 }

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);

https://riptutorial.com/ 30

 }

 protected virtual void Dispose(bool disposing)
 {
 WNetCancelConnection2(_networkName, 0, true);
 }

 [DllImport("mpr.dll")]
 private static extern int WNetAddConnection2(NetResource netResource,
 string password, string username, int flags);

 [DllImport("mpr.dll")]
 private static extern int WNetCancelConnection2(string name, int flags,
 bool force);
}

[StructLayout(LayoutKind.Sequential)]
public class NetResource
{
 public ResourceScope Scope;
 public ResourceType ResourceType;
 public ResourceDisplaytype DisplayType;
 public int Usage;
 public string LocalName;
 public string RemoteName;
 public string Comment;
 public string Provider;
}

public enum ResourceScope : int
{
 Connected = 1,
 GlobalNetwork,
 Remembered,
 Recent,
 Context
};

public enum ResourceType : int
{
 Any = 0,
 Disk = 1,
 Print = 2,
 Reserved = 8,
}

public enum ResourceDisplaytype : int
{
 Generic = 0x0,
 Domain = 0x01,
 Server = 0x02,
 Share = 0x03,
 File = 0x04,
 Group = 0x05,
 Network = 0x06,
 Root = 0x07,
 Shareadmin = 0x08,
 Directory = 0x09,
 Tree = 0x0a,
 Ndscontainer = 0x0b
}

https://riptutorial.com/ 31

Read Access network shared folder with username and password online:
https://riptutorial.com/csharp/topic/9627/access-network-shared-folder-with-username-and-
password

https://riptutorial.com/ 32

https://riptutorial.com/csharp/topic/9627/access-network-shared-folder-with-username-and-password
https://riptutorial.com/csharp/topic/9627/access-network-shared-folder-with-username-and-password

Chapter 5: Accessing Databases

Examples

ADO.NET Connections

ADO.NET Connections are one of the simplest ways to connect to a database from a C#
application. They rely on the use of a provider and a connection string that points to your database
to perform queries against.

Common Data Provider Classes

Many of the following are classes that are commonly used to query databases and their related
namespaces :

SqlConnection,SqlCommand,SqlDataReader from System.Data.SqlClient•
OleDbConnection,OleDbCommand,OleDbDataReader from System.Data.OleDb•
MySqlConnection, MySqlCommand, MySqlDbDataReader from MySql.Data•

All of these are commonly used to access data through C# and will be commonly encountered
throughout building data-centric applications. Many other classes that are not mentioned that
implement the same FooConnection,FooCommand,FooDataReader classes can be expected to behave
the same way.

Common Access Pattern for ADO.NET Connections

A common pattern that can be used when accessing your data through an ADO.NET connection
might look as follows :

// This scopes the connection (your specific class may vary)
using(var connection = new SqlConnection("{your-connection-string}")
{
 // Build your query
 var query = "SELECT * FROM YourTable WHERE Property = @property");
 // Scope your command to execute
 using(var command = new SqlCommand(query, connection))
 {
 // Open your connection
 connection.Open();

 // Add your parameters here if necessary

 // Execute your query as a reader (again scoped with a using statement)
 using(var reader = command.ExecuteReader())
 {
 // Iterate through your results here
 }
 }
}

https://riptutorial.com/ 33

http://dev.mysql.com/downloads/file/?id=13427

Or if you were just performing a simple update and didn't require a reader, the same basic concept
would apply :

using(var connection = new SqlConnection("{your-connection-string}"))
{
 var query = "UPDATE YourTable SET Property = Value WHERE Foo = @foo";
 using(var command = new SqlCommand(query,connection))
 {
 connection.Open();

 // Add parameters here

 // Perform your update
 command.ExecuteNonQuery();
 }
}

You can even program against a set of common interfaces and not have to worry about the
provider specific classes. The core interfaces provided by ADO.NET are:

IDbConnection - for managing database connections•
IDbCommand - for running SQL commands•
IDbTransaction - for managing transactions•
IDataReader - for reading data returned by a command•
IDataAdapter - for channeling data to and from datasets•

var connectionString = "{your-connection-string}";
var providerName = "{System.Data.SqlClient}"; //for Oracle use
"Oracle.ManagedDataAccess.Client"
//most likely you will get the above two from ConnectionStringSettings object

var factory = DbProviderFactories.GetFactory(providerName);

using(var connection = new factory.CreateConnection()) {
 connection.ConnectionString = connectionString;
 connection.Open();

 using(var command = new connection.CreateCommand()) {
 command.CommandText = "{sql-query}"; //this needs to be tailored for each database
system

 using(var reader = command.ExecuteReader()) {
 while(reader.Read()) {
 ...
 }
 }
 }
}

Entity Framework Connections

Entity Framework exposes abstraction classes that are used to interact with underlying databases
in the form of classes like DbContext. These contexts generally consist of DbSet<T> properties that
expose the available collections that can be queried :

https://riptutorial.com/ 34

public class ExampleContext: DbContext
{
 public virtual DbSet<Widgets> Widgets { get; set; }
}

The DbContext itself will handle making the connections with the databases and will generally read
the appropriate Connection String data from a configuration to determine how to establish the
connections :

public class ExampleContext: DbContext
{
 // The parameter being passed in to the base constructor indicates the name of the
 // connection string
 public ExampleContext() : base("ExampleContextEntities")
 {
 }

 public virtual DbSet<Widgets> Widgets { get; set; }
}

Executing Entity Framework Queries

Actually executing an Entity Framework query can be quite easy and simply requires you to create
an instance of the context and then use the available properties on it to pull or access your data

using(var context = new ExampleContext())
{
 // Retrieve all of the Widgets in your database
 var data = context.Widgets.ToList();
}

Entity Framework also provides an extensive change-tracking system that can be used to handle
updating entries within your database by simply calling the SaveChanges() method to push changes
to the database :

using(var context = new ExampleContext())
{
 // Grab the widget you wish to update
 var widget = context.Widgets.Find(w => w.Id == id);
 // If it exists, update it
 if(widget != null)
 {
 // Update your widget and save your changes
 widget.Updated = DateTime.UtcNow;
 context.SaveChanges();
 }
}

Connection Strings

A Connection String is a string that specifies information about a particular data source and how to
go about connecting to it by storing credentials, locations, and other information.

https://riptutorial.com/ 35

Server=myServerAddress;Database=myDataBase;User Id=myUsername;Password=myPassword;

Storing Your Connection String

Typically, a connection string will be stored within a configuration file (such as an app.config or
web.config within ASP.NET applications). The following is an example of what a local connection
might look like within one of these files :

<connectionStrings>
 <add name="WidgetsContext" providerName="System.Data.SqlClient"
connectionString="Server=.\SQLEXPRESS;Database=Widgets;Integrated Security=True;"/>
</connectionStrings>

<connectionStrings>
 <add name="WidgetsContext" providerName="System.Data.SqlClient"
connectionString="Server=.\SQLEXPRESS;Database=Widgets;Integrated Security=SSPI;"/>
</connectionStrings>

This will allow your application to access the connection string programatically through
WidgetsContext. Although both Integrated Security=SSPI and Integrated Security=True perform the
same function;Integrated Security=SSPI is preferred since works with both SQLClient & OleDB
provider where as Integrated Security=true throws an exception when used with the OleDb
provider.

Different Connections for Different Providers

Each data provider (SQL Server, MySQL, Azure, etc.) all feature their own flavor of syntax for their
connection strings and expose different available properties. ConnectionStrings.com is an
incredibly useful resource if you are unsure about what yours should look like.

Read Accessing Databases online: https://riptutorial.com/csharp/topic/4811/accessing-databases

https://riptutorial.com/ 36

https://www.connectionstrings.com/
https://riptutorial.com/csharp/topic/4811/accessing-databases

Chapter 6: Action Filters

Examples

Custom Action Filters

We write custom action filters for various reasons. We may have a custom action filter for logging,
or for saving data to database before any action execution. We could also have one for fetching
data from the database and setting it as the global values of the application.

To create a custom action filter, we need to perform the following tasks:

Create a class1.
Inherit it from ActionFilterAttribute class2.

Override at least one of the following methods:

OnActionExecuting – This method is called before a controller action is executed.

OnActionExecuted – This method is called after a controller action is executed.

OnResultExecuting – This method is called before a controller action result is executed.

OnResultExecuted – This method is called after a controller action result is executed.

The filter can be created as shown in the listing below:

 using System;

 using System.Diagnostics;

 using System.Web.Mvc;

 namespace WebApplication1
 {

 public class MyFirstCustomFilter : ActionFilterAttribute
 {
 public override void OnResultExecuting(ResultExecutingContext filterContext)
 {
 //You may fetch data from database here
 filterContext.Controller.ViewBag.GreetMesssage = "Hello Foo";
 base.OnResultExecuting(filterContext);
 }

 public override void OnActionExecuting(ActionExecutingContext filterContext)
 {
 var controllerName = filterContext.RouteData.Values["controller"];
 var actionName = filterContext.RouteData.Values["action"];
 var message = String.Format("{0} controller:{1} action:{2}",
"onactionexecuting", controllerName, actionName);

https://riptutorial.com/ 37

 Debug.WriteLine(message, "Action Filter Log");
 base.OnActionExecuting(filterContext);
 }
 }
 }

Read Action Filters online: https://riptutorial.com/csharp/topic/1505/action-filters

https://riptutorial.com/ 38

https://riptutorial.com/csharp/topic/1505/action-filters

Chapter 7: Aliases of built-in types

Examples

Built-In Types Table

The following table shows the keywords for built-in C# types, which are aliases of predefined types
in the System namespaces.

C# Type .NET Framework Type

bool System.Boolean

byte System.Byte

sbyte System.SByte

char System.Char

decimal System.Decimal

double System.Double

float System.Single

int System.Int32

uint System.UInt32

long System.Int64

ulong System.UInt64

object System.Object

short System.Int16

ushort System.UInt16

string System.String

The C# type keywords and their aliases are interchangeable. For example, you can declare an
integer variable by using either of the following declarations:

int number = 123;
System.Int32 number = 123;

https://riptutorial.com/ 39

Read Aliases of built-in types online: https://riptutorial.com/csharp/topic/1862/aliases-of-built-in-
types

https://riptutorial.com/ 40

https://riptutorial.com/csharp/topic/1862/aliases-of-built-in-types
https://riptutorial.com/csharp/topic/1862/aliases-of-built-in-types

Chapter 8: An overview of c# collections

Examples

HashSet

This is a collection of unique items, with O(1) lookup.

HashSet<int> validStoryPointValues = new HashSet<int>() { 1, 2, 3, 5, 8, 13, 21 };
bool containsEight = validStoryPointValues.Contains(8); // O(1)

By way of comparison, doing a Contains on a List yields poorer performance:

List<int> validStoryPointValues = new List<int>() { 1, 2, 3, 5, 8, 13, 21 };
bool containsEight = validStoryPointValues.Contains(8); // O(n)

HashSet.Contains uses a hash table, so that lookups are extremely fast, regardless of the number
of items in the collection.

SortedSet

// create an empty set
var mySet = new SortedSet<int>();

// add something
// note that we add 2 before we add 1
mySet.Add(2);
mySet.Add(1);

// enumerate through the set
foreach(var item in mySet)
{
 Console.WriteLine(item);
}

// output:
// 1
// 2

T[] (Array of T)

// create an array with 2 elements
var myArray = new [] { "one", "two" };

// enumerate through the array
foreach(var item in myArray)
{
 Console.WriteLine(item);
}

https://riptutorial.com/ 41

// output:
// one
// two

// exchange the element on the first position
// note that all collections start with the index 0
myArray[0] = "something else";

// enumerate through the array again
foreach(var item in myArray)
{
 Console.WriteLine(item);
}

// output:
// something else
// two

List

List<T> is a list of a given type. Items can be added, inserted, removed and addressed by index.

using System.Collections.Generic;

var list = new List<int>() { 1, 2, 3, 4, 5 };
list.Add(6);
Console.WriteLine(list.Count); // 6
list.RemoveAt(3);
Console.WriteLine(list.Count); // 5
Console.WriteLine(list[3]); // 5

List<T> can be thought of as an array that you can resize. Enumerating over the collection in order
is quick, as is access to individual elements via their index. To access elements based on some
aspect of their value, or some other key, a Dictionary<T> will provide faster lookup.

Dictionary

Dictionary<TKey, TValue> is a map. For a given key there can be one value in the dictionary.

using System.Collections.Generic;

var people = new Dictionary<string, int>
{
 { "John", 30 }, {"Mary", 35}, {"Jack", 40}
};

// Reading data
Console.WriteLine(people["John"]); // 30
Console.WriteLine(people["George"]); // throws KeyNotFoundException

int age;
if (people.TryGetValue("Mary", out age))
{
 Console.WriteLine(age); // 35
}

https://riptutorial.com/ 42

// Adding and changing data
people["John"] = 40; // Overwriting values this way is ok
people.Add("John", 40); // Throws ArgumentException since "John" already exists

// Iterating through contents
foreach(KeyValuePair<string, int> person in people)
{
 Console.WriteLine("Name={0}, Age={1}", person.Key, person.Value);
}

foreach(string name in people.Keys)
{
 Console.WriteLine("Name={0}", name);
}

foreach(int age in people.Values)
{
 Console.WriteLine("Age={0}", age);
}

Duplicate key when using collection
initialization

var people = new Dictionary<string, int>
{
 { "John", 30 }, {"Mary", 35}, {"Jack", 40}, {"Jack", 40}
}; // throws ArgumentException since "Jack" already exists

Stack

// Initialize a stack object of integers
var stack = new Stack<int>();

// add some data
stack.Push(3);
stack.Push(5);
stack.Push(8);

// elements are stored with "first in, last out" order.
// stack from top to bottom is: 8, 5, 3

// We can use peek to see the top element of the stack.
Console.WriteLine(stack.Peek()); // prints 8

// Pop removes the top element of the stack and returns it.
Console.WriteLine(stack.Pop()); // prints 8
Console.WriteLine(stack.Pop()); // prints 5
Console.WriteLine(stack.Pop()); // prints 3

LinkedList

https://riptutorial.com/ 43

// initialize a LinkedList of integers
LinkedList list = new LinkedList<int>();

// add some numbers to our list.
list.AddLast(3);
list.AddLast(5);
list.AddLast(8);

// the list currently is 3, 5, 8

list.AddFirst(2);
// the list now is 2, 3, 5, 8

list.RemoveFirst();
// the list is now 3, 5, 8

list.RemoveLast();
// the list is now 3, 5

Note that LinkedList<T> represents the doubly linked list. So, it's simply collection of nodes and
each node contains an element of type T. Each node is linked to the preceding node and the
following node.

Queue

// Initalize a new queue of integers
var queue = new Queue<int>();

// Add some data
queue.Enqueue(6);
queue.Enqueue(4);
queue.Enqueue(9);

// Elements in a queue are stored in "first in, first out" order.
// The queue from first to last is: 6, 4, 9

// View the next element in the queue, without removing it.
Console.WriteLine(queue.Peek()); // prints 6

// Removes the first element in the queue, and returns it.
Console.WriteLine(queue.Dequeue()); // prints 6
Console.WriteLine(queue.Dequeue()); // prints 4
Console.WriteLine(queue.Dequeue()); // prints 9

Thread safe heads up! Use ConcurrentQueue in multi-thread environments.

Read An overview of c# collections online: https://riptutorial.com/csharp/topic/2344/an-overview-
of-csharp-collections

https://riptutorial.com/ 44

https://msdn.microsoft.com/en-us/library/dd267265
https://riptutorial.com/csharp/topic/2344/an-overview-of-csharp-collections
https://riptutorial.com/csharp/topic/2344/an-overview-of-csharp-collections

Chapter 9: Anonymous types

Examples

Creating an anonymous type

Since anonymous types are not named, variables of those types must be implicitly typed (var).

var anon = new { Foo = 1, Bar = 2 };
// anon.Foo == 1
// anon.Bar == 2

If the member names are not specified, they are set to the name of the property/variable used to
initialize the object.

int foo = 1;
int bar = 2;
var anon2 = new { foo, bar };
// anon2.foo == 1
// anon2.bar == 2

Note that names can only be omitted when the expression in the anonymous type declaration is a
simple property access; for method calls or more complex expressions, a property name must be
specified.

string foo = "some string";
var anon3 = new { foo.Length };
// anon3.Length == 11
var anon4 = new { foo.Length <= 10 ? "short string" : "long string" };
// compiler error - Invalid anonymous type member declarator.
var anon5 = new { Description = foo.Length <= 10 ? "short string" : "long string" };
// OK

Anonymous vs dynamic

Anonymous types allow the creation of objects without having to explicitly define their types ahead
of time, while maintaining static type checking.

var anon = new { Value = 1 };
Console.WriteLine(anon.Id); // compile time error

Conversely, dynamic has dynamic type checking, opting for runtime errors, instead of compile-time
errors.

dynamic val = "foo";
Console.WriteLine(val.Id); // compiles, but throws runtime error

https://riptutorial.com/ 45

Generic methods with anonymous types

Generic methods allow the use of anonymous types through type inference.

void Log<T>(T obj) {
 // ...
}
Log(new { Value = 10 });

This means LINQ expressions can be used with anonymous types:

var products = new[] {
 new { Amount = 10, Id = 0 },
 new { Amount = 20, Id = 1 },
 new { Amount = 15, Id = 2 }
};
var idsByAmount = products.OrderBy(x => x.Amount).Select(x => x.Id);
// idsByAmount: 0, 2, 1

Instantiating generic types with anonymous types

Using generic constructors would require the anonymous types to be named, which is not
possible. Alternatively, generic methods may be used to allow type inference to occur.

var anon = new { Foo = 1, Bar = 2 };
var anon2 = new { Foo = 5, Bar = 10 };
List<T> CreateList<T>(params T[] items) {
 return new List<T>(items);
}

var list1 = CreateList(anon, anon2);

In the case of List<T>, implicitly typed arrays may be converted to a List<T> through the ToList
LINQ method:

var list2 = new[] {anon, anon2}.ToList();

Anonymous type equality

Anonymous type equality is given by the Equals instance method. Two objects are equal if they
have the same type and equal values (through a.Prop.Equals(b.Prop)) for every property.

var anon = new { Foo = 1, Bar = 2 };
var anon2 = new { Foo = 1, Bar = 2 };
var anon3 = new { Foo = 5, Bar = 10 };
var anon3 = new { Foo = 5, Bar = 10 };
var anon4 = new { Bar = 2, Foo = 1 };
// anon.Equals(anon2) == true
// anon.Equals(anon3) == false
// anon.Equals(anon4) == false (anon and anon4 have different types, see below)

https://riptutorial.com/ 46

Two anonymous types are considered the same if and only if their properties have the same name
and type and appear in the same order.

var anon = new { Foo = 1, Bar = 2 };
var anon2 = new { Foo = 7, Bar = 1 };
var anon3 = new { Bar = 1, Foo = 3 };
var anon4 = new { Fa = 1, Bar = 2 };
// anon and anon2 have the same type
// anon and anon3 have diferent types (Bar and Foo appear in different orders)
// anon and anon4 have different types (property names are different)

Implicitly typed arrays

Arrays of anonymous types may be created with implicit typing.

var arr = new[] {
 new { Id = 0 },
 new { Id = 1 }
};

Read Anonymous types online: https://riptutorial.com/csharp/topic/765/anonymous-types

https://riptutorial.com/ 47

https://riptutorial.com/csharp/topic/765/anonymous-types

Chapter 10: Arrays

Syntax

Declaring an array:

<type>[] <name>;

•

Declaring two-dimensional array:

<type>[,] <name> = new <type>[<value>, <value>];

•

Declaring a Jagged Array:

<type>[] <name> = new <type>[<value>];

•

Declaring a subarray for a Jagged Array:

<name>[<value>] = new <type>[<value>];

•

Initializing an array without values:

<name> = new <type>[<length>];

•

Initializing an array with values:

<name> = new <type>[] {<value>, <value>, <value>, ...};

•

Initializing a two-dimensional array with values:

<name> = new <type>[,] { {<value>, <value>}, {<value>, <value>}, ...};

•

Accessing an element at index i:

<name>[i]

•

Getting the array's length:

<name>.Length

•

Remarks

In C#, an array is a reference type, which means it is nullable.

An array has a fixed length, which means you cant .Add() to it or .Remove() from it. In order to use
these, you would need a dynamic array - List or ArrayList.

Examples

https://riptutorial.com/ 48

Array covariance

string[] strings = new[] {"foo", "bar"};
object[] objects = strings; // implicit conversion from string[] to object[]

This conversion is not type-safe. The following code will raise a runtime exception:

string[] strings = new[] {"Foo"};
object[] objects = strings;

objects[0] = new object(); // runtime exception, object is not string
string str = strings[0]; // would have been bad if above assignment had succeeded

Getting and setting array values

int[] arr = new int[] { 0, 10, 20, 30};

// Get
Console.WriteLine(arr[2]); // 20

// Set
arr[2] = 100;

// Get the updated value
Console.WriteLine(arr[2]); // 100

Declaring an array

An array can be declared and filled with the default value using square bracket ([]) initialization
syntax. For example, creating an array of 10 integers:

int[] arr = new int[10];

Indices in C# are zero-based. The indices of the array above will be 0-9. For example:

int[] arr = new int[3] {7,9,4};
Console.WriteLine(arr[0]); //outputs 7
Console.WriteLine(arr[1]); //outputs 9

Which means the system starts counting the element index from 0. Moreover, accesses to
elements of arrays are done in constant time. That means accessing to the first element of the
array has the same cost (in time) of accessing the second element, the third element and so on.

You may also declare a bare reference to an array without instantiating an array.

int[] arr = null; // OK, declares a null reference to an array.
int first = arr[0]; // Throws System.NullReferenceException because there is no actual array.

An array can also be created and initialized with custom values using collection initialization
syntax:

https://riptutorial.com/ 49

int[] arr = new int[] { 24, 2, 13, 47, 45 };

The new int[] portion can be omitted when declaring an array variable. This is not a self-contained
expression, so using it as part of a different call does not work (for that, use the version with new):

int[] arr = { 24, 2, 13, 47, 45 }; // OK
int[] arr1;
arr1 = { 24, 2, 13, 47, 45 }; // Won't compile

Implicitly typed arrays

Alternatively, in combination with the var keyword, the specific type may be omitted so that the
type of the array is inferred:

// same as int[]
var arr = new [] { 1, 2, 3 };
// same as string[]
var arr = new [] { "one", "two", "three" };
// same as double[]
var arr = new [] { 1.0, 2.0, 3.0 };

Iterate over an array

int[] arr = new int[] {1, 6, 3, 3, 9};

for (int i = 0; i < arr.Length; i++)
{
 Console.WriteLine(arr[i]);
}

using foreach:

foreach (int element in arr)
{
 Console.WriteLine(element);
}

using unsafe access with pointers https://msdn.microsoft.com/en-ca/library/y31yhkeb.aspx

unsafe
{
 int length = arr.Length;
 fixed (int* p = arr)
 {
 int* pInt = p;
 while (length-- > 0)
 {
 Console.WriteLine(*pInt);
 pInt++;// move pointer to next element
 }
 }
}

https://riptutorial.com/ 50

https://msdn.microsoft.com/en-ca/library/y31yhkeb.aspx

Output:

1
6
3
3
9

Multi-dimensional arrays

Arrays can have more than one dimension. The following example creates a two-dimensional
array of ten rows and ten columns:

int[,] arr = new int[10, 10];

An array of three dimensions:

int[,,] arr = new int[10, 10, 10];

You can also initialize the array upon declaration:

int[,] arr = new int[4, 2] { {1, 1}, {2, 2}, {3, 3}, {4, 4} };

// Access a member of the multi-dimensional array:
Console.Out.WriteLine(arr[3, 1]); // 4

Jagged arrays

Jagged arrays are arrays that instead of primitive types, contain arrays (or other collections). It's
like an array of arrays - each array element contains another array.

They are similar to multidimensional arrays, but have a slight difference - as multidimensional
arrays are limited to a fixed number of rows and columns, with jagged arrays, every row can have
a different number of columns.

Declaring a jagged array

For example, declaring a jagged array with 8 columns:

int[][] a = new int[8][];

The second [] is initialized without a number. To initialize the sub arrays, you would need to do
that separately:

for (int i = 0; i < a.length; i++)
{
 a[i] = new int[10];
}

https://riptutorial.com/ 51

Getting/Setting values

Now, getting one of the subarrays is easy. Let's print all the numbers of the 3rd column of a:

for (int i = 0; i < a[2].length; i++)
{
 Console.WriteLine(a[2][i]);
}

Getting a specific value:

a[<row_number>][<column_number>]

Setting a specific value:

a[<row_number>][<column_number>] = <value>

Remember: It's always recommended to use jagged arrays (arrays of arrays) rather than
multidimensional arrays (matrixes). It's faster and safer to use.

Note on the order of the brackets

Consider a three-dimensional array of five-dimensional arrays of one-dimensional arrays of int.
This is written in C# as:

int[,,][,,,,][] arr = new int[8, 10, 12][,,,,][];

In the CLR type system, the convention for the ordering of the brackets is reversed, so with the
above arr instance we have:

 arr.GetType().ToString() == "System.Int32[][,,,,][,,]"

and likewise:

 typeof(int[,,][,,,,][]).ToString() == "System.Int32[][,,,,][,,]"

Checking if one array contains another array

public static class ArrayHelpers
{
 public static bool Contains<T>(this T[] array, T[] candidate)
 {
 if (IsEmptyLocate(array, candidate))
 return false;

 if (candidate.Length > array.Length)
 return false;

 for (int a = 0; a <= array.Length - candidate.Length; a++)

https://riptutorial.com/ 52

 {
 if (array[a].Equals(candidate[0]))
 {
 int i = 0;
 for (; i < candidate.Length; i++)
 {
 if (false == array[a + i].Equals(candidate[i]))
 break;
 }
 if (i == candidate.Length)
 return true;
 }
 }
 return false;
 }

 static bool IsEmptyLocate<T>(T[] array, T[] candidate)
 {
 return array == null
 || candidate == null
 || array.Length == 0
 || candidate.Length == 0
 || candidate.Length > array.Length;
 }
}

/// Sample

byte[] EndOfStream = Encoding.ASCII.GetBytes("---3141592---");
byte[] FakeReceivedFromStream = Encoding.ASCII.GetBytes("Hello, world!!!---3141592---");
if (FakeReceivedFromStream.Contains(EndOfStream))
{
 Console.WriteLine("Message received");
}

Initializing an array filled with a repeated non-default value

As we know we can declare an array with default values:

int[] arr = new int[10];

This will create an array of 10 integers with each element of the array having value 0 (the default
value of type int).

To create an array initialized with a non-default value, we can use Enumerable.Repeat from the
System.Linq Namespace:

To create a bool array of size 10 filled with "true"

bool[] booleanArray = Enumerable.Repeat(true, 10).ToArray();

1.

To create an int array of size 5 filled with "100"2.

https://riptutorial.com/ 53

https://msdn.microsoft.com/en-us/library/bb348899(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/system.linq%28v=vs.100%29.aspx

int[] intArray = Enumerable.Repeat(100, 5).ToArray();

To create a string array of size 5 filled with "C#"

string[] strArray = Enumerable.Repeat("C#", 5).ToArray();

3.

Copying arrays

Copying a partial array with the static Array.Copy() method, beginning at index 0 in both, source
and destination:

var sourceArray = new int[] { 11, 12, 3, 5, 2, 9, 28, 17 };
var destinationArray= new int[3];
Array.Copy(sourceArray, destinationArray, 3);

// destinationArray will have 11,12 and 3

Copying the whole array with the CopyTo() instance method, beginning at index 0 of the source and
the specified index in the destination:

var sourceArray = new int[] { 11, 12, 7 };
var destinationArray = new int[6];
sourceArray.CopyTo(destinationArray, 2);

// destinationArray will have 0, 0, 11, 12, 7 and 0

Clone is used to create a copy of an array object.

var sourceArray = new int[] { 11, 12, 7 };
var destinationArray = (int)sourceArray.Clone();

//destinationArray will be created and will have 11,12,17.

Both CopyTo and Clone perform shallow copy which means the contents contains references to the
same object as the elements in the original array.

Creating an array of sequential numbers

LINQ provides a method that makes it easy to create a collection filled with sequential numbers.
For example, you can declare an array which contains the integers between 1 and 100.

The Enumerable.Range method allows us to create sequence of integer numbers from a specified
start position and a number of elements.

The method takes two arguments: the starting value and the number of elements to generate.

Enumerable.Range(int start, int count)

Note that count cannot be negative.

https://riptutorial.com/ 54

https://msdn.microsoft.com/en-us/library/system.linq.enumerable.range(v=vs.110).aspx

Usage:

int[] sequence = Enumerable.Range(1, 100).ToArray();

This will generate an array containing the numbers 1 through 100 ([1, 2, 3, ..., 98, 99, 100]).

Because the Range method returns an IEnumerable<int>, we can use other LINQ methods on it:

int[] squares = Enumerable.Range(2, 10).Select(x => x * x).ToArray();

This will generate an array that contains 10 integer squares starting at 4: [4, 9, 16, ..., 100, 121]
.

Comparing arrays for equality

LINQ provides a built-in function for checking the equality of two IEnumerables, and that function
can be used on arrays.

The SequenceEqual function will return true if the arrays have the same length and the values in
corresponding indices are equal, and false otherwise.

int[] arr1 = { 3, 5, 7 };
int[] arr2 = { 3, 5, 7 };
bool result = arr1.SequenceEqual(arr2);
Console.WriteLine("Arrays equal? {0}", result);

This will print:

Arrays equal? True

Arrays as IEnumerable<> instances

All arrays implement the non-generic IList interface (and hence non-generic ICollection and
IEnumerable base interfaces).

More importantly, one-dimensional arrays implement the IList<> and IReadOnlyList<> generic
interfaces (and their base interfaces) for the type of data that they contain. This means that they
can be treated as generic enumerable types and passed in to a variety of methods without
needing to first convert them to a non-array form.

int[] arr1 = { 3, 5, 7 };
IEnumerable<int> enumerableIntegers = arr1; //Allowed because arrays implement IEnumerable<T>
List<int> listOfIntegers = new List<int>();
listOfIntegers.AddRange(arr1); //You can pass in a reference to an array to populate a List.

After running this code, the list listOfIntegers will contain a List<int> containing the values 3, 5,
and 7.

https://riptutorial.com/ 55

https://msdn.microsoft.com/en-us/library/bb348567(v=vs.110).aspx

The IEnumerable<> support means arrays can be queried with LINQ, for example arr1.Select(i =>
10 * i).

Read Arrays online: https://riptutorial.com/csharp/topic/1429/arrays

https://riptutorial.com/ 56

https://riptutorial.com/csharp/topic/1429/arrays

Chapter 11: ASP.NET Identity

Introduction

Tutorials concerning asp.net Identity such as user management, role management, creating
tokens and more.

Examples

How to implement password reset token in asp.net identity using user
manager.

Create a new folder called MyClasses and create and add the following class

public class GmailEmailService:SmtpClient
{
 // Gmail user-name
 public string UserName { get; set; }

 public GmailEmailService() :
 base(ConfigurationManager.AppSettings["GmailHost"],
Int32.Parse(ConfigurationManager.AppSettings["GmailPort"]))
 {
 //Get values from web.config file:
 this.UserName = ConfigurationManager.AppSettings["GmailUserName"];
 this.EnableSsl = Boolean.Parse(ConfigurationManager.AppSettings["GmailSsl"]);
 this.UseDefaultCredentials = false;
 this.Credentials = new System.Net.NetworkCredential(this.UserName,
ConfigurationManager.AppSettings["GmailPassword"]);
 }
}

1.

Configure your Identity Class

public async Task SendAsync(IdentityMessage message)
{
 MailMessage email = new MailMessage(new MailAddress("youremailadress@domain.com",
"(any subject here)"),
 new MailAddress(message.Destination));
 email.Subject = message.Subject;
 email.Body = message.Body;

 email.IsBodyHtml = true;

 GmailEmailService mailClient = new GmailEmailService();
 await mailClient.SendMailAsync(email);
}

2.

Add your credentials to the web.config. I did not use gmail in this portion because the use of
gmail is blocked in my workplace and it still works perfectly.

3.

https://riptutorial.com/ 57

<add key="GmailUserName" value="youremail@yourdomain.com"/>
<add key="GmailPassword" value="yourPassword"/>
<add key="GmailHost" value="yourServer"/>
<add key="GmailPort" value="yourPort"/>
<add key="GmailSsl" value="chooseTrueOrFalse"/>
<!--Smptp Server (confirmations emails)-->

Make necessary changes to your Account Controller. Add the following highlighted code.4.

https://riptutorial.com/ 58

https://riptutorial.com/ 59

https://i.stack.imgur.com/mJz6k.jpg

Compile then run. Cheers!

Read ASP.NET Identity online: https://riptutorial.com/csharp/topic/9577/asp-net-identity

https://riptutorial.com/ 60

https://i.stack.imgur.com/S8jvL.jpg
https://riptutorial.com/csharp/topic/9577/asp-net-identity

Chapter 12: AssemblyInfo.cs Examples

Remarks

The filename AssemblyInfo.cs is used by convention as the source file where developers place
metadata attributes that describe the entire assembly they are building.

Examples

[AssemblyTitle]

This attribute is used to give a name to this particular assembly.

[assembly: AssemblyTitle("MyProduct")]

[AssemblyProduct]

This attribute is used to describe the product that this particular assembly is for. Multiple
assemblies can be components of the same product, in which case they can all share the same
value for this attribute.

[assembly: AssemblyProduct("MyProduct")]

Global and local AssemblyInfo

Having a global allows for better DRYness, you need only put values that are different into
AssemblyInfo.cs for projects that have variance. This use assumes your product has more than
one visual studio project.

GlobalAssemblyInfo.cs

using System.Reflection;
using System.Runtime.InteropServices;
//using Stackoverflow domain as a made up example

// It is common, and mostly good, to use one GlobalAssemblyInfo.cs that is added
// as a link to many projects of the same product, details below
// Change these attribute values in local assembly info to modify the information.
[assembly: AssemblyProduct("Stackoverflow Q&A")]
[assembly: AssemblyCompany("Stackoverflow")]
[assembly: AssemblyCopyright("Copyright © Stackoverflow 2016")]

// The following GUID is for the ID of the typelib if this project is exposed to COM
[assembly: Guid("4e4f2d33-aaab-48ea-a63d-1f0a8e3c935f")]
[assembly: ComVisible(false)] //not going to expose ;)

// Version information for an assembly consists of the following four values:
// roughly translated from I reckon it is for SO, note that they most likely

https://riptutorial.com/ 61

// dynamically generate this file
// Major Version - Year 6 being 2016
// Minor Version - The month
// Day Number - Day of month
// Revision - Build number
// You can specify all the values or you can default the Build and Revision Numbers
// by using the '*' as shown below: [assembly: AssemblyVersion("year.month.day.*")]
[assembly: AssemblyVersion("2016.7.00.00")]
[assembly: AssemblyFileVersion("2016.7.27.3839")]

AssemblyInfo.cs - one for each project

//then the following might be put into a separate Assembly file per project, e.g.
[assembly: AssemblyTitle("Stackoveflow.Redis")]

You can add the GlobalAssemblyInfo.cs to the local project using the following procedure:

Select Add/Existing Item... in the context menu of the project1.
Select GlobalAssemblyInfo.cs2.
Expand the Add-Button by clicking on that little down-arrow on the right hand3.
Select "Add As Link" in the buttons drop down list4.

[AssemblyVersion]

This attribute applies a version to the assembly.

[assembly: AssemblyVersion("1.0.*")]

The * character is used to auto-increment a portion of the version automatically every time you
compile (often used for the "build" number)

Reading Assembly Attributes

Using .NET's rich reflection APIs, you can gain access to an assembly's metadata. For example,
you can get this assembly's title attribute with the following code

using System.Linq;
using System.Reflection;

...

Assembly assembly = typeof(this).Assembly;
var titleAttribute = assembly.GetCustomAttributes<AssemblyTitleAttribute>().FirstOrDefault();

Console.WriteLine($"This assembly title is {titleAttribute?.Title}");

Automated versioning

Your code in source control has version numbers either by default (SVN ids or Git SHA1 hashes)
or explicitly (Git tags). Rather than manually updating versions in AssemblyInfo.cs you can use a
build time process to write the version from your source control system into your AssemblyInfo.cs

https://riptutorial.com/ 62

https://stackoverflow.com/questions/62353/what-are-the-best-practices-for-using-assembly-attributes

files and thus onto your assemblies.

The GitVersionTask or SemVer.Git.Fody NuGet packages are examples of the above. To use
GitVersionTask, for instance, after installing the package in your project remove the
Assembly*Version attributes from your AssemblyInfo.cs files. This puts GitVersionTask in charge of
versioning your assemblies.

Note that Semantic Versioning is increasingly the de facto standard so these methods recommend
using source control tags that follow SemVer.

Common fields

It's good practice to complete your AssemblyInfo's default fields. The information may be picked
up by installers and will then appear when using Programs and Features (Windows 10) to uninstall
or change a program.

The minimum should be:

AssemblyTitle - usually the namespace, i.e. MyCompany.MySolution.MyProject•
AssemblyCompany - the legal entities full name•
AssemblyProduct - marketing may have a view here•
AssemblyCopyright - keep it up to date as it looks scruffy otherwise•

'AssemblyTitle' becomes the 'File description' when examining the DLL's Properties Details tab.

[AssemblyConfiguration]

AssemblyConfiguration: The AssemblyConfiguration attribute must have the configuration that was
used to build the assembly. Use conditional compilation to properly include different assembly
configurations. Use the block similar to the example below. Add as many different configurations
as you commonly use.

#if (DEBUG)

[assembly: AssemblyConfiguration("Debug")]

#else

[assembly: AssemblyConfiguration("Release")]

#endif

[InternalsVisibleTo]

If you want to make internal classes or functions of an assembly accessable from another
assembly you declare this by InternalsVisibleTo and the assembly name that is allowed to access.

In this example code in the assembly MyAssembly.UnitTests is allowed to call internal elements
from MyAssembly.

https://riptutorial.com/ 63

https://www.nuget.org/packages/GitVersionTask/
https://www.nuget.org/packages/SemVer.Git.Fody/

[assembly: InternalsVisibleTo("MyAssembly.UnitTests")]

This is especially useful for unit testing to prevent unnecessary public declarations.

[AssemblyKeyFile]

Whenever we want our assembly to install in GAC then it is must to have a strong name. For
strong naming assembly we have to create a public key. To generate the .snk file.

To create a strong name key file

Developers command prompt for VS2015 (with administrator Access)1.
At the command prompt, type cd C:\Directory_Name and press ENTER.2.
At the command prompt, type sn -k KeyFileName.snk, and then press ENTER.3.

once the keyFileName.snk is created at specified directory then give refernce in your project . give
AssemblyKeyFileAttribute attribute the path to snk file to generate the key when we build our class
library.

Properties -> AssemblyInfo.cs

[assembly: AssemblyKeyFile(@"c:\Directory_Name\KeyFileName.snk")]

Thi will create a strong name assembly after build. After creating your strong name assembly you
can then install it in GAC

Happy Coding :)

Read AssemblyInfo.cs Examples online: https://riptutorial.com/csharp/topic/4264/assemblyinfo-cs-
examples

https://riptutorial.com/ 64

https://riptutorial.com/csharp/topic/4264/assemblyinfo-cs-examples
https://riptutorial.com/csharp/topic/4264/assemblyinfo-cs-examples

Chapter 13: Async/await, Backgroundworker,
Task and Thread Examples

Remarks

To run any of these examples just call them like that:

static void Main()
{
 new Program().ProcessDataAsync();
 Console.ReadLine();
}

Examples

ASP.NET Configure Await

When ASP.NET handles a request, a thread is assigned from the thread pool and a request
context is created. The request context contains information about the current request which can
be accessed through the static HttpContext.Current property. The request context for the request is
then assigned to the thread handling the request.

A given request context may only be active on one thread at a time.

When execution reaches await, the thread handling a request is returned to the thread pool while
the asynchronous method runs and the request context is free for another thread to use.

public async Task<ActionResult> Index()
{
 // Execution on the initially assigned thread
 var products = await dbContext.Products.ToListAsync();

 // Execution resumes on a "random" thread from the pool
 // Execution continues using the original request context.
 return View(products);
}

When the task completes the thread pool assigns another thread to continue execution of the
request. The request context is then assigned to this thread. This may or may not be the original
thread.

Blocking

When the result of an async method call is waited for synchronously deadlocks can arise. For
example the following code will result in a deadlock when IndexSync() is called:

https://riptutorial.com/ 65

public async Task<ActionResult> Index()
{
 // Execution on the initially assigned thread
 List<Product> products = await dbContext.Products.ToListAsync();

 // Execution resumes on a "random" thread from the pool
 return View(products);
}

public ActionResult IndexSync()
{
 Task<ActionResult> task = Index();

 // Block waiting for the result synchronously
 ActionResult result = Task.Result;

 return result;
}

This is because, by default the awaited task, in this case db.Products.ToListAsync() will capture the
context (in the case of ASP.NET the request context) and try to use it once it has completed.

When the entire call stack is asynchronous there is no problem because, once await is reached
the original thread is release, freeing the request context.

When we block synchronously using Task.Result or Task.Wait() (or other blocking methods) the
original thread is still active and retains the request context. The awaited method still operates
asynchronously and once the callback tries to run, i.e. once the awaited task has returned, it
attempts to obtain the request context.

Therefore the deadlock arises because while the blocking thread with the request context is
waiting for the asynchronous operation to complete, the asynchronous operation is trying to obtain
the request context in order to complete.

ConfigureAwait

By default calls to an awaited task will capture the current context and attempt to resume
execution on the context once complete.

By using ConfigureAwait(false) this can be prevented and deadlocks can be avoided.

public async Task<ActionResult> Index()
{
 // Execution on the initially assigned thread
 List<Product> products = await dbContext.Products.ToListAsync().ConfigureAwait(false);

 // Execution resumes on a "random" thread from the pool without the original request
context
 return View(products);
}

public ActionResult IndexSync()
{
 Task<ActionResult> task = Index();

https://riptutorial.com/ 66

 // Block waiting for the result synchronously
 ActionResult result = Task.Result;

 return result;
}

This can avoid deadlocks when it is necessary to block on asynchronous code, however this
comes at the cost of losing the context in the continuation (code after the call to await).

In ASP.NET this means that if your code following a call to await someTask.ConfigureAwait(false);
attempts to access information from the context, for example HttpContext.Current.User then the
information has been lost. In this case the HttpContext.Current is null. For example:

public async Task<ActionResult> Index()
{
 // Contains information about the user sending the request
 var user = System.Web.HttpContext.Current.User;

 using (var client = new HttpClient())
 {
 await client.GetAsync("http://google.com").ConfigureAwait(false);
 }

 // Null Reference Exception, Current is null
 var user2 = System.Web.HttpContext.Current.User;

 return View();
}

If ConfigureAwait(true) is used (equivalent to having no ConfigureAwait at all) then both user and
user2 are populated with the same data.

For this reason it is often recommended to use ConfigureAwait(false) in library code where the
context is no longer used.

Async/await

See below for a simple example of how to use async/await to do some time intensive stuff in a
background process while maintaining the option of doing some other stuff that do not need to wait
on the time intensive stuff to complete.

However, if you need to work with the result of the time intensive method later, you can do this by
awaiting the execution.

public async Task ProcessDataAsync()
{
 // Start the time intensive method
 Task<int> task = TimeintensiveMethod(@"PATH_TO_SOME_FILE");

 // Control returns here before TimeintensiveMethod returns
 Console.WriteLine("You can read this while TimeintensiveMethod is still running.");

 // Wait for TimeintensiveMethod to complete and get its result
 int x = await task;

https://riptutorial.com/ 67

 Console.WriteLine("Count: " + x);
}

private async Task<int> TimeintensiveMethod(object file)
{
 Console.WriteLine("Start TimeintensiveMethod.");

 // Do some time intensive calculations...
 using (StreamReader reader = new StreamReader(file.ToString()))
 {
 string s = await reader.ReadToEndAsync();

 for (int i = 0; i < 10000; i++)
 s.GetHashCode();
 }
 Console.WriteLine("End TimeintensiveMethod.");

 // return something as a "result"
 return new Random().Next(100);
}

BackgroundWorker

See below for a simple example of how to use a BackgroundWorker object to perform time-intensive
operations in a background thread.

You need to:

Define a worker method that does the time-intensive work and call it from an event handler
for the DoWork event of a BackgroundWorker.

1.

Start the execution with RunWorkerAsync. Any argument required by the worker method
attached to DoWork can be passed in via the DoWorkEventArgs parameter to RunWorkerAsync.

2.

In addition to the DoWork event the BackgroundWorker class also defines two events that should be
used for interacting with the user interface. These are optional.

The RunWorkerCompleted event is triggered when the DoWork handlers have completed.•
The ProgressChanged event is triggered when the ReportProgress method is called.•

public void ProcessDataAsync()
{
 // Start the time intensive method
 BackgroundWorker bw = new BackgroundWorker();
 bw.DoWork += BwDoWork;
 bw.RunWorkerCompleted += BwRunWorkerCompleted;
 bw.RunWorkerAsync(@"PATH_TO_SOME_FILE");

 // Control returns here before TimeintensiveMethod returns
 Console.WriteLine("You can read this while TimeintensiveMethod is still running.");
}

// Method that will be called after BwDoWork exits
private void BwRunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
 // we can access possible return values of our Method via the Parameter e
 Console.WriteLine("Count: " + e.Result);

https://riptutorial.com/ 68

}

// execution of our time intensive Method
private void BwDoWork(object sender, DoWorkEventArgs e)
{
 e.Result = TimeintensiveMethod(e.Argument);
}

private int TimeintensiveMethod(object file)
{
 Console.WriteLine("Start TimeintensiveMethod.");

 // Do some time intensive calculations...
 using (StreamReader reader = new StreamReader(file.ToString()))
 {
 string s = reader.ReadToEnd();

 for (int i = 0; i < 10000; i++)
 s.GetHashCode();
 }
 Console.WriteLine("End TimeintensiveMethod.");

 // return something as a "result"
 return new Random().Next(100);
}

Task

See below for a simple example of how to use a Task to do some time intensive stuff in a
background process.

All you need to do is wrap your time intensive method in a Task.Run() call.

public void ProcessDataAsync()
{
 // Start the time intensive method
 Task<int> t = Task.Run(() => TimeintensiveMethod(@"PATH_TO_SOME_FILE"));

 // Control returns here before TimeintensiveMethod returns
 Console.WriteLine("You can read this while TimeintensiveMethod is still running.");

 Console.WriteLine("Count: " + t.Result);
}

private int TimeintensiveMethod(object file)
{
 Console.WriteLine("Start TimeintensiveMethod.");

 // Do some time intensive calculations...
 using (StreamReader reader = new StreamReader(file.ToString()))
 {
 string s = reader.ReadToEnd();

 for (int i = 0; i < 10000; i++)
 s.GetHashCode();
 }
 Console.WriteLine("End TimeintensiveMethod.");

https://riptutorial.com/ 69

 // return something as a "result"
 return new Random().Next(100);
}

Thread

See below for a simple example of how to use a Thread to do some time intensive stuff in a
background process.

public async void ProcessDataAsync()
{
 // Start the time intensive method
 Thread t = new Thread(TimeintensiveMethod);

 // Control returns here before TimeintensiveMethod returns
 Console.WriteLine("You can read this while TimeintensiveMethod is still running.");
}

private void TimeintensiveMethod()
{
 Console.WriteLine("Start TimeintensiveMethod.");

 // Do some time intensive calculations...
 using (StreamReader reader = new StreamReader(@"PATH_TO_SOME_FILE"))
 {
 string v = reader.ReadToEnd();

 for (int i = 0; i < 10000; i++)
 v.GetHashCode();
 }
 Console.WriteLine("End TimeintensiveMethod.");
}

As you can see we can not return a value from our TimeIntensiveMethod because Thread expects a
void Method as its parameter.

To get a return value from a Thread use either an event or the following:

int ret;
Thread t= new Thread(() =>
{
 Console.WriteLine("Start TimeintensiveMethod.");

 // Do some time intensive calculations...
 using (StreamReader reader = new StreamReader(file))
 {
 string s = reader.ReadToEnd();

 for (int i = 0; i < 10000; i++)
 s.GetHashCode();
 }
 Console.WriteLine("End TimeintensiveMethod.");

 // return something to demonstrate the coolness of await-async
 ret = new Random().Next(100);
});

https://riptutorial.com/ 70

t.Start();
t.Join(1000);
Console.Writeline("Count: " + ret);

Task "run and forget" extension

In certain cases (e.g. logging) it might be useful to run task and do not await for the result. The
following extension allows to run task and continue execution of the rest code:

public static class TaskExtensions
{
 public static async void RunAndForget(
 this Task task, Action<Exception> onException = null)
 {
 try
 {
 await task;
 }
 catch (Exception ex)
 {
 onException?.Invoke(ex);
 }
 }
}

The result is awaited only inside the extension method. Since async/await is used, it is possible to
catch an exception and call an optional method for handling it.

An example how to use the extension:

var task = Task.FromResult(0); // Or any other task from e.g. external lib.
task.RunAndForget(
 e =>
 {
 // Something went wrong, handle it.
 });

Read Async/await, Backgroundworker, Task and Thread Examples online:
https://riptutorial.com/csharp/topic/3824/async-await--backgroundworker--task-and-thread-
examples

https://riptutorial.com/ 71

https://riptutorial.com/csharp/topic/3824/async-await--backgroundworker--task-and-thread-examples
https://riptutorial.com/csharp/topic/3824/async-await--backgroundworker--task-and-thread-examples

Chapter 14: Async-Await

Introduction

In C#, a method declared async won't block within a synchronous process, in case of you're using
I/O based operations (e.g. web access, working with files, ...). The result of such async marked
methods may be awaited via the use of the awaitkeyword.

Remarks

An async method can return void, Task or Task<T>.

The return type Task will wait for the method to finish and the result will be void. Task<T> will return
a value from type T after the method completes.

async methods should return Task or Task<T>, as opposed to void, in almost all circumstances. async
void methods cannot be awaited, which leads to a variety of problems. The only scenario where an
async should return void is in the case of an event handler.

async/await works by transforming your async method into a state machine. It does this by creating
a structure behind the scenes which stores the current state and any context (like local variables),
and exposes a MoveNext() method to advance states (and run any associated code) whenever an
awaited awaitable completes.

Examples

Simple consecutive calls

public async Task<JobResult> GetDataFromWebAsync()
{
 var nextJob = await _database.GetNextJobAsync();
 var response = await _httpClient.GetAsync(nextJob.Uri);
 var pageContents = await response.Content.ReadAsStringAsync();
 return await _database.SaveJobResultAsync(pageContents);
}

The main thing to note here is that while every await-ed method is called asynchronously - and for
the time of that call the control is yielded back to the system - the flow inside the method is linear
and does not require any special treatment due to asynchrony. If any of the methods called fail,
the exception will be processed "as expected", which in this case means that the method
execution will be aborted and the exception will be going up the stack.

Try/Catch/Finally

6.0

https://riptutorial.com/ 72

As of C# 6.0, the await keyword can now be used within a catch and finally block.

try {
 var client = new AsyncClient();
 await client.DoSomething();
} catch (MyException ex) {
 await client.LogExceptionAsync();
 throw;
} finally {
 await client.CloseAsync();
}

5.06.0

Prior to C# 6.0, you would need to do something along the lines of the following. Note that 6.0 also
cleaned up the null checks with the Null Propagating operator.

AsynClient client;
MyException caughtException;
try {
 client = new AsyncClient();
 await client.DoSomething();
} catch (MyException ex) {
 caughtException = ex;
}

if (client != null) {
 if (caughtException != null) {
 await client.LogExceptionAsync();
 }
 await client.CloseAsync();
 if (caughtException != null) throw caughtException;
}

Please note that if you await a task not created by async (e.g. a task created by Task.Run), some
debuggers may break on exceptions thrown by the task even when it is seemingly handled by the
surrounding try/catch. This happens because the debugger considers it to be unhandled with
respect to user code. In Visual Studio, there is an option called "Just My Code", which can be
disabled to prevent the debugger from breaking in such situations.

Web.config setup to target 4.5 for correct async behaviour.

The web.config system.web.httpRuntime must target 4.5 to ensure the thread will renter the
request context before resuming your async method.

<httpRuntime targetFramework="4.5" />

Async and await have undefined behavior on ASP.NET prior to 4.5. Async / await will resume on
an arbitrary thread that may not have the request context. Applications under load will randomly
fail with null reference exceptions accessing the HttpContext after the await. Using
HttpContext.Current in WebApi is dangerous because of async

https://riptutorial.com/ 73

http://www.riptutorial.com/csharp/example/51/null-propagation
https://msdn.microsoft.com/en-us/library/dn457346.aspx
http://stackoverflow.com/questions/24956178/using-httpcontext-current-in-webapi-is-dangerous-because-of-async
http://stackoverflow.com/questions/24956178/using-httpcontext-current-in-webapi-is-dangerous-because-of-async

Concurrent calls

It is possible to await multiple calls concurrently by first invoking the awaitable tasks and then
awaiting them.

public async Task RunConcurrentTasks()
{
 var firstTask = DoSomethingAsync();
 var secondTask = DoSomethingElseAsync();

 await firstTask;
 await secondTask;
}

Alternatively, Task.WhenAll can be used to group multiple tasks into a single Task, which completes
when all of its passed tasks are complete.

public async Task RunConcurrentTasks()
{
 var firstTask = DoSomethingAsync();
 var secondTask = DoSomethingElseAsync();

 await Task.WhenAll(firstTask, secondTask);
}

You can also do this inside a loop, for example:

List<Task> tasks = new List<Task>();
while (something) {
 // do stuff
 Task someAsyncTask = someAsyncMethod();
 tasks.Add(someAsyncTask);
}

await Task.WhenAll(tasks);

To get results from a task after awaiting multiple tasks with Task.WhenAll, simply await the task
again. Since the task is already completed it will just return the result back

var task1 = SomeOpAsync();
var task2 = SomeOtherOpAsync();

await Task.WhenAll(task1, task2);

var result = await task2;

Also, the Task.WhenAny can be used to execute multiple tasks in parallel, like the Task.WhenAll
above, with the difference that this method will complete when any of the supplied tasks will be
completed.

public async Task RunConcurrentTasksWhenAny()
{
 var firstTask = TaskOperation("#firstTask executed");

https://riptutorial.com/ 74

 var secondTask = TaskOperation("#secondTask executed");
 var thirdTask = TaskOperation("#thirdTask executed");
 await Task.WhenAny(firstTask, secondTask, thirdTask);
}

The Task returned by RunConcurrentTasksWhenAny will complete when any of firstTask, secondTask, or
thirdTask completes.

Await operator and async keyword

await operator and async keyword come together:

The asynchronous method in which await is used must be modified by the async
keyword.

The opposite is not always true: you can mark a method as async without using await in its body.

What await actually does is to suspend execution of the code until the awaited task completes; any
task can be awaited.

Note: you cannot await for async method which returns nothing (void).

Actually, the word 'suspends' is a bit misleading because not only the execution stops, but the
thread may become free for executing other operations. Under the hood, await is implemented by
a bit of compiler magic: it splits a method into two parts - before and after await. The latter part is
executed when the awaited task completes.

If we ignore some important details, the compiler roughly does this for you:

public async Task<TResult> DoIt()
{
 // do something and acquire someTask of type Task<TSomeResult>
 var awaitedResult = await someTask;
 // ... do something more and produce result of type TResult
 return result;
}

becomes:

public Task<TResult> DoIt()
{
 // ...
 return someTask.ContinueWith(task => {
 var result = ((Task<TSomeResult>)task).Result;
 return DoIt_Continuation(result);
 });
}

private TResult DoIt_Continuation(TSomeResult awaitedResult)
{
 // ...
}

https://riptutorial.com/ 75

Any usual method can be turned into async in the following way:

await Task.Run(() => YourSyncMethod());

This can be advantageous when you need to execute a long running method on the UI thread
without freezing the UI.

But there is a very important remark here: Asynchronous does not always mean concurrent
(parallel or even multi-threaded). Even on a single thread, async-await still allows for
asynchronous code. For example, see this custom task scheduler. Such a 'crazy' task scheduler
can simply turn tasks into functions which are called within message loop processing.

We need to ask ourselves: What thread will execute the continuation of our method
DoIt_Continuation?

By default the await operator schedules the execution of continuation with the current
Synchronization context. It means that by default for WinForms and WPF continuation runs in the
UI thread. If, for some reason, you need to change this behavior, use method
Task.ConfigureAwait():

await Task.Run(() => YourSyncMethod()).ConfigureAwait(continueOnCapturedContext: false);

Returning a Task without await

Methods that perform asynchronous operations don't need to use await if:

There is only one asynchronous call inside the method•
The asynchronous call is at the end of the method•
Catching/handling exception that may happen within the Task is not necessary•

Consider this method that returns a Task:

public async Task<User> GetUserAsync(int id)
{
 var lookupKey = "Users" + id;

 return await dataStore.GetByKeyAsync(lookupKey);
}

If GetByKeyAsync has the same signature as GetUserAsync (returning a Task<User>), the method can
be simplified:

public Task<User> GetUserAsync(int id)
{
 var lookupKey = "Users" + id;

 return dataStore.GetByKeyAsync(lookupKey);
}

In this case, the method doesn't need to be marked async, even though it's preforming an

https://riptutorial.com/ 76

https://msdn.microsoft.com/en-us/library/system.threading.tasks.taskscheduler(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.threading.synchronizationcontext(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.threading.tasks.task.configureawait(v=vs.110).aspx

asynchronous operation. The Task returned by GetByKeyAsync is passed directly to the calling
method, where it will be awaited.

Important: Returning the Task instead of awaiting it, changes the exception behavior of the
method, as it won't throw the exception inside the method which starts the task but in the method
which awaits it.

public Task SaveAsync()
{
 try {
 return dataStore.SaveChangesAsync();
 }
 catch(Exception ex)
 {
 // this will never be called
 logger.LogException(ex);
 }
}

// Some other code calling SaveAsync()

// If exception happens, it will be thrown here, not inside SaveAsync()
await SaveAsync();

This will improve performance as it will save the compiler the generation of an extra async state
machine.

Blocking on async code can cause deadlocks

It is a bad practice to block on async calls as it can cause deadlocks in environments that have a
synchronization context. The best practice is to use async/await "all the way down." For example,
the following Windows Forms code causes a deadlock:

private async Task<bool> TryThis()
{
 Trace.TraceInformation("Starting TryThis");
 await Task.Run(() =>
 {
 Trace.TraceInformation("In TryThis task");
 for (int i = 0; i < 100; i++)
 {
 // This runs successfully - the loop runs to completion
 Trace.TraceInformation("For loop " + i);
 System.Threading.Thread.Sleep(10);
 }
 });

 // This never happens due to the deadlock
 Trace.TraceInformation("About to return");
 return true;
}

// Button click event handler
private void button1_Click(object sender, EventArgs e)
{
 // .Result causes this to block on the asynchronous call

https://riptutorial.com/ 77

 bool result = TryThis().Result;
 // Never actually gets here
 Trace.TraceInformation("Done with result");
}

Essentially, once the async call completes, it waits for the synchronization context to become
available. However, the event handler "holds on" to the synchronization context while it's waiting
for the TryThis() method to complete, thus causing a circular wait.

To fix this, code should be modified to

private async void button1_Click(object sender, EventArgs e)
{
 bool result = await TryThis();
 Trace.TraceInformation("Done with result");
}

Note: event handlers are the only place where async void should be used (because you can't await
an async void method).

Async/await will only improve performance if it allows the machine to do
additional work

Consider the following code:

public async Task MethodA()
{
 await MethodB();
 // Do other work
}

public async Task MethodB()
{
 await MethodC();
 // Do other work
}

public async Task MethodC()
{
 // Or await some other async work
 await Task.Delay(100);
}

This will not perform any better than

public void MethodA()
{
 MethodB();
 // Do other work
}

public void MethodB()
{
 MethodC();

https://riptutorial.com/ 78

 // Do other work
}

public void MethodC()
{
 Thread.Sleep(100);
}

The primary purpose of async/await is to allow the machine to do additional work - for example, to
allow the calling thread to do other work while it's waiting for a result from some I/O operation. In
this case, the calling thread is never allowed to do more work than it would have been able to do
otherwise, so there's no performance gain over simply calling MethodA(), MethodB(), and MethodC()
synchronously.

Read Async-Await online: https://riptutorial.com/csharp/topic/48/async-await

https://riptutorial.com/ 79

https://riptutorial.com/csharp/topic/48/async-await

Chapter 15: Asynchronous Socket

Introduction

By using asynchronous sockets a server can listening for incoming connections and do some
other logic in the mean time in contrast to synchronous socket when they are listening they block
the main thread and the application is becoming unresponsive an will freeze until a client
connects.

Remarks

Socket and network

How to access a Server outside my own network? This is a common question and when it is
asked is mostly flagged as of topic.

Server Side

On the network of your server you need to port forward your router to your server.

For Example PC where server is running on:

local IP = 192.168.1.115

Server is listening to port 1234.

Forward incoming connections on Port 1234 router to 192.168.1.115

Client Side

The only thing you need to change is the IP. You don't want to connect to your loopback address
but to the public IP from the network your server is running on. This IP you can get here.

 _connectingSocket.Connect(new IPEndPoint(IPAddress.Parse("10.10.10.10"), 1234));

So now you create a request on this endpoint : 10.10.10.10:1234 if you did property port forward
your router your server and client will connect without any problem.

If you want to connect to a local IP you won't have to portforwart just change the loopback address
to 192.168.1.178 or something like that.

Sending data:

Data is send in byte array. You need to pack you data into an byte array and unpack it on the
other side.

If you are familiar with socket you also can try to encrypt your byte array before sending. This will

https://riptutorial.com/ 80

http://whatismyipaddress.com/

prevent anyone from stealing your package.

Examples

Asynchronous Socket (Client / Server) example.

Server Side example

Create Listener for server

Start of with creating an server that will handle clients that connect, and requests that will be send.
So create an Listener Class that will handle this.

class Listener
{
 public Socket ListenerSocket; //This is the socket that will listen to any incoming
connections
 public short Port = 1234; // on this port we will listen

 public Listener()
 {
 ListenerSocket = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
ProtocolType.Tcp);
 }
 }

First we need to initialize the Listener socket where we can listen on for any connections. We are
going to use an Tcp Socket that is why we use SocketType.Stream. Also we specify to witch port
the server should listen to

Then we start listening for any incoming connections.

The tree methods we use here are:

ListenerSocket.Bind();

This method binds the socket to an IPEndPoint. This class contains the host and local or
remote port information needed by an application to connect to a service on a host.

1.

ListenerSocket.Listen(10);

The backlog parameter specifies the number of incoming connections that can be queued for
acceptance.

2.

ListenerSocket.BeginAccept();

The server will start listening for incoming connections and will go on with other logic. When
there is an connection the server switches back to this method and will run the
AcceptCallBack methodt

3.

 public void StartListening()

https://riptutorial.com/ 81

https://msdn.microsoft.com/en-us/library/system.net.sockets.socket.bind(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.ipendpoint(v=vs.110).aspx
https://msdn.microsoft.com/nl-nl/library/system.net.sockets.socket.listen(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/5bb431f9(v=vs.110).aspx

 {
 try
 {
 MessageBox.Show($"Listening started port:{Port} protocol type:
{ProtocolType.Tcp}");
 ListenerSocket.Bind(new IPEndPoint(IPAddress.Any, Port));
 ListenerSocket.Listen(10);
 ListenerSocket.BeginAccept(AcceptCallback, ListenerSocket);
 }
 catch(Exception ex)
 {
 throw new Exception("listening error" + ex);
 }
 }

So when a client connects we can accept them by this method:

Three methods wee use here are:

ListenerSocket.EndAccept()

We started the callback with Listener.BeginAccept() end now we have to end that call back.
The EndAccept() method accepts an IAsyncResult parameter, this will store the state of the
asynchronous method, From this state we can extract the socket where the incoming
connection was coming from.

1.

ClientController.AddClient()

With the socket we got from EndAccept() we create an Client with an own made method
(code ClientController below server example).

2.

ListenerSocket.BeginAccept()

We need to start listening again when the socket is done with handling the new connection.
Pass in the method who will catch this callback. And also pass int the Listener socket so we
can reuse this socket for upcoming connections.

3.

 public void AcceptCallback(IAsyncResult ar)
 {
 try
 {
 Console.WriteLine($"Accept CallBack port:{Port} protocol type:
{ProtocolType.Tcp}");
 Socket acceptedSocket = ListenerSocket.EndAccept(ar);
 ClientController.AddClient(acceptedSocket);

 ListenerSocket.BeginAccept(AcceptCallback, ListenerSocket);
 }
 catch (Exception ex)
 {
 throw new Exception("Base Accept error"+ ex);
 }
 }

Now we have an Listening Socket but how do we receive data send by the client that is what the

https://riptutorial.com/ 82

https://msdn.microsoft.com/en-us/library/zdee4kd7(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/5bb431f9(v=vs.110).aspx

next code is showing.

Create Server Receiver for each client

First of create a receive class with a constructor that takes in a Socket as parameter:

 public class ReceivePacket
 {
 private byte[] _buffer;
 private Socket _receiveSocket;

 public ReceivePacket(Socket receiveSocket)
 {
 _receiveSocket = receiveSocket;
 }
 }

In the next method we first start off with giving the buffer a size of 4 bytes (Int32) or package
contains to parts {lenght, actual data}. So the first 4 bytes we reserve for the lenght of the data the
rest for the actual data.

Next we use BeginReceive() method. This method is used to start receiving from connected
clients and when it will receive data it will run the ReceiveCallback function.

 public void StartReceiving()
 {
 try
 {
 _buffer = new byte[4];
 _receiveSocket.BeginReceive(_buffer, 0, _buffer.Length, SocketFlags.None,
ReceiveCallback, null);
 }
 catch {}
 }

 private void ReceiveCallback(IAsyncResult AR)
 {
 try
 {
 // if bytes are less than 1 takes place when a client disconnect from the server.
 // So we run the Disconnect function on the current client
 if (_receiveSocket.EndReceive(AR) > 1)
 {
 // Convert the first 4 bytes (int 32) that we received and convert it to an
Int32 (this is the size for the coming data).
 _buffer = new byte[BitConverter.ToInt32(_buffer, 0)];
 // Next receive this data into the buffer with size that we did receive before
 _receiveSocket.Receive(_buffer, _buffer.Length, SocketFlags.None);
 // When we received everything its onto you to convert it into the data that
you've send.
 // For example string, int etc... in this example I only use the
implementation for sending and receiving a string.

 // Convert the bytes to string and output it in a message box
 string data = Encoding.Default.GetString(_buffer);
 MessageBox.Show(data);
 // Now we have to start all over again with waiting for a data to come from

https://riptutorial.com/ 83

https://msdn.microsoft.com/en-us/library/dxkwh6zw(v=vs.110).aspx

the socket.
 StartReceiving();
 }
 else
 {
 Disconnect();
 }
 }
 catch
 {
 // if exeption is throw check if socket is connected because than you can
startreive again else Dissconect
 if (!_receiveSocket.Connected)
 {
 Disconnect();
 }
 else
 {
 StartReceiving();
 }
 }
 }

 private void Disconnect()
 {
 // Close connection
 _receiveSocket.Disconnect(true);
 // Next line only apply for the server side receive
 ClientController.RemoveClient(_clientId);
 // Next line only apply on the Client Side receive
 Here you want to run the method TryToConnect()
 }

So we've setup a server that can receive and listen for incoming connections. When a clients
connect it will be added to a list of clients and every client has his own receive class. To make the
server listen:

Listener listener = new Listener();
listener.StartListening();

Some Classes I use in this example

 class Client
 {
 public Socket _socket { get; set; }
 public ReceivePacket Receive { get; set; }
 public int Id { get; set; }

 public Client(Socket socket, int id)
 {
 Receive = new ReceivePacket(socket, id);
 Receive.StartReceiving();
 _socket = socket;
 Id = id;
 }
 }

 static class ClientController

https://riptutorial.com/ 84

 {
 public static List<Client> Clients = new List<Client>();

 public static void AddClient(Socket socket)
 {
 Clients.Add(new Client(socket,Clients.Count));
 }

 public static void RemoveClient(int id)
 {
 Clients.RemoveAt(Clients.FindIndex(x => x.Id == id));
 }
 }

Client Side example

Connecting to server

First of all we want to create a class what connects to the server te name we give it is: Connector:

class Connector
{
 private Socket _connectingSocket;
}

Next Method for this class is TryToConnect()

This method goth a few interestin things:

Create the socket;1.

Next I loop until the socket is connected2.

Every loop it is just holding the Thread for 1 second we don't want to DOS the server XD3.

With Connect() it will try to connect to the server. If it fails it will throw an exception but the
wile will keep the program connecting to the server. You can use a Connect CallBack
method for this, but I'll just go for calling a method when the Socket is connected.

4.

Notice the Client is now trying to connect to your local pc on port 1234.

 public void TryToConnect()
 {
 _connectingSocket = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
ProtocolType.Tcp);

 while (!_connectingSocket.Connected)
 {
 Thread.Sleep(1000);

 try
 {
 _connectingSocket.Connect(new IPEndPoint(IPAddress.Parse("127.0.0.1"),
1234));
 }

5.

https://riptutorial.com/ 85

https://msdn.microsoft.com/en-us/library/4xzx2d41(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms145129(v=vs.110).aspx

 catch { }
 }
 SetupForReceiveing();
 }
 }

 private void SetupForReceiveing()
 {
 // View Client Class bottom of Client Example
 Client.SetClient(_connectingSocket);
 Client.StartReceiving();
 }

Sending a message to the server

So now we have an almost finish or Socket application. The only thing that we don't have jet is a
Class for sending a message to the server.

public class SendPacket
{
 private Socket _sendSocked;

 public SendPacket(Socket sendSocket)
 {
 _sendSocked = sendSocket;
 }

 public void Send(string data)
 {
 try
 {
 /* what hapends here:
 1. Create a list of bytes
 2. Add the length of the string to the list.
 So if this message arrives at the server we can easily read the length of
the coming message.
 3. Add the message(string) bytes
 */

 var fullPacket = new List<byte>();
 fullPacket.AddRange(BitConverter.GetBytes(data.Length));
 fullPacket.AddRange(Encoding.Default.GetBytes(data));

 /* Send the message to the server we are currently connected to.
 Or package stucture is {length of data 4 bytes (int32), actual data}*/
 _sendSocked.Send(fullPacket.ToArray());
 }
 catch (Exception ex)
 {
 throw new Exception();
 }
 }

Finaly crate two buttons one for connect and the other for sending a message:

 private void ConnectClick(object sender, EventArgs e)
 {
 Connector tpp = new Connector();

https://riptutorial.com/ 86

 tpp.TryToConnect();
 }

 private void SendClick(object sender, EventArgs e)
 {
 Client.SendString("Test data from client");
 }

The client class I used in this example

 public static void SetClient(Socket socket)
 {
 Id = 1;
 Socket = socket;
 Receive = new ReceivePacket(socket, Id);
 SendPacket = new SendPacket(socket);
 }

Notice

The Receive Class from the server is the same as the receive class from the client.

Conclusion

You now have a server and a client. You can work this basic example out. For example make it
that the server also can receive files or other tings. Or send a message to the client. In the server
you got a list of client so when you receive something you will know from with client it came from.

Final result:

https://riptutorial.com/ 87

Read Asynchronous Socket online: https://riptutorial.com/csharp/topic/9638/asynchronous-socket

https://riptutorial.com/ 88

https://i.stack.imgur.com/TC2Af.png
https://riptutorial.com/csharp/topic/9638/asynchronous-socket

Chapter 16: Attributes

Examples

Creating a custom attribute

//1) All attributes should be inherited from System.Attribute
//2) You can customize your attribute usage (e.g. place restrictions) by using
System.AttributeUsage Attribute
//3) You can use this attribute only via reflection in the way it is supposed to be used
//4) MethodMetadataAttribute is just a name. You can use it without "Attribute" postfix - e.g.
[MethodMetadata("This text could be retrieved via reflection")].
//5) You can overload an attribute constructors
[System.AttributeUsage(System.AttributeTargets.Method | System.AttributeTargets.Class)]
public class MethodMetadataAttribute : System.Attribute
{
 //this is custom field given just for an example
 //you can create attribute without any fields
 //even an empty attribute can be used - as marker
 public string Text { get; set; }

 //this constructor could be used as [MethodMetadata]
 public MethodMetadataAttribute ()
 {
 }

 //This constructor could be used as [MethodMetadata("String")]
 public MethodMetadataAttribute (string text)
 {
 Text = text;
 }
}

Using an attribute

[StackDemo(Text = "Hello, World!")]
public class MyClass
{
 [StackDemo("Hello, World!")]
 static void MyMethod()
 {
 }
}

Reading an attribute

Method GetCustomAttributes returns an array of custom attributes applied to the member. After
retrieving this array you can search for one or more specific attributes.

var attribute = typeof(MyClass).GetCustomAttributes().OfType<MyCustomAttribute>().Single();

Or iterate through them

https://riptutorial.com/ 89

foreach(var attribute in typeof(MyClass).GetCustomAttributes()) {
 Console.WriteLine(attribute.GetType());
}

GetCustomAttribute extension method from System.Reflection.CustomAttributeExtensions retrieves a
custom attribute of a specified type, it can be applied to any MemberInfo.

var attribute = (MyCustomAttribute)
typeof(MyClass).GetCustomAttribute(typeof(MyCustomAttribute));

GetCustomAttribute also has generic signature to specify type of attribute to search for.

var attribute = typeof(MyClass).GetCustomAttribute<MyCustomAttribute>();

Boolean argument inherit can be passed to both of those methods. If this value set to true the
ancestors of element would be also to inspected.

DebuggerDisplay Attribute

Adding the DebuggerDisplay Attribute will change the way the debugger displays the class when it is
hovered over.

Expressions that are wrapped in {} will be evaluated by the debugger. This can be a simple
property like in the following sample or more complex logic.

[DebuggerDisplay("{StringProperty} - {IntProperty}")]
public class AnObject
{
 public int ObjectId { get; set; }
 public string StringProperty { get; set; }
 public int IntProperty { get; set; }
}

Adding ,nq before the closing bracket removes the quotes when outputting a string.

[DebuggerDisplay("{StringProperty,nq} - {IntProperty}")]

Even though general expressions are allowed in the {} they are not recommended. The
DebuggerDisplay attribute will be written into the assembly metadata as a string. Expressions in {}
are not checked for validity. So a DebuggerDisplay attribute containing more complex logic than i.e.
some simple arithmetic might work fine in C#, but the same expression evaluated in VB.NET will

https://riptutorial.com/ 90

https://i.stack.imgur.com/6JjJs.png

probably not be syntactically valid and produce an error while debugging.

A way to make DebuggerDisplay more language agnostic is to write the expression in a method or
property and call it instead.

[DebuggerDisplay("{DebuggerDisplay(),nq}")]
public class AnObject
{
 public int ObjectId { get; set; }
 public string StringProperty { get; set; }
 public int IntProperty { get; set; }

 private string DebuggerDisplay()
 {
 return $"{StringProperty} - {IntProperty}"";
 }
}

One might want DebuggerDisplayto output all or just some of the properties and when debugging
and inspecting also the type of the object.
The example below also surrounds the helper method with #if DEBUG as DebuggerDisplay is used in
debugging environments.

[DebuggerDisplay("{DebuggerDisplay(),nq}")]
public class AnObject
{
 public int ObjectId { get; set; }
 public string StringProperty { get; set; }
 public int IntProperty { get; set; }

#if DEBUG
 private string DebuggerDisplay()
 {
 return
 $"ObjectId:{this.ObjectId}, StringProperty:{this.StringProperty},
Type:{this.GetType()}";
 }
 #endif
}

Caller info attributes

Caller info attributes can be used to pass down information about the invoker to the invoked
method. The declaration looks like this:

using System.Runtime.CompilerServices;

public void LogException(Exception ex,
 [CallerMemberName]string callerMemberName = "",
 [CallerLineNumber]int callerLineNumber = 0,
 [CallerFilePath]string callerFilePath = "")
{
 //perform logging
}

https://riptutorial.com/ 91

And the invocation looks like this:

public void Save(DBContext context)
{
 try
 {
 context.SaveChanges();
 }
 catch (Exception ex)
 {
 LogException(ex);
 }
}

Notice that only the first parameter is passed explicitly to the LogException method whereas the rest
of them will be provided at compile time with the relevant values.

The callerMemberName parameter will receive the value "Save" - the name of the calling method.

The callerLineNumber parameter will receive the number of whichever line the LogException method
call is written on.

And the 'callerFilePath' parameter will receive the full path of the file Save method is declared in.

Reading an attribute from interface

There is no simple way to obtain attributes from an interface, since classes does not inherit
attributes from an interface. Whenever implementing an interface or overriding members in a
derived class, you need to re-declare the attributes. So in the example below output would be True
in all three cases.

using System;
using System.Linq;
using System.Reflection;

namespace InterfaceAttributesDemo {

 [AttributeUsage(AttributeTargets.Interface, Inherited = true)]
 class MyCustomAttribute : Attribute {
 public string Text { get; set; }
 }

 [MyCustomAttribute(Text = "Hello from interface attribute")]
 interface IMyClass {
 void MyMethod();
 }

 class MyClass : IMyClass {
 public void MyMethod() { }
 }

 public class Program {
 public static void Main(string[] args) {
 GetInterfaceAttributeDemo();
 }

https://riptutorial.com/ 92

 private static void GetInterfaceAttributeDemo() {
 var attribute1 = (MyCustomAttribute)
typeof(MyClass).GetCustomAttribute(typeof(MyCustomAttribute), true);
 Console.WriteLine(attribute1 == null); // True

 var attribute2 =
typeof(MyClass).GetCustomAttributes(true).OfType<MyCustomAttribute>().SingleOrDefault();
 Console.WriteLine(attribute2 == null); // True

 var attribute3 = typeof(MyClass).GetCustomAttribute<MyCustomAttribute>(true);
 Console.WriteLine(attribute3 == null); // True
 }
 }
}

One way to retrieve interface attributes is to search for them through all the interfaces
implemented by a class.

var attribute = typeof(MyClass).GetInterfaces().SelectMany(x =>
x.GetCustomAttributes().OfType<MyCustomAttribute>()).SingleOrDefault();
Console.WriteLine(attribute == null); // False
Console.WriteLine(attribute.Text); // Hello from interface attribute

Obsolete Attribute

System.Obsolete is an attribute that is used to mark a type or a member that has a better version,
and thus should not be used.

[Obsolete("This class is obsolete. Use SomeOtherClass instead.")]
class SomeClass
{
 //
}

In case the class above is used, the compiler will give the warning "This class is obsolete. Use
SomeOtherClass instead."

Read Attributes online: https://riptutorial.com/csharp/topic/1062/attributes

https://riptutorial.com/ 93

https://riptutorial.com/csharp/topic/1062/attributes

Chapter 17: BackgroundWorker

Syntax

bgWorker.CancellationPending //returns whether the bgWorker was cancelled during its
operation

•

bgWorker.IsBusy //returns true if the bgWorker is in the middle of an operation•

bgWorker.ReportProgress(int x) //Reports a change in progress. Raises the "ProgressChanged"
event

•

bgWorker.RunWorkerAsync() //Starts the BackgroundWorker by raising the "DoWork" event•

bgWorker.CancelAsync() //instructs the BackgroundWorker to stop after the completion of a
task.

•

Remarks

Performing long-running operations within the UI thread can cause your application to become
unresponsive, appearing to the user that it has stopped working. It is preferred that these tasks be
run on a background thread. Once complete, the UI can be updated.

Making changes to the UI during the BackgroundWorker's operation requires invoking the
changes to the UI thread, typically by using the Control.Invoke method on the control you are
updating. Neglecting to do so will cause your program to throw an exception.

The BackgroundWorker is typically only used in Windows Forms applications. In WPF
applications, Tasks are used to offload work onto background threads (possibly in combination
with async/await). Marshalling updates onto the UI thread is typically done automatically, when the
property being updated implements INotifyPropertyChanged, or manually by using the UI thread's
Dispatcher.

Examples

Assigning Event Handlers to a BackgroundWorker

Once the instance of the BackgroundWorker has been declared, it must be given properties and
event handlers for the tasks it performs.

 /* This is the backgroundworker's "DoWork" event handler. This
 method is what will contain all the work you
 wish to have your program perform without blocking the UI. */

 bgWorker.DoWork += bgWorker_DoWork;

 /*This is how the DoWork event method signature looks like:*/
 private void bgWorker_DoWork(object sender, DoWorkEventArgs e)
 {

https://riptutorial.com/ 94

https://msdn.microsoft.com/en-us/library/system.windows.forms.control.invoke(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.threading.tasks.task(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/mt674882.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx
https://msdn.microsoft.com/en-us/library/system.windows.threading.dispatcher(v=vs.110).aspx

 // Work to be done here
 // ...
 // To get a reference to the current Backgroundworker:
 BackgroundWorker worker = sender as BackgroundWorker;
 // The reference to the BackgroundWorker is often used to report progress
 worker.ReportProgress(...);
 }

 /*This is the method that will be run once the BackgroundWorker has completed its tasks */

 bgWorker.RunWorkerCompleted += bgWorker_CompletedWork;

 /*This is how the RunWorkerCompletedEvent event method signature looks like:*/
 private void bgWorker_CompletedWork(object sender, RunWorkerCompletedEventArgs e)
 {
 // Things to be done after the backgroundworker has finished
 }

 /* When you wish to have something occur when a change in progress
 occurs, (like the completion of a specific task) the "ProgressChanged"
 event handler is used. Note that ProgressChanged events may be invoked
 by calls to bgWorker.ReportProgress(...) only if bgWorker.WorkerReportsProgress
 is set to true. */

 bgWorker.ProgressChanged += bgWorker_ProgressChanged;

 /*This is how the ProgressChanged event method signature looks like:*/
 private void bgWorker_ProgressChanged(object sender, ProgressChangedEventArgs e)
 {
 // Things to be done when a progress change has been reported

 /* The ProgressChangedEventArgs gives access to a percentage,
 allowing for easy reporting of how far along a process is*/
 int progress = e.ProgressPercentage;
 }

Assigning Properties to a BackgroundWorker

This allows the BackgroundWorker to be cancelled in between tasks

bgWorker.WorkerSupportsCancellation = true;

This allows the worker to report progress between completion of tasks...

bgWorker.WorkerReportsProgress = true;

//this must also be used in conjunction with the ProgressChanged event

Creating a new BackgroundWorker instance

A BackgroundWorker is commonly used to perform tasks, sometimes time consuming, without
blocking the UI thread.

// BackgroundWorker is part of the ComponentModel namespace.
using System.ComponentModel;

https://riptutorial.com/ 95

namespace BGWorkerExample
{
 public partial class ExampleForm : Form
 {

 // the following creates an instance of the BackgroundWorker named "bgWorker"
 BackgroundWorker bgWorker = new BackgroundWorker();

 public ExampleForm() { ...

Using a BackgroundWorker to complete a task.

The following example demonstrates the use of a BackgroundWorker to update a WinForms
ProgressBar. The backgroundWorker will update the value of the progress bar without blocking
the UI thread, thus showing a reactive UI while work is done in the background.

namespace BgWorkerExample
{
 public partial class Form1 : Form
{

 //a new instance of a backgroundWorker is created.
 BackgroundWorker bgWorker = new BackgroundWorker();

 public Form1()
 {
 InitializeComponent();

 prgProgressBar.Step = 1;

 //this assigns event handlers for the backgroundWorker
 bgWorker.DoWork += bgWorker_DoWork;
 bgWorker.RunWorkerCompleted += bgWorker_WorkComplete;

 //tell the backgroundWorker to raise the "DoWork" event, thus starting it.
 //Check to make sure the background worker is not already running.
 if(!bgWorker.IsBusy)
 bgWorker.RunWorkerAsync();

 }

 private void bgWorker_DoWork(object sender, DoWorkEventArgs e)
 {
 //this is the method that the backgroundworker will perform on in the background
thread.
 /* One thing to note! A try catch is not necessary as any exceptions will terminate
the backgroundWorker and report
 the error to the "RunWorkerCompleted" event */
 CountToY();
 }

 private void bgWorker_WorkComplete(object sender, RunWorkerCompletedEventArgs e)
 {
 //e.Error will contain any exceptions caught by the backgroundWorker
 if (e.Error != null)
 {
 MessageBox.Show(e.Error.Message);

https://riptutorial.com/ 96

 }
 else
 {
 MessageBox.Show("Task Complete!");
 prgProgressBar.Value = 0;
 }
 }

 // example method to perform a "long" running task.
 private void CountToY()
 {
 int x = 0;

 int maxProgress = 100;
 prgProgressBar.Maximum = maxProgress;

 while (x < maxProgress)
 {
 System.Threading.Thread.Sleep(50);
 Invoke(new Action(() => { prgProgressBar.PerformStep(); }));
 x += 1;
 }
 }

}

The result is the following...

Read BackgroundWorker online: https://riptutorial.com/csharp/topic/1588/backgroundworker

https://riptutorial.com/ 97

http://i.stack.imgur.com/xGryX.png
http://i.stack.imgur.com/CRarn.png
https://riptutorial.com/csharp/topic/1588/backgroundworker

Chapter 18: BigInteger

Remarks

When To Use

BigInteger objects are by their very nature very heavy on RAM. Consequently, they should only be
used when absolutely necessary, ie for numbers on a truly astronomical scale.

Further to this, all arithmetic operations on these objects are an order of magnitude slower than
their primitive counterparts, this problem gets further compounded as the number grows as they
are not of a fixed size. It is therefore feasibly possible for a rogue BigInteger to cause a crash by
consuming all of the available RAM.

Alternatives

If speed is imperative to your solution it may be more efficient to implement this functionality
yourself using a class wrapping a Byte[] and overloading the necessary operators yourself.
However, this does require a significant amount of extra effort.

Examples

Calculate the First 1,000-Digit Fibonacci Number

Include using System.Numerics and add a reference to System.Numerics to the project.

using System;
using System.Numerics;

namespace Euler_25
{
 class Program
 {
 static void Main(string[] args)
 {
 BigInteger l1 = 1;
 BigInteger l2 = 1;
 BigInteger current = l1 + l2;
 while (current.ToString().Length < 1000)
 {
 l2 = l1;
 l1 = current;
 current = l1 + l2;
 }
 Console.WriteLine(current);
 }
 }
}

https://riptutorial.com/ 98

This simple algorithm iterates through Fibonacci numbers until it reaches one at least 1000
decimal digits in length, then prints it out. This value is significantly larger than even a ulong could
hold.

Theoretically, the only limit on the BigInteger class is the amount of RAM your application can
consume.

Note: BigInteger is only available in .NET 4.0 and higher.

Read BigInteger online: https://riptutorial.com/csharp/topic/5654/biginteger

https://riptutorial.com/ 99

https://riptutorial.com/csharp/topic/5654/biginteger

Chapter 19: Binary Serialization

Remarks

The binary serialization engine is part of the .NET framework, but the examples given here are
specific to C#. As compared to other serialization engines built into the .NET framework, the binary
serializer is fast and efficient and usually requires very little extra code to get it to work. However, it
is also less tolerant to code changes; that is, if you serialize an object and then make a slight
change to the object's definition, it likely will not deserialize correctly.

Examples

Making an object serializable

Add the [Serializable] attribute to mark an entire object for binary serialization:

[Serializable]
public class Vector
{
 public int X;
 public int Y;
 public int Z;

 [NonSerialized]
 public decimal DontSerializeThis;

 [OptionalField]
 public string Name;
}

All members will be serialized unless we explicitly opt-out using the [NonSerialized] attribute. In
our example, X, Y, Z, and Name are all serialized.

All members are required to be present on deserialization unless marked with [NonSerialized] or
[OptionalField]. In our example, X, Y, and Z are all required and deserialization will fail if they are
not present in the stream. DontSerializeThis will always be set to default(decimal) (which is 0). If
Name is present in the stream, then it will be set to that value, otherwise it will be set to
default(string) (which is null). The purpose of [OptionalField] is to provide a bit of version
tolerance.

Controlling serialization behavior with attributes

If you use the [NonSerialized] attribute, then that member will always have its default value after
deserialization (ex. 0 for an int, null for string, false for a bool, etc.), regardless of any initialization
done in the object itself (constructors, declarations, etc.). To compensate, the attributes
[OnDeserializing] (called just BEFORE deserializing) and [OnDeserialized] (called just AFTER
deserializing) together with their counterparts, [OnSerializing] and [OnSerialized] are provided.

https://riptutorial.com/ 100

Assume we want to add a "Rating" to our Vector and we want to make sure the value always
starts at 1. The way it is written below, it will be 0 after being deserialized:

[Serializable]
public class Vector
{
 public int X;
 public int Y;
 public int Z;

 [NonSerialized]
 public decimal Rating = 1M;

 public Vector()
 {
 Rating = 1M;
 }

 public Vector(decimal initialRating)
 {
 Rating = initialRating;
 }
}

To fix this problem, we can simply add the following method inside of the class to set it to 1:

[OnDeserializing]
void OnDeserializing(StreamingContext context)
{
 Rating = 1M;
}

Or, if we want to set it to a calculated value, we can wait for it to be finished deserializing and then
set it:

[OnDeserialized]
void OnDeserialized(StreamingContext context)
{
 Rating = 1 + ((X+Y+Z)/3);
}

Similarly, we can control how things are written out by using [OnSerializing] and [OnSerialized].

Adding more control by implementing ISerializable

That would get more control over serialization, how to save and load types

Implement ISerializable interface and create an empty constructor to compile

[Serializable]
public class Item : ISerializable
{
 private string _name;

https://riptutorial.com/ 101

 public string Name
 {
 get { return _name; }
 set { _name = value; }
 }

 public Item ()
 {

 }

 protected Item (SerializationInfo info, StreamingContext context)
 {
 _name = (string)info.GetValue("_name", typeof(string));
 }

 public void GetObjectData(SerializationInfo info, StreamingContext context)
 {
 info.AddValue("_name", _name, typeof(string));
 }
}

For data serialization, you can specify the desired name and the desired type

info.AddValue("_name", _name, typeof(string));

When the data is deserialized, you will be able to read the desired type

_name = (string)info.GetValue("_name", typeof(string));

Serialization surrogates (Implementing ISerializationSurrogate)

Implements a serialization surrogate selector that allows one object to perform serialization and
deserialization of another

As well allows to properly serialize or deserialize a class that is not itself serializable

Implement ISerializationSurrogate interface

public class ItemSurrogate : ISerializationSurrogate
{
 public void GetObjectData(object obj, SerializationInfo info, StreamingContext context)
 {
 var item = (Item)obj;
 info.AddValue("_name", item.Name);
 }

 public object SetObjectData(object obj, SerializationInfo info, StreamingContext context,
ISurrogateSelector selector)
 {
 var item = (Item)obj;
 item.Name = (string)info.GetValue("_name", typeof(string));
 return item;
 }
}

https://riptutorial.com/ 102

Then you need to let your IFormatter know about the surrogates by defining and initializing a
SurrogateSelector and assigning it to your IFormatter

var surrogateSelector = new SurrogateSelector();
surrogateSelector.AddSurrogate(typeof(Item), new StreamingContext(StreamingContextStates.All),
new ItemSurrogate());
var binaryFormatter = new BinaryFormatter
{
 SurrogateSelector = surrogateSelector
};

Even if the class is not marked serializable.

//this class is not serializable
public class Item
{
 private string _name;

 public string Name
 {
 get { return _name; }
 set { _name = value; }
 }
}

The complete solution

using System;
using System.IO;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;

namespace BinarySerializationExample
{
 class Item
 {
 private string _name;

 public string Name
 {
 get { return _name; }
 set { _name = value; }
 }
 }

 class ItemSurrogate : ISerializationSurrogate
 {
 public void GetObjectData(object obj, SerializationInfo info, StreamingContext
context)
 {
 var item = (Item)obj;
 info.AddValue("_name", item.Name);
 }

 public object SetObjectData(object obj, SerializationInfo info, StreamingContext
context, ISurrogateSelector selector)
 {
 var item = (Item)obj;

https://riptutorial.com/ 103

 item.Name = (string)info.GetValue("_name", typeof(string));
 return item;
 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 var item = new Item
 {
 Name = "Orange"
 };

 var bytes = SerializeData(item);
 var deserializedData = (Item)DeserializeData(bytes);
 }

 private static byte[] SerializeData(object obj)
 {
 var surrogateSelector = new SurrogateSelector();
 surrogateSelector.AddSurrogate(typeof(Item), new
StreamingContext(StreamingContextStates.All), new ItemSurrogate());

 var binaryFormatter = new BinaryFormatter
 {
 SurrogateSelector = surrogateSelector
 };

 using (var memoryStream = new MemoryStream())
 {
 binaryFormatter.Serialize(memoryStream, obj);
 return memoryStream.ToArray();
 }
 }

 private static object DeserializeData(byte[] bytes)
 {
 var surrogateSelector = new SurrogateSelector();
 surrogateSelector.AddSurrogate(typeof(Item), new
StreamingContext(StreamingContextStates.All), new ItemSurrogate());

 var binaryFormatter = new BinaryFormatter
 {
 SurrogateSelector = surrogateSelector
 };

 using (var memoryStream = new MemoryStream(bytes))
 return binaryFormatter.Deserialize(memoryStream);
 }
 }
}

Serialization Binder

The binder gives you an opportunity to inspect what types are being loaded in your application
domain

Create a class inherited from SerializationBinder

https://riptutorial.com/ 104

class MyBinder : SerializationBinder
{
 public override Type BindToType(string assemblyName, string typeName)
 {
 if (typeName.Equals("BinarySerializationExample.Item"))
 return typeof(Item);
 return null;
 }
}

Now we can check what types are loading and on this basis to decide what we really want to
receive

For using a binder, you must add it to the BinaryFormatter.

object DeserializeData(byte[] bytes)
{
 var binaryFormatter = new BinaryFormatter();
 binaryFormatter.Binder = new MyBinder();

 using (var memoryStream = new MemoryStream(bytes))
 return binaryFormatter.Deserialize(memoryStream);
}

The complete solution

using System;
using System.IO;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;

namespace BinarySerializationExample
{
 class MyBinder : SerializationBinder
 {
 public override Type BindToType(string assemblyName, string typeName)
 {
 if (typeName.Equals("BinarySerializationExample.Item"))
 return typeof(Item);
 return null;
 }
 }

 [Serializable]
 public class Item
 {
 private string _name;

 public string Name
 {
 get { return _name; }
 set { _name = value; }
 }
 }

 class Program
 {
 static void Main(string[] args)

https://riptutorial.com/ 105

 {
 var item = new Item
 {
 Name = "Orange"
 };

 var bytes = SerializeData(item);
 var deserializedData = (Item)DeserializeData(bytes);
 }

 private static byte[] SerializeData(object obj)
 {
 var binaryFormatter = new BinaryFormatter();
 using (var memoryStream = new MemoryStream())
 {
 binaryFormatter.Serialize(memoryStream, obj);
 return memoryStream.ToArray();
 }
 }

 private static object DeserializeData(byte[] bytes)
 {
 var binaryFormatter = new BinaryFormatter
 {
 Binder = new MyBinder()
 };

 using (var memoryStream = new MemoryStream(bytes))
 return binaryFormatter.Deserialize(memoryStream);
 }
 }
}

Some gotchas in backward compatibility

This small example shows how you can lose backward compatibility in your programs if you do not
take care in advance about this. And ways to get more control of serialization process

At first, we will write an example of the first version of the program:

Version 1

[Serializable]
class Data
{
 [OptionalField]
 private int _version;

 public int Version
 {
 get { return _version; }
 set { _version = value; }
 }
}

And now, let us assume that in the second version of the program added a new class. And we
need to store it in an array.

https://riptutorial.com/ 106

Now code will look like this:

Version 2

[Serializable]
class NewItem
{
 [OptionalField]
 private string _name;

 public string Name
 {
 get { return _name; }
 set { _name = value; }
 }
}

[Serializable]
class Data
{
 [OptionalField]
 private int _version;

 public int Version
 {
 get { return _version; }
 set { _version = value; }
 }

 [OptionalField]
 private List<NewItem> _newItems;

 public List<NewItem> NewItems
 {
 get { return _newItems; }
 set { _newItems = value; }
 }
}

And code for serialize and deserialize

private static byte[] SerializeData(object obj)
{
 var binaryFormatter = new BinaryFormatter();
 using (var memoryStream = new MemoryStream())
 {
 binaryFormatter.Serialize(memoryStream, obj);
 return memoryStream.ToArray();
 }
}

private static object DeserializeData(byte[] bytes)
{
 var binaryFormatter = new BinaryFormatter();
 using (var memoryStream = new MemoryStream(bytes))
 return binaryFormatter.Deserialize(memoryStream);
}

https://riptutorial.com/ 107

And so, what would happen when you serialize the data in the program of v2 and will try to
deserialize them in the program of v1?

You get an exception:

System.Runtime.Serialization.SerializationException was unhandled
Message=The ObjectManager found an invalid number of fixups. This usually indicates a problem
in the Formatter.Source=mscorlib
StackTrace:
 at System.Runtime.Serialization.ObjectManager.DoFixups()
 at System.Runtime.Serialization.Formatters.Binary.ObjectReader.Deserialize(HeaderHandler
handler, __BinaryParser serParser, Boolean fCheck, Boolean isCrossAppDomain,
IMethodCallMessage methodCallMessage)
 at System.Runtime.Serialization.Formatters.Binary.BinaryFormatter.Deserialize(Stream
serializationStream, HeaderHandler handler, Boolean fCheck, Boolean isCrossAppDomain,
IMethodCallMessage methodCallMessage)
 at System.Runtime.Serialization.Formatters.Binary.BinaryFormatter.Deserialize(Stream
serializationStream)
 at Microsoft.Samples.TestV1.Main(String[] args) in c:\Users\andrew\Documents\Visual Studio
2013\Projects\vts\CS\V1 Application\TestV1Part2\TestV1Part2.cs:line 29
 at System.AppDomain._nExecuteAssembly(Assembly assembly, String[] args)
 at Microsoft.VisualStudio.HostingProcess.HostProc.RunUsersAssembly()
 at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback
callback, Object state)
 at System.Threading.ThreadHelper.ThreadStart()

Why?

The ObjectManager has a different logic to resolve dependencies for arrays and for reference and
value types. We added an array of new the reference type which is absent in our assembly.

When ObjectManager attempts to resolve dependencies it builds the graph. When it sees the
array, it can not fix it immediately, so that it creates a dummy reference and then fixes the array
later.

And since this type is not in the assembly and dependencies can’t be fixed. For some reason, it
does not remove the array from the list of elements for the fixes and at the end, it throws an
exception “IncorrectNumberOfFixups”.

It is some ‘gotchas’ in the process of serialization. For some reason, it does not work correctly only
for arrays of new reference types.

A Note:
Similar code will work correctly if you do not use arrays with new classes

And the first way to fix it and maintain compatibility?

Use a collection of new structures rather than classes or use a dictionary(possible classes),
because a dictionary it’s a collection of keyvaluepair(it’s structure)

•

Use ISerializable, if you can't change the old code•

Read Binary Serialization online: https://riptutorial.com/csharp/topic/4120/binary-serialization

https://riptutorial.com/ 108

https://riptutorial.com/csharp/topic/4120/binary-serialization

Chapter 20: BindingList

Examples

Avoiding N*2 iteration

This is placed in a Windows Forms event handler

var nameList = new BindingList<string>();
ComboBox1.DataSource = nameList;
for(long i = 0; i < 10000; i++) {
 nameList.AddRange(new [] {"Alice", "Bob", "Carol" });
}

This takes a long time to execute, to fix, do the below:

var nameList = new BindingList<string>();
ComboBox1.DataSource = nameList;
nameList.RaiseListChangedEvents = false;
for(long i = 0; i < 10000; i++) {
 nameList.AddRange(new [] {"Alice", "Bob", "Carol" });
}
nameList.RaiseListChangedEvents = true;
nameList.ResetBindings();

Add item to list

BindingList<string> listOfUIItems = new BindingList<string>();
listOfUIItems.Add("Alice");
listOfUIItems.Add("Bob");

Read BindingList online: https://riptutorial.com/csharp/topic/182/bindinglist-t-

https://riptutorial.com/ 109

https://riptutorial.com/csharp/topic/182/bindinglist-t-

Chapter 21: Built-in Types

Examples

Immutable reference type - string

// assign string from a string literal
string s = "hello";

// assign string from an array of characters
char[] chars = new char[] { 'h', 'e', 'l', 'l', 'o' };
string s = new string(chars, 0, chars.Length);

// assign string from a char pointer, derived from a string
string s;
unsafe
{
 fixed (char* charPointer = "hello")
 {
 s = new string(charPointer);
 }
}

Value type - char

// single character s
char c = 's';

// character s: casted from integer value
char c = (char)115;

// unicode character: single character s
char c = '\u0073';

// unicode character: smiley face
char c = '\u263a';

Value type - short, int, long (signed 16 bit, 32 bit, 64 bit integers)

// assigning a signed short to its minimum value
short s = -32768;

// assigning a signed short to its maximum value
short s = 32767;

// assigning a signed int to its minimum value
int i = -2147483648;

// assigning a signed int to its maximum value
int i = 2147483647;

// assigning a signed long to its minimum value (note the long postfix)
long l = -9223372036854775808L;

https://riptutorial.com/ 110

// assigning a signed long to its maximum value (note the long postfix)
long l = 9223372036854775807L;

It is also possible to make these types nullable, meaning that additionally to the usual values, null
can be assigned, too. If a variable of a nullable type is not initialized, it will be null instead of 0.
Nullable types are marked by adding a question mark (?) after the type.

int a; //This is now 0.
int? b; //This is now null.

Value type - ushort, uint, ulong (unsigned 16 bit, 32 bit, 64 bit integers)

// assigning an unsigned short to its minimum value
ushort s = 0;

// assigning an unsigned short to its maximum value
ushort s = 65535;

// assigning an unsigned int to its minimum value
uint i = 0;

// assigning an unsigned int to its maximum value
uint i = 4294967295;

// assigning an unsigned long to its minimum value (note the unsigned long postfix)
ulong l = 0UL;

// assigning an unsigned long to its maximum value (note the unsigned long postfix)
ulong l = 18446744073709551615UL;

It is also possible to make these types nullable, meaning that additionally to the usual values, null
can be assigned, too. If a variable of a nullable type is not initialized, it will be null instead of 0.
Nullable types are marked by adding a question mark (?) after the type.

uint a; //This is now 0.
uint? b; //This is now null.

Value type - bool

// default value of boolean is false
bool b;
//default value of nullable boolean is null
bool? z;
b = true;
if(b) {
 Console.WriteLine("Boolean has true value");
}

The bool keyword is an alias of System.Boolean. It is used to declare variables to store the
Boolean values, true and false.

https://riptutorial.com/ 111

Comparisons with boxed value types

If value types are assigned to variables of type object they are boxed - the value is stored in an
instance of a System.Object. This can lead to unintended consequences when comparing values
with ==, e.g.:

object left = (int)1; // int in an object box
object right = (int)1; // int in an object box

var comparison1 = left == right; // false

This can be avoided by using the overloaded Equals method, which will give the expected result.

var comparison2 = left.Equals(right); // true

Alternatively, the same could be done by unboxing the left and right variables so that the int
values are compared:

var comparison3 = (int)left == (int)right; // true

Conversion of boxed value types

Boxed value types can only be unboxed into their original Type, even if a conversion of the two Type
s is valid, e.g.:

object boxedInt = (int)1; // int boxed in an object

long unboxedInt1 = (long)boxedInt; // invalid cast

This can be avoided by first unboxing into the original Type, e.g.:

long unboxedInt2 = (long)(int)boxedInt; // valid

Read Built-in Types online: https://riptutorial.com/csharp/topic/42/built-in-types

https://riptutorial.com/ 112

https://msdn.microsoft.com/en-GB/library/yz2be5wk.aspx
https://msdn.microsoft.com/en-GB/library/yz2be5wk.aspx
https://riptutorial.com/csharp/topic/42/built-in-types

Chapter 22: C# 3.0 Features

Remarks

C# version 3.0 was released as part of .Net version 3.5. Many of the features added with this
version were in support of LINQ (Language INtegrated Queries).

List of added features:

LINQ•
Lambda expressions•
Extension methods•
Anonymous types•
Implicitly typed variables•
Object and Collection Initializers•
Automatically implemented properties•
Expression trees•

Examples

Implicitly typed variables (var)

The var keyword allows a programmer to implicitly type a variable at compile time. var declarations
have the same type as explicitly declared variables.

var squaredNumber = 10 * 10;
var squaredNumberDouble = 10.0 * 10.0;
var builder = new StringBuilder();
var anonymousObject = new
{
 One = SquaredNumber,
 Two = SquaredNumberDouble,
 Three = Builder
}

The types of the above variables are int, double, StringBuilder, and an anonymous type
respectively.

It is important to note that a var variable is not dynamically typed. SquaredNumber = Builder is not
valid since you are trying to set an int to an instance of StringBuilder

Language Integrated Queries (LINQ)

//Example 1
int[] array = { 1, 5, 2, 10, 7 };

// Select squares of all odd numbers in the array sorted in descending order
IEnumerable<int> query = from x in array

https://riptutorial.com/ 113

 where x % 2 == 1
 orderby x descending
 select x * x;
// Result: 49, 25, 1

Example from wikipedia article on C# 3.0, LINQ sub-section

Example 1 uses query syntax which was designed to look similar to SQL queries.

//Example 2
IEnumerable<int> query = array.Where(x => x % 2 == 1)
 .OrderByDescending(x => x)
 .Select(x => x * x);
// Result: 49, 25, 1 using 'array' as defined in previous example

Example from wikipedia article on C# 3.0, LINQ sub-section

Example 2 uses method syntax to achieve the same outcome as example 1.

It is important to note that, in C#, LINQ query syntax is syntactic sugar for LINQ method syntax.
The compiler translates the queries into method calls at compile time. Some queries have to be
expressed in method syntax. From MSDN - "For example, you must use a method call to express
a query that retrieves the number of elements that match a specified condition."

Lambda expresions

Lambda Expresions are an extension of anonymous methods that allow for implicitly typed
parameters and return values. Their syntax is less verbose than anonymous methods and follows
a functional programming style.

using System;
using System.Collections.Generic;
using System.Linq;

public class Program
{
 public static void Main()
 {
 var numberList = new List<int> {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
 var sumOfSquares = numberList.Select(number => number * number)
 .Aggregate((int first, int second) => { return first + second; });
 Console.WriteLine(sumOfSquares);
 }
}

The above code will output the sum of the squares of the numbers 1 through 10 to the console.

The first lambda expression squares the numbers in the list. Since there is only 1 parameter
parenthesis may be omitted. You can include parenthesis if you wish:

.Select((number) => number * number);

https://riptutorial.com/ 114

https://en.wikipedia.org/wiki/C_Sharp_3.0#LINQ_.28language-integrated_query.29
https://en.wikipedia.org/wiki/C_Sharp_3.0#LINQ_.28language-integrated_query.29
https://en.wikipedia.org/wiki/Syntactic_sugar
https://msdn.microsoft.com/en-us/library/bb397947.aspx
http://www.riptutorial.com/csharp/example/9338/anonymous-method

or explicitly type the parameter but then parenthesis are required:

.Select((int number) => number * number);

The lambda body is an expression and has an implicit return. You can use a statement body if you
want as well. This is useful for more complex lambdas.

.Select(number => { return number * number; });

The select method returns a new IEnumerable with the computed values.

The second lambda expression sums the numbers in list returned from the select method.
Parentheses are required as there are multiple parameters. The types of the parameters are
explicitly typed but this is not necessary. The below method is equivalent.

.Aggregate((first, second) => { return first + second; });

As is this one:

.Aggregate((int first, int second) => first + second);

Anonymous types

Anonymous types provide a convenient way to encapsulate a set of read-only properties into a
single object without having to explicitly define a type first. The type name is generated by the
compiler and is not available at the source code level. The type of each property is inferred by the
compiler.

You can make anonymous types by using the new keyword followed by a curly brace ({). Inside the
curly braces, you could define properties like on code below.

var v = new { Amount = 108, Message = "Hello" };

It's also possible to create an array of anonymous types. See code below:

var a = new[] {
 new {
 Fruit = "Apple",
 Color = "Red"
 },
 new {
 Fruit = "Banana",
 Color = "Yellow"
 }
};

Or use it with LINQ queries:

var productQuery = from prod in products

https://riptutorial.com/ 115

 select new { prod.Color, prod.Price };

Read C# 3.0 Features online: https://riptutorial.com/csharp/topic/3820/csharp-3-0-features

https://riptutorial.com/ 116

https://riptutorial.com/csharp/topic/3820/csharp-3-0-features

Chapter 23: C# 4.0 Features

Examples

Optional parameters and named arguments

We can omit the argument in the call if that argument is an Optional Argument Every Optional
Argument has its own default value It will take default value if we do not supply the value A default
value of a Optional Argument must be a

Constant expression.1.
Must be a value type such as enum or struct.2.
Must be an expression of the form default(valueType)3.

It must be set at the end of parameter list

Method parameters with default values:

public void ExampleMethod(int required, string optValue = "test", int optNum = 42)
{
 //...
}

As said by MSDN, A named argument ,

Enables you to pass the argument to the function by associating the parameter’s name No needs
for remembering the parameters position that we are not aware of always. No need to look the
order of the parameters in the parameters list of called function. We can specify parameter for
each arguments by its name.

Named arguments:

// required = 3, optValue = "test", optNum = 4
ExampleMethod(3, optNum: 4);
// required = 2, optValue = "foo", optNum = 42
ExampleMethod(2, optValue: "foo");
// required = 6, optValue = "bar", optNum = 1
ExampleMethod(optNum: 1, optValue: "bar", required: 6);

Limitation of using a Named Argument

Named argument specification must appear after all fixed arguments have been specified.

If you use a named argument before a fixed argument you will get a compile time error as follows.

https://riptutorial.com/ 117

Named argument specification must appear after all fixed arguments have been specified

Variance

Generic interfaces and delegates can have their type parameters marked as covariant or
contravariant using the out and in keywords respectively. These declarations are then respected
for type conversions, both implicit and explicit, and both compile time and run time.

For example, the existing interface IEnumerable<T> has been redefined as being covariant:

interface IEnumerable<out T>
{
 IEnumerator<T> GetEnumerator();
}

The existing interface IComparer has been redefined as being contravariant:

public interface IComparer<in T>
{
 int Compare(T x, T y);
}

Optional ref keyword when using COM

The ref keyword for callers of methods is now optional when calling into methods supplied by
COM interfaces. Given a COM method with the signature

void Increment(ref int x);

the invocation can now be written as either

Increment(0); // no need for "ref" or a place holder variable any more

Dynamic member lookup

A new pseudo-type dynamic is introduced into the C# type system. It is treated as System.Object, but
in addition, any member access (method call, field, property, or indexer access, or a delegate
invocation) or application of an operator on a value of such type is permitted without any type
checking, and its resolution is postponed until run-time. This is known as duck typing or late

https://riptutorial.com/ 118

https://i.stack.imgur.com/pzWLh.png
http://www.riptutorial.com/csharp/example/7362/covariance
http://www.riptutorial.com/csharp/example/7372/contravariance

binding. For example:

// Returns the value of Length property or field of any object
int GetLength(dynamic obj)
{
 return obj.Length;
}

GetLength("Hello, world"); // a string has a Length property,
GetLength(new int[] { 1, 2, 3 }); // and so does an array,
GetLength(42); // but not an integer - an exception will be thrown
 // in GetLength method at run-time

In this case, dynamic type is used to avoid more verbose Reflection. It still uses Reflection under
the hood, but it's usually faster thanks to caching.

This feature is primarily targeted at interoperability with dynamic languages.

// Initialize the engine and execute a file
var runtime = ScriptRuntime.CreateFromConfiguration();
dynamic globals = runtime.Globals;
runtime.ExecuteFile("Calc.rb");

// Use Calc type from Ruby
dynamic calc = globals.Calc.@new();
calc.valueA = 1337;
calc.valueB = 666;
dynamic answer = calc.Calculate();

Dynamic type has applications even in mostly statically typed code, for example it makes double
dispatch posible without implementing Visitor pattern.

Read C# 4.0 Features online: https://riptutorial.com/csharp/topic/3093/csharp-4-0-features

https://riptutorial.com/ 119

https://en.wikipedia.org/wiki/Double_dispatch
https://en.wikipedia.org/wiki/Double_dispatch
https://riptutorial.com/csharp/topic/3093/csharp-4-0-features

Chapter 24: C# 5.0 Features

Syntax

Async & Await•

public Task MyTaskAsync(){ doSomething(); }

await MyTaskAsync();

•

public Task<string> MyStringTaskAsync(){ return getSomeString(); }

string MyString = await MyStringTaskAsync();

•

Caller Information Attributes•

public void MyCallerAttributes(string MyMessage,

[CallerMemberName] string MemberName = "",

[CallerFilePath] string SourceFilePath = "",

[CallerLineNumber] int LineNumber = 0)

•

Trace.WriteLine("My Message: " + MyMessage);

Trace.WriteLine("Member: " + MemberName);

Trace.WriteLine("Source File Path: " + SourceFilePath);

Trace.WriteLine("Line Number: " + LineNumber);

•

Parameters

Method/Modifier with Parameter Details

Type<T> T is the return type

Remarks

C# 5.0 is coupled with Visual Studio .NET 2012

Examples

Async & Await

https://riptutorial.com/ 120

async and await are two operators that are intended to improve performance by freeing up Threads
and waiting for operations to complete before moving forward.

Here's an example of getting a string before returning it's length:

//This method is async because:
//1. It has async and Task or Task<T> as modifiers
//2. It ends in "Async"
async Task<int> GetStringLengthAsync(string URL){
 HttpClient client = new HttpClient();
 //Sends a GET request and returns the response body as a string
 Task<string> getString = client.GetStringAsync(URL);
 //Waits for getString to complete before returning its length
 string contents = await getString;
 return contents.Length;
}

private async void doProcess(){
 int length = await GetStringLengthAsync("http://example.com/");
 //Waits for all the above to finish before printing the number
 Console.WriteLine(length);
}

Here's another example of downloading a file and handling what happens when it's progress has
changed and when the download completes (there are two ways to do this):

Method 1:

//This one using async event handlers, but not async coupled with await
private void DownloadAndUpdateAsync(string uri, string DownloadLocation){
 WebClient web = new WebClient();
 //Assign the event handler
 web.DownloadProgressChanged += new DownloadProgressChangedEventHandler(ProgressChanged);
 web.DownloadFileCompleted += new AsyncCompletedEventHandler(FileCompleted);
 //Download the file asynchronously
 web.DownloadFileAsync(new Uri(uri), DownloadLocation);
}

//event called for when download progress has changed
private void ProgressChanged(object sender, DownloadProgressChangedEventArgs e){
 //example code
 int i = 0;
 i++;
 doSomething();
}

//event called for when download has finished
private void FileCompleted(object sender, AsyncCompletedEventArgs e){
 Console.WriteLine("Completed!")
}

Method 2:

//however, this one does
//Refer to first example on why this method is async
private void DownloadAndUpdateAsync(string uri, string DownloadLocation){
 WebClient web = new WebClient();

https://riptutorial.com/ 121

 //Assign the event handler
 web.DownloadProgressChanged += new DownloadProgressChangedEventHandler(ProgressChanged);
 //Download the file async
 web.DownloadFileAsync(new Uri(uri), DownloadLocation);
 //Notice how there is no complete event, instead we're using techniques from the first
example
}
private void ProgressChanged(object sender, DownloadProgressChangedEventArgs e){
 int i = 0;
 i++;
 doSomething();
}
private void doProcess(){
 //Wait for the download to finish
 await DownloadAndUpdateAsync(new Uri("http://example.com/file"))
 doSomething();
}

Caller Information Attributes

C.I.A.s are intended as a simple way of getting attributes from whatever is calling the targeted
method. There is really only 1 way to use them and there are only 3 attributes.

Example:

//This is the "calling method": the method that is calling the target method
public void doProcess()
{
 GetMessageCallerAttributes("Show my attributes.");
}
//This is the target method
//There are only 3 caller attributes
public void GetMessageCallerAttributes(string message,
 //gets the name of what is calling this method
 [System.Runtime.CompilerServices.CallerMemberName] string memberName = "",
 //gets the path of the file in which the "calling method" is in
 [System.Runtime.CompilerServices.CallerFilePath] string sourceFilePath = "",
 //gets the line number of the "calling method"
 [System.Runtime.CompilerServices.CallerLineNumber] int sourceLineNumber = 0)
{
 //Writes lines of all the attributes
 System.Diagnostics.Trace.WriteLine("Message: " + message);
 System.Diagnostics.Trace.WriteLine("Member: " + memberName);
 System.Diagnostics.Trace.WriteLine("Source File Path: " + sourceFilePath);
 System.Diagnostics.Trace.WriteLine("Line Number: " + sourceLineNumber);
}

Example Output:

//Message: Show my attributes.
//Member: doProcess
//Source File Path: c:\Path\To\The\File
//Line Number: 13

Read C# 5.0 Features online: https://riptutorial.com/csharp/topic/4584/csharp-5-0-features

https://riptutorial.com/ 122

https://riptutorial.com/csharp/topic/4584/csharp-5-0-features

Chapter 25: C# 6.0 Features

Introduction

This sixth iteration of the C# language is provided by the Roslyn compiler. This compiler came out
with version 4.6 of the .NET Framework, however it can generate code in a backward compatible
manner to allow targeting earlier framework versions. C# version 6 code can be compiled in a fully
backwards compatible manner to .NET 4.0. It can also be used for earlier frameworks, however
some features that require additional framework support may not function correctly.

Remarks

The sixth version of C# was released July 2015 alongside Visual Studio 2015 and .NET 4.6.

As well as adding some new language features it includes a complete rewrite of the compiler.
Previously csc.exe was a native Win32 application written in C++, with C# 6 it is now a .NET
managed application written in C#. This rewrite was known as project "Roslyn" and the code is
now open source and available on GitHub.

Examples

Operator nameof

The nameof operator returns the name of a code element as a string. This is useful when throwing
exceptions related to method arguments and also when implementing INotifyPropertyChanged.

public string SayHello(string greeted)
{
 if (greeted == null)
 throw new ArgumentNullException(nameof(greeted));

 Console.WriteLine("Hello, " + greeted);
}

The nameof operator is evaluated at compile time and changes the expression into a string literal.
This is also useful for strings that are named after their member that exposes them. Consider the
following:

public static class Strings
{
 public const string Foo = nameof(Foo); // Rather than Foo = "Foo"
 public const string Bar = nameof(Bar); // Rather than Bar = "Bar"
}

Since nameof expressions are compile-time constants, they can be used in attributes, case labels,
switch statements, and so on.

https://riptutorial.com/ 123

https://github.com/dotnet/roslyn

It is convenient to use nameof with Enums. Instead of:

Console.WriteLine(Enum.One.ToString());

it is possible to use:

Console.WriteLine(nameof(Enum.One))

The output will be One in both cases.

The nameof operator can access non-static members using static-like syntax. Instead of doing:

string foo = "Foo";
string lengthName = nameof(foo.Length);

Can be replaced with:

string lengthName = nameof(string.Length);

The output will be Length in both examples. However, the latter prevents the creation of
unnecessary instances.

Although the nameof operator works with most language constructs, there are some limitations. For
example, you cannot use the nameof operator on open generic types or method return values:

public static int Main()
{
 Console.WriteLine(nameof(List<>)); // Compile-time error
 Console.WriteLine(nameof(Main())); // Compile-time error
}

Furthermore, if you apply it to a generic type, the generic type parameter will be ignored:

Console.WriteLine(nameof(List<int>)); // "List"
Console.WriteLine(nameof(List<bool>)); // "List"

For more examples, see this topic dedicated to nameof.

Workaround for previous versions (more
detail)

Although the nameof operator does not exist in C# for versions prior to 6.0, similar functionality can
be had by using MemberExpression as in the following:

6.0

https://riptutorial.com/ 124

http://www.riptutorial.com/csharp/topic/80/nameof-operator
http://stackoverflow.com/documentation/c%23/80/nameof-operator/26157/name-of-extension-support-added-for-before-c-sharp-6-version#t=201612071107472552734
http://stackoverflow.com/documentation/c%23/80/nameof-operator/26157/name-of-extension-support-added-for-before-c-sharp-6-version#t=201612071107472552734

Expression:

public static string NameOf<T>(Expression<Func<T>> propExp)
{
 var memberExpression = propExp.Body as MemberExpression;
 return memberExpression != null ? memberExpression.Member.Name : null;
}

public static string NameOf<TObj, T>(Expression<Func<TObj, T>> propExp)
{
 var memberExpression = propExp.Body as MemberExpression;
 return memberExpression != null ? memberExpression.Member.Name : null;
}

Usage:

string variableName = NameOf(() => variable);
string propertyName = NameOf((Foo o) => o.Bar);

Note that this approach causes an expression tree to be created on every call, so the performance
is much worse compared to nameof operator which is evaluated at compile time and has zero
overhead at runtime.

Expression-bodied function members

Expression-bodied function members allow the use of lambda expressions as member bodies. For
simple members, it can result in cleaner and more readable code.

Expression-bodied functions can be used for properties, indexers, methods, and operators.

Properties

public decimal TotalPrice => BasePrice + Taxes;

Is equivalent to:

public decimal TotalPrice
{
 get
 {
 return BasePrice + Taxes;
 }
}

When an expression-bodied function is used with a property, the property is implemented as a
getter-only property.

View Demo

https://riptutorial.com/ 125

https://dotnetfiddle.net/djFd7O

Indexers

public object this[string key] => dictionary[key];

Is equivalent to:

public object this[string key]
{
 get
 {
 return dictionary[key];
 }
}

Methods

static int Multiply(int a, int b) => a * b;

Is equivalent to:

static int Multiply(int a, int b)
{
 return a * b;
}

Which can also be used with void methods:

public void Dispose() => resource?.Dispose();

An override of ToString could be added to the Pair<T> class:

public override string ToString() => $"{First}, {Second}";

Additionally, this simplistic approach works with the override keyword:

public class Foo
{
 public int Bar { get; }

 public string override ToString() => $"Bar: {Bar}";
}

Operators

https://riptutorial.com/ 126

This also can be used by operators:

public class Land
{
 public double Area { get; set; }

 public static Land operator +(Land first, Land second) =>
 new Land { Area = first.Area + second.Area };
}

Limitations

Expression-bodied function members have some limitations. They can't contain block statements
and any other statements that contain blocks: if, switch, for, foreach, while, do, try, etc.

Some if statements can be replaced with ternary operators. Some for and foreach statements can
be converted to LINQ queries, for example:

IEnumerable<string> Digits
{
 get
 {
 for (int i = 0; i < 10; i++)
 yield return i.ToString();
 }
}

IEnumerable<string> Digits => Enumerable.Range(0, 10).Select(i => i.ToString());

In all other cases, the old syntax for function members can be used.

Expression-bodied function members can contain async/await, but it's often redundant:

async Task<int> Foo() => await Bar();

Can be replaced with:

Task<int> Foo() => Bar();

Exception filters

Exception filters give developers the ability to add a condition (in the form of a boolean expression)
to a catch block, allowing the catch to execute only if the condition evaluates to true.

Exception filters allow the propagation of debug information in the original exception, where as
using an if statement inside a catch block and re-throwing the exception stops the propagation of
debug information in the original exception. With exception filters, the exception continues to
propagate upwards in the call stack unless the condition is met. As a result, exception filters make

https://riptutorial.com/ 127

https://github.com/dotnet/roslyn/wiki/New-Language-Features-in-C%23-6#exception-filters
http://www.riptutorial.com/csharp/example/148/try--catch--finally--throw

the debugging experience much easier. Instead of stopping on the throw statement, the debugger
will stop on the statement throwing the exception, with the current state and all local variables
preserved. Crash dumps are affected in a similar way.

Exception filters have been supported by the CLR since the beginning and they've
been accessible from VB.NET and F# for over a decade by exposing a part of the
CLR's exception handling model. Only after the release of C# 6.0 has the functionality
also been available for C# developers.

Using exception filters

Exception filters are utilized by appending a when clause to the catch expression. It is possible to
use any expression returning a bool in a when clause (except await). The declared Exception
variable ex is accessible from within the when clause:

var SqlErrorToIgnore = 123;
try
{
 DoSQLOperations();
}
catch (SqlException ex) when (ex.Number != SqlErrorToIgnore)
{
 throw new Exception("An error occurred accessing the database", ex);
}

Multiple catch blocks with when clauses may be combined. The first when clause returning true will
cause the exception to be caught. Its catch block will be entered, while the other catch clauses will
be ignored (their when clauses won't be evaluated). For example:

try
{ ... }
catch (Exception ex) when (someCondition) //If someCondition evaluates to true,
 //the rest of the catches are ignored.
{ ... }
catch (NotImplementedException ex) when (someMethod()) //someMethod() will only run if
 //someCondition evaluates to false
{ ... }
catch(Exception ex) // If both when clauses evaluate to false
{ ... }

Risky when clause

Caution

It can be risky to use exception filters: when an Exception is thrown from within the when
clause, the Exception from the when clause is ignored and is treated as false. This
approach allows developers to write when clause without taking care of invalid cases.

The following example illustrates such a scenario:

https://riptutorial.com/ 128

https://msdn.microsoft.com/en-us/library/8bs2ecf4(v=vs.110).aspx
http://www.riptutorial.com/csharp/example/5993/async--await

public static void Main()
{
 int a = 7;
 int b = 0;
 try
 {
 DoSomethingThatMightFail();
 }
 catch (Exception ex) when (a / b == 0)
 {
 // This block is never reached because a / b throws an ignored
 // DivideByZeroException which is treated as false.
 }
 catch (Exception ex)
 {
 // This block is reached since the DivideByZeroException in the
 // previous when clause is ignored.
 }
}

public static void DoSomethingThatMightFail()
{
 // This will always throw an ArgumentNullException.
 Type.GetType(null);
}

View Demo

Note that exception filters avoid the confusing line number problems associated with using throw
when failing code is within the same function. For example in this case the line number is reported
as 6 instead of 3:

1. int a = 0, b = 0;
2. try {
3. int c = a / b;
4. }
5. catch (DivideByZeroException) {
6. throw;
7. }

The exception line number is reported as 6 because the error was caught and re-thrown with the
throw statement on line 6.

The same does not happen with exception filters:

1. int a = 0, b = 0;
2. try {
3. int c = a / b;
4. }
5. catch (DivideByZeroException) when (a != 0) {
6. throw;
7. }

In this example a is 0 then catch clause is ignored but 3 is reported as line number. This is
because they do not unwind the stack. More specifically, the exception is not caught on line 5
because a in fact does equal 0 and thus there is no opportunity for the exception to be re-thrown

https://riptutorial.com/ 129

https://dotnetfiddle.net/Iex6DP

on line 6 because line 6 does not execute.

Logging as a side effect

Method calls in the condition can cause side effects, so exception filters can be used to run code
on exceptions without catching them. A common example that takes advantage of this is a Log
method that always returns false. This allows tracing log information while debugging without the
need to re-throw the exception.

Be aware that while this seems to be a comfortable way of logging, it can be risky,
especially if 3rd party logging assemblies are used. These might throw exceptions
while logging in non-obvious situations that may not be detected easily (see Risky
when(...) clause above).

try
{
 DoSomethingThatMightFail(s);
}
catch (Exception ex) when (Log(ex, "An error occurred"))
{
 // This catch block will never be reached
}

// ...

static bool Log(Exception ex, string message, params object[] args)
{
 Debug.Print(message, args);
 return false;
}

View Demo

The common approach in previous versions of C# was to log and re-throw the exception.

6.0

try
{
 DoSomethingThatMightFail(s);
}
catch (Exception ex)
{
 Log(ex, "An error occurred");
 throw;
}

// ...

static void Log(Exception ex, string message, params object[] args)
{
 Debug.Print(message, args);
}

https://riptutorial.com/ 130

https://dotnetfiddle.net/pqPc7B

View Demo

The finally block

The finally block executes every time whether the exception is thrown or not. One subtlety with
expressions in when is exception filters are executed further up the stack before entering the inner
finally blocks. This can cause unexpected results and behaviors when code attempts to modify
global state (like the current thread's user or culture) and set it back in a finally block.

Example: finally block

private static bool Flag = false;

static void Main(string[] args)
{
 Console.WriteLine("Start");
 try
 {
 SomeOperation();
 }
 catch (Exception) when (EvaluatesTo())
 {
 Console.WriteLine("Catch");
 }
 finally
 {
 Console.WriteLine("Outer Finally");
 }
}

private static bool EvaluatesTo()
{
 Console.WriteLine($"EvaluatesTo: {Flag}");
 return true;
}

private static void SomeOperation()
{
 try
 {
 Flag = true;
 throw new Exception("Boom");
 }
 finally
 {
 Flag = false;
 Console.WriteLine("Inner Finally");
 }
}

Produced Output:

Start

https://riptutorial.com/ 131

https://dotnetfiddle.net/kEWLue
http://www.riptutorial.com/csharp/example/172/finally-block

EvaluatesTo: True
Inner Finally
Catch
Outer Finally

View Demo

In the example above, if the method SomeOperation does not wish to "leak" the global state changes
to caller's when clauses, it should also contain a catch block to modify the state. For example:

private static void SomeOperation()
{
 try
 {
 Flag = true;
 throw new Exception("Boom");
 }
 catch
 {
 Flag = false;
 throw;
 }
 finally
 {
 Flag = false;
 Console.WriteLine("Inner Finally");
 }
}

It is also common to see IDisposable helper classes leveraging the semantics of using blocks to
achieve the same goal, as IDisposable.Dispose will always be called before an exception called
within a using block starts bubbling up the stack.

Auto-property initializers

Introduction

Properties can be initialized with the = operator after the closing }. The Coordinate class below
shows the available options for initializing a property:

6.0

public class Coordinate
{
 public int X { get; set; } = 34; // get or set auto-property with initializer

 public int Y { get; } = 89; // read-only auto-property with initializer
}

Accessors With Different Visibility

https://riptutorial.com/ 132

https://ideone.com/gxfBA8
http://www.riptutorial.com/csharp/topic/1795/idisposable-interface
http://www.riptutorial.com/csharp/example/5062/using

You can initialize auto-properties that have different visibility on their accessors. Here’s an
example with a protected setter:

 public string Name { get; protected set; } = "Cheeze";

The accessor can also be internal, internal protected, or private.

Read-Only Properties

In addition to flexibility with visibility, you can also initialize read-only auto-properties. Here’s an
example:

 public List<string> Ingredients { get; } =
 new List<string> { "dough", "sauce", "cheese" };

This example also shows how to initialize a property with a complex type. Also, auto-properties
can’t be write-only, so that also precludes write-only initialization.

Old style (pre C# 6.0)

Before C# 6, this required much more verbose code. We were using one extra variable called
backing property for the property to give default value or to initialize the public property like below,

6.0

public class Coordinate
{
 private int _x = 34;
 public int X { get { return _x; } set { _x = value; } }

 private readonly int _y = 89;
 public int Y { get { return _y; } }

 private readonly int _z;
 public int Z { get { return _z; } }

 public Coordinate()
 {
 _z = 42;
 }
}

Note: Before C# 6.0, you could still initialize read and write auto implemented properties
(properties with a getter and a setter) from within the constructor, but you could not initialize the
property inline with its declaration

View Demo

https://riptutorial.com/ 133

http://www.riptutorial.com/csharp/example/3365/auto-implemented-properties
http://ideone.com/2OgrPQ

Usage

Initializers must evaluate to static expressions, just like field initializers. If you need to reference
non-static members, you can either initialize properties in constructors like before, or use
expression-bodied properties. Non-static expressions, like the one below (commented out), will
generate a compiler error:

// public decimal X { get; set; } = InitMe(); // generates compiler error

decimal InitMe() { return 4m; }

But static methods can be used to initialize auto-properties:

public class Rectangle
{
 public double Length { get; set; } = 1;
 public double Width { get; set; } = 1;
 public double Area { get; set; } = CalculateArea(1, 1);

 public static double CalculateArea(double length, double width)
 {
 return length * width;
 }
}

This method can also be applied to properties with different level of accessors:

public short Type { get; private set; } = 15;

The auto-property initializer allows assignment of properties directly within their declaration. For
read-only properties, it takes care of all the requirements required to ensure the property is
immutable. Consider, for example, the FingerPrint class in the following example:

public class FingerPrint
{
 public DateTime TimeStamp { get; } = DateTime.UtcNow;

 public string User { get; } =
 System.Security.Principal.WindowsPrincipal.Current.Identity.Name;

 public string Process { get; } =
 System.Diagnostics.Process.GetCurrentProcess().ProcessName;
}

View Demo

Cautionary notes

https://riptutorial.com/ 134

http://ideone.com/qjDRmx

Take care to not confuse auto-property or field initializers with similar-looking expression-body
methods which make use of => as opposed to =, and fields which do not include { get; }.

For example, each of the following declarations are different.

public class UserGroupDto
{
 // Read-only auto-property with initializer:
 public ICollection<UserDto> Users1 { get; } = new HashSet<UserDto>();

 // Read-write field with initializer:
 public ICollection<UserDto> Users2 = new HashSet<UserDto>();

 // Read-only auto-property with expression body:
 public ICollection<UserDto> Users3 => new HashSet<UserDto>();
}

Missing { get; } in the property declaration results in a public field. Both read-only auto-property
Users1 and read-write field Users2 are initialized only once, but a public field allows changing
collection instance from outside the class, which is usually undesirable. Changing a read-only
auto-property with expression body to read-only property with initializer requires not only removing
> from =>, but adding { get; }.

The different symbol (=> instead of =) in Users3 results in each access to the property returning a
new instance of the HashSet<UserDto> which, while valid C# (from the compiler's point of view) is
unlikely to be the desired behavior when used for a collection member.

The above code is equivalent to:

public class UserGroupDto
{
 // This is a property returning the same instance
 // which was created when the UserGroupDto was instantiated.
 private ICollection<UserDto> _users1 = new HashSet<UserDto>();
 public ICollection<UserDto> Users1 { get { return _users1; } }

 // This is a field returning the same instance
 // which was created when the UserGroupDto was instantiated.
 public virtual ICollection<UserDto> Users2 = new HashSet<UserDto>();

 // This is a property which returns a new HashSet<UserDto> as
 // an ICollection<UserDto> on each call to it.
 public ICollection<UserDto> Users3 { get { return new HashSet<UserDto>(); } }
}

Index initializers

Index initializers make it possible to create and initialize objects with indexes at the same time.

This makes initializing Dictionaries very easy:

var dict = new Dictionary<string, int>()
{

https://riptutorial.com/ 135

http://www.riptutorial.com/csharp/example/44/expression-bodied-function-members
http://www.riptutorial.com/csharp/example/44/expression-bodied-function-members

 ["foo"] = 34,
 ["bar"] = 42
};

Any object that has an indexed getter or setter can be used with this syntax:

class Program
{
 public class MyClassWithIndexer
 {
 public int this[string index]
 {
 set
 {
 Console.WriteLine($"Index: {index}, value: {value}");
 }
 }
 }

 public static void Main()
 {
 var x = new MyClassWithIndexer()
 {
 ["foo"] = 34,
 ["bar"] = 42
 };

 Console.ReadKey();
 }
}

Output:

Index: foo, value: 34
Index: bar, value: 42

View Demo

If the class has multiple indexers it is possible to assign them all in a single group of statements:

class Program
{
 public class MyClassWithIndexer
 {
 public int this[string index]
 {
 set
 {
 Console.WriteLine($"Index: {index}, value: {value}");
 }
 }
 public string this[int index]
 {
 set
 {
 Console.WriteLine($"Index: {index}, value: {value}");
 }

https://riptutorial.com/ 136

https://dotnetfiddle.net/Evs4Qx

 }
 }

 public static void Main()
 {
 var x = new MyClassWithIndexer()
 {
 ["foo"] = 34,
 ["bar"] = 42,
 [10] = "Ten",
 [42] = "Meaning of life"
 };
 }
}

Output:

Index: foo, value: 34
Index: bar, value: 42
Index: 10, value: Ten
Index: 42, value: Meaning of life

It should be noted that the indexer set accessor might behave differently compared to an Add
method (used in collection initializers).

For example:

var d = new Dictionary<string, int>
{
 ["foo"] = 34,
 ["foo"] = 42,
}; // does not throw, second value overwrites the first one

versus:

var d = new Dictionary<string, int>
{
 { "foo", 34 },
 { "foo", 42 },
}; // run-time ArgumentException: An item with the same key has already been added.

String interpolation

String interpolation allows the developer to combine variables and text to form a string.

Basic Example

Two int variables are created: foo and bar.

int foo = 34;

https://riptutorial.com/ 137

int bar = 42;

string resultString = $"The foo is {foo}, and the bar is {bar}.";

Console.WriteLine(resultString);

Output:

The foo is 34, and the bar is 42.

View Demo

Braces within strings can still be used, like this:

var foo = 34;
var bar = 42;

// String interpolation notation (new style)
Console.WriteLine($"The foo is {{foo}}, and the bar is {{bar}}.");

This produces the following output:

The foo is {foo}, and the bar is {bar}.

Using interpolation with verbatim string
literals

Using @ before the string will cause the string to be interpreted verbatim. So, e.g. Unicode
characters or line breaks will stay exactly as they've been typed. However, this will not effect the
expressions in an interpolated string as shown in the following example:

Console.WriteLine($@"In case it wasn't clear:
\u00B9
The foo
is {foo},
and the bar
is {bar}.");

Output:

In case it wasn't clear:
\u00B9
The foo
is 34,
and the bar
is 42.

View Demo

https://riptutorial.com/ 138

https://ideone.com/bRFOaV
https://dotnetfiddle.net/FLs4Ae

Expressions

With string interpolation, expressions within curly braces {} can also be evaluated. The result will
be inserted at the corresponding location within the string. For example, to calculate the maximum
of foo and bar and insert it, use Math.Max within the curly braces:

Console.WriteLine($"And the greater one is: { Math.Max(foo, bar) }");

Output:

And the greater one is: 42

Note: Any leading or trailing whitespace (including space, tab and CRLF/newline) between the
curly brace and the expression is completely ignored and not included in the output

View Demo

As another example, variables can be formatted as a currency:

Console.WriteLine($"Foo formatted as a currency to 4 decimal places: {foo:c4}");

Output:

Foo formatted as a currency to 4 decimal places: $34.0000

View Demo

Or they can be formatted as dates:

Console.WriteLine($"Today is: {DateTime.Today:dddd, MMMM dd - yyyy}");

Output:

Today is: Monday, July, 20 - 2015

View Demo

Statements with a Conditional (Ternary) Operator can also be evaluated within the interpolation.
However, these must be wrapped in parentheses, since the colon is otherwise used to indicate
formatting as shown above:

Console.WriteLine($"{(foo > bar ? "Foo is larger than bar!" : "Bar is larger than foo!")}");

Output:

Bar is larger than foo!

View Demo

https://riptutorial.com/ 139

https://ideone.com/qY1Y4B
https://ideone.com/CPB8UJ
https://ideone.com/PkjA6k
https://msdn.microsoft.com/en-us/library/ty67wk28.aspx
https://ideone.com/sX6tO3

Conditional expressions and format specifiers can be mixed:

Console.WriteLine($"Environment: {(Environment.Is64BitProcess ? 64 : 32):00'-bit'} process");

Output:

Environment: 32-bit process

Escape sequences

Escaping backslash (\) and quote (") characters works exactly the same in interpolated strings as
in non-interpolated strings, for both verbatim and non-verbatim string literals:

Console.WriteLine($"Foo is: {foo}. In a non-verbatim string, we need to escape \" and \\ with
backslashes.");
Console.WriteLine($@"Foo is: {foo}. In a verbatim string, we need to escape "" with an extra
quote, but we don't need to escape \");

Output:

Foo is 34. In a non-verbatim string, we need to escape " and \ with backslashes.
Foo is 34. In a verbatim string, we need to escape " with an extra quote, but we don't
need to escape \

To include a curly brace { or } in an interpolated string, use two curly braces {{ or }}:

$"{{foo}} is: {foo}"

Output:

{foo} is: 34

View Demo

FormattableString type

The type of a $"..." string interpolation expression is not always a simple string. The compiler
decides which type to assign depending on the context:

string s = $"hello, {name}";
System.FormattableString s = $"Hello, {name}";
System.IFormattable s = $"Hello, {name}";

This is also the order of type preference when the compiler needs to choose which overloaded
method is going to be called.

https://riptutorial.com/ 140

https://dotnetfiddle.net/BuudHP
http://stackoverflow.com/questions/38119074

A new type, System.FormattableString, represents a composite format string, along with the
arguments to be formatted. Use this to write applications that handle the interpolation arguments
specifically:

public void AddLogItem(FormattableString formattableString)
{
 foreach (var arg in formattableString.GetArguments())
 {
 // do something to interpolation argument 'arg'
 }

 // use the standard interpolation and the current culture info
 // to get an ordinary String:
 var formatted = formattableString.ToString();

 // ...
}

Call the above method with:

AddLogItem($"The foo is {foo}, and the bar is {bar}.");

For example, one could choose not to incur the performance cost of formatting the string if the
logging level was already going to filter out the log item.

Implicit conversions

There are implicit type conversions from an interpolated string:

var s = $"Foo: {foo}";
System.IFormattable s = $"Foo: {foo}";

You can also produce an IFormattable variable that allows you to convert the string with invariant
context:

var s = $"Bar: {bar}";
System.FormattableString s = $"Bar: {bar}";

Current and Invariant Culture Methods

If code analysis is turned on, interpolated strings will all produce warning CA1305 (Specify
IFormatProvider). A static method may be used to apply current culture.

public static class Culture
{
 public static string Current(FormattableString formattableString)
 {
 return formattableString?.ToString(CultureInfo.CurrentCulture);

https://riptutorial.com/ 141

https://msdn.microsoft.com/en-us/library/system.formattablestring(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms182190.aspx

 }
 public static string Invariant(FormattableString formattableString)
 {
 return formattableString?.ToString(CultureInfo.InvariantCulture);
 }
}

Then, to produce a correct string for the current culture, just use the expression:

Culture.Current($"interpolated {typeof(string).Name} string.")
Culture.Invariant($"interpolated {typeof(string).Name} string.")

Note: Current and Invariant cannot be created as extension methods because, by default, the
compiler assigns type String to interpolated string expression which causes the following code to
fail to compile:

$"interpolated {typeof(string).Name} string.".Current();

FormattableString class already contains Invariant() method, so the simplest way of switching to
invariant culture is by relying on using static:

using static System.FormattableString;

string invariant = Invariant($"Now = {DateTime.Now}");
string current = $"Now = {DateTime.Now}";

Behind the scenes

Interpolated strings are just a syntactic sugar for String.Format(). The compiler (Roslyn) will turn it
into a String.Format behind the scenes:

var text = $"Hello {name + lastName}";

The above will be converted to something like this:

string text = string.Format("Hello {0}", new object[] {
 name + lastName
});

String Interpolation and Linq

It's possible to use interpolated strings in Linq statements to increase readability further.

https://riptutorial.com/ 142

https://github.com/dotnet/roslyn

var fooBar = (from DataRow x in fooBarTable.Rows
 select string.Format("{0}{1}", x["foo"], x["bar"])).ToList();

Can be re-written as:

var fooBar = (from DataRow x in fooBarTable.Rows
 select $"{x["foo"]}{x["bar"]}").ToList();

Reusable Interpolated Strings

With string.Format, you can create reusable format strings:

public const string ErrorFormat = "Exception caught:\r\n{0}";

// ...

Logger.Log(string.Format(ErrorFormat, ex));

Interpolated strings, however, will not compile with placeholders referring to non-existent variables.
The following will not compile:

public const string ErrorFormat = $"Exception caught:\r\n{error}";
// CS0103: The name 'error' does not exist in the current context

Instead, create a Func<> which consumes variables and returns a String:

public static Func<Exception, string> FormatError =
 error => $"Exception caught:\r\n{error}";

// ...

Logger.Log(FormatError(ex));

String interpolation and localization

If you’re localizing your application you may wonder if it is possible to use string interpolation along
with localization. Indeed, it would be nice to have the possibility to store in resource files Strings
like:

"My name is {name} {middlename} {surname}"

instead of the much less readable:

"My name is {0} {1} {2}"

String interpolation process occurs at compile time, unlike formatting string with string.Format

https://riptutorial.com/ 143

which occurs at runtime. Expressions in an interpolated string must reference names in the current
context and need to be stored in resource files. That means that if you want to use localization you
have to do it like:

var FirstName = "John";

// method using different resource file "strings"
// for French ("strings.fr.resx"), German ("strings.de.resx"),
// and English ("strings.en.resx")
void ShowMyNameLocalized(string name, string middlename = "", string surname = "")
{
 // get localized string
 var localizedMyNameIs = Properties.strings.Hello;
 // insert spaces where necessary
 name = (string.IsNullOrWhiteSpace(name) ? "" : name + " ");
 middlename = (string.IsNullOrWhiteSpace(middlename) ? "" : middlename + " ");
 surname = (string.IsNullOrWhiteSpace(surname) ? "" : surname + " ");
 // display it
 Console.WriteLine($"{localizedMyNameIs} {name}{middlename}{surname}".Trim());
}

// switch to French and greet John
Thread.CurrentThread.CurrentUICulture = CultureInfo.GetCultureInfo("fr-FR");
ShowMyNameLocalized(FirstName);

// switch to German and greet John
Thread.CurrentThread.CurrentUICulture = CultureInfo.GetCultureInfo("de-DE");
ShowMyNameLocalized(FirstName);

// switch to US English and greet John
Thread.CurrentThread.CurrentUICulture = CultureInfo.GetCultureInfo("en-US");
ShowMyNameLocalized(FirstName);

If the resource strings for the languages used above are correctly stored in the individual resource
files, you should get the following output:

Bonjour, mon nom est John
Hallo, mein Name ist John
Hello, my name is John

Note that this implies that the name follows the localized string in every language. If that is not the
case, you need to add placeholders to the resource strings and modify the function above or you
need to query the culture info in the function and provide a switch case statement containing the
different cases. For more details about resource files, see How to use localization in C#.

It is a good practice to use a default fallback language most people will understand, in case a
translation is not available. I suggest to use English as default fallback language.

Recursive interpolation

Although not very useful, it is allowed to use an interpolated string recursively inside another's
curly brackets:

https://riptutorial.com/ 144

https://stackoverflow.com/a/1142840/1016343

Console.WriteLine($"String has {$"My class is called {nameof(MyClass)}.".Length} chars:");
Console.WriteLine($"My class is called {nameof(MyClass)}.");

Output:

String has 27 chars:

My class is called MyClass.

Await in catch and finally

It is possible to use await expression to apply await operator to Tasks or Task(OfTResult) in the
catch and finally blocks in C#6.

It was not possible to use the await expression in the catch and finally blocks in earlier versions
due to compiler limitations. C#6 makes awaiting async tasks a lot easier by allowing the await
expression.

try
{
 //since C#5
 await service.InitializeAsync();
}
catch (Exception e)
{
 //since C#6
 await logger.LogAsync(e);
}
finally
{
 //since C#6
 await service.CloseAsync();
}

It was required in C# 5 to use a bool or declare an Exception outside the try catch to perform async
operations. This method is shown in the following example:

bool error = false;
Exception ex = null;

try
{
 // Since C#5
 await service.InitializeAsync();
}
catch (Exception e)
{
 // Declare bool or place exception inside variable
 error = true;
 ex = e;
}

// If you don't use the exception
if (error)
{

https://riptutorial.com/ 145

https://msdn.microsoft.com/en-us/library/hh156528.aspx
https://msdn.microsoft.com/en-us/library/system.threading.tasks.task.aspx
https://msdn.microsoft.com/en-us/library/dd321424.aspx

 // Handle async task
}

// If want to use information from the exception
if (ex != null)
{
 await logger.LogAsync(e);
}

// Close the service, since this isn't possible in the finally
await service.CloseAsync();

Null propagation

The ?. operator and ?[...] operator are called the null-conditional operator. It is also sometimes
referred to by other names such as the safe navigation operator.

This is useful, because if the . (member accessor) operator is applied to an expression that
evaluates to null, the program will throw a NullReferenceException. If the developer instead uses
the ?. (null-conditional) operator, the expression will evaluate to null instead of throwing an
exception.

Note that if the ?. operator is used and the expression is non-null, ?. and . are equivalent.

Basics

var teacherName = classroom.GetTeacher().Name;
// throws NullReferenceException if GetTeacher() returns null

View Demo

If the classroom does not have a teacher, GetTeacher() may return null. When it is null and the Name
property is accessed, a NullReferenceException will be thrown.

If we modify this statement to use the ?. syntax, the result of the entire expression will be null:

var teacherName = classroom.GetTeacher()?.Name;
// teacherName is null if GetTeacher() returns null

View Demo

Subsequently, if classroom could also be null, we could also write this statement as:

var teacherName = classroom?.GetTeacher()?.Name;
// teacherName is null if GetTeacher() returns null OR classroom is null

View Demo

This is an example of short-circuiting: When any conditional access operation using the null-

https://riptutorial.com/ 146

https://msdn.microsoft.com/en-us/library/dn986595.aspx
https://en.wikipedia.org/wiki/Safe_navigation_operator
http://ideone.com/p8OGBB
http://ideone.com/3aqGlE
http://ideone.com/voljZh

conditional operator evaluates to null, the entire expression evaluates to null immediately, without
processing the rest of the chain.

When the terminal member of an expression containing the null-conditional operator is of a value
type, the expression evaluates to a Nullable<T> of that type and so cannot be used as a direct
replacement for the expression without ?..

bool hasCertification = classroom.GetTeacher().HasCertification;
// compiles without error but may throw a NullReferenceException at runtime

bool hasCertification = classroom?.GetTeacher()?.HasCertification;
// compile time error: implicit conversion from bool? to bool not allowed

bool? hasCertification = classroom?.GetTeacher()?.HasCertification;
// works just fine, hasCertification will be null if any part of the chain is null

bool hasCertification = classroom?.GetTeacher()?.HasCertification.GetValueOrDefault();
// must extract value from nullable to assign to a value type variable

Use with the Null-Coalescing Operator (??)

You can combine the null-conditional operator with the Null-coalescing Operator (??) to return a
default value if the expression resolves to null. Using our example above:

var teacherName = classroom?.GetTeacher()?.Name ?? "No Name";
// teacherName will be "No Name" when GetTeacher()
// returns null OR classroom is null OR Name is null

Use with Indexers

The null-conditional operator can be used with indexers:

var firstStudentName = classroom?.Students?[0]?.Name;

In the above example:

The first ?. ensures that classroom is not null.•
The second ? ensures that the entire Students collection is not null.•
The third ?. after the indexer ensures that the [0] indexer did not return a null object. It
should be noted that this operation can still throw an IndexOutOfRangeException.

•

Use with void Functions

Null-conditional operator can also be used with void functions. However in this case, the statement

https://riptutorial.com/ 147

https://msdn.microsoft.com/en-us/library/ms173224.aspx
https://msdn.microsoft.com/en-us/library/6x16t2tx.aspx

will not evaluate to null. It will just prevent a NullReferenceException.

List<string> list = null;
list?.Add("hi"); // Does not evaluate to null

Use with Event Invocation

Assuming the following event definition:

private event EventArgs OnCompleted;

When invoking an event, traditionally, it is best practice to check if the event is null in case no
subscribers are present:

var handler = OnCompleted;
if (handler != null)
{
 handler(EventArgs.Empty);
}

Since the null-conditional operator has been introduced, the invocation can be reduced to a single
line:

OnCompleted?.Invoke(EventArgs.Empty);

Limitations

Null-conditional operator produces rvalue, not lvalue, that is, it cannot be used for property
assignment, event subscription etc. For example, the following code will not work:

// Error: The left-hand side of an assignment must be a variable, property or indexer
Process.GetProcessById(1337)?.EnableRaisingEvents = true;
// Error: The event can only appear on the left hand side of += or -=
Process.GetProcessById(1337)?.Exited += OnProcessExited;

Gotchas

Note that:

int? nameLength = person?.Name.Length; // safe if 'person' is null

is not the same as:

https://riptutorial.com/ 148

int? nameLength = (person?.Name).Length; // avoid this

because the former corresponds to:

int? nameLength = person != null ? (int?)person.Name.Length : null;

and the latter corresponds to:

int? nameLength = (person != null ? person.Name : null).Length;

Despite ternary operator ?: is used here for explaining the difference between two cases, these
operators are not equivalent. This can be easily demonstrated with the following example:

void Main()
{
 var foo = new Foo();
 Console.WriteLine("Null propagation");
 Console.WriteLine(foo.Bar?.Length);

 Console.WriteLine("Ternary");
 Console.WriteLine(foo.Bar != null ? foo.Bar.Length : (int?)null);
}

class Foo
{
 public string Bar
 {
 get
 {
 Console.WriteLine("I was read");
 return string.Empty;
 }
 }
}

Which outputs:

Null propagation
I was read
0
Ternary
I was read
I was read
0

View Demo

To avoid multiple invocations equivalent would be:

var interimResult = foo.Bar;
Console.WriteLine(interimResult != null ? interimResult.Length : (int?)null);

https://riptutorial.com/ 149

https://dotnetfiddle.net/BytXEz

And this difference somewhat explains why null propagation operator is not yet supported in
expression trees.

Using static type

The using static [Namespace.Type] directive allows the importing of static members of types and
enumeration values. Extension methods are imported as extension methods (from just one type),
not into top-level scope.

6.0

using static System.Console;
using static System.ConsoleColor;
using static System.Math;

class Program
{
 static void Main()
 {
 BackgroundColor = DarkBlue;
 WriteLine(Sqrt(2));
 }
}

Live Demo Fiddle

6.0

using System;

class Program
{
 static void Main()
 {
 Console.BackgroundColor = ConsoleColor.DarkBlue;
 Console.WriteLine(Math.Sqrt(2));
 }
}

Improved overload resolution

Following snippet shows an example of passing a method group (as opposed to a lambda) when a
delegate is expected. Overload resolution will now resolve this instead of raising an ambiguous
overload error due to the ability of C# 6 to check the return type of the method that was passed.

using System;
public class Program
{
 public static void Main()
 {
 Overloaded(DoSomething);
 }

 static void Overloaded(Action action)

https://riptutorial.com/ 150

https://roslyn.codeplex.com/discussions/571077
https://dotnetfiddle.net/7Ll3XN

 {
 Console.WriteLine("overload with action called");
 }

 static void Overloaded(Func<int> function)
 {
 Console.WriteLine("overload with Func<int> called");
 }

 static int DoSomething()
 {
 Console.WriteLine(0);
 return 0;
 }
}

Results:

6.0

Output

overload with Func<int> called

View Demo

5.0

Error

error CS0121: The call is ambiguous between the following methods or properties:
'Program.Overloaded(System.Action)' and 'Program.Overloaded(System.Func)'

C# 6 can also handle well the following case of exact matching for lambda expressions which
would have resulted in an error in C# 5.

using System;

class Program
{
 static void Foo(Func<Func<long>> func) {}
 static void Foo(Func<Func<int>> func) {}

 static void Main()
 {
 Foo(() => () => 7);
 }
}

Minor changes and bugfixes

Parentheses are now forbidden around named parameters. The following compiles in C#5, but not
C#6

5.0

https://riptutorial.com/ 151

https://dotnetfiddle.net/Vnudqy

Console.WriteLine((value: 23));

Operands of is and as are no longer allowed to be method groups. The following compiles in C#5,
but not C#6

5.0

var result = "".Any is byte;

The native compiler allowed this (although it did show a warning), and in fact didn’t
even check extension method compatibility, allowing crazy things like 1.Any is string
or IDisposable.Dispose is object.

See this reference for updates on changes.

Using an extension method for collection initialization

Collection initialization syntax can be used when instantiating any class which implements
IEnumerable and has a method named Add which takes a single parameter.

In previous versions, this Add method had to be an instance method on the class being initialized.
In C#6, it can also be an extension method.

public class CollectionWithAdd : IEnumerable
{
 public void Add<T>(T item)
 {
 Console.WriteLine("Item added with instance add method: " + item);
 }

 public IEnumerator GetEnumerator()
 {
 // Some implementation here
 }
}

public class CollectionWithoutAdd : IEnumerable
{
 public IEnumerator GetEnumerator()
 {
 // Some implementation here
 }
}

public static class Extensions
{
 public static void Add<T>(this CollectionWithoutAdd collection, T item)
 {
 Console.WriteLine("Item added with extension add method: " + item);
 }
}

public class Program
{
 public static void Main()

https://riptutorial.com/ 152

http://blog.slaks.net/2014-05-28/exploring-roslyn-part-3-breaking-changes/

 {
 var collection1 = new CollectionWithAdd{1,2,3}; // Valid in all C# versions
 var collection2 = new CollectionWithoutAdd{4,5,6}; // Valid only since C# 6
 }
}

This will output:

Item added with instance add method: 1
Item added with instance add method: 2
Item added with instance add method: 3
Item added with extension add method: 4
Item added with extension add method: 5
Item added with extension add method: 6

Disable Warnings Enhancements

In C# 5.0 and earlier the developer could only suppress warnings by number. With the introduction
of Roslyn Analyzers, C# needs a way to disable warnings issued from specific libraries. With C#
6.0 the pragma directive can suppress warnings by name.

Before:

#pragma warning disable 0501

C# 6.0:

#pragma warning disable CS0501

Read C# 6.0 Features online: https://riptutorial.com/csharp/topic/24/csharp-6-0-features

https://riptutorial.com/ 153

https://riptutorial.com/csharp/topic/24/csharp-6-0-features

Chapter 26: C# 7.0 Features

Introduction

C# 7.0 is the seventh version of C#. This version contains some new features: language support
for Tuples, local functions, out var declarations, digit separators, binary literals, pattern matching,
throw expressions, ref return and ref local and extended expression bodied members list.

Official reference: What's new in C# 7

Examples

out var declaration

A common pattern in C# is using bool TryParse(object input, out object value) to safely parse
objects.

The out var declaration is a simple feature to improve readability. It allows a variable to be
declared at the same time that is it passed as an out parameter.

A variable declared this way is scoped to the remainder of the body at the point in which it is
declared.

Example

Using TryParse prior to C# 7.0, you must declare a variable to receive the value before calling the
function:

7.0

int value;
if (int.TryParse(input, out value))
{
 Foo(value); // ok
}
else
{
 Foo(value); // value is zero
}

Foo(value); // ok

In C# 7.0, you can inline the declaration of the variable passed to the out parameter, eliminating
the need for a separate variable declaration:

7.0

https://riptutorial.com/ 154

https://docs.microsoft.com/en-us/dotnet/articles/csharp/csharp-7

if (int.TryParse(input, out var value))
{
 Foo(value); // ok
}
else
{
 Foo(value); // value is zero
}

Foo(value); // still ok, the value in scope within the remainder of the body

If some of the parameters that a function returns in out is not needed you can use the discard
operator _.

p.GetCoordinates(out var x, out _); // I only care about x

An out var declaration can be used with any existing function which already has out parameters.
The function declaration syntax remains the same, and no additional requirements are needed to
make the function compatible with an out var declaration. This feature is simply syntactic sugar.

Another feature of out var declaration is that it can be used with anonymous types.

7.0

var a = new[] { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
var groupedByMod2 = a.Select(x => new
 {
 Source = x,
 Mod2 = x % 2
 })
 .GroupBy(x => x.Mod2)
 .ToDictionary(g => g.Key, g => g.ToArray());
if (groupedByMod2.TryGetValue(1, out var oddElements))
{
 Console.WriteLine(oddElements.Length);
}

In this code we create a Dictionary with int key and array of anonymous type value. In the
previous version of C# it was impossible to use TryGetValue method here since it required you to
declare the out variable (which is of anonymous type!). However, with out var we do not need to
explicitly specify the type of the out variable.

Limitations

Note that out var declarations are of limited use in LINQ queries as expressions are interpreted as
expression lambda bodies, so the scope of the introduced variables is limited to these lambdas.
For example, the following code will not work:

var nums =
 from item in seq
 let success = int.TryParse(item, out var tmp)

https://riptutorial.com/ 155

 select success ? tmp : 0; // Error: The name 'tmp' does not exist in the current context

References

Original out var declaration proposal on GitHub•

Binary literals

The 0b prefix can be used to represent Binary literals.

Binary literals allow constructing numbers from zeroes and ones, which makes seeing which bits
are set in the binary representation of a number much easier. This can be useful for working with
binary flags.

The following are equivalent ways of specifying an int with value 34 (=25 + 21):

// Using a binary literal:
// bits: 76543210
int a1 = 0b00100010; // binary: explicitly specify bits

// Existing methods:
int a2 = 0x22; // hexadecimal: every digit corresponds to 4 bits
int a3 = 34; // decimal: hard to visualise which bits are set
int a4 = (1 << 5) | (1 << 1); // bitwise arithmetic: combining non-zero bits

Flags enumerations

Before, specifying flag values for an enum could only be done using one of the three methods in this
example:

[Flags]
public enum DaysOfWeek
{
 // Previously available methods:
 // decimal hex bit shifting
 Monday = 1, // = 0x01 = 1 << 0
 Tuesday = 2, // = 0x02 = 1 << 1
 Wednesday = 4, // = 0x04 = 1 << 2
 Thursday = 8, // = 0x08 = 1 << 3
 Friday = 16, // = 0x10 = 1 << 4
 Saturday = 32, // = 0x20 = 1 << 5
 Sunday = 64, // = 0x40 = 1 << 6

 Weekdays = Monday | Tuesday | Wednesday | Thursday | Friday,
 Weekends = Saturday | Sunday
}

With binary literals it is more obvious which bits are set, and using them does not require
understanding hexadecimal numbers and bitwise arithmetic:

https://riptutorial.com/ 156

https://github.com/dotnet/roslyn/issues/6183

[Flags]
public enum DaysOfWeek
{
 Monday = 0b00000001,
 Tuesday = 0b00000010,
 Wednesday = 0b00000100,
 Thursday = 0b00001000,
 Friday = 0b00010000,
 Saturday = 0b00100000,
 Sunday = 0b01000000,

 Weekdays = Monday | Tuesday | Wednesday | Thursday | Friday,
 Weekends = Saturday | Sunday
}

Digit separators

The underscore _ may be used as a digit separator. Being able to group digits in large numeric
literals has a significant impact on readability.

The underscore may occur anywhere in a numeric literal except as noted below. Different
groupings may make sense in different scenarios or with different numeric bases.

Any sequence of digits may be separated by one or more underscores. The _ is allowed in
decimals as well as exponents. The separators have no semantic impact - they are simply
ignored.

int bin = 0b1001_1010_0001_0100;
int hex = 0x1b_a0_44_fe;
int dec = 33_554_432;
int weird = 1_2__3___4____5_____6______7_______8________9;
double real = 1_000.111_1e-1_000;

Where the _ digit separator may not be used:

at the beginning of the value (_121)•
at the end of the value (121_ or 121.05_)•
next to the decimal (10_.0)•
next to the exponent character (1.1e_1)•
next to the type specifier (10_f)•
immediately following the 0x or 0b in binary and hexadecimal literals (might be changed to
allow e.g. 0b_1001_1000)

•

Language support for Tuples

Basics

A tuple is an ordered, finite list of elements. Tuples are commonly used in programming as a
means to work with one single entity collectively instead of individually working with each of the
tuple's elements, and to represent individual rows (ie. "records") in a relational database.

https://riptutorial.com/ 157

https://github.com/dotnet/roslyn/issues/12680
https://github.com/dotnet/roslyn/issues/12680

In C# 7.0, methods can have multiple return values. Behind the scenes, the compiler will use the
new ValueTuple struct.

public (int sum, int count) GetTallies()
{
 return (1, 2);
}

Side note: for this to work in Visual Studio 2017, you need to get the System.ValueTuple package.

If a tuple-returning method result is assigned to a single variable you can access the members by
their defined names on the method signature:

var result = GetTallies();
// > result.sum
// 1
// > result.count
// 2

Tuple Deconstruction

Tuple deconstruction separates a tuple into its parts.

For example, invoking GetTallies and assigning the return value to two separate variables
deconstructs the tuple into those two variables:

(int tallyOne, int tallyTwo) = GetTallies();

var also works:

(var s, var c) = GetTallies();

You can also use shorter syntax, with var outside of ():

var (s, c) = GetTallies();

You can also deconstruct into existing variables:

int s, c;
(s, c) = GetTallies();

Swapping is now much simpler (no temp variable needed):

(b, a) = (a, b);

Interestingly, any object can be deconstructed by defining a Deconstruct method in the class:

https://riptutorial.com/ 158

https://github.com/dotnet/corefx/blob/master/src/System.ValueTuple/src/System/ValueTuple/ValueTuple.cs

class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }

 public void Deconstruct(out string firstName, out string lastName)
 {
 firstName = FirstName;
 lastName = LastName;
 }
}

var person = new Person { FirstName = "John", LastName = "Smith" };
var (localFirstName, localLastName) = person;

In this case, the (localFirstName, localLastName) = person syntax is invoking Deconstruct on the
person.

Deconstruction can even be defined in an extension method. This is equivalent to the above:

public static class PersonExtensions
{
 public static void Deconstruct(this Person person, out string firstName, out string
lastName)
 {
 firstName = person.FirstName;
 lastName = person.LastName;
 }
}

var (localFirstName, localLastName) = person;

An alternative approach for the Person class is to define the Name itself as a Tuple. Consider the
following:

class Person
{
 public (string First, string Last) Name { get; }

 public Person((string FirstName, string LastName) name)
 {
 Name = name;
 }
}

Then you can instantiate a person like so (where we can take a tuple as an argument):

var person = new Person(("Jane", "Smith"));

var firstName = person.Name.First; // "Jane"
var lastName = person.Name.Last; // "Smith"

Tuple Initialization

https://riptutorial.com/ 159

You can also arbitrarily create tuples in code:

var name = ("John", "Smith");
Console.WriteLine(name.Item1);
// Outputs John

Console.WriteLine(name.Item2);
// Outputs Smith

When creating a tuple, you can assign ad-hoc item names to the members of the tuple:

var name = (first: "John", middle: "Q", last: "Smith");
Console.WriteLine(name.first);
// Outputs John

Type inference

Multiple tuples defined with the same signature (matching types and count) will be inferred as
matching types. For example:

public (int sum, double average) Measure(List<int> items)
{
 var stats = (sum: 0, average: 0d);
 stats.sum = items.Sum();
 stats.average = items.Average();
 return stats;
}

stats can be returned since the declaration of the stats variable and the method's return signature
are a match.

Reflection and Tuple Field Names

Member names do not exist at runtime. Reflection will consider tuples with the same number and
types of members the same even if member names do not match. Converting a tuple to an object
and then to a tuple with the same member types, but different names, will not cause an exception
either.

While the ValueTuple class itself does not preserve information for member names the information
is available through reflection in a TupleElementNamesAttribute. This attribute is not applied to the
tuple itself but to method parameters, return values, properties and fields. This allows tuple item
names to be preserved across assemblies i.e. if a method returns (string name, int count) the
names name and count will be available to callers of the method in another assembly because the
return value will be marked with TupleElementNameAttribute containing the values "name" and
"count".

https://riptutorial.com/ 160

Use with generics and async

The new tuple features (using the underlying ValueTuple type) fully support generics and can be
used as generic type parameter. That makes it possible to use them with the async/await pattern:

public async Task<(string value, int count)> GetValueAsync()
{
 string fooBar = await _stackoverflow.GetStringAsync();
 int num = await _stackoverflow.GetIntAsync();

 return (fooBar, num);
}

Use with collections

It may become beneficial to have a collection of tuples in (as an example) a scenario where you're
attempting to find a matching tuple based on conditions to avoid code branching.

Example:

private readonly List<Tuple<string, string, string>> labels = new List<Tuple<string, string,
string>>()
{
 new Tuple<string, string, string>("test1", "test2", "Value"),
 new Tuple<string, string, string>("test1", "test1", "Value2"),
 new Tuple<string, string, string>("test2", "test2", "Value3"),
};

public string FindMatchingValue(string firstElement, string secondElement)
{
 var result = labels
 .Where(w => w.Item1 == firstElement && w.Item2 == secondElement)
 .FirstOrDefault();

 if (result == null)
 throw new ArgumentException("combo not found");

 return result.Item3;
}

With the new tuples can become:

private readonly List<(string firstThingy, string secondThingyLabel, string foundValue)>
labels = new List<(string firstThingy, string secondThingyLabel, string foundValue)>()
{
 ("test1", "test2", "Value"),
 ("test1", "test1", "Value2"),
 ("test2", "test2", "Value3"),
}

public string FindMatchingValue(string firstElement, string secondElement)
{

https://riptutorial.com/ 161

 var result = labels
 .Where(w => w.firstThingy == firstElement && w.secondThingyLabel == secondElement)
 .FirstOrDefault();

 if (result == null)
 throw new ArgumentException("combo not found");

 return result.foundValue;
}

Though the naming on the example tuple above is pretty generic, the idea of relevant labels allows
for a deeper understanding of what is being attempted in the code over referencing "item1",
"item2", and "item3".

Differences between ValueTuple and Tuple

The primary reason for introduction of ValueTuple is performance.

Type name ValueTuple Tuple

Class or structure struct class

Mutability (changing values after creation) mutable immutable

Naming members and other language support yes no (TBD)

References

Original Tuples language feature proposal on GitHub•
A runnable VS 15 solution for C# 7.0 features•
NuGet Tuple Package•

Local functions

Local functions are defined within a method and aren't available outside of it. They have access to
all local variables and support iterators, async/await and lambda syntax. This way, repetitions
specific to a function can be functionalized without crowding the class. As a side effect, this
improves intellisense suggestion performance.

Example

double GetCylinderVolume(double radius, double height)
{
 return getVolume();

 double getVolume()

https://riptutorial.com/ 162

https://github.com/dotnet/roslyn/issues/11031
https://github.com/dotnet/roslyn/issues/347
https://code.msdn.microsoft.com/Introduce-new-C-70-features-c639ed88
https://www.nuget.org/packages/System.ValueTuple/

 {
 // You can declare inner-local functions in a local function
 double GetCircleArea(double r) => Math.PI * r * r;

 // ALL parents' variables are accessible even though parent doesn't have any input.
 return GetCircleArea(radius) * height;
 }
}

Local functions considerably simplify code for LINQ operators, where you usually have to separate
argument checks from actual logic to make argument checks instant, not delayed until after
iteration started.

Example

public static IEnumerable<TSource> Where<TSource>(
 this IEnumerable<TSource> source,
 Func<TSource, bool> predicate)
{
 if (source == null) throw new ArgumentNullException(nameof(source));
 if (predicate == null) throw new ArgumentNullException(nameof(predicate));

 return iterator();

 IEnumerable<TSource> iterator()
 {
 foreach (TSource element in source)
 if (predicate(element))
 yield return element;
 }
}

Local functions also support the async and await keywords.

Example

async Task WriteEmailsAsync()
{
 var emailRegex = new Regex(@"(?i)[a-z0-9_.+-]+@[a-z0-9-]+\.[a-z0-9-.]+");
 IEnumerable<string> emails1 = await getEmailsFromFileAsync("input1.txt");
 IEnumerable<string> emails2 = await getEmailsFromFileAsync("input2.txt");
 await writeLinesToFileAsync(emails1.Concat(emails2), "output.txt");

 async Task<IEnumerable<string>> getEmailsFromFileAsync(string fileName)
 {
 string text;

 using (StreamReader reader = File.OpenText(fileName))
 {
 text = await reader.ReadToEndAsync();
 }

 return from Match emailMatch in emailRegex.Matches(text) select emailMatch.Value;

https://riptutorial.com/ 163

 }

 async Task writeLinesToFileAsync(IEnumerable<string> lines, string fileName)
 {
 using (StreamWriter writer = File.CreateText(fileName))
 {
 foreach (string line in lines)
 {
 await writer.WriteLineAsync(line);
 }
 }
 }
}

One important thing that you may have noticed is that local functions can be defined under the
return statement, they do not need to be defined above it. Additionally, local functions typically
follow the "lowerCamelCase" naming convention as to more easily differentiate themselves from
class scope functions.

Pattern Matching

Pattern matching extensions for C# enable many of the benefits of pattern matching from
functional languages, but in a way that smoothly integrates with the feel of the underlying
language

switch expression

Pattern matching extends the switch statement to switch on types:

class Geometry {}

class Triangle : Geometry
{
 public int Width { get; set; }
 public int Height { get; set; }
 public int Base { get; set; }
}

class Rectangle : Geometry
{
 public int Width { get; set; }
 public int Height { get; set; }
}

class Square : Geometry
{
 public int Width { get; set; }
}

public static void PatternMatching()
{
 Geometry g = new Square { Width = 5 };

 switch (g)
 {

https://riptutorial.com/ 164

 case Triangle t:
 Console.WriteLine($"{t.Width} {t.Height} {t.Base}");
 break;
 case Rectangle sq when sq.Width == sq.Height:
 Console.WriteLine($"Square rectangle: {sq.Width} {sq.Height}");
 break;
 case Rectangle r:
 Console.WriteLine($"{r.Width} {r.Height}");
 break;
 case Square s:
 Console.WriteLine($"{s.Width}");
 break;
 default:
 Console.WriteLine("<other>");
 break;
 }
}

is expression

Pattern matching extends the is operator to check for a type and declare a new variable at the
same time.

Example

7.0

string s = o as string;
if(s != null)
{
 // do something with s
}

can be rewritten as:

7.0

if(o is string s)
{
 //Do something with s
};

Also note that the scope of the pattern variable s is extended to outside the if block reaching the
end of the enclosing scope, example:

if(someCondition)
{
 if(o is string s)
 {
 //Do something with s
 }
 else
 {

https://riptutorial.com/ 165

 // s is unassigned here, but accessible
 }

 // s is unassigned here, but accessible
}
// s is not accessible here

ref return and ref local

Ref returns and ref locals are useful for manipulating and returning references to blocks of
memory instead of copying memory without resorting to unsafe pointers.

Ref Return

public static ref TValue Choose<TValue>(
 Func<bool> condition, ref TValue left, ref TValue right)
{
 return condition() ? ref left : ref right;
}

With this you can pass two values by reference with one of them being returned based on some
condition:

Matrix3D left = …, right = …;
Choose(chooser, ref left, ref right).M20 = 1.0;

Ref Local

public static ref int Max(ref int first, ref int second, ref int third)
{
 ref int max = first > second ? ref first : ref second;
 return max > third ? ref max : ref third;
}
…
int a = 1, b = 2, c = 3;
Max(ref a, ref b, ref c) = 4;
Debug.Assert(a == 1); // true
Debug.Assert(b == 2); // true
Debug.Assert(c == 4); // true

Unsafe Ref Operations

In System.Runtime.CompilerServices.Unsafe a set of unsafe operations have been defined that allow
you to manipulate ref values as if they were pointers, basically.

For example, reinterpreting a memory address (ref) as a different type:

https://riptutorial.com/ 166

byte[] b = new byte[4] { 0x42, 0x42, 0x42, 0x42 };

ref int r = ref Unsafe.As<byte, int>(ref b[0]);
Assert.Equal(0x42424242, r);

0x0EF00EF0;
Assert.Equal(0xFE, b[0] | b[1] | b[2] | b[3]);

Beware of endianness when doing this, though, e.g. check BitConverter.IsLittleEndian if needed
and handle accordingly.

Or iterate over an array in an unsafe manner:

int[] a = new int[] { 0x123, 0x234, 0x345, 0x456 };

ref int r1 = ref Unsafe.Add(ref a[0], 1);
Assert.Equal(0x234, r1);

ref int r2 = ref Unsafe.Add(ref r1, 2);
Assert.Equal(0x456, r2);

ref int r3 = ref Unsafe.Add(ref r2, -3);
Assert.Equal(0x123, r3);

Or the similar Subtract:

string[] a = new string[] { "abc", "def", "ghi", "jkl" };

ref string r1 = ref Unsafe.Subtract(ref a[0], -2);
Assert.Equal("ghi", r1);

ref string r2 = ref Unsafe.Subtract(ref r1, -1);
Assert.Equal("jkl", r2);

ref string r3 = ref Unsafe.Subtract(ref r2, 3);
Assert.Equal("abc", r3);

Additionally, one can check if two ref values are the same i.e. same address:

long[] a = new long[2];

Assert.True(Unsafe.AreSame(ref a[0], ref a[0]));
Assert.False(Unsafe.AreSame(ref a[0], ref a[1]));

Links

Roslyn Github Issue

System.Runtime.CompilerServices.Unsafe on github

throw expressions

https://riptutorial.com/ 167

https://en.wikipedia.org/wiki/Endianness
https://github.com/dotnet/roslyn/issues/118
https://github.com/dotnet/corefx/tree/master/src/System.Runtime.CompilerServices.Unsafe

C# 7.0 allows throwing as an expression in certain places:

class Person
{
 public string Name { get; }

 public Person(string name) => Name = name ?? throw new
ArgumentNullException(nameof(name));

 public string GetFirstName()
 {
 var parts = Name.Split(' ');
 return (parts.Length > 0) ? parts[0] : throw new InvalidOperationException("No
name!");
 }

 public string GetLastName() => throw new NotImplementedException();
}

Prior to C# 7.0, if you wanted to throw an exception from an expression body you would have to:

var spoons = "dinner,desert,soup".Split(',');

var spoonsArray = spoons.Length > 0 ? spoons : null;

if (spoonsArray == null)
{
 throw new Exception("There are no spoons");
}

Or

var spoonsArray = spoons.Length > 0
 ? spoons
 : new Func<string[]>(() =>
 {
 throw new Exception("There are no spoons");
 })();

In C# 7.0 the above is now simplified to:

var spoonsArray = spoons.Length > 0 ? spoons : throw new Exception("There are no spoons");

Extended expression bodied members list

C# 7.0 adds accessors, constructors and finalizers to the list of things that can have expression
bodies:

class Person
{
 private static ConcurrentDictionary<int, string> names = new ConcurrentDictionary<int,
string>();

 private int id = GetId();

https://riptutorial.com/ 168

 public Person(string name) => names.TryAdd(id, name); // constructors

 ~Person() => names.TryRemove(id, out _); // finalizers

 public string Name
 {
 get => names[id]; // getters
 set => names[id] = value; // setters
 }
}

Also see the out var declaration section for the discard operator.

ValueTask

Task<T> is a class and causes the unnecessary overhead of its allocation when the result is
immediately available.

ValueTask<T> is a structure and has been introduced to prevent the allocation of a Task object in
case the result of the async operation is already available at the time of awaiting.

So ValueTask<T> provides two benefits:

1. Performance increase

Here's a Task<T> example:

Requires heap allocation•
Takes 120ns with JIT•

async Task<int> TestTask(int d)
{
 await Task.Delay(d);
 return 10;
}

Here's the analog ValueTask<T> example:

No heap allocation if the result is known synchronously (which it is not in this case because
of the Task.Delay, but often is in many real-world async/await scenarios)

•

Takes 65ns with JIT•

async ValueTask<int> TestValueTask(int d)
{
 await Task.Delay(d);
 return 10;
}

https://riptutorial.com/ 169

http://www.riptutorial.com/csharp/example/6326/out-var-declaration

2. Increased implementation flexibility

Implementations of an async interface wishing to be synchronous would otherwise be forced to
use either Task.Run or Task.FromResult (resulting in the performance penalty discussed above).
Thus there's some pressure against synchronous implementations.

But with ValueTask<T>, implementations are more free to choose between being synchronous or
asynchronous without impacting callers.

For example, here's an interface with an asynchronous method:

interface IFoo<T>
{
 ValueTask<T> BarAsync();
}

...and here's how that method might be called:

IFoo<T> thing = getThing();
var x = await thing.BarAsync();

With ValueTask, the above code will work with either synchronous or asynchronous
implementations:

Synchronous implementation:

class SynchronousFoo<T> : IFoo<T>
{
 public ValueTask<T> BarAsync()
 {
 var value = default(T);
 return new ValueTask<T>(value);
 }
}

Asynchronous implementation

class AsynchronousFoo<T> : IFoo<T>
{
 public async ValueTask<T> BarAsync()
 {
 var value = default(T);
 await Task.Delay(1);
 return value;
 }
}

https://riptutorial.com/ 170

Notes

Although ValueTask struct was being planned to be added to C# 7.0, it has been kept as another
library for the time being. ValueTask<T> System.Threading.Tasks.Extensions package can be
downloaded from Nuget Gallery

Read C# 7.0 Features online: https://riptutorial.com/csharp/topic/1936/csharp-7-0-features

https://riptutorial.com/ 171

https://blogs.msdn.microsoft.com/dotnet/2016/08/24/whats-new-in-csharp-7-0/
http://www.riptutorial.com/csharp/example/28612/valuetask-t-
https://www.nuget.org/packages/System.Threading.Tasks.Extensions/
https://riptutorial.com/csharp/topic/1936/csharp-7-0-features

Chapter 27: C# Authentication handler

Examples

Authentication handler

 public class AuthenticationHandler : DelegatingHandler
 {
 /// <summary>
 /// Holds request's header name which will contains token.
 /// </summary>
 private const string securityToken = "__RequestAuthToken";

 /// <summary>
 /// Default overridden method which performs authentication.
 /// </summary>
 /// <param name="request">Http request message.</param>
 /// <param name="cancellationToken">Cancellation token.</param>
 /// <returns>Returns http response message of type <see cref="HttpResponseMessage"/>
class asynchronously.</returns>
 protected override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,
CancellationToken cancellationToken)
 {
 if (request.Headers.Contains(securityToken))
 {
 bool authorized = Authorize(request);
 if (!authorized)
 {
 return ApiHttpUtility.FromResult(request, false,
HttpStatusCode.Unauthorized, MessageTypes.Error, Resource.UnAuthenticatedUser);
 }
 }
 else
 {
 return ApiHttpUtility.FromResult(request, false, HttpStatusCode.BadRequest,
MessageTypes.Error, Resource.UnAuthenticatedUser);
 }

 return base.SendAsync(request, cancellationToken);
 }

 /// <summary>
 /// Authorize user by validating token.
 /// </summary>
 /// <param name="requestMessage">Authorization context.</param>
 /// <returns>Returns a value indicating whether current request is authenticated or
not.</returns>
 private bool Authorize(HttpRequestMessage requestMessage)
 {
 try
 {
 HttpRequest request = HttpContext.Current.Request;
 string token = request.Headers[securityToken];
 return SecurityUtility.IsTokenValid(token, request.UserAgent,
HttpContext.Current.Server.MapPath("~/Content/"), requestMessage);
 }
 catch (Exception)

https://riptutorial.com/ 172

 {
 return false;
 }
 }
 }

Read C# Authentication handler online: https://riptutorial.com/csharp/topic/5430/csharp-
authentication-handler

https://riptutorial.com/ 173

https://riptutorial.com/csharp/topic/5430/csharp-authentication-handler
https://riptutorial.com/csharp/topic/5430/csharp-authentication-handler

Chapter 28: C# Script

Examples

Simple code evaluation

You can evaluate any valid C# code:

int value = await CSharpScript.EvaluateAsync<int>("15 * 89 + 95");
var span = await CSharpScript.EvaluateAsync<TimeSpan>("new DateTime(2016,1,1) -
DateTime.Now");

If type is not specified, the result is object:

object value = await CSharpScript.EvaluateAsync("15 * 89 + 95");

Read C# Script online: https://riptutorial.com/csharp/topic/3780/csharp-script

https://riptutorial.com/ 174

https://riptutorial.com/csharp/topic/3780/csharp-script

Chapter 29: Caching

Examples

MemoryCache

//Get instance of cache
using System.Runtime.Caching;

var cache = MemoryCache.Default;

//Check if cache contains an item with
cache.Contains("CacheKey");

//get item from cache
var item = cache.Get("CacheKey");

//get item from cache or add item if not existing
object list = MemoryCache.Default.AddOrGetExisting("CacheKey", "object to be stored",
DateTime.Now.AddHours(12));

//note if item not existing the item is added by this method
//but the method returns null

Read Caching online: https://riptutorial.com/csharp/topic/4383/caching

https://riptutorial.com/ 175

https://riptutorial.com/csharp/topic/4383/caching

Chapter 30: Casting

Remarks

Casting is not the same as Converting. It is possible to convert the string value "-1" to an integer
value (-1), but this must be done through library methods like Convert.ToInt32() or Int32.Parse(). It
cannot be done using casting syntax directly.

Examples

Cast an object to a base type

Given the following definitions :

public interface IMyInterface1
{
 string GetName();
}

public interface IMyInterface2
{
 string GetName();
}

public class MyClass : IMyInterface1, IMyInterface2
{
 string IMyInterface1.GetName()
 {
 return "IMyInterface1";
 }

 string IMyInterface2.GetName()
 {
 return "IMyInterface2";
 }
}

Casting an object to a base type example :

 MyClass obj = new MyClass();

 IMyInterface1 myClass1 = (IMyInterface1)obj;
 IMyInterface2 myClass2 = (IMyInterface2)obj;

 Console.WriteLine("I am : {0}", myClass1.GetName());
 Console.WriteLine("I am : {0}", myClass2.GetName());

 // Outputs :
 // I am : IMyInterface1
 // I am : IMyInterface2

https://riptutorial.com/ 176

Explicit Casting

If you know that a value is of a specific type, you can explicitly cast it to that type in order to use it
in a context where that type is needed.

object value = -1;
int number = (int) value;
Console.WriteLine(Math.Abs(number));

If we tried passing value directly to Math.Abs(), we would get a compile-time exception because
Math.Abs() doesn't have an overload that takes an object as a parameter.

If value could not be cast to an int, then the second line in this example would throw an
InvalidCastException

Safe Explicit Casting (`as` operator)

If you aren't sure whether a value is of the type you think it is, you can safely cast it using the as
operator. If the value is not of that type, the resulting value will be null.

object value = "-1";
int? number = value as int?;
if(number != null)
{
 Console.WriteLine(Math.Abs(number.Value));
}

Note that null values have no type, so the as keyword will safely yield null when casting any null
value.

Implicit Casting

A value will automatically be cast to the appropriate type if the compiler knows that it can always
be converted to that type.

int number = -1;
object value = number;
Console.WriteLine(value);

In this example, we didn't need to use the typical explicit casting syntax because the compiler
knows all ints can be cast to objects. In fact, we could avoid creating variables and pass -1
directly as the argument of Console.WriteLine() that expects an object.

Console.WriteLine(-1);

Checking compatibility without casting

If you need to know whether a value's type extends or implements a given type, but you don't want
to actually cast it as that type, you can use the is operator.

https://riptutorial.com/ 177

if(value is int)
{
 Console.WriteLine(value + "is an int");
}

Explicit Numeric Conversions

Explicit casting operators can be used to perform conversions of numeric types, even though they
don't extend or implement one another.

double value = -1.1;
int number = (int) value;

Note that in cases where the destination type has less precision than the original type, precision
will be lost. For example, -1.1 as a double value in the above example becomes -1 as an integer
value.

Also, numeric conversions rely on compile-time types, so they won't work if the numeric types
have been "boxed" into objects.

object value = -1.1;
int number = (int) value; // throws InvalidCastException

Conversion Operators

In C#, types can define custom Conversion Operators, which allow values to be converted to and
from other types using either explicit or implicit casts. For example, consider a class that is meant
to represent a JavaScript expression:

public class JsExpression
{
 private readonly string expression;
 public JsExpression(string rawExpression)
 {
 this.expression = rawExpression;
 }
 public override string ToString()
 {
 return this.expression;
 }
 public JsExpression IsEqualTo(JsExpression other)
 {
 return new JsExpression("(" + this + " == " + other + ")");
 }
}

If we wanted to create a JsExpression representing a comparison of two JavaScript values, we
could do something like this:

JsExpression intExpression = new JsExpression("-1");
JsExpression doubleExpression = new JsExpression("-1.0");
Console.WriteLine(intExpression.IsEqualTo(doubleExpression)); // (-1 == -1.0)

https://riptutorial.com/ 178

But we can add some explicit conversion operators to JsExpression, to allow a simple conversion
when using explicit casting.

public static explicit operator JsExpression(int value)
{
 return new JsExpression(value.ToString());
}
public static explicit operator JsExpression(double value)
{
 return new JsExpression(value.ToString());
}

// Usage:
JsExpression intExpression = (JsExpression)(-1);
JsExpression doubleExpression = (JsExpression)(-1.0);
Console.WriteLine(intExpression.IsEqualTo(doubleExpression)); // (-1 == -1.0)

Or, we could change these operators to implicit to make the syntax much simpler.

public static implicit operator JsExpression(int value)
{
 return new JsExpression(value.ToString());
}
public static implicit operator JsExpression(double value)
{
 return new JsExpression(value.ToString());
}

// Usage:
JsExpression intExpression = -1;
Console.WriteLine(intExpression.IsEqualTo(-1.0)); // (-1 == -1.0)

LINQ Casting operations

Suppose you have types like the following:

interface IThing { }
class Thing : IThing { }

LINQ allows you to create a projection that changes the compile-time generic type of an
IEnumerable<> via the Enumerable.Cast<>() and Enumerable.OfType<>() extension methods.

IEnumerable<IThing> things = new IThing[] {new Thing()};
IEnumerable<Thing> things2 = things.Cast<Thing>();
IEnumerable<Thing> things3 = things.OfType<Thing>();

When things2 is evaluated, the Cast<>() method will try to cast all of the values in things into Thing
s. If it encounters a value that cannot be cast, an InvalidCastException will be thrown.

When things3 is evaluated, the OfType<>() method will do the same, except that if it encounters a
value that cannot be cast, it will simply omit that value rather than throw an exception.

Due to the generic type of these methods, they cannot invoke Conversion Operators or perform

https://riptutorial.com/ 179

numeric conversions.

double[] doubles = new[]{1,2,3}.Cast<double>().ToArray(); // Throws InvalidCastException

You can simply perform a cast inside a .Select() as a workaround:

double[] doubles = new[]{1,2,3}.Select(i => (double)i).ToArray();

Read Casting online: https://riptutorial.com/csharp/topic/2690/casting

https://riptutorial.com/ 180

https://riptutorial.com/csharp/topic/2690/casting

Chapter 31: Checked and Unchecked

Syntax

checked(a + b) // checked expression•
unchecked(a + b) // unchecked expression•
checked { c = a + b; c += 5; } // checked block•
unchecked { c = a + b; c += 5; } // unchecked block•

Examples

Checked and Unchecked

C# statements executes in either checked or unchecked context. In a checked context, arithmetic
overflow raises an exception. In an unchecked context, arithmetic overflow is ignored and the
result is truncated.

short m = 32767;
short n = 32767;
int result1 = checked((short)(m + n)); //will throw an OverflowException
int result2 = unchecked((short)(m + n)); // will return -2

If neither of these are specified then the default context will rely on other factors, such as compiler
options.

Checked and Unchecked as a scope

The keywords can also create scopes in order to (un)check multiple operations.

short m = 32767;
short n = 32767;
checked
{
 int result1 = (short)(m + n); //will throw an OverflowException
}
unchecked
{
 int result2 = (short)(m + n); // will return -2
}

Read Checked and Unchecked online: https://riptutorial.com/csharp/topic/2394/checked-and-
unchecked

https://riptutorial.com/ 181

https://riptutorial.com/csharp/topic/2394/checked-and-unchecked
https://riptutorial.com/csharp/topic/2394/checked-and-unchecked

Chapter 32: CLSCompliantAttribute

Syntax

[assembly:CLSCompliant(true)]1.
[CLSCompliant(true)]2.

Parameters

Constructor Parameter

CLSCompliantAttribute(Boolean)
Initializes an instance of the CLSCompliantAttribute class
with a Boolean value indicating whether the indicated
program element is CLS-compliant.

Remarks

The Common Language Specification (CLS) is a set of base rules to which any language targeting
the CLI(language which confirms the Common Language Infrastructure specifications) should
confirm in order to interoperate with other CLS-compliant languages.

List of CLI languages

You should mark your assembly as CLSCompliant in most cases when you are distributing
libraries. This attribute will guarantee you that your code will be usable by all CLS-compliant
languages. This means that your code can be consumed by any language that can be compiled
and run on CLR(Common Language Runtime)

When your assembly is marked with CLSCompliantAttribute, the compiler will check if your code
violates any of CLS rules and return warning if it is needed.

Examples

Access Modifier to which CLS rules apply

using System;

[assembly:CLSCompliant(true)]
namespace CLSDoc
{

 public class Cat
 {
 internal UInt16 _age = 0;
 private UInt16 _daysTillVacination = 0;

https://riptutorial.com/ 182

https://en.wikipedia.org/wiki/List_of_CLI_languages
https://en.wikipedia.org/wiki/List_of_CLI_languages

 //Warning CS3003 Type of 'Cat.DaysTillVacination' is not CLS-compliant
 protected UInt16 DaysTillVacination
 {
 get { return _daysTillVacination; }
 }

 //Warning CS3003 Type of 'Cat.Age' is not CLS-compliant
 public UInt16 Age
 { get { return _age; } }

 //valid behaviour by CLS-compliant rules
 public int IncreaseAge()
 {
 int increasedAge = (int)_age + 1;

 return increasedAge;
 }

 }
}

The rules for CLS compliance apply only to a public/protected components.

Violation of CLS rule: Unsigned types / sbyte

using System;

[assembly:CLSCompliant(true)]
namespace CLSDoc
{

 public class Car
 {
 internal UInt16 _yearOfCreation = 0;

 //Warning CS3008 Identifier '_numberOfDoors' is not CLS-compliant
 //Warning CS3003 Type of 'Car._numberOfDoors' is not CLS-compliant
 public UInt32 _numberOfDoors = 0;

 //Warning CS3003 Type of 'Car.YearOfCreation' is not CLS-compliant
 public UInt16 YearOfCreation
 {
 get { return _yearOfCreation; }
 }

 //Warning CS3002 Return type of 'Car.CalculateDistance()' is not CLS-compliant
 public UInt64 CalculateDistance()
 {
 return 0;
 }

 //Warning CS3002 Return type of 'Car.TestDummyUnsignedPointerMethod()' is not CLS-
compliant
 public UIntPtr TestDummyUnsignedPointerMethod()
 {
 int[] arr = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 UIntPtr ptr = (UIntPtr)arr[0];

https://riptutorial.com/ 183

 return ptr;
 }

 //Warning CS3003 Type of 'Car.age' is not CLS-compliant
 public sbyte age = 120;

 }
}

Violation of CLS rule: Same naming

using System;

[assembly:CLSCompliant(true)]
namespace CLSDoc
{

 public class Car
 {
 //Warning CS3005 Identifier 'Car.CALCULATEAge()' differing only in case is not
CLS-compliant
 public int CalculateAge()
 {
 return 0;
 }

 public int CALCULATEAge()
 {
 return 0;
 }

 }
}

Visual Basic is not case sensitive

Violation of CLS rule: Identifier _

using System;

[assembly:CLSCompliant(true)]
namespace CLSDoc
{

 public class Car
 {
 //Warning CS3008 Identifier '_age' is not CLS-complian
 public int _age = 0;
 }

}

You can not start variable with _

https://riptutorial.com/ 184

Violation of CLS rule: Inherit from non CLSComplaint class

using System;

[assembly:CLSCompliant(true)]
namespace CLSDoc
{

 [CLSCompliant(false)]
 public class Animal
 {
 public int age = 0;
 }

 //Warning CS3009 'Dog': base type 'Animal' is not CLS-compliant
 public class Dog : Animal
 {
 }

}

Read CLSCompliantAttribute online: https://riptutorial.com/csharp/topic/7214/clscompliantattribute

https://riptutorial.com/ 185

https://riptutorial.com/csharp/topic/7214/clscompliantattribute

Chapter 33: Code Contracts

Syntax

Contract.Requires(Condition,userMessage)

Contract.Requires(Condition,userMessage)

Contract.Result<T>

Contract.Ensures()

Contract.Invariants()

1.

Remarks

.NET supports the Design by Contract idea via its Contracts class found in the System.Diagnostics
namespace and introduced in .NET 4.0. Code Contracts API includes classes for static and
runtime checks of code and allows you to define preconditions, postconditions, and invariants
within a method. The preconditions specify the conditions the parameters must fulfill before a
method can execute, postconditions that are verified upon completion of a method, and the
invariants define the conditions that do not change during the execution of a method.

Why are Code Contracts needed?

Tracking issues of an application when your application is running, is one the foremost concerns of
all the developers and administrators. Tracking can be performed in many ways. For example -

You can apply tracing on our application and get the details of an application when the
application is running

•

You can use event logging mechanism when you are running the application. The messages
can be seen using Event Viewer

•

You can apply Performance Monitoring after a specific time interval and write live data from
your application.

•

Code Contracts uses a different approach for tracking and managing issues within an application.
Instead of validating everything that is returned from a method call, Code Contracts with the help
of preconditions, postconditions, and invariants on methods, ensure that everything entering and
leaving your methods are correct.

Examples

Preconditions

https://riptutorial.com/ 186

namespace CodeContractsDemo
{
 using System;
 using System.Collections.Generic;
 using System.Diagnostics.Contracts;

 public class PaymentProcessor
 {
 private List<Payment> _payments = new List<Payment>();

 public void Add(Payment payment)
 {
 Contract.Requires(payment != null);
 Contract.Requires(!string.IsNullOrEmpty(payment.Name));
 Contract.Requires(payment.Date <= DateTime.Now);
 Contract.Requires(payment.Amount > 0);

 this._payments.Add(payment);
 }
 }
}

Postconditions

public double GetPaymentsTotal(string name)
{
 Contract.Ensures(Contract.Result<double>() >= 0);

 double total = 0.0;

 foreach (var payment in this._payments) {
 if (string.Equals(payment.Name, name)) {
 total += payment.Amount;
 }
 }

 return total;
}

Invariants

namespace CodeContractsDemo
{
 using System;
 using System.Diagnostics.Contracts;

 public class Point
 {
 public int X { get; set; }
 public int Y { get; set; }

 public Point()
 {
 }

 public Point(int x, int y)
 {

https://riptutorial.com/ 187

 this.X = x;
 this.Y = y;
 }

 public void Set(int x, int y)
 {
 this.X = x;
 this.Y = y;
 }

 public void Test(int x, int y)
 {
 for (int dx = -x; dx <= x; dx++) {
 this.X = dx;
 Console.WriteLine("Current X = {0}", this.X);
 }

 for (int dy = -y; dy <= y; dy++) {
 this.Y = dy;
 Console.WriteLine("Current Y = {0}", this.Y);
 }

 Console.WriteLine("X = {0}", this.X);
 Console.WriteLine("Y = {0}", this.Y);
 }

 [ContractInvariantMethod]
 private void ValidateCoordinates()
 {
 Contract.Invariant(this.X >= 0);
 Contract.Invariant(this.Y >= 0);
 }
 }
}

Defining Contracts on Interface

[ContractClass(typeof(ValidationContract))]
interface IValidation
{
 string CustomerID{get;set;}
 string Password{get;set;}
}

[ContractClassFor(typeof(IValidation))]
sealed class ValidationContract:IValidation
{
 string IValidation.CustomerID
 {
 [Pure]
 get
 {
 return Contract.Result<string>();
 }
 set
 {
 Contract.Requires<ArgumentNullException>(!string.IsNullOrEmpty(value), "Customer
ID cannot be null!!");
 }

https://riptutorial.com/ 188

 }

 string IValidation.Password
 {
 [Pure]
 get
 {
 return Contract.Result<string>();
 }
 set
 {
 Contract.Requires<ArgumentNullException>(!string.IsNullOrEmpty(value), "Password
cannot be null!!");
 }
 }
}

class Validation:IValidation
{
 public string GetCustomerPassword(string customerID)
 {
 Contract.Requires(!string.IsNullOrEmpty(customerID),"Customer ID cannot be Null");
 Contract.Requires<ArgumentNullException>(!string.IsNullOrEmpty(customerID),
"Exception!!");
 Contract.Ensures(Contract.Result<string>() != null);
 string password="AAA@1234";
 if (customerID!=null)
 {
 return password;
 }
 else
 {
 return null;
 }

 }

 private string m_custID, m_PWD;

 public string CustomerID
 {
 get
 {
 return m_custID;
 }
 set
 {
 m_custID = value;
 }
 }

 public string Password
 {
 get
 {
 return m_PWD;
 }
 set
 {
 m_PWD = value;
 }

https://riptutorial.com/ 189

 }
}

In the above code, we have defined an interface called IValidation with an attribute
[ContractClass]. This attribute takes an address of a class where we have implemented a contract
for an Interface. The class ValidationContract makes use of properties defined in the interface and
checks for the null values using Contract.Requires<T>. T is an exception class.

We have also marked the get accessor with an attribute [Pure]. The pure attribute ensures that the
method or a property does not change the instance state of a class in which IValidation interface
is implemented.

Read Code Contracts online: https://riptutorial.com/csharp/topic/4241/code-contracts

https://riptutorial.com/ 190

https://riptutorial.com/csharp/topic/4241/code-contracts

Chapter 34: Code Contracts and Assertions

Examples

Assertions to check logic should always be true

Assertions are used not to perform testing of input parameters, but to verify that program flow is
corect -- i.e., that you can make certain assumptions about your code at a certain point in time. In
other words: a test done with Debug.Assert should always assume that the value tested is true.

Debug.Assert only executes in DEBUG builds; it is filtered out of RELEASE builds. It must be
considered a debugging tool in addition to unit testing and not as a replacement of code contracts
or input validation methods.

For instance, this is a good assertion:

var systemData = RetrieveSystemConfiguration();
Debug.Assert(systemData != null);

Here assert is a good choice because we can assume that RetrieveSystemConfiguration() will
return a valid value and will never return null.

Here is another good example:

UserData user = RetrieveUserData();
Debug.Assert(user != null);
Debug.Assert(user.Age > 0);
int year = DateTime.Today.Year - user.Age;

First, we may assume that RetrieveUserData() will return a valid value. Then, before using the Age
property, we verify the assumption (which should always be true) that the age of the user is strictly
positive.

This is a bad example of assert:

string input = Console.ReadLine();
int age = Convert.ToInt32(input);
Debug.Assert(age > 16);
Console.WriteLine("Great, you are over 16");

Assert is not for input validation because it is incorrect to assume that this assertion will always be
true. You must use input validation methods for that. In the case above, you should also verify that
the input value is a number in the first place.

Read Code Contracts and Assertions online: https://riptutorial.com/csharp/topic/4349/code-
contracts-and-assertions

https://riptutorial.com/ 191

https://riptutorial.com/csharp/topic/4349/code-contracts-and-assertions
https://riptutorial.com/csharp/topic/4349/code-contracts-and-assertions

Chapter 35: Collection Initializers

Remarks

The only requirement for an object to be initialized using this syntactic sugar is that the type
implements System.Collections.IEnumerable and the Add method. Although we call it a collection
initializer, the object does not have to be an collection.

Examples

Collection initializers

Initialize a collection type with values:

var stringList = new List<string>
{
 "foo",
 "bar",
};

Collection initializers are syntactic sugar for Add() calls. Above code is equivalent to:

var temp = new List<string>();
temp.Add("foo");
temp.Add("bar");
var stringList = temp;

Note that the intialization is done atomically using a temporary variable, to avoid race conditions.

For types that offer multiple parameters in their Add() method, enclose the comma-separated
arguments in curly braces:

var numberDictionary = new Dictionary<int, string>
{
 { 1, "One" },
 { 2, "Two" },
};

This is equivalent to:

var temp = new Dictionary<int, string>();
temp.Add(1, "One");
temp.Add(2, "Two");
var numberDictionarynumberDictionary = temp;

C# 6 Index Initializers

Starting with C# 6, collections with indexers can be initialized by specifying the index to assign in

https://riptutorial.com/ 192

square brackets, followed by an equals sign, followed by the value to assign.

Dictionary Initialization

An example of this syntax using a Dictionary:

var dict = new Dictionary<string, int>
{
 ["key1"] = 1,
 ["key2"] = 50
};

This is equivalent to:

var dict = new Dictionary<string, int>();
dict["key1"] = 1;
dict["key2"] = 50

The collection initializer syntax to do this before C# 6 was:

var dict = new Dictionary<string, int>
{
 { "key1", 1 },
 { "key2", 50 }
};

Which would correspond to:

var dict = new Dictionary<string, int>();
dict.Add("key1", 1);
dict.Add("key2", 50);

So there is a significant difference in functionality, as the new syntax uses the indexer of the
initialized object to assign values instead of using its Add() method. This means the new syntax
only requires a publicly available indexer, and works for any object that has one.

public class IndexableClass
{
 public int this[int index]
 {
 set
 {
 Console.WriteLine("{0} was assigned to index {1}", value, index);
 }
 }
}

var foo = new IndexableClass
{
 [0] = 10,
 [1] = 20
}

https://riptutorial.com/ 193

This would output:

10 was assigned to index 0
20 was assigned to index 1

Collection initializers in custom classes

To make a class support collection initializers, it must implement IEnumerable interface and have at
least one Add method. Since C# 6, any collection implementing IEnumerable can be extended with
custom Add methods using extension methods.

class Program
{
 static void Main()
 {
 var col = new MyCollection {
 "foo",
 { "bar", 3 },
 "baz",
 123.45d,
 };
 }
}

class MyCollection : IEnumerable
{
 private IList list = new ArrayList();

 public void Add(string item)
 {
 list.Add(item)
 }

 public void Add(string item, int count)
 {
 for(int i=0;i< count;i++) {
 list.Add(item);
 }
 }

 public IEnumerator GetEnumerator()
 {
 return list.GetEnumerator();
 }
}

static class MyCollectionExtensions
{
 public static void Add(this MyCollection @this, double value) =>
 @this.Add(value.ToString());
}

Collection Initializers with Parameter Arrays

You can mix normal parameters and parameter arrays:

https://riptutorial.com/ 194

public class LotteryTicket : IEnumerable{
 public int[] LuckyNumbers;
 public string UserName;

 public void Add(string userName, params int[] luckyNumbers){
 UserName = userName;
 Lottery = luckyNumbers;
 }
}

This syntax is now possible:

var Tickets = new List<LotteryTicket>{
 {"Mr Cool" , 35663, 35732, 12312, 75685},
 {"Bruce" , 26874, 66677, 24546, 36483, 46768, 24632, 24527},
 {"John Cena", 25446, 83356, 65536, 23783, 24567, 89337}
}

Using collection initializer inside object initializer

public class Tag
{
 public IList<string> Synonyms { get; set; }
}

Synonyms is a collection-type property. When the Tag object is created using object initializer syntax,
Synonyms can also be initialized with collection initializer syntax:

Tag t = new Tag
{
 Synonyms = new List<string> {"c#", "c-sharp"}
};

The collection property can be readonly and still support collection initializer syntax. Consider this
modified example (Synonyms property now has a private setter):

public class Tag
{
 public Tag()
 {
 Synonyms = new List<string>();
 }

 public IList<string> Synonyms { get; private set; }
}

A new Tag object can be created like this:

Tag t = new Tag
{
 Synonyms = {"c#", "c-sharp"}
};

https://riptutorial.com/ 195

This works because collection initializers are just syntatic sugar over calls to Add(). There's no new
list being created here, the compiler is just generating calls to Add() on the exiting object.

Read Collection Initializers online: https://riptutorial.com/csharp/topic/21/collection-initializers

https://riptutorial.com/ 196

https://riptutorial.com/csharp/topic/21/collection-initializers

Chapter 36: Comments and regions

Examples

Comments

Using comments in your projects is a handy way of leaving explanations of your design choices,
and should aim to make your (or someone else's) life easier when maintaining or adding to the
code.

There are a two ways of adding a comment to your code.

Single line comments

Any text placed after // will be treated as a comment.

public class Program
{
 // This is the entry point of my program.
 public static void Main()
 {
 // Prints a message to the console. - This is a comment!
 System.Console.WriteLine("Hello, World!");

 // System.Console.WriteLine("Hello, World again!"); // You can even comment out code.
 System.Console.ReadLine();
 }
}

Multi line or delimited comments

Any text between /* and */ will be treated as a comment.

public class Program
{
 public static void Main()
 {
 /*
 This is a multi line comment
 it will be ignored by the compiler.
 */
 System.Console.WriteLine("Hello, World!");

 // It's also possible to make an inline comment with /* */
 // although it's rarely used in practice
 System.Console.WriteLine(/* Inline comment */ "Hello, World!");

 System.Console.ReadLine();
 }

https://riptutorial.com/ 197

}

Regions

A region is a collapsible block of code, that can help with the readability and organisation of your
code.

NOTE: StyleCop's rule SA1124 DoNotUseRegions discourages use of regions. They are usually a
sign of badly organized code, as C# includes partial classes and other features which make
regions obsolete.

You can use regions in the following way:

class Program
{
 #region Application entry point
 static void Main(string[] args)
 {
 PrintHelloWorld();
 System.Console.ReadLine();
 }
 #endregion

 #region My method
 private static void PrintHelloWorld()
 {
 System.Console.WriteLine("Hello, World!");
 }
 #endregion
}

When the above code is view in an IDE, you will be able to collapse and expand the code using
the + and - symbols.

Expanded

https://riptutorial.com/ 198

http://i.stack.imgur.com/zYxwK.png

Collapsed

Documentation comments

XML documentation comments can be used to provide API documentation that can be easily
processed by tools:

/// <summary>
/// A helper class for validating method arguments.
/// </summary>
public static class Precondition
{
 /// <summary>
 /// Throws an <see cref="ArgumentOutOfRangeException"/> with the parameter
 /// name set to <c>paramName</c> if <c>value</c> does not satisfy the
 /// <c>predicate</c> specified.
 /// </summary>
 /// <typeparam name="T">
 /// The type of the argument checked
 /// </typeparam>
 /// <param name="value">
 /// The argument to be checked
 /// </param>
 /// <param name="predicate">
 /// The predicate the value is required to satisfy
 /// </param>
 /// <param name="paramName">
 /// The parameter name to be passed to the
 /// <see cref="ArgumentOutOfRangeException"/>.
 /// </param>
 /// <returns>The value specified</returns>
 public static T Satisfies<T>(T value, Func<T, bool> predicate, string paramName)
 {
 if (!predicate(value))
 throw new ArgumentOutOfRangeException(paramName);

 return value;
 }
}

Documentation is instantly picked up by IntelliSense:

https://riptutorial.com/ 199

http://i.stack.imgur.com/T4rl5.png
https://i.stack.imgur.com/cfvnh.png

Read Comments and regions online: https://riptutorial.com/csharp/topic/5346/comments-and-
regions

https://riptutorial.com/ 200

https://riptutorial.com/csharp/topic/5346/comments-and-regions
https://riptutorial.com/csharp/topic/5346/comments-and-regions

Chapter 37: Common String Operations

Examples

Splitting a String by specific character

string helloWorld = "hello world, how is it going?";
string[] parts1 = helloWorld.Split(',');

//parts1: ["hello world", " how is it going?"]

string[] parts2 = helloWorld.Split(' ');

//parts2: ["hello", "world,", "how", "is", "it", "going?"]

Getting Substrings of a given string

string helloWorld = "Hello World!";
string world = helloWorld.Substring(6); //world = "World!"
string hello = helloWorld.Substring(0,5); // hello = "Hello"

Substring returns the string up from a given index, or between two indexes (both inclusive).

Determine whether a string begins with a given sequence

string HelloWorld = "Hello World";
HelloWorld.StartsWith("Hello"); // true
HelloWorld.StartsWith("Foo"); // false

Finding a string within a string

Using the System.String.Contains you can find out if a particular string exists within a string. The
method returns a boolean, true if the string exists else false.

string s = "Hello World";
bool stringExists = s.Contains("ello"); //stringExists =true as the string contains the
substring

Trimming Unwanted Characters Off the Start and/or End of Strings.

String.Trim()

string x = " Hello World! ";
string y = x.Trim(); // "Hello World!"

string q = "{(Hi!*";
string r = q.Trim('(', '*', '{'); // "Hi!"

https://riptutorial.com/ 201

https://msdn.microsoft.com/en-us/library/dy85x1sa(v=vs.110).aspx

String.TrimStart() and String.TrimEnd()

string q = "{(Hi*";
string r = q.TrimStart('{'); // "(Hi*"
string s = q.TrimEnd('*'); // "{(Hi"

Formatting a string

Use the String.Format() method to replace one or more items in the string with the string
representation of a specified object:

String.Format("Hello {0} Foo {1}", "World", "Bar") //Hello World Foo Bar

Joining an array of strings into a new one

var parts = new[] { "Foo", "Bar", "Fizz", "Buzz"};
var joined = string.Join(", ", parts);

//joined = "Foo, Bar, Fizz, Buzz"

Padding a string to a fixed length

string s = "Foo";
string paddedLeft = s.PadLeft(5); // paddedLeft = " Foo" (pads with spaces by default)
string paddedRight = s.PadRight(6, '+'); // paddedRight = "Foo+++"
string noPadded = s.PadLeft(2); // noPadded = "Foo" (original string is never
shortened)

Construct a string from Array

The String.Join method will help us to construct a string From array/list of characters or string.
This method accepts two parameters. The first one is the delimiter or the separator which will help
you to separate each element in the array. And the second parameter is the Array itself.

String from char array:

string delimiter=",";
char[] charArray = new[] { 'a', 'b', 'c' };
string inputString = String.Join(delimiter, charArray);

Output : a,b,c if we change the delimiter as "" then the output will become abc.

String from List of char:

string delimiter = "|";
List<char> charList = new List<char>() { 'a', 'b', 'c' };
string inputString = String.Join(delimiter, charList);

https://riptutorial.com/ 202

Output : a|b|c

String from List of Strings:

string delimiter = " ";
List<string> stringList = new List<string>() { "Ram", "is", "a","boy" };
string inputString = String.Join(delimiter, stringList);

Output : Ram is a boy

String from array of strings:

string delimiter = "_";
string[] stringArray = new [] { "Ram", "is", "a","boy" };
string inputString = String.Join(delimiter, stringArray);

Output : Ram_is_a_boy

Formatting using ToString

Usually we are using String.Format method for formatting purpose, the.ToString is usually used for
converting other types to string. We can specify the format along with the ToString method while
conversion is taking place, So we can avoid an additional Formatting. Let Me Explain how it works
with different types;

Integer to formatted string:

int intValue = 10;
string zeroPaddedInteger = intValue.ToString("000"); // Output will be "010"
string customFormat = intValue.ToString("Input value is 0"); // output will be "Input value
is 10"

double to formatted string:

double doubleValue = 10.456;
string roundedDouble = doubleValue.ToString("0.00"); // output 10.46
string integerPart = doubleValue.ToString("00"); // output 10
string customFormat = doubleValue.ToString("Input value is 0.0"); // Input value is 10.5

Formatting DateTime using ToString

DateTime currentDate = DateTime.Now; // {7/21/2016 7:23:15 PM}
string dateTimeString = currentDate.ToString("dd-MM-yyyy HH:mm:ss"); // "21-07-2016 19:23:15"
string dateOnlyString = currentDate.ToString("dd-MM-yyyy"); // "21-07-2016"
string dateWithMonthInWords = currentDate.ToString("dd-MMMM-yyyy HH:mm:ss"); // "21-July-2016
19:23:15"

Getting x characters from the right side of a string

Visual Basic has Left, Right, and Mid functions that returns characters from the Left, Right, and

https://riptutorial.com/ 203

Middle of a string. These methods does not exist in C#, but can be implemented with Substring().
They can be implemented as an extension methods like the following:

 public static class StringExtensions
 {
 /// <summary>
 /// VB Left function
 /// </summary>
 /// <param name="stringparam"></param>
 /// <param name="numchars"></param>
 /// <returns>Left-most numchars characters</returns>
 public static string Left(this string stringparam, int numchars)
 {
 // Handle possible Null or numeric stringparam being passed
 stringparam += string.Empty;

 // Handle possible negative numchars being passed
 numchars = Math.Abs(numchars);

 // Validate numchars parameter
 if (numchars > stringparam.Length)
 numchars = stringparam.Length;

 return stringparam.Substring(0, numchars);
 }

 /// <summary>
 /// VB Right function
 /// </summary>
 /// <param name="stringparam"></param>
 /// <param name="numchars"></param>
 /// <returns>Right-most numchars characters</returns>
 public static string Right(this string stringparam, int numchars)
 {
 // Handle possible Null or numeric stringparam being passed
 stringparam += string.Empty;

 // Handle possible negative numchars being passed
 numchars = Math.Abs(numchars);

 // Validate numchars parameter
 if (numchars > stringparam.Length)
 numchars = stringparam.Length;

 return stringparam.Substring(stringparam.Length - numchars);
 }

 /// <summary>
 /// VB Mid function - to end of string
 /// </summary>
 /// <param name="stringparam"></param>
 /// <param name="startIndex">VB-Style startindex, 1st char startindex = 1</param>
 /// <returns>Balance of string beginning at startindex character</returns>
 public static string Mid(this string stringparam, int startindex)
 {
 // Handle possible Null or numeric stringparam being passed
 stringparam += string.Empty;

 // Handle possible negative startindex being passed
 startindex = Math.Abs(startindex);

https://riptutorial.com/ 204

 // Validate numchars parameter
 if (startindex > stringparam.Length)
 startindex = stringparam.Length;

 // C# strings are zero-based, convert passed startindex
 return stringparam.Substring(startindex - 1);
 }

 /// <summary>
 /// VB Mid function - for number of characters
 /// </summary>
 /// <param name="stringparam"></param>
 /// <param name="startIndex">VB-Style startindex, 1st char startindex = 1</param>
 /// <param name="numchars">number of characters to return</param>
 /// <returns>Balance of string beginning at startindex character</returns>
 public static string Mid(this string stringparam, int startindex, int numchars)
 {
 // Handle possible Null or numeric stringparam being passed
 stringparam += string.Empty;

 // Handle possible negative startindex being passed
 startindex = Math.Abs(startindex);

 // Handle possible negative numchars being passed
 numchars = Math.Abs(numchars);

 // Validate numchars parameter
 if (startindex > stringparam.Length)
 startindex = stringparam.Length;

 // C# strings are zero-based, convert passed startindex
 return stringparam.Substring(startindex - 1, numchars);

 }
 }

This extension method can be used as follows:

string myLongString = "Hello World!";
string myShortString = myLongString.Right(6); // "World!"
string myLeftString = myLongString.Left(5); // "Hello"
string myMidString1 = myLongString.Left(4); // "lo World"
string myMidString2 = myLongString.Left(2,3); // "ell"

Checking for empty String using String.IsNullOrEmpty() and
String.IsNullOrWhiteSpace()

string nullString = null;
string emptyString = "";
string whitespaceString = " ";
string tabString = "\t";
string newlineString = "\n";
string nonEmptyString = "abc123";

bool result;

https://riptutorial.com/ 205

result = String.IsNullOrEmpty(nullString); // true
result = String.IsNullOrEmpty(emptyString); // true
result = String.IsNullOrEmpty(whitespaceString); // false
result = String.IsNullOrEmpty(tabString); // false
result = String.IsNullOrEmpty(newlineString); // false
result = String.IsNullOrEmpty(nonEmptyString); // false

result = String.IsNullOrWhiteSpace(nullString); // true
result = String.IsNullOrWhiteSpace(emptyString); // true
result = String.IsNullOrWhiteSpace(tabString); // true
result = String.IsNullOrWhiteSpace(newlineString); // true
result = String.IsNullOrWhiteSpace(whitespaceString); // true
result = String.IsNullOrWhiteSpace(nonEmptyString); // false

Getting a char at specific index and enumerating the string

You can use the Substring method to get any number of characters from a string at any given
location. However, if you only want a single character, you can use the string indexer to get a
single character at any given index like you do with an array:

string s = "hello";
char c = s[1]; //Returns 'e'

Notice that the return type is char, unlike the Substring method which returns a string type.

You can also use the indexer to iterate through the characters of the string:

string s = "hello";
foreach (char c in s)
 Console.WriteLine(c);
/********* This will print each character on a new line:
h
e
l
l
o
**********/

Convert Decimal Number to Binary,Octal and Hexadecimal Format

To convert decimal number to binary format use base 2

Int32 Number = 15;
Console.WriteLine(Convert.ToString(Number, 2)); //OUTPUT : 1111

1.

To convert decimal number to octal format use base 8

int Number = 15;
Console.WriteLine(Convert.ToString(Number, 8)); //OUTPUT : 17

2.

To convert decimal number to hexadecimal format use base 163.

https://riptutorial.com/ 206

var Number = 15;
Console.WriteLine(Convert.ToString(Number, 16)); //OUTPUT : f

Splitting a String by another string

string str = "this--is--a--complete--sentence";
string[] tokens = str.Split(new[] { "--" }, StringSplitOptions.None);

Result:

["this", "is", "a", "complete", "sentence"]

Correctly reversing a string

Most times when people have to reverse a string, they do it more or less like this:

char[] a = s.ToCharArray();
System.Array.Reverse(a);
string r = new string(a);

However, what these people don't realize is that this is actually wrong.
And I don't mean because of the missing NULL check.

It is actually wrong because a Glyph/GraphemeCluster can consist out of several codepoints (aka.
characters).

To see why this is so, we first have to be aware of the fact what the term "character" actually
means.

Reference:

Character is an overloaded term than can mean many things.

A code point is the atomic unit of information. Text is a sequence of code points. Each
code point is a number which is given meaning by the Unicode standard.

A grapheme is a sequence of one or more code points that are displayed as a single,
graphical unit that a reader recognizes as a single element of the writing system. For
example, both a and ä are graphemes, but they may consist of multiple code points
(e.g. ä may be two code points, one for the base character a followed by one for the
diaresis; but there's also an alternative, legacy, single code point representing this
grapheme). Some code points are never part of any grapheme (e.g. the zero-width
non-joiner, or directional overrides).

A glyph is an image, usually stored in a font (which is a collection of glyphs), used to
represent graphemes or parts thereof. Fonts may compose multiple glyphs into a
single representation, for example, if the above ä is a single code point, a font may
chose to render that as two separate, spatially overlaid glyphs. For OTF, the font's
GSUB and GPOS tables contain substitution and positioning information to make this

https://riptutorial.com/ 207

https://stackoverflow.com/questions/27331819/whats-the-difference-between-a-character-a-code-point-a-glyph-and-a-grapheme

work. A font may contain multiple alternative glyphs for the same grapheme, too.

So in C#, a character is actually a CodePoint.

Which means, if you just reverse a valid string like Les Misérables, which can look like this

string s = "Les Mise\u0301rables";

as a sequence of characters, you will get:

selbar ́esiM seL

As you can see, the accent is on the R character, instead of the e character.
Although string.reverse.reverse will yield the original string if you both times reverse the char
array, this kind of reversal is definitely NOT the reverse of the original string.

You'll need to reverse each GraphemeCluster only.
So, if done correctly, you reverse a string like this:

 private static System.Collections.Generic.List<string> GraphemeClusters(string s)
 {
 System.Collections.Generic.List<string> ls = new
System.Collections.Generic.List<string>();

 System.Globalization.TextElementEnumerator enumerator =
System.Globalization.StringInfo.GetTextElementEnumerator(s);
 while (enumerator.MoveNext())
 {
 ls.Add((string)enumerator.Current);
 }

 return ls;
 }

 // this
 private static string ReverseGraphemeClusters(string s)
 {
 if(string.IsNullOrEmpty(s) || s.Length == 1)
 return s;

 System.Collections.Generic.List<string> ls = GraphemeClusters(s);
 ls.Reverse();

 return string.Join("", ls.ToArray());
 }

 public static void TestMe()
 {
 string s = "Les Mise\u0301rables";
 // s = "noël";
 string r = ReverseGraphemeClusters(s);

 // This would be wrong:
 // char[] a = s.ToCharArray();
 // System.Array.Reverse(a);
 // string r = new string(a);

https://riptutorial.com/ 208

 System.Console.WriteLine(r);
 }

And - oh joy - you'll realize if you do it correctly like this, it will also work for Asian/South-
Asian/East-Asian languages (and French/Swedish/Norwegian, etc.)...

Replacing a string within a string

Using the System.String.Replace method, you can replace part of a string with another string.

string s = "Hello World";
 s = s.Replace("World", "Universe"); // s = "Hello Universe"

All the occurrences of the search string are replaced.

This method can also be used to remove part of a string, using the String.Empty field:

string s = "Hello World";
s = s.Replace("ell", String.Empty); // s = "Ho World"

Changing the case of characters within a String

The System.String class supports a number of methods to convert between uppercase and
lowercase characters in a string.

System.String.ToLowerInvariant is used to return a String object converted to lowercase.•

System.String.ToUpperInvariant is used to return a String object converted to uppercase.•

Note: The reason to use the invariant versions of these methods is to prevent producing
unexpected culture-specific letters. This is explained here in detail.

Example:

string s = "My String";
s = s.ToLowerInvariant(); // "my string"
s = s.ToUpperInvariant(); // "MY STRING"

Note that you can choose to specify a specific Culture when converting to lowercase and
uppercase by using the String.ToLower(CultureInfo) and String.ToUpper(CultureInfo) methods
accordingly.

Concatenate an array of strings into a single string

The System.String.Join method allows to concatenate all elements in a string array, using a
specified separator between each element:

string[] words = {"One", "Two", "Three", "Four"};

https://riptutorial.com/ 209

https://msdn.microsoft.com/en-us/library/fk49wtc1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.string.empty(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.string(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.string.tolowerinvariant(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.string.toupperinvariant(v=vs.110).aspx
http://stackoverflow.com/a/19778131/1379664
https://msdn.microsoft.com/en-us/library/system.globalization.cultureinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/s8z5yt00(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/24kc78ka(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/57a79xd0(v=vs.110).aspx

string singleString = String.Join(",", words); // singleString = "One,Two,Three,Four"

String Concatenation

String Concatenation can be done by using the System.String.Concat method, or (much easier)
using the + operator:

string first = "Hello ";
string second = "World";

string concat = first + second; // concat = "Hello World"
concat = String.Concat(first, second); // concat = "Hello World"

In C# 6 this can be done as follows:

string concat = $"{first},{second}";

Read Common String Operations online: https://riptutorial.com/csharp/topic/73/common-string-
operations

https://riptutorial.com/ 210

https://msdn.microsoft.com/en-us/library/system.string.concat(v=vs.110).aspx
https://riptutorial.com/csharp/topic/73/common-string-operations
https://riptutorial.com/csharp/topic/73/common-string-operations

Chapter 38: Conditional Statements

Examples

If-Else Statement

Programming in general often requires a decision or a branch within the code to account for how
the code operates under different inputs or conditions. Within the C# programming language (and
most programming languages for this matter), the simplest and sometimes the most useful way of
creating a branch within your program is through an If-Else statement.

Lets assume we have method (a.k.a. a function) which takes an int parameter which will represent
a score up to 100, and the method will print out a message saying whether we pass or fail.

static void PrintPassOrFail(int score)
{
 if (score >= 50) // If score is greater or equal to 50
 {
 Console.WriteLine("Pass!");
 }
 else // If score is not greater or equal to 50
 {
 Console.WriteLine("Fail!");
 }
}

When looking at this method, you may notice this line of code (score >= 50) inside the If
statement. This can be seen as a boolean condition, where if the condition is evaluated to equal
true, then the code that is in between the if { } is ran.

For example, if this method was called like this: PrintPassOrFail(60);, the output of the method
would be a Console Print saying Pass! since the parameter value of 60 is greater or equal to 50.

However, if the method was called like: PrintPassOrFail(30);, the output of the method would print
out saying Fail!. This is because the value 30 is not greater or equal to 50, thus the code in
between the else { } is ran instead of the If statement.

In this example, we've said that score should go up to 100, which hasn't been accounted for at all.
To account for score not going past 100 or possibly dropping below 0, see the If-Else If-Else
Statement example.

If-Else If-Else Statement

Following on from the If-Else Statement example, it is now time to introduce the Else If
statement. The Else If statement follows directly after the If statement in the If-Else If-Else
structure, but intrinsically has has a similar syntax as the If statement. It is used to add more
branches to the code than what a simple If-Else statement can.

https://riptutorial.com/ 211

In the example from If-Else Statement, the example specified that the score goes up to 100;
however there were never any checks against this. To fix this, lets modify the method from If-Else
Statement to look like this:

static void PrintPassOrFail(int score)
{
 if (score > 100) // If score is greater than 100
 {
 Console.WriteLine("Error: score is greater than 100!");
 }
 else if (score < 0) // Else If score is less than 0
 {
 Console.WriteLine("Error: score is less than 0!");
 }
 else if (score >= 50) // Else if score is greater or equal to 50
 {
 Console.WriteLine("Pass!");
 }
 else // If none above, then score must be between 0 and 49
 {
 Console.WriteLine("Fail!");
 }
}

All these statements will run in order from the top all the way to the bottom until a condition has
been met. In this new update of the method, we've added two new branches to now accommodate
for the score going out of bounds.

For example, if we now called the method in our code as PrintPassOFail(110);, the output would be
a Console Print saying Error: score is greater than 100!; and if we called the method in our code
like PrintPassOrFail(-20);, the output would say Error: score is less than 0!.

Switch statements

A switch statement allows a variable to be tested for equality against a list of values. Each value is
called a case, and the variable being switched on is checked for each switch case.

A switch statement is often more concise and understandable than if...else if... else..
statements when testing multiple possible values for a single variable.

Syntax is as follows

switch(expression) {
 case constant-expression:
 statement(s);
 break;
 case constant-expression:
 statement(s);
 break;

 // you can have any number of case statements
 default : // Optional
 statement(s);
 break;

https://riptutorial.com/ 212

}

there are sevaral things that have to consider while using the switch statement

The expression used in a switch statement must have an integral or enumerated type, or be
of a class type in which the class has a single conversion function to an integral or
enumerated type.

•

You can have any number of case statements within a switch. Each case is followed by the
value to be compared to and a colon. The values to compare to have to be unique within
each switch statement.

•

A switch statement can have an optional default case. The default case can be used for
performing a task when none of the cases is true.

•

Each case has to end with a break statement unless it is an empty statement. In that case
execution will continue at the case below it. The break statement can also be omitted when a
return, throw or goto case statement is used.

•

Example can be given with the grades wise

char grade = 'B';

switch (grade)
{
 case 'A':
 Console.WriteLine("Excellent!");
 break;
 case 'B':
 case 'C':
 Console.WriteLine("Well done");
 break;
 case 'D':
 Console.WriteLine("You passed");
 break;
 case 'F':
 Console.WriteLine("Better try again");
 break;
 default:
 Console.WriteLine("Invalid grade");
 break;
}

If statement conditions are standard boolean expressions and values

The following statement

if (conditionA && conditionB && conditionC) //...

is exactly equivalent to

bool conditions = conditionA && conditionB && conditionC;
if (conditions) // ...

in other words, the conditions inside the "if" statement just form an ordinary Boolean expression.

https://riptutorial.com/ 213

A common mistake when writing conditional statements is to explicitly compare to true and false:

if (conditionA == true && conditionB == false && conditionC == true) // ...

This can be rewritten as

if (conditionA && !conditionB && conditionC)

Read Conditional Statements online: https://riptutorial.com/csharp/topic/3144/conditional-
statements

https://riptutorial.com/ 214

https://riptutorial.com/csharp/topic/3144/conditional-statements
https://riptutorial.com/csharp/topic/3144/conditional-statements

Chapter 39: Constructors and Finalizers

Introduction

Constructors are methods in a class that are invoked when an instance of that class is created.
Their main responsibility is to leave the new object in a useful and consistent state.

Destructors/Finalizers are methods in a class that are invoked when an instance of that is
destroyed. In C# they are rarely explicitely written/used.

Remarks

C# does not actually have destructors, but rather Finalizers which use C++ style destructor syntax.
Specifying a destructor overrides the Object.Finalize() method which cannot be called directly.

Unlike other languages with similar syntax, these methods are not called when objects go out of
scope, but are called when the Garbage Collector runs, which occurs under certain conditions. As
such, they are not guaranteed to run in any particular order.

Finalizers should be responsible for cleaning up unmanaged resources only (pointers acquired via
the Marshal class, received through p/Invoke (system calls) or raw pointers used within unsafe
blocks). To clean up managed resources, please review IDisposable, the Dispose pattern and the
using statement.

(Further reading: When should I create a destructor?)

Examples

Default Constructor

When a type is defined without a constructor:

public class Animal
{
}

then the compiler generates a default constructor equivalent to the following:

public class Animal
{
 public Animal() {}
}

The definition of any constructor for the type will suppress the default constructor generation. If the
type were defined as follows:

https://riptutorial.com/ 215

https://msdn.microsoft.com/en-us/library/ee787088(v=vs.110).aspx#conditions_for_a_garbage_collection
http://www.riptutorial.com/csharp/topic/38/using-statement
http://stackoverflow.com/a/4899622

public class Animal
{
 public Animal(string name) {}
}

then an Animal could only be created by calling the declared constructor.

// This is valid
var myAnimal = new Animal("Fluffy");
// This fails to compile
var unnamedAnimal = new Animal();

For the second example, the compiler will display an error message:

'Animal' does not contain a constructor that takes 0 arguments

If you want a class to have both a parameterless constructor and a constructor that takes a
parameter, you can do it by explicitly implementing both constructors.

public class Animal
{

 public Animal() {} //Equivalent to a default constructor.
 public Animal(string name) {}
}

The compiler will not be able to generate a default constructor if the class extends another class
which doesn't have a parameterless constructor. For example, if we had a class Creature:

public class Creature
{
 public Creature(Genus genus) {}
}

then Animal defined as class Animal : Creature {} would not compile.

Calling a constructor from another constructor

public class Animal
{
 public string Name { get; set; }

 public Animal() : this("Dog")
 {
 }

 public Animal(string name)
 {
 Name = name;
 }
}

var dog = new Animal(); // dog.Name will be set to "Dog" by default.
var cat = new Animal("Cat"); // cat.Name is "Cat", the empty constructor is not called.

https://riptutorial.com/ 216

Static constructor

A static constructor is called the first time any member of a type is initialized, a static class
member is called or a static method. The static constructor is thread safe. A static constructor is
commonly used to:

Initialize static state, that is state which is shared across different instances of the same
class.

•

Create a singleton•

Example:

class Animal
{
 // * A static constructor is executed only once,
 // when a class is first accessed.
 // * A static constructor cannot have any access modifiers
 // * A static constructor cannot have any parameters
 static Animal()
 {
 Console.WriteLine("Animal initialized");
 }

 // Instance constructor, this is executed every time the class is created
 public Animal()
 {
 Console.WriteLine("Animal created");
 }

 public static void Yawn()
 {
 Console.WriteLine("Yawn!");
 }
}

var turtle = new Animal();
var giraffe = new Animal();

Output:

Animal initialized
Animal created
Animal created

View Demo

If the first call is to a static method, the static constructor is invoked without the instance
constructor. This is OK, because the static method can't access instance state anyways.

Animal.Yawn();

This will output:

Animal initialized

https://riptutorial.com/ 217

https://dotnetfiddle.net/XmExII

Yawn!

See also Exceptions in static constructors and Generic Static Constructors .

Singleton example:

public class SessionManager
{
 public static SessionManager Instance;

 static SessionManager()
 {
 Instance = new SessionManager();
 }
}

Calling the base class constructor

A constructor of a base class is called before a constructor of a derived class is executed. For
example, if Mammal extends Animal, then the code contained in the constructor of Animal is called
first when creating an instance of a Mammal.

If a derived class doesn't explicitly specify which constructor of the base class should be called,
the compiler assumes the parameterless constructor.

public class Animal
{
 public Animal() { Console.WriteLine("An unknown animal gets born."); }
 public Animal(string name) { Console.WriteLine(name + " gets born"); }
}

public class Mammal : Animal
{
 public Mammal(string name)
 {
 Console.WriteLine(name + " is a mammal.");
 }
}

In this case, instantiating a Mammal by calling new Mammal("George the Cat") will print

An unknown animal gets born.
George the Cat is a mammal.

View Demo

Calling a different constructor of the base class is done by placing : base(args) between the
constructor's signature and its body:

public class Mammal : Animal
{
 public Mammal(string name) : base(name)
 {

https://riptutorial.com/ 218

http://www.riptutorial.com/csharp/example/15007/exceptions-in-static-constructors
http://www.riptutorial.com/csharp/example/15003/generic-static-constructors
https://dotnetfiddle.net/xb8Vqr

 Console.WriteLine(name + " is a mammal.");
 }
}

Calling new Mammal("George the Cat") will now print:

George the Cat gets born.
George the Cat is a mammal.

View Demo

Finalizers on derived classes

When an object graph is finalized, the order is the reverse of the construction. E.g. the super-type
is finalized before the base-type as the following code demonstrates:

class TheBaseClass
{
 ~TheBaseClass()
 {
 Console.WriteLine("Base class finalized!");
 }
}

class TheDerivedClass : TheBaseClass
{
 ~TheDerivedClass()
 {
 Console.WriteLine("Derived class finalized!");
 }
}

//Don't assign to a variable
//to make the object unreachable
new TheDerivedClass();

//Just to make the example work;
//this is otherwise NOT recommended!
GC.Collect();

//Derived class finalized!
//Base class finalized!

Singleton constructor pattern

public class SingletonClass
{
 public static SingletonClass Instance { get; } = new SingletonClass();

 private SingletonClass()
 {
 // Put custom constructor code here
 }
}

https://riptutorial.com/ 219

https://dotnetfiddle.net/gbdERq

Because the constructor is private, no new instances of SingletonClass can be made by consuming
code. The only way to access the single instance of SingletonClass is by using the static property
SingletonClass.Instance.

The Instance property is assigned by a static constructor that the C# compiler generates. The
.NET runtime guarantees that the static constructor is run at most once and is run before Instance
is first read. Therefore, all synchronization and initialization concerns are carried out by the
runtime.

Note, that if the static constructor fails the Singleton class becomes permanently unusable for the
life of the AppDomain.

Also, the static constructor is not guaranteed to run at the time of the first access of Instance.
Rather, it will run at some point before that. This makes the time at which initialization happens
non-deterministic. In practical cases the JIT often calls the static constructor during compilation
(not execution) of a method referencing Instance. This is a performance optimization.

See the Singleton Implementations page for other ways to implement the singleton pattern.

Forcing a static constructor to be called

While static constructors are always called before the first usage of a type it's sometimes useful to
be able to force them to be called and the RuntimeHelpers class provide an helper for it:

using System.Runtime.CompilerServices;
// ...
RuntimeHelpers.RunClassConstructor(typeof(Foo).TypeHandle);

Remark: All static initialization (fields initializers for example) will run, not only the constructor
itself.

Potential usages: Forcing initialization during the splash screen in an UI application or ensuring
that a static constructor doesn't fail in an unit test.

Calling virtual methods in constructor

Unlike C++ in C# you can call a virtual method from class constructor (OK, you can also in C++
but behavior at first is surprising). For example:

abstract class Base
{
 protected Base()
 {
 _obj = CreateAnother();
 }

 protected virtual AnotherBase CreateAnother()
 {
 return new AnotherBase();
 }

https://riptutorial.com/ 220

http://www.riptutorial.com/csharp/topic/1192/singleton-implementation

 private readonly AnotherBase _obj;
}

sealed class Derived : Base
{
 public Derived() { }

 protected override AnotherBase CreateAnother()
 {
 return new AnotherDerived();
 }
}

var test = new Derived();
// test._obj is AnotherDerived

If you come from a C++ background this is surprising, base class constructor already sees derived
class virtual method table!

Be careful: derived class may not been fully initialized yet (its constructor will be executed after
base class constructor) and this technique is dangerous (there is also a StyleCop warning for this).
Usually this is regarded as bad practice.

Generic Static Constructors

If the type on which the static constructor is declared is generic, the static constructor will be called
once for each unique combination of generic arguments.

class Animal<T>
{
 static Animal()
 {
 Console.WriteLine(typeof(T).FullName);
 }

 public static void Yawn() { }
}

Animal<Object>.Yawn();
Animal<String>.Yawn();

This will output:

System.Object
System.String

See also How do static constructors for generic types work ?

Exceptions in static constructors

If a static constructor throws an exception, it is never retried. The type is unusable for the lifetime
of the AppDomain. Any further usages of the type will raise a TypeInitializationException wrapped
around the original exception.

https://riptutorial.com/ 221

http://stackoverflow.com/q/5629388

public class Animal
{
 static Animal()
 {
 Console.WriteLine("Static ctor");
 throw new Exception();
 }

 public static void Yawn() {}
}

try
{
 Animal.Yawn();
}
catch (Exception e)
{
 Console.WriteLine(e.ToString());
}

try
{
 Animal.Yawn();
}
catch (Exception e)
{
 Console.WriteLine(e.ToString());
}

This will output:

Static ctor

System.TypeInitializationException: The type initializer for 'Animal' threw an exception.
---> System.Exception: Exception of type 'System.Exception' was thrown.

[...]

System.TypeInitializationException: The type initializer for 'Animal' threw an exception.
---> System.Exception: Exception of type 'System.Exception' was thrown.

where you can see that the actual constructor is only executed once, and the exception is re-used.

Constructor and Property Initialization

Shall the property value's assignment be executed before or after the class' constructor?

public class TestClass
{
 public int TestProperty { get; set; } = 2;

 public TestClass()
 {
 if (TestProperty == 1)
 {
 Console.WriteLine("Shall this be executed?");

https://riptutorial.com/ 222

 }

 if (TestProperty == 2)
 {
 Console.WriteLine("Or shall this be executed");
 }
 }
}

var testInstance = new TestClass() { TestProperty = 1 };

In the example above, shall the TestProperty value be 1 in the class' constructor or after the class
constructor?

Assigning property values in the instance creation like this:

var testInstance = new TestClass() {TestProperty = 1};

Will be executed after the constructor is run. However, initializing the property value in the class'
property in C# 6.0 like this:

public class TestClass
{
 public int TestProperty { get; set; } = 2;

 public TestClass()
 {
 }
}

will be done before the constructor is run.

Combining the two concepts above in a single example:

public class TestClass
{
 public int TestProperty { get; set; } = 2;

 public TestClass()
 {
 if (TestProperty == 1)
 {
 Console.WriteLine("Shall this be executed?");
 }

 if (TestProperty == 2)
 {
 Console.WriteLine("Or shall this be executed");
 }
 }
}

static void Main(string[] args)
{

https://riptutorial.com/ 223

 var testInstance = new TestClass() { TestProperty = 1 };
 Console.WriteLine(testInstance.TestProperty); //resulting in 1
}

Final result:

"Or shall this be executed"
"1"

Explanation:

The TestProperty value will first be assigned as 2, then the TestClass constructor will be run,
resulting in printing of

"Or shall this be executed"

And then the TestProperty will be assigned as 1 due to new TestClass() { TestProperty = 1 },
making the final value for the TestProperty printed by Console.WriteLine(testInstance.TestProperty)
to be

"1"

Read Constructors and Finalizers online: https://riptutorial.com/csharp/topic/25/constructors-and-
finalizers

https://riptutorial.com/ 224

https://riptutorial.com/csharp/topic/25/constructors-and-finalizers
https://riptutorial.com/csharp/topic/25/constructors-and-finalizers

Chapter 40: Creating a Console Application
using a Plain-Text Editor and the C# Compiler
(csc.exe)

Examples

Creating a Console application using a Plain-Text Editor and the C# Compiler

In order to use a plain-text editor to create a Console application that is written in C#, you'll need
the C# Compiler. The C# Compiler (csc.exe), can be found at the following location:
%WINDIR%\Microsoft.NET\Framework64\v4.0.30319\csc.exe

N.B. Depending upon which version of the .NET Framework that is installed on your system, you
may need to change the path above, accordingly.

Saving the Code

The purpose of this topic is not to teach you how to write a Console application, but to teach you
how to compile one [to produce a single executable file], with nothing other than the C# Compiler
and any Plain-Text Editor (such as Notepad).

Open the Run dialog, by using the keyboard shortcut Windows Key + R1.
Type notepad, then hit Enter2.
Paste the example code below, into Notepad3.
Save the file as ConsoleApp.cs, by going to File → Save As..., then entering ConsoleApp.cs in
the 'File Name' text field, then selecting All Files as the file-type.

4.

Click Save5.

Compiling the Source Code

1. Open the Run dialog, using Windows Key + R
2. Enter:

%WINDIR%\Microsoft.NET\Framework64\v4.0.30319\csc.exe /t:exe
/out:"C:\Users\yourUserName\Documents\ConsoleApp.exe"
"C:\Users\yourUserName\Documents\ConsoleApp.cs"

Now, go back to where you originally saved your ConsoleApp.cs file. You should now see an
executable file (ConsoleApp.exe). Double-click ConsoleApp.exe to open it.

https://riptutorial.com/ 225

That's it! Your console application has been compiled. An executable file has been created and
you now have a working Console app.

using System;

namespace ConsoleApp
{
 class Program
 {
 private static string input = String.Empty;

 static void Main(string[] args)
 {
 goto DisplayGreeting;

 DisplayGreeting:
 {
 Console.WriteLine("Hello! What is your name?");

 input = Console.ReadLine();

 if (input.Length >= 1)
 {
 Console.WriteLine(
 "Hello, " +
 input +
 ", enter 'Exit' at any time to exit this app.");

 goto AwaitFurtherInstruction;
 }
 else
 {
 goto DisplayGreeting;
 }
 }

 AwaitFurtherInstruction:
 {
 input = Console.ReadLine();

 if(input.ToLower() == "exit")
 {
 input = String.Empty;

 Environment.Exit(0);
 }
 else
 {
 goto AwaitFurtherInstruction;
 }
 }
 }
 }
}

Read Creating a Console Application using a Plain-Text Editor and the C# Compiler (csc.exe)
online: https://riptutorial.com/csharp/topic/6676/creating-a-console-application-using-a-plain-text-
editor-and-the-csharp-compiler--csc-exe-

https://riptutorial.com/ 226

https://riptutorial.com/csharp/topic/6676/creating-a-console-application-using-a-plain-text-editor-and-the-csharp-compiler--csc-exe-
https://riptutorial.com/csharp/topic/6676/creating-a-console-application-using-a-plain-text-editor-and-the-csharp-compiler--csc-exe-

Chapter 41: Creating Own MessageBox in
Windows Form Application

Introduction

First we need to know what a MessageBox is...

The MessageBox control displays a message with specified text, and can be customised by
specifying a custom image, title and button sets (These button sets allow the user to choose more
than a basic yes/no answer).

By creating our own MessageBox we can re-use that MessageBox Control in any new applications
just by using the generated dll, or copying the file containing the class.

Syntax

'static DialogResult result = DialogResult.No; //DialogResult is returned by dialogs after
dismissal.'

•

Examples

Creating Own MessageBox Control.

To create our own MessageBox control simply follow the guide below...

Open up your instance of Visual Studio (VS 2008/2010/2012/2015/2017)1.

Go to the toolbar at the top and click File -> New Project --> Windows Forms Application -->
Give the project a name and then click ok.

2.

Once loaded, drag and drop a button control from the Toolbox (found on the left) onto the
form (as shown below).

3.

https://riptutorial.com/ 227

Double click the button and the Integrated Development Environment will automatically
generate the click event handler for you.

4.

Edit the code for the form so that it looks like the following (You can right-click the form and
click Edit Code):

5.

namespace MsgBoxExample {
 public partial class MsgBoxExampleForm : Form {
 //Constructor, called when the class is initialised.
 public MsgBoxExampleForm() {
 InitializeComponent();
 }

 //Called whenever the button is clicked.
 private void btnShowMessageBox_Click(object sender, EventArgs e) {
 CustomMsgBox.Show($"I'm a {nameof(CustomMsgBox)}!", "MSG", "OK");
 }
 }
}

Solution Explorer -> Right Click on your project --> Add --> Windows Form and set the name
as "CustomMsgBox.cs"

6.

Drag in a button & label control from the Toolbox to the form (It'll look something like the
form below after doing it):

7.

https://riptutorial.com/ 228

https://i.stack.imgur.com/aW1q1.jpg

Now write out the code below into the newly created form:8.

private DialogResult result = DialogResult.No;
public static DialogResult Show(string text, string caption, string btnOkText) {
 var msgBox = new CustomMsgBox();
 msgBox.lblText.Text = text; //The text for the label...
 msgBox.Text = caption; //Title of form
 msgBox.btnOk.Text = btnOkText; //Text on the button
 //This method is blocking, and will only return once the user
 //clicks ok or closes the form.
 msgBox.ShowDialog();
 return result;
}

private void btnOk_Click(object sender, EventArgs e) {
 result = DialogResult.Yes;
 MsgBox.Close();
}

Now run the program by just pressing F5 Key. Congratulations, you've made a reusable
control.

9.

How to use own created MessageBox control in another Windows Form
application.

To find your existing .cs files, right click on the project in your instance of Visual Studio, and click
Open Folder in File Explorer.

Visual Studio --> Your current project (Windows Form) --> Solution Explorer --> Project
Name --> Right Click --> Add --> Existing Item --> Then locate your existing .cs file.

1.

Now there's one last thing to do in order to use the control. Add a using statement to your
code, so that your assembly knows about its dependencies.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
.
.
.
using CustomMsgBox; //Here's the using statement for our dependency.

2.

https://riptutorial.com/ 229

https://i.stack.imgur.com/73c1M.jpg

To display the messagebox, simply use the following...

CustomMsgBox.Show("Your Message for Message Box...","MSG","OK");

3.

Read Creating Own MessageBox in Windows Form Application online:
https://riptutorial.com/csharp/topic/9788/creating-own-messagebox-in-windows-form-application

https://riptutorial.com/ 230

https://riptutorial.com/csharp/topic/9788/creating-own-messagebox-in-windows-form-application

Chapter 42: Creational Design Patterns

Remarks

The creational patterns aim to separate a system from how its objects are created, composed, and
represented. They increase the system's flexibility in terms of the what, who, how, and when of
object creation. Creational patterns encapsulate the knowledge about which classes a system
uses, but they hide the details of how the instances of these classes are created and put together.
Programmers have come to realize that composing systems with inheritance makes those
systems too rigid. The creational patterns are designed to break this close coupling.

Examples

Singleton Pattern

The Singleton pattern is designed to restrict creation of a class to exactly one single instance.

This pattern is used in a scenario where it makes sense to have only one of something, such as:

a single class that orchestrates other objects' interactions, ex. Manager class•
or one class that represents a unique, single resource, ex. Logging component•

One of the most common ways to implement the Singleton pattern is via a static factory method
such as a CreateInstance() or GetInstance() (or a static property in C#, Instance), which is then
designed to always return the same instance.

The first call to the method or property creates and returns the Singleton instance. Thereafter, the
method always returns the same instance. This way, there is only ever one instance of the
singleton object.

Preventing creation of instances via new can be accomplished by making the class constructor(s)
private.

Here is a typical code example for implementing a Singleton pattern in C#:

class Singleton
{
 // Because the _instance member is made private, the only way to get the single
 // instance is via the static Instance property below. This can also be similarly
 // achieved with a GetInstance() method instead of the property.
 private static Singleton _instance = null;

 // Making the constructor private prevents other instances from being
 // created via something like Singleton s = new Singleton(), protecting
 // against unintentional misuse.
 private Singleton()
 {
 }

https://riptutorial.com/ 231

 public static Singleton Instance
 {
 get
 {
 // The first call will create the one and only instance.
 if (_instance == null)
 {
 _instance = new Singleton();
 }

 // Every call afterwards will return the single instance created above.
 return _instance;
 }
 }
}

To illustrate this pattern further, the code below checks whether an identical instance of the
Singleton is returned when the Instance property is called more than once.

class Program
{
 static void Main(string[] args)
 {
 Singleton s1 = Singleton.Instance;
 Singleton s2 = Singleton.Instance;

 // Both Singleton objects above should now reference the same Singleton instance.
 if (Object.ReferenceEquals(s1, s2))
 {
 Console.WriteLine("Singleton is working");
 }
 else
 {
 // Otherwise, the Singleton Instance property is returning something
 // other than the unique, single instance when called.
 Console.WriteLine("Singleton is broken");
 }
 }
}

Note: this implementation is not thread safe.

To see more examples, including how to make this thread-safe, visit: Singleton Implementation

Singletons are conceptually similar to a global value, and cause similar design flaws and
concerns. Because of this, the Singleton pattern is widely regarded as an anti-pattern.

Visit "What is so bad about Singletons?" for more information on the problems that arise with their
use.

In C#, you have the ability to make a class static, which makes all members static, and the class
cannot be instantiated. Given this, it is common to see static classes used in place of the Singleton
pattern.

For key differences between the two, visit C# Singleton Pattern Versus Static Class.

https://riptutorial.com/ 232

http://www.riptutorial.com/csharp/topic/1192/singleton-implementation
http://stackoverflow.com/questions/137975/what-is-so-bad-about-singletons
http://www.dotnetperls.com/singleton-static

Factory Method pattern

Factory Method is one of creational design patterns. It is used to deal with the problem of creating
objects without specifying exact result type. This document will teach you how to use Factory
Method DP properly.

Let me explain the idea of it to you on a simple example. Imagine you're working in a factory that
produces three types of devices - Ammeter, Voltmeter and resistance meter. You are writing a
program for a central computer that will create selected device, but you don't know final decision
of your boss on what to produce.

Let's create an interface IDevice with some common functions that all devices have:

public interface IDevice
{
 int Measure();
 void TurnOff();
 void TurnOn();
}

Now, we can create classes that represent our devices. Those classes must implement IDevice
interface:

public class AmMeter : IDevice
{
 private Random r = null;
 public AmMeter()
 {
 r = new Random();
 }
 public int Measure() { return r.Next(-25, 60); }
 public void TurnOff() { Console.WriteLine("AmMeter flashes lights saying good bye!"); }
 public void TurnOn() { Console.WriteLine("AmMeter turns on..."); }
}
public class OhmMeter : IDevice
{
 private Random r = null;
 public OhmMeter()
 {
 r = new Random();
 }
 public int Measure() { return r.Next(0, 1000000); }
 public void TurnOff() { Console.WriteLine("OhmMeter flashes lights saying good bye!"); }
 public void TurnOn() { Console.WriteLine("OhmMeter turns on..."); }
}
public class VoltMeter : IDevice
{
 private Random r = null;
 public VoltMeter()
 {
 r = new Random();
 }
 public int Measure() { return r.Next(-230, 230); }
 public void TurnOff() { Console.WriteLine("VoltMeter flashes lights saying good bye!"); }
 public void TurnOn() { Console.WriteLine("VoltMeter turns on..."); }
}

https://riptutorial.com/ 233

Now we have to define factory method. Let's create DeviceFactory class with static method inside:

public enum Device
{
 AM,
 VOLT,
 OHM
}
public class DeviceFactory
{
 public static IDevice CreateDevice(Device d)
 {
 switch(d)
 {
 case Device.AM: return new AmMeter();
 case Device.VOLT: return new VoltMeter();
 case Device.OHM: return new OhmMeter();
 default: return new AmMeter();
 }
 }
}

Great! Let's test our code:

public class Program
{
 static void Main(string[] args)
 {
 IDevice device = DeviceFactory.CreateDevice(Device.AM);
 device.TurnOn();
 Console.WriteLine(device.Measure());
 Console.WriteLine(device.Measure());
 Console.WriteLine(device.Measure());
 Console.WriteLine(device.Measure());
 Console.WriteLine(device.Measure());
 device.TurnOff();
 Console.WriteLine();

 device = DeviceFactory.CreateDevice(Device.VOLT);
 device.TurnOn();
 Console.WriteLine(device.Measure());
 Console.WriteLine(device.Measure());
 Console.WriteLine(device.Measure());
 Console.WriteLine(device.Measure());
 Console.WriteLine(device.Measure());
 device.TurnOff();
 Console.WriteLine();

 device = DeviceFactory.CreateDevice(Device.OHM);
 device.TurnOn();
 Console.WriteLine(device.Measure());
 Console.WriteLine(device.Measure());
 Console.WriteLine(device.Measure());
 Console.WriteLine(device.Measure());
 Console.WriteLine(device.Measure());
 device.TurnOff();
 Console.WriteLine();
 }
}

https://riptutorial.com/ 234

This is the example output you might see after running this code:

AmMeter turns on...

36

6

33

43

24

AmMeter flashes lights saying good bye!

VoltMeter turns on...

102

-61

85

138

36

VoltMeter flashes lights saying good bye!

OhmMeter turns on...

723828

368536

685412

800266

578595

OhmMeter flashes lights saying good bye!

Builder Pattern

Separate the construction of a complex object from its representation so that the same
construction process can create different representations and and provides a high level of control
over the assembly of the objects.

In this example demonstrates the Builder pattern in which different vehicles are assembled in a
step-by-step fashion. The Shop uses VehicleBuilders to construct a variety of Vehicles in a series

https://riptutorial.com/ 235

of sequential steps.

using System;
using System.Collections.Generic;

namespace GangOfFour.Builder
{
 /// <summary>
 /// MainApp startup class for Real-World
 /// Builder Design Pattern.
 /// </summary>
 public class MainApp
 {
 /// <summary>
 /// Entry point into console application.
 /// </summary>
 public static void Main()
 {
 VehicleBuilder builder;

 // Create shop with vehicle builders
 Shop shop = new Shop();

 // Construct and display vehicles
 builder = new ScooterBuilder();
 shop.Construct(builder);
 builder.Vehicle.Show();

 builder = new CarBuilder();
 shop.Construct(builder);
 builder.Vehicle.Show();

 builder = new MotorCycleBuilder();
 shop.Construct(builder);
 builder.Vehicle.Show();

 // Wait for user
 Console.ReadKey();
 }
 }

 /// <summary>
 /// The 'Director' class
 /// </summary>
 class Shop
 {
 // Builder uses a complex series of steps
 public void Construct(VehicleBuilder vehicleBuilder)
 {
 vehicleBuilder.BuildFrame();
 vehicleBuilder.BuildEngine();
 vehicleBuilder.BuildWheels();
 vehicleBuilder.BuildDoors();
 }
 }

 /// <summary>
 /// The 'Builder' abstract class
 /// </summary>
 abstract class VehicleBuilder
 {

https://riptutorial.com/ 236

 protected Vehicle vehicle;

 // Gets vehicle instance
 public Vehicle Vehicle
 {
 get { return vehicle; }
 }

 // Abstract build methods
 public abstract void BuildFrame();
 public abstract void BuildEngine();
 public abstract void BuildWheels();
 public abstract void BuildDoors();
 }

 /// <summary>
 /// The 'ConcreteBuilder1' class
 /// </summary>
 class MotorCycleBuilder : VehicleBuilder
 {
 public MotorCycleBuilder()
 {
 vehicle = new Vehicle("MotorCycle");
 }

 public override void BuildFrame()
 {
 vehicle["frame"] = "MotorCycle Frame";
 }

 public override void BuildEngine()
 {
 vehicle["engine"] = "500 cc";
 }

 public override void BuildWheels()
 {
 vehicle["wheels"] = "2";
 }

 public override void BuildDoors()
 {
 vehicle["doors"] = "0";
 }
 }

 /// <summary>
 /// The 'ConcreteBuilder2' class
 /// </summary>
 class CarBuilder : VehicleBuilder
 {
 public CarBuilder()
 {
 vehicle = new Vehicle("Car");
 }

 public override void BuildFrame()
 {
 vehicle["frame"] = "Car Frame";
 }

https://riptutorial.com/ 237

 public override void BuildEngine()
 {
 vehicle["engine"] = "2500 cc";
 }

 public override void BuildWheels()
 {
 vehicle["wheels"] = "4";
 }

 public override void BuildDoors()
 {
 vehicle["doors"] = "4";
 }
 }

 /// <summary>
 /// The 'ConcreteBuilder3' class
 /// </summary>
 class ScooterBuilder : VehicleBuilder
 {
 public ScooterBuilder()
 {
 vehicle = new Vehicle("Scooter");
 }

 public override void BuildFrame()
 {
 vehicle["frame"] = "Scooter Frame";
 }

 public override void BuildEngine()
 {
 vehicle["engine"] = "50 cc";
 }

 public override void BuildWheels()
 {
 vehicle["wheels"] = "2";
 }

 public override void BuildDoors()
 {
 vehicle["doors"] = "0";
 }
 }

 /// <summary>
 /// The 'Product' class
 /// </summary>
 class Vehicle
 {
 private string _vehicleType;
 private Dictionary<string,string> _parts =
 new Dictionary<string,string>();

 // Constructor
 public Vehicle(string vehicleType)
 {
 this._vehicleType = vehicleType;

https://riptutorial.com/ 238

 }

 // Indexer
 public string this[string key]
 {
 get { return _parts[key]; }
 set { _parts[key] = value; }
 }

 public void Show()
 {
 Console.WriteLine("\n---------------------------");
 Console.WriteLine("Vehicle Type: {0}", _vehicleType);
 Console.WriteLine(" Frame : {0}", _parts["frame"]);
 Console.WriteLine(" Engine : {0}", _parts["engine"]);
 Console.WriteLine(" #Wheels: {0}", _parts["wheels"]);
 Console.WriteLine(" #Doors : {0}", _parts["doors"]);
 }
 }
}

Output

Vehicle Type: Scooter Frame : Scooter Frame
Engine : none
#Wheels: 2
#Doors : 0

Vehicle Type: Car
Frame : Car Frame
Engine : 2500 cc
#Wheels: 4
#Doors : 4

Vehicle Type: MotorCycle
Frame : MotorCycle Frame
Engine : 500 cc
#Wheels: 2
#Doors : 0

Prototype Pattern

Specify the kind of objects to create using a prototypical instance, and create new objects by
copying this prototype.

In this example demonstrates the Prototype pattern in which new Color objects are created by
copying pre-existing, user-defined Colors of the same type.

using System;
using System.Collections.Generic;

https://riptutorial.com/ 239

namespace GangOfFour.Prototype
{
 /// <summary>
 /// MainApp startup class for Real-World
 /// Prototype Design Pattern.
 /// </summary>
 class MainApp
 {
 /// <summary>
 /// Entry point into console application.
 /// </summary>
 static void Main()
 {
 ColorManager colormanager = new ColorManager();

 // Initialize with standard colors
 colormanager["red"] = new Color(255, 0, 0);
 colormanager["green"] = new Color(0, 255, 0);
 colormanager["blue"] = new Color(0, 0, 255);

 // User adds personalized colors
 colormanager["angry"] = new Color(255, 54, 0);
 colormanager["peace"] = new Color(128, 211, 128);
 colormanager["flame"] = new Color(211, 34, 20);

 // User clones selected colors
 Color color1 = colormanager["red"].Clone() as Color;
 Color color2 = colormanager["peace"].Clone() as Color;
 Color color3 = colormanager["flame"].Clone() as Color;

 // Wait for user
 Console.ReadKey();
 }
 }

 /// <summary>
 /// The 'Prototype' abstract class
 /// </summary>
 abstract class ColorPrototype
 {
 public abstract ColorPrototype Clone();
 }

 /// <summary>
 /// The 'ConcretePrototype' class
 /// </summary>
 class Color : ColorPrototype
 {
 private int _red;
 private int _green;
 private int _blue;

 // Constructor
 public Color(int red, int green, int blue)
 {
 this._red = red;
 this._green = green;
 this._blue = blue;
 }

https://riptutorial.com/ 240

 // Create a shallow copy
 public override ColorPrototype Clone()
 {
 Console.WriteLine(
 "Cloning color RGB: {0,3},{1,3},{2,3}",
 _red, _green, _blue);

 return this.MemberwiseClone() as ColorPrototype;
 }
 }

 /// <summary>
 /// Prototype manager
 /// </summary>
 class ColorManager
 {
 private Dictionary<string, ColorPrototype> _colors =
 new Dictionary<string, ColorPrototype>();

 // Indexer
 public ColorPrototype this[string key]
 {
 get { return _colors[key]; }
 set { _colors.Add(key, value); }
 }
 }
}

Output:

Cloning color RGB: 255, 0, 0

Cloning color RGB: 128,211,128

Cloning color RGB: 211, 34, 20

Abstract Factory Pattern

Provide an interface for creating families of related or dependent objects without specifying their
concrete classes.

In this example demonstrates the creation of different animal worlds for a computer game using
different factories. Although the animals created by the Continent factories are different, the
interactions among the animals remain the same.

using System;

namespace GangOfFour.AbstractFactory
{
 /// <summary>
 /// MainApp startup class for Real-World
 /// Abstract Factory Design Pattern.
 /// </summary>
 class MainApp
 {
 /// <summary>

https://riptutorial.com/ 241

 /// Entry point into console application.
 /// </summary>
 public static void Main()
 {
 // Create and run the African animal world
 ContinentFactory africa = new AfricaFactory();
 AnimalWorld world = new AnimalWorld(africa);
 world.RunFoodChain();

 // Create and run the American animal world
 ContinentFactory america = new AmericaFactory();
 world = new AnimalWorld(america);
 world.RunFoodChain();

 // Wait for user input
 Console.ReadKey();
 }
 }

 /// <summary>
 /// The 'AbstractFactory' abstract class
 /// </summary>
 abstract class ContinentFactory
 {
 public abstract Herbivore CreateHerbivore();
 public abstract Carnivore CreateCarnivore();
 }

 /// <summary>
 /// The 'ConcreteFactory1' class
 /// </summary>
 class AfricaFactory : ContinentFactory
 {
 public override Herbivore CreateHerbivore()
 {
 return new Wildebeest();
 }
 public override Carnivore CreateCarnivore()
 {
 return new Lion();
 }
 }

 /// <summary>
 /// The 'ConcreteFactory2' class
 /// </summary>
 class AmericaFactory : ContinentFactory
 {
 public override Herbivore CreateHerbivore()
 {
 return new Bison();
 }
 public override Carnivore CreateCarnivore()
 {
 return new Wolf();
 }
 }

 /// <summary>
 /// The 'AbstractProductA' abstract class

https://riptutorial.com/ 242

 /// </summary>
 abstract class Herbivore
 {
 }

 /// <summary>
 /// The 'AbstractProductB' abstract class
 /// </summary>
 abstract class Carnivore
 {
 public abstract void Eat(Herbivore h);
 }

 /// <summary>
 /// The 'ProductA1' class
 /// </summary>
 class Wildebeest : Herbivore
 {
 }

 /// <summary>
 /// The 'ProductB1' class
 /// </summary>
 class Lion : Carnivore
 {
 public override void Eat(Herbivore h)
 {
 // Eat Wildebeest
 Console.WriteLine(this.GetType().Name +
 " eats " + h.GetType().Name);
 }
 }

 /// <summary>
 /// The 'ProductA2' class
 /// </summary>
 class Bison : Herbivore
 {
 }

 /// <summary>
 /// The 'ProductB2' class
 /// </summary>
 class Wolf : Carnivore
 {
 public override void Eat(Herbivore h)
 {
 // Eat Bison
 Console.WriteLine(this.GetType().Name +
 " eats " + h.GetType().Name);
 }
 }

 /// <summary>
 /// The 'Client' class
 /// </summary>
 class AnimalWorld
 {
 private Herbivore _herbivore;
 private Carnivore _carnivore;

https://riptutorial.com/ 243

 // Constructor
 public AnimalWorld(ContinentFactory factory)
 {
 _carnivore = factory.CreateCarnivore();
 _herbivore = factory.CreateHerbivore();
 }

 public void RunFoodChain()
 {
 _carnivore.Eat(_herbivore);
 }
 }
}

Output:

Lion eats Wildebeest

Wolf eats Bison

Read Creational Design Patterns online: https://riptutorial.com/csharp/topic/6654/creational-
design-patterns

https://riptutorial.com/ 244

https://riptutorial.com/csharp/topic/6654/creational-design-patterns
https://riptutorial.com/csharp/topic/6654/creational-design-patterns

Chapter 43: Cryptography
(System.Security.Cryptography)

Examples

Modern Examples of Symmetric Authenticated Encryption of a string

Cryptography is something very hard and after spending a lot of time reading different examples
and seeing how easy it is to introduce some form of vulnerability I found an answer originally
written by @jbtule that I think is very good. Enjoy reading:

"The general best practice for symmetric encryption is to use Authenticated Encryption with
Associated Data (AEAD), however this isn't a part of the standard .net crypto libraries. So the first
example uses AES256 and then HMAC256, a two step Encrypt then MAC, which requires more
overhead and more keys.

The second example uses the simpler practice of AES256-GCM using the open source Bouncy
Castle (via nuget).

Both examples have a main function that takes secret message string, key(s) and an optional non-
secret payload and return and authenticated encrypted string optionally prepended with the non-
secret data. Ideally you would use these with 256bit key(s) randomly generated see NewKey().

Both examples also have a helper methods that use a string password to generate the keys.
These helper methods are provided as a convenience to match up with other examples, however
they are far less secure because the strength of the password is going to be far weaker than a 256
bit key.

Update: Added byte[] overloads, and only the Gist has the full formatting with 4 spaces indent
and api docs due to StackOverflow answer limits."

.NET Built-in Encrypt(AES)-Then-MAC(HMAC) [Gist]

/*
 * This work (Modern Encryption of a String C#, by James Tuley),
 * identified by James Tuley, is free of known copyright restrictions.
 * https://gist.github.com/4336842
 * http://creativecommons.org/publicdomain/mark/1.0/
 */

using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;

namespace Encryption
{
 public static class AESThenHMAC

https://riptutorial.com/ 245

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/HMAC
http://crypto.stackexchange.com/a/205/1934
http://en.wikipedia.org/wiki/Galois/Counter_Mode
https://gist.github.com/4336842
https://gist.github.com/jbtule/4336842#file-aesthenhmac-cs

 {
 private static readonly RandomNumberGenerator Random = RandomNumberGenerator.Create();

 //Preconfigured Encryption Parameters
 public static readonly int BlockBitSize = 128;
 public static readonly int KeyBitSize = 256;

 //Preconfigured Password Key Derivation Parameters
 public static readonly int SaltBitSize = 64;
 public static readonly int Iterations = 10000;
 public static readonly int MinPasswordLength = 12;

 /// <summary>
 /// Helper that generates a random key on each call.
 /// </summary>
 /// <returns></returns>
 public static byte[] NewKey()
 {
 var key = new byte[KeyBitSize / 8];
 Random.GetBytes(key);
 return key;
 }

 /// <summary>
 /// Simple Encryption (AES) then Authentication (HMAC) for a UTF8 Message.
 /// </summary>
 /// <param name="secretMessage">The secret message.</param>
 /// <param name="cryptKey">The crypt key.</param>
 /// <param name="authKey">The auth key.</param>
 /// <param name="nonSecretPayload">(Optional) Non-Secret Payload.</param>
 /// <returns>
 /// Encrypted Message
 /// </returns>
 /// <exception cref="System.ArgumentException">Secret Message
Required!;secretMessage</exception>
 /// <remarks>
 /// Adds overhead of (Optional-Payload + BlockSize(16) + Message-Padded-To-Blocksize +
HMac-Tag(32)) * 1.33 Base64
 /// </remarks>
 public static string SimpleEncrypt(string secretMessage, byte[] cryptKey, byte[] authKey,
 byte[] nonSecretPayload = null)
 {
 if (string.IsNullOrEmpty(secretMessage))
 throw new ArgumentException("Secret Message Required!", "secretMessage");

 var plainText = Encoding.UTF8.GetBytes(secretMessage);
 var cipherText = SimpleEncrypt(plainText, cryptKey, authKey, nonSecretPayload);
 return Convert.ToBase64String(cipherText);
 }

 /// <summary>
 /// Simple Authentication (HMAC) then Decryption (AES) for a secrets UTF8 Message.
 /// </summary>
 /// <param name="encryptedMessage">The encrypted message.</param>
 /// <param name="cryptKey">The crypt key.</param>
 /// <param name="authKey">The auth key.</param>
 /// <param name="nonSecretPayloadLength">Length of the non secret payload.</param>
 /// <returns>
 /// Decrypted Message
 /// </returns>
 /// <exception cref="System.ArgumentException">Encrypted Message

https://riptutorial.com/ 246

Required!;encryptedMessage</exception>
 public static string SimpleDecrypt(string encryptedMessage, byte[] cryptKey, byte[]
authKey,
 int nonSecretPayloadLength = 0)
 {
 if (string.IsNullOrWhiteSpace(encryptedMessage))
 throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");

 var cipherText = Convert.FromBase64String(encryptedMessage);
 var plainText = SimpleDecrypt(cipherText, cryptKey, authKey, nonSecretPayloadLength);
 return plainText == null ? null : Encoding.UTF8.GetString(plainText);
 }

 /// <summary>
 /// Simple Encryption (AES) then Authentication (HMAC) of a UTF8 message
 /// using Keys derived from a Password (PBKDF2).
 /// </summary>
 /// <param name="secretMessage">The secret message.</param>
 /// <param name="password">The password.</param>
 /// <param name="nonSecretPayload">The non secret payload.</param>
 /// <returns>
 /// Encrypted Message
 /// </returns>
 /// <exception cref="System.ArgumentException">password</exception>
 /// <remarks>
 /// Significantly less secure than using random binary keys.
 /// Adds additional non secret payload for key generation parameters.
 /// </remarks>
 public static string SimpleEncryptWithPassword(string secretMessage, string password,
 byte[] nonSecretPayload = null)
 {
 if (string.IsNullOrEmpty(secretMessage))
 throw new ArgumentException("Secret Message Required!", "secretMessage");

 var plainText = Encoding.UTF8.GetBytes(secretMessage);
 var cipherText = SimpleEncryptWithPassword(plainText, password, nonSecretPayload);
 return Convert.ToBase64String(cipherText);
 }

 /// <summary>
 /// Simple Authentication (HMAC) and then Descryption (AES) of a UTF8 Message
 /// using keys derived from a password (PBKDF2).
 /// </summary>
 /// <param name="encryptedMessage">The encrypted message.</param>
 /// <param name="password">The password.</param>
 /// <param name="nonSecretPayloadLength">Length of the non secret payload.</param>
 /// <returns>
 /// Decrypted Message
 /// </returns>
 /// <exception cref="System.ArgumentException">Encrypted Message
Required!;encryptedMessage</exception>
 /// <remarks>
 /// Significantly less secure than using random binary keys.
 /// </remarks>
 public static string SimpleDecryptWithPassword(string encryptedMessage, string password,
 int nonSecretPayloadLength = 0)
 {
 if (string.IsNullOrWhiteSpace(encryptedMessage))
 throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");

 var cipherText = Convert.FromBase64String(encryptedMessage);

https://riptutorial.com/ 247

 var plainText = SimpleDecryptWithPassword(cipherText, password, nonSecretPayloadLength);
 return plainText == null ? null : Encoding.UTF8.GetString(plainText);
 }

 public static byte[] SimpleEncrypt(byte[] secretMessage, byte[] cryptKey, byte[] authKey,
byte[] nonSecretPayload = null)
 {
 //User Error Checks
 if (cryptKey == null || cryptKey.Length != KeyBitSize / 8)
 throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize),
"cryptKey");

 if (authKey == null || authKey.Length != KeyBitSize / 8)
 throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize),
"authKey");

 if (secretMessage == null || secretMessage.Length < 1)
 throw new ArgumentException("Secret Message Required!", "secretMessage");

 //non-secret payload optional
 nonSecretPayload = nonSecretPayload ?? new byte[] { };

 byte[] cipherText;
 byte[] iv;

 using (var aes = new AesManaged
 {
 KeySize = KeyBitSize,
 BlockSize = BlockBitSize,
 Mode = CipherMode.CBC,
 Padding = PaddingMode.PKCS7
 })
 {

 //Use random IV
 aes.GenerateIV();
 iv = aes.IV;

 using (var encrypter = aes.CreateEncryptor(cryptKey, iv))
 using (var cipherStream = new MemoryStream())
 {
 using (var cryptoStream = new CryptoStream(cipherStream, encrypter,
CryptoStreamMode.Write))
 using (var binaryWriter = new BinaryWriter(cryptoStream))
 {
 //Encrypt Data
 binaryWriter.Write(secretMessage);
 }

 cipherText = cipherStream.ToArray();
 }

 }

 //Assemble encrypted message and add authentication
 using (var hmac = new HMACSHA256(authKey))
 using (var encryptedStream = new MemoryStream())
 {
 using (var binaryWriter = new BinaryWriter(encryptedStream))
 {
 //Prepend non-secret payload if any

https://riptutorial.com/ 248

 binaryWriter.Write(nonSecretPayload);
 //Prepend IV
 binaryWriter.Write(iv);
 //Write Ciphertext
 binaryWriter.Write(cipherText);
 binaryWriter.Flush();

 //Authenticate all data
 var tag = hmac.ComputeHash(encryptedStream.ToArray());
 //Postpend tag
 binaryWriter.Write(tag);
 }
 return encryptedStream.ToArray();
 }

 }

 public static byte[] SimpleDecrypt(byte[] encryptedMessage, byte[] cryptKey, byte[]
authKey, int nonSecretPayloadLength = 0)
 {

 //Basic Usage Error Checks
 if (cryptKey == null || cryptKey.Length != KeyBitSize / 8)
 throw new ArgumentException(String.Format("CryptKey needs to be {0} bit!",
KeyBitSize), "cryptKey");

 if (authKey == null || authKey.Length != KeyBitSize / 8)
 throw new ArgumentException(String.Format("AuthKey needs to be {0} bit!", KeyBitSize),
"authKey");

 if (encryptedMessage == null || encryptedMessage.Length == 0)
 throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");

 using (var hmac = new HMACSHA256(authKey))
 {
 var sentTag = new byte[hmac.HashSize / 8];
 //Calculate Tag
 var calcTag = hmac.ComputeHash(encryptedMessage, 0, encryptedMessage.Length -
sentTag.Length);
 var ivLength = (BlockBitSize / 8);

 //if message length is to small just return null
 if (encryptedMessage.Length < sentTag.Length + nonSecretPayloadLength + ivLength)
 return null;

 //Grab Sent Tag
 Array.Copy(encryptedMessage, encryptedMessage.Length - sentTag.Length, sentTag, 0,
sentTag.Length);

 //Compare Tag with constant time comparison
 var compare = 0;
 for (var i = 0; i < sentTag.Length; i++)
 compare |= sentTag[i] ^ calcTag[i];

 //if message doesn't authenticate return null
 if (compare != 0)
 return null;

 using (var aes = new AesManaged
 {
 KeySize = KeyBitSize,

https://riptutorial.com/ 249

 BlockSize = BlockBitSize,
 Mode = CipherMode.CBC,
 Padding = PaddingMode.PKCS7
 })
 {

 //Grab IV from message
 var iv = new byte[ivLength];
 Array.Copy(encryptedMessage, nonSecretPayloadLength, iv, 0, iv.Length);

 using (var decrypter = aes.CreateDecryptor(cryptKey, iv))
 using (var plainTextStream = new MemoryStream())
 {
 using (var decrypterStream = new CryptoStream(plainTextStream, decrypter,
CryptoStreamMode.Write))
 using (var binaryWriter = new BinaryWriter(decrypterStream))
 {
 //Decrypt Cipher Text from Message
 binaryWriter.Write(
 encryptedMessage,
 nonSecretPayloadLength + iv.Length,
 encryptedMessage.Length - nonSecretPayloadLength - iv.Length - sentTag.Length
);
 }
 //Return Plain Text
 return plainTextStream.ToArray();
 }
 }
 }
 }

 public static byte[] SimpleEncryptWithPassword(byte[] secretMessage, string password,
byte[] nonSecretPayload = null)
 {
 nonSecretPayload = nonSecretPayload ?? new byte[] {};

 //User Error Checks
 if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
 throw new ArgumentException(String.Format("Must have a password of at least {0}
characters!", MinPasswordLength), "password");

 if (secretMessage == null || secretMessage.Length ==0)
 throw new ArgumentException("Secret Message Required!", "secretMessage");

 var payload = new byte[((SaltBitSize / 8) * 2) + nonSecretPayload.Length];

 Array.Copy(nonSecretPayload, payload, nonSecretPayload.Length);
 int payloadIndex = nonSecretPayload.Length;

 byte[] cryptKey;
 byte[] authKey;
 //Use Random Salt to prevent pre-generated weak password attacks.
 using (var generator = new Rfc2898DeriveBytes(password, SaltBitSize / 8, Iterations))
 {
 var salt = generator.Salt;

 //Generate Keys
 cryptKey = generator.GetBytes(KeyBitSize / 8);

 //Create Non Secret Payload
 Array.Copy(salt, 0, payload, payloadIndex, salt.Length);

https://riptutorial.com/ 250

 payloadIndex += salt.Length;
 }

 //Deriving separate key, might be less efficient than using HKDF,
 //but now compatible with RNEncryptor which had a very similar wireformat and requires
less code than HKDF.
 using (var generator = new Rfc2898DeriveBytes(password, SaltBitSize / 8, Iterations))
 {
 var salt = generator.Salt;

 //Generate Keys
 authKey = generator.GetBytes(KeyBitSize / 8);

 //Create Rest of Non Secret Payload
 Array.Copy(salt, 0, payload, payloadIndex, salt.Length);
 }

 return SimpleEncrypt(secretMessage, cryptKey, authKey, payload);
 }

 public static byte[] SimpleDecryptWithPassword(byte[] encryptedMessage, string password,
int nonSecretPayloadLength = 0)
 {
 //User Error Checks
 if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
 throw new ArgumentException(String.Format("Must have a password of at least {0}
characters!", MinPasswordLength), "password");

 if (encryptedMessage == null || encryptedMessage.Length == 0)
 throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");

 var cryptSalt = new byte[SaltBitSize / 8];
 var authSalt = new byte[SaltBitSize / 8];

 //Grab Salt from Non-Secret Payload
 Array.Copy(encryptedMessage, nonSecretPayloadLength, cryptSalt, 0, cryptSalt.Length);
 Array.Copy(encryptedMessage, nonSecretPayloadLength + cryptSalt.Length, authSalt, 0,
authSalt.Length);

 byte[] cryptKey;
 byte[] authKey;

 //Generate crypt key
 using (var generator = new Rfc2898DeriveBytes(password, cryptSalt, Iterations))
 {
 cryptKey = generator.GetBytes(KeyBitSize / 8);
 }
 //Generate auth key
 using (var generator = new Rfc2898DeriveBytes(password, authSalt, Iterations))
 {
 authKey = generator.GetBytes(KeyBitSize / 8);
 }

 return SimpleDecrypt(encryptedMessage, cryptKey, authKey, cryptSalt.Length +
authSalt.Length + nonSecretPayloadLength);
 }
 }
}

Bouncy Castle AES-GCM [Gist]

https://riptutorial.com/ 251

https://gist.github.com/jbtule/4336842#file-aesgcm-cs

/*
 * This work (Modern Encryption of a String C#, by James Tuley),
 * identified by James Tuley, is free of known copyright restrictions.
 * https://gist.github.com/4336842
 * http://creativecommons.org/publicdomain/mark/1.0/
 */

using System;
using System.IO;
using System.Text;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Engines;
using Org.BouncyCastle.Crypto.Generators;
using Org.BouncyCastle.Crypto.Modes;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Security;
namespace Encryption
{

 public static class AESGCM
 {
 private static readonly SecureRandom Random = new SecureRandom();

 //Preconfigured Encryption Parameters
 public static readonly int NonceBitSize = 128;
 public static readonly int MacBitSize = 128;
 public static readonly int KeyBitSize = 256;

 //Preconfigured Password Key Derivation Parameters
 public static readonly int SaltBitSize = 128;
 public static readonly int Iterations = 10000;
 public static readonly int MinPasswordLength = 12;

 /// <summary>
 /// Helper that generates a random new key on each call.
 /// </summary>
 /// <returns></returns>
 public static byte[] NewKey()
 {
 var key = new byte[KeyBitSize / 8];
 Random.NextBytes(key);
 return key;
 }

 /// <summary>
 /// Simple Encryption And Authentication (AES-GCM) of a UTF8 string.
 /// </summary>
 /// <param name="secretMessage">The secret message.</param>
 /// <param name="key">The key.</param>
 /// <param name="nonSecretPayload">Optional non-secret payload.</param>
 /// <returns>
 /// Encrypted Message
 /// </returns>
 /// <exception cref="System.ArgumentException">Secret Message
Required!;secretMessage</exception>
 /// <remarks>
 /// Adds overhead of (Optional-Payload + BlockSize(16) + Message + HMac-Tag(16)) * 1.33
Base64
 /// </remarks>
 public static string SimpleEncrypt(string secretMessage, byte[] key, byte[]

https://riptutorial.com/ 252

nonSecretPayload = null)
 {
 if (string.IsNullOrEmpty(secretMessage))
 throw new ArgumentException("Secret Message Required!", "secretMessage");

 var plainText = Encoding.UTF8.GetBytes(secretMessage);
 var cipherText = SimpleEncrypt(plainText, key, nonSecretPayload);
 return Convert.ToBase64String(cipherText);
 }

 /// <summary>
 /// Simple Decryption & Authentication (AES-GCM) of a UTF8 Message
 /// </summary>
 /// <param name="encryptedMessage">The encrypted message.</param>
 /// <param name="key">The key.</param>
 /// <param name="nonSecretPayloadLength">Length of the optional non-secret
payload.</param>
 /// <returns>Decrypted Message</returns>
 public static string SimpleDecrypt(string encryptedMessage, byte[] key, int
nonSecretPayloadLength = 0)
 {
 if (string.IsNullOrEmpty(encryptedMessage))
 throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");

 var cipherText = Convert.FromBase64String(encryptedMessage);
 var plainText = SimpleDecrypt(cipherText, key, nonSecretPayloadLength);
 return plainText == null ? null : Encoding.UTF8.GetString(plainText);
 }

 /// <summary>
 /// Simple Encryption And Authentication (AES-GCM) of a UTF8 String
 /// using key derived from a password (PBKDF2).
 /// </summary>
 /// <param name="secretMessage">The secret message.</param>
 /// <param name="password">The password.</param>
 /// <param name="nonSecretPayload">The non secret payload.</param>
 /// <returns>
 /// Encrypted Message
 /// </returns>
 /// <remarks>
 /// Significantly less secure than using random binary keys.
 /// Adds additional non secret payload for key generation parameters.
 /// </remarks>
 public static string SimpleEncryptWithPassword(string secretMessage, string password,
 byte[] nonSecretPayload = null)
 {
 if (string.IsNullOrEmpty(secretMessage))
 throw new ArgumentException("Secret Message Required!", "secretMessage");

 var plainText = Encoding.UTF8.GetBytes(secretMessage);
 var cipherText = SimpleEncryptWithPassword(plainText, password, nonSecretPayload);
 return Convert.ToBase64String(cipherText);
 }

 /// <summary>
 /// Simple Decryption and Authentication (AES-GCM) of a UTF8 message
 /// using a key derived from a password (PBKDF2)
 /// </summary>
 /// <param name="encryptedMessage">The encrypted message.</param>

https://riptutorial.com/ 253

 /// <param name="password">The password.</param>
 /// <param name="nonSecretPayloadLength">Length of the non secret payload.</param>
 /// <returns>
 /// Decrypted Message
 /// </returns>
 /// <exception cref="System.ArgumentException">Encrypted Message
Required!;encryptedMessage</exception>
 /// <remarks>
 /// Significantly less secure than using random binary keys.
 /// </remarks>
 public static string SimpleDecryptWithPassword(string encryptedMessage, string password,
 int nonSecretPayloadLength = 0)
 {
 if (string.IsNullOrWhiteSpace(encryptedMessage))
 throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");

 var cipherText = Convert.FromBase64String(encryptedMessage);
 var plainText = SimpleDecryptWithPassword(cipherText, password, nonSecretPayloadLength);
 return plainText == null ? null : Encoding.UTF8.GetString(plainText);
 }

 public static byte[] SimpleEncrypt(byte[] secretMessage, byte[] key, byte[]
nonSecretPayload = null)
 {
 //User Error Checks
 if (key == null || key.Length != KeyBitSize / 8)
 throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize),
"key");

 if (secretMessage == null || secretMessage.Length == 0)
 throw new ArgumentException("Secret Message Required!", "secretMessage");

 //Non-secret Payload Optional
 nonSecretPayload = nonSecretPayload ?? new byte[] { };

 //Using random nonce large enough not to repeat
 var nonce = new byte[NonceBitSize / 8];
 Random.NextBytes(nonce, 0, nonce.Length);

 var cipher = new GcmBlockCipher(new AesFastEngine());
 var parameters = new AeadParameters(new KeyParameter(key), MacBitSize, nonce,
nonSecretPayload);
 cipher.Init(true, parameters);

 //Generate Cipher Text With Auth Tag
 var cipherText = new byte[cipher.GetOutputSize(secretMessage.Length)];
 var len = cipher.ProcessBytes(secretMessage, 0, secretMessage.Length, cipherText, 0);
 cipher.DoFinal(cipherText, len);

 //Assemble Message
 using (var combinedStream = new MemoryStream())
 {
 using (var binaryWriter = new BinaryWriter(combinedStream))
 {
 //Prepend Authenticated Payload
 binaryWriter.Write(nonSecretPayload);
 //Prepend Nonce
 binaryWriter.Write(nonce);
 //Write Cipher Text
 binaryWriter.Write(cipherText);
 }

https://riptutorial.com/ 254

 return combinedStream.ToArray();
 }
 }

 public static byte[] SimpleDecrypt(byte[] encryptedMessage, byte[] key, int
nonSecretPayloadLength = 0)
 {
 //User Error Checks
 if (key == null || key.Length != KeyBitSize / 8)
 throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize),
"key");

 if (encryptedMessage == null || encryptedMessage.Length == 0)
 throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");

 using (var cipherStream = new MemoryStream(encryptedMessage))
 using (var cipherReader = new BinaryReader(cipherStream))
 {
 //Grab Payload
 var nonSecretPayload = cipherReader.ReadBytes(nonSecretPayloadLength);

 //Grab Nonce
 var nonce = cipherReader.ReadBytes(NonceBitSize / 8);

 var cipher = new GcmBlockCipher(new AesFastEngine());
 var parameters = new AeadParameters(new KeyParameter(key), MacBitSize, nonce,
nonSecretPayload);
 cipher.Init(false, parameters);

 //Decrypt Cipher Text
 var cipherText = cipherReader.ReadBytes(encryptedMessage.Length -
nonSecretPayloadLength - nonce.Length);
 var plainText = new byte[cipher.GetOutputSize(cipherText.Length)];

 try
 {
 var len = cipher.ProcessBytes(cipherText, 0, cipherText.Length, plainText, 0);
 cipher.DoFinal(plainText, len);

 }
 catch (InvalidCipherTextException)
 {
 //Return null if it doesn't authenticate
 return null;
 }

 return plainText;
 }

 }

 public static byte[] SimpleEncryptWithPassword(byte[] secretMessage, string password,
byte[] nonSecretPayload = null)
 {
 nonSecretPayload = nonSecretPayload ?? new byte[] {};

 //User Error Checks
 if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
 throw new ArgumentException(String.Format("Must have a password of at least {0}
characters!", MinPasswordLength), "password");

https://riptutorial.com/ 255

 if (secretMessage == null || secretMessage.Length == 0)
 throw new ArgumentException("Secret Message Required!", "secretMessage");

 var generator = new Pkcs5S2ParametersGenerator();

 //Use Random Salt to minimize pre-generated weak password attacks.
 var salt = new byte[SaltBitSize / 8];
 Random.NextBytes(salt);

 generator.Init(
 PbeParametersGenerator.Pkcs5PasswordToBytes(password.ToCharArray()),
 salt,
 Iterations);

 //Generate Key
 var key = (KeyParameter)generator.GenerateDerivedMacParameters(KeyBitSize);

 //Create Full Non Secret Payload
 var payload = new byte[salt.Length + nonSecretPayload.Length];
 Array.Copy(nonSecretPayload, payload, nonSecretPayload.Length);
 Array.Copy(salt,0, payload,nonSecretPayload.Length, salt.Length);

 return SimpleEncrypt(secretMessage, key.GetKey(), payload);
 }

 public static byte[] SimpleDecryptWithPassword(byte[] encryptedMessage, string password,
int nonSecretPayloadLength = 0)
 {
 //User Error Checks
 if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
 throw new ArgumentException(String.Format("Must have a password of at least {0}
characters!", MinPasswordLength), "password");

 if (encryptedMessage == null || encryptedMessage.Length == 0)
 throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");

 var generator = new Pkcs5S2ParametersGenerator();

 //Grab Salt from Payload
 var salt = new byte[SaltBitSize / 8];
 Array.Copy(encryptedMessage, nonSecretPayloadLength, salt, 0, salt.Length);

 generator.Init(
 PbeParametersGenerator.Pkcs5PasswordToBytes(password.ToCharArray()),
 salt,
 Iterations);

 //Generate Key
 var key = (KeyParameter)generator.GenerateDerivedMacParameters(KeyBitSize);

 return SimpleDecrypt(encryptedMessage, key.GetKey(), salt.Length +
nonSecretPayloadLength);
 }
 }
}

Introduction to Symmetric and Asymmetric Encryption

You can improve the security for data transit or storing by implementing encrypting techniques.

https://riptutorial.com/ 256

Basically there are two approaches when using System.Security.Cryptography: symmetric and
asymmetric.

Symmetric Encryption

This method uses a private key in order to perform the data transformation.

Pros:

Symmetric algorithms consume less resources and are faster than asymmetric ones.•
The amount of data you can encrypt is unlimited.•

Cons:

Encryption and decryption use the same key. Someone will be able to decrypt your data if
the key is compromised.

•

You could end up with many different secret keys to manage if you choose to use a different
secret key for different data.

•

Under System.Security.Cryptography you have different classes that perform symmetric
encryption, they are known as block ciphers:

AesManaged (AES algorithm).•
AesCryptoServiceProvider (AES algorithm FIPS 140-2 complaint).•
DESCryptoServiceProvider (DES algorithm).•
RC2CryptoServiceProvider (Rivest Cipher 2 algorithm).•
RijndaelManaged (AES algorithm). Note: RijndaelManaged is not FIPS-197 complaint.•
TripleDES (TripleDES algorithm).•

Asymmetric Encryption

This method uses a combination of public and private keys in order to perform the data
transformation.

Pros:

It uses larger keys than symmetric algorithms, thus they are less susceptible to being
cracked by using brute force.

•

It is easier to guarantee who is able to encrypt and decrypt the data because it relies on two
keys (public and private).

•

Cons:

There is a limit on the amount of data that you can encrypt. The limit is different for each
algorithm and is typically proportional with the key size of the algorithm. For example, an
RSACryptoServiceProvider object with a key length of 1,024 bits can only encrypt a

•

https://riptutorial.com/ 257

https://en.wikipedia.org/wiki/Symmetric-key_algorithm
https://en.wikipedia.org/wiki/Block_cipher
https://msdn.microsoft.com/en-us/library/system.security.cryptography.aesmanaged
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://msdn.microsoft.com/en-us/library/system.security.cryptography.aescryptoserviceprovider
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://blogs.msdn.microsoft.com/winsdk/2010/05/28/behaviour-of-aescryptoserviceprovider-class-with-fips-policy-set-unset/
https://msdn.microsoft.com/en-us/library/system.security.cryptography.descryptoserviceprovider
https://en.wikipedia.org/wiki/Data_Encryption_Standard
https://msdn.microsoft.com/en-us/library/system.security.cryptography.rc2cryptoserviceprovider
https://en.wikipedia.org/wiki/RC2
https://msdn.microsoft.com/en-us/library/system.security.cryptography.rijndaelmanaged
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://blogs.msdn.microsoft.com/shawnfa/2006/10/09/the-differences-between-rijndael-and-aes/
https://msdn.microsoft.com/en-us/library/system.security.cryptography.tripledes
https://en.wikipedia.org/wiki/Triple_DES
https://en.wikipedia.org/wiki/Public-key_cryptography

message that is smaller than 128 bytes.
Asymmetric algorithms are very slow in comparison to symmetric algorithms.•

Under System.Security.Cryptography you have access to different classes that perform
asymmetric encryption:

DSACryptoServiceProvider (Digital Signature Algorithm algorithm)•
RSACryptoServiceProvider (RSA Algorithm algorithm)•

Password Hashing

Passwords should never be stored as plain text! They should be hashed with a randomly
generated salt (to defend against rainbow table attacks) using a slow password hashing algorithm.
A high number of iterations (> 10k) can be used to slow down brute force attacks. A delay of
~100ms is acceptable to a user logging in, but makes breaking a long password difficult. When
choosing a number of iterations you should use the maximum tolerable value for your application
and increase it as computer performance improves. You will also need to consider stopping
repeated requests which could be used as a DoS attack.

When hashing for the first time a salt can be generated for you, the resulting hash and salt can
then be stored to a file.

private void firstHash(string userName, string userPassword, int numberOfItterations)
{
 Rfc2898DeriveBytes PBKDF2 = new Rfc2898DeriveBytes(userPassword, 8, numberOfItterations);
//Hash the password with a 8 byte salt
 byte[] hashedPassword = PBKDF2.GetBytes(20); //Returns a 20 byte hash
 byte[] salt = PBKDF2.Salt;
 writeHashToFile(userName, hashedPassword, salt, numberOfItterations); //Store the hashed
password with the salt and number of itterations to check against future password entries
}

Checking an existing users password, read their hash and salt from a file and compare to the hash
of the entered password

private bool checkPassword(string userName, string userPassword, int numberOfItterations)
{
 byte[] usersHash = getUserHashFromFile(userName);
 byte[] userSalt = getUserSaltFromFile(userName);
 Rfc2898DeriveBytes PBKDF2 = new Rfc2898DeriveBytes(userPassword, userSalt,
numberOfItterations); //Hash the password with the users salt
 byte[] hashedPassword = PBKDF2.GetBytes(20); //Returns a 20 byte hash
 bool passwordsMach = comparePasswords(usersHash, hashedPassword); //Compares byte
arrays
 return passwordsMach;
}

Simple Symmetric File Encryption

The following code sample demonstrates a quick and easy means of encrypting and decrypting
files using the AES symmetric encryption algorithm.

https://riptutorial.com/ 258

https://msdn.microsoft.com/en-us/library/system.security.cryptography.dsacryptoserviceprovider.aspx
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://msdn.microsoft.com/en-us/library/system.security.cryptography.rsacryptoserviceprovider.aspx
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

The code randomly generates the Salt and Initialization Vectors each time a file is encrypted,
meaning that encrypting the same file with the same password will always lead to different output.
The salt and IV are written to the output file so that only the password is required to decrypt it.

public static void ProcessFile(string inputPath, string password, bool encryptMode, string
outputPath)
{
 using (var cypher = new AesManaged())
 using (var fsIn = new FileStream(inputPath, FileMode.Open))
 using (var fsOut = new FileStream(outputPath, FileMode.Create))
 {
 const int saltLength = 256;
 var salt = new byte[saltLength];
 var iv = new byte[cypher.BlockSize / 8];

 if (encryptMode)
 {
 // Generate random salt and IV, then write them to file
 using (var rng = new RNGCryptoServiceProvider())
 {
 rng.GetBytes(salt);
 rng.GetBytes(iv);
 }
 fsOut.Write(salt, 0, salt.Length);
 fsOut.Write(iv, 0, iv.Length);
 }
 else
 {
 // Read the salt and IV from the file
 fsIn.Read(salt, 0, saltLength);
 fsIn.Read(iv, 0, iv.Length);
 }

 // Generate a secure password, based on the password and salt provided
 var pdb = new Rfc2898DeriveBytes(password, salt);
 var key = pdb.GetBytes(cypher.KeySize / 8);

 // Encrypt or decrypt the file
 using (var cryptoTransform = encryptMode
 ? cypher.CreateEncryptor(key, iv)
 : cypher.CreateDecryptor(key, iv))
 using (var cs = new CryptoStream(fsOut, cryptoTransform, CryptoStreamMode.Write))
 {
 fsIn.CopyTo(cs);
 }
 }
}

Cryptographically Secure Random Data

There are times when the framework's Random() class may not be considered random enough,
given that it is based on a psuedo-random number generator. The framework's Crypto classes do,
however, provide something more robust in the form of RNGCryptoServiceProvider.

The following code samples demonstrate how to generate Cryptographically Secure byte arrays,
strings and numbers.

https://riptutorial.com/ 259

Random Byte Array

public static byte[] GenerateRandomData(int length)
{
 var rnd = new byte[length];
 using (var rng = new RNGCryptoServiceProvider())
 rng.GetBytes(rnd);
 return rnd;
}

Random Integer (with even distribution)

public static int GenerateRandomInt(int minVal=0, int maxVal=100)
{
 var rnd = new byte[4];
 using (var rng = new RNGCryptoServiceProvider())
 rng.GetBytes(rnd);
 var i = Math.Abs(BitConverter.ToInt32(rnd, 0));
 return Convert.ToInt32(i % (maxVal - minVal + 1) + minVal);
}

Random String

public static string GenerateRandomString(int length, string allowableChars=null)
{
 if (string.IsNullOrEmpty(allowableChars))
 allowableChars = @"ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 // Generate random data
 var rnd = new byte[length];
 using (var rng = new RNGCryptoServiceProvider())
 rng.GetBytes(rnd);

 // Generate the output string
 var allowable = allowableChars.ToCharArray();
 var l = allowable.Length;
 var chars = new char[length];
 for (var i = 0; i < length; i++)
 chars[i] = allowable[rnd[i] % l];

 return new string(chars);
}

Fast Asymmetric File Encryption

Asymmetric encryption is often regarded as preferable to Symmetric encryption for transferring
messages to other parties. This is mainly because it negates many of the risks related to the
exchange of a shared key and ensures that whilst anyone with the public key can encrypt a
message for the intended recipient, only that recipient can decrypt it. Unfortunately the major
down-side of asymmetric encryption algorithms is that they are significantly slower than their
symmetric cousins. As such the asymmetric encryption of files, especially large ones, can often be
a very computationally intensive process.

In order to provide both security AND performance, a hybrid approach can be taken. This entails

https://riptutorial.com/ 260

the cryptographically random generation of a key and initialization vector for Symmetric
encryption. These values are then encrypted using an Asymmetric algorithm and written to the
output file, before being used to encrypt the source data Symmetrically and appending it to the
output.

This approach provides a high degree of both performance and security, in that the data is
encrypted using a symmetric algorithm (fast) and the key and iv, both randomly generated
(secure) are encrypted by an asymmetric algorithm (secure). It also has the added advantage that
the same payload encrypted on different occasions will have very different cyphertext, because
the symmetric keys are randomly generated each time.

The following class demonstrates asymmetric encryption of strings and byte arrays, as well as
hybrid file encryption.

public static class AsymmetricProvider
{
 #region Key Generation
 public class KeyPair
 {
 public string PublicKey { get; set; }
 public string PrivateKey { get; set; }
 }

 public static KeyPair GenerateNewKeyPair(int keySize = 4096)
 {
 // KeySize is measured in bits. 1024 is the default, 2048 is better, 4096 is more
robust but takes a fair bit longer to generate.
 using (var rsa = new RSACryptoServiceProvider(keySize))
 {
 return new KeyPair {PublicKey = rsa.ToXmlString(false), PrivateKey =
rsa.ToXmlString(true)};
 }
 }

 #endregion

 #region Asymmetric Data Encryption and Decryption

 public static byte[] EncryptData(byte[] data, string publicKey)
 {
 using (var asymmetricProvider = new RSACryptoServiceProvider())
 {
 asymmetricProvider.FromXmlString(publicKey);
 return asymmetricProvider.Encrypt(data, true);
 }
 }

 public static byte[] DecryptData(byte[] data, string publicKey)
 {
 using (var asymmetricProvider = new RSACryptoServiceProvider())
 {
 asymmetricProvider.FromXmlString(publicKey);
 if (asymmetricProvider.PublicOnly)
 throw new Exception("The key provided is a public key and does not contain the
private key elements required for decryption");
 return asymmetricProvider.Decrypt(data, true);
 }

https://riptutorial.com/ 261

 }

 public static string EncryptString(string value, string publicKey)
 {
 return Convert.ToBase64String(EncryptData(Encoding.UTF8.GetBytes(value), publicKey));
 }

 public static string DecryptString(string value, string privateKey)
 {
 return Encoding.UTF8.GetString(EncryptData(Convert.FromBase64String(value),
privateKey));
 }

 #endregion

 #region Hybrid File Encryption and Decription

 public static void EncryptFile(string inputFilePath, string outputFilePath, string
publicKey)
 {
 using (var symmetricCypher = new AesManaged())
 {
 // Generate random key and IV for symmetric encryption
 var key = new byte[symmetricCypher.KeySize / 8];
 var iv = new byte[symmetricCypher.BlockSize / 8];
 using (var rng = new RNGCryptoServiceProvider())
 {
 rng.GetBytes(key);
 rng.GetBytes(iv);
 }

 // Encrypt the symmetric key and IV
 var buf = new byte[key.Length + iv.Length];
 Array.Copy(key, buf, key.Length);
 Array.Copy(iv, 0, buf, key.Length, iv.Length);
 buf = EncryptData(buf, publicKey);

 var bufLen = BitConverter.GetBytes(buf.Length);

 // Symmetrically encrypt the data and write it to the file, along with the
encrypted key and iv
 using (var cypherKey = symmetricCypher.CreateEncryptor(key, iv))
 using (var fsIn = new FileStream(inputFilePath, FileMode.Open))
 using (var fsOut = new FileStream(outputFilePath, FileMode.Create))
 using (var cs = new CryptoStream(fsOut, cypherKey, CryptoStreamMode.Write))
 {
 fsOut.Write(bufLen,0, bufLen.Length);
 fsOut.Write(buf, 0, buf.Length);
 fsIn.CopyTo(cs);
 }
 }
 }

 public static void DecryptFile(string inputFilePath, string outputFilePath, string
privateKey)
 {
 using (var symmetricCypher = new AesManaged())
 using (var fsIn = new FileStream(inputFilePath, FileMode.Open))
 {
 // Determine the length of the encrypted key and IV
 var buf = new byte[sizeof(int)];

https://riptutorial.com/ 262

 fsIn.Read(buf, 0, buf.Length);
 var bufLen = BitConverter.ToInt32(buf, 0);

 // Read the encrypted key and IV data from the file and decrypt using the
asymmetric algorithm
 buf = new byte[bufLen];
 fsIn.Read(buf, 0, buf.Length);
 buf = DecryptData(buf, privateKey);

 var key = new byte[symmetricCypher.KeySize / 8];
 var iv = new byte[symmetricCypher.BlockSize / 8];
 Array.Copy(buf, key, key.Length);
 Array.Copy(buf, key.Length, iv, 0, iv.Length);

 // Decript the file data using the symmetric algorithm
 using (var cypherKey = symmetricCypher.CreateDecryptor(key, iv))
 using (var fsOut = new FileStream(outputFilePath, FileMode.Create))
 using (var cs = new CryptoStream(fsOut, cypherKey, CryptoStreamMode.Write))
 {
 fsIn.CopyTo(cs);
 }
 }
 }

 #endregion

 #region Key Storage

 public static void WritePublicKey(string publicKeyFilePath, string publicKey)
 {
 File.WriteAllText(publicKeyFilePath, publicKey);
 }
 public static string ReadPublicKey(string publicKeyFilePath)
 {
 return File.ReadAllText(publicKeyFilePath);
 }

 private const string SymmetricSalt = "Stack_Overflow!"; // Change me!

 public static string ReadPrivateKey(string privateKeyFilePath, string password)
 {
 var salt = Encoding.UTF8.GetBytes(SymmetricSalt);
 var cypherText = File.ReadAllBytes(privateKeyFilePath);

 using (var cypher = new AesManaged())
 {
 var pdb = new Rfc2898DeriveBytes(password, salt);
 var key = pdb.GetBytes(cypher.KeySize / 8);
 var iv = pdb.GetBytes(cypher.BlockSize / 8);

 using (var decryptor = cypher.CreateDecryptor(key, iv))
 using (var msDecrypt = new MemoryStream(cypherText))
 using (var csDecrypt = new CryptoStream(msDecrypt, decryptor,
CryptoStreamMode.Read))
 using (var srDecrypt = new StreamReader(csDecrypt))
 {
 return srDecrypt.ReadToEnd();
 }
 }
 }

https://riptutorial.com/ 263

 public static void WritePrivateKey(string privateKeyFilePath, string privateKey, string
password)
 {
 var salt = Encoding.UTF8.GetBytes(SymmetricSalt);
 using (var cypher = new AesManaged())
 {
 var pdb = new Rfc2898DeriveBytes(password, salt);
 var key = pdb.GetBytes(cypher.KeySize / 8);
 var iv = pdb.GetBytes(cypher.BlockSize / 8);

 using (var encryptor = cypher.CreateEncryptor(key, iv))
 using (var fsEncrypt = new FileStream(privateKeyFilePath, FileMode.Create))
 using (var csEncrypt = new CryptoStream(fsEncrypt, encryptor,
CryptoStreamMode.Write))
 using (var swEncrypt = new StreamWriter(csEncrypt))
 {
 swEncrypt.Write(privateKey);
 }
 }
 }

 #endregion
}

Example of use:

private static void HybridCryptoTest(string privateKeyPath, string privateKeyPassword, string
inputPath)
{
 // Setup the test
 var publicKeyPath = Path.ChangeExtension(privateKeyPath, ".public");
 var outputPath = Path.Combine(Path.ChangeExtension(inputPath, ".enc"));
 var testPath = Path.Combine(Path.ChangeExtension(inputPath, ".test"));

 if (!File.Exists(privateKeyPath))
 {
 var keys = AsymmetricProvider.GenerateNewKeyPair(2048);
 AsymmetricProvider.WritePublicKey(publicKeyPath, keys.PublicKey);
 AsymmetricProvider.WritePrivateKey(privateKeyPath, keys.PrivateKey,
privateKeyPassword);
 }

 // Encrypt the file
 var publicKey = AsymmetricProvider.ReadPublicKey(publicKeyPath);
 AsymmetricProvider.EncryptFile(inputPath, outputPath, publicKey);

 // Decrypt it again to compare against the source file
 var privateKey = AsymmetricProvider.ReadPrivateKey(privateKeyPath, privateKeyPassword);
 AsymmetricProvider.DecryptFile(outputPath, testPath, privateKey);

 // Check that the two files match
 var source = File.ReadAllBytes(inputPath);
 var dest = File.ReadAllBytes(testPath);

 if (source.Length != dest.Length)
 throw new Exception("Length does not match");

 if (source.Where((t, i) => t != dest[i]).Any())
 throw new Exception("Data mismatch");
}

https://riptutorial.com/ 264

Read Cryptography (System.Security.Cryptography) online:
https://riptutorial.com/csharp/topic/2988/cryptography--system-security-cryptography-

https://riptutorial.com/ 265

https://riptutorial.com/csharp/topic/2988/cryptography--system-security-cryptography-

Chapter 44: Data Annotation

Examples

DisplayNameAttribute (display attribute)

DisplayName sets display name for a property, event or public void method having zero (0)
arguments.

public class Employee
{
 [DisplayName(@"Employee first name")]
 public string FirstName { get; set; }
}

Simple usage example in XAML application

<Window x:Class="WpfApplication.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:wpfApplication="clr-namespace:WpfApplication"
 Height="100" Width="360" Title="Display name example">

 <Window.Resources>
 <wpfApplication:DisplayNameConverter x:Key="DisplayNameConverter"/>
 </Window.Resources>

 <StackPanel Margin="5">
 <!-- Label (DisplayName attribute) -->
 <Label Content="{Binding Employee, Converter={StaticResource DisplayNameConverter},
ConverterParameter=FirstName}" />
 <!-- TextBox (FirstName property value) -->
 <TextBox Text="{Binding Employee.FirstName, Mode=TwoWay,
UpdateSourceTrigger=PropertyChanged}" />
 </StackPanel>

</Window>

namespace WpfApplication
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 private Employee _employee = new Employee();

 public MainWindow()
 {
 InitializeComponent();
 DataContext = this;
 }

https://riptutorial.com/ 266

 public Employee Employee
 {
 get { return _employee; }
 set { _employee = value; }
 }
 }
}

namespace WpfApplication
{
 public class DisplayNameConverter : IValueConverter
 {
 public object Convert(object value, Type targetType, object parameter, CultureInfo
culture)
 {
 // Get display name for given instance type and property name
 var attribute = value.GetType()
 .GetProperty(parameter.ToString())
 .GetCustomAttributes(false)
 .OfType<DisplayNameAttribute>()
 .FirstOrDefault();

 return attribute != null ? attribute.DisplayName : string.Empty;
 }

 public object ConvertBack(object value, Type targetType, object parameter, CultureInfo
culture)
 {
 throw new NotImplementedException();
 }
 }
}

EditableAttribute (data modeling attribute)

EditableAttribute sets whether users should be able to change the value of the class property.

public class Employee
{
 [Editable(false)]
 public string FirstName { get; set; }
}

Simple usage example in XAML application

<Window x:Class="WpfApplication.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

https://riptutorial.com/ 267

http://i.stack.imgur.com/XL60j.png

 xmlns:wpfApplication="clr-namespace:WpfApplication"
 Height="70" Width="360" Title="Display name example">

 <Window.Resources>
 <wpfApplication:EditableConverter x:Key="EditableConverter"/>
 </Window.Resources>

 <StackPanel Margin="5">
 <!-- TextBox Text (FirstName property value) -->
 <!-- TextBox IsEnabled (Editable attribute) -->
 <TextBox Text="{Binding Employee.FirstName, Mode=TwoWay,
UpdateSourceTrigger=PropertyChanged}"
 IsEnabled="{Binding Employee, Converter={StaticResource EditableConverter},
ConverterParameter=FirstName}"/>
 </StackPanel>

</Window>

namespace WpfApplication
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 private Employee _employee = new Employee() { FirstName = "This is not editable"};

 public MainWindow()
 {
 InitializeComponent();
 DataContext = this;
 }

 public Employee Employee
 {
 get { return _employee; }
 set { _employee = value; }
 }
 }
}

namespace WpfApplication
{
 public class EditableConverter : IValueConverter
 {
 public object Convert(object value, Type targetType, object parameter, CultureInfo
culture)
 {
 // return editable attribute's value for given instance property,
 // defaults to true if not found
 var attribute = value.GetType()
 .GetProperty(parameter.ToString())
 .GetCustomAttributes(false)
 .OfType<EditableAttribute>()
 .FirstOrDefault();

 return attribute != null ? attribute.AllowEdit : true;
 }

https://riptutorial.com/ 268

 public object ConvertBack(object value, Type targetType, object parameter, CultureInfo
culture)
 {
 throw new NotImplementedException();
 }
 }
}

Validation Attributes

Validation attributes are used to enforce various validation rules in a declarative fashion on
classes or class members. All validation attributes derive from the ValidationAttribute base class.

Example: RequiredAttribute

When validated through the ValidationAttribute.Validate method, this attribute will return an error
if the Name property is null or contains only whitespace.

public class ContactModel
{
 [Required(ErrorMessage = "Please provide a name.")]
 public string Name { get; set; }
}

Example: StringLengthAttribute

The StringLengthAttribute validates if a string is less than the maximum length of a string. It can
optionally specify a minimum length. Both values are inclusive.

public class ContactModel
{
 [StringLength(20, MinimumLength = 5, ErrorMessage = "A name must be between five and
twenty characters.")]
 public string Name { get; set; }
}

Example: RangeAttribute

The RangeAttribute gives the maximum and minimum value for a numeric field.

public class Model

https://riptutorial.com/ 269

http://i.stack.imgur.com/ng8VJ.png
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.validationattribute(v=vs.95).aspx

{
 [Range(0.01, 100.00,ErrorMessage = "Price must be between 0.01 and 100.00")]
 public decimal Price { get; set; }
}

Example: CustomValidationAttribute

The CustomValidationAttribute class allows a custom static method to be invoked for validation.
The custom method must be static ValidationResult [MethodName] (object input).

public class Model
{
 [CustomValidation(typeof(MyCustomValidation), "IsNotAnApple")]
 public string FavoriteFruit { get; set; }
}

Method declaration:

public static class MyCustomValidation
{
 public static ValidationResult IsNotAnApple(object input)
 {
 var result = ValidationResult.Success;

 if (input?.ToString()?.ToUpperInvariant() == "APPLE")
 {
 result = new ValidationResult("Apples are not allowed.");
 }

 return result;
 }
}

Creating a custom validation attribute

Custom validation attributes can be created by deriving from the ValidationAttribute base class,
then overriding virtual methods as needed.

[AttributeUsage(AttributeTargets.Property, AllowMultiple = false, Inherited = false)]
public class NotABananaAttribute : ValidationAttribute
{
 public override bool IsValid(object value)
 {
 var inputValue = value as string;
 var isValid = true;

 if (!string.IsNullOrEmpty(inputValue))
 {
 isValid = inputValue.ToUpperInvariant() != "BANANA";
 }

 return isValid;
 }

https://riptutorial.com/ 270

}

This attribute can then be used like this:

public class Model
{
 [NotABanana(ErrorMessage = "Bananas are not allowed.")]
 public string FavoriteFruit { get; set; }
}

Data Annotation Basics

Data annotations are a way of adding more contextual information to classes or members of a
class. There are three main categories of annotations:

Validation Attributes: add validation criteria to data•
Display Attributes: specify how the data should be displayed to the user•
Modelling Attributes: add information on usage and relationship with other classes•

Usage

Here is an example where two ValidationAttribute and one DisplayAttribute are used:

class Kid
{
 [Range(0, 18)] // The age cannot be over 18 and cannot be negative
 public int Age { get; set; }
 [StringLength(MaximumLength = 50, MinimumLength = 3)] // The name cannot be under 3 chars
or more than 50 chars
 public string Name { get; set; }
 [DataType(DataType.Date)] // The birthday will be displayed as a date only (without the
time)
 public DateTime Birthday { get; set; }
}

Data annotations are mostly used in frameworks such as ASP.NET. For example, in ASP.NET MVC,
when a model is received by a controller method, ModelState.IsValid() can be used to tell if the
received model respects all its ValidationAttribute. DisplayAttribute is also used in ASP.NET MVC to
determine how to display values on a web page.

Manually Execute Validation Attributes

Most of the times, validation attributes are use inside frameworks (such as ASP.NET). Those
frameworks take care of executing the validation attributes. But what if you want to execute
validation attributes manually? Just use the Validator class (no reflection needed).

Validation Context

Any validation needs a context to give some information about what is being validated. This can

https://riptutorial.com/ 271

include various information such as the object to be validated, some properties, the name to
display in the error message, etc.

ValidationContext vc = new ValidationContext(objectToValidate); // The simplest form of
validation context. It contains only a reference to the object being validated.

Once the context is created, there are multiple ways of doing validation.

Validate an Object and All of its Properties

ICollection<ValidationResult> results = new List<ValidationResult>(); // Will contain the
results of the validation
bool isValid = Validator.TryValidateObject(objectToValidate, vc, results, true); // Validates
the object and its properties using the previously created context.
// The variable isValid will be true if everything is valid
// The results variable contains the results of the validation

Validate a Property of an Object

ICollection<ValidationResult> results = new List<ValidationResult>(); // Will contain the
results of the validation
bool isValid = Validator.TryValidatePropery(objectToValidate.PropertyToValidate, vc, results,
true); // Validates the property using the previously created context.
// The variable isValid will be true if everything is valid
// The results variable contains the results of the validation

And More

To learn more about manual validation see:

ValidationContext Class Documentation•
Validator Class Documentation•

Read Data Annotation online: https://riptutorial.com/csharp/topic/4942/data-annotation

https://riptutorial.com/ 272

https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.validationcontext(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.validator(v=vs.110).aspx
https://riptutorial.com/csharp/topic/4942/data-annotation

Chapter 45: DateTime Methods

Examples

DateTime.Add(TimeSpan)

// Calculate what day of the week is 36 days from this instant.
System.DateTime today = System.DateTime.Now;
System.TimeSpan duration = new System.TimeSpan(36, 0, 0, 0);
System.DateTime answer = today.Add(duration);
System.Console.WriteLine("{0:dddd}", answer);

DateTime.AddDays(Double)

Add days into a dateTime object.

DateTime today = DateTime.Now;
DateTime answer = today.AddDays(36);
Console.WriteLine("Today: {0:dddd}", today);
Console.WriteLine("36 days from today: {0:dddd}", answer);

You also can subtract days passing a negative value:

DateTime today = DateTime.Now;
DateTime answer = today.AddDays(-3);
Console.WriteLine("Today: {0:dddd}", today);
Console.WriteLine("-3 days from today: {0:dddd}", answer);

DateTime.AddHours(Double)

double[] hours = {.08333, .16667, .25, .33333, .5, .66667, 1, 2,
 29, 30, 31, 90, 365};
DateTime dateValue = new DateTime(2009, 3, 1, 12, 0, 0);

foreach (double hour in hours)
 Console.WriteLine("{0} + {1} hour(s) = {2}", dateValue, hour,
 dateValue.AddHours(hour));

DateTime.AddMilliseconds(Double)

string dateFormat = "MM/dd/yyyy hh:mm:ss.fffffff";
DateTime date1 = new DateTime(2010, 9, 8, 16, 0, 0);
Console.WriteLine("Original date: {0} ({1:N0} ticks)\n",
 date1.ToString(dateFormat), date1.Ticks);

DateTime date2 = date1.AddMilliseconds(1);
Console.WriteLine("Second date: {0} ({1:N0} ticks)",
 date2.ToString(dateFormat), date2.Ticks);
Console.WriteLine("Difference between dates: {0} ({1:N0} ticks)\n",

https://riptutorial.com/ 273

 date2 - date1, date2.Ticks - date1.Ticks);

DateTime date3 = date1.AddMilliseconds(1.5);
Console.WriteLine("Third date: {0} ({1:N0} ticks)",
 date3.ToString(dateFormat), date3.Ticks);
Console.WriteLine("Difference between dates: {0} ({1:N0} ticks)",
 date3 - date1, date3.Ticks - date1.Ticks);

DateTime.Compare(DateTime t1, DateTime t2)

DateTime date1 = new DateTime(2009, 8, 1, 0, 0, 0);
DateTime date2 = new DateTime(2009, 8, 1, 12, 0, 0);
int result = DateTime.Compare(date1, date2);
string relationship;

if (result < 0)
 relationship = "is earlier than";
else if (result == 0)
 relationship = "is the same time as";
else relationship = "is later than";

Console.WriteLine("{0} {1} {2}", date1, relationship, date2);

DateTime.DaysInMonth(Int32,Int32)

const int July = 7;
const int Feb = 2;

int daysInJuly = System.DateTime.DaysInMonth(2001, July);
Console.WriteLine(daysInJuly);

// daysInFeb gets 28 because the year 1998 was not a leap year.
int daysInFeb = System.DateTime.DaysInMonth(1998, Feb);
Console.WriteLine(daysInFeb);

// daysInFebLeap gets 29 because the year 1996 was a leap year.
int daysInFebLeap = System.DateTime.DaysInMonth(1996, Feb);
Console.WriteLine(daysInFebLeap);

DateTime.AddYears(Int32)

Add years on the dateTime object:

DateTime baseDate = new DateTime(2000, 2, 29);
Console.WriteLine("Base Date: {0:d}\n", baseDate);

// Show dates of previous fifteen years.
for (int ctr = -1; ctr >= -15; ctr--)
 Console.WriteLine("{0,2} year(s) ago:{1:d}",
 Math.Abs(ctr), baseDate.AddYears(ctr));

Console.WriteLine();

// Show dates of next fifteen years.
for (int ctr = 1; ctr <= 15; ctr++)

https://riptutorial.com/ 274

 Console.WriteLine("{0,2} year(s) from now: {1:d}",
 ctr, baseDate.AddYears(ctr));

Pure functions warning when dealing with DateTime

Wikipedia currently defines a pure function as follows:

The function always evaluates the same result value given the same argument value(s). The
function result value cannot depend on any hidden information or state that may change
while program execution proceeds or between different executions of the program, nor can it
depend on any external input from I/O devices .

1.

Evaluation of the result does not cause any semantically observable side effect or output,
such as mutation of mutable objects or output to I/O devices

2.

As a developer you need to be aware of pure methods and you will stumble upon these a lot in
many areas. One I have seen that bites many junior developers is working with DateTime class
methods. A lot of these are pure and if you are unaware of these you can be in for a suprise. An
example:

 DateTime sample = new DateTime(2016, 12, 25);
 sample.AddDays(1);
 Console.WriteLine(sample.ToShortDateString());

Given the example above one may expect the result printed to console to be '26/12/2016' but in
reality you end up with the same date. This is because AddDays is a pure method and does not
affect the original date. To get the expected output you would have to modify the AddDays call to
the following:

 sample = sample.AddDays(1);

DateTime.Parse(String)

// Converts the string representation of a date and time to its DateTime equivalent

var dateTime = DateTime.Parse("14:23 22 Jul 2016");

Console.WriteLine(dateTime.ToString());

DateTime.TryParse(String, DateTime)

// Converts the specified string representation of a date and time to its DateTime equivalent
and returns a value that indicates whether the conversion succeeded

string[] dateTimeStrings = new []{
 "14:23 22 Jul 2016",
 "99:23 2x Jul 2016",
 "22/7/2016 14:23:00"
};

foreach(var dateTimeString in dateTimeStrings){

https://riptutorial.com/ 275

 DateTime dateTime;

 bool wasParsed = DateTime.TryParse(dateTimeString, out dateTime);

 string result = dateTimeString +
 (wasParsed
 ? $"was parsed to {dateTime}"
 : "can't be parsed to DateTime");

 Console.WriteLine(result);
}

Parse and TryParse with culture info

You might want to use it when parsing DateTimes from different cultures (languages), following
example parses Dutch date.

DateTime dateResult;
var dutchDateString = "31 oktober 1999 04:20";
var dutchCulture = CultureInfo.CreateSpecificCulture("nl-NL");
DateTime.TryParse(dutchDateString, dutchCulture, styles, out dateResult);
// output {31/10/1999 04:20:00}

Example of Parse:

DateTime.Parse(dutchDateString, dutchCulture)
// output {31/10/1999 04:20:00}

DateTime as initializer in for-loop

// This iterates through a range between two DateTimes
// with the given iterator (any of the Add methods)

DateTime start = new DateTime(2016, 01, 01);
DateTime until = new DateTime(2016, 02, 01);

// NOTICE: As the add methods return a new DateTime you have
// to overwrite dt in the iterator like dt = dt.Add()
for (DateTime dt = start; dt < until; dt = dt.AddDays(1))
{
 Console.WriteLine("Added {0} days. Resulting DateTime: {1}",
 (dt - start).Days, dt.ToString());
}

Iterating on a TimeSpan works the same way.

DateTime ToString, ToShortDateString, ToLongDateString and ToString
formatted

using System;

public class Program

https://riptutorial.com/ 276

https://msdn.microsoft.com/en-gb/library/ee825488(v=cs.20).aspx

{
 public static void Main()
 {
 var date = new DateTime(2016,12,31);

 Console.WriteLine(date.ToString()); //Outputs: 12/31/2016 12:00:00 AM
 Console.WriteLine(date.ToShortDateString()); //Outputs: 12/31/2016
 Console.WriteLine(date.ToLongDateString()); //Outputs: Saturday, December 31, 2016
 Console.WriteLine(date.ToString("dd/MM/yyyy")); //Outputs: 31/12/2016
 }
}

Current Date

To get the current date you use the DateTime.Today property. This returns a DateTime object with
today's date. When this is then converted .ToString() it is done so in your system's locality by
default.

For example:

Console.WriteLine(DateTime.Today);

Writes today's date, in your local format to the console.

DateTime Formating

Standard DateTime Formatting

DateTimeFormatInfo specifies a set of specifiers for simple date and time formating. Every
specifier correspond to a particular DateTimeFormatInfo format pattern.

//Create datetime
DateTime dt = new DateTime(2016,08,01,18,50,23,230);

var t = String.Format("{0:t}", dt); // "6:50 PM" ShortTime
var d = String.Format("{0:d}", dt); // "8/1/2016" ShortDate
var T = String.Format("{0:T}", dt); // "6:50:23 PM" LongTime
var D = String.Format("{0:D}", dt); // "Monday, August 1, 2016" LongDate
var f = String.Format("{0:f}", dt); // "Monday, August 1, 2016 6:50 PM"
LongDate+ShortTime
var F = String.Format("{0:F}", dt); // "Monday, August 1, 2016 6:50:23 PM" FullDateTime
var g = String.Format("{0:g}", dt); // "8/1/2016 6:50 PM"
ShortDate+ShortTime
var G = String.Format("{0:G}", dt); // "8/1/2016 6:50:23 PM"
ShortDate+LongTime
var m = String.Format("{0:m}", dt); // "August 1" MonthDay
var y = String.Format("{0:y}", dt); // "August 2016" YearMonth
var r = String.Format("{0:r}", dt); // "SMon, 01 Aug 2016 18:50:23 GMT" RFC1123
var s = String.Format("{0:s}", dt); // "2016-08-01T18:50:23" SortableDateTime
var u = String.Format("{0:u}", dt); // "2016-08-01 18:50:23Z"
UniversalSortableDateTime

Custom DateTime Formatting

https://riptutorial.com/ 277

There are following custom format specifiers:

y (year)•
M (month)•
d (day)•
h (hour 12)•
H (hour 24)•
m (minute)•
s (second)•
f (second fraction)•
F (second fraction, trailing zeroes are trimmed)•
t (P.M or A.M)•
z (time zone).•

var year = String.Format("{0:y yy yyy yyyy}", dt); // "16 16 2016 2016" year
var month = String.Format("{0:M MM MMM MMMM}", dt); // "8 08 Aug August" month
var day = String.Format("{0:d dd ddd dddd}", dt); // "1 01 Mon Monday" day
var hour = String.Format("{0:h hh H HH}", dt); // "6 06 18 18" hour 12/24
var minute = String.Format("{0:m mm}", dt); // "50 50" minute
var secound = String.Format("{0:s ss}", dt); // "23 23" second
var fraction = String.Format("{0:f ff fff ffff}", dt); // "2 23 230 2300" sec.fraction
var fraction2 = String.Format("{0:F FF FFF FFFF}", dt); // "2 23 23 23" without zeroes
var period = String.Format("{0:t tt}", dt); // "P PM" A.M. or P.M.
var zone = String.Format("{0:z zz zzz}", dt); // "+0 +00 +00:00" time zone

You can use also date separator / (slash) and time sepatator : (colon).

For code example

For more information MSDN.

DateTime.ParseExact(String,String,IFormatProvider)

Converts the specified string representation of a date and time to its DateTime equivalent using
the specified format and culture-specific format information. The format of the string representation
must match the specified format exactly.

Convert a specific format string to equivalent DateTime

Let's say we have a culture-specific DateTime string 08-07-2016 11:30:12 PM as MM-dd-yyyy hh:mm:ss
tt format and we want it to convert to equivalent DateTime object

string str = "08-07-2016 11:30:12 PM";
DateTime date = DateTime.ParseExact(str, "MM-dd-yyyy hh:mm:ss tt",
CultureInfo.CurrentCulture);

Convert a date time string to equivalent DateTime object without any specific culture format

Let's say we have a DateTime string in dd-MM-yy hh:mm:ss tt format and we want it to convert to
equivalent DateTime object, without any specific culture information

https://riptutorial.com/ 278

https://dotnetfiddle.net/rcovMN
https://msdn.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.aspx

string str = "17-06-16 11:30:12 PM";
DateTime date = DateTime.ParseExact(str, "dd-MM-yy hh:mm:ss tt",
CultureInfo.InvariantCulture);

Convert a date time string to equivalent DateTime object without any specific culture
format with different format

Let's say we have a Date string , example like '23-12-2016' or '12/23/2016' and we want it to
convert to equivalent DateTime object, without any specific culture information

 string date = '23-12-2016' or date = 12/23/2016';
 string[] formats = new string[] {"dd-MM-yyyy","MM/dd/yyyy"}; // even can add more possible
formats.
 DateTime date = DateTime.ParseExact(date,formats,
CultureInfo.InvariantCulture,DateTimeStyles.None);

NOTE : System.Globalization needs to be added for CultureInfo Class

DateTime.TryParseExact(String,String,IFormatProvider,DateTimeStyles,DateTime)

Converts the specified string representation of a date and time to its DateTime equivalent using
the specified format, culture-specific format information, and style. The format of the string
representation must match the specified format exactly. The method returns a value that indicates
whether the conversion succeeded.

For Example

CultureInfo enUS = new CultureInfo("en-US");
string dateString;
System.DateTime dateValue;

Parse date with no style flags.

dateString = " 5/01/2009 8:30 AM";
if (DateTime.TryParseExact(dateString, "g", enUS, DateTimeStyles.None, out dateValue))
{
 Console.WriteLine("Converted '{0}' to {1} ({2}).", dateString, dateValue, dateValue.Kind);
}
else
{
 Console.WriteLine("'{0}' is not in an acceptable format.", dateString);
}

// Allow a leading space in the date string.
if(DateTime.TryParseExact(dateString, "g", enUS, DateTimeStyles.AllowLeadingWhite, out
dateValue))
{
 Console.WriteLine("Converted '{0}' to {1} ({2}).", dateString, dateValue, dateValue.Kind);
else
{
 Console.WriteLine("'{0}' is not in an acceptable format.", dateString);
}

https://riptutorial.com/ 279

Use custom formats with M and MM.

dateString = "5/01/2009 09:00";
if(DateTime.TryParseExact(dateString, "M/dd/yyyy hh:mm", enUS, DateTimeStyles.None, out
dateValue))
{
 Console.WriteLine("Converted '{0}' to {1} ({2}).", dateString, dateValue, dateValue.Kind);
}
else
{
 Console.WriteLine("'{0}' is not in an acceptable format.", dateString);
}

// Allow a leading space in the date string.
if(DateTime.TryParseExact(dateString, "MM/dd/yyyy hh:mm", enUS, DateTimeStyles.None, out
dateValue))
{
 Console.WriteLine("Converted '{0}' to {1} ({2}).", dateString, dateValue, dateValue.Kind);
}
else
{
 Console.WriteLine("'{0}' is not in an acceptable format.", dateString);
}

Parse a string with time zone information.

dateString = "05/01/2009 01:30:42 PM -05:00";
if (DateTime.TryParseExact(dateString, "MM/dd/yyyy hh:mm:ss tt zzz", enUS,
DateTimeStyles.None, out dateValue))
{
 Console.WriteLine("Converted '{0}' to {1} ({2}).", dateString, dateValue, dateValue.Kind);
}
else
{
 Console.WriteLine("'{0}' is not in an acceptable format.", dateString);
}

// Allow a leading space in the date string.
if (DateTime.TryParseExact(dateString, "MM/dd/yyyy hh:mm:ss tt zzz", enUS,
DateTimeStyles.AdjustToUniversal, out dateValue))
{
 Console.WriteLine("Converted '{0}' to {1} ({2}).", dateString, dateValue, dateValue.Kind);
}
else
{
 Console.WriteLine("'{0}' is not in an acceptable format.", dateString);
}

Parse a string represengting UTC.

dateString = "2008-06-11T16:11:20.0904778Z";
if(DateTime.TryParseExact(dateString, "o", CultureInfo.InvariantCulture, DateTimeStyles.None,
out dateValue))
{
 Console.WriteLine("Converted '{0}' to {1} ({2}).", dateString, dateValue, dateValue.Kind);
}
else

https://riptutorial.com/ 280

{
 Console.WriteLine("'{0}' is not in an acceptable format.", dateString);
}

if (DateTime.TryParseExact(dateString, "o", CultureInfo.InvariantCulture,
DateTimeStyles.RoundtripKind, out dateValue))
{
 Console.WriteLine("Converted '{0}' to {1} ({2}).", dateString, dateValue, dateValue.Kind);
}
else
{
 Console.WriteLine("'{0}' is not in an acceptable format.", dateString);
}

Outputs

' 5/01/2009 8:30 AM' is not in an acceptable format.
Converted ' 5/01/2009 8:30 AM' to 5/1/2009 8:30:00 AM (Unspecified).
Converted '5/01/2009 09:00' to 5/1/2009 9:00:00 AM (Unspecified).
'5/01/2009 09:00' is not in an acceptable format.
Converted '05/01/2009 01:30:42 PM -05:00' to 5/1/2009 11:30:42 AM (Local).
Converted '05/01/2009 01:30:42 PM -05:00' to 5/1/2009 6:30:42 PM (Utc).
Converted '2008-06-11T16:11:20.0904778Z' to 6/11/2008 9:11:20 AM (Local).
Converted '2008-06-11T16:11:20.0904778Z' to 6/11/2008 4:11:20 PM (Utc).

Read DateTime Methods online: https://riptutorial.com/csharp/topic/1587/datetime-methods

https://riptutorial.com/ 281

https://riptutorial.com/csharp/topic/1587/datetime-methods

Chapter 46: Delegates

Remarks

Summary

A delegate type is a type representing a particular method signature. An instance of this type
refers to a particular method with a matching signature. Method parameters may have delegate
types, and so this one method to be passed a reference to another method, which may then be
invoked

In-built delegate types: Action<...>, Predicate<T> and
Func<...,TResult>

The System namespace contains Action<...>,Predicate<T> and Func<...,TResult> delegates, where
the "..." represents between 0 and 16 generic type parameters (for 0 parameters, Action is non-
generic).

Func represents methods with a return type matching TResult, and Action represents methods
without a return value (void). In both cases, the additional generic type parameters match, in
order, the method parameters.

Predicate represents method with boolean return type, T is input parameter.

Custom delegate types

Named delegate types can be declared using the delegate keyword.

Invoking delegates

Delegates can be invoked using the same syntax as methods: the name of the delegate instance,
followed by parentheses containing any parameters.

Assigning to delegates

Delegates can be assigned to in the following ways:

Assigning a named method•
Assigning an anonymous method using a lambda•
Assigning a named method using the delegate keyword.•

https://riptutorial.com/ 282

Combining delegates

Multiple delegate objects can be assigned to one delegate instance by using the + operator. The -
operator can be used to remove a component delegate from another delegate.

Examples

Underlying references of named method delegates

When assigning named methods to delegates, they will refer to the same underlying object if:

They are the same instance method, on the same instance of a class•

They are the same static method on a class

public class Greeter
{
 public void WriteInstance()
 {
 Console.WriteLine("Instance");
 }

 public static void WriteStatic()
 {
 Console.WriteLine("Static");
 }
}

// ...

Greeter greeter1 = new Greeter();
Greeter greeter2 = new Greeter();

Action instance1 = greeter1.WriteInstance;
Action instance2 = greeter2.WriteInstance;
Action instance1Again = greeter1.WriteInstance;

Console.WriteLine(instance1.Equals(instance2)); // False
Console.WriteLine(instance1.Equals(instance1Again)); // True

Action @static = Greeter.WriteStatic;
Action staticAgain = Greeter.WriteStatic;

Console.WriteLine(@static.Equals(staticAgain)); // True

•

Declaring a delegate type

The following syntax creates a delegate type with name NumberInOutDelegate, representing a
method which takes an int and returns an int.

public delegate int NumberInOutDelegate(int input);

https://riptutorial.com/ 283

This can be used as follows:

public static class Program
{
 static void Main()
 {
 NumberInOutDelegate square = MathDelegates.Square;
 int answer1 = square(4);
 Console.WriteLine(answer1); // Will output 16

 NumberInOutDelegate cube = MathDelegates.Cube;
 int answer2 = cube(4);
 Console.WriteLine(answer2); // Will output 64
 }
}

public static class MathDelegates
{
 static int Square (int x)
 {
 return x*x;
 }

 static int Cube (int x)
 {
 return x*x*x;
 }
}

The example delegate instance is executed in the same way as the Square method. A delegate
instance literally acts as a delegate for the caller: the caller invokes the delegate, and then the
delegate calls the target method. This indirection decouples the caller from the target method.

You can declare a generic delegate type, and in that case you may specify that the type is
covariant (out) or contravariant (in) in some of the type arguments. For example:

public delegate TTo Converter<in TFrom, out TTo>(TFrom input);

Like other generic types, generic delegate types can have constraints, such as where TFrom :
struct, IConvertible where TTo : new().

Avoid co- and contravariance for delegate types that are meant to be used for multicast delegates,
such as event handler types. This is because concatenation (+) can fail if the run-time type is
different from the compile-time type because of the variance. For example, avoid:

public delegate void EventHandler<in TEventArgs>(object sender, TEventArgs e);

Instead, use an invariant generic type:

public delegate void EventHandler<TEventArgs>(object sender, TEventArgs e);

https://riptutorial.com/ 284

Also supported are delegates where some parameters are modified by ref or out, as in:

public delegate bool TryParser<T>(string input, out T result);

(sample use TryParser<decimal> example = decimal.TryParse;), or delegates where the last
parameter has the params modifier. Delegate types can have optional parameters (supply default
values). Delegate types can use pointer types like int* or char* in their signatures or return types
(use unsafe keyword). A delegate type and its parameters can carry custom attributes.

The Func, Action and Predicate delegate types

The System namespace contains Func<..., TResult> delegate types with between 0 and 15
generic parameters, returning type TResult.

private void UseFunc(Func<string> func)
{
 string output = func(); // Func with a single generic type parameter returns that type
 Console.WriteLine(output);
}

private void UseFunc(Func<int, int, string> func)
{
 string output = func(4, 2); // Func with multiple generic type parameters takes all but
the first as parameters of that type
 Console.WriteLine(output);
}

The System namespace also contains Action<...> delegate types with different number of generic
parameters (from 0 to 16). It is similar to Func<T1, .., Tn>, but it always returns void.

private void UseAction(Action action)
{
 action(); // The non-generic Action has no parameters
}

private void UseAction(Action<int, string> action)
{
 action(4, "two"); // The generic action is invoked with parameters matching its type
arguments
}

Predicate<T> is also a form of Func but it will always return bool. A predicate is a way of specifying a
custom criteria. Depending on the value of the input and the logic defined within the predicate, it
will return either true or false. Predicate<T> therefore behaves in the same way as Func<T, bool>
and both can be initialized and used in the same way.

Predicate<string> predicate = s => s.StartsWith("a");
Func<string, bool> func = s => s.StartsWith("a");

// Both of these return true
var predicateReturnsTrue = predicate("abc");
var funcReturnsTrue = func("abc");

https://riptutorial.com/ 285

// Both of these return false
var predicateReturnsFalse = predicate("xyz");
var funcReturnsFalse = func("xyz");

The choice of whether to use Predicate<T> or Func<T, bool> is really a matter of opinion.
Predicate<T> is arguably more expressive of the author's intent, while Func<T, bool> is likely to be
familiar to a greater proportion of C# developers.

In addition to that, there are some cases where only one of the options is available, especially
when interacting with another API. For example List<T> and Array<T> generally take Predicate<T>
for their methods, while most LINQ extensions only accept Func<T, bool>.

Assigning a named method to a delegate

Named methods can be assigned to delegates with matching signatures:

public static class Example
{
 public static int AddOne(int input)
 {
 return input + 1;
 }
}

Func<int,int> addOne = Example.AddOne

Example.AddOne takes an int and returns an int, its signature matches the delegate Func<int,int>.
Example.AddOne can be directly assigned to addOne because they have matching signatures.

Delegate Equality

Calling .Equals() on a delegate compares by reference equality:

Action action1 = () => Console.WriteLine("Hello delegates");
Action action2 = () => Console.WriteLine("Hello delegates");
Action action1Again = action1;

Console.WriteLine(action1.Equals(action1)) // True
Console.WriteLine(action1.Equals(action2)) // False
Console.WriteLine(action1Again.Equals(action1)) // True

These rules also apply when doing += or -= on a multicast delegate, for example when subscribing
and unsubscribing from events.

Assigning to a delegate by lambda

Lambdas can be used to create anonymous methods to assign to a delegate:

Func<int,int> addOne = x => x+1;

https://riptutorial.com/ 286

Note that the explicit declaration of type is required when creating a variable this way:

var addOne = x => x+1; // Does not work

Passing delegates as parameters

Delegates can be used as typed function pointers:

class FuncAsParameters
{
 public void Run()
 {
 DoSomething(ErrorHandler1);
 DoSomething(ErrorHandler2);
 }

 public bool ErrorHandler1(string message)
 {
 Console.WriteLine(message);
 var shouldWeContinue = ...
 return shouldWeContinue;
 }

 public bool ErrorHandler2(string message)
 {
 // ...Write message to file...
 var shouldWeContinue = ...
 return shouldWeContinue;
 }

 public void DoSomething(Func<string, bool> errorHandler)
 {
 // In here, we don't care what handler we got passed!
 ...
 if (...error...)
 {
 if (!errorHandler("Some error occurred!"))
 {
 // The handler decided we can't continue
 return;
 }
 }
 }
}

Combine Delegates (Multicast Delegates)

Addition + and subtraction - operations can be used to combine delegate instances. The delegate
contains a list of the assigned delegates.

using System;
using System.Reflection;
using System.Reflection.Emit;

namespace DelegatesExample {
 class MainClass {

https://riptutorial.com/ 287

 private delegate void MyDelegate(int a);

 private static void PrintInt(int a) {
 Console.WriteLine(a);
 }

 private static void PrintType<T>(T a) {
 Console.WriteLine(a.GetType());
 }

 public static void Main (string[] args)
 {
 MyDelegate d1 = PrintInt;
 MyDelegate d2 = PrintType;

 // Output:
 // 1
 d1(1);

 // Output:
 // System.Int32
 d2(1);

 MyDelegate d3 = d1 + d2;
 // Output:
 // 1
 // System.Int32
 d3(1);

 MyDelegate d4 = d3 - d2;
 // Output:
 // 1
 d4(1);

 // Output:
 // True
 Console.WriteLine(d1 == d4);
 }
 }
}

In this example d3 is a combination of d1 and d2 delegates, so when called the program outputs
both 1 and System.Int32 strings.

Combining delegates with non void return types:

If a multicast delegate has a nonvoid return type, the caller receives the return value from the last
method to be invoked. The preceding methods are still called, but their return values are
discarded.

 class Program
 {
 public delegate int Transformer(int x);

 static void Main(string[] args)
 {
 Transformer t = Square;

https://riptutorial.com/ 288

 t += Cube;
 Console.WriteLine(t(2)); // O/P 8
 }

 static int Square(int x) { return x * x; }

 static int Cube(int x) { return x*x*x; }
 }

t(2) will call first Square and then Cube. The return value of Square is discarded and return value of
the last method i.e. Cube is retained.

Safe invoke multicast delegate

Ever wanted to call a multicast delegate but you want the entire invokation list to be called even if
an exception occurs in any in the chain. Then you are in luck, I have created an extension method
that does just that, throwing an AggregateException only after execution of the entire list completes:

public static class DelegateExtensions
{
 public static void SafeInvoke(this Delegate del,params object[] args)
 {
 var exceptions = new List<Exception>();

 foreach (var handler in del.GetInvocationList())
 {
 try
 {
 handler.Method.Invoke(handler.Target, args);
 }
 catch (Exception ex)
 {
 exceptions.Add(ex);
 }
 }

 if(exceptions.Any())
 {
 throw new AggregateException(exceptions);
 }
 }
}

public class Test
{
 public delegate void SampleDelegate();

 public void Run()
 {
 SampleDelegate delegateInstance = this.Target2;
 delegateInstance += this.Target1;

 try
 {
 delegateInstance.SafeInvoke();
 }
 catch(AggregateException ex)
 {

https://riptutorial.com/ 289

 // Do any exception handling here
 }
 }

 private void Target1()
 {
 Console.WriteLine("Target 1 executed");
 }

 private void Target2()
 {
 Console.WriteLine("Target 2 executed");
 throw new Exception();
 }
}

This outputs:

Target 2 executed
Target 1 executed

Invoking directly, without SaveInvoke, would only execute Target 2.

Closure inside a delegate

Closures are inline anonymous methods that have the ability to use Parent method variables and
other anonymous methods which are defined in the parent's scope.

In essence, a closure is a block of code which can be executed at a later time, but
which maintains the environment in which it was first created - i.e. it can still use the
local variables etc of the method which created it, even after that method has finished
executing. -- Jon Skeet

delegate int testDel();
static void Main(string[] args)
{
 int foo = 4;
 testDel myClosure = delegate()
 {
 return foo;
 };
 int bar = myClosure();

}

Example taken from Closures in .NET.

Encapsulating transformations in funcs

public class MyObject{
 public DateTime? TestDate { get; set; }

 public Func<MyObject, bool> DateIsValid = myObject => myObject.TestDate.HasValue &&

https://riptutorial.com/ 290

http://stackoverflow.com/a/428621/1016343

myObject.TestDate > DateTime.Now;

 public void DoSomething(){
 //We can do this:
 if(this.TestDate.HasValue && this.TestDate > DateTime.Now){
 CallAnotherMethod();
 }

 //or this:
 if(DateIsValid(this)){
 CallAnotherMethod();
 }
 }
}

In the spirit of clean coding, encapsulating checks and transformations like the one above as a
Func can make your code easier to read and understand. While the above example is very simple,
what if there were multiple DateTime properties each with their own differing validation rules and
we wanted to check different combinations? Simple, one-line Funcs that each have established
return logic can be both readable and reduce the apparent complexity of your code. Consider the
below Func calls and imagine how much more code would be cluttering up the method:

public void CheckForIntegrity(){
 if(ShipDateIsValid(this) && TestResultsHaveBeenIssued(this) && !TestResultsFail(this)){
 SendPassingTestNotification();
 }
}

Read Delegates online: https://riptutorial.com/csharp/topic/1194/delegates

https://riptutorial.com/ 291

https://riptutorial.com/csharp/topic/1194/delegates

Chapter 47: Dependency Injection

Remarks

Wikipedia definition of dependency injection is:

In software engineering, dependency injection is a software design pattern that implements
inversion of control for resolving dependencies. A dependency is an object that can be used (a
service). An injection is the passing of a dependency to a dependent object (a client) that would
use it.

**This site features an answer to the question How to explain Dependency Injection to a 5-
year old. The most highly rated answer, provided by John Munsch provides a surprisingly
accurate analogy targeted at the (imaginary) five-year-old inquisitor: When you go and get
things out of the refrigerator for yourself, you can cause problems. You might leave the
door open, you might get something Mommy or Daddy doesn’t want you to have. You
might even be looking for something we don’t even have or which has expired. What you
should be doing is stating a need, “I need something to drink with lunch,” and then we will
make sure you have something when you sit down to eat. What this means in terms of
object-oriented software development is this: collaborating classes (the five-year-olds)
should rely on the infrastructure (the parents) to provide

** This code uses MEF to dynamically load the dll and resolve the dependencies. ILogger
dependency is resolved by MEF and injectd into the user class. User class never receives
Concrete implementation of ILogger and it has no idea of what or which type of logger its using.**

Examples

Dependency injection using MEF

public interface ILogger
{
 void Log(string message);
}

[Export(typeof(ILogger))]
[ExportMetadata("Name", "Console")]
public class ConsoleLogger:ILogger
{
 public void Log(string message)
 {
 Console.WriteLine(message);
 }
}

[Export(typeof(ILogger))]
[ExportMetadata("Name", "File")]
public class FileLogger:ILogger
{

https://riptutorial.com/ 292

 public void Log(string message)
 {
 //Write the message to file
 }
}

public class User
{
 private readonly ILogger logger;
 public User(ILogger logger)
 {
 this.logger = logger;
 }
 public void LogUser(string message)
 {
 logger.Log(message) ;
 }
}

public interface ILoggerMetaData
{
 string Name { get; }
}

internal class Program
{
 private CompositionContainer _container;

 [ImportMany]
 private IEnumerable<Lazy<ILogger, ILoggerMetaData>> _loggers;

 private static void Main()
 {
 ComposeLoggers();
 Lazy<ILogger, ILoggerMetaData> loggerNameAndLoggerMapping = _ loggers.First((n) =>
((n.Metadata.Name.ToUpper() =="Console"));
 ILogger logger= loggerNameAndLoggerMapping.Value
 var user = new User(logger);
 user.LogUser("user name");
 }

 private void ComposeLoggers()
 {
 //An aggregate catalog that combines multiple catalogs
 var catalog = new AggregateCatalog();
 string loggersDllDirectory =Path.Combine(Utilities.GetApplicationDirectory(),
"Loggers");
 if (!Directory.Exists(loggersDllDirectory))
 {
 Directory.CreateDirectory(loggersDllDirectory);
 }
 //Adds all the parts found in the same assembly as the PluginManager class
 catalog.Catalogs.Add(new AssemblyCatalog(typeof(Program).Assembly));
 catalog.Catalogs.Add(new DirectoryCatalog(loggersDllDirectory));

 //Create the CompositionContainer with the parts in the catalog
 _container = new CompositionContainer(catalog);

 //Fill the imports of this object
 try
 {

https://riptutorial.com/ 293

 this._container.ComposeParts(this);
 }
 catch (CompositionException compositionException)
 {
 throw new CompositionException(compositionException.Message);
 }
 }
}

Dependency Injection C# and ASP.NET with Unity

First why we should use depedency injection in our code ? We want to decouple other
components from other classes in our program. For example we have class AnimalController
which have code like this :

public class AnimalController()
{
 private SantaAndHisReindeer _SantaAndHisReindeer = new SantaAndHisReindeer();

 public AnimalController(){
 Console.WriteLine("");
 }
}

We look at this code and we think everything is ok but now our AnimalController is reliant on
object _SantaAndHisReindeer. Automatically my Controller is bad to testing and reusability of my
code will be very hard.

Very good explanation why we should use Depedency Injection and interfaces here.

If we want Unity to handle DI, the road to achieve this is very simple :) With NuGet(package
manager) we can easily import unity to our code.

in Visual Studio Tools -> NuGet Package Manager -> Manage Packages for Solution -
> in search input write unity -> choose our project-> click install

Now two files with nice comments will be created.

in App-Data folder UnityConfig.cs and UnityMvcActivator.cs

UnityConfig - in RegisterTypes method, we can see type that will be injection in our
constructors.

namespace Vegan.WebUi.App_Start
{

public class UnityConfig
{
 #region Unity Container
 private static Lazy<IUnityContainer> container = new Lazy<IUnityContainer>(() =>
 {
 var container = new UnityContainer();
 RegisterTypes(container);

https://riptutorial.com/ 294

http://stackoverflow.com/questions/14301389/why-does-one-use-dependency-injection

 return container;
 });

 /// <summary>
 /// Gets the configured Unity container.
 /// </summary>
 public static IUnityContainer GetConfiguredContainer()
 {
 return container.Value;
 }
 #endregion

 /// <summary>Registers the type mappings with the Unity container.</summary>
 /// <param name="container">The unity container to configure.</param>
 /// <remarks>There is no need to register concrete types such as controllers or API
controllers (unless you want to
 /// change the defaults), as Unity allows resolving a concrete type even if it was not
previously registered.</remarks>
 public static void RegisterTypes(IUnityContainer container)
 {
 // NOTE: To load from web.config uncomment the line below. Make sure to add a
Microsoft.Practices.Unity.Configuration to the using statements.
 // container.LoadConfiguration();

 // TODO: Register your types here
 // container.RegisterType<IProductRepository, ProductRepository>();

 container.RegisterType<ISanta, SantaAndHisReindeer>();

 }
 }
}

UnityMvcActivator - > also with nice comments which say that this class integrates
Unity with ASP.NET MVC

using System.Linq;
using System.Web.Mvc;
using Microsoft.Practices.Unity.Mvc;

[assembly:
WebActivatorEx.PreApplicationStartMethod(typeof(Vegan.WebUi.App_Start.UnityWebActivator),
"Start")]
[assembly:
WebActivatorEx.ApplicationShutdownMethod(typeof(Vegan.WebUi.App_Start.UnityWebActivator),
"Shutdown")]

namespace Vegan.WebUi.App_Start
{
/// <summary>Provides the bootstrapping for integrating Unity with ASP.NET MVC.</summary>
public static class UnityWebActivator
{
 /// <summary>Integrates Unity when the application starts.</summary>
 public static void Start()
 {
 var container = UnityConfig.GetConfiguredContainer();

FilterProviders.Providers.Remove(FilterProviders.Providers.OfType<FilterAttributeFilterProvider>().First());

https://riptutorial.com/ 295

 FilterProviders.Providers.Add(new UnityFilterAttributeFilterProvider(container));

 DependencyResolver.SetResolver(new UnityDependencyResolver(container));

 // TODO: Uncomment if you want to use PerRequestLifetimeManager
 //
Microsoft.Web.Infrastructure.DynamicModuleHelper.DynamicModuleUtility.RegisterModule(typeof(UnityPerRequestHttpModule));

 }

 /// <summary>Disposes the Unity container when the application is shut down.</summary>
 public static void Shutdown()
 {
 var container = UnityConfig.GetConfiguredContainer();
 container.Dispose();
 }
}
}

Now we can decouple our Controller from class SantAndHisReindeer :)

 public class AnimalController()
 {
 private readonly SantaAndHisReindeer _SantaAndHisReindeer;

 public AnimalController(SantaAndHisReindeer SantaAndHisReindeer){

 _SantAndHisReindeer = SantaAndHisReindeer;
 }
 }

There is one final thing we must do before running our application.

In Global.asax.cs we must add new line: UnityWebActivator.Start() which will start, configure Unity
and register our types.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Optimization;
using System.Web.Routing;
using Vegan.WebUi.App_Start;

namespace Vegan.WebUi
{
 public class MvcApplication : System.Web.HttpApplication
 {
 protected void Application_Start()
 {
 AreaRegistration.RegisterAllAreas();
 FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
 RouteConfig.RegisterRoutes(RouteTable.Routes);
 BundleConfig.RegisterBundles(BundleTable.Bundles);
 UnityWebActivator.Start();
 }
 }

https://riptutorial.com/ 296

}

Read Dependency Injection online: https://riptutorial.com/csharp/topic/5766/dependency-injection

https://riptutorial.com/ 297

https://riptutorial.com/csharp/topic/5766/dependency-injection

Chapter 48: Diagnostics

Examples

Debug.WriteLine

Writes to the trace listeners in the Listeners collection when the application is compiled in debug
configuration.

public static void Main(string[] args)
{
 Debug.WriteLine("Hello");
}

In Visual Studio or Xamarin Studio this will appear in the Application Output window. This is due to
the presence of the default trace listener in the TraceListenerCollection.

Redirecting log output with TraceListeners

You can redirect the debug output to a text file by adding a TextWriterTraceListener to the
Debug.Listeners collection.

public static void Main(string[] args)
{
 TextWriterTraceListener myWriter = new TextWriterTraceListener(@"debug.txt");
 Debug.Listeners.Add(myWriter);
 Debug.WriteLine("Hello");

 myWriter.Flush();
}

You can redirect the debug output to a console application's out stream using a
ConsoleTraceListener.

public static void Main(string[] args)
{
 ConsoleTraceListener myWriter = new ConsoleTraceListener();
 Debug.Listeners.Add(myWriter);
 Debug.WriteLine("Hello");
}

Read Diagnostics online: https://riptutorial.com/csharp/topic/2147/diagnostics

https://riptutorial.com/ 298

https://msdn.microsoft.com/en-us/library/system.diagnostics.defaulttracelistener(v=vs.110).aspx
https://riptutorial.com/csharp/topic/2147/diagnostics

Chapter 49: Dynamic type

Remarks

The dynamic keyword declares a variable whose type is not known at compile time. A dynamic
variable can contain any value, and the type of the value can change during runtime.

As noted in the book "Metaprogramming in .NET", C# does not have a backing type for the dynamic
keyword:

The functionality enabled by the dynamic keyword is a clever set of compiler actions that
emit and use CallSite objects in the site container of the local execution scope. The
compiler manages what programmers perceive as dynamic object references through
those CallSite instances. The parameters, return types, fields, and properties that get
dynamic treatment at compile time may be marked with some metadata to indicate that
they were generated for dynamic use, but the underlying data type for them will always
be System.Object.

Examples

Creating a dynamic variable

dynamic foo = 123;
Console.WriteLine(foo + 234);
// 357 Console.WriteLine(foo.ToUpper())
// RuntimeBinderException, since int doesn't have a ToUpper method

foo = "123";
Console.WriteLine(foo + 234);
// 123234
Console.WriteLine(foo.ToUpper()):
// NOW A STRING

Returning dynamic

using System;

public static void Main()
{
 var value = GetValue();
 Console.WriteLine(value);
 // dynamics are useful!
}

private static dynamic GetValue()
{
 return "dynamics are useful!";
}

https://riptutorial.com/ 299

Creating a dynamic object with properties

using System;
using System.Dynamic;

dynamic info = new ExpandoObject();
info.Id = 123;
info.Another = 456;

Console.WriteLine(info.Another);
// 456

Console.WriteLine(info.DoesntExist);
// Throws RuntimeBinderException

Handling Specific Types Unknown at Compile Time

The following output equivalent results:

class IfElseExample
{
 public string DebugToString(object a)
 {
 if (a is StringBuilder)
 {
 return DebugToStringInternal(a as StringBuilder);
 }
 else if (a is List<string>)
 {
 return DebugToStringInternal(a as List<string>);
 }
 else
 {
 return a.ToString();
 }
 }

 private string DebugToStringInternal(object a)
 {
 // Fall Back
 return a.ToString();
 }

 private string DebugToStringInternal(StringBuilder sb)
 {
 return $"StringBuilder - Capacity: {sb.Capacity}, MaxCapacity: {sb.MaxCapacity},
Value: {sb.ToString()}";
 }

 private string DebugToStringInternal(List<string> list)
 {
 return $"List<string> - Count: {list.Count}, Value: {Environment.NewLine + "\t" +
string.Join(Environment.NewLine + "\t", list.ToArray())}";
 }
}

class DynamicExample
{

https://riptutorial.com/ 300

 public string DebugToString(object a)
 {
 return DebugToStringInternal((dynamic)a);
 }

 private string DebugToStringInternal(object a)
 {
 // Fall Back
 return a.ToString();
 }

 private string DebugToStringInternal(StringBuilder sb)
 {
 return $"StringBuilder - Capacity: {sb.Capacity}, MaxCapacity: {sb.MaxCapacity},
Value: {sb.ToString()}";
 }

 private string DebugToStringInternal(List<string> list)
 {
 return $"List<string> - Count: {list.Count}, Value: {Environment.NewLine + "\t" +
string.Join(Environment.NewLine + "\t", list.ToArray())}";
 }
}

The advantage to the dynamic, is adding a new Type to handle just requires adding an overload of
DebugToStringInternal of the new type. Also eliminates the need to manually cast it to the type as
well.

Read Dynamic type online: https://riptutorial.com/csharp/topic/762/dynamic-type

https://riptutorial.com/ 301

https://riptutorial.com/csharp/topic/762/dynamic-type

Chapter 50: Enum

Introduction

An enum can derive from any of the following types: byte, sbyte, short, ushort, int, uint, long,
ulong. The default is int, and can be changed by specifying the type in the enum definition:

public enum Weekday : byte { Monday = 1, Tuesday = 2, Wednesday = 3, Thursday = 4, Friday =
5 }

This is useful when P/Invoking to native code, mapping to data sources, and similar
circumstances. In general, the default int should be used, because most developers expect an
enum to be an int.

Syntax

enum Colors { Red, Green, Blue } // Enum declaration•
enum Colors : byte { Red, Green, Blue } // Declaration with specific type•
enum Colors { Red = 23, Green = 45, Blue = 12 } // Declaration with defined values•
Colors.Red // Access an element of an Enum•
int value = (int)Colors.Red // Get the int value of an enum element•
Colors color = (Colors)intValue // Get an enum element from int•

Remarks

An Enum (short for "enumerated type") is a type consisting of a set of named constants,
represented by a type-specific identifier.

Enums are most useful for representing concepts that have a (usually small) number of possible
discrete values. For example, they can be used to represent a day of the week or a month of the
year. They can be also be used as flags which can be combined or checked for, using bitwise
operations.

Examples

Get all the members values of an enum

enum MyEnum
{
 One,
 Two,
 Three
}

foreach(MyEnum e in Enum.GetValues(typeof(MyEnum)))
 Console.WriteLine(e);

https://riptutorial.com/ 302

This will print:

One
Two
Three

Enum as flags

The FlagsAttribute can be applied to an enum changing the behaviour of the ToString() to match
the nature of the enum:

[Flags]
enum MyEnum
{
 //None = 0, can be used but not combined in bitwise operations
 FlagA = 1,
 FlagB = 2,
 FlagC = 4,
 FlagD = 8
 //you must use powers of two or combinations of powers of two
 //for bitwise operations to work
}

var twoFlags = MyEnum.FlagA | MyEnum.FlagB;

// This will enumerate all the flags in the variable: "FlagA, FlagB".
Console.WriteLine(twoFlags);

Because FlagsAttribute relies on the enumeration constants to be powers of two (or their
combinations) and enum values are ultimately numeric values, you are limited by the size of the
underlying numeric type. The largest available numeric type that you can use is UInt64, which
allows you to specify 64 distinct (non-combined) flag enum constants. The enum keyword defaults
to the underlying type int, which is Int32. The compiler will allow the declaration of values wider
than 32 bit. Those will wrap around without a warning and result in two or more enum members of
the same value. Therefore, if an enum is meant to accomodate a bitset of more than 32 flags, you
need to specify a bigger type explicitely:

public enum BigEnum : ulong
{
 BigValue = 1 << 63
}

Although flags are often only a single bit, they can be combined into named "sets" for easier use.

[Flags]
enum FlagsEnum
{
 None = 0,
 Option1 = 1,
 Option2 = 2,
 Option3 = 4,

 Default = Option1 | Option3,

https://riptutorial.com/ 303

 All = Option1 | Option2 | Option3,
}

To avoid spelling out the decimal values of powers of two, the left-shift operator (<<) can also be
used to declare the same enum

[Flags]
enum FlagsEnum
{
 None = 0,
 Option1 = 1 << 0,
 Option2 = 1 << 1,
 Option3 = 1 << 2,

 Default = Option1 | Option3,
 All = Option1 | Option2 | Option3,
}

Starting with C# 7.0, binary literals can be used too.

To check if the value of enum variable has a certain flag set, the HasFlag method can be used.
Let's say we have

[Flags]
enum MyEnum
{
 One = 1,
 Two = 2,
 Three = 4
}

And a value

var value = MyEnum.One | MyEnum.Two;

With HasFlag we can check if any of the flags is set

if(value.HasFlag(MyEnum.One))
 Console.WriteLine("Enum has One");

if(value.HasFlag(MyEnum.Two))
 Console.WriteLine("Enum has Two");

if(value.HasFlag(MyEnum.Three))
 Console.WriteLine("Enum has Three");

Also we can iterate through all values of enum to get all flags that are set

var type = typeof(MyEnum);
var names = Enum.GetNames(type);

foreach (var name in names)
{
 var item = (MyEnum)Enum.Parse(type, name);

https://riptutorial.com/ 304

https://msdn.microsoft.com/en-gb/library/a1sway8w.aspx
http://www.riptutorial.com/csharp/example/6327/binary-literals
https://msdn.microsoft.com/en-us/library/system.enum.hasflag(v=vs.110).aspx

 if (value.HasFlag(item))
 Console.WriteLine("Enum has " + name);
}

Or

foreach(MyEnum flagToCheck in Enum.GetValues(typeof(MyEnum)))
{
 if(value.HasFlag(flagToCheck))
 {
 Console.WriteLine("Enum has " + flagToCheck);
 }
}

All three examples will print:

Enum has One
Enum has Two

Test flags-style enum values with bitwise logic

A flags-style enum value needs to be tested with bitwise logic because it may not match any single
value.

[Flags]
enum FlagsEnum
{
 Option1 = 1,
 Option2 = 2,
 Option3 = 4,
 Option2And3 = Option2 | Option3;

 Default = Option1 | Option3,
}

The Default value is actually a combination of two others merged with a bitwise OR. Therefore to
test for the presence of a flag we need to use a bitwise AND.

var value = FlagsEnum.Default;

bool isOption2And3Set = (value & FlagsEnum.Option2And3) == FlagsEnum.Option2And3;

Assert.True(isOption2And3Set);

Enum to string and back

public enum DayOfWeek
{
 Sunday,
 Monday,
 Tuesday,

https://riptutorial.com/ 305

 Wednesday,
 Thursday,
 Friday,
 Saturday
}

// Enum to string
string thursday = DayOfWeek.Thursday.ToString(); // "Thursday"

string seventhDay = Enum.GetName(typeof(DayOfWeek), 6); // "Saturday"

string monday = Enum.GetName(typeof(DayOfWeek), DayOfWeek.Monday); // "Monday"

// String to enum (.NET 4.0+ only - see below for alternative syntax for earlier .NET
versions)
DayOfWeek tuesday;
Enum.TryParse("Tuesday", out tuesday); // DayOfWeek.Tuesday

DayOfWeek sunday;
bool matchFound1 = Enum.TryParse("SUNDAY", out sunday); // Returns false (case-sensitive
match)

DayOfWeek wednesday;
bool matchFound2 = Enum.TryParse("WEDNESDAY", true, out wednesday); // Returns true;
DayOfWeek.Wednesday (case-insensitive match)

// String to enum (all .NET versions)
DayOfWeek friday = (DayOfWeek)Enum.Parse(typeof(DayOfWeek), "Friday"); // DayOfWeek.Friday

DayOfWeek caturday = (DayOfWeek)Enum.Parse(typeof(DayOfWeek), "Caturady"); // Thows
ArgumentException

// All names of an enum type as strings
string[] weekdays = Enum.GetNames(typeof(DayOfWeek));

Default value for enum == ZERO

The default value for an enum is zero. If an enum does not define an item with a value of zero,
its default value will be zero.

public class Program
{
 enum EnumExample
 {
 one = 1,
 two = 2
 }

 public void Main()
 {
 var e = default(EnumExample);

 if (e == EnumExample.one)
 Console.WriteLine("defaults to one");
 else
 Console.WriteLine("Unknown");

https://riptutorial.com/ 306

 }
}

Example: https://dotnetfiddle.net/l5Rwie

Enum basics

From MSDN:

An enumeration type (also named an enumeration or an enum) provides an efficient
way to define a set of named integral constants that may be assigned to a variable.

Essentially, an enum is a type that only allows a set of finite options, and each option corresponds
to a number. By default, those numbers are increasing in the order the values are declared,
starting from zero. For example, one could declare an enum for the days of the week:

public enum Day
{
 Monday,
 Tuesday,
 Wednesday,
 Thursday,
 Friday,
 Saturday,
 Sunday
}

That enum could be used like this:

// Define variables with values corresponding to specific days
Day myFavoriteDay = Day.Friday;
Day myLeastFavoriteDay = Day.Monday;

// Get the int that corresponds to myFavoriteDay
// Friday is number 4
int myFavoriteDayIndex = (int)myFavoriteDay;

// Get the day that represents number 5
Day dayFive = (Day)5;

By default the underlying type of each element in the enum is int, but byte, sbyte, short, ushort, uint,
long and ulong can be used as well. If you use a type other than int, you must specify the type
using a colon after the enum name:

public enum Day : byte
{
 // same as before
}

The numbers after the name are now bytes instead of integers. You could get the underlying type
of the enum as follows:

https://riptutorial.com/ 307

https://dotnetfiddle.net/l5Rwie
https://msdn.microsoft.com/en-us/library/cc138362.aspx

Enum.GetUnderlyingType(typeof(Days)));

Output:

System.Byte

Demo: .NET fiddle

Bitwise Manipulation using enums

The FlagsAttribute should be used whenever the enumerable represents a collection of flags,
rather than a single value. The numeric value assigned to each enum value helps when
manipulating enums using bitwise operators.

Example 1 : With [Flags]

[Flags]
enum Colors
{
 Red=1,
 Blue=2,
 Green=4,
 Yellow=8
}

var color = Colors.Red | Colors.Blue;
Console.WriteLine(color.ToString());

prints Red,Blue

Example 2 : Without [Flags]

enum Colors
{
 Red=1,
 Blue=2,
 Green=4,
 Yellow=8
}
var color = Colors.Red | Colors.Blue;
Console.WriteLine(color.ToString());

prints 3

Using << notation for flags

The left-shift operator (<<) can be used in flag enum declarations to ensure that each flag has
exactly one 1 in binary representation, as flags should.

This also helps to improve readability of large enums with plenty of flags in them.

[Flags]

https://riptutorial.com/ 308

https://dotnetfiddle.net/EGi301
https://msdn.microsoft.com/en-us/library/system.flagsattribute(v=vs.110).aspx

public enum MyEnum
{
 None = 0,
 Flag1 = 1 << 0,
 Flag2 = 1 << 1,
 Flag3 = 1 << 2,
 Flag4 = 1 << 3,
 Flag5 = 1 << 4,
 ...
 Flag31 = 1 << 30
}

It is obvious now that MyEnum contains proper flags only and not any messy stuff like Flag30 =
1073741822 (or 111111111111111111111111111110 in binary) which is inappropriate.

Adding additional description information to an enum value

In some cases you might want to add an additional description to an enum value, for instance
when the enum value itself is less readable than what you might want to display to the user. In
such cases you can use the System.ComponentModel.DescriptionAttribute class.

For example:

public enum PossibleResults
{
 [Description("Success")]
 OK = 1,
 [Description("File not found")]
 FileNotFound = 2,
 [Description("Access denied")]
 AccessDenied = 3
}

Now, if you would like to return the description of a specific enum value you can do the following:

public static string GetDescriptionAttribute(PossibleResults result)
{
 return
((DescriptionAttribute)Attribute.GetCustomAttribute((result.GetType().GetField(result.ToString())),
typeof(DescriptionAttribute))).Description;
}

static void Main(string[] args)
{
 PossibleResults result = PossibleResults.FileNotFound;
 Console.WriteLine(result); // Prints "FileNotFound"
 Console.WriteLine(GetDescriptionAttribute(result)); // Prints "File not found"
}

This can also be easily transformed to an extension method for all enums:

static class EnumExtensions
{
 public static string GetDescription(this Enum enumValue)
 {

https://riptutorial.com/ 309

https://msdn.microsoft.com/en-us/library/system.componentmodel.descriptionattribute(v=vs.110).aspx

 return
((DescriptionAttribute)Attribute.GetCustomAttribute((enumValue.GetType().GetField(enumValue.ToString())),
typeof(DescriptionAttribute))).Description;
 }
}

And then easily used like this: Console.WriteLine(result.GetDescription());

Add and remove values from flagged enum

This code is to add and remove a value from a flagged enum-instance:

[Flags]
public enum MyEnum
{
 Flag1 = 1 << 0,
 Flag2 = 1 << 1,
 Flag3 = 1 << 2
}

var value = MyEnum.Flag1;

// set additional value
value |= MyEnum.Flag2; //value is now Flag1, Flag2
value |= MyEnum.Flag3; //value is now Flag1, Flag2, Flag3

// remove flag
value &= ~MyEnum.Flag2; //value is now Flag1, Flag3

Enums can have unexpected values

Since an enum can be cast to and from its underlying integral type, the value may fall outside the
range of values given in the definition of the enum type.

Although the below enum type DaysOfWeek only has 7 defined values, it can still hold any int value.

public enum DaysOfWeek
{
 Monday = 1,
 Tuesday = 2,
 Wednesday = 3,
 Thursday = 4,
 Friday = 5,
 Saturday = 6,
 Sunday = 7
}

DaysOfWeek d = (DaysOfWeek)31;
Console.WriteLine(d); // prints 31

DaysOFWeek s = DaysOfWeek.Sunday;
s++; // No error

There is currently no way to define an enum which does not have this behavior.

https://riptutorial.com/ 310

However, undefined enum values can be detected by using the method Enum.IsDefined. For
example,

DaysOfWeek d = (DaysOfWeek)31;
Console.WriteLine(Enum.IsDefined(typeof(DaysOfWeek),d)); // prints False

Read Enum online: https://riptutorial.com/csharp/topic/931/enum

https://riptutorial.com/ 311

https://riptutorial.com/csharp/topic/931/enum

Chapter 51: Equality Operator

Examples

Equality kinds in c# and equality operator

In C#, there are two different kinds of equality: reference equality and value equality. Value
equality is the commonly understood meaning of equality: it means that two objects contain the
same values. For example, two integers with the value of 2 have value equality. Reference
equality means that there are not two objects to compare. Instead, there are two object
references, both of which refer to the same object.

object a = new object();
object b = a;
System.Object.ReferenceEquals(a, b); //returns true

For predefined value types, the equality operator (==) returns true if the values of its operands are
equal, false otherwise. For reference types other than string, == returns true if its two operands
refer to the same object. For the string type, == compares the values of the strings.

// Numeric equality: True
Console.WriteLine((2 + 2) == 4);

// Reference equality: different objects,
// same boxed value: False.
object s = 1;
object t = 1;
Console.WriteLine(s == t);

// Define some strings:
string a = "hello";
string b = String.Copy(a);
string c = "hello";

// Compare string values of a constant and an instance: True
Console.WriteLine(a == b);

// Compare string references;
// a is a constant but b is an instance: False.
Console.WriteLine((object)a == (object)b);

// Compare string references, both constants
// have the same value, so string interning
// points to same reference: True.
Console.WriteLine((object)a == (object)c);

Read Equality Operator online: https://riptutorial.com/csharp/topic/1491/equality-operator

https://riptutorial.com/ 312

https://riptutorial.com/csharp/topic/1491/equality-operator

Chapter 52: Equals and GetHashCode

Remarks

Each implementation of Equals must fulfil the following requirements:

Reflexive: An object must equal itself.
x.Equals(x) returns true.

•

Symmetric: There is no difference if I compare x to y or y to x - the result is the same.
x.Equals(y) returns the same value as y.Equals(x).

•

Transitive: If one object is equal to another object and this one is equal to a third one, the
first has to be equal to the third.
if (x.Equals(y) && y.Equals(z)) returns true, then x.Equals(z) returns true.

•

Consistent: If you compare an object to another multiple times, the result is always the
same.
Successive invocations of x.Equals(y) return the same value as long as the objects
referenced by x and y are not modified.

•

Comparison to null: No object is equal to null.
x.Equals(null) returns false.

•

Implementations of GetHashCode:

Compatible with Equals: If two objects are equal (meaning that Equals returns true), then
GetHashCode must return the same value for each of them.

•

Large range: If two objects are not equal (Equals says false), there should be a high
probability their hash codes are distinct. Perfect hashing is often not possible as there is a
limited number of values to choose from.

•

Cheap: It should be inexpensive to calculate the hash code in all cases.•

See: Guidelines for Overloading Equals() and Operator ==

Examples

Default Equals behavior.

Equals is declared in the Object class itself.

public virtual bool Equals(Object obj);

By default, Equals has the following behavior:

https://riptutorial.com/ 313

https://msdn.microsoft.com/en-us/library/ms173147.aspx

If the instance is a reference type, then Equals will return true only if the references are the
same.

•

If the instance is a value type, then Equals will return true only if the type and value are the
same.

•

string is a special case. It behaves like a value type.•

namespace ConsoleApplication
{
 public class Program
 {
 public static void Main(string[] args)
 {
 //areFooClassEqual: False
 Foo fooClass1 = new Foo("42");
 Foo fooClass2 = new Foo("42");
 bool areFooClassEqual = fooClass1.Equals(fooClass2);
 Console.WriteLine("fooClass1 and fooClass2 are equal: {0}", areFooClassEqual);
 //False

 //areFooIntEqual: True
 int fooInt1 = 42;
 int fooInt2 = 42;
 bool areFooIntEqual = fooInt1.Equals(fooInt2);
 Console.WriteLine("fooInt1 and fooInt2 are equal: {0}", areFooIntEqual);

 //areFooStringEqual: True
 string fooString1 = "42";
 string fooString2 = "42";
 bool areFooStringEqual = fooString1.Equals(fooString2);
 Console.WriteLine("fooString1 and fooString2 are equal: {0}", areFooStringEqual);
 }
 }

 public class Foo
 {
 public string Bar { get; }

 public Foo(string bar)
 {
 Bar = bar;
 }
 }
}

Writing a good GetHashCode override

GetHashCode has major performance effects on Dictionary<> and HashTable.

Good GetHashCode Methods

should have an even distribution
every integer should have a roughly equal chance of returning for a random instance○

if your method returns the same integer (e.g. the constant '999') for each instance,
you'll have bad performance

○

•

https://riptutorial.com/ 314

should be quick
These are NOT cryptographic hashes, where slowness is a feature○

the slower your hash function, the slower your dictionary○

•

must return the same HashCode on two instances that Equals evaluates to true
if they do not (e.g. because GetHashCode returns a random number), items may not be
found in a List, Dictionary, or similar.

○

•

A good method to implement GetHashCode is to use one prime number as a starting value, and add
the hashcodes of the fields of the type multiplied by other prime numbers to that:

public override int GetHashCode()
{
 unchecked // Overflow is fine, just wrap
 {
 int hash = 3049; // Start value (prime number).

 // Suitable nullity checks etc, of course :)
 hash = hash * 5039 + field1.GetHashCode();
 hash = hash * 883 + field2.GetHashCode();
 hash = hash * 9719 + field3.GetHashCode();
 return hash;
 }
}

Only the fields which are used in the Equals-method should be used for the hash function.

If you have a need to treat the same type in different ways for Dictionary/HashTables, you can use
IEqualityComparer.

Override Equals and GetHashCode on custom types

For a class Person like:

public class Person
{
 public string Name { get; set; }
 public int Age { get; set; }
 public string Clothes { get; set; }
}

var person1 = new Person { Name = "Jon", Age = 20, Clothes = "some clothes" };
var person2 = new Person { Name = "Jon", Age = 20, Clothes = "some other clothes" };

bool result = person1.Equals(person2); //false because it's reference Equals

But defining Equals and GetHashCode as follows:

public class Person
{
 public string Name { get; set; }
 public int Age { get; set; }
 public string Clothes { get; set; }

 public override bool Equals(object obj)

https://riptutorial.com/ 315

 {
 var person = obj as Person;
 if(person == null) return false;
 return Name == person.Name && Age == person.Age; //the clothes are not important when
comparing two persons
 }

 public override int GetHashCode()
 {
 return Name.GetHashCode()*Age;
 }
}

var person1 = new Person { Name = "Jon", Age = 20, Clothes = "some clothes" };
var person2 = new Person { Name = "Jon", Age = 20, Clothes = "some other clothes" };

bool result = person1.Equals(person2); // result is true

Also using LINQ to make different queries on persons will check both Equals and GetHashCode:

var persons = new List<Person>
{
 new Person{ Name = "Jon", Age = 20, Clothes = "some clothes"},
 new Person{ Name = "Dave", Age = 20, Clothes = "some other clothes"},
 new Person{ Name = "Jon", Age = 20, Clothes = ""}
};

var distinctPersons = persons.Distinct().ToList();//distinctPersons has Count = 2

Equals and GetHashCode in IEqualityComparator

For given type Person:

public class Person
{
 public string Name { get; set; }
 public int Age { get; set; }
 public string Clothes { get; set; }
}

List<Person> persons = new List<Person>
{
 new Person{ Name = "Jon", Age = 20, Clothes = "some clothes"},
 new Person{ Name = "Dave", Age = 20, Clothes = "some other clothes"},
 new Person{ Name = "Jon", Age = 20, Clothes = ""}
};

var distinctPersons = persons.Distinct().ToList();// distinctPersons has Count = 3

But defining Equals and GetHashCode into an IEqualityComparator :

public class PersonComparator : IEqualityComparer<Person>
{
 public bool Equals(Person x, Person y)
 {
 return x.Name == y.Name && x.Age == y.Age; //the clothes are not important when

https://riptutorial.com/ 316

comparing two persons;
 }

 public int GetHashCode(Person obj) { return obj.Name.GetHashCode() * obj.Age; }
}

var distinctPersons = persons.Distinct(new PersonComparator()).ToList();// distinctPersons has
Count = 2

Note that for this query, two objects have been considered equal if both the Equals returned true
and the GetHashCode have returned the same hash code for the two persons.

Read Equals and GetHashCode online: https://riptutorial.com/csharp/topic/3429/equals-and-
gethashcode

https://riptutorial.com/ 317

https://riptutorial.com/csharp/topic/3429/equals-and-gethashcode
https://riptutorial.com/csharp/topic/3429/equals-and-gethashcode

Chapter 53: Events

Introduction

An event is a notification that something has occurred (such as a mouse click) or, in some cases,
is about to occur (such as a price change).

Classes can define events and their instances (objects) may raise these events. For instance, a
Button may contain a Click event that gets raised when a user has clicked it.

Event handlers are then methods that get called when their corresponding event is raised. A form
may contain a Clicked event handler for every Button it contains, for instance.

Parameters

Parameter Details

EventArgsT The type that derives from EventArgs and contains the event parameters.

EventName The name of the event.

HandlerName The name of the event handler.

SenderObject The object that's invoking the event.

EventArguments An instance of the EventArgsT type that contains the event parameters.

Remarks

When raising an event:

Always check if the delegate is null. A null delegate means the event has no subscribers.
Raising an event with no subscribers will result in a NullReferenceException.

•

6.0

Copy the delegate (e.g. EventName) to a local variable (e.g. eventName) before checking for null
/ raising the event. This avoids race conditions in multi-threaded environments:

•

Wrong:

 if(Changed != null) // Changed has 1 subscriber at this point
 // In another thread, that one subscriber decided to unsubscribe
 Changed(this, args); // `Changed` is now null, `NullReferenceException` is thrown.

Right:

https://riptutorial.com/ 318

 // Cache the "Changed" event as a local. If it is not null, then use
 // the LOCAL variable (handler) to raise the event, NOT the event itself.
 var handler = Changed;
 if(handler != null)
 handler(this, args);

6.0

Use the null-conditional operator (?.) for raising the method instead of null-checking the
delegate for subscribers in an if statement: EventName?.Invoke(SenderObject, new
EventArgsT());

•

When using Action<> to declare delegate types, the anonymous method / event handler
signature must be the same as the declared anonymous delegate type in the event
declaration.

•

Examples

Declaring and Raising Events

Declaring an Event

You can declare an event on any class or struct using the following syntax:

public class MyClass
{
 // Declares the event for MyClass
 public event EventHandler MyEvent;

 // Raises the MyEvent event
 public void RaiseEvent()
 {
 OnMyEvent();
 }
}

There is an expanded syntax for declaring events, where you hold a private instance of the event,
and define a public instance using add and set accessors. The syntax is very similar to C#
properties. In all cases, the syntax demonstrated above should be preferred, because the compiler
emits code to help ensure that multiple threads can safely add and remove event handlers to the
event on your class.

Raising the Event

6.0

private void OnMyEvent()
{
 EventName?.Invoke(this, EventArgs.Empty);
}

https://riptutorial.com/ 319

6.0

private void OnMyEvent()
{
 // Use a local for EventName, because another thread can modify the
 // public EventName between when we check it for null, and when we
 // raise the event.
 var eventName = EventName;

 // If eventName == null, then it means there are no event-subscribers,
 // and therefore, we cannot raise the event.
 if(eventName != null)
 eventName(this, EventArgs.Empty);

}

Note that events can only be raised by the declaring type. Clients can only subscribe/unsubscribe.

For C# versions before 6.0, where EventName?.Invoke is not supported, it is a good practice to
assign the event to a temporary variable before invocation, as shown in the example, which
ensures thread-safety in cases where multiple threads execute the same code. Failing to do so
may cause a NullReferenceException to be thrown in certain cases where multiple threads are using
the same object instance. In C# 6.0, the compiler emits code similar to that shown in the code
example for C# 6.

Standard Event Declaration

Event declaration:

public event EventHandler<EventArgsT> EventName;

Event handler declaration:

public void HandlerName(object sender, EventArgsT args) { /* Handler logic */ }

Subscribing to the event:

Dynamically:

EventName += HandlerName;

Through the Designer:

Click the Events button on the control's properties window (Lightening bolt)1.
Double-click the Event name:2.

https://riptutorial.com/ 320

Visual Studio will generate the event code:3.

private void Form1_Load(object sender, EventArgs e)
{

}

Invoking the method:

EventName(SenderObject, EventArguments);

Anonymous Event Handler Declaration

Event declaration:

public event EventHandler<EventArgsType> EventName;

Event handler declaration using lambda operator => and subscribing to the event:

EventName += (obj, eventArgs) => { /* Handler logic */ };

Event handler declaration using delegate anonymous method syntax:

EventName += delegate(object obj, EventArgsType eventArgs) { /* Handler Logic */ };

Declaration & subscription of an event handler that does not use the event's parameter, and so

https://riptutorial.com/ 321

https://i.stack.imgur.com/onqeE.png
http://www.riptutorial.com/csharp/example/12755/---lambda-operator
http://www.riptutorial.com/csharp/example/18720/delegate

can use the above syntax without needing to specify parameters:

EventName += delegate { /* Handler Logic */ }

Invoking the event:

EventName?.Invoke(SenderObject, EventArguments);

Non-Standard Event Declaration

Events can be of any delegate type, not just EventHandler and EventHandler<T>. For example:

//Declaring an event
public event Action<Param1Type, Param2Type, ...> EventName;

This is used similarly to standard EventHandler events:

//Adding a named event handler
public void HandlerName(Param1Type parameter1, Param2Type parameter2, ...) {
 /* Handler logic */
}
EventName += HandlerName;

//Adding an anonymous event handler
EventName += (parameter1, parameter2, ...) => { /* Handler Logic */ };

//Invoking the event
EventName(parameter1, parameter2, ...);

It is possible to declare multiple events of the same type in a single statement, similar to with fields
and local variables (though this may often be a bad idea):

public event EventHandler Event1, Event2, Event3;

This declares three separate events (Event1, Event2, and Event3) all of type EventHandler.
Note: Although some compilers may accept this syntax in interfaces as well as classes, the C#
specification (v5.0 §13.2.3) provides grammar for interfaces that does not allow it, so using this in
interfaces may be unreliable with different compilers.

Creating custom EventArgs containing additional data

Custom events usually need custom event arguments containing information about the event. For
example MouseEventArgs which is used by mouse events like MouseDown or MouseUp events, contains
information about Location or Buttons which used to generate the event.

When creating new events, to create a custom event arg:

Create a class deriving from EventArgs and define properties for necessary data.•
As a convention, the name of the class should ends with EventArgs.•

https://riptutorial.com/ 322

https://msdn.microsoft.com/en-us/library/system.windows.forms.mouseeventargs(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.eventargs(v=vs.110).aspx

Example

In the below example, we create a PriceChangingEventArgs event for Price property of a class. The
event data class contains a CurrentPrice and a NewPrice. The event raises when you assign a new
value to Price property and lets the consumer know the value is changing and let them to know
about current price and new price:

PriceChangingEventArgs

public class PriceChangingEventArgs : EventArgs
{
 public PriceChangingEventArgs(int currentPrice, int newPrice)
 {
 this.CurrentPrice = currentPrice;
 this.NewPrice = newPrice;
 }

 public int CurrentPrice { get; private set; }
 public int NewPrice { get; private set; }
}

Product

public class Product
{
 public event EventHandler<PriceChangingEventArgs> PriceChanging;

 int price;
 public int Price
 {
 get { return price; }
 set
 {
 var e = new PriceChangingEventArgs(price, value);
 OnPriceChanging(e);
 price = value;
 }
 }

 protected void OnPriceChanging(PriceChangingEventArgs e)
 {
 var handler = PriceChanging;
 if (handler != null)
 handler(this, e);
 }
}

You can enhance the example by allowing the consumer to change the new value and then the
value will be used for property. To do so it's enough to apply these changes in classes.

Change the definition of NewPrice to be settable:

public int NewPrice { get; set; }

Change the definition of Price to use e.NewPrice as value of property, after calling OnPriceChanging :

https://riptutorial.com/ 323

int price;
public int Price
{
 get { return price; }
 set
 {
 var e = new PriceChangingEventArgs(price, value);
 OnPriceChanging(e);
 price = e.NewPrice;
 }
}

Creating cancelable event

A cancelable event can be raised by a class when it is about to perform an action that can be
canceled, such as the FormClosing event of a Form.

To create such event:

Create a new event arg deriving from CancelEventArgs and add additional properties for event
data.

•

Create an event using EventHandler<T> and use the new cancel event arg class which you
created.

•

Example

In the below example, we create a PriceChangingEventArgs event for Price property of a class. The
event data class contains a Value which let the consumer know about the new . The event raises
when you assign a new value to Price property and lets the consumer know the value is changing
and let them to cancel the event. If the consumer cancels the event, the previous value for Price
will be used:

PriceChangingEventArgs

public class PriceChangingEventArgs : CancelEventArgs
{
 int value;
 public int Value
 {
 get { return value; }
 }
 public PriceChangingEventArgs(int value)
 {
 this.value = value;
 }
}

Product

public class Product
{
 int price;
 public int Price

https://riptutorial.com/ 324

https://msdn.microsoft.com/en-us/library/system.windows.forms.form.formclosing(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.form(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.canceleventargs(v=vs.110).aspx

 {
 get { return price; }
 set
 {
 var e = new PriceChangingEventArgs(value);
 OnPriceChanging(e);
 if (!e.Cancel)
 price = value;
 }
 }

 public event EventHandler<PriceChangingEventArgs> PropertyChanging;
 protected void OnPriceChanging(PriceChangingEventArgs e)
 {
 var handler = PropertyChanging;
 if (handler != null)
 PropertyChanging(this, e);
 }
}

Event Properties

If a class raises a large the number of events, the storage cost of one field per delegate may not
be acceptable. The .NET Framework provides event properties for these cases. This way you can
use another data structure like EventHandlerList to store event delegates:

public class SampleClass
{
 // Define the delegate collection.
 protected EventHandlerList eventDelegates = new EventHandlerList();

 // Define a unique key for each event.
 static readonly object someEventKey = new object();

 // Define the SomeEvent event property.
 public event EventHandler SomeEvent
 {
 add
 {
 // Add the input delegate to the collection.
 eventDelegates.AddHandler(someEventKey, value);
 }
 remove
 {
 // Remove the input delegate from the collection.
 eventDelegates.RemoveHandler(someEventKey, value);
 }
 }

 // Raise the event with the delegate specified by someEventKey
 protected void OnSomeEvent(EventArgs e)
 {
 var handler = (EventHandler)eventDelegates[someEventKey];
 if (handler != null)
 handler(this, e);
 }
}

https://riptutorial.com/ 325

https://msdn.microsoft.com/en-us/library/8843a9ch(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.eventhandlerlist(v=vs.110).aspx

This approach is widely used in GUI frameworks like WinForms where controls can have dozens
and even hundreds of events.

Note that EventHandlerList is not thread-safe, so if you expect your class to be used from multiple
threads, you will need to add lock statements or other synchronization mechanism (or use a
storage that provides thread safety).

Read Events online: https://riptutorial.com/csharp/topic/64/events

https://riptutorial.com/ 326

https://riptutorial.com/csharp/topic/64/events

Chapter 54: Exception Handling

Examples

Basic Exception Handling

try
{
 /* code that could throw an exception */
}
catch (Exception ex)
{
 /* handle the exception */
}

Note that handling all exceptions with the same code is often not the best approach.
This is commonly used when any inner exception handling routines fail, as a last resort.

Handling specific exception types

try
{
 /* code to open a file */
}
catch (System.IO.FileNotFoundException)
{
 /* code to handle the file being not found */
}
catch (System.IO.UnauthorizedAccessException)
{
 /* code to handle not being allowed access to the file */
}
catch (System.IO.IOException)
{
 /* code to handle IOException or it's descendant other than the previous two */
}
catch (System.Exception)
{
 /* code to handle other errors */
}

Be careful that exceptions are evaluated in order and inheritance is applied. So you need to start
with the most specific ones and end with their ancestor. At any given point, only one catch block
will get executed.

Using the exception object

You are allowed to create and throw exceptions in your own code. Instantiating an exception is
done the same way that any other C# object.

https://riptutorial.com/ 327

Exception ex = new Exception();

// constructor with an overload that takes a message string
Exception ex = new Exception("Error message");

You can then use the throw keyword to raise the exception:

try
{
 throw new Exception("Error");
}
catch (Exception ex)
{
 Console.Write(ex.Message); // Logs 'Error' to the output window
}

Note: If you're throwing a new exception inside a catch block, ensure that the original exception is
passed as "inner exception", e.g.

void DoSomething()
{
 int b=1; int c=5;
 try
 {
 var a = 1;
 b = a - 1;
 c = a / b;
 a = a / c;
 }
 catch (DivideByZeroException dEx) when (b==0)
 {
 // we're throwing the same kind of exception
 throw new DivideByZeroException("Cannot divide by b because it is zero", dEx);
 }
 catch (DivideByZeroException dEx) when (c==0)
 {
 // we're throwing the same kind of exception
 throw new DivideByZeroException("Cannot divide by c because it is zero", dEx);
 }
}

void Main()
{
 try
 {
 DoSomething();
 }
 catch (Exception ex)
 {
 // Logs full error information (incl. inner exception)
 Console.Write(ex.ToString());
 }
}

In this case it is assumed that the exception cannot be handled but some useful information is
added to the message (and the original exception can still be accessed via ex.InnerException by
an outer exception block).

https://riptutorial.com/ 328

It will show something like:

System.DivideByZeroException: Cannot divide by b because it is zero --->
System.DivideByZeroException: Attempted to divide by zero.
at UserQuery.g__DoSomething0_0() in C:[...]\LINQPadQuery.cs:line 36
--- End of inner exception stack trace ---
at UserQuery.g__DoSomething0_0() in C:[...]\LINQPadQuery.cs:line 42
at UserQuery.Main() in C:[...]\LINQPadQuery.cs:line 55

If you're trying this example in LinqPad, you'll notice that the line numbers aren't very meaningful
(they don't always help you). But passing a helpful error text as suggested above oftentimes
significantly reduces the time to track down the location of the error, which is in this example
clearly the line

c = a / b;

in function DoSomething().

Try it in .NET Fiddle

Finally block

try
{
 /* code that could throw an exception */
}
catch (Exception)
{
 /* handle the exception */
}
finally
{
 /* Code that will be executed, regardless if an exception was thrown / caught or not */
}

The try / catch / finally block can be very handy when reading from files.
For example:

FileStream f = null;

try
{
 f = File.OpenRead("file.txt");
 /* process the file here */
}
finally
{
 f?.Close(); // f may be null, so use the null conditional operator.
}

A try block must be followed by either a catch or a finally block. However, since there is no catch
block, the execution will cause termination. Before termination, the statements inside the finally
block will be executed.

https://riptutorial.com/ 329

https://dotnetfiddle.net/Widget/JLUXXY

In the file-reading we could have used a using block as FileStream (what OpenRead returns)
implements IDisposable.

Even if there is a return statement in try block, the finally block will usually execute; there are a
few cases where it will not:

When a StackOverflow occurs.•
Environment.FailFast•
The application process is killed, usually by an external source.•

Implementing IErrorHandler for WCF Services

Implementing IErrorHandler for WCF services is a great way to centralize error handling and
logging. The implementation shown here should catch any unhandled exception that is thrown as
a result of a call to one of your WCF services. Also shown in this example is how to return a
custom object, and how to return JSON rather than the default XML.

Implement IErrorHandler:

using System.ServiceModel.Channels;
using System.ServiceModel.Dispatcher;
using System.Runtime.Serialization.Json;
using System.ServiceModel;
using System.ServiceModel.Web;

namespace BehaviorsAndInspectors
{
 public class ErrorHandler : IErrorHandler
 {

 public bool HandleError(Exception ex)
 {
 // Log exceptions here

 return true;

 } // end

 public void ProvideFault(Exception ex, MessageVersion version, ref Message fault)
 {
 // Get the outgoing response portion of the current context
 var response = WebOperationContext.Current.OutgoingResponse;

 // Set the default http status code
 response.StatusCode = HttpStatusCode.InternalServerError;

 // Add ContentType header that specifies we are using JSON
 response.ContentType = new MediaTypeHeaderValue("application/json").ToString();

 // Create the fault message that is returned (note the ref parameter) with
BaseDataResponseContract
 fault = Message.CreateMessage(
 version,
 string.Empty,
 new CustomReturnType { ErrorMessage = "An unhandled exception occurred!" },
 new DataContractJsonSerializer(typeof(BaseDataResponseContract), new

https://riptutorial.com/ 330

https://msdn.microsoft.com/en-us/library/system.stackoverflowexception(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.environment.failfast.aspx

List<Type> { typeof(BaseDataResponseContract) }));

 if (ex.GetType() == typeof(VariousExceptionTypes))
 {
 // You might want to catch different types of exceptions here and process
them differently
 }

 // Tell WCF to use JSON encoding rather than default XML
 var webBodyFormatMessageProperty = new
WebBodyFormatMessageProperty(WebContentFormat.Json);
 fault.Properties.Add(WebBodyFormatMessageProperty.Name,
webBodyFormatMessageProperty);

 } // end

 } // end class

} // end namespace

In this example we attach the handler to the service behavior. You could also attach this to
IEndpointBehavior, IContractBehavior, or IOperationBehavior in a similar way.

Attach to Service Behaviors:

using System;
using System.Collections.ObjectModel;
using System.ServiceModel;
using System.ServiceModel.Channels;
using System.ServiceModel.Configuration;
using System.ServiceModel.Description;
using System.ServiceModel.Dispatcher;

namespace BehaviorsAndInspectors
{
 public class ErrorHandlerExtension : BehaviorExtensionElement, IServiceBehavior
 {
 public override Type BehaviorType
 {
 get { return GetType(); }
 }

 protected override object CreateBehavior()
 {
 return this;
 }

 private IErrorHandler GetInstance()
 {
 return new ErrorHandler();
 }

 void IServiceBehavior.AddBindingParameters(ServiceDescription serviceDescription,
ServiceHostBase serviceHostBase, Collection<ServiceEndpoint> endpoints,
BindingParameterCollection bindingParameters) { } // end

 void IServiceBehavior.ApplyDispatchBehavior(ServiceDescription serviceDescription,
ServiceHostBase serviceHostBase)
 {

https://riptutorial.com/ 331

 var errorHandlerInstance = GetInstance();

 foreach (ChannelDispatcher dispatcher in serviceHostBase.ChannelDispatchers)
 {
 dispatcher.ErrorHandlers.Add(errorHandlerInstance);
 }
 }

 void IServiceBehavior.Validate(ServiceDescription serviceDescription, ServiceHostBase
serviceHostBase) { } // end

 } // end class

} // end namespace

Configs in Web.config:

...
<system.serviceModel>

 <services>
 <service name="WebServices.MyService">
 <endpoint binding="webHttpBinding" contract="WebServices.IMyService" />
 </service>
 </services>

 <extensions>
 <behaviorExtensions>
 <!-- This extension if for the WCF Error Handling-->
 <add name="ErrorHandlerBehavior"
type="WebServices.BehaviorsAndInspectors.ErrorHandlerExtensionBehavior, WebServices,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
 </behaviorExtensions>
 </extensions>

 <behaviors>
 <serviceBehaviors>
 <behavior>
 <serviceMetadata httpGetEnabled="true"/>
 <serviceDebug includeExceptionDetailInFaults="true"/>
 <ErrorHandlerBehavior />
 </behavior>
 </serviceBehaviors>
 </behaviors>

</system.serviceModel>
...

Here are a few links that may be helpful on this topic:

https://msdn.microsoft.com/en-
us/library/system.servicemodel.dispatcher.ierrorhandler(v=vs.100).aspx

http://www.brainthud.com/cards/5218/25441/which-four-behavior-interfaces-exist-for-interacting-
with-a-service-or-client-description-what-methods-do-they-implement-and

Other Examples:

https://riptutorial.com/ 332

https://msdn.microsoft.com/en-us/library/system.servicemodel.dispatcher.ierrorhandler(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/system.servicemodel.dispatcher.ierrorhandler(v=vs.100).aspx
http://www.brainthud.com/cards/5218/25441/which-four-behavior-interfaces-exist-for-interacting-with-a-service-or-client-description-what-methods-do-they-implement-and
http://www.brainthud.com/cards/5218/25441/which-four-behavior-interfaces-exist-for-interacting-with-a-service-or-client-description-what-methods-do-they-implement-and

IErrorHandler returning wrong message body when HTTP status code is 401 Unauthorized

IErrorHandler doesn't seem to be handling my errors in WCF .. any ideas?

How to make custom WCF error handler return JSON response with non-OK http code?

How do you set the Content-Type header for an HttpClient request?

Creating Custom Exceptions

You are allowed to implement custom exceptions that can be thrown just like any other exception.
This makes sense when you want to make your exceptions distinguishable from other errors
during runtime.

In this example we will create a custom exception for clear handling of problems the application
may have while parsing a complex input.

Creating Custom Exception Class

To create a custom exception create a sub-class of Exception:

public class ParserException : Exception
{
 public ParserException() :
 base("The parsing went wrong and we have no additional information.") { }
}

Custom exception become very useful when you want to provide additional information to the
catcher:

public class ParserException : Exception
{
 public ParserException(string fileName, int lineNumber) :
 base($"Parser error in {fileName}:{lineNumber}")
 {
 FileName = fileName;
 LineNumber = lineNumber;
 }
 public string FileName {get; private set;}
 public int LineNumber {get; private set;}
}

Now, when you catch(ParserException x) you will have additional semantics to fine-tune exception
handling.

Custom classes can implement the following features to support additional scenarios.

re-throwing

https://riptutorial.com/ 333

http://stackoverflow.com/questions/38231970/ierrorhandler-returning-wrong-message-body-when-http-status-code-is-401-unauthor
http://stackoverflow.com/questions/3036692/ierrorhandler-doesnt-seem-to-be-handling-my-errors-in-wcf-any-ideas
http://stackoverflow.com/questions/1149037/how-to-make-custom-wcf-error-handler-return-json-response-with-non-ok-http-code
http://stackoverflow.com/questions/10679214/how-do-you-set-the-content-type-header-for-an-httpclient-request?rq=1

During the parsing process, the original exception is still of interest. In this example it is a
FormatException because the code attempts to parse a piece of string, which is expected to be a
number. In this case the custom exception should support the inclusion of the 'InnerException':

//new constructor:
ParserException(string msg, Exception inner) : base(msg, inner) {
}

serialization

In some cases your exceptions may have to cross AppDomain boundaries. This is the case if your
parser is running in its own AppDomain to support hot reloading of new parser configurations. In
Visual Studio, you can use Exception template to generate code like this.

[Serializable]
public class ParserException : Exception
{
 // Constructor without arguments allows throwing your exception without
 // providing any information, including error message. Should be included
 // if your exception is meaningful without any additional details. Should
 // set message by calling base constructor (default message is not helpful).
 public ParserException()
 : base("Parser failure.")
 {}

 // Constructor with message argument allows overriding default error message.
 // Should be included if users can provide more helpful messages than
 // generic automatically generated messages.
 public ParserException(string message)
 : base(message)
 {}

 // Constructor for serialization support. If your exception contains custom
 // properties, read their values here.
 protected ParserException(SerializationInfo info, StreamingContext context)
 : base(info, context)
 {}
}

Using the ParserException

try
{
 Process.StartRun(fileName)
}
catch (ParserException ex)
{
 Console.WriteLine($"{ex.Message} in ${ex.FileName}:${ex.LineNumber}");
}
catch (PostProcessException x)
{
 ...

https://riptutorial.com/ 334

}

You may also use custom exceptions for catching and wrapping exceptions. This way many
different errors can be converted into a single error type that is more useful to the application:

try
{
 int foo = int.Parse(token);
}
catch (FormatException ex)
{
 //Assuming you added this constructor
 throw new ParserException(
 $"Failed to read {token} as number.",
 FileName,
 LineNumber,
 ex);
}

When handling exceptions by raising your own custom exceptions, you should generally include a
reference the original exception in the InnerException property, as shown above.

Security Concerns

If exposing the reason for the exception might compromise security by allowing users to see the
inner workings of your application it can be a bad idea to wrap the inner exception. This might
apply if you are creating a class library that will be used by others.

Here is how you could raise a custom exception without wrapping the inner exception:

try
{
 // ...
}
catch (SomeStandardException ex)
{
 // ...
 throw new MyCustomException(someMessage);
}

Conclusion

When raising a custom exception (either with wrapping or with an unwrapped new exception), you
should raise an exception that is meaningful to the caller. For instance, a user of a class library
may not know much about how that library does its internal work. The exceptions that are thrown
by the dependencies of the class library are not meaningful. Rather, the user wants an exception
that is relevant to how the class library is using those dependencies in an erroneous way.

try

https://riptutorial.com/ 335

{
 // ...
}
catch (IOException ex)
{
 // ...
 throw new StorageServiceException(@"The Storage Service encountered a problem saving
your data. Please consult the inner exception for technical details.
If you are not able to resolve the problem, please call 555-555-1234 for technical
assistance.", ex);
}

Exception Anti-patterns

Swallowing Exceptions

One should always re-throw exception in the following way:

try
{
 ...
}
catch (Exception ex)
{
 ...
 throw;
}

Re-throwing an exception like below will obfuscate the original exception and will lose the original
stack trace. One should never do this! The stack trace prior to the catch and rethrow will be lost.

try
{
 ...
}
catch (Exception ex)
{
 ...
 throw ex;
}

Baseball Exception Handling

One should not use exceptions as a substitute for normal flow control constructs like if-then
statements and while loops. This anti-pattern is sometimes called Baseball Exception Handling.

Here is an example of the anti-pattern:

try
{
 while (AccountManager.HasMoreAccounts())

https://riptutorial.com/ 336

http://c2.com/cgi/wiki?DontUseExceptionsForFlowControl
http://www.stackprinter.com/questions/new-programming-jargon-you-coined.html

 {
 account = AccountManager.GetNextAccount();
 if (account.Name == userName)
 {
 //We found it
 throw new AccountFoundException(account);
 }
 }
}
catch (AccountFoundException found)
{
 Console.Write("Here are your account details: " + found.Account.Details.ToString());
}

Here is a better way to do it:

Account found = null;
while (AccountManager.HasMoreAccounts() && (found==null))
{
 account = AccountManager.GetNextAccount();
 if (account.Name == userName)
 {
 //We found it
 found = account;
 }
}
Console.Write("Here are your account details: " + found.Details.ToString());

catch (Exception)

There are almost no (some say none!) reasons to catch the generic exception type in your code.
You should catch only the exception types you expect to happen, because you hide bugs in your
code otherwise.

try
{
 var f = File.Open(myfile);
 // do something
}
catch (Exception x)
{
 // Assume file not found
 Console.Write("Could not open file");
 // but maybe the error was a NullReferenceException because of a bug in the file handling
code?
}

Better do:

try
{
 var f = File.Open(myfile);
 // do something which should normally not throw exceptions
}

https://riptutorial.com/ 337

catch (IOException)
{
 Console.Write("File not found");
}
// Unfortunatelly, this one does not derive from the above, so declare separatelly
catch (UnauthorizedAccessException)
{
 Console.Write("Insufficient rights");
}

If any other exception happens, we purposedly let the application crash, so it directly steps in the
debugger and we can fix the problem. We mustn't ship a program where any other exceptions
than these happen anyway, so it's not a problem to have a crash.

The following is a bad example, too, because it uses exceptions to work around a programming
error. That's not what they're designed for.

public void DoSomething(String s)
{
 if (s == null)
 throw new ArgumentNullException(nameof(s));
 // Implementation goes here
}

try
{
 DoSomething(myString);
}
catch(ArgumentNullException x)
{
 // if this happens, we have a programming error and we should check
 // why myString was null in the first place.
}

Aggregate exceptions / multiple exceptions from one method

Who says you cannot throw multiple exceptions in one method. If you are not used to playing
around with AggregateExceptions you may be tempted to create your own data-structure to
represent many things going wrong. There are of course were another data-structure that is not an
exception would be more ideal such as the results of a validation. Even if you do play with
AggregateExceptions you may be on the receiving side and always handling them not realizing
they can be of use to you.

It is quite plausible to have a method execute and even though it will be a failure as a whole you
will want to highlight multiple things that went wrong in the exceptions that are thrown. As an
example this behavior can be seen with how Parallel methods work were a task broken into
multiple threads and any number of them could throw exceptions and this needs to be reported.
Here is a silly example of how you could benefit from this:

 public void Run()
 {
 try
 {

https://riptutorial.com/ 338

 this.SillyMethod(1, 2);
 }
 catch (AggregateException ex)
 {
 Console.WriteLine(ex.Message);
 foreach (Exception innerException in ex.InnerExceptions)
 {
 Console.WriteLine(innerException.Message);
 }
 }
 }

 private void SillyMethod(int input1, int input2)
 {
 var exceptions = new List<Exception>();

 if (input1 == 1)
 {
 exceptions.Add(new ArgumentException("I do not like ones"));
 }
 if (input2 == 2)
 {
 exceptions.Add(new ArgumentException("I do not like twos"));
 }
 if (exceptions.Any())
 {
 throw new AggregateException("Funny stuff happended during execution",
exceptions);
 }
 }

Nesting of Exceptions & try catch blocks.

One is able to nest one exception / try catch block inside the other.

This way one can manage small blocks of code which are capable of working without disrupting
your whole mechanism.

try
{
//some code here
 try
 {
 //some thing which throws an exception. For Eg : divide by 0
 }
 catch (DivideByZeroException dzEx)
 {
 //handle here only this exception
 //throw from here will be passed on to the parent catch block
 }
 finally
 {
 //any thing to do after it is done.
 }
 //resume from here & proceed as normal;
}
catch(Exception e)
{

https://riptutorial.com/ 339

 //handle here
}

Note: Avoid Swallowing Exceptions when throwing to the parent catch block

Best Practices

Cheatsheet

DO DON'T

Control flow with control statements Control flow with exceptions

Keep track of ignored (absorbed) exception
by logging

Ignore exception

Repeat exception by using throw
Re-throw exception - throw new
ArgumentNullException() or throw ex

Throw predefined system exceptions
Throw custom exceptions similar to
predefined system exceptions

Throw custom/predefined exception if it is
crucial to application logic

Throw custom/predefined exceptions to state
a warning in flow

Catch exceptions that you want to handle Catch every exception

DO NOT manage business logic with exceptions.

Flow control should NOT be done by exceptions. Use conditional statements instead. If a control
can be done with if-else statement clearly, don't use exceptions because it reduces readability
and performance.

Consider the following snippet by Mr. Bad Practices:

// This is a snippet example for DO NOT
object myObject;
void DoingSomethingWithMyObject()
{
 Console.WriteLine(myObject.ToString());
}

When execution reaches Console.WriteLine(myObject.ToString()); application will throw an
NullReferenceException. Mr. Bad Practices realized that myObject is null and edited his snippet to
catch & handle NullReferenceException:

// This is a snippet example for DO NOT
object myObject;

https://riptutorial.com/ 340

http://www.riptutorial.com/csharp/example/6940/exception-anti-patterns

void DoingSomethingWithMyObject()
{
 try
 {
 Console.WriteLine(myObject.ToString());
 }
 catch(NullReferenceException ex)
 {
 // Hmmm, if I create a new instance of object and assign it to myObject:
 myObject = new object();
 // Nice, now I can continue to work with myObject
 DoSomethingElseWithMyObject();
 }
}

Since previous snippet only covers logic of exception, what should I do if myObject is not null at this
point? Where should I cover this part of logic? Right after Console.WriteLine(myObject.ToString());?
How about after the try...catch block?

How about Mr. Best Practices? How would he handle this?

// This is a snippet example for DO
object myObject;
void DoingSomethingWithMyObject()
{
 if(myObject == null)
 myObject = new object();

 // When execution reaches this point, we are sure that myObject is not null
 DoSomethingElseWithMyObject();
}

Mr. Best Practices achieved same logic with fewer code and a clear & understandable logic.

DO NOT re-throw Exceptions

Re-throwing exceptions is expensive. It negatively impact performance. For code that routinely
fails, you can use design patterns to minimize performance issues. This topic describes two
design patterns that are useful when exceptions might significantly impact performance.

DO NOT absorb exceptions with no logging

try
{
 //Some code that might throw an exception
}
catch(Exception ex)
{
 //empty catch block, bad practice
}

Never swallow exceptions. Ignoring exceptions will save that moment but will create a chaos for
maintainability later. When logging exceptions, you should always log the exception instance so

https://riptutorial.com/ 341

https://msdn.microsoft.com/en-us/library/ms229009(v=vs.100).aspx

that the complete stack trace is logged and not the exception message only.

try
{
 //Some code that might throw an exception
}
catch(NullException ex)
{
 LogManager.Log(ex.ToString());
}

Do not catch exceptions that you cannot handle

Many resources, such as this one, strongly urge you to consider why you are catching an
exception in the place that you are catching it. You should only catch an exception if you can
handle it at that location. If you can do something there to help mitigate the problem, such as
trying an alternative algorithm, connecting to a backup database, trying another filename, waiting
30 seconds and trying again, or notifying an administrator, you can catch the error and do that. If
there is nothing that you can plausibly and reasonably do, just "let it go" and let the exception be
handled at a higher level. If the exception is sufficiently catastrophic and there is no reasonable
option other than for the entire program to crash because of the severity of the problem, then let it
crash.

try
{
 //Try to save the data to the main database.
}
catch(SqlException ex)
{
 //Try to save the data to the alternative database.
}
//If anything other than a SqlException is thrown, there is nothing we can do here. Let the
exception bubble up to a level where it can be handled.

Unhandled and Thread Exception

AppDomain.UnhandledException This event provides notification of uncaught exceptions.It
allows the application to log information about the exception before the system default handler
reports the exception to the user and terminates the application.If sufficient information about the
state of the application is available, other actions may be undertaken — such as saving program
data for later recovery.Caution is advised, because program data can become corrupted when
exceptions are not handled.

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 private static void Main(string[] args)
 {
 AppDomain.CurrentDomain.UnhandledException += new
UnhandledExceptionEventHandler(UnhandledException);

https://riptutorial.com/ 342

http://c2.com/cgi/wiki?DontCatchExceptions

 }

Application.ThreadException This event allows your Windows Forms application to handle
otherwise unhandled exceptions that occur in Windows Forms threads. Attach your event handlers
to the ThreadException event to deal with these exceptions, which will leave your application in an
unknown state. Where possible, exceptions should be handled by a structured exception handling
block.

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 private static void Main(string[] args)
 {
 AppDomain.CurrentDomain.UnhandledException += new
UnhandledExceptionEventHandler(UnhandledException);
 Application.ThreadException += new ThreadExceptionEventHandler(ThreadException);
 }

And finally exception handling

static void UnhandledException(object sender, UnhandledExceptionEventArgs e)
 {
 Exception ex = (Exception)e.ExceptionObject;
 // your code
 }

static void ThreadException(object sender, ThreadExceptionEventArgs e)
 {
 Exception ex = e.Exception;
 // your code
 }

Throwing an exception

Your code can, and often should, throw an exception when something unusual has happened.

public void WalkInto(Destination destination)
{
 if (destination.Name == "Mordor")
 {
 throw new InvalidOperationException("One does not simply walk into Mordor.");
 }
 // ... Implement your normal walking code here.
}

Read Exception Handling online: https://riptutorial.com/csharp/topic/40/exception-handling

https://riptutorial.com/ 343

https://riptutorial.com/csharp/topic/40/exception-handling

Chapter 55: Expression Trees

Introduction

Expression Trees are Expressions arranged in a treelike data structure. Each node in the tree is a
representation of an expression, an expression being code. An In-Memory representation of a
Lambda expression would be an Expression tree, which holds the actual elements (i.e. code) of
the query, but not its result. Expression trees make the structure of a lambda expression
transparent and explicit.

Syntax

Expression<TDelegate> name = lambdaExpression;•

Parameters

Parameter Details

TDelegate The delegate type to be used for the expression

lambdaExpression The lambda expression (ex. num => num < 5)

Remarks

Intro to Expression Trees

Where we came from

Expression trees are all about consuming "source code" at runtime. Consider a method which
calculates the sales tax due on a sales order decimal CalculateTotalTaxDue(SalesOrder order).
Using that method in a .NET program is easy — you just call it decimal taxDue =
CalculateTotalTaxDue(order);. What if you want to apply it to all the results from a remote query
(SQL, XML, a remote server, etc)? Those remote query sources cannot call the method!
Traditionally, you would have to invert the flow in all these cases. Make the entire query, store it in
memory, then loop through the results and calculate tax for each result.

How to avoid flow inversion's memory and latency problems

Expression trees are data structures in a format of a tree, where each node holds an expression.
They are used to translate the compiled instructions (like methods used to filter data) in
expressions which could be used outside of the program environment such as inside a database

https://riptutorial.com/ 344

query.

The problem here is that a remote query cannot access our method. We could avoid this problem
if instead, we sent the instructions for the method to the remote query. In our CalculateTotalTaxDue
example, that means we send this information:

Create a variable to store the total tax1.
Loop through all the lines on the order2.
For each line, check if the product is taxable3.
If it is, multiply the line total by the applicable tax rate and add that amount to the total4.
Otherwise do nothing5.

With those instructions, the remote query can perform the work as it's creating the data.

There are two challenges to implementing this. How do you transform a compiled .NET method
into a list of instructions, and how do you format the instructions in a way that they can be
consumed by the remote system?

Without expression trees, you could only solve the first problem with MSIL. (MSIL is the
assembler-like code created by the .NET compiler.) Parsing MSIL is possible, but it's not easy.
Even when you do parse it properly, it can be hard to determine what the original programmer's
intent was with a particular routine.

Expression trees save the day

Expression trees address these exact issues. They represent program instructions a tree data
structure where each node represents one instruction and has references to all the information
you need to execute that instruction. For example, a MethodCallExpression has reference to 1) the
MethodInfo it is going to call, 2) a list of Expressions it will pass to that method, 3) for instance
methods, the Expression you'll call the method on. You can "walk the tree" and apply the
instructions on your remote query.

Creating expression trees

The easiest way to create an expression tree is with a lambda expression. These expressions look
almost the same as normal C# methods. It's important to realize this is compiler magic. When you
first create a lambda expression, the compiler checks what you assign it to. If it's a Delegate type
(including Action or Func), the compiler converts the lambda expression into a delegate. If it's a
LambdaExpression (or an Expression<Action<T>> or Expression<Func<T>> which are strongly typed
LambdaExpression's), the compiler transforms it into a LambdaExpression. This is where the magic
kicks in. Behind the scenes, the compiler uses the expression tree API to transform your lambda
expression into a LambdaExpression.

Lambda expressions cannot create every type of expression tree. In those cases, you can use the
Expressions API manually to create the tree you need to. In the Understanding the expressions
API example, we create the CalculateTotalSalesTax expression using the API.

https://riptutorial.com/ 345

http://www.riptutorial.com/csharp/example/19200/understanding-the-expressions-api
http://www.riptutorial.com/csharp/example/19200/understanding-the-expressions-api

NOTE: The names get a bit confusing here. A lambda expression (two words, lower case) refers
to the block of code with a => indicator. It represents an anonymous method in C# and is
converted into either a Delegate or Expression. A LambdaExpression (one word, PascalCase) refers to
the node type within the Expression API which represents a method you can execute.

Expression Trees and LINQ

One of the most common uses of expression trees is with LINQ and database queries. LINQ pairs
an expression tree with a query provider to apply your instructions to the target remote query. For
example, the LINQ to Entity Framework query provider transforms an expression tree into SQL
which is executed against the database directly.

Putting all the pieces together, you can see the real power behind LINQ.

Write a query using a lambda expression: products.Where(x => x.Cost > 5)1.
The compiler transforms that expression into an expression tree with the instructions "check
if the Cost property of the parameter is greater than five".

2.

The query provider parses the expression tree and produces a valid SQL query SELECT *
FROM products WHERE Cost > 5

3.

The ORM projects all the results into POCOs and you get a list of objects back4.

Notes

Expression trees are immutable. If you want to change an expression tree you need to
create a new one, copy the existing one into the new one (to traverse an expression tree you
can use the ExpressionVisitor) and make the wanted changes.

•

Examples

Creating Expression Trees by Using the API

using System.Linq.Expressions;

// Manually build the expression tree for
// the lambda expression num => num < 5.
ParameterExpression numParam = Expression.Parameter(typeof(int), "num");
ConstantExpression five = Expression.Constant(5, typeof(int));
BinaryExpression numLessThanFive = Expression.LessThan(numParam, five);
Expression<Func<int, bool>> lambda1 =
 Expression.Lambda<Func<int, bool>>(
 numLessThanFive,
 new ParameterExpression[] { numParam });

Compiling Expression Trees

// Define an expression tree, taking an integer, returning a bool.

https://riptutorial.com/ 346

Expression<Func<int, bool>> expr = num => num < 5;

// Call the Compile method on the expression tree to return a delegate that can be called.
Func<int, bool> result = expr.Compile();

// Invoke the delegate and write the result to the console.
Console.WriteLine(result(4)); // Prints true

// Prints True.

// You can also combine the compile step with the call/invoke step as below:
Console.WriteLine(expr.Compile()(4));

Parsing Expression Trees

using System.Linq.Expressions;

// Create an expression tree.
Expression<Func<int, bool>> exprTree = num => num < 5;

// Decompose the expression tree.
ParameterExpression param = (ParameterExpression)exprTree.Parameters[0];
BinaryExpression operation = (BinaryExpression)exprTree.Body;
ParameterExpression left = (ParameterExpression)operation.Left;
ConstantExpression right = (ConstantExpression)operation.Right;

Console.WriteLine("Decomposed expression: {0} => {1} {2} {3}",
 param.Name, left.Name, operation.NodeType, right.Value);

// Decomposed expression: num => num LessThan 5

Create Expression Trees with a lambda expression

Following is most basic expression tree that is created by lambda.

Expression<Func<int, bool>> lambda = num => num == 42;

To create expression trees 'by hand', one should use Expression class.

Expression above would be equivalent to:

ParameterExpression parameter = Expression.Parameter(typeof(int), "num"); // num argument
ConstantExpression constant = Expression.Constant(42, typeof(int)); // 42 constant
BinaryExpression equality = Expression.Equals(parameter, constant); // equality of two
expressions (num == 42)
Expression<Func<int, bool>> lambda = Expression.Lambda<Func<int, bool>>(equality, parameter);

Understanding the expressions API

We're going to use the expression tree API to create a CalculateSalesTax tree. In plain English,
here's a summary of the steps it takes to create the tree.

Check if the product is taxable1.

https://riptutorial.com/ 347

If it is, multiply the line total by the applicable tax rate and return that amount2.
Otherwise return 03.

//For reference, we're using the API to build this lambda expression
 orderLine => orderLine.IsTaxable ? orderLine.Total * orderLine.Order.TaxRate : 0;

//The orderLine parameter we pass in to the method. We specify it's type (OrderLine) and the
name of the parameter.
 ParameterExpression orderLine = Expression.Parameter(typeof(OrderLine), "orderLine");

//Check if the parameter is taxable; First we need to access the is taxable property, then
check if it's true
 PropertyInfo isTaxableAccessor = typeof(OrderLine).GetProperty("IsTaxable");
 MemberExpression getIsTaxable = Expression.MakeMemberAccess(orderLine, isTaxableAccessor);
 UnaryExpression isLineTaxable = Expression.IsTrue(getIsTaxable);

//Before creating the if, we need to create the braches
 //If the line is taxable, we'll return the total times the tax rate; get the total and tax
rate, then multiply
 //Get the total
 PropertyInfo totalAccessor = typeof(OrderLine).GetProperty("Total");
 MemberExpression getTotal = Expression.MakeMemberAccess(orderLine, totalAccessor);

 //Get the order
 PropertyInfo orderAccessor = typeof(OrderLine).GetProperty("Order");
 MemberExpression getOrder = Expression.MakeMemberAccess(orderLine, orderAccessor);

 //Get the tax rate - notice that we pass the getOrder expression directly to the member
access
 PropertyInfo taxRateAccessor = typeof(Order).GetProperty("TaxRate");
 MemberExpression getTaxRate = Expression.MakeMemberAccess(getOrder, taxRateAccessor);

 //Multiply the two - notice we pass the two operand expressions directly to multiply
 BinaryExpression multiplyTotalByRate = Expression.Multiply(getTotal, getTaxRate);

//If the line is not taxable, we'll return a constant value - 0.0 (decimal)
 ConstantExpression zero = Expression.Constant(0M);

//Create the actual if check and branches
 ConditionalExpression ifTaxableTernary = Expression.Condition(isLineTaxable,
multiplyTotalByRate, zero);

//Wrap the whole thing up in a "method" - a LambdaExpression
 Expression<Func<OrderLine, decimal>> method = Expression.Lambda<Func<OrderLine,
decimal>>(ifTaxableTernary, orderLine);

Expression Tree Basic

Expression trees represent code in a tree-like data structure, where each node is an expression

Expression Trees enables dynamic modification of executable code, the execution of LINQ
queries in various databases, and the creation of dynamic queries. You can compile and run code
represented by expression trees.

These are also used in the dynamic language run-time (DLR) to provide interoperability between
dynamic languages and the .NET Framework and to enable compiler writers to emit expression
trees instead of Microsoft intermediate language (MSIL).

https://riptutorial.com/ 348

Expression Trees can be created Via

Anonymous lambda expression,1.
Manually by using the System.Linq.Expressions namespace.2.

Expression Trees from Lambda Expressions

When a lambda expression is assigned to Expression type variable , the compiler emits code to
build an expression tree that represents the lambda expression.

The following code examples shows how to have the C# compiler create an expression tree that
represents the lambda expression num => num < 5.

Expression<Func<int, bool>> lambda = num => num < 5;

Expression Trees by Using the API

Expression Trees also created using the Expression Class. This class contains static factory
methods that create expression tree nodes of specific types.

Below are few type of Tree nodes.

ParameterExpression1.
MethodCallExpression2.

The following code example shows how to create an expression tree that represents the lambda
expression num => num < 5 by using the API.

ParameterExpression numParam = Expression.Parameter(typeof(int), "num");
ConstantExpression five = Expression.Constant(5, typeof(int));
BinaryExpression numLessThanFive = Expression.LessThan(numParam, five);
Expression<Func<int, bool>> lambda1 = Expression.Lambda<Func<int, bool>>(numLessThanFive,new
ParameterExpression[] { numParam });

Examining the Structure of an Expression using Visitor

Define a new visitor class by overriding some of the methods of ExpressionVisitor:

class PrintingVisitor : ExpressionVisitor {
 protected override Expression VisitConstant(ConstantExpression node) {
 Console.WriteLine("Constant: {0}", node);
 return base.VisitConstant(node);
 }
 protected override Expression VisitParameter(ParameterExpression node) {
 Console.WriteLine("Parameter: {0}", node);
 return base.VisitParameter(node);
 }
 protected override Expression VisitBinary(BinaryExpression node) {
 Console.WriteLine("Binary with operator {0}", node.NodeType);
 return base.VisitBinary(node);
 }
}

https://riptutorial.com/ 349

https://msdn.microsoft.com/en-us/library/system.linq.expressions.expressionvisitor(v=vs.110).aspx

Call Visit to use this visitor on an existing expression:

Expression<Func<int,bool>> isBig = a => a > 1000000;
var visitor = new PrintingVisitor();
visitor.Visit(isBig);

Read Expression Trees online: https://riptutorial.com/csharp/topic/75/expression-trees

https://riptutorial.com/ 350

https://riptutorial.com/csharp/topic/75/expression-trees

Chapter 56: Extension Methods

Syntax

public static ReturnType MyExtensionMethod(this TargetType target)•
public static ReturnType MyExtensionMethod(this TargetType target, TArg1 arg1, ...)•

Parameters

Parameter Details

this
The first parameter of an extension method should always be preceded by the
this keyword, followed by the identifier with which to refer to the "current"
instance of the object you are extending

Remarks

Extension methods are syntactic sugar that allow static methods to be invoked on object instances
as if they were a member of the type itself.

Extension methods require an explicit target object. You will need to use the this keyword to
access the method from within the extended type itself.

Extensions methods must be declared static, and must live in a static class.

Which namespace?

The choice of namespace for your extension method class is a trade-off between visibility and
discoverability.

The most commonly mentioned option is to have a custom namespace for your extension
methods. However this will involve a communication effort so that users of your code know that
the extension methods exist, and where to find them.

An alternative is to choose a namespace such that developers will discover your extension
methods via Intellisense. So if you want to extend the Foo class, it is logical to put the extension
methods in the same namespace as Foo.

It is important to realise that nothing prevents you using "someone else's" namespace: Thus
if you want to extend IEnumerable, you can add your extension method in the System.Linq
namespace.

This is not always a good idea. For example, in one specific case, you may want to extend a
common type (bool IsApproxEqualTo(this double value, double other) for example), but not have
that 'pollute' the whole of System. In this case it is preferable to chose a local, specific, namespace.

https://riptutorial.com/ 351

http://stackoverflow.com/q/1226189

Finally, it is also possible to put the extension methods in no namespace at all!

A good reference question: How do you manage the namespaces of your extension methods?

Applicability

Care should be taken when creating extension methods to ensure that they are appropriate for all
possible inputs and are not only relevant to specific situations. For example, it is possible to
extend system classes such as string, which makes your new code available to any string. If your
code needs to perform domain specific logic on a domain specific string format, an extension
method would not be appropriate as its presence would confuse callers working with other strings
in the system.

The following list contains basic features and properties of extension methods

It must be a static method.1.
It must be located in a static class.2.
It uses the "this" keyword as the first parameter with a type in .NET and this method will be
called by a given type instance on the client side.

3.

It also shown by VS intellisense. When we press the dot . after a type instance, then it
comes in VS intellisense.

4.

An extension method should be in the same namespace as it is used or you need to import
the namespace of the class by a using statement.

5.

You can give any name for the class that has an extension method but the class should be
static.

6.

If you want to add new methods to a type and you don't have the source code for it, then the
solution is to use and implement extension methods of that type.

7.

If you create extension methods that have the same signature methods as the type you are
extending, then the extension methods will never be called.

8.

Examples

Extension methods - overview

Extension methods were introduced in C# 3.0. Extension methods extend and add behavior to
existing types without creating a new derived type, recompiling, or otherwise modifying the original
type. They are especially helpful when you cannot modify the source of a type you are looking to
enhance. Extension methods may be created for system types, types defined by third parties, and
types that you have defined yourself. The extension method can be invoked as though it were a
member method of the original type. This allows for Method Chaining used to implement a
Fluent Interface.

An extension method is created by adding a static method to a static class which is distinct from
the original type being extended. The static class holding the extension method is often created for
the sole purpose of holding extension methods.

Extension methods take a special first parameter that designates the original type being extended.
This first parameter is decorated with the keyword this (which constitutes a special and distinct

https://riptutorial.com/ 352

http://stackoverflow.com/questions/2520446/how-do-you-manage-the-namespaces-of-your-extension-methods

use of this in C#—it should be understood as different from the use of this which allows referring
to members of the current object instance).

In the following example, the original type being extended is the class string. String has been
extended by a method Shorten(), which provides the additional functionality of shortening. The
static class StringExtensions has been created to hold the extension method. The extension
method Shorten() shows that it is an extension of string via the specially marked first parameter.
To show that the Shorten() method extends string, the first parameter is marked with this.
Therefore, the full signature of the first parameter is this string text, where string is the original
type being extended and text is the chosen parameter name.

static class StringExtensions
{
 public static string Shorten(this string text, int length)
 {
 return text.Substring(0, length);
 }
}

class Program
{
 static void Main()
 {
 // This calls method String.ToUpper()
 var myString = "Hello World!".ToUpper();

 // This calls the extension method StringExtensions.Shorten()
 var newString = myString.Shorten(5);

 // It is worth noting that the above call is purely syntactic sugar
 // and the assignment below is functionally equivalent
 var newString2 = StringExtensions.Shorten(myString, 5);
 }
}

Live Demo on .NET Fiddle

The object passed as the first argument of an extension method (which is accompanied by the
this keyword) is the instance the extension method is called upon.

For example, when this code is executed:

"some string".Shorten(5);

The values of the arguments are as below:

text: "some string"
length: 5

Note that extension methods are only usable if they are in the same namespace as their definition,
if the namespace is imported explicitly by the code using the extension method, or if the extension
class is namespace-less. The .NET framework guidelines recommend putting extension classes in

https://riptutorial.com/ 353

https://dotnetfiddle.net/uiPhpP

their own namespace. However, this may lead to discovery issues.

This results in no conflicts between the extension methods and the libraries being used, unless
namespaces which might conflict are explicitly pulled in. For example LINQ Extensions:

using System.Linq; // Allows use of extension methods from the System.Linq namespace

class Program
{
 static void Main()
 {
 var ints = new int[] {1, 2, 3, 4};

 // Call Where() extension method from the System.Linq namespace
 var even = ints.Where(x => x % 2 == 0);
 }
}

Live Demo on .NET Fiddle

Since C# 6.0, it is also possible to put a using static directive to the class containing the extension
methods. For example, using static System.Linq.Enumerable;. This makes extension methods from
that particular class available without bringing other types from the same namespace into scope.

When a class method with the same signature is available, the compiler prioritizes it over the
extension method call. For example:

class Test
{
 public void Hello()
 {
 Console.WriteLine("From Test");
 }
}

static class TestExtensions
{
 public static void Hello(this Test test)
 {
 Console.WriteLine("From extension method");
 }
}

class Program
{
 static void Main()
 {
 Test t = new Test();
 t.Hello(); // Prints "From Test"
 }
}

Live demo on .NET Fiddle

https://riptutorial.com/ 354

http://www.riptutorial.com/csharp/topic/68/linq-queries
https://dotnetfiddle.net/IF223c
https://dotnetfiddle.net/fI3sCJ

Note that if there are two extension functions with the same signature, and one of them is in the
same namespace, then that one will be prioritized. On the other hand, if both of them are
accessed by using, then a compile time error will ensue with the message:

The call is ambiguous between the following methods or properties

Note that the syntactic convenience of calling an extension method via
originalTypeInstance.ExtensionMethod() is an optional convenience. The method can also be called
in the traditional manner, so that the special first parameter is used as a parameter to the method.

I.e., both of the following work:

//Calling as though method belongs to string--it seamlessly extends string
String s = "Hello World";
s.Shorten(5);

//Calling as a traditional static method with two parameters
StringExtensions.Shorten(s, 5);

Explicitly using an extension method

Extension methods can also be used like ordinary static class methods. This way of calling an
extension method is more verbose, but is necessary in some cases.

static class StringExtensions
{
 public static string Shorten(this string text, int length)
 {
 return text.Substring(0, length);
 }
}

Usage:

var newString = StringExtensions.Shorten("Hello World", 5);

When to call extension methods as static
methods

There are still scenarios where you would need to use an extension method as a static method:

Resolving conflict with a member method. This can happen if a new version of a library
introduces a new member method with the same signature. In this case, the member method
will be preferred by the compiler.

•

Resolving conflicts with another extension method with the same signature. This can happen
if two libraries include similar extension methods and namespaces of both classes with
extension methods are used in the same file.

•

https://riptutorial.com/ 355

Passing extension method as a method group into delegate parameter.•
Doing your own binding through Reflection.•
Using the extension method in the Immediate window in Visual Studio.•

Using static

If a using static directive is used to bring static members of a static class into global scope,
extension methods are skipped. Example:

using static OurNamespace.StringExtensions; // refers to class in previous example

// OK: extension method syntax still works.
"Hello World".Shorten(5);
// OK: static method syntax still works.
OurNamespace.StringExtensions.Shorten("Hello World", 5);
// Compile time error: extension methods can't be called as static without specifying class.
Shorten("Hello World", 5);

If you remove the this modifier from the first argument of the Shorten method, the last line will
compile.

Null checking

Extension methods are static methods which behave like instance methods. However, unlike what
happens when calling an instance method on a null reference, when an extension method is
called with a null reference, it does not throw a NullReferenceException. This can be quite useful in
some scenarios.

For example, consider the following static class:

public static class StringExtensions
{
 public static string EmptyIfNull(this string text)
 {
 return text ?? String.Empty;
 }

 public static string NullIfEmpty(this string text)
 {
 return String.Empty == text ? null : text;
 }
}

string nullString = null;
string emptyString = nullString.EmptyIfNull();// will return ""
string anotherNullString = emptyString.NullIfEmpty(); // will return null

Live Demo on .NET Fiddle

Extension methods can only see public (or internal) members of the extended

https://riptutorial.com/ 356

https://msdn.microsoft.com/en-us/library/system.nullreferenceexception(v=vs.110).aspx
https://dotnetfiddle.net/jNQWqg

class

public class SomeClass
{
 public void DoStuff()
 {

 }

 protected void DoMagic()
 {

 }
}

public static class SomeClassExtensions
{
 public static void DoStuffWrapper(this SomeClass someInstance)
 {
 someInstance.DoStuff(); // ok
 }

 public static void DoMagicWrapper(this SomeClass someInstance)
 {
 someInstance.DoMagic(); // compilation error
 }
}

Extension methods are just a syntactic sugar, and are not actually members of the class they
extend. This means that they cannot break encapsulation—they only have access to public (or
when implemented in the same assembly, internal) fields, properties and methods.

Generic Extension Methods

Just like other methods, extension methods can use generics. For example:

static class Extensions
{
 public static bool HasMoreThanThreeElements<T>(this IEnumerable<T> enumerable)
 {
 return enumerable.Take(4).Count() > 3;
 }
}

and calling it would be like:

IEnumerable<int> numbers = new List<int> {1,2,3,4,5,6};
var hasMoreThanThreeElements = numbers.HasMoreThanThreeElements();

View Demo

Likewise for multiple Type Arguments:

public static TU GenericExt<T, TU>(this T obj)

https://riptutorial.com/ 357

https://dotnetfiddle.net/UlCa3i

{
 TU ret = default(TU);
 // do some stuff with obj
 return ret;
}

Calling it would be like:

IEnumerable<int> numbers = new List<int> {1,2,3,4,5,6};
var result = numbers.GenericExt<IEnumerable<int>,String>();

View Demo

You can also create extension methods for partially bound types in multi generic types:

class MyType<T1, T2>
{
}

static class Extensions
{
 public static void Example<T>(this MyType<int, T> test)
 {
 }
}

Calling it would be like:

MyType<int, string> t = new MyType<int, string>();
t.Example();

View Demo

You can also specify type constraints with where :

public static bool IsDefault<T>(this T obj) where T : struct, IEquatable<T>
{
 return EqualityComparer<T>.Default.Equals(obj, default(T));
}

Calling code:

int number = 5;
var IsDefault = number.IsDefault();

View Demo

Extension methods dispatch based on static type

The static (compile-time) type is used rather than the dynamic (run-time type) to match
parameters.

https://riptutorial.com/ 358

https://dotnetfiddle.net/aMNO0X
https://dotnetfiddle.net/1FjUOH
http://www.riptutorial.com/csharp/example/8137/where
https://dotnetfiddle.net/Jom3cS

public class Base
{
 public virtual string GetName()
 {
 return "Base";
 }
}

public class Derived : Base
{
 public override string GetName()
 {
 return "Derived";
 }
}

public static class Extensions
{
 public static string GetNameByExtension(this Base item)
 {
 return "Base";
 }

 public static string GetNameByExtension(this Derived item)
 {
 return "Derived";
 }
}

public static class Program
{
 public static void Main()
 {
 Derived derived = new Derived();
 Base @base = derived;

 // Use the instance method "GetName"
 Console.WriteLine(derived.GetName()); // Prints "Derived"
 Console.WriteLine(@base.GetName()); // Prints "Derived"

 // Use the static extension method "GetNameByExtension"
 Console.WriteLine(derived.GetNameByExtension()); // Prints "Derived"
 Console.WriteLine(@base.GetNameByExtension()); // Prints "Base"
 }
}

Live Demo on .NET Fiddle

Also the dispatch based on static type does not allow an extension method to be called on a
dynamic object:

public class Person
{
 public string Name { get; set; }
}

public static class ExtenionPerson
{
 public static string GetPersonName(this Person person)

https://riptutorial.com/ 359

https://dotnetfiddle.net/7BGp8o

 {
 return person.Name;
 }
}

dynamic person = new Person { Name = "Jon" };
var name = person.GetPersonName(); // RuntimeBinderException is thrown

Extension methods aren't supported by dynamic code.

static class Program
{
 static void Main()
 {
 dynamic dynamicObject = new ExpandoObject();

 string awesomeString = "Awesome";

 // Prints True
 Console.WriteLine(awesomeString.IsThisAwesome());

 dynamicObject.StringValue = awesomeString;

 // Prints True
 Console.WriteLine(StringExtensions.IsThisAwesome(dynamicObject.StringValue));

 // No compile time error or warning, but on runtime throws RuntimeBinderException
 Console.WriteLine(dynamicObject.StringValue.IsThisAwesome());
 }
}

static class StringExtensions
{
 public static bool IsThisAwesome(this string value)
 {
 return value.Equals("Awesome");
 }
}

The reason [calling extension methods from dynamic code] doesn't work is because in
regular, non-dynamic code extension methods work by doing a full search of all the
classes known to the compiler for a static class that has an extension method that
matches. The search goes in order based on the namespace nesting and available
using directives in each namespace.

That means that in order to get a dynamic extension method invocation resolved
correctly, somehow the DLR has to know at runtime what all the namespace nestings
and using directives were in your source code. We do not have a mechanism handy for
encoding all that information into the call site. We considered inventing such a
mechanism, but decided that it was too high cost and produced too much schedule risk
to be worth it.

Source

https://riptutorial.com/ 360

http://stackoverflow.com/a/5313149/1610754

Extension methods as strongly typed wrappers

Extension methods can be used for writing strongly typed wrappers for dictionary-like objects. For
example a cache, HttpContext.Items at cetera...

public static class CacheExtensions
{
 public static void SetUserInfo(this Cache cache, UserInfo data) =>
 cache["UserInfo"] = data;

 public static UserInfo GetUserInfo(this Cache cache) =>
 cache["UserInfo"] as UserInfo;
}

This approach removes the need of using string literals as keys all over the codebase as well as
the need of casting to the required type during the read operation. Overall it creates a more
secure, strongly typed way of interacting with such loosely typed objects as Dictionaries.

Extension methods for chaining

When an extension method returns a value that has the same type as its this argument, it can be
used to "chain" one or more method calls with a compatible signature. This can be useful for
sealed and/or primitive types, and allows the creation of so-called "fluent" APIs if the method
names read like natural human language.

void Main()
{
 int result = 5.Increment().Decrement().Increment();
 // result is now 6
}

public static class IntExtensions
{
 public static int Increment(this int number) {
 return ++number;
 }

 public static int Decrement(this int number) {
 return --number;
 }
}

Or like this

void Main()
{
 int[] ints = new[] { 1, 2, 3, 4, 5, 6};
 int[] a = ints.WhereEven();
 //a is { 2, 4, 6 };
 int[] b = ints.WhereEven().WhereGreaterThan(2);
 //b is { 4, 6 };
}

public static class IntArrayExtensions

https://riptutorial.com/ 361

{
 public static int[] WhereEven(this int[] array)
 {
 //Enumerable.* extension methods use a fluent approach
 return array.Where(i => (i%2) == 0).ToArray();
 }

 public static int[] WhereGreaterThan(this int[] array, int value)
 {
 return array.Where(i => i > value).ToArray();
 }
}

Extension methods in combination with interfaces

It is very convenient to use extension methods with interfaces as implementation can be stored
outside of class and all it takes to add some functionality to class is to decorate class with
interface.

public interface IInterface
{
 string Do()
}

public static class ExtensionMethods{
 public static string DoWith(this IInterface obj){
 //does something with IInterface instance
 }
}

public class Classy : IInterface
{
 // this is a wrapper method; you could also call DoWith() on a Classy instance directly,
 // provided you import the namespace containing the extension method
 public Do(){
 return this.DoWith();
 }
}

use like:

 var classy = new Classy();
 classy.Do(); // will call the extension
 classy.DoWith(); // Classy implements IInterface so it can also be called this way

IList Extension Method Example: Comparing 2 Lists

You can use the following extension method for comparing the contents of two IList< T > instances
of the same type.

By default the items are compared based on their order within the list and the items themselves,
passing false to the isOrdered parameter will compare only the items themselves regardless of
their order.

https://riptutorial.com/ 362

For this method to work, the generic type (T) must override both Equals and GetHashCode methods.

Usage:

List<string> list1 = new List<string> {"a1", "a2", null, "a3"};
List<string> list2 = new List<string> {"a1", "a2", "a3", null};

list1.Compare(list2);//this gives false
list1.Compare(list2, false);//this gives true. they are equal when the order is disregarded

Method:

public static bool Compare<T>(this IList<T> list1, IList<T> list2, bool isOrdered = true)
{
 if (list1 == null && list2 == null)
 return true;
 if (list1 == null || list2 == null || list1.Count != list2.Count)
 return false;

 if (isOrdered)
 {
 for (int i = 0; i < list2.Count; i++)
 {
 var l1 = list1[i];
 var l2 = list2[i];
 if (
 (l1 == null && l2 != null) ||
 (l1 != null && l2 == null) ||
 (!l1.Equals(l2)))
 {
 return false;
 }
 }
 return true;
 }
 else
 {
 List<T> list2Copy = new List<T>(list2);
 //Can be done with Dictionary without O(n^2)
 for (int i = 0; i < list1.Count; i++)
 {
 if (!list2Copy.Remove(list1[i]))
 return false;
 }
 return true;
 }
}

Extension methods with Enumeration

Extension methods are useful for adding functionality to enumerations.

One common use is to implement a conversion method.

public enum YesNo
{

https://riptutorial.com/ 363

 Yes,
 No,
}

public static class EnumExtentions
{
 public static bool ToBool(this YesNo yn)
 {
 return yn == YesNo.Yes;
 }
 public static YesNo ToYesNo(this bool yn)
 {
 return yn ? YesNo.Yes : YesNo.No;
 }
}

Now you can quickly convert your enum value to a different type. In this case a bool.

bool yesNoBool = YesNo.Yes.ToBool(); // yesNoBool == true
YesNo yesNoEnum = false.ToYesNo(); // yesNoEnum == YesNo.No

Alternatively extension methods can be used to add property like methods.

public enum Element
{
 Hydrogen,
 Helium,
 Lithium,
 Beryllium,
 Boron,
 Carbon,
 Nitrogen,
 Oxygen
 //Etc
}

public static class ElementExtensions
{
 public static double AtomicMass(this Element element)
 {
 switch(element)
 {
 case Element.Hydrogen: return 1.00794;
 case Element.Helium: return 4.002602;
 case Element.Lithium: return 6.941;
 case Element.Beryllium: return 9.012182;
 case Element.Boron: return 10.811;
 case Element.Carbon: return 12.0107;
 case Element.Nitrogen: return 14.0067;
 case Element.Oxygen: return 15.9994;
 //Etc
 }
 return double.Nan;
 }
}

var massWater = 2*Element.Hydrogen.AtomicMass() + Element.Oxygen.AtomicMass();

https://riptutorial.com/ 364

Extensions and interfaces together enable DRY code and mixin-like
functionality

Extension methods enable you to simplify your interface definitions by only including core required
functionality in the interface itself and allowing you to define convenience methods and overloads
as extension methods. Interfaces with fewer methods are easier to implement in new classes.
Keeping overloads as extensions rather than including them in the interface directly saves you
from copying boilerplate code into every implementation, helping you keep your code DRY. This in
fact is similar to the mixin pattern which C# does not support.

System.Linq.Enumerable’s extensions to IEnumerable<T> is a great example of this. IEnumerable<T>
only requires the implementing class to implement two methods: generic and non-generic
GetEnumerator(). But System.Linq.Enumerable provides countless useful utilities as extensions
enabling concise and clear consumption of IEnumerable<T>.

The following is a very simple interface with convenience overloads provided as extensions.

public interface ITimeFormatter
{
 string Format(TimeSpan span);
}

public static class TimeFormatter
{
 // Provide an overload to *all* implementers of ITimeFormatter.
 public static string Format(
 this ITimeFormatter formatter,
 int millisecondsSpan)
 => formatter.Format(TimeSpan.FromMilliseconds(millisecondsSpan));
}

// Implementations only need to provide one method. Very easy to
// write additional implementations.
public class SecondsTimeFormatter : ITimeFormatter
{
 public string Format(TimeSpan span)
 {
 return $"{(int)span.TotalSeconds}s";
 }
}

class Program
{
 static void Main(string[] args)
 {
 var formatter = new SecondsTimeFormatter();
 // Callers get two method overloads!
 Console.WriteLine($"4500ms is rougly {formatter.Format(4500)}");
 var span = TimeSpan.FromSeconds(5);
 Console.WriteLine($"{span} is formatted as {formatter.Format(span)}");
 }
}

Extension methods for handling special cases

https://riptutorial.com/ 365

Extension methods can be used to "hide" processing of inelegant business rules that would
otherwise require cluttering up a calling function with if/then statements. This is similar to and
analogous to handling nulls with extension methods. For example,

public static class CakeExtensions
{
 public static Cake EnsureTrueCake(this Cake cake)
 {
 //If the cake is a lie, substitute a cake from grandma, whose cakes aren't as tasty
but are known never to be lies. If the cake isn't a lie, don't do anything and return it.
 return CakeVerificationService.IsCakeLie(cake) ? GrandmasKitchen.Get1950sCake() :
cake;
 }
}

Cake myCake = Bakery.GetNextCake().EnsureTrueCake();
myMouth.Eat(myCake);//Eat the cake, confident that it is not a lie.

Using Extension methods with Static methods and Callbacks

Consider using Extension Methods as Functions which wrap other code, here's a great example
that uses both a static method and and extension method to wrap the Try Catch construct. Make
your code Bullet Proof...

using System;
using System.Diagnostics;

namespace Samples
{
 /// <summary>
 /// Wraps a try catch statement as a static helper which uses
 /// Extension methods for the exception
 /// </summary>
 public static class Bullet
 {
 /// <summary>
 /// Wrapper for Try Catch Statement
 /// </summary>
 /// <param name="code">Call back for code</param>
 /// <param name="error">Already handled and logged exception</param>
 public static void Proof(Action code, Action<Exception> error)
 {
 try
 {
 code();
 }
 catch (Exception iox)
 {
 //extension method used here
 iox.Log("BP2200-ERR-Unexpected Error");
 //callback, exception already handled and logged
 error(iox);
 }
 }
 /// <summary>
 /// Example of a logging method helper, this is the extension method

https://riptutorial.com/ 366

 /// </summary>
 /// <param name="error">The Exception to log</param>
 /// <param name="messageID">A unique error ID header</param>
 public static void Log(this Exception error, string messageID)
 {
 Trace.WriteLine(messageID);
 Trace.WriteLine(error.Message);
 Trace.WriteLine(error.StackTrace);
 Trace.WriteLine("");
 }
 }
 /// <summary>
 /// Shows how to use both the wrapper and extension methods.
 /// </summary>
 public class UseBulletProofing
 {
 public UseBulletProofing()
 {
 var ok = false;
 var result = DoSomething();
 if (!result.Contains("ERR"))
 {
 ok = true;
 DoSomethingElse();
 }
 }

 /// <summary>
 /// How to use Bullet Proofing in your code.
 /// </summary>
 /// <returns>A string</returns>
 public string DoSomething()
 {
 string result = string.Empty;
 //Note that the Bullet.Proof method forces this construct.
 Bullet.Proof(() =>
 {
 //this is the code callback
 result = "DST5900-INF-No Exceptions in this code";
 }, error =>
 {
 //error is the already logged and handled exception
 //determine the base result
 result = "DTS6200-ERR-An exception happened look at console log";
 if (error.Message.Contains("SomeMarker"))
 {
 //filter the result for Something within the exception message
 result = "DST6500-ERR-Some marker was found in the exception";
 }
 });
 return result;
 }

 /// <summary>
 /// Next step in workflow
 /// </summary>
 public void DoSomethingElse()
 {
 //Only called if no exception was thrown before
 }
 }

https://riptutorial.com/ 367

}

Extension methods on Interfaces

One useful feature of extension methods is that you can create common methods for an interface.
Normally an interface cannot have shared implementations, but with extension methods they can.

public interface IVehicle
{
 int MilesDriven { get; set; }
}

public static class Extensions
{
 public static int FeetDriven(this IVehicle vehicle)
 {
 return vehicle.MilesDriven * 5028;
 }
}

In this example, the method FeetDriven can be used on any IVehicle. This logic in this method
would apply to all IVehicles, so it can be done this way so that there doesn't have to be a
FeetDriven in the IVehicle definition which would be implemented the same way for all children.

Using Extension methods to create beautiful mapper classes

We can create a better mapper classes with extension methods, Suppose if i have some DTO
classes like

 public class UserDTO
 {
 public AddressDTO Address { get; set; }
 }

 public class AddressDTO
 {
 public string Name { get; set; }
 }

and i need to map to corresponding view model classes

public class UserViewModel
{
 public AddressViewModel Address { get; set; }
}

public class AddressViewModel
{
 public string Name { get; set; }
}

then I can create my mapper class like below

https://riptutorial.com/ 368

public static class ViewModelMapper
{
 public static UserViewModel ToViewModel(this UserDTO user)
 {
 return user == null ?
 null :
 new UserViewModel()
 {
 Address = user.Address.ToViewModel()
 // Job = user.Job.ToViewModel(),
 // Contact = user.Contact.ToViewModel() .. and so on
 };
 }

 public static AddressViewModel ToViewModel(this AddressDTO userAddr)
 {
 return userAddr == null ?
 null :
 new AddressViewModel()
 {
 Name = userAddr.Name
 };
 }
}

Then finally i can invoke my mapper like below

 UserDTO userDTOObj = new UserDTO() {
 Address = new AddressDTO() {
 Name = "Address of the user"
 }
 };

 UserViewModel user = userDTOObj.ToViewModel(); // My DTO mapped to Viewmodel

The beauty here is all the mapping method have a common name (ToViewModel) and we can
reuse it several ways

Using Extension methods to build new collection types (e.g. DictList)

You can create extension methods to improve usability for nested collections like a Dictionary with
a List<T> value.

Consider the following extension methods:

public static class DictListExtensions
{
 public static void Add<TKey, TValue, TCollection>(this Dictionary<TKey, TCollection> dict,
TKey key, TValue value)
 where TCollection : ICollection<TValue>, new()
 {
 TCollection list;
 if (!dict.TryGetValue(key, out list))
 {
 list = new TCollection();
 dict.Add(key, list);

https://riptutorial.com/ 369

 }

 list.Add(value);
 }

 public static bool Remove<TKey, TValue, TCollection>(this Dictionary<TKey, TCollection>
dict, TKey key, TValue value)
 where TCollection : ICollection<TValue>
 {
 TCollection list;
 if (!dict.TryGetValue(key, out list))
 {
 return false;
 }

 var ret = list.Remove(value);
 if (list.Count == 0)
 {
 dict.Remove(key);
 }
 return ret;
 }
}

you can use the extension methods as follows:

var dictList = new Dictionary<string, List<int>>();

dictList.Add("example", 5);
dictList.Add("example", 10);
dictList.Add("example", 15);

Console.WriteLine(String.Join(", ", dictList["example"])); // 5, 10, 15

dictList.Remove("example", 5);
dictList.Remove("example", 10);

Console.WriteLine(String.Join(", ", dictList["example"])); // 15

dictList.Remove("example", 15);

Console.WriteLine(dictList.ContainsKey("example")); // False

View Demo

Read Extension Methods online: https://riptutorial.com/csharp/topic/20/extension-methods

https://riptutorial.com/ 370

https://dotnetfiddle.net/UbdQuC
https://riptutorial.com/csharp/topic/20/extension-methods

Chapter 57: File and Stream I/O

Introduction

Manages files.

Syntax

new System.IO.StreamWriter(string path)•
new System.IO.StreamWriter(string path, bool append)•
System.IO.StreamWriter.WriteLine(string text)•
System.IO.StreamWriter.WriteAsync(string text)•
System.IO.Stream.Close()•
System.IO.File.ReadAllText(string path)•
System.IO.File.ReadAllLines(string path)•
System.IO.File.ReadLines(string path)•
System.IO.File.WriteAllText(string path, string text)•
System.IO.File.WriteAllLines(string path, IEnumerable<string> contents)•
System.IO.File.Copy(string source, string dest)•
System.IO.File.Create(string path)•
System.IO.File.Delete(string path)•
System.IO.File.Move(string source, string dest)•
System.IO.Directory.GetFiles(string path)•

Parameters

Parameter Details

path The location of the file.

append
If the file exist, true will add data to the end of the file (append), false will
overwrite the file.

text Text to be written or stored.

contents A collection of strings to be written.

source The location of the file you want to use.

dest The location you want a file to go to.

Remarks

Always make sure to close Stream objects. This can be done with a using block as shown
above or by manually calling myStream.Close().

•

Make sure the current user has necessary permissions on the path you are trying to create •

https://riptutorial.com/ 371

the file.
Verbatim strings should be used when declaring a path string that includes backslashes, like
so: @"C:\MyFolder\MyFile.txt"

•

Examples

Reading from a file using the System.IO.File class

You can use the System.IO.File.ReadAllText function to read the entire contents of a file into a
string.

string text = System.IO.File.ReadAllText(@"C:\MyFolder\MyTextFile.txt");

You can also read a file as an array of lines using the System.IO.File.ReadAllLines function:

string[] lines = System.IO.File.ReadAllLines(@"C:\MyFolder\MyTextFile.txt");

Writing lines to a file using the System.IO.StreamWriter class

The System.IO.StreamWriter class:

Implements a TextWriter for writing characters to a stream in a particular encoding.

Using the WriteLine method, you can write content line-by-line to a file.

Notice the use of the using keyword which makes sure the StreamWriter object is disposed as
soon as it goes out of scope and thus the file is closed.

string[] lines = { "My first string", "My second string", "and even a third string" };
using (System.IO.StreamWriter sw = new System.IO.StreamWriter(@"C:\MyFolder\OutputText.txt"))
{
 foreach (string line in lines)
 {
 sw.WriteLine(line);
 }
}

Note that the StreamWriter can receive a second bool parameter in it's constructor, allowing to
Append to a file instead of overwriting the file:

bool appendExistingFile = true;
using (System.IO.StreamWriter sw = new System.IO.StreamWriter(@"C:\MyFolder\OutputText.txt",
appendExistingFile))
{
 sw.WriteLine("This line will be appended to the existing file");
}

Writing to a file using the System.IO.File class

https://riptutorial.com/ 372

http://www.riptutorial.com/csharp/topic/16/verbatim-strings
https://msdn.microsoft.com/en-us/library/system.io.file.readalltext(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.io.file.readlines(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.io.streamwriter(v=vs.110).aspx

You can use the System.IO.File.WriteAllText function to write a string to a file.

string text = "String that will be stored in the file";
System.IO.File.WriteAllText(@"C:\MyFolder\OutputFile.txt", text);

You can also use the System.IO.File.WriteAllLines function which receives an
IEnumerable<String> as the second parameter (as opposed to a single string in the previous
example). This lets you write content from an array of lines.

string[] lines = { "My first string", "My second string", "and even a third string" };
System.IO.File.WriteAllLines(@"C:\MyFolder\OutputFile.txt", lines);

Lazily reading a file line-by-line via an IEnumerable

When working with large files, you can use the System.IO.File.ReadLines method to read all lines
from a file into an IEnumerable<string>. This is similar to System.IO.File.ReadAllLines, except that it
doesn't load the whole file into memory at once, making it more efficient when working with large
files.

IEnumerable<string> AllLines = File.ReadLines("file_name.txt", Encoding.Default);

The second parameter of File.ReadLines is optional. You may use it when it is required to specify
encoding.

It is important to note that calling ToArray, ToList or another similar function will force all of the lines
to be loaded at once, meaning that the benefit of using ReadLines is nullified. It is best to enumerate
over the IEnumerable using a foreach loop or LINQ if using this method.

Create File

File static class

By using Create method of the File static class we can create files. Method creates the file at the
given path, at the same time it opens the file and gives us the FileStream of the file. Make sure you
close the file after you are done with it.

ex1:

var fileStream1 = File.Create("samplePath");
/// you can write to the fileStream1
fileStream1.Close();

ex2:

using(var fileStream1 = File.Create("samplePath"))
{
 /// you can write to the fileStream1
}

https://riptutorial.com/ 373

https://msdn.microsoft.com/en-us/library/system.io.file.writealltext(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.io.file.writealllines(v=vs.110).aspx

ex3:

File.Create("samplePath").Close();

FileStream class

There are many overloads of this classes constructor which is actually well documented here.
Below example is for the one that covers most used functionalities of this class.

var fileStream2 = new FileStream("samplePath", FileMode.OpenOrCreate, FileAccess.ReadWrite,
FileShare.None);

You can check the enums for FileMode, FileAccess, and FileShare from those links. What they
basically means are as follows:

FileMode: Answers "Should file be created? opened? create if not exist then open?" kinda
questions.

FileAccess: Answers "Should I be able to read the file, write to the file or both?" kinda questions.

FileShare: Answers "Should other users be able to read, write etc. to the file while I am using it
simultaneously?" kinda questions.

Copy File

File static class

File static class can be easily used for this purpose.

File.Copy(@"sourcePath\abc.txt", @"destinationPath\abc.txt");
File.Copy(@"sourcePath\abc.txt", @"destinationPath\xyz.txt");

Remark: By this method, file is copied, meaning that it will be read from the source and then
written to the destination path. This is a resource consuming process, it would take relative time to
the file size, and can cause your program to freeze if you don't utilize threads.

Move File

File static class

File static class can easily be used for this purpose.

File.Move(@"sourcePath\abc.txt", @"destinationPath\xyz.txt");

Remark1: Only changes the index of the file (if the file is moved in the same volume). This
operation does not take relative time to the file size.

Remark2: Cannot override an existing file on destination path.

https://riptutorial.com/ 374

https://msdn.microsoft.com/en-us/library/system.io.filestream(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.io.filemode(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/4z36sx0f(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.io.fileshare(v=vs.110).aspx

Delete File

string path = @"c:\path\to\file.txt";
File.Delete(path);

While Delete does not throw exception if file doesn't exist, it will throw exception e.g. if specified
path is invalid or caller does not have the required permissions. You should always wrap calls to
Delete inside try-catch block and handle all expected exceptions. In case of possible race
conditions, wrap logic inside lock statement.

Files and Directories

Get all files in Directory

 var FileSearchRes = Directory.GetFiles(@Path, "*.*", SearchOption.AllDirectories);

Returns an array of FileInfo, representing all the files in the specified directory.

Get Files with specific extension

 var FileSearchRes = Directory.GetFiles(@Path, "*.pdf", SearchOption.AllDirectories);

Returns an array of FileInfo, representing all the files in the specified directory with the specified
extension.

Async write text to a file using StreamWriter

// filename is a string with the full path
// true is to append
using (System.IO.StreamWriter file = new System.IO.StreamWriter(filename, true))
{
 // Can write either a string or char array
 await file.WriteAsync(text);
}

Read File and Stream I/O online: https://riptutorial.com/csharp/topic/4266/file-and-stream-i-o

https://riptutorial.com/ 375

http://www.riptutorial.com/csharp/example/148/try--catch--finally--throw
http://www.riptutorial.com/csharp/example/4865/simple-usage
https://riptutorial.com/csharp/topic/4266/file-and-stream-i-o

Chapter 58: FileSystemWatcher

Syntax

public FileSystemWatcher()•
public FileSystemWatcher(string path)•
public FileSystemWatcher(string path, string filter)•

Parameters

path filter

The directory to monitor, in standard or
Universal Naming Convention (UNC) notation.

The type of files to watch. For example,
"*.txt" watches for changes to all text files.

Examples

Basic FileWatcher

The following example creates a FileSystemWatcher to watch the directory specified at run time. The
component is set to watch for changes in LastWrite and LastAccess time, the creation, deletion,
or renaming of text files in the directory. If a file is changed, created, or deleted, the path to the file
prints to the console. When a file is renamed, the old and new paths print to the console.

Use the System.Diagnostics and System.IO namespaces for this example.

FileSystemWatcher watcher;

private void watch()
{
 // Create a new FileSystemWatcher and set its properties.
 watcher = new FileSystemWatcher();
 watcher.Path = path;

 /* Watch for changes in LastAccess and LastWrite times, and
 the renaming of files or directories. */
 watcher.NotifyFilter = NotifyFilters.LastAccess | NotifyFilters.LastWrite
 | NotifyFilters.FileName | NotifyFilters.DirectoryName;

 // Only watch text files.
 watcher.Filter = "*.txt*";

 // Add event handler.
 watcher.Changed += new FileSystemEventHandler(OnChanged);
 // Begin watching.
 watcher.EnableRaisingEvents = true;
}

// Define the event handler.

https://riptutorial.com/ 376

private void OnChanged(object source, FileSystemEventArgs e)
{
 //Copies file to another directory or another action.
 Console.WriteLine("File: " + e.FullPath + " " + e.ChangeType);
}

IsFileReady

A common mistake a lot of people starting out with FileSystemWatcher does is not taking into
account That the FileWatcher event is raised as soon as the file is created. However, it may take
some time for the file to be finished .

Example:

Take a file size of 1 GB for example . The file apr ask created by another program (Explorer.exe
copying it from somewhere) but it will take minutes to finish that process. The event is raised that
creation time and you need to wait for the file to be ready to be copied.

This is a method for checking if the file is ready.

 public static bool IsFileReady(String sFilename)
{
 // If the file can be opened for exclusive access it means that the file
 // is no longer locked by another process.
 try
 {
 using (FileStream inputStream = File.Open(sFilename, FileMode.Open, FileAccess.Read,
FileShare.None))
 {
 if (inputStream.Length > 0)
 {
 return true;
 }
 else
 {
 return false;
 }

 }
 }
 catch (Exception)
 {
 return false;
 }
}

Read FileSystemWatcher online: https://riptutorial.com/csharp/topic/5061/filesystemwatcher

https://riptutorial.com/ 377

https://riptutorial.com/csharp/topic/5061/filesystemwatcher

Chapter 59: Func delegates

Syntax

public delegate TResult Func<in T, out TResult>(T arg)•
public delegate TResult Func<in T1, in T2, out TResult>(T1 arg1, T2 arg2)•
public delegate TResult Func<in T1, in T2, in T3, out TResult>(T1 arg1, T2 arg2, T3 arg3)•
public delegate TResult Func<in T1, in T2, in T3, in T4, out TResult>(T1 arg1, T2 arg2, T3
arg3, T4 arg4)

•

Parameters

Parameter Details

arg or arg1 the (first) parameter of the method

arg2 the second parameter of the method

arg3 the third parameter of the method

arg4 the fourth parameter of the method

T or T1 the type of the (first) parameter of the method

T2 the type of the second parameter of the method

T3 the type of the third parameter of the method

T4 the type of the fourth parameter of the method

TResult the return type of the method

Examples

Without parameters

This example shows how to create a delegate that encapsulates the method that returns the
current time

static DateTime UTCNow()
{
 return DateTime.UtcNow;
}

static DateTime LocalNow()
{
 return DateTime.Now;
}

https://riptutorial.com/ 378

static void Main(string[] args)
{
 Func<DateTime> method = UTCNow;
 // method points to the UTCNow method
 // that retuns current UTC time
 DateTime utcNow = method();

 method = LocalNow;
 // now method points to the LocalNow method
 // that returns local time

 DateTime localNow = method();
}

With multiple variables

static int Sum(int a, int b)
{
 return a + b;
}

static int Multiplication(int a, int b)
{
 return a * b;
}

static void Main(string[] args)
{
 Func<int, int, int> method = Sum;
 // method points to the Sum method
 // that retuns 1 int variable and takes 2 int variables
 int sum = method(1, 1);

 method = Multiplication;
 // now method points to the Multiplication method

 int multiplication = method(1, 1);
}

Lambda & anonymous methods

An anonymous method can be assigned wherever a delegate is expected:

Func<int, int> square = delegate (int x) { return x * x; }

Lambda expressions can be used to express the same thing:

Func<int, int> square = x => x * x;

In either case, we can now invoke the method stored inside square like this:

var sq = square.Invoke(2);

https://riptutorial.com/ 379

Or as a shorthand:

var sq = square(2);

Notice that for the assignment to be type-safe, the parameter types and return type of the
anonymous method must match those of the delegate type:

Func<int, int> sum = delegate (int x, int y) { return x + y; } // error
Func<int, int> sum = (x, y) => x + y; // error

Covariant & Contravariant Type Parameters

Func also supports Covariant & Contravariant

// Simple hierarchy of classes.
public class Person { }
public class Employee : Person { }

class Program
{
 static Employee FindByTitle(String title)
 {
 // This is a stub for a method that returns
 // an employee that has the specified title.
 return new Employee();
 }

 static void Test()
 {
 // Create an instance of the delegate without using variance.
 Func<String, Employee> findEmployee = FindByTitle;

 // The delegate expects a method to return Person,
 // but you can assign it a method that returns Employee.
 Func<String, Person> findPerson = FindByTitle;

 // You can also assign a delegate
 // that returns a more derived type
 // to a delegate that returns a less derived type.
 findPerson = findEmployee;

 }
}

Read Func delegates online: https://riptutorial.com/csharp/topic/2769/func-delegates

https://riptutorial.com/ 380

https://msdn.microsoft.com/en-us/library/dd799517(v=vs.110).aspx
https://riptutorial.com/csharp/topic/2769/func-delegates

Chapter 60: Function with multiple return
values

Remarks

There is no inherent answer in C# to this - so called - need. Nonetheless there are workarounds to
satisfy this need.

The reason I qualify the need as "so called" is that we only need methods with 2 or more than 2
values to return when we violate good programming principals. Especially the Single
Responsibility Principle.

Hence, it would be better to be alerted when we need functions returning 2 or more values, and
improve our design.

Examples

"anonymous object" + "dynamic keyword" solution

You can return an anonymous object from your function

public static object FunctionWithUnknowReturnValues ()
{
 /// anonymous object
 return new { a = 1, b = 2 };
}

And assign the result to a dynamic object and read the values in it.

/// dynamic object
dynamic x = FunctionWithUnknowReturnValues();

Console.WriteLine(x.a);
Console.WriteLine(x.b);

Tuple solution

You can return an instance of Tuple class from your function with two template parameters as
Tuple<string, MyClass>:

public Tuple<string, MyClass> FunctionWith2ReturnValues ()
{
 return Tuple.Create("abc", new MyClass());
}

And read the values like below:

https://riptutorial.com/ 381

https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Single_responsibility_principle

Console.WriteLine(x.Item1);
Console.WriteLine(x.Item2);

Ref and Out Parameters

The ref keyword is used to pass an Argument as Reference. out will do the same as ref but it
does not require an assigned value by the caller prior to calling the function.

Ref Parameter :-If you want to pass a variable as ref parameter then you need to initialize it
before you pass it as ref parameter to method.

Out Parameter :- If you want to pass a variable as out parameter you don’t need to initialize it
before you pass it as out parameter to method.

static void Main(string[] args)
{
 int a = 2;
 int b = 3;
 int add = 0;
 int mult= 0;
 AddOrMult(a, b, ref add, ref mult); //AddOrMult(a, b, out add, out mult);
 Console.WriteLine(add); //5
 Console.WriteLine(mult); //6
}

private static void AddOrMult(int a, int b, ref int add, ref int mult) //AddOrMult(int a, int
b, out int add, out int mult)
{
 add = a + b;
 mult = a * b;
}

Read Function with multiple return values online: https://riptutorial.com/csharp/topic/3908/function-
with-multiple-return-values

https://riptutorial.com/ 382

http://www.riptutorial.com/csharp/topic/3014/value-type-vs-reference-type
https://riptutorial.com/csharp/topic/3908/function-with-multiple-return-values
https://riptutorial.com/csharp/topic/3908/function-with-multiple-return-values

Chapter 61: Functional Programming

Examples

Func and Action

Func provides a holder for parameterised anonymous functions. The leading types are the inputs
and the last type is always the return value.

// square a number.
Func<double, double> square = (x) => { return x * x; };

// get the square root.
// note how the signature matches the built in method.
Func<double, double> squareroot = Math.Sqrt;

// provide your workings.
Func<double, double, string> workings = (x, y) =>
 string.Format("The square of {0} is {1}.", x, square(y))

Action objects are like void methods so they only have an input type. No result is placed on the
evaluation stack.

// right-angled triangle.
class Triangle
{
 public double a;
 public double b;
 public double h;
}

// Pythagorean theorem.
Action<Triangle> pythagoras = (x) =>
 x.h = squareroot(square(x.a) + square(x.b));

Triangle t = new Triangle { a = 3, b = 4 };
pythagoras(t);
Console.WriteLine(t.h); // 5.

Immutability

Immutability is common in functional programming and rare in object oriented programming.

Create, for example, an address type with mutable state:

public class Address ()
{
 public string Line1 { get; set; }
 public string Line2 { get; set; }
 public string City { get; set; }
}

https://riptutorial.com/ 383

Any piece of code could alter any property in the above object.

Now create the immutable address type:

public class Address ()
{
 public readonly string Line1;
 public readonly string Line2;
 public readonly string City;

 public Address(string line1, string line2, string city)
 {
 Line1 = line1;
 Line2 = line2;
 City = city;
 }
}

Bear in mind that having read-only collections does not respect immutability. For example,

public class Classroom
{
 public readonly List<Student> Students;

 public Classroom(List<Student> students)
 {
 Students = students;
 }
}

is not immutable, as the user of the object can alter the collection (add or remove elements from
it). In order to make it immutable, one has either to use an interface like IEnumerable, which does
not expose methods to add, or to make it a ReadOnlyCollection.

public class Classroom
{
 public readonly ReadOnlyCollection<Student> Students;

 public Classroom(ReadOnlyCollection<Student> students)
 {
 Students = students;
 }
}

List<Students> list = new List<Student>();
// add students
Classroom c = new Classroom(list.AsReadOnly());

With the immutable object we have the following benefits:

It will be in a known state (other code can't change it).•
It is thread safe.•
The constructor offers a single place for validation.•
Knowing that the object cannot be altered makes the code easier to understand.•

https://riptutorial.com/ 384

Avoid Null References

C# developers get a lot of null reference exceptions to deal with. F# developers don't because
they have the Option type. An Option<> type (some prefer Maybe<> as a name) provides a Some
and a None return type. It makes it explicit that a method may be about to return a null record.

For instance, you can't read the following and know if you will have to deal with a null value.

var user = _repository.GetUser(id);

If you do know about the possible null you can introduce some boilerplate code to deal with it.

var username = user != null ? user.Name : string.Empty;

What if we have an Option<> returned instead?

Option<User> maybeUser = _repository.GetUser(id);

The code now makes it explicit that we may have a None record returned and the boilerplate code
to check for Some or None is required:

var username = maybeUser.HasValue ? maybeUser.Value.Name : string.Empty;

The following method shows how to return an Option<>

public Option<User> GetUser(int id)
{
 var users = new List<User>
 {
 new User { Id = 1, Name = "Joe Bloggs" },
 new User { Id = 2, Name = "John Smith" }
 };

 var user = users.FirstOrDefault(user => user.Id == id);

 return user != null ? new Option<User>(user) : new Option<User>();
}

Here is a minimal implementation of Option<>.

public struct Option<T>
{
 private readonly T _value;

 public T Value
 {
 get
 {
 if (!HasValue)
 throw new InvalidOperationException();

 return _value;

https://riptutorial.com/ 385

 }
 }

 public bool HasValue
 {
 get { return _value != null; }
 }

 public Option(T value)
 {
 _value = value;
 }

 public static implicit operator Option<T>(T value)
 {
 return new Option<T>(value);
 }
}

To demonstrate the above avoidNull.csx can be run with the C# REPL.

As stated, this is a minimal implementation. A search for "Maybe" NuGet packages will turn up a
number of good libraries.

Higher-Order Functions

A higher-order function is one that takes another function as an argument or returns a function (or
both).

This is commonly done with lambdas, for example when passing a predicate to a LINQ Where
clause:

var results = data.Where(p => p.Items == 0);

The Where() clause could receive many different predicates which gives it considerable flexibility.

Passing a method into another method is also seen when implementing the Strategy design
pattern. For example, various sorting methods could be chosen from and passed into a Sort
method on an object depending on the requirements at run-time.

Immutable collections

The System.Collections.Immutable NuGet package provides immutable collection classes.

Creating and adding items

var stack = ImmutableStack.Create<int>();
var stack2 = stack.Push(1); // stack is still empty, stack2 contains 1
var stack3 = stack.Push(2); // stack2 still contains only one, stack3 has 2, 1

https://riptutorial.com/ 386

https://gist.github.com/Boggin/d53660f32aeaa35e0b028919ddc465e3
https://www.nuget.org/packages?q=maybe
https://www.nuget.org/packages/System.Collections.Immutable/

Creating using the builder

Certain immutable collections have a Builder inner class that can be used to cheaply build large
immutable instances:

var builder = ImmutableList.CreateBuilder<int>(); // returns ImmutableList.Builder
builder.Add(1);
builder.Add(2);
var list = builder.ToImmutable();

Creating from an existing IEnumerable

var numbers = Enumerable.Range(1, 5);
var list = ImmutableList.CreateRange<int>(numbers);

List of all immutable collection types:

System.Collections.Immutable.ImmutableArray<T>•
System.Collections.Immutable.ImmutableDictionary<TKey,TValue>•
System.Collections.Immutable.ImmutableHashSet<T>•
System.Collections.Immutable.ImmutableList<T>•
System.Collections.Immutable.ImmutableQueue<T>•
System.Collections.Immutable.ImmutableSortedDictionary<TKey,TValue>•
System.Collections.Immutable.ImmutableSortedSet<T>•
System.Collections.Immutable.ImmutableStack<T>•

Read Functional Programming online: https://riptutorial.com/csharp/topic/2564/functional-
programming

https://riptutorial.com/ 387

https://msdn.microsoft.com/en-us/library/dn638264(v=vs.111).aspx
https://msdn.microsoft.com/en-us/library/dn467181(v=vs.111).aspx
https://msdn.microsoft.com/en-us/library/dn467171(v=vs.111).aspx
https://msdn.microsoft.com/en-us/library/dn456077.aspx
https://msdn.microsoft.com/en-us/library/dn467186(v=vs.111).aspx
https://msdn.microsoft.com/en-us/library/dn467194(v=vs.111).aspx
https://msdn.microsoft.com/en-us/library/dn467193(v=vs.111).aspx
https://msdn.microsoft.com/en-us/library/dn467197(v=vs.111).aspx
https://riptutorial.com/csharp/topic/2564/functional-programming
https://riptutorial.com/csharp/topic/2564/functional-programming

Chapter 62: Garbage Collector in .Net

Examples

Large Object Heap compaction

By default the Large Object Heap is not compacted unlike the classic Object Heap which can lead
to memory fragmentation and further, can lead to OutOfMemoryExceptions

Starting with .NET 4.5.1 there is an option to explicitly compact the Large Object Heap (along with
a garbage collection):

GCSettings.LargeObjectHeapCompactionMode = GCLargeObjectHeapCompactionMode.CompactOnce;
GC.Collect();

Just as any explicit garbage collection request (it's called request because the CLR is not forced to
conduct it) use with care and by default avoid it if you can since it can de-calibrate GCs statistics,
decreasing its performance.

Weak References

In .NET, the GC allocates objects when there are no references left to them. Therefore, while an
object can still be reached from code (there is a strong reference to it), the GC will not allocate this
object. This can become a problem if there are a lot of large objects.

A weak reference is a reference, that allows the GC to collect the object while still allowing to
access the object. A weak reference is valid only during the indeterminate amount of time until the
object is collected when no strong references exist. When you use a weak reference, the
application can still obtain a strong reference to the object, which prevents it from being collected.
So weak references can be useful for holding on to large objects that are expensive to initialize,
but should be available for garbage collection if they are not actively in use.

Simple usage:

WeakReference reference = new WeakReference(new object(), false);

GC.Collect();

object target = reference.Target;
if (target != null)
 DoSomething(target);

So weak references could be used to maintain, for example, a cache of objects. However, it is
important to remember that there is always the risk that the garbage collector will get to the object
before a strong reference is reestablished.

Weak references are also handy for avoiding memory leaks. A typical use case is with events.

https://riptutorial.com/ 388

https://www.simple-talk.com/dotnet/.net-framework/the-dangers-of-the-large-object-heap/
https://www.simple-talk.com/dotnet/.net-framework/the-dangers-of-the-large-object-heap/
https://msdn.microsoft.com/en-us/library/system.runtime.gcsettings.largeobjectheapcompactionmode(v=vs.110).aspx

Suppose we have some handler to an event on a source:

Source.Event += new EventHandler(Handler)

This code registers an event handler and creates a strong reference from the event source to the
listening object. If the source object has a longer lifetime than the listener, and the listener doesn't
need the event anymore when there are no other references to it, using normal .NET events
causes a memory leak: the source object holds listener objects in memory that should be garbage
collected.

In this case, it may be a good idea is to use the Weak Event Pattern.

Something like:

public static class WeakEventManager
 {
 public static void SetHandler<S, TArgs>(
 Action<EventHandler<TArgs>> add,
 Action<EventHandler<TArgs>> remove,
 S subscriber,
 Action<S, TArgs> action)
 where TArgs : EventArgs
 where S : class
 {
 var subscrWeakRef = new WeakReference(subscriber);
 EventHandler<TArgs> handler = null;

 handler = (s, e) =>
 {
 var subscrStrongRef = subscrWeakRef.Target as S;
 if (subscrStrongRef != null)
 {
 action(subscrStrongRef, e);
 }
 else
 {
 remove(handler);
 handler = null;
 }
 };

 add(handler);
 }
 }

and used like this:

 EventSource s = new EventSource();
 Subscriber subscriber = new Subscriber();
 WeakEventManager.SetHandler<Subscriber, SomeEventArgs>(a => s.Event += a, r => s.Event -= r,
subscriber, (s,e) => { s.HandleEvent(e); });

In this case of course we have some restrictions - the event must be a

public event EventHandler<SomeEventArgs> Event;

https://riptutorial.com/ 389

https://msdn.microsoft.com/en-us/library/aa970850(v=vs.110).aspx

As MSDN suggests:

Use long weak references only when necessary as the state of the object is unpredictable
after finalization.

•

Avoid using weak references to small objects because the pointer itself may be as large or
larger.

•

Avoid using weak references as an automatic solution to memory management problems.
Instead, develop an effective caching policy for handling your application's objects.

•

Read Garbage Collector in .Net online: https://riptutorial.com/csharp/topic/1287/garbage-collector-
in--net

https://riptutorial.com/ 390

https://msdn.microsoft.com/en-us/library/ms404247(v=vs.110).aspx#Anchor_1
https://riptutorial.com/csharp/topic/1287/garbage-collector-in--net
https://riptutorial.com/csharp/topic/1287/garbage-collector-in--net

Chapter 63: Generating Random Numbers in
C#

Syntax

Random()•

Random(int Seed)•

int Next()•

int Next(int maxValue)•

int Next(int minValue, int maxValue)•

Parameters

Parameters Details

Seed
A value for generating random numbers. If not set, the default value is
determined by the current system time.

minValue
Generated numbers won't be smaller than this value. If not set, the default
value is 0.

maxValue
Generated numbers will be smaller than this value. If not set, the default value
is Int32.MaxValue.

return value Returns a number with random value.

Remarks

The random seed generated by the system isn't the same in every different run.

Seeds generated in the same time might be the same.

Examples

Generate a random int

This example generates random values between 0 and 2147483647.

Random rnd = new Random();
int randomNumber = rnd.Next();

https://riptutorial.com/ 391

Generate a Random double

Generate a random number between 0 and 1.0. (not including 1.0)

Random rnd = new Random();
var randomDouble = rnd.NextDouble();

Generate a random int in a given range

Generate a random number between minValue and maxValue - 1.

Random rnd = new Random();
var randomBetween10And20 = rnd.Next(10, 20);

Generating the same sequence of random numbers over and over again

When creating Random instances with the same seed, the same numbers will be generated.

int seed = 5;
for (int i = 0; i < 2; i++)
{
 Console.WriteLine("Random instance " + i);
 Random rnd = new Random(seed);
 for (int j = 0; j < 5; j++)
 {
 Console.Write(rnd.Next());
 Console.Write(" ");
 }

 Console.WriteLine();
}

Output:

Random instance 0
726643700 610783965 564707973 1342984399 995276750
Random instance 1
726643700 610783965 564707973 1342984399 995276750

Create multiple random class with different seeds simultaneously

Two Random class created at the same time will have the same seed value.

Using System.Guid.NewGuid().GetHashCode() can get a different seed even in the same time.

Random rnd1 = new Random();
Random rnd2 = new Random();
Console.WriteLine("First 5 random number in rnd1");
for (int i = 0; i < 5; i++)
 Console.WriteLine(rnd1.Next());

https://riptutorial.com/ 392

Console.WriteLine("First 5 random number in rnd2");
for (int i = 0; i < 5; i++)
 Console.WriteLine(rnd2.Next());

rnd1 = new Random(Guid.NewGuid().GetHashCode());
rnd2 = new Random(Guid.NewGuid().GetHashCode());
Console.WriteLine("First 5 random number in rnd1 using Guid");
for (int i = 0; i < 5; i++)
 Console.WriteLine(rnd1.Next());
Console.WriteLine("First 5 random number in rnd2 using Guid");
for (int i = 0; i < 5; i++)
 Console.WriteLine(rnd2.Next());

Another way to achieve different seeds is to use another Random instance to retrieve the seed
values.

Random rndSeeds = new Random();
Random rnd1 = new Random(rndSeeds.Next());
Random rnd2 = new Random(rndSeeds.Next());

This also makes it possible to control the result of all the Random instances by setting only the seed
value for the rndSeeds. All the other instances will be deterministically derived from that single seed
value.

Generate a random character

Generate a random letter between a and z by using the Next() overload for a given range of
numbers, then converting the resulting int to a char

Random rnd = new Random();
char randomChar = (char)rnd.Next('a','z');
//'a' and 'z' are interpreted as ints for parameters for Next()

Generate a number that is a percentage of a max value

A common need for random numbers it to generate a number that is X% of some max value. this
can be done by treating the result of NextDouble() as a percentage:

var rnd = new Random();
var maxValue = 5000;
var percentage = rnd.NextDouble();
var result = maxValue * percentage;
//suppose NextDouble() returns .65, result will hold 65% of 5000: 3250.

Read Generating Random Numbers in C# online:
https://riptutorial.com/csharp/topic/1975/generating-random-numbers-in-csharp

https://riptutorial.com/ 393

https://riptutorial.com/csharp/topic/1975/generating-random-numbers-in-csharp

Chapter 64: Generic Lambda Query Builder

Remarks

The class is called ExpressionBuilder. It has three properties:

 private static readonly MethodInfo ContainsMethod = typeof(string).GetMethod("Contains",
new[] { typeof(string) });
 private static readonly MethodInfo StartsWithMethod = typeof(string).GetMethod("StartsWith",
new[] { typeof(string) });
 private static readonly MethodInfo EndsWithMethod = typeof(string).GetMethod("EndsWith",
new[] { typeof(string) });

One public method GetExpression that returns the lambda expression, and three private methods:

Expression GetExpression<T>•
BinaryExpression GetExpression<T>•
ConstantExpression GetConstant•

All the methods are explained in details in the examples.

Examples

QueryFilter class

This class holds predicate filters values.

public class QueryFilter
{
 public string PropertyName { get; set; }
 public string Value { get; set; }
 public Operator Operator { get; set; }

 // In the query {a => a.Name.Equals("Pedro")}
 // Property name to filter - propertyName = "Name"
 // Filter value - value = "Pedro"
 // Operation to perform - operation = enum Operator.Equals
 public QueryFilter(string propertyName, string value, Operator operatorValue)
 {
 PropertyName = propertyName;
 Value = value;
 Operator = operatorValue;
 }
}

Enum to hold the operations values:

 public enum Operator
{
 Contains,
 GreaterThan,

https://riptutorial.com/ 394

 GreaterThanOrEqual,
 LessThan,
 LessThanOrEqualTo,
 StartsWith,
 EndsWith,
 Equals,
 NotEqual
}

GetExpression Method

public static Expression<Func<T, bool>> GetExpression<T>(IList<QueryFilter> filters)
{
 Expression exp = null;

 // Represents a named parameter expression. {parm => parm.Name.Equals()}, it is the param
part
 // To create a ParameterExpression need the type of the entity that the query is against
an a name
 // The type is possible to find with the generic T and the name is fixed parm
 ParameterExpression param = Expression.Parameter(typeof(T), "parm");

 // It is good parctice never trust in the client, so it is wise to validate.
 if (filters.Count == 0)
 return null;

 // The expression creation differ if there is one, two or more filters.
 if (filters.Count != 1)
 {
 if (filters.Count == 2)
 // It is result from direct call.
 // For simplicity sake the private overloads will be explained in another example.
 exp = GetExpression<T>(param, filters[0], filters[1]);
 else
 {
 // As there is no method for more than two filters,
 // I iterate through all the filters and put I in the query two at a time
 while (filters.Count > 0)
 {
 // Retreive the first two filters
 var f1 = filters[0];
 var f2 = filters[1];

 // To build a expression with a conditional AND operation that evaluates
 // the second operand only if the first operand evaluates to true.
 // It needed to use the BinaryExpression a Expression derived class
 // That has the AndAlso method that join two expression together
 exp = exp == null ? GetExpression<T>(param, filters[0], filters[1]) :
Expression.AndAlso(exp, GetExpression<T>(param, filters[0], filters[1]));

 // Remove the two just used filters, for the method in the next iteration
finds the next filters
 filters.Remove(f1);
 filters.Remove(f2);

 // If it is that last filter, add the last one and remove it
 if (filters.Count == 1)
 {
 exp = Expression.AndAlso(exp, GetExpression<T>(param, filters[0]));

https://riptutorial.com/ 395

 filters.RemoveAt(0);
 }
 }
 }
 }
 else
 // It is result from direct call.
 exp = GetExpression<T>(param, filters[0]);

 // converts the Expression into Lambda and retuns the query
 return Expression.Lambda<Func<T, bool>>(exp, param);
}

GetExpression Private overload

For one filter:

Here is where the query is created, it receives a expression parameter and a filter.

private static Expression GetExpression<T>(ParameterExpression param, QueryFilter queryFilter)
{
 // Represents accessing a field or property, so here we are accessing for example:
 // the property "Name" of the entity
 MemberExpression member = Expression.Property(param, queryFilter.PropertyName);

 //Represents an expression that has a constant value, so here we are accessing for
example:
 // the values of the Property "Name".
 // Also for clarity sake the GetConstant will be explained in another example.
 ConstantExpression constant = GetConstant(member.Type, queryFilter.Value);

 // With these two, now I can build the expression
 // every operator has it one way to call, so the switch will do.
 switch (queryFilter.Operator)
 {
 case Operator.Equals:
 return Expression.Equal(member, constant);

 case Operator.Contains:
 return Expression.Call(member, ContainsMethod, constant);

 case Operator.GreaterThan:
 return Expression.GreaterThan(member, constant);

 case Operator.GreaterThanOrEqual:
 return Expression.GreaterThanOrEqual(member, constant);

 case Operator.LessThan:
 return Expression.LessThan(member, constant);

 case Operator.LessThanOrEqualTo:
 return Expression.LessThanOrEqual(member, constant);

 case Operator.StartsWith:
 return Expression.Call(member, StartsWithMethod, constant);

 case Operator.EndsWith:

https://riptutorial.com/ 396

 return Expression.Call(member, EndsWithMethod, constant);
 }

 return null;
}

For two filters:

It returns the BinaryExpresion instance instead of the simple Expression.

private static BinaryExpression GetExpression<T>(ParameterExpression param, QueryFilter
filter1, QueryFilter filter2)
{
 // Built two separated expression and join them after.
 Expression result1 = GetExpression<T>(param, filter1);
 Expression result2 = GetExpression<T>(param, filter2);
 return Expression.AndAlso(result1, result2);
}

ConstantExpression Method

ConstantExpression must be the same type of the MemberExpression. The value in this example is a
string, which is converted before creating the ConstantExpression instance.

private static ConstantExpression GetConstant(Type type, string value)
{
 // Discover the type, convert it, and create ConstantExpression
 ConstantExpression constant = null;
 if (type == typeof(int))
 {
 int num;
 int.TryParse(value, out num);
 constant = Expression.Constant(num);
 }
 else if(type == typeof(string))
 {
 constant = Expression.Constant(value);
 }
 else if (type == typeof(DateTime))
 {
 DateTime date;
 DateTime.TryParse(value, out date);
 constant = Expression.Constant(date);
 }
 else if (type == typeof(bool))
 {
 bool flag;
 if (bool.TryParse(value, out flag))
 {
 flag = true;
 }
 constant = Expression.Constant(flag);
 }
 else if (type == typeof(decimal))
 {

https://riptutorial.com/ 397

 decimal number;
 decimal.TryParse(value, out number);
 constant = Expression.Constant(number);
 }
 return constant;
}

Usage

Collection filters = new List(); QueryFilter filter = new QueryFilter("Name", "Burger",
Operator.StartsWith); filters.Add(filter);

 Expression<Func<Food, bool>> query = ExpressionBuilder.GetExpression<Food>(filters);

In this case, it is a query against the Food entity, that want to find all foods that start with "Burger"
in the name.

Output:

query = {parm => a.parm.StartsWith("Burger")}

Expression<Func<T, bool>> GetExpression<T>(IList<QueryFilter> filters)

Read Generic Lambda Query Builder online: https://riptutorial.com/csharp/topic/6721/generic-
lambda-query-builder

https://riptutorial.com/ 398

https://riptutorial.com/csharp/topic/6721/generic-lambda-query-builder
https://riptutorial.com/csharp/topic/6721/generic-lambda-query-builder

Chapter 65: Generics

Syntax

public void SomeMethod <T> () { }•
public void SomeMethod<T, V>() { }•
public T SomeMethod<T>(IEnumerable<T> sequence) { ... }•
public void SomeMethod<T>() where T : new() { }•
public void SomeMethod<T, V>() where T : new() where V : struct { }•
public void SomeMethod<T>() where T: IDisposable { }•
public void SomeMethod<T>() where T: Foo { }•
public class MyClass<T> { public T Data {get; set; } }•

Parameters

Parameter(s) Description

T, V Type placeholders for generic declarations

Remarks

Generics in C# are supported all the way down to the runtime: generic types built with C# will have
their generic semantics preserved even after compiled to CIL.

This effectively means that, in C#, it is possible to reflect on generic types and see them as they
were declared or check if an object is an instance of a generic type, for example. This is in
contrast with type erasure, where generic type information is removed during compilation. It is also
in contrast with the template approach to generics, where multiple concrete generic types become
multiple non-generic types at runtime, and any metadata required to further instantiate the original
generic type definitions is lost.

Be careful, however, when reflecting on generic types: generic types' names will be altered on
compilation, substituting the angled brackets and the type parameters' names by a backtick
followed by the number of generic type parameters. Thus, a Dictionary<TKey, Tvalue> will be
translated to Dictionary`2.

Examples

Type Parameters (Classes)

Declaration:

class MyGenericClass<T1, T2, T3, ...>
{
 // Do something with the type parameters.

https://riptutorial.com/ 399

https://en.wikipedia.org/wiki/Common_Intermediate_Language
https://en.wikipedia.org/wiki/Type_erasure

}

Initialisation:

var x = new MyGenericClass<int, char, bool>();

Usage (as the type of a parameter):

void AnotherMethod(MyGenericClass<float, byte, char> arg) { ... }

Type Parameters (Methods)

Declaration:

void MyGenericMethod<T1, T2, T3>(T1 a, T2 b, T3 c)
{
 // Do something with the type parameters.
}

Invocation:

There is no need to supply type arguements to a genric method, because the compiler can
implicitly infer the type.

int x =10;
int y =20;
string z = "test";
MyGenericMethod(x,y,z);

However, if there is an ambiguity, generic methods need to be called with type arguemnts as

MyGenericMethod<int, int, string>(x,y,z);

Type Parameters (Interfaces)

Declaration:

interface IMyGenericInterface<T1, T2, T3, ...> { ... }

Usage (in inheritance):

class ClassA<T1, T2, T3> : IMyGenericInterface<T1, T2, T3> { ... }

class ClassB<T1, T2> : IMyGenericInterface<T1, T2, int> { ... }

class ClassC<T1> : IMyGenericInterface<T1, char, int> { ... }

class ClassD : IMyGenericInterface<bool, char, int> { ... }

https://riptutorial.com/ 400

Usage (as the type of a parameter):

void SomeMethod(IMyGenericInterface<int, char, bool> arg) { ... }

Implicit type inference (methods)

When passing formal arguments to a generic method, relevant generic type arguments can
usually be inferred implicitly. If all generic type can be inferred, then specifying them in the syntax
is optional.

Consider the following generic method. It has one formal parameter and one generic type
parameter. There is a very obvious relationship between them -- the type passed as an argument
to the generic type parameter must be the same as the compile-time type of the argument passed
to the formal parameter.

void M<T>(T obj)
{
}

These two calls are equivalent:

M<object>(new object());
M(new object());

These two calls are also equivalent:

M<string>("");
M("");

And so are these three calls:

M<object>("");
M((object) "");
M("" as object);

Notice that if at least one type argument cannot be inferred, then all of them have to be specified.

Consider the following generic method. The first generic type argument is the same as the type of
the formal argument. But there is no such relationship for the second generic type argument.
Therefore, the compiler has no way of inferring the second generic type argument in any call to
this method.

void X<T1, T2>(T1 obj)
{
}

This doesn't work anymore:

https://riptutorial.com/ 401

X("");

This doesn't work either, because the compiler isn't sure if we are specifying the first or the second
generic parameter (both would be valid as object):

X<object>("");

We are required to type out both of them, like this:

X<string, object>("");

Type constraints (classes and interfaces)

Type constraints are able to force a type parameter to implement a certain interface or class.

interface IType;
interface IAnotherType;

// T must be a subtype of IType
interface IGeneric<T>
 where T : IType
{
}

// T must be a subtype of IType
class Generic<T>
 where T : IType
{
}

class NonGeneric
{
 // T must be a subtype of IType
 public void DoSomething<T>(T arg)
 where T : IType
 {
 }
}

// Valid definitions and expressions:
class Type : IType { }
class Sub : IGeneric<Type> { }
class Sub : Generic<Type> { }
new NonGeneric().DoSomething(new Type());

// Invalid definitions and expressions:
class AnotherType : IAnotherType { }
class Sub : IGeneric<AnotherType> { }
class Sub : Generic<AnotherType> { }
new NonGeneric().DoSomething(new AnotherType());

Syntax for multiple constraints:

class Generic<T, T1>
 where T : IType

https://riptutorial.com/ 402

 where T1 : Base, new()
{
}

Type constraints works in the same way as inheritance, in that it is possible to specify multiple
interfaces as constraints on the generic type, but only one class:

class A { /* ... */ }
class B { /* ... */ }

interface I1 { }
interface I2 { }

class Generic<T>
 where T : A, I1, I2
{
}

class Generic2<T>
 where T : A, B //Compilation error
{
}

Another rule is that the class must be added as the first constraint and then the interfaces:

class Generic<T>
 where T : A, I1
{
}

class Generic2<T>
 where T : I1, A //Compilation error
{
}

All declared constraints must be satisfied simultaneously for a particular generic instantiation to
work. There is no way to specify two or more alternative sets of constraints.

Type constraints (class and struct)

It is possible to specify whether or not the type argument should be a reference type or a value
type by using the respective constraints class or struct. If these constraints are used, they must be
defined before all other constraints (for example a parent type or new()) can be listed.

// TRef must be a reference type, the use of Int32, Single, etc. is invalid.
// Interfaces are valid, as they are reference types
class AcceptsRefType<TRef>
 where TRef : class
{
 // TStruct must be a value type.
 public void AcceptStruct<TStruct>()
 where TStruct : struct
 {
 }

https://riptutorial.com/ 403

 // If multiple constraints are used along with class/struct
 // then the class or struct constraint MUST be specified first
 public void Foo<TComparableClass>()
 where TComparableClass : class, IComparable
 {
 }
}

Type constraints (new-keyword)

By using the new() constraint, it is possible to enforce type parameters to define an empty (default)
constructor.

class Foo
{
 public Foo () { }
}

class Bar
{
 public Bar (string s) { ... }
}

class Factory<T>
 where T : new()
{
 public T Create()
 {
 return new T();
 }
}

Foo f = new Factory<Foo>().Create(); // Valid.
Bar b = new Factory<Bar>().Create(); // Invalid, Bar does not define a default/empty
constructor.

The second call to to Create() will give compile time error with following message:

'Bar' must be a non-abstract type with a public parameterless constructor in order to
use it as parameter 'T' in the generic type or method 'Factory'

There is no constraint for a constructor with parameters, only parameterless constructors are
supported.

Type inference (classes)

Developers can be caught out by the fact that type inference doesn't work for constructors:

class Tuple<T1,T2>
{
 public Tuple(T1 value1, T2 value2)
 {
 }
}

https://riptutorial.com/ 404

var x = new Tuple(2, "two"); // This WON'T work...
var y = new Tuple<int, string>(2, "two"); // even though the explicit form will.

The first way of creating instance without explicitly specifying type parameters will cause compile
time error which would say:

Using the generic type 'Tuple<T1, T2>' requires 2 type arguments

A common workaround is to add a helper method in a static class:

static class Tuple
{
 public static Tuple<T1, T2> Create<T1, T2>(T1 value1, T2 value2)
 {
 return new Tuple<T1, T2>(value1, value2);
 }
}

var x = Tuple.Create(2, "two"); // This WILL work...

Reflecting on type parameters

The typeof operator works on type parameters.

class NameGetter<T>
{
 public string GetTypeName()
 {
 return typeof(T).Name;
 }
}

Explicit type parameters

There are different cases where you must Explicitly specify the type parameters for a generic
method. In both of the below cases, the compiler is not able to infer all of the type parameters from
the specified method parameters.

One case is when there are no parameters:

public void SomeMethod<T, V>()
{
 // No code for simplicity
}

SomeMethod(); // doesn't compile
SomeMethod<int, bool>(); // compiles

Second case is when one (or more) of the type parameters is not part of the method parameters:

public K SomeMethod<K, V>(V input)
{

https://riptutorial.com/ 405

 return default(K);
}

int num1 = SomeMethod(3); // doesn't compile
int num2 = SomeMethod<int>("3"); // doesn't compile
int num3 = SomeMethod<int, string>("3"); // compiles.

Using generic method with an interface as a constraint type.

This is an example of how to use the generic type TFood inside Eat method on the class Animal

public interface IFood
{
 void EatenBy(Animal animal);
}

public class Grass: IFood
{
 public void EatenBy(Animal animal)
 {
 Console.WriteLine("Grass was eaten by: {0}", animal.Name);
 }
}

public class Animal
{
 public string Name { get; set; }

 public void Eat<TFood>(TFood food)
 where TFood : IFood
 {
 food.EatenBy(this);
 }
}

public class Carnivore : Animal
{
 public Carnivore()
 {
 Name = "Carnivore";
 }
}

public class Herbivore : Animal, IFood
{
 public Herbivore()
 {
 Name = "Herbivore";
 }

 public void EatenBy(Animal animal)
 {
 Console.WriteLine("Herbivore was eaten by: {0}", animal.Name);
 }
}

You can call the Eat method like this:

https://riptutorial.com/ 406

var grass = new Grass();
var sheep = new Herbivore();
var lion = new Carnivore();

sheep.Eat(grass);
//Output: Grass was eaten by: Herbivore

lion.Eat(sheep);
//Output: Herbivore was eaten by: Carnivore

In this case if you try to call:

sheep.Eat(lion);

It won't be possible because the object lion does not implement the interface IFood. Attempting to
make the above call will generate a compiler error: "The type 'Carnivore' cannot be used as type
parameter 'TFood' in the generic type or method 'Animal.Eat(TFood)'. There is no implicit
reference conversion from 'Carnivore' to 'IFood'."

Covariance

When is an IEnumerable<T> a subtype of a different IEnumerable<T1>? When T is a subtype of T1.
IEnumerable is covariant in its T parameter, which means that IEnumerable's subtype relationship
goes in the same direction as T's.

class Animal { /* ... */ }
class Dog : Animal { /* ... */ }

IEnumerable<Dog> dogs = Enumerable.Empty<Dog>();
IEnumerable<Animal> animals = dogs; // IEnumerable<Dog> is a subtype of IEnumerable<Animal>
// dogs = animals; // Compilation error - IEnumerable<Animal> is not a subtype of
IEnumerable<Dog>

An instance of a covariant generic type with a given type parameter is implicitly convertible to the
same generic type with a less derived type parameter.

This relationship holds because IEnumerable produces Ts but doesn't consume them. An object that
produces Dogs can be used as if it produces Animals.

Covariant type parameters are declared using the out keyword, because the parameter must be
used only as an output.

interface IEnumerable<out T> { /* ... */ }

A type parameter declared as covariant may not appear as an input.

interface Bad<out T>
{
 void SetT(T t); // type error
}

https://riptutorial.com/ 407

Here's a complete example:

using NUnit.Framework;

namespace ToyStore
{
 enum Taste { Bitter, Sweet };

 interface IWidget
 {
 int Weight { get; }
 }

 interface IFactory<out TWidget>
 where TWidget : IWidget
 {
 TWidget Create();
 }

 class Toy : IWidget
 {
 public int Weight { get; set; }
 public Taste Taste { get; set; }
 }

 class ToyFactory : IFactory<Toy>
 {
 public const int StandardWeight = 100;
 public const Taste StandardTaste = Taste.Sweet;

 public Toy Create() { return new Toy { Weight = StandardWeight, Taste = StandardTaste };
}
 }

 [TestFixture]
 public class GivenAToyFactory
 {
 [Test]
 public static void WhenUsingToyFactoryToMakeWidgets()
 {
 var toyFactory = new ToyFactory();

 //// Without out keyword, note the verbose explicit cast:
 // IFactory<IWidget> rustBeltFactory = (IFactory<IWidget>)toyFactory;

 // covariance: concrete being assigned to abstract (shiny and new)
 IFactory<IWidget> widgetFactory = toyFactory;
 IWidget anotherToy = widgetFactory.Create();
 Assert.That(anotherToy.Weight, Is.EqualTo(ToyFactory.StandardWeight)); // abstract
contract
 Assert.That(((Toy)anotherToy).Taste, Is.EqualTo(ToyFactory.StandardTaste)); //
concrete contract
 }
 }
}

Contravariance

When is an IComparer<T> a subtype of a different IComparer<T1>? When T1 is a subtype of T.

https://riptutorial.com/ 408

IComparer is contravariant in its T parameter, which means that IComparer's subtype relationship
goes in the opposite direction as T's.

class Animal { /* ... */ }
class Dog : Animal { /* ... */ }

IComparer<Animal> animalComparer = /* ... */;
IComparer<Dog> dogComparer = animalComparer; // IComparer<Animal> is a subtype of
IComparer<Dog>
// animalComparer = dogComparer; // Compilation error - IComparer<Dog> is not a subtype of
IComparer<Animal>

An instance of a contravariant generic type with a given type parameter is implicitly convertible to
the same generic type with a more derived type parameter.

This relationship holds because IComparer consumes Ts but doesn't produce them. An object which
can compare any two Animals can be used to compare two Dogs.

Contravariant type parameters are declared using the in keyword, because the parameter must be
used only as an input.

interface IComparer<in T> { /* ... */ }

A type parameter declared as contravariant may not appear as an output.

interface Bad<in T>
{
 T GetT(); // type error
}

Invariance

IList<T> is never a subtype of a different IList<T1>. IList is invariant in its type parameter.

class Animal { /* ... */ }
class Dog : Animal { /* ... */ }

IList<Dog> dogs = new List<Dog>();
IList<Animal> animals = dogs; // type error

There is no subtype relationship for lists because you can put values into a list and take values out
of a list.

If IList was covariant, you'd be able to add items of the wrong subtype to a given list.

IList<Animal> animals = new List<Dog>(); // supposing this were allowed...
animals.Add(new Giraffe()); // ... then this would also be allowed, which is bad!

If IList was contravariant, you'd be able to extract values of the wrong subtype from a given list.

https://riptutorial.com/ 409

IList<Dog> dogs = new List<Animal> { new Dog(), new Giraffe() }; // if this were allowed...
Dog dog = dogs[1]; // ... then this would be allowed, which is bad!

Invariant type parameters are declared by omitting both the in and out keywords.

interface IList<T> { /* ... */ }

Variant interfaces

Interfaces may have variant type parameters.

interface IEnumerable<out T>
{
 // ...
}
interface IComparer<in T>
{
 // ...
}

but classes and structures may not

class BadClass<in T1, out T2> // not allowed
{
}

struct BadStruct<in T1, out T2> // not allowed
{
}

nor do generic method declarations

class MyClass
{
 public T Bad<out T, in T1>(T1 t1) // not allowed
 {
 // ...
 }
}

The example below shows multiple variance declarations on the same interface

interface IFoo<in T1, out T2, T3>
// T1 : Contravariant type
// T2 : Covariant type
// T3 : Invariant type
{
 // ...
}

IFoo<Animal, Dog, int> foo1 = /* ... */;
IFoo<Dog, Animal, int> foo2 = foo1;
// IFoo<Animal, Dog, int> is a subtype of IFoo<Dog, Animal, int>

https://riptutorial.com/ 410

Variant delegates

Delegates may have variant type parameters.

delegate void Action<in T>(T t); // T is an input
delegate T Func<out T>(); // T is an output
delegate T2 Func<in T1, out T2>(); // T1 is an input, T2 is an output

This follows from the Liskov Substitution Principle, which states (among other things) that a
method D can be considered more derived than a method B if:

D has an equal or more derived return type than B•
D has equal or more general corresponding parameter types than B•

Therefore the following assignments are all type safe:

Func<object, string> original = SomeMethod;
Func<object, object> d1 = original;
Func<string, string> d2 = original;
Func<string, object> d3 = original;

Variant types as parameters and return values

If a covariant type appears as an output, the containing type is covariant. Producing a producer of
Ts is like producing Ts.

interface IReturnCovariant<out T>
{
 IEnumerable<T> GetTs();
}

If a contravariant type appears as an output, the containing type is contravariant. Producing a
consumer of Ts is like consuming Ts.

interface IReturnContravariant<in T>
{
 IComparer<T> GetTComparer();
}

If a covariant type appears as an input, the containing type is contravariant. Consuming a
producer of Ts is like consuming Ts.

interface IAcceptCovariant<in T>
{
 void ProcessTs(IEnumerable<T> ts);
}

If a contravariant type appears as an input, the containing type is covariant. Consuming a
consumer of Ts is like producing Ts.

https://riptutorial.com/ 411

https://en.wikipedia.org/wiki/Liskov_substitution_principle

interface IAcceptContravariant<out T>
{
 void CompareTs(IComparer<T> tComparer);
}

Checking equality of generic values.

If logic of generic class or method requires checking equality of values having generic type, use
EqualityComparer<TType>.Default property:

public void Foo<TBar>(TBar arg1, TBar arg2)
{
 var comparer = EqualityComparer<TBar>.Default;
 if (comparer.Equals(arg1,arg2)
 {
 ...
 }
}

This approach is better than simply calling Object.Equals() method, because default comparer
implementation checks, whether TBar type implements IEquatale<TBar> interface and if yes, calls
IEquatable<TBar>.Equals(TBar other) method. This allows to avoid boxing/unboxing of value types.

Generic type casting

 /// <summary>
 /// Converts a data type to another data type.
 /// </summary>
 public static class Cast
 {
 /// <summary>
 /// Converts input to Type of default value or given as typeparam T
 /// </summary>
 /// <typeparam name="T">typeparam is the type in which value will be returned, it
could be any type eg. int, string, bool, decimal etc.</typeparam>
 /// <param name="input">Input that need to be converted to specified type</param>
 /// <param name="defaultValue">defaultValue will be returned in case of value is null
or any exception occures</param>
 /// <returns>Input is converted in Type of default value or given as typeparam T and
returned</returns>
 public static T To<T>(object input, T defaultValue)
 {
 var result = defaultValue;
 try
 {
 if (input == null || input == DBNull.Value) return result;
 if (typeof (T).IsEnum)
 {
 result = (T) Enum.ToObject(typeof (T), To(input,
Convert.ToInt32(defaultValue)));
 }
 else
 {
 result = (T) Convert.ChangeType(input, typeof (T));
 }
 }

https://riptutorial.com/ 412

https://msdn.microsoft.com/en-us/library/ms224763(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms131187(v=vs.110).aspx

 catch (Exception ex)
 {
 Tracer.Current.LogException(ex);
 }

 return result;
 }

 /// <summary>
 /// Converts input to Type of typeparam T
 /// </summary>
 /// <typeparam name="T">typeparam is the type in which value will be returned, it
could be any type eg. int, string, bool, decimal etc.</typeparam>
 /// <param name="input">Input that need to be converted to specified type</param>
 /// <returns>Input is converted in Type of default value or given as typeparam T and
returned</returns>
 public static T To<T>(object input)
 {
 return To(input, default(T));
 }

 }

Usages:

std.Name = Cast.To<string>(drConnection["Name"]);
std.Age = Cast.To<int>(drConnection["Age"]);
std.IsPassed = Cast.To<bool>(drConnection["IsPassed"]);

// Casting type using default value
//Following both ways are correct
// Way 1 (In following style input is converted into type of default value)
std.Name = Cast.To(drConnection["Name"], "");
std.Marks = Cast.To(drConnection["Marks"], 0);
// Way 2
std.Name = Cast.To<string>(drConnection["Name"], "");
std.Marks = Cast.To<int>(drConnection["Marks"], 0);

Configuration reader with generic type casting

 /// <summary>
 /// Read configuration values from app.config and convert to specified types
 /// </summary>
 public static class ConfigurationReader
 {
 /// <summary>
 /// Get value from AppSettings by key, convert to Type of default value or typeparam T
and return
 /// </summary>
 /// <typeparam name="T">typeparam is the type in which value will be returned, it
could be any type eg. int, string, bool, decimal etc.</typeparam>
 /// <param name="strKey">key to find value from AppSettings</param>
 /// <param name="defaultValue">defaultValue will be returned in case of value is null
or any exception occures</param>
 /// <returns>AppSettings value against key is returned in Type of default value or

https://riptutorial.com/ 413

given as typeparam T</returns>
 public static T GetConfigKeyValue<T>(string strKey, T defaultValue)
 {
 var result = defaultValue;
 try
 {
 if (ConfigurationManager.AppSettings[strKey] != null)
 result = (T)Convert.ChangeType(ConfigurationManager.AppSettings[strKey],
typeof(T));
 }
 catch (Exception ex)
 {
 Tracer.Current.LogException(ex);
 }

 return result;
 }
 /// <summary>
 /// Get value from AppSettings by key, convert to Type of default value or typeparam T
and return
 /// </summary>
 /// <typeparam name="T">typeparam is the type in which value will be returned, it
could be any type eg. int, string, bool, decimal etc.</typeparam>
 /// <param name="strKey">key to find value from AppSettings</param>
 /// <returns>AppSettings value against key is returned in Type given as typeparam
T</returns>
 public static T GetConfigKeyValue<T>(string strKey)
 {
 return GetConfigKeyValue(strKey, default(T));
 }

 }

Usages:

var timeOut = ConfigurationReader.GetConfigKeyValue("RequestTimeout", 2000);
var url = ConfigurationReader.GetConfigKeyValue("URL", "www.someurl.com");
var enabled = ConfigurationReader.GetConfigKeyValue("IsEnabled", false);

Read Generics online: https://riptutorial.com/csharp/topic/27/generics

https://riptutorial.com/ 414

https://riptutorial.com/csharp/topic/27/generics

Chapter 66: Getting Started: Json with C#

Introduction

The following topic will introduce a way to work with Json using C# language and concepts of
Serialization and Deserialization.

Examples

Simple Json Example

{
 "id": 89,
 "name": "Aldous Huxley",
 "type": "Author",
 "books":[{
 "name": "Brave New World",
 "date": 1932
 },
 {
 "name": "Eyeless in Gaza",
 "date": 1936
 },
 {
 "name": "The Genius and the Goddess",
 "date": 1955
 }]
}

If you are new into Json, here is an exemplified tutorial.

First things First: Library to work with Json

To work with Json using C#, it is need to use Newtonsoft (.net library). This library provides
methods that allows the programmer serialize and deserialize objects and more. There is a tutorial
if you want to know details about its methods and usages.

If you use Visual Studio, go to Tools/Nuget Package Manager/Manage Package to Solution/ and
type "Newtonsoft" into the search bar and install the package. If you don't have NuGet, this
detailed tutorial might help you.

C# Implementation

Before reading some code, it is important to undersand the main concepts that will help to
program applications using json.

Serialization: Process of converting a object into a stream of bytes that can be sent
through applications. The following code can be serialized and converted into the

https://riptutorial.com/ 415

https://www.w3schools.com/js/js_json_intro.asp
http://www.newtonsoft.com/json
https://developer.xamarin.com/guides/cross-platform/xamarin-studio/nuget_walkthrough/

previous json.

Deserialization: Process of converting a json/stream of bytes into an object. Its exactly
the opposite process of serialization. The previous json can be deserialized into an C#
object as demonstrated in examples below.

To work this out, it is important to turn the json structure into classes in order to use processes
already described. If you use Visual Studio, you can turn a json into a class automatically just by
selecting "Edit/Paste Special/Paste JSON as Classes" and pasting the json structure.

using Newtonsoft.Json;

 class Author
{
 [JsonProperty("id")] // Set the variable below to represent the json attribute
 public int id; //"id"
 [JsonProperty("name")]
 public string name;
 [JsonProperty("type")]
 public string type;
 [JsonProperty("books")]
 public Book[] books;

 public Author(int id, string name, string type, Book[] books) {
 this.id = id;
 this.name = name;
 this.type= type;
 this.books = books;
 }
}

 class Book
{
 [JsonProperty("name")]
 public string name;
 [JsonProperty("date")]
 public DateTime date;
}

Serialization

 static void Main(string[] args)
 {
 Book[] books = new Book[3];
 Author author = new Author(89,"Aldous Huxley","Author",books);
 string objectDeserialized = JsonConvert.SerializeObject(author);
 //Converting author into json
 }

The method ".SerializeObject" receives as parameter a type object, so you can put anything into it.

Deserialization

You can receive a json from anywhere, a file or even a server so it is not included in the following
code.

https://riptutorial.com/ 416

static void Main(string[] args)
{
 string jsonExample; // Has the previous json
 Author author = JsonConvert.DeserializeObject<Author>(jsonExample);
}

The method ".DeserializeObject" deserializes 'jsonExample' into an "Author" object. This is why it
is important to set the json variables in the classes definition, so the method access it in order to
fill it.

Serialization & De-Serialization Common Utilities function

This sample used to common function for all type object serialization and deserialization.

using System.Runtime.Serialization.Formatters.Binary;
using System.Xml.Serialization;

namespace Framework
{
public static class IGUtilities
{
 public static string Serialization(this T obj)
 {
 string data = JsonConvert.SerializeObject(obj);
 return data;
 }

 public static T Deserialization(this string JsonData)
 {
 T copy = JsonConvert.DeserializeObject(JsonData);
 return copy;
 }

 public static T Clone(this T obj)
 {
 string data = JsonConvert.SerializeObject(obj);
 T copy = JsonConvert.DeserializeObject(data);
 return copy;
 }
}
}

Read Getting Started: Json with C# online: https://riptutorial.com/csharp/topic/9910/getting-
started--json-with-csharp

https://riptutorial.com/ 417

https://riptutorial.com/csharp/topic/9910/getting-started--json-with-csharp
https://riptutorial.com/csharp/topic/9910/getting-started--json-with-csharp

Chapter 67: Guid

Introduction

GUID (or UUID) is an acronym for 'Globally Unique Identifier' (or 'Universally Unique Identifier'). It
is a 128-bit integer number used to identify resources.

Remarks

Guids are Globally Unique Identifiers, also known as UUID's, Universally Unique Identifiers.

They are 128-bit pseudorandom values. There are so many valid Guids (about 10^18 Guids for
each cell of every people on Earth) that if they are generated by a good pseudorandom algorithm,
they can be considered unique in the whole universe by all practical means.

Guids are most often used as primary keys in databases. Their advantage is that you don't have to
call the database to get a new ID that is (almost) guaranteed to be unique.

Examples

Getting the string representation of a Guid

A string representation of a Guid can be obtained by using the built in ToString method

string myGuidString = myGuid.ToString();

Depending on your needs you can also format the Guid, by adding a format type argument to the
ToString call.

var guid = new Guid("7febf16f-651b-43b0-a5e3-0da8da49e90d");

// None "7febf16f651b43b0a5e30da8da49e90d"
Console.WriteLine(guid.ToString("N"));

// Hyphens "7febf16f-651b-43b0-a5e3-0da8da49e90d"
Console.WriteLine(guid.ToString("D"));

// Braces "{7febf16f-651b-43b0-a5e3-0da8da49e90d}"
Console.WriteLine(guid.ToString("B"));

// Parentheses "(7febf16f-651b-43b0-a5e3-0da8da49e90d)"
Console.WriteLine(guid.ToString("P"));

// Hex "{0x7febf16f,0x651b,0x43b0{0xa5,0xe3,0x0d,0xa8,0xda,0x49,0xe9,0x0d}}"
Console.WriteLine(guid.ToString("X"));

Creating a Guid

https://riptutorial.com/ 418

These are the most common ways to create an instance of Guid:

Creating an empty guid (00000000-0000-0000-0000-000000000000):•

Guid g = Guid.Empty;
Guid g2 = new Guid();

Creating a new (pseudorandom) Guid:•

Guid g = Guid.NewGuid();

Creating Guids with a specific value:•

Guid g = new Guid("0b214de7-8958-4956-8eed-28f9ba2c47c6");
Guid g2 = new Guid("0b214de7895849568eed28f9ba2c47c6");
Guid g3 = Guid.Parse("0b214de7-8958-4956-8eed-28f9ba2c47c6");

Declaring a nullable GUID

Like other value types, GUID also has a nullable type which can take null value.

Declaration :

Guid? myGuidVar = null;

This is particularly useful when retrieving data from the data base when there is a possibility that
value from a table is NULL.

Read Guid online: https://riptutorial.com/csharp/topic/1153/guid

https://riptutorial.com/ 419

https://riptutorial.com/csharp/topic/1153/guid

Chapter 68: Handling FormatException when
converting string to other types

Examples

Converting string to integer

There are various methods available for explicitly converting a string to an integer, such as:

Convert.ToInt16();1.

Convert.ToInt32();2.

Convert.ToInt64();3.

int.Parse();4.

But all these methods will throw a FormatException, if the input string contains non-numeric
characters. For this, we need to write an additional exception handling(try..catch) to deal them in
such cases.

Explanation with Examples:

So, let our input be:

string inputString = "10.2";

Example 1: Convert.ToInt32()

int convertedInt = Convert.ToInt32(inputString); // Failed to Convert
// Throws an Exception "Input string was not in a correct format."

Note: Same goes for the other mentioned methods namely - Convert.ToInt16(); and
Convert.ToInt64();

Example 2: int.Parse()

int convertedInt = int.Parse(inputString); // Same result "Input string was not in a correct
format.

How do we circumvent this?

As told earlier, for handling the exceptions we usually need a try..catch as shown below:

try
{

https://riptutorial.com/ 420

 string inputString = "10.2";
 int convertedInt = int.Parse(inputString);
}
catch (Exception Ex)
{
 //Display some message, that the conversion has failed.
}

But, using the try..catch everywhere will not be a good practice, and there may be some
scenarios where we wanted to give 0 if the input is wrong, (If we follow the above method we need
to assign 0 to convertedInt from the catch block). To handle such scenarios we can make use of a
special method called .TryParse().

The .TryParse() method having an internal Exception handling, which will give you the output to
the out parameter, and returns a Boolean value indicating the conversion status (true if the
conversion was successful; false if it failed). Based on the return value we can determine the
conversion status. Lets see one Example:

Usage 1: Store the return value in a Boolean variable

 int convertedInt; // Be the required integer
 bool isSuccessConversion = int.TryParse(inputString, out convertedInt);

We can check The variable isSuccessConversion after the Execution to check the conversion status.
If it is false then the value of convertedInt will be 0(no need to check the return value if you want 0
for conversion failure).

Usage 2: Check the return value with if

if (int.TryParse(inputString, out convertedInt))
{
 // convertedInt will have the converted value
 // Proceed with that
}
else
{
 // Display an error message
}

Usage 3: Without checking the return value you can use the following, if you don't care about the
return value (converted or not, 0 will be ok)

int.TryParse(inputString, out convertedInt);
// use the value of convertedInt
// But it will be 0 if not converted

Read Handling FormatException when converting string to other types online:
https://riptutorial.com/csharp/topic/2886/handling-formatexception-when-converting-string-to-other-
types

https://riptutorial.com/ 421

https://riptutorial.com/csharp/topic/2886/handling-formatexception-when-converting-string-to-other-types
https://riptutorial.com/csharp/topic/2886/handling-formatexception-when-converting-string-to-other-types

Chapter 69: Hash Functions

Remarks

MD5 and SHA1 are insecure and should be avoided. The examples exist for educational purposes
and due to the fact that legacy software may still use these algorithms.

Examples

MD5

Hash functions map binary strings of an arbitrary length to small binary strings of a fixed length.

The MD5 algorithm is a widely used hash function producing a 128-bit hash value (16 Bytes, 32
Hexdecimal characters).

The ComputeHash method of the System.Security.Cryptography.MD5 class returns the hash as an array
of 16 bytes.

Example:

using System;
using System.Security.Cryptography;
using System.Text;

internal class Program
{
 private static void Main()
 {
 var source = "Hello World!";

 // Creates an instance of the default implementation of the MD5 hash algorithm.
 using (var md5Hash = MD5.Create())
 {
 // Byte array representation of source string
 var sourceBytes = Encoding.UTF8.GetBytes(source);

 // Generate hash value(Byte Array) for input data
 var hashBytes = md5Hash.ComputeHash(sourceBytes);

 // Convert hash byte array to string
 var hash = BitConverter.ToString(hashBytes).Replace("-", string.Empty);

 // Output the MD5 hash
 Console.WriteLine("The MD5 hash of " + source + " is: " + hash);
 }
 }
}

Output: The MD5 hash of Hello World! is: ED076287532E86365E841E92BFC50D8C

https://riptutorial.com/ 422

https://en.wikipedia.org/wiki/MD5
https://msdn.microsoft.com/en-us/library/s02tk69a(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.security.cryptography.md5(v=vs.110).aspx

Security Issues:

Like most hash functions, MD5 is neither encryption nor encoding. It can be reversed by brute-
force attack and suffers from extensive vulnerabilities against collision and preimage attacks.

SHA1

using System;
using System.Security.Cryptography;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 string source = "Hello World!";
 using (SHA1 sha1Hash = SHA1.Create())
 {
 //From String to byte array
 byte[] sourceBytes = Encoding.UTF8.GetBytes(source);
 byte[] hashBytes = sha1Hash.ComputeHash(sourceBytes);
 string hash = BitConverter.ToString(hashBytes).Replace("-",String.Empty);

 Console.WriteLine("The SHA1 hash of " + source + " is: " + hash);
 }
 }
 }
 }

Output:

The SHA1 hash of Hello Word! is: 2EF7BDE608CE5404E97D5F042F95F89F1C232871

SHA256

using System;
using System.Security.Cryptography;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 string source = "Hello World!";
 using (SHA256 sha256Hash = SHA256.Create())
 {
 //From String to byte array
 byte[] sourceBytes = Encoding.UTF8.GetBytes(source);
 byte[] hashBytes = sha256Hash.ComputeHash(sourceBytes);
 string hash = BitConverter.ToString(hashBytes).Replace("-", String.Empty);

 Console.WriteLine("The SHA256 hash of " + source + " is: " + hash);
 }

https://riptutorial.com/ 423

https://en.wikipedia.org/wiki/MD5#Security

 }
 }
}

Output:

The SHA256 hash of Hello World! is:
7F83B1657FF1FC53B92DC18148A1D65DFC2D4B1FA3D677284ADDD200126D9069

SHA384

using System;
using System.Security.Cryptography;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 string source = "Hello World!";
 using (SHA384 sha384Hash = SHA384.Create())
 {
 //From String to byte array
 byte[] sourceBytes = Encoding.UTF8.GetBytes(source);
 byte[] hashBytes = sha384Hash.ComputeHash(sourceBytes);
 string hash = BitConverter.ToString(hashBytes).Replace("-", String.Empty);

 Console.WriteLine("The SHA384 hash of " + source + " is: " + hash);
 }
 }
 }
}

Output:

The SHA384 hash of Hello World! is:
BFD76C0EBBD006FEE583410547C1887B0292BE76D582D96C242D2A792723E3FD6FD061F9D5CFD13B8F961358E6ADBA4A

SHA512

using System;
using System.Security.Cryptography;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 string source = "Hello World!";
 using (SHA512 sha512Hash = SHA512.Create())
 {

https://riptutorial.com/ 424

 //From String to byte array
 byte[] sourceBytes = Encoding.UTF8.GetBytes(source);
 byte[] hashBytes = sha512Hash.ComputeHash(sourceBytes);
 string hash = BitConverter.ToString(hashBytes).Replace("-", String.Empty);

 Console.WriteLine("The SHA512 hash of " + source + " is: " + hash);
 }
 }
 }
}

Output: The SHA512 hash of Hello World! is:
861844D6704E8573FEC34D967E20BCFEF3D424CF48BE04E6DC08F2BD58C729743371015EAD891CC3CF1C9D34B49264B510751B1FF9E537937BC46B5D6FF4ECC8

PBKDF2 for Password Hashing

PBKDF2 ("Password-Based Key Derivation Function 2") is one of the recommended hash-
functions for password-hashing. It is part of rfc-2898.

.NET's Rfc2898DeriveBytes-Class is based upon HMACSHA1.

 using System.Security.Cryptography;

 ...

 public const int SALT_SIZE = 24; // size in bytes
 public const int HASH_SIZE = 24; // size in bytes
 public const int ITERATIONS = 100000; // number of pbkdf2 iterations

 public static byte[] CreateHash(string input)
 {
 // Generate a salt
 RNGCryptoServiceProvider provider = new RNGCryptoServiceProvider();
 byte[] salt = new byte[SALT_SIZE];
 provider.GetBytes(salt);

 // Generate the hash
 Rfc2898DeriveBytes pbkdf2 = new Rfc2898DeriveBytes(input, salt, ITERATIONS);
 return pbkdf2.GetBytes(HASH_SIZE);
 }

PBKDF2 requires a salt and the number of iterations.

Iterations:

A high number of iterations will slow the algorithm down, which makes password cracking a lot
harder. A high number of iterations is therefor recommended. PBKDF2 is order of magnitudes
slower than MD5 for example.

Salt:

A salt will prevent the lookup of hash values in rainbow tables. It has to be stored alongside the
password hash. One salt per password (not one global salt) is recommended.

https://riptutorial.com/ 425

https://tools.ietf.org/html/rfc2898#section-5.2
https://en.wikipedia.org/wiki/Salt_(cryptography)
https://en.wikipedia.org/wiki/Rainbow_table

Complete Password Hashing Solution using Pbkdf2

using System;
using System.Linq;
using System.Security.Cryptography;

namespace YourCryptoNamespace
{
 /// <summary>
 /// Salted password hashing with PBKDF2-SHA1.
 /// Compatibility: .NET 3.0 and later.
 /// </summary>
 /// <remarks>See http://crackstation.net/hashing-security.htm for much more on password
hashing.</remarks>
 public static class PasswordHashProvider
 {
 /// <summary>
 /// The salt byte size, 64 length ensures safety but could be increased / decreased
 /// </summary>
 private const int SaltByteSize = 64;
 /// <summary>
 /// The hash byte size,
 /// </summary>
 private const int HashByteSize = 64;
 /// <summary>
 /// High iteration count is less likely to be cracked
 /// </summary>
 private const int Pbkdf2Iterations = 10000;

 /// <summary>
 /// Creates a salted PBKDF2 hash of the password.
 /// </summary>
 /// <remarks>
 /// The salt and the hash have to be persisted side by side for the password. They could
be persisted as bytes or as a string using the convenience methods in the next class to
convert from byte[] to string and later back again when executing password validation.
 /// </remarks>
 /// <param name="password">The password to hash.</param>
 /// <returns>The hash of the password.</returns>
 public static PasswordHashContainer CreateHash(string password)
 {
 // Generate a random salt
 using (var csprng = new RNGCryptoServiceProvider())
 {
 // create a unique salt for every password hash to prevent rainbow and dictionary
based attacks
 var salt = new byte[SaltByteSize];
 csprng.GetBytes(salt);

 // Hash the password and encode the parameters
 var hash = Pbkdf2(password, salt, Pbkdf2Iterations, HashByteSize);

 return new PasswordHashContainer(hash, salt);
 }
 }
 /// <summary>
 /// Recreates a password hash based on the incoming password string and the stored salt
 /// </summary>
 /// <param name="password">The password to check.</param>
 /// <param name="salt">The salt existing.</param>

https://riptutorial.com/ 426

 /// <returns>the generated hash based on the password and salt</returns>
 public static byte[] CreateHash(string password, byte[] salt)
 {
 // Extract the parameters from the hash
 return Pbkdf2(password, salt, Pbkdf2Iterations, HashByteSize);
 }

 /// <summary>
 /// Validates a password given a hash of the correct one.
 /// </summary>
 /// <param name="password">The password to check.</param>
 /// <param name="salt">The existing stored salt.</param>
 /// <param name="correctHash">The hash of the existing password.</param>
 /// <returns><c>true</c> if the password is correct. <c>false</c> otherwise. </returns>
 public static bool ValidatePassword(string password, byte[] salt, byte[] correctHash)
 {
 // Extract the parameters from the hash
 byte[] testHash = Pbkdf2(password, salt, Pbkdf2Iterations, HashByteSize);
 return CompareHashes(correctHash, testHash);
 }
 /// <summary>
 /// Compares two byte arrays (hashes)
 /// </summary>
 /// <param name="array1">The array1.</param>
 /// <param name="array2">The array2.</param>
 /// <returns><c>true</c> if they are the same, otherwise <c>false</c></returns>
 public static bool CompareHashes(byte[] array1, byte[] array2)
 {
 if (array1.Length != array2.Length) return false;
 return !array1.Where((t, i) => t != array2[i]).Any();
 }

 /// <summary>
 /// Computes the PBKDF2-SHA1 hash of a password.
 /// </summary>
 /// <param name="password">The password to hash.</param>
 /// <param name="salt">The salt.</param>
 /// <param name="iterations">The PBKDF2 iteration count.</param>
 /// <param name="outputBytes">The length of the hash to generate, in bytes.</param>
 /// <returns>A hash of the password.</returns>
 private static byte[] Pbkdf2(string password, byte[] salt, int iterations, int
outputBytes)
 {
 using (var pbkdf2 = new Rfc2898DeriveBytes(password, salt))
 {
 pbkdf2.IterationCount = iterations;
 return pbkdf2.GetBytes(outputBytes);
 }
 }
 }

 /// <summary>
 /// Container for password hash and salt and iterations.
 /// </summary>
 public sealed class PasswordHashContainer
 {
 /// <summary>
 /// Gets the hashed password.
 /// </summary>
 public byte[] HashedPassword { get; private set; }
 /// <summary>

https://riptutorial.com/ 427

 /// Gets the salt.
 /// </summary>
 public byte[] Salt { get; private set; }

 /// <summary>
 /// Initializes a new instance of the <see cref="PasswordHashContainer" /> class.
 /// </summary>
 /// <param name="hashedPassword">The hashed password.</param>
 /// <param name="salt">The salt.</param>
 public PasswordHashContainer(byte[] hashedPassword, byte[] salt)
 {
 this.HashedPassword = hashedPassword;
 this.Salt = salt;
 }
 }

 /// <summary>
 /// Convenience methods for converting between hex strings and byte array.
 /// </summary>
 public static class ByteConverter
 {
 /// <summary>
 /// Converts the hex representation string to an array of bytes
 /// </summary>
 /// <param name="hexedString">The hexed string.</param>
 /// <returns></returns>
 public static byte[] GetHexBytes(string hexedString)
 {
 var bytes = new byte[hexedString.Length / 2];
 for (var i = 0; i < bytes.Length; i++)
 {
 var strPos = i * 2;
 var chars = hexedString.Substring(strPos, 2);
 bytes[i] = Convert.ToByte(chars, 16);
 }
 return bytes;
 }
 /// <summary>
 /// Gets a hex string representation of the byte array passed in.
 /// </summary>
 /// <param name="bytes">The bytes.</param>
 public static string GetHexString(byte[] bytes)
 {
 return BitConverter.ToString(bytes).Replace("-", "").ToUpper();
 }
 }
}

/*
 * Password Hashing With PBKDF2 (http://crackstation.net/hashing-security.htm).
 * Copyright (c) 2013, Taylor Hornby
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation

https://riptutorial.com/ 428

 * and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

Please see this excellent resource Crackstation - Salted Password Hashing - Doing it Right for
more information. Part of this solution (the hashing function) was based on the code from that site.

Read Hash Functions online: https://riptutorial.com/csharp/topic/2774/hash-functions

https://riptutorial.com/ 429

https://crackstation.net/hashing-security.htm
https://riptutorial.com/csharp/topic/2774/hash-functions

Chapter 70: How to use C# Structs to create a
Union type (Similar to C Unions)

Remarks

Union types are used in several languages, notably C-language, to contain several different types
which can "overlap" in the same memory space. In other words, they might contain different fields
all of which start at the same memory offset, even when they might have different lengths and
types. This has the benefit of both saving memory, and doing automatic conversion.

Please, note the comments in the constructor of the Struct. The order in which the fields are
initialized is extremely important. You want to first initialize all of the other fields and then set the
value that you intend to change as the last statement. Because the fields overlap, the last value
setup is the one that counts.

Examples

C-Style Unions in C#

Union types are used in several languages, like C-language, to contain several different types
which can "overlap". In other words, they might contain different fields all of which start at the
same memory offset, even when they might have different lengths and types. This has the benefit
of both saving memory, and doing automatic conversion. Think of an IP address, as an example.
Internally, an IP address is represented as an integer, but sometimes we want to access the
different Byte component, as in Byte1.Byte2.Byte3.Byte4. This works for any value types, be it
primitives like Int32 or long, or for other structs that you define yourself.

We can achieve the same effect in C# by using Explicit Layout Structs.

using System;
using System.Runtime.InteropServices;

// The struct needs to be annotated as "Explicit Layout"
[StructLayout(LayoutKind.Explicit)]
struct IpAddress
{
 // The "FieldOffset" means that this Integer starts, an offset in bytes.
 // sizeof(int) 4, sizeof(byte) = 1
 [FieldOffset(0)] public int Address;
 [FieldOffset(0)] public byte Byte1;
 [FieldOffset(1)] public byte Byte2;
 [FieldOffset(2)] public byte Byte3;
 [FieldOffset(3)] public byte Byte4;

 public IpAddress(int address) : this()
 {
 // When we init the Int, the Bytes will change too.
 Address = address;

https://riptutorial.com/ 430

 }

 // Now we can use the explicit layout to access the
 // bytes separately, without doing any conversion.
 public override string ToString() => $"{Byte1}.{Byte2}.{Byte3}.{Byte4}";
}

Having defined out Struct in this way, we can use it as we would use a Union in C. For example,
let's create an IP address as a Random Integer and then modify the first token in the address to
'100', by changing it from 'A.B.C.D' to '100.B.C.D':

var ip = new IpAddress(new Random().Next());
Console.WriteLine($"{ip} = {ip.Address}");
ip.Byte1 = 100;
Console.WriteLine($"{ip} = {ip.Address}");

Output:

75.49.5.32 = 537211211
100.49.5.32 = 537211236

View Demo

Union Types in C# can also contain Struct fields

Apart from primitives, the Explicit Layout structs (Unions) in C#, can also contain other Structs. As
long as a field is a Value type and not a Reference, it can be contained in a Union:

using System;
using System.Runtime.InteropServices;

// The struct needs to be annotated as "Explicit Layout"
[StructLayout(LayoutKind.Explicit)]
struct IpAddress
{
 // Same definition of IpAddress, from the example above
}

// Now let's see if we can fit a whole URL into a long

// Let's define a short enum to hold protocols
enum Protocol : short { Http, Https, Ftp, Sftp, Tcp }

// The Service struct will hold the Address, the Port and the Protocol
[StructLayout(LayoutKind.Explicit)]
struct Service
{
 [FieldOffset(0)] public IpAddress Address;
 [FieldOffset(4)] public ushort Port;
 [FieldOffset(6)] public Protocol AppProtocol;
 [FieldOffset(0)] public long Payload;

 public Service(IpAddress address, ushort port, Protocol protocol)
 {
 Payload = 0;

https://riptutorial.com/ 431

https://dotnetfiddle.net/CnrgBi

 Address = address;
 Port = port;
 AppProtocol = protocol;
 }

 public Service(long payload)
 {
 Address = new IpAddress(0);
 Port = 80;
 AppProtocol = Protocol.Http;
 Payload = payload;
 }

 public Service Copy() => new Service(Payload);

 public override string ToString() => $"{AppProtocol}//{Address}:{Port}/";
}

We can now verify that the whole Service Union fits into the size of a long (8 bytes).

var ip = new IpAddress(new Random().Next());
Console.WriteLine($"Size: {Marshal.SizeOf(ip)} bytes. Value: {ip.Address} = {ip}.");

var s1 = new Service(ip, 8080, Protocol.Https);
var s2 = new Service(s1.Payload);
s2.Address.Byte1 = 100;
s2.AppProtocol = Protocol.Ftp;

Console.WriteLine($"Size: {Marshal.SizeOf(s1)} bytes. Value: {s1.Address} = {s1}.");
Console.WriteLine($"Size: {Marshal.SizeOf(s2)} bytes. Value: {s2.Address} = {s2}.");

View Demo

Read How to use C# Structs to create a Union type (Similar to C Unions) online:
https://riptutorial.com/csharp/topic/5626/how-to-use-csharp-structs-to-create-a-union-type---
similar-to-c-unions-

https://riptutorial.com/ 432

https://dotnetfiddle.net/cROlki
https://riptutorial.com/csharp/topic/5626/how-to-use-csharp-structs-to-create-a-union-type---similar-to-c-unions-
https://riptutorial.com/csharp/topic/5626/how-to-use-csharp-structs-to-create-a-union-type---similar-to-c-unions-

Chapter 71: ICloneable

Syntax

object ICloneable.Clone() { return Clone(); } // Private implementation of interface method
which uses our custom public Clone() function.

•

public Foo Clone() { return new Foo(this); } // Public clone method should utilize the copy
constructor logic.

•

Remarks

The CLR requires a method definition object Clone() which is not type safe. It is common practice to
override this behavior and define a type safe method that returns a copy of the containing class.

It is up to the author to decide if cloning means only shallow copy, or deep copy. For immutable
structures containing references it is recommended to do a deep copy. For classes being
references themselves it is probably fine to implement a shallow copy.

NOTE: In C# an interface method can be implemented privately with the syntax shown above.

Examples

Implementing ICloneable in a class

Implement ICloneable in a class with a twist. Expose a public type safe Clone() and implement
object Clone() privately.

public class Person : ICloneable
{
 // Contents of class
 public string Name { get; set; }
 public int Age { get; set; }
 // Constructor
 public Person(string name, int age)
 {
 this.Name=name;
 this.Age=age;
 }
 // Copy Constructor
 public Person(Person other)
 {
 this.Name=other.Name;
 this.Age=other.Age;
 }

 #region ICloneable Members
 // Type safe Clone
 public Person Clone() { return new Person(this); }
 // ICloneable implementation
 object ICloneable.Clone()

https://riptutorial.com/ 433

 {
 return Clone();
 }
 #endregion
}

Later to be used as follows:

{
 Person bob=new Person("Bob", 25);
 Person bob_clone=bob.Clone();
 Debug.Assert(bob_clone.Name==bob.Name);

 bob.Age=56;
 Debug.Assert(bob.Age!=bob.Age);
}

Notice that changing the age of bob does not change the age of bob_clone. This is because the
design uses cloning instead of assigning of (reference) variables.

Implementing ICloneable in a struct

The implementation of ICloneable for a struct is not generally needed because structs do a
memberwise copy with the assignment operator =. But the design might require the
implementation of another interface that inherits from ICloneable.

Another reason would be if the struct contains a reference type (or an array) which would need
copying also.

// Structs are recommended to be immutable objects
[ImmutableObject(true)]
public struct Person : ICloneable
{
 // Contents of class
 public string Name { get; private set; }
 public int Age { get; private set; }
 // Constructor
 public Person(string name, int age)
 {
 this.Name=name;
 this.Age=age;
 }
 // Copy Constructor
 public Person(Person other)
 {
 // The assignment operator copies all members
 this=other;
 }

 #region ICloneable Members
 // Type safe Clone
 public Person Clone() { return new Person(this); }
 // ICloneable implementation
 object ICloneable.Clone()
 {
 return Clone();

https://riptutorial.com/ 434

 }
 #endregion
}

Later to be used as follows:

static void Main(string[] args)
{
 Person bob=new Person("Bob", 25);
 Person bob_clone=bob.Clone();
 Debug.Assert(bob_clone.Name==bob.Name);
}

Read ICloneable online: https://riptutorial.com/csharp/topic/7917/icloneable

https://riptutorial.com/ 435

https://riptutorial.com/csharp/topic/7917/icloneable

Chapter 72: IComparable

Examples

Sort versions

Class:

public class Version : IComparable<Version>
{
 public int[] Parts { get; }

 public Version(string value)
 {
 if (value == null)
 throw new ArgumentNullException();
 if (!Regex.IsMatch(value, @"^[0-9]+(\.[0-9]+)*$"))
 throw new ArgumentException("Invalid format");
 var parts = value.Split('.');
 Parts = new int[parts.Length];
 for (var i = 0; i < parts.Length; i++)
 Parts[i] = int.Parse(parts[i]);
 }

 public override string ToString()
 {
 return string.Join(".", Parts);
 }

 public int CompareTo(Version that)
 {
 if (that == null) return 1;
 var thisLength = this.Parts.Length;
 var thatLength = that.Parts.Length;
 var maxLength = Math.Max(thisLength, thatLength);
 for (var i = 0; i < maxLength; i++)
 {
 var thisPart = i < thisLength ? this.Parts[i] : 0;
 var thatPart = i < thatLength ? that.Parts[i] : 0;
 if (thisPart < thatPart) return -1;
 if (thisPart > thatPart) return 1;
 }
 return 0;
 }
}

Test:

Version a, b;

a = new Version("4.2.1");
b = new Version("4.2.6");
a.CompareTo(b); // a < b : -1

a = new Version("2.8.4");

https://riptutorial.com/ 436

b = new Version("2.8.0");
a.CompareTo(b); // a > b : 1

a = new Version("5.2");
b = null;
a.CompareTo(b); // a > b : 1

a = new Version("3");
b = new Version("3.6");
a.CompareTo(b); // a < b : -1

var versions = new List<Version>
{
 new Version("2.0"),
 new Version("1.1.5"),
 new Version("3.0.10"),
 new Version("1"),
 null,
 new Version("1.0.1")
};

versions.Sort();

foreach (var version in versions)
 Console.WriteLine(version?.ToString() ?? "NULL");

Output:

NULL
1
1.0.1
1.1.5
2.0
3.0.10

Demo:

Live demo on Ideone

Read IComparable online: https://riptutorial.com/csharp/topic/4222/icomparable

https://riptutorial.com/ 437

https://ideone.com/MVXzUz
https://riptutorial.com/csharp/topic/4222/icomparable

Chapter 73: IDisposable interface

Remarks

It's up to clients of the class implementing IDisposable to make sure they call the Dispose
method when they are finished using the object. There is nothing in the CLR that directly
searches objects for a Dispose method to invoke.

•

It's not necessary to implement a finalizer if your object only contains managed resources.
Be sure to call Dispose on all of the objects that your class uses when you implement your
own Dispose method.

•

It's recommended to make the class safe against multiple calls to Dispose, although it should
ideally be called only once. This can be achieved by adding a private bool variable to your
class and setting the value to true when the Dispose method has run.

•

Examples

In a class that contains only managed resources

Managed resources are resources that the runtime's garbage collector is aware and under control
of. There are many classes available in the BCL, for example, such as a SqlConnection that is a
wrapper class for an unmanaged resource. These classes already implement the IDisposable
interface -- it's up to your code to clean them up when you are done.

It's not necessary to implement a finalizer if your class only contains managed resources.

public class ObjectWithManagedResourcesOnly : IDisposable
{
 private SqlConnection sqlConnection = new SqlConnection();

 public void Dispose()
 {
 sqlConnection.Dispose();
 }
}

In a class with managed and unmanaged resources

It's important to let finalization ignore managed resources. The finalizer runs on another thread --
it's possible that the managed objects don't exist anymore by the time the finalizer runs.
Implementing a protected Dispose(bool) method is a common practice to ensure managed
resources do not have their Dispose method called from a finalizer.

public class ManagedAndUnmanagedObject : IDisposable
{
 private SqlConnection sqlConnection = new SqlConnection();

https://riptutorial.com/ 438

 private UnmanagedHandle unmanagedHandle = Win32.SomeUnmanagedResource();
 private bool disposed;

 public void Dispose()
 {
 Dispose(true); // client called dispose
 GC.SuppressFinalize(this); // tell the GC to not execute the Finalizer
 }

 protected virtual void Dispose(bool disposeManaged)
 {
 if (!disposed)
 {
 if (disposeManaged)
 {
 if (sqlConnection != null)
 {
 sqlConnection.Dispose();
 }
 }

 unmanagedHandle.Release();

 disposed = true;
 }
 }

 ~ManagedAndUnmanagedObject()
 {
 Dispose(false);
 }
}

IDisposable, Dispose

.NET Framework defines a interface for types requiring a tear-down method:

public interface IDisposable
{
 void Dispose();
}

Dispose() is primarily used for cleaning up resources, like unmanaged references. However, it can
also be useful to force the disposing of other resources even though they are managed. Instead of
waiting for the GC to eventually also clean up your database connection, you can make sure it's
done in your own Dispose() implementation.

public void Dispose()
{
 if (null != this.CurrentDatabaseConnection)
 {
 this.CurrentDatabaseConnection.Dispose();
 this.CurrentDatabaseConnection = null;
 }
}

https://riptutorial.com/ 439

When you need to directly access unmanaged resources such as unmanaged pointers or win32
resources, create a class inheriting from SafeHandle and use that class’s conventions/tools to do
so.

In an inherited class with managed resources

It's fairly common that you may create a class that implements IDisposable, and then derive
classes that also contain managed resources. It is recommendeded to mark the Dispose method
with the virtual keyword so that clients have the ability to cleanup any resources they may own.

public class Parent : IDisposable
{
 private ManagedResource parentManagedResource = new ManagedResource();

 public virtual void Dispose()
 {
 if (parentManagedResource != null)
 {
 parentManagedResource.Dispose();
 }
 }
}

public class Child : Parent
{
 private ManagedResource childManagedResource = new ManagedResource();

 public override void Dispose()
 {
 if (childManagedResource != null)
 {
 childManagedResource.Dispose();
 }
 //clean up the parent's resources
 base.Dispose();
 }
}

using keyword

When an object implements the IDisposable interface, it can be created within the using syntax:

using (var foo = new Foo())
{
 // do foo stuff
} // when it reaches here foo.Dispose() will get called

public class Foo : IDisposable
{
 public void Dispose()
 {
 Console.WriteLine("dispose called");
 }
}

https://riptutorial.com/ 440

View demo

using is syntatic sugar for a try/finally block; the above usage would roughly translate into:

{
 var foo = new Foo();
 try
 {
 // do foo stuff
 }
 finally
 {
 if (foo != null)
 ((IDisposable)foo).Dispose();
 }
}

Read IDisposable interface online: https://riptutorial.com/csharp/topic/1795/idisposable-interface

https://riptutorial.com/ 441

https://dotnetfiddle.net/StEPc2
https://en.wikipedia.org/wiki/Syntactic_sugar
https://riptutorial.com/csharp/topic/1795/idisposable-interface

Chapter 74: IEnumerable

Introduction

IEnumerable is the base interface for all non-generic collections like ArrayList that can be
enumerated. IEnumerator<T> is the base interface for all generic enumerators like List<>.

IEnumerable is an interface which implements the method GetEnumerator. The GetEnumerator method
returns an IEnumerator which provides options to iterate through the collection like foreach.

Remarks

IEnumerable is the base interface for all non-generic collections that can be enumerated

Examples

IEnumerable

In its most basic form, an object that implements IEnumerable represents a series of objects. The
objects in question can be iterated using the c# foreach keyword.

In the example below, the object sequenceOfNumbers implements IEnumerable. It represents a series
of integers. The foreach loop iterates through each in turn.

int AddNumbers(IEnumerable<int> sequenceOfNumbers) {
 int returnValue = 0;
 foreach(int i in sequenceOfNumbers) {
 returnValue += i;
 }
 return returnValue;
}

IEnumerable with custom Enumerator

Implementing the IEnumerable interface allows classes to be enumerated in the same way as BCL
collections. This requires extending the Enumerator class which tracks the state of the
enumeration.

Other than iterating over a standard collection, examples include:

Using ranges of numbers based on a function rather than a collection of objects•
Implementing different iteration algorithms over collections, like DFS or BFS on a graph
collection

•

public static void Main(string[] args) {

https://riptutorial.com/ 442

 foreach (var coffee in new CoffeeCollection()) {
 Console.WriteLine(coffee);
 }
}

public class CoffeeCollection : IEnumerable {
 private CoffeeEnumerator enumerator;

 public CoffeeCollection() {
 enumerator = new CoffeeEnumerator();
 }

 public IEnumerator GetEnumerator() {
 return enumerator;
 }

 public class CoffeeEnumerator : IEnumerator {
 string[] beverages = new string[3] { "espresso", "macchiato", "latte" };
 int currentIndex = -1;

 public object Current {
 get {
 return beverages[currentIndex];
 }
 }

 public bool MoveNext() {
 currentIndex++;

 if (currentIndex < beverages.Length) {
 return true;
 }

 return false;
 }

 public void Reset() {
 currentIndex = 0;
 }
 }
}

Read IEnumerable online: https://riptutorial.com/csharp/topic/2220/ienumerable

https://riptutorial.com/ 443

https://riptutorial.com/csharp/topic/2220/ienumerable

Chapter 75: ILGenerator

Examples

Creates a DynamicAssembly that contains a UnixTimestamp helper method

This example shows the usage of the ILGenerator by generating code that makes use of already
existing and new created members as well as basic Exception handling. The following code emits
a DynamicAssembly that contains an equivalent to this c# code:

public static class UnixTimeHelper
{
 private readonly static DateTime EpochTime = new DateTime(1970, 1, 1);

 public static int UnixTimestamp(DateTime input)
 {
 int totalSeconds;
 try
 {
 totalSeconds =
checked((int)input.Subtract(UnixTimeHelper.EpochTime).TotalSeconds);
 }
 catch (OverflowException overflowException)
 {
 throw new InvalidOperationException("It's to late for an Int32 timestamp.",
overflowException);
 }
 return totalSeconds;
 }
}

//Get the required methods
var dateTimeCtor = typeof (DateTime)
 .GetConstructor(new[] {typeof (int), typeof (int), typeof (int)});
var dateTimeSubstract = typeof (DateTime)
 .GetMethod(nameof(DateTime.Subtract), new[] {typeof (DateTime)});
var timeSpanSecondsGetter = typeof (TimeSpan)
 .GetProperty(nameof(TimeSpan.TotalSeconds)).GetGetMethod();
var invalidOperationCtor = typeof (InvalidOperationException)
 .GetConstructor(new[] {typeof (string), typeof (Exception)});

if (dateTimeCtor == null || dateTimeSubstract == null ||
 timeSpanSecondsGetter == null || invalidOperationCtor == null)
{
 throw new Exception("Could not find a required Method, can not create Assembly.");
}

//Setup the required members
var an = new AssemblyName("UnixTimeAsm");
var dynAsm = AppDomain.CurrentDomain.DefineDynamicAssembly(an,
AssemblyBuilderAccess.RunAndSave);
var dynMod = dynAsm.DefineDynamicModule(an.Name, an.Name + ".dll");

var dynType = dynMod.DefineType("UnixTimeHelper",

https://riptutorial.com/ 444

 TypeAttributes.Abstract | TypeAttributes.Sealed | TypeAttributes.Public);

var epochTimeField = dynType.DefineField("EpochStartTime", typeof (DateTime),
 FieldAttributes.Private | FieldAttributes.Static | FieldAttributes.InitOnly);

var cctor =
 dynType.DefineConstructor(
 MethodAttributes.Private | MethodAttributes.HideBySig | MethodAttributes.SpecialName |
 MethodAttributes.RTSpecialName | MethodAttributes.Static, CallingConventions.Standard,
 Type.EmptyTypes);

var cctorGen = cctor.GetILGenerator();
cctorGen.Emit(OpCodes.Ldc_I4, 1970); //Load the DateTime constructor arguments onto the stack
cctorGen.Emit(OpCodes.Ldc_I4_1);
cctorGen.Emit(OpCodes.Ldc_I4_1);
cctorGen.Emit(OpCodes.Newobj, dateTimeCtor); //Call the constructor
cctorGen.Emit(OpCodes.Stsfld, epochTimeField); //Store the object in the static field
cctorGen.Emit(OpCodes.Ret);

var unixTimestampMethod = dynType.DefineMethod("UnixTimestamp",
 MethodAttributes.Public | MethodAttributes.HideBySig | MethodAttributes.Static,
 CallingConventions.Standard, typeof (int), new[] {typeof (DateTime)});

unixTimestampMethod.DefineParameter(1, ParameterAttributes.None, "input");

var methodGen = unixTimestampMethod.GetILGenerator();
methodGen.DeclareLocal(typeof (TimeSpan));
methodGen.DeclareLocal(typeof (int));
methodGen.DeclareLocal(typeof (OverflowException));

methodGen.BeginExceptionBlock(); //Begin the try block
methodGen.Emit(OpCodes.Ldarga_S, (byte) 0); //To call a method on a struct we need to load the
address of it
methodGen.Emit(OpCodes.Ldsfld, epochTimeField);
 //Load the object of the static field we created as argument for the following call
methodGen.Emit(OpCodes.Call, dateTimeSubstract); //Call the substract method on the input
DateTime
methodGen.Emit(OpCodes.Stloc_0); //Store the resulting TimeSpan in a local
methodGen.Emit(OpCodes.Ldloca_S, (byte) 0); //Load the locals address to call a method on it
methodGen.Emit(OpCodes.Call, timeSpanSecondsGetter); //Call the TotalSeconds Get method on the
TimeSpan
methodGen.Emit(OpCodes.Conv_Ovf_I4); //Convert the result to Int32; throws an exception on
overflow
methodGen.Emit(OpCodes.Stloc_1); //store the result for returning later
//The leave instruction to jump behind the catch block will be automatically emitted
methodGen.BeginCatchBlock(typeof (OverflowException)); //Begin the catch block
//When we are here, an OverflowException was thrown, that is now on the stack
methodGen.Emit(OpCodes.Stloc_2); //Store the exception in a local.
methodGen.Emit(OpCodes.Ldstr, "It's to late for an Int32 timestamp.");
 //Load our error message onto the stack
methodGen.Emit(OpCodes.Ldloc_2); //Load the exception again
methodGen.Emit(OpCodes.Newobj, invalidOperationCtor);
 //Create an InvalidOperationException with our message and inner Exception
methodGen.Emit(OpCodes.Throw); //Throw the created exception
methodGen.EndExceptionBlock(); //End the catch block
//When we are here, everything is fine
methodGen.Emit(OpCodes.Ldloc_1); //Load the result value
methodGen.Emit(OpCodes.Ret); //Return it

dynType.CreateType();

https://riptutorial.com/ 445

dynAsm.Save(an.Name + ".dll");

Create method override

This example shows how to override ToString method in generated class

// create an Assembly and new type
var name = new AssemblyName("MethodOverriding");
var dynAsm = AppDomain.CurrentDomain.DefineDynamicAssembly(name,
AssemblyBuilderAccess.RunAndSave);
var dynModule = dynAsm.DefineDynamicModule(name.Name, $"{name.Name}.dll");
var typeBuilder = dynModule.DefineType("MyClass", TypeAttributes.Public |
TypeAttributes.Class);

// define a new method
var toStr = typeBuilder.DefineMethod(
 "ToString", // name
 MethodAttributes.Public | MethodAttributes.Virtual, // modifiers
 typeof(string), // return type
 Type.EmptyTypes); // argument types
var ilGen = toStr.GetILGenerator();
ilGen.Emit(OpCodes.Ldstr, "Hello, world!");
ilGen.Emit(OpCodes.Ret);

// set this method as override of object.ToString
typeBuilder.DefineMethodOverride(toStr, typeof(object).GetMethod("ToString"));
var type = typeBuilder.CreateType();

// now test it:
var instance = Activator.CreateInstance(type);
Console.WriteLine(instance.ToString());

Read ILGenerator online: https://riptutorial.com/csharp/topic/667/ilgenerator

https://riptutorial.com/ 446

https://riptutorial.com/csharp/topic/667/ilgenerator

Chapter 76: Immutability

Examples

System.String class

In C# (and .NET) a string is represented by class System.String. The string keyword is an alias for
this class.

The System.String class is immutable, i.e once created its state cannot be altered.

So all the operations you perform on a string like Substring, Remove, Replace, concatenation
using + operator etc will create a new string and return it.

See the following program for demonstration -

string str = "mystring";
string newString = str.Substring(3);
Console.WriteLine(newString);
Console.WriteLine(str);

This will print string and mystring respectively.

Strings and immutability

Immutable types are types that when changed create a new version of the object in memory,
rather than changing the existing object in memory. The simplest example of this is the built-in
string type.

Taking the following code, that appends " world" onto the word "Hello"

string myString = "hello";
myString += " world";

What is happening in memory in this case is that a new object is created when you append to the
string in the second line. If you do this as part of a large loop, there is the potential for this to
cause performance issues in your application.

The mutable equivalent for a string is a StringBuilder

Taking the following code

StringBuilder myStringBuilder = new StringBuilder("hello");
myStringBuilder.append(" world");

When you run this, you are modifying the StringBuilder object itself in memory.

https://riptutorial.com/ 447

Read Immutability online: https://riptutorial.com/csharp/topic/1863/immutability

https://riptutorial.com/ 448

https://riptutorial.com/csharp/topic/1863/immutability

Chapter 77: Implementing Decorator Design
Pattern

Remarks

Pros of using Decorator:

you can add new functionalities at runtime in different configurations•
good alternative for inheritance•
client can choose configuration he wants to use•

Examples

Simulating cafeteria

Decorator is one of structural design patterns. It is used to add, remove or change behaviour of
object. This document will teach you how to use Decorator DP properly.

Let me explain the idea of it to you on a simple example. Imagine you're now in Starbobs, famous
coffee company. You can place an order for any coffee you want - with cream and sugar, with
cream and topping and much more combinations! But, the base of all drinks is coffee - dark, bitter
drink, you can modify. Let's write a simple program that simulates coffee machine.

First, we need to create and abstract class that describes our base drink:

public abstract class AbstractCoffee
{
 protected AbstractCoffee k = null;

 public AbstractCoffee(AbstractCoffee k)
 {
 this.k = k;
 }

 public abstract string ShowCoffee();
}

Now, let's create some extras, like sugar, milk and topping. Created classes must implement
AbstractCoffee - they will decorate it:

public class Milk : AbstractCoffee
{
 public Milk(AbstractCoffee c) : base(c) { }
 public override string ShowCoffee()
 {
 if (k != null)
 return k.ShowCoffee() + " with Milk";
 else return "Milk";

https://riptutorial.com/ 449

 }
}
public class Sugar : AbstractCoffee
{
 public Sugar(AbstractCoffee c) : base(c) { }

 public override string ShowCoffee()
 {
 if (k != null) return k.ShowCoffee() + " with Sugar";
 else return "Sugar";
 }
}
public class Topping : AbstractCoffee
{
 public Topping(AbstractCoffee c) : base(c) { }

 public override string ShowCoffee()
 {
 if (k != null) return k.ShowCoffee() + " with Topping";
 else return "Topping";
 }
}

Now we can create our favourite coffee:

public class Program
{
 public static void Main(string[] args)
 {
 AbstractCoffee coffee = null; //we cant create instance of abstract class
 coffee = new Topping(coffee); //passing null
 coffee = new Sugar(coffee); //passing topping instance
 coffee = new Milk(coffee); //passing sugar
 Console.WriteLine("Coffee with " + coffee.ShowCoffee());

 }
}

Running the code will produce the following output:

Coffee with Topping with Sugar with Milk

Read Implementing Decorator Design Pattern online:
https://riptutorial.com/csharp/topic/4798/implementing-decorator-design-pattern

https://riptutorial.com/ 450

https://riptutorial.com/csharp/topic/4798/implementing-decorator-design-pattern

Chapter 78: Implementing Flyweight Design
Pattern

Examples

Implementing map in RPG game

Flyweight is one of structural design patterns. It is used to decrease the amount of used memory
by sharing as much data as possible with similiar objects. This document will teach you how to use
Flyweight DP properly.

Let me explain the idea of it to you on a simple example. Imagine you're working on a RPG game
and you need to load huge file that contains some characters. For example:

is grass. You can walk on it.•
$ is starting point•
@ is rock. You can't walk on it.•
% is treasure chest•

Sample of a map:

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@############@@@@@######@#$@@@

@#############@@@######@###@@@

@#######%######@###########@@@

@############################@

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

Since those objects have similiar characteristic, you don't need to create separate object for each
map field. I will show you how to use flyweight.

Let's define an interface which our fields will implement:

public interface IField
{
 string Name { get; }
 char Mark { get; }
 bool CanWalk { get; }
 FieldType Type { get; }
}

Now we can create classes that represent our fields. We also have to identify them somehow (I
used an enumeration):

https://riptutorial.com/ 451

public enum FieldType
{
 GRASS,
 ROCK,
 START,
 CHEST
}
public class Grass : IField
{
 public string Name { get { return "Grass"; } }
 public char Mark { get { return '#'; } }
 public bool CanWalk { get { return true; } }
 public FieldType Type { get { return FieldType.GRASS; } }
}
public class StartingPoint : IField
{
 public string Name { get { return "Starting Point"; } }
 public char Mark { get { return '$'; } }
 public bool CanWalk { get { return true; } }
 public FieldType Type { get { return FieldType.START; } }
}
public class Rock : IField
{
 public string Name { get { return "Rock"; } }
 public char Mark { get { return '@'; } }
 public bool CanWalk { get { return false; } }
 public FieldType Type { get { return FieldType.ROCK; } }
}
public class TreasureChest : IField
{
 public string Name { get { return "Treasure Chest"; } }
 public char Mark { get { return '%'; } }
 public bool CanWalk { get { return true; } } // you can approach it
 public FieldType Type { get { return FieldType.CHEST; } }
}

Like I said, we don't need to create separate instance for each field. We have to create a
repository of fields. The essence of Flyweight DP is that we dynamically create an object only if
we need it and it doesn't exist yet in our repo, or return it if it already exists. Let's write simple class
that will handle this for us:

public class FieldRepository
{
 private List<IField> lstFields = new List<IField>();

 private IField AddField(FieldType type)
 {
 IField f;
 switch(type)
 {
 case FieldType.GRASS: f = new Grass(); break;
 case FieldType.ROCK: f = new Rock(); break;
 case FieldType.START: f = new StartingPoint(); break;
 case FieldType.CHEST:
 default: f = new TreasureChest(); break;
 }
 lstFields.Add(f); //add it to repository
 Console.WriteLine("Created new instance of {0}", f.Name);
 return f;

https://riptutorial.com/ 452

 }
 public IField GetField(FieldType type)
 {
 IField f = lstFields.Find(x => x.Type == type);
 if (f != null) return f;
 else return AddField(type);
 }
}

Great! Now we can test our code:

public class Program
{
 public static void Main(string[] args)
 {
 FieldRepository f = new FieldRepository();
 IField grass = f.GetField(FieldType.GRASS);
 grass = f.GetField(FieldType.ROCK);
 grass = f.GetField(FieldType.GRASS);
 }
}

The result in the console should be:

Created a new instance of Grass

Created a new instance of Rock

But why grass appears only one time if we wanted to get it twice? That's because first time we call
GetField grass instance does not exist in our repository, so it's created, but next time we need
grass it already exist, so we only return it.

Read Implementing Flyweight Design Pattern online:
https://riptutorial.com/csharp/topic/4619/implementing-flyweight-design-pattern

https://riptutorial.com/ 453

https://riptutorial.com/csharp/topic/4619/implementing-flyweight-design-pattern

Chapter 79: Import Google Contacts

Remarks

The user contacts data will be received in JSON format, we extract it and finally we loop through
this data and thus we get the google contacts.

Examples

Requirements

To Import Google(Gmail) contacts in ASP.NET MVC application, first download "Google API
setup" This will grant the following references:

using Google.Contacts;
using Google.GData.Client;
using Google.GData.Contacts;
using Google.GData.Extensions;

Add these to the relevant application.

Source code in the controller

using Google.Contacts;
using Google.GData.Client;
using Google.GData.Contacts;
using Google.GData.Extensions;
using Newtonsoft.Json;
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Net;
using System.Text;
using System.Web;
using System.Web.Mvc;

namespace GoogleContactImport.Controllers
{
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 return View();
 }

 public ActionResult Import()
 {
 string clientId = ""; // here you need to add your google client id
 string redirectUrl = "http://localhost:1713/Home/AddGoogleContacts"; // here your
redirect action method NOTE: you need to configure same url in google console
 Response.Redirect("https://accounts.google.com/o/oauth2/auth?redirect_uri=" +

https://riptutorial.com/ 454

https://code.google.com/archive/p/google-gdata/downloads
https://code.google.com/archive/p/google-gdata/downloads

redirectUrl + "&&response_type=code&&client_id=" + clientId +
"&&scope=https://www.google.com/m8/feeds/&approval_prompt=force&access_type=offline");

 return View();
 }

 public ActionResult AddGoogleContacts()
 {
 string code = Request.QueryString["code"];
 if (!string.IsNullOrEmpty(code))
 {
 var contacts = GetAccessToken().ToArray();
 if (contacts.Length > 0)
 {
 // You will get all contacts here
 return View("Index",contacts);
 }
 else
 {
 return RedirectToAction("Index","Home");
 }
 }
 else
 {
 return RedirectToAction("Index", "Home");
 }
 }
 public List<GmailContacts> GetAccessToken()
 {
 string code = Request.QueryString["code"];
 string google_client_id = ""; //your google client Id
 string google_client_sceret = ""; // your google secret key
 string google_redirect_url = "http://localhost:1713/MyContact/AddGoogleContacts";

 HttpWebRequest webRequest =
(HttpWebRequest)WebRequest.Create("https://accounts.google.com/o/oauth2/token");
 webRequest.Method = "POST";
 string parameters = "code=" + code + "&client_id=" + google_client_id +
"&client_secret=" + google_client_sceret + "&redirect_uri=" + google_redirect_url +
"&grant_type=authorization_code";
 byte[] byteArray = Encoding.UTF8.GetBytes(parameters);
 webRequest.ContentType = "application/x-www-form-urlencoded";
 webRequest.ContentLength = byteArray.Length;
 Stream postStream = webRequest.GetRequestStream();
 // Add the post data to the web request
 postStream.Write(byteArray, 0, byteArray.Length);
 postStream.Close();
 WebResponse response = webRequest.GetResponse();
 postStream = response.GetResponseStream();
 StreamReader reader = new StreamReader(postStream);
 string responseFromServer = reader.ReadToEnd();
 GooglePlusAccessToken serStatus =
JsonConvert.DeserializeObject<GooglePlusAccessToken>(responseFromServer);
 /*End*/
 return GetContacts(serStatus);
 }

 public List<GmailContacts> GetContacts(GooglePlusAccessToken serStatus)
 {
 string google_client_id = ""; //client id

https://riptutorial.com/ 455

 string google_client_sceret = ""; //secret key
 /*Get Google Contacts From Access Token and Refresh Token*/
 // string refreshToken = serStatus.refresh_token;
 string accessToken = serStatus.access_token;
 string scopes = "https://www.google.com/m8/feeds/contacts/default/full/";
 OAuth2Parameters oAuthparameters = new OAuth2Parameters()
 {
 ClientId = google_client_id,
 ClientSecret = google_client_sceret,
 RedirectUri = "http://localhost:1713/Home/AddGoogleContacts",
 Scope = scopes,
 AccessToken = accessToken,
 // RefreshToken = refreshToken
 };

 RequestSettings settings = new RequestSettings("App Name", oAuthparameters);
 ContactsRequest cr = new ContactsRequest(settings);
 ContactsQuery query = new
ContactsQuery(ContactsQuery.CreateContactsUri("default"));
 query.NumberToRetrieve = 5000;
 Feed<Contact> ContactList = cr.GetContacts();

 List<GmailContacts> olist = new List<GmailContacts>();
 foreach (Contact contact in ContactList.Entries)
 {
 foreach (EMail email in contact.Emails)
 {
 GmailContacts gc = new GmailContacts();
 gc.EmailID = email.Address;
 var a = contact.Name.FullName;
 olist.Add(gc);
 }
 }
 return olist;
 }

 public class GmailContacts
 {
 public string EmailID
 {
 get { return _EmailID; }
 set { _EmailID = value; }
 }
 private string _EmailID;
 }

 public class GooglePlusAccessToken
 {

 public GooglePlusAccessToken()
 { }

 public string access_token
 {
 get { return _access_token; }
 set { _access_token = value; }
 }
 private string _access_token;

 public string token_type

https://riptutorial.com/ 456

 {
 get { return _token_type; }
 set { _token_type = value; }
 }
 private string _token_type;

 public string expires_in
 {
 get { return _expires_in; }
 set { _expires_in = value; }
 }
 private string _expires_in;

 }
 }
}

Source code in the view.

The only action method you need to add is to add an action link present below

Import Google Contacts

Read Import Google Contacts online: https://riptutorial.com/csharp/topic/6744/import-google-
contacts

https://riptutorial.com/ 457

https://riptutorial.com/csharp/topic/6744/import-google-contacts
https://riptutorial.com/csharp/topic/6744/import-google-contacts

Chapter 80: Including Font Resources

Parameters

Parameter Details

fontbytes byte array from the binary .ttf

Examples

Instantiate 'Fontfamily' from Resources

public FontFamily Maneteke = GetResourceFontFamily(Properties.Resources.manteka);

Integration method

public static FontFamily GetResourceFontFamily(byte[] fontbytes)
{
 PrivateFontCollection pfc = new PrivateFontCollection();
 IntPtr fontMemPointer = Marshal.AllocCoTaskMem(fontbytes.Length);
 Marshal.Copy(fontbytes, 0, fontMemPointer, fontbytes.Length);
 pfc.AddMemoryFont(fontMemPointer, fontbytes.Length);
 Marshal.FreeCoTaskMem(fontMemPointer);

https://riptutorial.com/ 458

https://i.stack.imgur.com/1fneu.png

 return pfc.Families[0];
}

Usage with a 'Button'

 public static class Res
 {
 /// <summary>
 /// URL: https://www.behance.net/gallery/2846011/Manteka
 /// </summary>
 public static FontFamily Maneteke =
GetResourceFontFamily(Properties.Resources.manteka);

 public static FontFamily GetResourceFontFamily(byte[] fontbytes)
 {
 PrivateFontCollection pfc = new PrivateFontCollection();
 IntPtr fontMemPointer = Marshal.AllocCoTaskMem(fontbytes.Length);
 Marshal.Copy(fontbytes, 0, fontMemPointer, fontbytes.Length);
 pfc.AddMemoryFont(fontMemPointer, fontbytes.Length);
 Marshal.FreeCoTaskMem(fontMemPointer);
 return pfc.Families[0];
 }
 }

 public class FlatButton : Button
 {
 public FlatButton() : base()
 {
 Font = new Font(Res.Maneteke, Font.Size);
 }

 protected override void OnFontChanged(EventArgs e)
 {
 base.OnFontChanged(e);
 this.Font = new Font(Res.Maneteke, this.Font.Size);
 }
 }

Read Including Font Resources online: https://riptutorial.com/csharp/topic/9789/including-font-
resources

https://riptutorial.com/ 459

https://riptutorial.com/csharp/topic/9789/including-font-resources
https://riptutorial.com/csharp/topic/9789/including-font-resources

Chapter 81: Indexer

Syntax

public ReturnType this[IndexType index] { get { ... } set { ... }}•

Remarks

Indexer allows array-like syntax to access a property of an object with an index.

Can be used on a class, struct or interface.•
Can be overloaded.•
Can use multiple parameters.•
Can be used to access and set values.•
Can use any type for it's index.•

Examples

A simple indexer

class Foo
{
 private string[] cities = new[] { "Paris", "London", "Berlin" };

 public string this[int index]
 {
 get {
 return cities[index];
 }
 set {
 cities[index] = value;
 }
 }
}

Usage:

 var foo = new Foo();

 // access a value
 string berlin = foo[2];

 // assign a value
 foo[0] = "Rome";

View Demo

Indexer with 2 arguments and interface

https://riptutorial.com/ 460

https://dotnetfiddle.net/I1usLs

interface ITable {
 // an indexer can be declared in an interface
 object this[int x, int y] { get; set; }
}

class DataTable : ITable
{
 private object[,] cells = new object[10, 10];

 /// <summary>
 /// implementation of the indexer declared in the interface
 /// </summary>
 /// <param name="x">X-Index</param>
 /// <param name="y">Y-Index</param>
 /// <returns>Content of this cell</returns>
 public object this[int x, int y]
 {
 get
 {
 return cells[x, y];
 }
 set
 {
 cells[x, y] = value;
 }
 }
}

Overloading the indexer to create a SparseArray

By overloading the indexer you can create a class that looks and feels like an array but isn't. It will
have O(1) get and set methods, can access an element at index 100, and yet still have the size of
the elements inside of it. The SparseArray class

class SparseArray
 {
 Dictionary<int, string> array = new Dictionary<int, string>();

 public string this[int i]
 {
 get
 {
 if(!array.ContainsKey(i))
 {
 return null;
 }
 return array[i];
 }
 set
 {
 if(!array.ContainsKey(i))
 array.Add(i, value);
 }
 }
 }

Read Indexer online: https://riptutorial.com/csharp/topic/1660/indexer

https://riptutorial.com/ 461

https://riptutorial.com/csharp/topic/1660/indexer

Chapter 82: Inheritance

Syntax

class DerivedClass : BaseClass•
class DerivedClass : BaseClass, IExampleInterface•
class DerivedClass : BaseClass, IExampleInterface, IAnotherInterface•

Remarks

Classes can inherit directly from only one class, but (instead or at the same time) can implement
one or more interfaces.

Structs can implement interfaces but cannot explicitly inherit from any type. They implicitly inherit
from System.ValueType, which in turn inherits directly from System.Object.

Static classes cannot implement interfaces.

Examples

Inheriting from a base class

To avoid duplicating code, define common methods and attributes in a general class as a base:

public class Animal
{
 public string Name { get; set; }
 // Methods and attributes common to all animals
 public void Eat(Object dinner)
 {
 // ...
 }
 public void Stare()
 {
 // ...
 }
 public void Roll()
 {
 // ...
 }
}

Now that you have a class that represents Animal in general, you can define a class that describes
the peculiarities of specific animals:

public class Cat : Animal
{
 public Cat()
 {

https://riptutorial.com/ 462

http://stackoverflow.com/a/259079

 Name = "Cat";
 }
 // Methods for scratching furniture and ignoring owner
 public void Scratch(Object furniture)
 {
 // ...
 }
}

The Cat class gets access to not only the methods described in its definition explicitly, but also all
the methods defined in the general Animal base class. Any Animal (whether or not it was a Cat)
could Eat, Stare, or Roll. An Animal would not be able to Scratch, however, unless it was also a
Cat. You could then define other classes describing other animals. (Such as Gopher with a
method for destroying flower gardens and Sloth with no extra methods at all.)

Inheriting from a class and implementing an interface

public class Animal
{
 public string Name { get; set; }
}

public interface INoiseMaker
{
 string MakeNoise();
}

//Note that in C#, the base class name must come before the interface names
public class Cat : Animal, INoiseMaker
{
 public Cat()
 {
 Name = "Cat";
 }

 public string MakeNoise()
 {
 return "Nyan";
 }
}

Inheriting from a class and implementing multiple interfaces

public class LivingBeing
{
 string Name { get; set; }
}

public interface IAnimal
{
 bool HasHair { get; set; }
}

public interface INoiseMaker
{
 string MakeNoise();

https://riptutorial.com/ 463

}

//Note that in C#, the base class name must come before the interface names
public class Cat : LivingBeing, IAnimal, INoiseMaker
{
 public Cat()
 {
 Name = "Cat";
 HasHair = true;
 }

 public bool HasHair { get; set; }

 public string Name { get; set; }

 public string MakeNoise()
 {
 return "Nyan";
 }
}

Testing and navigating inheritance

interface BaseInterface {}
class BaseClass : BaseInterface {}

interface DerivedInterface {}
class DerivedClass : BaseClass, DerivedInterface {}

var baseInterfaceType = typeof(BaseInterface);
var derivedInterfaceType = typeof(DerivedInterface);
var baseType = typeof(BaseClass);
var derivedType = typeof(DerivedClass);

var baseInstance = new BaseClass();
var derivedInstance = new DerivedClass();

Console.WriteLine(derivedInstance is DerivedClass); //True
Console.WriteLine(derivedInstance is DerivedInterface); //True
Console.WriteLine(derivedInstance is BaseClass); //True
Console.WriteLine(derivedInstance is BaseInterface); //True
Console.WriteLine(derivedInstance is object); //True

Console.WriteLine(derivedType.BaseType.Name); //BaseClass
Console.WriteLine(baseType.BaseType.Name); //Object
Console.WriteLine(typeof(object).BaseType); //null

Console.WriteLine(baseType.IsInstanceOfType(derivedInstance)); //True
Console.WriteLine(derivedType.IsInstanceOfType(baseInstance)); //False

Console.WriteLine(
 string.Join(",",
 derivedType.GetInterfaces().Select(t => t.Name).ToArray()));
//BaseInterface,DerivedInterface

Console.WriteLine(baseInterfaceType.IsAssignableFrom(derivedType)); //True
Console.WriteLine(derivedInterfaceType.IsAssignableFrom(derivedType)); //True
Console.WriteLine(derivedInterfaceType.IsAssignableFrom(baseType)); //False

https://riptutorial.com/ 464

Extending an abstract base class

Unlike interfaces, which can be described as contracts for implementation, abstract classes act as
contracts for extension.

An abstract class cannot be instantiated, it must be extended and the resulting class (or derived
class) can then be instantiated.

Abstract classes are used to provide generic implementations

public abstract class Car
{
 public void HonkHorn() {
 // Implementation of horn being honked
 }
}

public class Mustang : Car
{
 // Simply by extending the abstract class Car, the Mustang can HonkHorn()
 // If Car were an interface, the HonkHorn method would need to be included
 // in every class that implemented it.
}

The above example shows how any class extending Car will automatically receive the HonkHorn
method with the implementation. This means that any developer creating a new Car will not need
to worry about how it will honk it's horn.

Constructors In A Subclass

When you make a subclass of a base class, you can construct the base class by using : base after
the subclass constructor's parameters.

class Instrument
{
 string type;
 bool clean;

 public Instrument (string type, bool clean)
 {
 this.type = type;
 this.clean = clean;
 }
}

class Trumpet : Instrument
{
 bool oiled;

 public Trumpet(string type, bool clean, bool oiled) : base(type, clean)
 {
 this.oiled = oiled;
 }
}

https://riptutorial.com/ 465

Inheritance. Constructors' calls sequence

Consider we have a class Animal which has a child class Dog

class Animal
{
 public Animal()
 {
 Console.WriteLine("In Animal's constructor");
 }
}

class Dog : Animal
{
 public Dog()
 {
 Console.WriteLine("In Dog's constructor");
 }
}

By default every class implicitly inherits the Object class.

This is same as the above code.

class Animal : Object
{
 public Animal()
 {
 Console.WriteLine("In Animal's constructor");
 }
}

When creating an instance of Dog class, the base classes's default constructor (without
parameters) will be called if there is no explicit call to another constructor in the parent
class. In our case, first will be called Object's constructor, then Animal's and at the end Dog's
constructor.

public class Program
{
 public static void Main()
 {
 Dog dog = new Dog();
 }
}

Output will be

In Animal's constructor
In Dog's constructor

View Demo

Call parent's constructor explicitly.

https://riptutorial.com/ 466

https://dotnetfiddle.net/uOL8cE

In the above examples, our Dog class constructor calls the default constructor of the Animal class.
If you want, you can specify which constructor should be called: it is possible to call any
constructor which is defined in the parent class.

Consider we have these two classes.

class Animal
{
 protected string name;

 public Animal()
 {
 Console.WriteLine("Animal's default constructor");
 }

 public Animal(string name)
 {
 this.name = name;
 Console.WriteLine("Animal's constructor with 1 parameter");
 Console.WriteLine(this.name);
 }
}

class Dog : Animal
{
 public Dog() : base()
 {
 Console.WriteLine("Dog's default constructor");
 }

 public Dog(string name) : base(name)
 {
 Console.WriteLine("Dog's constructor with 1 parameter");
 Console.WriteLine(this.name);
 }
}

What is going here?

We have 2 constructors in each class.

What does base mean?

base is a reference to the parent class. In our case, when we create an instance of Dog class like
this

Dog dog = new Dog();

The runtime first calls the Dog(), which is the parameterless constructor. But its body doesn't work
immediately. After the parentheses of the constructor we have a such call: base(), which means
that when we call the default Dog constructor, it will in turn call the parent's default constructor.
After the parent's constructor runs, it will return and then, finally, run the Dog() constructor body.

So output will be like this:

https://riptutorial.com/ 467

Animal's default constructor
Dog's default constructor

View Demo

Now what if we call the Dog's constructor with a parameter?

Dog dog = new Dog("Rex");

You know that members in the parent class which are not private are inherited by the child class,
meaning that Dog will also have the name field.
In this case we passed an argument to our constructor. It in his turn passes the argument to the
parent class' constructor with a parameter, which initializes the name field.

Output will be

Animal's constructor with 1 parameter
Rex
Dog's constructor with 1 parameter
Rex

Summary:

Every object creation starts from the base class. In the inheritance, the classes which are in the
hierarchy are chained. As all classes derive from Object, the first constructor to be called when any
object is created is the Object class constructor; Then the next constructor in the chain is called
and only after all of them are called the object is created

base keyword

The base keyword is used to access members of the base class from within a derived class:1.
Call a method on the base class that has been overridden by another method. Specify which
base-class constructor should be called when creating instances of the derived class.

2.

Inheriting methods

There are several ways methods can be inherited

public abstract class Car
{
 public void HonkHorn() {
 // Implementation of horn being honked
 }

 // virtual methods CAN be overridden in derived classes
 public virtual void ChangeGear() {
 // Implementation of gears being changed
 }

 // abstract methods MUST be overridden in derived classes
 public abstract void Accelerate();
}

https://riptutorial.com/ 468

https://dotnetfiddle.net/eRKEjT

public class Mustang : Car
{
 // Before any code is added to the Mustang class, it already contains
 // implementations of HonkHorn and ChangeGear.

 // In order to compile, it must be given an implementation of Accelerate,
 // this is done using the override keyword
 public override void Accelerate() {
 // Implementation of Mustang accelerating
 }

 // If the Mustang changes gears differently to the implementation in Car
 // this can be overridden using the same override keyword as above
 public override void ChangeGear() {
 // Implementation of Mustang changing gears
 }
}

Inheritance Anti-patterns

Improper Inheritance

Lets say there are 2 classes class Foo and Bar. Foo has two features Do1 and Do2. Bar needs to use
Do1 from Foo, but it doesn't need Do2 or needs feature that is equivalent to Do2 but does something
completely different.

Bad way: make Do2() on Foo virtual then override it in Bar or just throw Exception in Bar for Do2()

public class Bar : Foo
{
 public override void Do2()
 {
 //Does something completely different that you would expect Foo to do
 //or simply throws new Exception
 }
}

Good way

Take out Do1() from Foo and put it into new class Baz then inherit both Foo and Bar from Baz and
implement Do2() separately

public class Baz
{
 public void Do1()
 {
 // magic
 }
}

public class Foo : Baz
{
 public void Do2()

https://riptutorial.com/ 469

 {
 // foo way
 }
}

public class Bar : Baz
{
 public void Do2()
 {
 // bar way or not have Do2 at all
 }
}

Now why first example is bad and second is good: When developer nr2 has to do a change in Foo,
chances are he will break implementation of Bar because Bar is now inseparable from Foo. When
doing it by latter example Foo and Bar commonalty has been moved to Baz and they do not affect
each other (like the shouldn't).

Base class with recursive type specification

One time definition of a generic base class with recursive type specifier. Each node has one
parent and multiple children.

/// <summary>
/// Generic base class for a tree structure
/// </summary>
/// <typeparam name="T">The node type of the tree</typeparam>
public abstract class Tree<T> where T : Tree<T>
{
 /// <summary>
 /// Constructor sets the parent node and adds this node to the parent's child nodes
 /// </summary>
 /// <param name="parent">The parent node or null if a root</param>
 protected Tree(T parent)
 {
 this.Parent=parent;
 this.Children=new List<T>();
 if(parent!=null)
 {
 parent.Children.Add(this as T);
 }
 }
 public T Parent { get; private set; }
 public List<T> Children { get; private set; }
 public bool IsRoot { get { return Parent==null; } }
 public bool IsLeaf { get { return Children.Count==0; } }
 /// <summary>
 /// Returns the number of hops to the root object
 /// </summary>
 public int Level { get { return IsRoot ? 0 : Parent.Level+1; } }
}

The above can be re-used every time a tree hierarchy of objects needs to be defined. The node
object in the tree has to inherit from the base class with

public class MyNode : Tree<MyNode>

https://riptutorial.com/ 470

{
 // stuff
}

each node class knows where it is in the hierarchy, what the parent object is as well as what the
children objects are. Several built in types use a tree structure, like Control or XmlElement and the
above Tree<T> can be used as a base class of any type in your code.

For example, to create a hierarchy of parts where the total weight is calculated from the weight of
all the children, do the following:

public class Part : Tree<Part>
{
 public static readonly Part Empty = new Part(null) { Weight=0 };
 public Part(Part parent) : base(parent) { }
 public Part Add(float weight)
 {
 return new Part(this) { Weight=weight };
 }
 public float Weight { get; set; }

 public float TotalWeight { get { return Weight+Children.Sum((part) => part.TotalWeight); }
}
}

to be used as

// [Q:2.5] -- [P:4.2] -- [R:0.4]
// \
// - [Z:0.8]
var Q = Part.Empty.Add(2.5f);
var P = Q.Add(4.2f);
var R = P.Add(0.4f);
var Z = Q.Add(0.9f);

// 2.5+(4.2+0.4)+0.9 = 8.0
float weight = Q.TotalWeight;

Another example would in the definition of relative coordinate frames. In this case the true position
of the coordinate frame depends on the positions of all the parent coordinate frames.

public class RelativeCoordinate : Tree<RelativeCoordinate>
{
 public static readonly RelativeCoordinate Start = new RelativeCoordinate(null,
PointF.Empty) { };
 public RelativeCoordinate(RelativeCoordinate parent, PointF local_position)
 : base(parent)
 {
 this.LocalPosition=local_position;
 }
 public PointF LocalPosition { get; set; }
 public PointF GlobalPosition
 {
 get

https://riptutorial.com/ 471

 {
 if(IsRoot) return LocalPosition;
 var parent_pos = Parent.GlobalPosition;
 return new PointF(parent_pos.X+LocalPosition.X, parent_pos.Y+LocalPosition.Y);
 }
 }
 public float TotalDistance
 {
 get
 {
 float dist =
(float)Math.Sqrt(LocalPosition.X*LocalPosition.X+LocalPosition.Y*LocalPosition.Y);
 return IsRoot ? dist : Parent.TotalDistance+dist;
 }
 }
 public RelativeCoordinate Add(PointF local_position)
 {
 return new RelativeCoordinate(this, local_position);
 }
 public RelativeCoordinate Add(float x, float y)
 {
 return Add(new PointF(x, y));
 }
}

to be used as

// Define the following coordinate system hierarchy
//
// o--> [A1] --+--> [B1] -----> [C1]
// |
// +--> [B2] --+--> [C2]
// |
// +--> [C3]

var A1 = RelativeCoordinate.Start;
var B1 = A1.Add(100, 20);
var B2 = A1.Add(160, 10);

var C1 = B1.Add(120, -40);
var C2 = B2.Add(80, -20);
var C3 = B2.Add(60, -30);

double dist1 = C1.TotalDistance;

Read Inheritance online: https://riptutorial.com/csharp/topic/29/inheritance

https://riptutorial.com/ 472

https://riptutorial.com/csharp/topic/29/inheritance

Chapter 83: Initializing Properties

Remarks

When deciding on how to create a property, start with an auto-implemented property for simplicity
and brevity.

Switch to a property with a backing field only when circumstances dictate. If you need other
manipulations beyond a simple set and get, you may need to introduce a backing field.

Examples

C# 6.0: Initialize an Auto-Implemented Property

Create a property with getter and/or setter and initialize all in one line:

public string Foobar { get; set; } = "xyz";

Initializing Property with a Backing Field

public string Foobar {
 get { return _foobar; }
 set { _foobar = value; }
}
private string _foobar = "xyz";

Initializing Property in Constructor

class Example
{
 public string Foobar { get; set; }
 public List<string> Names { get; set; }
 public Example()
 {
 Foobar = "xyz";
 Names = new List<string>(){"carrot","fox","ball"};
 }
}

Property Initialization during object instantiation

Properties can be set when an object is instantiated.

var redCar = new Car
{
 Wheels = 2,
 Year = 2016,

https://riptutorial.com/ 473

 Color = Color.Red
};

Read Initializing Properties online: https://riptutorial.com/csharp/topic/82/initializing-properties

https://riptutorial.com/ 474

https://riptutorial.com/csharp/topic/82/initializing-properties

Chapter 84: INotifyPropertyChanged interface

Remarks

The interface INotifyPropertyChanged is needed whenever you need to make your class report the
changes happening to its properties. The interface defines a single event PropertyChanged.

With XAML Binding the PropertyChanged event is wired up automatically so you only need to
implement the INotifyPropertyChanged interface on your view model or data context classes to
work with XAML Binding.

Examples

Implementing INotifyPropertyChanged in C# 6

The implementation of INotifyPropertyChange can be error-prone, as the interface requires
specifying property name as a string. In order to make the implementation more robust, an
attribute CallerMemberName can be used.

class C : INotifyPropertyChanged
{
 // backing field
 int offset;
 // property
 public int Offset
 {
 get
 {
 return offset;
 }
 set
 {
 if (offset == value)
 return;
 offset = value;
 RaisePropertyChanged();
 }
 }

 // helper method for raising PropertyChanged event
 void RaisePropertyChanged([CallerMemberName] string propertyName = null) =>
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));

 // interface implemetation
 public event PropertyChangedEventHandler PropertyChanged;
}

If you have several classes implementing INotifyPropertyChanged, you may find it useful to refactor
out the interface implementation and the helper method to the common base class:

class NotifyPropertyChangedImpl : INotifyPropertyChanged

https://riptutorial.com/ 475

{
 protected void RaisePropertyChanged([CallerMemberName] string propertyName = null) =>
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));

 // interface implemetation
 public event PropertyChangedEventHandler PropertyChanged;
}

class C : NotifyPropertyChangedImpl
{
 int offset;
 public int Offset
 {
 get { return offset; }
 set { if (offset != value) { offset = value; RaisePropertyChanged(); } }
 }
}

INotifyPropertyChanged With Generic Set Method

The NotifyPropertyChangedBaseclass below defines a generic Set method that can be called from
any derived type.

public class NotifyPropertyChangedBase : INotifyPropertyChanged
{
 protected void RaisePropertyChanged([CallerMemberName] string propertyName = null) =>
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));

 public event PropertyChangedEventHandler PropertyChanged;

 public virtual bool Set<T>(ref T field, T value, [CallerMemberName] string propertyName =
null)
 {
 if (Equals(field, value))
 return false;
 storage = value;
 RaisePropertyChanged(propertyName);
 return true;
 }
}

To use this generic Set method, you simply need to create a class that derives from
NotifyPropertyChangedBase.

public class SomeViewModel : NotifyPropertyChangedBase
{
 private string _foo;
 private int _bar;

 public string Foo
 {
 get { return _foo; }
 set { Set(ref _foo, value); }
 }

 public int Bar
 {

https://riptutorial.com/ 476

 get { return _bar; }
 set { Set(ref _bar, value); }
 }
}

As shown above, you can call Set(ref _fieldName, value); in a property's setter and it will
automatically raise a PropertyChanged event if it is needed.

You can then register to the PropertyChanged event from another class that needs to handle
property changes.

public class SomeListener
{
 public SomeListener()
 {
 _vm = new SomeViewModel();
 _vm.PropertyChanged += OnViewModelPropertyChanged;
 }

 private void OnViewModelPropertyChanged(object sender, PropertyChangedEventArgs e)
 {
 Console.WriteLine($"Property {e.PropertyName} was changed.");
 }

 private readonly SomeViewModel _vm;

}

Read INotifyPropertyChanged interface online:
https://riptutorial.com/csharp/topic/2990/inotifypropertychanged-interface

https://riptutorial.com/ 477

https://riptutorial.com/csharp/topic/2990/inotifypropertychanged-interface

Chapter 85: Interfaces

Examples

Implementing an interface

An interface is used to enforce the presence of a method in any class that 'implements' it. The
interface is defined with the keyword interface and a class can 'implement' it by adding :
InterfaceName after the class name. A class can implement multiple interfaces by separating each
interface with a comma.
: InterfaceName, ISecondInterface

public interface INoiseMaker
{
 string MakeNoise();
}

public class Cat : INoiseMaker
{
 public string MakeNoise()
 {
 return "Nyan";
 }
}

public class Dog : INoiseMaker
{
 public string MakeNoise()
 {
 return "Woof";
 }
}

Because they implement INoiseMaker, both cat and dog are required to include the string
MakeNoise() method and will fail to compile without it.

Implementing multiple interfaces

public interface IAnimal
{
 string Name { get; set; }
}

public interface INoiseMaker
{
 string MakeNoise();
}

public class Cat : IAnimal, INoiseMaker
{
 public Cat()
 {
 Name = "Cat";

https://riptutorial.com/ 478

 }

 public string Name { get; set; }

 public string MakeNoise()
 {
 return "Nyan";
 }
}

Explicit interface implementation

Explicit interface implementation is necessary when you implement multiple interfaces who define
a common method, but different implementations are required depending on which interface is
being used to call the method (note that you don't need explicit implementations if multiple
interfaces share the same method and a common implementation is possible).

interface IChauffeur
{
 string Drive();
}

interface IGolfPlayer
{
 string Drive();
}

class GolfingChauffeur : IChauffeur, IGolfPlayer
{
 public string Drive()
 {
 return "Vroom!";
 }

 string IGolfPlayer.Drive()
 {
 return "Took a swing...";
 }
}

GolfingChauffeur obj = new GolfingChauffeur();
IChauffeur chauffeur = obj;
IGolfPlayer golfer = obj;

Console.WriteLine(obj.Drive()); // Vroom!
Console.WriteLine(chauffeur.Drive()); // Vroom!
Console.WriteLine(golfer.Drive()); // Took a swing...

The implementation cannot be called from anywhere else except by using the interface:

public class Golfer : IGolfPlayer
{
 string IGolfPlayer.Drive()
 {
 return "Swinging hard...";
 }

https://riptutorial.com/ 479

 public void Swing()
 {
 Drive(); // Compiler error: No such method
 }
}

Due to this, it may be advantageous to put complex implementation code of an explicitly
implemented interface in a separate, private method.

An explicit interface implementation can of course only be used for methods that actually exist for
that interface:

public class ProGolfer : IGolfPlayer
{
 string IGolfPlayer.Swear() // Error
 {
 return "The ball is in the pit";
 }
}

Similarly, using an explicit interface implementation without declaring that interface on the class
causes an error, too.

Hint:

Implementing interfaces explicitly can also be used to avoid dead code. When a method is no
longer needed and gets removed from the interface, the compiler will complain about each still
existing implementation.

Note:

Programmers expect the contract to be the same regardless of the context of the type and explicit
implementation should not expose different behavior when called. So unlike the example above,
IGolfPlayer.Drive and Drive should do the same thing when possible.

Why we use interfaces

An interface is a definition of a contract between the user of the interface and the class that
implement it. One way to think of an interface is as a declaration that an object can perform certain
functions.

Let's say that we define an interface IShape to represent different type of shapes, we expect a
shape to have an area, so we will define a method to force the interface implementations to return
their area :

public interface IShape
{
 double ComputeArea();

https://riptutorial.com/ 480

}

Let's that we have the following two shapes : a Rectangle and a Circle

public class Rectangle : IShape
{
 private double length;
 private double width;

 public Rectangle(double length, double width)
 {
 this.length = length;
 this.width = width;
 }

 public double ComputeArea()
 {
 return length * width;
 }
}

public class Circle : IShape
{
 private double radius;

 public Circle(double radius)
 {
 this.radius = radius;
 }

 public double ComputeArea()
 {
 return Math.Pow(radius, 2.0) * Math.PI;
 }
}

Each one of them have its own definition of its area, but both of them are shapes. So it's only
logical to see them as IShape in our program :

private static void Main(string[] args)
{
 var shapes = new List<IShape>() { new Rectangle(5, 10), new Circle(5) };
 ComputeArea(shapes);

 Console.ReadKey();
}

private static void ComputeArea(IEnumerable<IShape> shapes)
{
 foreach (shape in shapes)
 {
 Console.WriteLine("Area: {0:N}, shape.ComputeArea());
 }
}

// Output:
// Area : 50.00
// Area : 78.54

https://riptutorial.com/ 481

Interface Basics

An Interface's function known as a "contract" of functionality. It means that it declares properties
and methods but it doesn't implement them.

So unlike classes Interfaces:

Can't be instantiated•
Can't have any functionality•
Can only contain methods * (Properties and Events are methods internally)•
Inheriting an interface is called "Implementing"•
You can inherit from 1 class, but you can "Implement" multiple Interfaces•

public interface ICanDoThis{
 void TheThingICanDo();
 int SomeValueProperty { get; set; }
}

Things to notice:

The "I" prefix is a naming convention used for interfaces.•
The function body is replaced with a semicolon ";".•
Properties are also allowed because internally they are also methods•

public class MyClass : ICanDoThis {
 public void TheThingICanDo(){
 // do the thing
 }

 public int SomeValueProperty { get; set; }
 public int SomeValueNotImplemtingAnything { get; set; }
}

.

ICanDoThis obj = new MyClass();

// ok
obj.TheThingICanDo();

// ok
obj.SomeValueProperty = 5;

// Error, this member doesn't exist in the interface
obj.SomeValueNotImplemtingAnything = 5;

// in order to access the property in the class you must "down cast" it
((MyClass)obj).SomeValueNotImplemtingAnything = 5; // ok

This is especially useful when you're working with UI frameworks such as WinForms or WPF
because it's mandatory to inherit from a base class to create user control and you loose the ability
to create abstraction over different control types. An example? Coming up:

https://riptutorial.com/ 482

public class MyTextBlock : TextBlock {
 public void SetText(string str){
 this.Text = str;
 }
}

public class MyButton : Button {
 public void SetText(string str){
 this.Content = str;
 }
}

The problem proposed is that both contain some concept of "Text" but the property names differ.
And you can't create create a abstract base class because they have a mandatory inheritance to 2
different classes. An interface can alleviate that

public interface ITextControl{
 void SetText(string str);
}

public class MyTextBlock : TextBlock, ITextControl {
 public void SetText(string str){
 this.Text = str;
 }
}

public class MyButton : Button, ITextControl {
 public void SetText(string str){
 this.Content = str;
 }

 public int Clicks { get; set; }
}

Now MyButton and MyTextBlock is interchangeable.

var controls = new List<ITextControls>{
 new MyTextBlock(),
 new MyButton()
};

foreach(var ctrl in controls){
 ctrl.SetText("This text will be applied to both controls despite them being different");

 // Compiler Error, no such member in interface
 ctrl.Clicks = 0;

 // Runtime Error because 1 class is in fact not a button which makes this cast invalid
 ((MyButton)ctrl).Clicks = 0;

 /* the solution is to check the type first.
 This is usually considered bad practice since
 it's a symptom of poor abstraction */
 var button = ctrl as MyButton;
 if(button != null)
 button.Clicks = 0; // no errors

https://riptutorial.com/ 483

}

"Hiding" members with Explicit Implementation

Don't you hate it when interfaces pollute you class with too many members you don't even care
about? Well I got a solution! Explicit Implementations

public interface IMessageService {
 void OnMessageRecieve();
 void SendMessage();
 string Result { get; set; }
 int Encoding { get; set; }
 // yadda yadda
}

Normally you'd implement the class like this.

public class MyObjectWithMessages : IMessageService {
 public void OnMessageRecieve(){

 }

 public void SendMessage(){

 }

 public string Result { get; set; }
 public int Encoding { get; set; }
}

Every member is public.

var obj = new MyObjectWithMessages();

// why would i want to call this function?
obj.OnMessageRecieve();

Answer: I don't. So neither should it be declared public but simply declaring the members as
private will make the compiler throw an error

The solution is to use explicit implementation:

public class MyObjectWithMessages : IMessageService{
 void IMessageService.OnMessageRecieve() {

 }

 void IMessageService.SendMessage() {

 }

 string IMessageService.Result { get; set; }

https://riptutorial.com/ 484

 int IMessageService.Encoding { get; set; }
}

So now you have implemented the members as required and they wont expose any members in
as public.

var obj = new MyObjectWithMessages();

/* error member does not exist on type MyObjectWithMessages.
 * We've succesfully made it "private" */
obj.OnMessageRecieve();

If you seriously still want to access the member even though is explicitly implement all you have to
do is cast the object to the interface and you good to go.

((IMessageService)obj).OnMessageRecieve();

IComparable as an Example of Implementing an Interface

Interfaces can seem abstract until you seem them in practice. The IComparable and IComparable<T>
are great examples of why interfaces can be helpful to us.

Let's say that in a program for a online store, we have a variety of items you can buy. Each item
has a name, an ID number, and a price.

public class Item {

 public string name; // though public variables are generally bad practice,
 public int idNumber; // to keep this example simple we will use them instead
 public decimal price; // of a property.

 // body omitted for brevity

}

We have our Items stored inside of a List<Item>, and in our program somewhere, we want to sort
our list by ID number from smallest to largest. Instead of writing our own sorting algorithm, we can
instead use the Sort() method that List<T> already has. However, as our Item class is right now,
there is no way for the List<T> to understand what order to sort the list. Here is where the
IComparable interface comes in.

To correctly implement the CompareTo method, CompareTo should return a positive number if the
parameter is "less than" the current one, zero if they are equal, and a negative number if the
parameter is "greater than".

Item apple = new Item();
apple.idNumber = 15;
Item banana = new Item();
banana.idNumber = 4;
Item cow = new Item();
cow.idNumber = 15;

https://riptutorial.com/ 485

Item diamond = new Item();
diamond.idNumber = 18;

Console.WriteLine(apple.CompareTo(banana)); // 11
Console.WriteLine(apple.CompareTo(cow)); // 0
Console.WriteLine(apple.CompareTo(diamond)); // -3

Here's the example Item's implementation of the interface:

public class Item : IComparable<Item> {

 private string name;
 private int idNumber;
 private decimal price;

 public int CompareTo(Item otherItem) {

 return (this.idNumber - otherItem.idNumber);

 }

 // rest of code omitted for brevity

}

On a surface level, the CompareTo method in our item simply returns the difference in their ID
numbers, but what does the above do in practice?

Now, when we call Sort() on a List<Item> object, the List will automatically call the Item's CompareTo
method when it needs to determine what order to put objects in. Furthermore, besides List<T>, any
other objects that need the ability to compare two objects will work with the Item because we have
defined the ability for two different Items to be compared with one another.

Read Interfaces online: https://riptutorial.com/csharp/topic/2208/interfaces

https://riptutorial.com/ 486

https://riptutorial.com/csharp/topic/2208/interfaces

Chapter 86: Interoperability

Remarks

Working with Win32 API using C#

Windows exposes lots of functionality in the form of Win32 API. Using these API you can perform
direct operation in windows, which increases performance of your application.Source Click here

Windows exposes a broad range of API. To get information about various APIs you can check
sites like pinvoke.

Examples

Import function from unmanaged C++ DLL

Here is an example of how to import a function that is defined in an unmanaged C++ DLL. In the
C++ source code for "myDLL.dll", the function add is defined:

extern "C" __declspec(dllexport) int __stdcall add(int a, int b)
{
 return a + b;
}

Then it can be included into a C# program as follows:

class Program
{
 // This line will import the C++ method.
 // The name specified in the DllImport attribute must be the DLL name.
 // The names of parameters are unimportant, but the types must be correct.
 [DllImport("myDLL.dll")]
 private static extern int add(int left, int right);

 static void Main(string[] args)
 {
 //The extern method can be called just as any other C# method.
 Console.WriteLine(add(1, 2));
 }
}

See Calling conventions and C++ name mangling for explanations about why extern "C" and
__stdcall are necessary.

Finding the dynamic library

When the extern method is first invoked the C# program will search for and load the appropriate

https://riptutorial.com/ 487

http://www.c-sharpcorner.com/article/working-with-win32-api-in-net/
http://pinvoke.net
http://www.riptutorial.com/csharp/example/16910/calling-conventions
http://www.riptutorial.com/csharp/example/16909/cplusplus-name-mangling

DLL. For more information about where is searched to find the DLL, and how you can influence
the search locations see this stackoverflow question.

Simple code to expose class for com

using System;
using System.Runtime.InteropServices;

namespace ComLibrary
{
 [ComVisible(true)]
 public interface IMainType
 {
 int GetInt();

 void StartTime();

 int StopTime();
 }

 [ComVisible(true)]
 [ClassInterface(ClassInterfaceType.None)]
 public class MainType : IMainType
 {
 private Stopwatch stopWatch;

 public int GetInt()
 {
 return 0;
 }

 public void StartTime()
 {
 stopWatch= new Stopwatch();
 stopWatch.Start();
 }

 public int StopTime()
 {
 return (int)stopWatch.ElapsedMilliseconds;
 }
 }
}

C++ name mangling

C++ compilers encode additional information in the names of exported functions, such as
argument types, to make overloads with different arguments possible. This process is called name
mangling. This causes problems with importing functions in C# (and interop with other languages
in general), as the name of int add(int a, int b) function is no longer add, it can be ?add@@YAHHH@Z,
_add@8 or anything else, depending on the compiler and the calling convention.

There're several ways of solving the problem of name mangling:

Exporting functions using extern "C" to switch to C external linkage which uses C name
mangling:

•

https://riptutorial.com/ 488

http://stackoverflow.com/questions/8836093/how-can-i-specify-a-dllimport-path-at-runtime
https://en.wikipedia.org/wiki/Name_mangling
https://en.wikipedia.org/wiki/Name_mangling

extern "C" __declspec(dllexport) int __stdcall add(int a, int b)

[DllImport("myDLL.dll")]

Function name will still be mangled (_add@8), but StdCall+extern "C" name mangling is
recognized by C# compiler.

Specifying exported function names in myDLL.def module definition file:

EXPORTS
 add

int __stdcall add(int a, int b)

[DllImport("myDLL.dll")]

The function name will be pure add in this case.

•

Importing mangled name. You'll need some DLL viewer to see the mangled name, then you
can specify it explicitly:

__declspec(dllexport) int __stdcall add(int a, int b)

[DllImport("myDLL.dll", EntryPoint = "?add@@YGHHH@Z")]

•

Calling conventions

There're several conventions of calling functions, specifying who (caller or callee) pops arguments
from the stack, how arguments are passed and in what order. C++ uses Cdecl calling convention
by default, but C# expects StdCall, which is usually used by Windows API. You need to change
one or the other:

Change calling convention to StdCall in C++:

extern "C" __declspec(dllexport) int __stdcall add(int a, int b)

[DllImport("myDLL.dll")]

•

Or, change calling convention to Cdecl in C#:

extern "C" __declspec(dllexport) int /*__cdecl*/ add(int a, int b)

[DllImport("myDLL.dll", CallingConvention = CallingConvention.Cdecl)]

•

If you want to use a function with Cdecl calling convention and a mangled name, your code will
look like this:

https://riptutorial.com/ 489

__declspec(dllexport) int add(int a, int b)

[DllImport("myDLL.dll", CallingConvention = CallingConvention.Cdecl,
 EntryPoint = "?add@@YAHHH@Z")]

thiscall(__thiscall) is mainly used in functions that are members of a class.•

When a function uses thiscall(__thiscall) , a pointer to the class is passed down as the first
parameter.

•

Dynamic loading and unloading of unmanaged DLLs

When using the DllImport attribute you have to know the correct dll and method name at compile
time. If you want to be more flexible and decide at runtime which dll and methods to load, you can
use the Windows API methods LoadLibrary(), GetProcAddress() and FreeLibrary(). This can be
helpful if the library to use depends on runtime conditions.

The pointer returned by GetProcAddress() can be casted into a delegate using
Marshal.GetDelegateForFunctionPointer().

The following code sample demonstrates this with the myDLL.dll from the previous examples:

class Program
{
 // import necessary API as shown in other examples
 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern IntPtr LoadLibrary(string lib);
 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern void FreeLibrary(IntPtr module);
 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern IntPtr GetProcAddress(IntPtr module, string proc);

 // declare a delegate with the required signature
 private delegate int AddDelegate(int a, int b);

 private static void Main()
 {
 // load the dll
 IntPtr module = LoadLibrary("myDLL.dll");
 if (module == IntPtr.Zero) // error handling
 {
 Console.WriteLine($"Could not load library: {Marshal.GetLastWin32Error()}");
 return;
 }

 // get a "pointer" to the method
 IntPtr method = GetProcAddress(module, "add");
 if (method == IntPtr.Zero) // error handling
 {
 Console.WriteLine($"Could not load method: {Marshal.GetLastWin32Error()}");
 FreeLibrary(module); // unload library
 return;
 }

 // convert "pointer" to delegate

https://riptutorial.com/ 490

https://msdn.microsoft.com/en-us/library/windows/desktop/ms683212(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.interopservices.marshal.getdelegateforfunctionpointer(v=vs.110).aspx

 AddDelegate add = (AddDelegate)Marshal.GetDelegateForFunctionPointer(method,
typeof(AddDelegate));

 // use function
 int result = add(750, 300);

 // unload library
 FreeLibrary(module);
 }
}

Dealing with Win32 Errors

When using interop methods, you can use GetLastError API to get additional information on you
API calls.

DllImport Attribute SetLastError Attribute

SetLastError=true

Indicates that the callee will call SetLastError (Win32 API function).

SetLastError=false

Indicates that the callee will not call SetLastError (Win32 API function), therefore you will not get
an error information.

When SetLastError isn't set, it is set to false (Default value).•

You can obtain the error code using Marshal.GetLastWin32Error Method:•

Example:

[DllImport("kernel32.dll", SetLastError=true)]
public static extern IntPtr OpenMutex(uint access, bool handle, string lpName);

If you trying to open mutex which does not exist, GetLastError will return
ERROR_FILE_NOT_FOUND.

var lastErrorCode = Marshal.GetLastWin32Error();

if (lastErrorCode == (uint)ERROR_FILE_NOT_FOUND)
{
 //Deal with error
}

System Error Codes can be found here:

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681382(v=vs.85).aspx

GetLastError API

https://riptutorial.com/ 491

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681382(v=vs.85).aspx

There is a native GetLastError API which you can use as well :

[DllImport("coredll.dll", SetLastError=true)]
static extern Int32 GetLastError();

When calling Win32 API from managed code, you must always use the
Marshal.GetLastWin32Error.

•

Here's why:

Between your Win32 call which sets the error (calls SetLastError), the CLR can call other Win32
calls which could call SetLastError as well, this behavior can override your error value. In this
scenario, if you call GetLastError you can obtain an invalid error.

Setting SetLastError = true, makes sure that the CLR retrieves the error code before it executes
other Win32 calls.

Pinned Object

GC (Garbage Collector) is responsible for cleaning our garbage.

While GC cleans our garbage, he removes the unused objects from the managed heap which
cause heap fragmentation. When GC is done with the removal, it performs a heap compression
(defragmintation) which involves moving objects on the heap.

Since GC isn't deterministic, when passing managed object reference/pointer to native code, GC
can kick in at any time, if it occurs just after Inerop call, there is a very good possibility that object
(which reference passed to native) will be moved on the managed heap - as a result, we get an
invalid reference on managed side.

In this scenario, you should pin the object before passing it to native code.

Pinned Object

Pinned object is an object that is not allowed to move by GC.

Gc Pinned Handle

You can create a pin object using Gc.Alloc method

GCHandle handle = GCHandle.Alloc(yourObject, GCHandleType.Pinned);

Obtaining a pinned GCHandle to managed object marks a specific object as one that cannot
be moved by GC, until freeing the handle

•

Example:

[DllImport("kernel32.dll", SetLastError = true)]
public static extern void EnterCriticalSection(IntPtr ptr);

https://riptutorial.com/ 492

[DllImport("kernel32.dll", SetLastError = true)]
public static extern void LeaveCriticalSection(IntPtr ptr);

public void EnterCriticalSection(CRITICAL_SECTION section)
{
 try
 {
 GCHandle handle = GCHandle.Alloc(section, GCHandleType.Pinned);
 EnterCriticalSection(handle.AddrOfPinnedObject());
 //Do Some Critical Work
 LeaveCriticalSection(handle.AddrOfPinnedObject());
 }
 finaly
 {
 handle.Free()
 }
}

Precautions

When pinning (especially large ones) object try to release the pinned GcHandle as fast as
possible, since it interrupt heap defragmentation.

•

If you forget to free GcHandle nothing will. Do it in a safe code section (such as finaly)•

Reading structures with Marshal

Marshal class contains a function named PtrToStructure, this function gives us the ability of
reading structures by an unmanaged pointer.

PtrToStructure function got many overloads, but they all have the same intention.

Generic PtrToStructure:

public static T PtrToStructure<T>(IntPtr ptr);

T - structure type.

ptr - A pointer to an unmanaged block of memory.

Example:

NATIVE_STRUCT result = Marshal.PtrToStructure<NATIVE_STRUCT>(ptr);

If you dealing with managed objects while reading native structures, don't forget to pin your
object :)

•

 T Read<T>(byte[] buffer)
 {
 T result = default(T);

 var gch = GCHandle.Alloc(buffer, GCHandleType.Pinned);

 try

https://riptutorial.com/ 493

 {
 result = Marshal.PtrToStructure<T>(gch.AddrOfPinnedObject());
 }
 finally
 {
 gch.Free();
 }

 return result;
 }

Read Interoperability online: https://riptutorial.com/csharp/topic/3278/interoperability

https://riptutorial.com/ 494

https://riptutorial.com/csharp/topic/3278/interoperability

Chapter 87: IQueryable interface

Examples

Translating a LINQ query to a SQL query

The IQueryable and IQueryable<T> interfaces allows developers to translate a LINQ query (a
'language-integrated' query) to a specific datasource, for example a relational database. Take this
LINQ query written in C#:

var query = from book in books
 where book.Author == "Stephen King"
 select book;

If the variable books is of a type that implements IQueryable<Book> then the query above gets
passed to the provider (set on the IQueryable.Provider property) in the form of an expression tree,
a data structure that reflects the structure of the code.

The provider can inspect the expression tree at runtime to determine:

that there is a predicate for the Author property of the Book class;•
that the comparison method used is 'equals' (==);•
that the value it should equal is "Stephen King".•

With this information the provider can translate the C# query to a SQL query at runtime and pass
that query to a relational database to fetch only those books that match the predicate:

select *
from Books
where Author = 'Stephen King'

The provider gets called when the query variable is iterated over (IQueryable implements
IEnumerable).

(The provider used in this example would require some extra metadata to know which table to
query and to know how to match properties of the C# class to columns of the table, but such
metadata is outside of the scope of the IQueryable interface.)

Read IQueryable interface online: https://riptutorial.com/csharp/topic/3094/iqueryable-interface

https://riptutorial.com/ 495

https://riptutorial.com/csharp/topic/3094/iqueryable-interface

Chapter 88: Iterators

Remarks

An iterator is a method, get accessor, or operator that performs a custom iteration over an array or
collection class by using the yield keyword

Examples

Simple Numeric Iterator Example

A common use-case for iterators is to perform some operation over a collection of numbers. The
example below demonstrates how each element within an array of numbers can be individually
printed out to the console.

This is possible because arrays implement the IEnumerable interface, allowing clients to obtain an
iterator for the array using the GetEnumerator() method. This method returns an enumerator, which
is a read-only, forward-only cursor over each number in the array.

int[] numbers = { 1, 2, 3, 4, 5 };

IEnumerator iterator = numbers.GetEnumerator();

while (iterator.MoveNext())
{
 Console.WriteLine(iterator.Current);
}

Output

1
2
3
4
5

It's also possible to achieve the same results using a foreach statement:

foreach (int number in numbers)
{
 Console.WriteLine(number);
}

Creating Iterators Using Yield

Iterators produce enumerators. In C#, enumerators are produced by defining methods, properties
or indexers that contain yield statements.

https://riptutorial.com/ 496

Most methods will return control to their caller through normal return statements, which disposes
all state local to that method. In contrast, methods that use yield statements allow them to return
multiple values to the caller on request while preserving local state in-between returning those
values. These returned values constitute a sequence. There are two types of yield statements
used within iterators:

yield return, which returns control to the caller but preserves state. The callee will continue
execution from this line when control is passed back to it.

•

yield break, which functions similarly to a normal return statement - this signifies the end of
the sequence. Normal return statements themselves are illegal within an iterator block.

•

This example below demonstrates an iterator method that can be used to generate the Fibonacci
sequence:

IEnumerable<int> Fibonacci(int count)
{
 int prev = 1;
 int curr = 1;

 for (int i = 0; i < count; i++)
 {
 yield return prev;
 int temp = prev + curr;
 prev = curr;
 curr = temp;
 }
}

This iterator can then be used to produce an enumerator of the Fibonacci sequence that can be
consumed by a calling method. The code below demonstrates how the first ten terms within the
Fibonacci sequence can be enumerated:

void Main()
{
 foreach (int term in Fibonacci(10))
 {
 Console.WriteLine(term);
 }
}

Output

1
1
2
3
5
8
13
21
34
55

https://riptutorial.com/ 497

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number

Read Iterators online: https://riptutorial.com/csharp/topic/4243/iterators

https://riptutorial.com/ 498

https://riptutorial.com/csharp/topic/4243/iterators

Chapter 89: Keywords

Introduction

Keywords are predefined, reserved identifiers with special meaning to the compiler. They cannot
be used as identifiers in your program without the @ prefix. For example @if is a legal identifier but
not the keyword if.

Remarks

C# has a predefined collection of "keywords" (or reserved words) which each have a special
function. These words can not be used as identifiers (names for variables, methods, classes, etc.)
unless prefixed with @.

abstract•
as•
base•
bool•
break•
byte•
case•
catch•
char•
checked•
class•
const•
continue•
decimal•
default•
delegate•
do•
double•
else•
enum•
event•
explicit•
extern•
false•
finally•
fixed•
float•
for•
foreach•
goto•
if•
implicit•
in•
int•
interface•
internal•
is•

https://riptutorial.com/ 499

https://msdn.microsoft.com/en-us/library/x53a06bb(v=vs.71).aspx
http://www.riptutorial.com/csharp/example/2872/abstract
http://www.riptutorial.com/csharp/example/138/as
http://www.riptutorial.com/csharp/example/1840/base
http://www.riptutorial.com/csharp/example/8712/bool
http://www.riptutorial.com/csharp/example/2858/break
http://www.riptutorial.com/csharp/example/148/try--catch--finally--throw
http://www.riptutorial.com/csharp/example/6009/char
http://www.riptutorial.com/csharp/example/192/checked--unchecked
http://www.riptutorial.com/csharp/example/141/const
http://www.riptutorial.com/csharp/example/154/continue
http://www.riptutorial.com/csharp/example/2873/float--double--decimal
http://www.riptutorial.com/csharp/example/109/default
http://www.riptutorial.com/csharp/example/18720/delegate
http://www.riptutorial.com/csharp/example/12229/do
http://www.riptutorial.com/csharp/example/2873/float--double--decimal
http://www.riptutorial.com/csharp/example/11359/if--if---else--if----else-if
http://www.riptutorial.com/csharp/example/245/enum
http://www.riptutorial.com/csharp/example/18722/event
http://www.riptutorial.com/csharp/example/8191/extern
http://www.riptutorial.com/csharp/example/17113/true--false
http://www.riptutorial.com/csharp/example/148/try--catch--finally--throw
http://www.riptutorial.com/csharp/example/59/fixed
http://www.riptutorial.com/csharp/example/2873/float--double--decimal
http://www.riptutorial.com/csharp/example/3722/for
http://www.riptutorial.com/csharp/example/1928/foreach
http://www.riptutorial.com/csharp/example/193/goto
http://www.riptutorial.com/csharp/example/11359/if--if---else--if----else-if
http://www.riptutorial.com/csharp/example/16557/implicit
http://www.riptutorial.com/csharp/example/4992/in
http://www.riptutorial.com/csharp/example/5328/int
http://www.riptutorial.com/csharp/example/14354/interface
http://www.riptutorial.com/csharp/example/8102/internal
http://www.riptutorial.com/csharp/example/139/is

lock•
long•
namespace•
new•
null•
object•
operator•
out•
override•
params•
private•
protected•
public•
readonly•
ref•
return•
sbyte•
sealed•
short•
sizeof•
stackalloc•
static•
string•
struct•
switch•
this•
throw•
true•
try•
typeof•
uint•
ulong•
unchecked•
unsafe•
ushort•
using (directive)•
using (statement)•
virtual•
void•
volatile•
when•
while•

Apart from these, C# also uses some keywords to provide specific meaning in code. They are
called contextual keywords. Contextual keywords can be used as identifiers and doesn't need to
be prefixed with @ when used as identifiers.

add•
alias•
ascending•
async•
await•
descending•
dynamic•
from•

https://riptutorial.com/ 500

http://www.riptutorial.com/csharp/example/6452/lock
http://www.riptutorial.com/csharp/example/5329/long
http://www.riptutorial.com/csharp/example/142/namespace
http://www.riptutorial.com/csharp/example/5805/virtual--override--new
http://www.riptutorial.com/csharp/example/6750/null
http://www.riptutorial.com/csharp/example/12604/operator
http://www.riptutorial.com/csharp/example/184/ref--out
http://www.riptutorial.com/csharp/example/5805/virtual--override--new
http://www.riptutorial.com/csharp/example/2513/params
http://www.riptutorial.com/csharp/example/110/readonly
http://www.riptutorial.com/csharp/example/184/ref--out
http://www.riptutorial.com/csharp/example/4600/return
http://www.riptutorial.com/csharp/example/18290/sbyte
http://www.riptutorial.com/csharp/example/5245/sealed
http://www.riptutorial.com/csharp/example/5246/sizeof
http://www.riptutorial.com/csharp/example/57/stackalloc
http://www.riptutorial.com/csharp/example/5248/static
http://www.riptutorial.com/csharp/example/17143/string
http://www.riptutorial.com/csharp/example/13023/struct
http://www.riptutorial.com/csharp/example/14353/switch
http://www.riptutorial.com/csharp/example/2914/this
http://www.riptutorial.com/csharp/example/148/try--catch--finally--throw
http://www.riptutorial.com/csharp/example/17113/true--false
http://www.riptutorial.com/csharp/example/148/try--catch--finally--throw
http://www.riptutorial.com/csharp/example/140/typeof
http://www.riptutorial.com/csharp/example/2874/uint
http://www.riptutorial.com/csharp/example/5330/ulong
http://www.riptutorial.com/csharp/example/192/checked--unchecked
http://www.riptutorial.com/csharp/example/15630/unsafe
http://www.riptutorial.com/csharp/example/18289/ushort
http://www.riptutorial.com/csharp/topic/52/using-directive
http://www.riptutorial.com/csharp/topic/52/using-directive
http://www.riptutorial.com/csharp/topic/38/using-statement
http://www.riptutorial.com/csharp/topic/38/using-statement
http://www.riptutorial.com/csharp/example/5805/virtual--override--new
http://stackoverflow.com/documentation/c%23/26/keywords/2980/void
http://www.riptutorial.com/csharp/example/58/volatile
http://www.riptutorial.com/csharp/example/9258/when
http://www.riptutorial.com/csharp/example/4396/while
http://www.riptutorial.com/csharp/example/5993/async--await
http://www.riptutorial.com/csharp/example/5993/async--await

get•
global•
group•
into•
join•
let•
nameof•
orderby•
partial•
remove•
select•
set•
value•
var•
where•
yield•

Examples

stackalloc

The stackalloc keyword creates a region of memory on the stack and returns a pointer to the start
of that memory. Stack allocated memory is automatically removed when the scope it was created
in is exited.

//Allocate 1024 bytes. This returns a pointer to the first byte.
byte* ptr = stackalloc byte[1024];

//Assign some values...
ptr[0] = 109;
ptr[1] = 13;
ptr[2] = 232;
...

Used in an unsafe context.

As with all pointers in C# there is no bounds checking on reads and assignments. Reading beyond
the bounds of the allocated memory will have unpredictable results - it may access some arbitrary
location within memory or it may cause an access violation exception.

//Allocate 1 byte
byte* ptr = stackalloc byte[1];

//Unpredictable results...
ptr[10] = 1;
ptr[-1] = 2;

Stack allocated memory is automatically removed when the scope it was created in is exited. This
means that you should never return the memory created with stackalloc or store it beyond the
lifetime of the scope.

unsafe IntPtr Leak() {

https://riptutorial.com/ 501

http://www.riptutorial.com/csharp/example/43/operator-nameof
http://www.riptutorial.com/csharp/example/19199/partial
http://stackoverflow.com/documentation/c%23/26/keywords/4503/var
http://www.riptutorial.com/csharp/example/8137/where
http://www.riptutorial.com/csharp/topic/61/yield-keyword

 //Allocate some memory on the stack
 var ptr = stackalloc byte[1024];

 //Return a pointer to that memory (this exits the scope of "Leak")
 return new IntPtr(ptr);
}

unsafe void Bad() {
 //ptr is now an invalid pointer, using it in any way will have
 //unpredictable results. This is exactly the same as accessing beyond
 //the bounds of the pointer.
 var ptr = Leak();
}

stackalloc can only be used when declaring and initialising variables. The following is not valid:

byte* ptr;
...
ptr = stackalloc byte[1024];

Remarks:

stackalloc should only be used for performance optimizations (either for computation or interop).
This is due to the fact that:

The garbage collector is not required as the memory is allocated on the stack rather than the
heap - the memory is released as soon as the variable goes out of scope

•

It is faster to allocate memory on the stack rather than the heap•
Increase the chance of cache hits on the CPU due to the locality of data•

volatile

Adding the volatile keyword to a field indicates to the compiler that the field's value may be
changed by multiple separate threads. The primary purpose of the volatile keyword is to prevent
compiler optimizations that assume only single-threaded access. Using volatile ensures that the
value of the field is the most recent value that is available, and the value is not subject to the
caching that non-volatile values are.

It is good practice to mark every variable that may be used by multiple threads as volatile to
prevent unexpected behavior due to behind-the-scenes optimizations. Consider the following code
block:

public class Example
{
 public int x;

 public void DoStuff()
 {
 x = 5;

 // the compiler will optimize this to y = 15
 var y = x + 10;

https://riptutorial.com/ 502

 /* the value of x will always be the current value, but y will always be "15" */
 Debug.WriteLine("x = " + x + ", y = " + y);
 }
}

In the above code-block, the compiler reads the statements x = 5 and y = x + 10 and determines
that the value of y will always end up as 15. Thus, it will optimize the last statement as y = 15.
However, the variable x is in fact a public field and the value of x may be modified at runtime
through a different thread acting on this field separately. Now consider this modified code-block.
Do note that the field x is now declared as volatile.

public class Example
{
 public volatile int x;

 public void DoStuff()
 {
 x = 5;

 // the compiler no longer optimizes this statement
 var y = x + 10;

 /* the value of x and y will always be the correct values */
 Debug.WriteLine("x = " + x + ", y = " + y);
 }
}

Now, the compiler looks for read usages of the field x and ensures that the current value of the
field is always retrieved. This ensures that even if multiple threads are reading and writing to this
field, the current value of x is always retrieved.

volatile can only be used on fields within classes or structs. The following is not valid:

public void MyMethod()
{
 volatile int x;
}

volatile can only be applied to fields of following types:

reference types or generic type parameters known to be reference types•
primitive types such as sbyte, byte, short, ushort, int, uint, char, float, and bool•
enums types based on byte, sbyte, short, ushort, int or uint•
IntPtr and UIntPtr•

Remarks:

The volatile modifier is usually used for a field that is accessed by multiple threads without
using the lock statement to serialize access.

•

The volatile keyword can be applied to fields of reference types•
The volatile keyword will not make operating on 64-bit primitives on a 32-bit platform •

https://riptutorial.com/ 503

https://msdn.microsoft.com/en-us/library/x13ttww7.aspx
https://msdn.microsoft.com/en-us/library/x13ttww7.aspx
https://msdn.microsoft.com/en-us/library/x13ttww7.aspx
http://stackoverflow.com/questions/72275/when-should-the-volatile-keyword-be-used-in-c

atomic. Interlocked operations such as Interlocked.Read and Interlocked.Exchange must still
be used for safe multi-threaded access on these platforms.

fixed

The fixed statement fixes memory in one location. Objects in memory are usually moving arround,
this makes garbage collection possible. But when we use unsafe pointers to memory addresses,
that memory must not be moved.

We use the fixed statement to ensure that the garbage collector does not relocate the string
data.

•

Fixed Variables

var myStr = "Hello world!";

fixed (char* ptr = myStr)
{
 // myStr is now fixed (won't be [re]moved by the Garbage Collector).
 // We can now do something with ptr.
}

Used in an unsafe context.

Fixed Array Size

unsafe struct Example
{
 public fixed byte SomeField[8];
 public fixed char AnotherField[64];
}

fixed can only be used on fields in a struct (must also be used in an unsafe context).

default

For classes, interfaces, delegate, array, nullable (such as int?) and pointer types, default(TheType)
returns null:

class MyClass {}
Debug.Assert(default(MyClass) == null);
Debug.Assert(default(string) == null);

For structs and enums, default(TheType) returns the same as new TheType():

struct Coordinates
{
 public int X { get; set; }
 public int Y { get; set; }
}

https://riptutorial.com/ 504

https://msdn.microsoft.com/en-us/library/system.threading.interlocked.read(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dk0121zy(v=vs.110).aspx

struct MyStruct
{
 public string Name { get; set; }
 public Coordinates Location { get; set; }
 public Coordinates? SecondLocation { get; set; }
 public TimeSpan Duration { get; set; }
}

var defaultStruct = default(MyStruct);
Debug.Assert(defaultStruct.Equals(new MyStruct()));
Debug.Assert(defaultStruct.Location.Equals(new Coordinates()));
Debug.Assert(defaultStruct.Location.X == 0);
Debug.Assert(defaultStruct.Location.Y == 0);
Debug.Assert(defaultStruct.SecondLocation == null);
Debug.Assert(defaultStruct.Name == null);
Debug.Assert(defaultStruct.Duration == TimeSpan.Zero);

default(T) can be particularly useful when T is a generic parameter for which no constraint is
present to decide whether T is a reference type or a value type, for example:

public T GetResourceOrDefault<T>(string resourceName)
{
 if (ResourceExists(resourceName))
 {
 return (T)GetResource(resourceName);
 }
 else
 {
 return default(T);
 }
}

readonly

The readonly keyword is a field modifier. When a field declaration includes a readonly modifier,
assignments to that field can only occur as part of the declaration or in a constructor in the same
class.

The readonly keyword is different from the const keyword. A const field can only be initialized at the
declaration of the field. A readonly field can be initialized either at the declaration or in a
constructor. Therefore, readonly fields can have different values depending on the constructor
used.

The readonly keyword is often used when injecting dependencies.

class Person
{
 readonly string _name;
 readonly string _surname = "Surname";

 Person(string name)
 {
 _name = name;
 }
 void ChangeName()

https://riptutorial.com/ 505

 {
 _name = "another name"; // Compile error
 _surname = "another surname"; // Compile error
 }
}

Note: Declaring a field readonly does not imply immutability. If the field is a reference
type then the content of the object can be changed. Readonly is typically used to
prevent having the object being overwritten and assigned only during instantiation of
that object.

Note: Inside the constructor a readonly field can be reassigned

public class Car
{
 public double Speed {get; set;}
}

//In code

private readonly Car car = new Car();

private void SomeMethod()
{
 car.Speed = 100;
}

as

The as keyword is an operator similar to a cast. If a cast is not possible, using as produces null
rather than resulting in an InvalidCastException.

expression as type is equivalent to expression is type ? (type)expression : (type)null with the
caveat that as is only valid on reference conversions, nullable conversions, and boxing
conversions. User-defined conversions are not supported; a regular cast must be used instead.

For the expansion above, the compiler generates code such that expression will only be evaluated
once and use single dynamic type check (unlike the two in the sample above).

as can be useful when expecting an argument to facilitate several types. Specifically it grants the
user multiple options - rather than checking every possibility with is before casting, or just casting
and catching exceptions. It is best practice to use 'as' when casting/checking an object which will
cause only one unboxing penalty. Using is to check, then casting will cause two unboxing
penalties.

If an argument is expected to be an instance of a specific type, a regular cast is preferred as its
purpose is more clear to the reader.

Because a call to as may produce null, always check the result to avoid a NullReferenceException.

Example usage

https://riptutorial.com/ 506

object something = "Hello";
Console.WriteLine(something as string); //Hello
Console.Writeline(something as Nullable<int>); //null
Console.WriteLine(something as int?); //null

//This does NOT compile:
//destination type must be a reference type (or a nullable value type)
Console.WriteLine(something as int);

Live Demo on .NET Fiddle

Equivalent example without using as:

Console.WriteLine(something is string ? (string)something : (string)null);

This is useful when overriding the Equals function in custom classes.

class MyCustomClass
{

 public override bool Equals(object obj)
 {
 MyCustomClass customObject = obj as MyCustomClass;

 // if it is null it may be really null
 // or it may be of a different type
 if (Object.ReferenceEquals(null, customObject))
 {
 // If it is null then it is not equal to this instance.
 return false;
 }

 // Other equality controls specific to class
 }

}

is

Checks if an object is compatible with a given type, i.e. if an object is an instance of the
BaseInterface type, or a type that derives from BaseInterface:

interface BaseInterface {}
class BaseClass : BaseInterface {}
class DerivedClass : BaseClass {}

var d = new DerivedClass();
Console.WriteLine(d is DerivedClass); // True
Console.WriteLine(d is BaseClass); // True
Console.WriteLine(d is BaseInterface); // True
Console.WriteLine(d is object); // True
Console.WriteLine(d is string); // False

var b = new BaseClass();
Console.WriteLine(b is DerivedClass); // False
Console.WriteLine(b is BaseClass); // True

https://riptutorial.com/ 507

https://dotnetfiddle.net/b26q6N

Console.WriteLine(b is BaseInterface); // True
Console.WriteLine(b is object); // True
Console.WriteLine(b is string); // False

If the intent of the cast is to use the object, it is best practice to use the as keyword'

interface BaseInterface {}
class BaseClass : BaseInterface {}
class DerivedClass : BaseClass {}

var d = new DerivedClass();
Console.WriteLine(d is DerivedClass); // True - valid use of 'is'
Console.WriteLine(d is BaseClass); // True - valid use of 'is'

if(d is BaseClass){
 var castedD = (BaseClass)d;
 castedD.Method(); // valid, but not best practice
}

var asD = d as BaseClass;

if(asD!=null){
 asD.Method(); //prefered method since you incur only one unboxing penalty
}

But, from C# 7 pattern matching feature extends the is operator to check for a type and declare a
new variable at the same time. Same code part with C# 7 :

7.0

if(d is BaseClass asD){
 asD.Method();
}

typeof

Returns the Type of an object, without the need to instantiate it.

Type type = typeof(string);
Console.WriteLine(type.FullName); //System.String
Console.WriteLine("Hello".GetType() == type); //True
Console.WriteLine("Hello".GetType() == typeof(string)); //True

const

const is used to represent values that will never change throughout the lifetime of the program.
Its value is constant from compile-time, as opposed to the readonly keyword, whose value is
constant from run-time.

For example, since the speed of light will never change, we can store it in a constant.

const double c = 299792458; // Speed of light

https://riptutorial.com/ 508

http://www.riptutorial.com/csharp/example/138/as
http://www.riptutorial.com/csharp/example/13323/pattern-matching
http://www.riptutorial.com/csharp/example/110/readonly

double CalculateEnergy(double mass)
{
 return mass * c * c;
}

This is essentially the same as having return mass * 299792458 * 299792458, as the compiler will
directly substitute c with its constant value.

As a result, c cannot be changed once declared. The following will produce a compile-time error:

const double c = 299792458; // Speed of light

c = 500; //compile-time error

A constant can be prefixed with the same access modifiers as methods:

private const double c = 299792458;
public const double c = 299792458;
internal const double c = 299792458;

const members are static by nature. However using static explicitly is not permitted.

You can also define method-local constants:

double CalculateEnergy(double mass)
{
 const c = 299792458;
 return mass * c * c;
}

These can not be prefixed with a private or public keyword, since they are implicitly local to the
method they are defined in.

Not all types can be used in a const declaration. The value types that are allowed, are the pre-
defined types sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, decimal, bool, and
all enum types. Trying to declare const members with other value types (such as TimeSpan or Guid)
will fail at compile-time.

For the special pre-defined reference type string, constants can be declared with any value. For
all other reference types, constants can be declared but must always have the value null.

Because const values are known at compile-time, they are allowed as case labels in a switch
statement, as standard arguments for optional parameters, as arguments to attribute
specifications, and so on.

If const values are used across different assemblies, care must be taken with versioning. For
example, if assembly A defines a public const int MaxRetries = 3;, and assembly B uses that
constant, then if the value of MaxRetries is later changed to 5 in assembly A (which is then re-

https://riptutorial.com/ 509

compiled), that change will not be effective in assembly B unless assembly B is also re-compiled
(with a reference to the new version of A).

For that reason, if a value might change in future revisions of the program, and if the value needs
to be publicly visible, do not declare that value const unless you know that all dependent
assemblies will be re-compiled whenever something is changed. The alternative is using static
readonly instead of const, which is resolved at runtime.

namespace

The namespace keyword is an organization construct that helps us understand how a codebase is
arranged. Namespaces in C# are virtual spaces rather than being in a physical folder.

namespace StackOverflow
{
 namespace Documentation
 {
 namespace CSharp.Keywords
 {
 public class Program
 {
 public static void Main()
 {
 Console.WriteLine(typeof(Program).Namespace);
 //StackOverflow.Documentation.CSharp.Keywords
 }
 }
 }
 }
}

Namespaces in C# can also be written in chained syntax. The following is equivalent to above:

namespace StackOverflow.Documentation.CSharp.Keywords
{
 public class Program
 {
 public static void Main()
 {
 Console.WriteLine(typeof(Program).Namespace);
 //StackOverflow.Documentation.CSharp.Keywords
 }
 }
}

try, catch, finally, throw

try, catch, finally, and throw allow you to handle exceptions in your code.

var processor = new InputProcessor();

// The code within the try block will be executed. If an exception occurs during execution of
// this code, execution will pass to the catch block corresponding to the exception type.
try

https://riptutorial.com/ 510

{
 processor.Process(input);
}
// If a FormatException is thrown during the try block, then this catch block
// will be executed.
catch (FormatException ex)
{
 // Throw is a keyword that will manually throw an exception, triggering any catch block
that is
 // waiting for that exception type.
 throw new InvalidOperationException("Invalid input", ex);
}
// catch can be used to catch all or any specific exceptions. This catch block,
// with no type specified, catches any exception that hasn't already been caught
// in a prior catch block.
catch
{
 LogUnexpectedException();
 throw; // Re-throws the original exception.
}
// The finally block is executed after all try-catch blocks have been; either after the try
has
// succeeded in running all commands or after all exceptions have been caught.
finally
{
 processor.Dispose();
}

Note: The return keyword can be used in try block, and the finally block will still be executed
(just before returning). For example:

try
{
 connection.Open();
 return connection.Get(query);
}
finally
{
 connection.Close();
}

The statement connection.Close() will execute before the result of connection.Get(query) is
returned.

continue

Immediately pass control to the next iteration of the enclosing loop construct (for, foreach, do,
while):

for (var i = 0; i < 10; i++)
{
 if (i < 5)
 {
 continue;
 }
 Console.WriteLine(i);

https://riptutorial.com/ 511

}

Output:

5
6
7
8
9

Live Demo on .NET Fiddle

var stuff = new [] {"a", "b", null, "c", "d"};

foreach (var s in stuff)
{
 if (s == null)
 {
 continue;
 }
 Console.WriteLine(s);
}

Output:

a
b
c
d

Live Demo on .NET Fiddle

ref, out

The ref and out keywords cause an argument to be passed by reference, not by value. For value
types, this means that the value of the variable can be changed by the callee.

int x = 5;
ChangeX(ref x);
// The value of x could be different now

For reference types, the instance in the variable can not only be modified (as is the case without
ref), but it can also be replaced altogether:

Address a = new Address();
ChangeFieldInAddress(a);
// a will be the same instance as before, even if it is modified
CreateANewInstance(ref a);
// a could be an entirely new instance now

The main difference between the out and ref keyword is that ref requires the variable to be

https://riptutorial.com/ 512

https://dotnetfiddle.net/H2NB0V
https://dotnetfiddle.net/l1JPiI

initialized by the caller, while out passes that responsibility to the callee.

To use an out parameter, both the method definition and the calling method must explicitly use the
out keyword.

int number = 1;
Console.WriteLine("Before AddByRef: " + number); // number = 1
AddOneByRef(ref number);
Console.WriteLine("After AddByRef: " + number); // number = 2
SetByOut(out number);
Console.WriteLine("After SetByOut: " + number); // number = 34

void AddOneByRef(ref int value)
{
 value++;
}

void SetByOut(out int value)
{
 value = 34;
}

Live Demo on .NET Fiddle

The following does not compile, because out parameters must have a value assigned before the
method returns (it would compile using ref instead):

void PrintByOut(out int value)
{
 Console.WriteLine("Hello!");
}

using out keyword as Generic Modifier

out keyword can also be used in generic type parameters when defining generic interfaces and
delegates. In this case, the out keyword specifies that the type parameter is covariant.

Covariance enables you to use a more derived type than that specified by the generic
parameter. This allows for implicit conversion of classes that implement variant
interfaces and implicit conversion of delegate types. Covariance and contravariance
are supported for reference types, but they are not supported for value types. - MSDN

//if we have an interface like this
interface ICovariant<out R> { }

//and two variables like
ICovariant<Object> iobj = new Sample<Object>();
ICovariant<String> istr = new Sample<String>();

// then the following statement is valid
// without the out keyword this would have thrown error
iobj = istr; // implicit conversion occurs here

checked, unchecked

https://riptutorial.com/ 513

https://dotnetfiddle.net/ma2ikc

The checked and unchecked keywords define how operations handle mathematical overflow.
"Overflow" in the context of the checked and unchecked keywords is when an integer arithmetic
operation results in a value which is greater in magnitude than the target data type can represent.

When overflow occurs within a checked block (or when the compiler is set to globally use checked
arithmetic), an exception is thrown to warn of undesired behavior. Meanwhile, in an unchecked
block, overflow is silent: no exceptions are thrown, and the value will simply wrap around to the
opposite boundary. This can lead to subtle, hard to find bugs.

Since most arithmetic operations are done on values that are not large or small enough to
overflow, most of the time, there is no need to explicitly define a block as checked. Care needs to
be taken when doing arithmetic on unbounded input that may cause overflow, for example when
doing arithmetic in recursive functions or while taking user input.

Neither checked nor unchecked affect floating point arithmetic operations.

When a block or expression is declared as unchecked, any arithmetic operations inside it are
allowed to overflow without causing an error. An example where this behavior is desired would be
the calculation of a checksum, where the value is allowed to "wrap around" during calculation:

byte Checksum(byte[] data) {
 byte result = 0;
 for (int i = 0; i < data.Length; i++) {
 result = unchecked(result + data[i]); // unchecked expression
 }
 return result;
}

One of the most common uses for unchecked is implementing a custom override for
object.GetHashCode(), a type of checksum. You can see the keyword's use in the answers to this
question: What is the best algorithm for an overridden System.Object.GetHashCode?.

When a block or expression is declared as checked, any arithmetic operation that causes an
overflow results in an OverflowException being thrown.

int SafeSum(int x, int y) {
 checked { // checked block
 return x + y;
 }
}

Both checked and unchecked may be in block and expression form.

Checked and unchecked blocks do not affect called methods, only operators called directly in the
current method. For example, Enum.ToObject(), Convert.ToInt32(), and user-defined operators are
not affected by custom checked/unchecked contexts.

Note: The default overflow default behavior (checked vs. unchecked) may be changed in the
Project Properties or through the /checked[+|-] command line switch. It is common to default to
checked operations for debug builds and unchecked for release builds. The checked and unchecked

https://riptutorial.com/ 514

http://stackoverflow.com/questions/263400/what-is-the-best-algorithm-for-an-overridden-system-object-gethashcode

keywords would then be used only where a default approach does not apply and you need an
explicit behavior to ensure correctness.

goto

goto can be used to jump to a specific line inside the code, specified by a label.

goto as a:

Label:

void InfiniteHello()
{
 sayHello:
 Console.WriteLine("Hello!");
 goto sayHello;
}

Live Demo on .NET Fiddle

Case statement:

enum Permissions { Read, Write };

switch (GetRequestedPermission())
{
 case Permissions.Read:
 GrantReadAccess();
 break;

 case Permissions.Write:
 GrantWriteAccess();
 goto case Permissions.Read; //People with write access also get read
}

Live Demo on .NET Fiddle

This is particularly useful in executing multiple behaviors in a switch statement, as C# does not
support fall-through case blocks.

Exception Retry

var exCount = 0;
retry:
try
{
 //Do work
}
catch (IOException)

https://riptutorial.com/ 515

https://dotnetfiddle.net/Tpm3LV
https://dotnetfiddle.net/2IV2wC
http://stackoverflow.com/a/174223/365102

{
 exCount++;
 if (exCount < 3)
 {
 Thread.Sleep(100);
 goto retry;
 }
 throw;
}

Live Demo on .NET Fiddle

Similar to many languages, use of goto keyword is discouraged except the cases below.

Valid usages of goto which apply to C#:

Fall-through case in switch statement.•

Multi-level break. LINQ can often be used instead, but it usually has worse performance.•

Resource deallocation when working with unwrapped low-level objects. In C#, low-level
objects should usually be wrapped in separate classes.

•

Finite state machines, for example, parsers; used internally by compiler generated
async/await state machines.

•

enum

The enum keyword tells the compiler that this class inherits from the abstract class Enum, without the
programmer having to explicitly inherit it. Enum is a descendant of ValueType, which is intended for
use with distinct set of named constants.

public enum DaysOfWeek
{
 Monday,
 Tuesday,
}

You can optionally specify a specific value for each one (or some of them):

public enum NotableYear
{
 EndOfWwI = 1918;
 EnfOfWwII = 1945,
}

In this example I omitted a value for 0, this is usually a bad practice. An enum will always have a
default value produced by explicit conversion (YourEnumType) 0, where YourEnumType is your
declared enume type. Without a value of 0 defined, an enum will not have a defined value at initiation.

The default underlying type of enum is int, you can change the underlying type to any integral type
including byte, sbyte, short, ushort, int, uint, long and ulong. Below is an enum with underlying type

https://riptutorial.com/ 516

https://dotnetfiddle.net/kc6oiT
https://en.wikipedia.org/wiki/Goto#Common_usage_patterns_of_Goto
https://en.wikipedia.org/wiki/Goto#Common_usage_patterns_of_Goto

byte:

enum Days : byte
{
 Sunday = 0,
 Monday,
 Tuesday,
 Wednesday,
 Thursday,
 Friday,
 Saturday
};

Also note that you can convert to/from underlying type simply with a cast:

int value = (int)NotableYear.EndOfWwI;

For these reasons you'd better always check if an enum is valid when you're exposing library
functions:

void PrintNotes(NotableYear year)
{
 if (!Enum.IsDefined(typeof(NotableYear), year))
 throw InvalidEnumArgumentException("year", (int)year, typeof(NotableYear));

 // ...
}

base

The base keyword is used to access members from a base class. It is commonly used to call base
implementations of virtual methods, or to specify which base constructor should be called.

Choosing a constructor

public class Child : SomeBaseClass {
 public Child() : base("some string for the base class")
 {
 }
}

public class SomeBaseClass {
 public SomeBaseClass()
 {
 // new Child() will not call this constructor, as it does not have a parameter
 }
 public SomeBaseClass(string message)
 {
 // new Child() will use this base constructor because of the specified parameter in
Child's constructor
 Console.WriteLine(message);
 }
}

https://riptutorial.com/ 517

Calling base implementation of virtual method

public override void SomeVirtualMethod() {
 // Do something, then call base implementation
 base.SomeVirtualMethod();
}

It is possible to use the base keyword to call a base implementation from any method. This ties the
method call directly to the base implementation, which means that even if new child classes
override a virtual method, the base implementation will still be called so this needs to be used with
caution.

public class Parent
{
 public virtual int VirtualMethod()
 {
 return 1;
 }
}

public class Child : Parent
{
 public override int VirtualMethod() {
 return 11;
 }

 public int NormalMethod()
 {
 return base.VirtualMethod();
 }

 public void CallMethods()
 {
 Assert.AreEqual(11, VirtualMethod());

 Assert.AreEqual(1, NormalMethod());
 Assert.AreEqual(1, base.VirtualMethod());
 }
}

public class GrandChild : Child
{
 public override int VirtualMethod()
 {
 return 21;
 }

 public void CallAgain()
 {
 Assert.AreEqual(21, VirtualMethod());
 Assert.AreEqual(11, base.VirtualMethod());

 // Notice that the call to NormalMethod below still returns the value
 // from the extreme base class even though the method has been overridden
 // in the child class.
 Assert.AreEqual(1, NormalMethod());
 }
}

https://riptutorial.com/ 518

foreach

foreach is used to iterate over the elements of an array or the items within a collection which
implements IEnumerable✝.

var lines = new string[] {
 "Hello world!",
 "How are you doing today?",
 "Goodbye"
};

foreach (string line in lines)
{
 Console.WriteLine(line);
}

This will output

"Hello world!"
"How are you doing today?"
"Goodbye"

Live Demo on .NET Fiddle

You can exit the foreach loop at any point by using the break keyword or move on to the next
iteration using the continue keyword.

var numbers = new int[] {1, 2, 3, 4, 5, 6};

foreach (var number in numbers)
{
 // Skip if 2
 if (number == 2)
 continue;

 // Stop iteration if 5
 if (number == 5)
 break;

 Console.Write(number + ", ");
}

// Prints: 1, 3, 4,

Live Demo on .NET Fiddle

Notice that the order of iteration is guaranteed only for certain collections such as arrays and List,
but not guaranteed for many other collections.

✝ While IEnumerable is typically used to indicate enumerable collections, foreach only requires that
the collection expose publicly the object GetEnumerator() method, which should return an object
that exposes the bool MoveNext() method and the object Current { get; } property.

https://riptutorial.com/ 519

https://msdn.microsoft.com/en-us/library/system.collections.ienumerable(v=vs.110).aspx
https://dotnetfiddle.net/0jy78m
http://www.riptutorial.com/csharp/example/2858/break
http://www.riptutorial.com/csharp/example/154/continue
https://dotnetfiddle.net/dfSAbF

params

params allows a method parameter to receive a variable number of arguments, i.e. zero, one or
multiple arguments are allowed for that parameter.

static int AddAll(params int[] numbers)
{
 int total = 0;
 foreach (int number in numbers)
 {
 total += number;
 }

 return total;
}

This method can now be called with a typical list of int arguments, or an array of ints.

AddAll(5, 10, 15, 20); // 50
AddAll(new int[] { 5, 10, 15, 20 }); // 50

params must appear at most once and if used, it must be last in the argument list, even if the
succeeding type is different to that of the array.

Be careful when overloading functions when using the params keyword. C# prefers matching more
specific overloads before resorting to trying to use overloads with params. For example if you have
two methods:

static double Add(params double[] numbers)
{
 Console.WriteLine("Add with array of doubles");
 double total = 0.0;
 foreach (double number in numbers)
 {
 total += number;
 }

 return total;
}

static int Add(int a, int b)
{
 Console.WriteLine("Add with 2 ints");
 return a + b;
}

Then the specific 2 argument overload will take precedence before trying the params overload.

Add(2, 3); //prints "Add with 2 ints"
Add(2, 3.0); //prints "Add with array of doubles" (doubles are not ints)
Add(2, 3, 4); //prints "Add with array of doubles" (no 3 argument overload)

https://riptutorial.com/ 520

break

In a loop (for, foreach, do, while) the break statement aborts the execution of the innermost loop
and returns to the code after it. Also it can be used with yield in which it specifies that an iterator
has come to an end.

for (var i = 0; i < 10; i++)
{
 if (i == 5)
 {
 break;
 }
 Console.WriteLine("This will appear only 5 times, as the break will stop the loop.");
}

Live Demo on .NET Fiddle

foreach (var stuff in stuffCollection)
{
 if (stuff.SomeStringProp == null)
 break;
 // If stuff.SomeStringProp for any "stuff" is null, the loop is aborted.
 Console.WriteLine(stuff.SomeStringProp);
}

The break-statement is also used in switch-case constructs to break out of a case or default
segment.

switch(a)
{
 case 5:
 Console.WriteLine("a was 5!");
 break;

 default:
 Console.WriteLine("a was something else!");
 break;
}

In switch statements, the 'break' keyword is required at the end of each case statement. This is
contrary to some languages that allow for 'falling through' to the next case statement in the series.
Workarounds for this would include 'goto' statements or stacking the 'case' statements
sequentially.

Following code will give numbers 0, 1, 2, ..., 9 and the last line will not be executed. yield break
signifies the end of the function (not just a loop).

public static IEnumerable<int> GetNumbers()
{
 int i = 0;
 while (true) {
 if (i < 10) {
 yield return i++;

https://riptutorial.com/ 521

https://dotnetfiddle.net/QtpNyk

 } else {
 yield break;
 }
 }
 Console.WriteLine("This line will not be executed");
}

Live Demo on .NET Fiddle

Note that unlike some other languages, there is no way to label a particular break in C#. This
means that in the case of nested loops, only the innermost loop will be stopped:

foreach (var outerItem in outerList)
{
 foreach (var innerItem in innerList)
 {
 if (innerItem.ShoudBreakForWhateverReason)
 // This will only break out of the inner loop, the outer will continue:
 break;
 }
}

If you want to break out of the outer loop here, you can use one of several different strategies,
such as:

A goto statement to jump out of the whole looping structure.•
A specific flag variable (shouldBreak in the following example) that can be checked at the end
of each iteration of the outer loop.

•

Refactoring the code to use a return statement in the innermost loop body, or avoid the
whole nested loop structure altogether.

•

bool shouldBreak = false;
while(comeCondition)
{
 while(otherCondition)
 {
 if (conditionToBreak)
 {
 // Either tranfer control flow to the label below...
 goto endAllLooping;

 // OR use a flag, which can be checked in the outer loop:
 shouldBreak = true;
 }
 }

 if(shouldBreakNow)
 {
 break; // Break out of outer loop if flag was set to true
 }
}

endAllLooping: // label from where control flow will continue

abstract

https://riptutorial.com/ 522

https://dotnetfiddle.net/IjSyVJ

A class marked with the keyword abstract cannot be instantiated.

A class must be marked as abstract if it contains abstract members or if it inherits abstract
members that it doesn't implement. A class may be marked as abstract even if no abstract
members are involved.

Abstract classes are usually used as base classes when some part of the implementation needs to
be specified by another component.

abstract class Animal
{
 string Name { get; set; }
 public abstract void MakeSound();
}

public class Cat : Animal
{
 public override void MakeSound()
 {
 Console.WriteLine("Meov meov");
 }
}

public class Dog : Animal
{
 public override void MakeSound()
 {
 Console.WriteLine("Bark bark");
 }
}

Animal cat = new Cat(); // Allowed due to Cat deriving from Animal
cat.MakeSound(); // will print out "Meov meov"

Animal dog = new Dog(); // Allowed due to Dog deriving from Animal
dog.MakeSound(); // will print out "Bark bark"

Animal animal = new Animal(); // Not allowed due to being an abstract class

A method, property, or event marked with the keyword abstract indicates that the implementation
for that member is expected to be provided in a subclass. As mentioned above, abstract members
can only appear in abstract classes.

abstract class Animal
{
 public abstract string Name { get; set; }
}

public class Cat : Animal
{
 public override string Name { get; set; }
}

public class Dog : Animal
{
 public override string Name { get; set; }
}

https://riptutorial.com/ 523

float, double, decimal

float

float is an alias to the .NET datatype System.Single. It allows IEEE 754 single-precision floating
point numbers to be stored. This data type is present in mscorlib.dll which is implicitly referenced
by every C# project when you create them.

Approximate range: -3.4 × 1038 to 3.4 × 1038

Decimal precision: 6-9 significant digits

Notation:

float f = 0.1259;
var f1 = 0.7895f; // f is literal suffix to represent float values

It should be noted that the float type often results in significant rounding errors. In
applications where precision is important, other data types should be considered.

double

double is an alias to the .NET datatype System.Double. It represents a double-precision 64-bit
floating-point number. This datatype is present in mscorlib.dll which is implicitly referenced in any
C# project.

Range: ±5.0 × 10−324 to ±1.7 × 10308

Decimal precision: 15-16 significant digits

Notation:

double distance = 200.34; // a double value
double salary = 245; // an integer implicitly type-casted to double value
var marks = 123.764D; // D is literal suffix to represent double values

decimal

decimal is an alias to the .NET datatype System.Decimal. It represents a keyword indicates a 128-bit
data type. Compared to floating-point types, the decimal type has more precision and a smaller
range, which makes it appropriate for financial and monetary calculations. This datatype is present
in mscorlib.dll which is implicitly referenced in any C# project.

https://riptutorial.com/ 524

Range: -7.9 × 1028 to 7.9 × 1028

Decimal precision: 28-29 significant digits

Notation:

decimal payable = 152.25m; // a decimal value
var marks = 754.24m; // m is literal suffix to represent decimal values

uint

An unsigned integer, or uint, is a numeric datatype that only can hold positive integers. Like it's
name suggests, it represents an unsigned 32-bit integer. The uint keyword itself is an alias for the
Common Type System type System.UInt32. This datatype is present in mscorlib.dll, which is
implicitly referenced by every C# project when you create them. It occupies four bytes of memory
space.

Unsigned integers can hold any value from 0 to 4,294,967,295.

Examples on how and now not to declare unsigned integers

uint i = 425697; // Valid expression, explicitly stated to compiler
var i1 = 789247U; // Valid expression, suffix allows compiler to determine datatype
uint x = 3.0; // Error, there is no implicit conversion

Please note: According to Microsoft, it is recommended to use the int datatype wherever possible
as the uint datatype is not CLS-compliant.

this

The this keyword refers to the current instance of class(object). That way two variables with the
same name, one at the class-level (a field) and one being a parameter (or local variable) of a
method, can be distinguished.

public MyClass {
 int a;

 void set_a(int a)
 {
 //this.a refers to the variable defined outside of the method,
 //while a refers to the passed parameter.
 this.a = a;
 }
}

Other usages of the keyword are chaining non-static constructor overloads:

public MyClass(int arg) : this(arg, null)
{
}

https://riptutorial.com/ 525

https://msdn.microsoft.com/en-us/library/x0sksh43.aspx
http://www.riptutorial.com/csharp/topic/26/keywords
http://www.riptutorial.com/csharp/example/56/calling-a-constructor-from-another-constructor

and writing indexers:

public string this[int idx1, string idx2]
{
 get { /* ... */ }
 set { /* ... */ }
}

and declaring extension methods:

public static int Count<TItem>(this IEnumerable<TItem> source)
{
 // ...
}

If there is no conflict with a local variable or parameter, it is a matter of style whether to use this or
not, so this.MemberOfType and MemberOfType would be equivalent in that case. Also see base
keyword.

Note that if an extension method is to be called on the current instance, this is required. For
example if your are inside a non-static method of a class which implements IEnumerable<> and you
want to call the extension Count from before, you must use:

this.Count() // works like StaticClassForExtensionMethod.Count(this)

and this cannot be omitted there.

for

Syntax: for (initializer; condition; iterator)

The for loop is commonly used when the number of iterations is known.•
The statements in the initializer section run only once, before you enter the loop.•
The condition section contains a boolean expression that's evaluated at the end of every
loop iteration to determine whether the loop should exit or should run again.

•

The iterator section defines what happens after each iteration of the body of the loop.•

This example shows how for can be used to iterate over the characters of a string:

string str = "Hello";
for (int i = 0; i < str.Length; i++)
{
 Console.WriteLine(str[i]);
}

Output:

H
e
l

https://riptutorial.com/ 526

http://www.riptutorial.com/csharp/topic/1660/indexer
http://www.riptutorial.com/csharp/topic/20/extension-methods
http://www.riptutorial.com/csharp/example/1840/base

l
o

Live Demo on .NET Fiddle

All of the expressions that define a for statement are optional; for example, the following
statement is used to create an infinite loop:

for(; ;)
{
 // Your code here
}

The initializer section can contain multiple variables, so long as they are of the same type. The
condition section can consist of any expression which can be evaluated to a bool. And the iterator
section can perform multiple actions separated by comma:

string hello = "hello";
for (int i = 0, j = 1, k = 9; i < 3 && k > 0; i++, hello += i) {
 Console.WriteLine(hello);
}

Output:

hello
hello1
hello12

Live Demo on .NET Fiddle

while

The while operator iterates over a block of code until the conditional query equals false or the code
is interrupted with a goto, return, break or throw statement.

Syntax for while keyword:

while(condition) { code block; }

Example:

int i = 0;
while (i++ < 5)
{
 Console.WriteLine("While is on loop number {0}.", i);
}

Output:

"While is on loop number 1."
"While is on loop number 2."

https://riptutorial.com/ 527

https://dotnetfiddle.net/Ybg356
https://dotnetfiddle.net/LQcqCv
http://www.riptutorial.com/csharp/example/193/goto
http://www.riptutorial.com/csharp/example/4600/return
http://www.riptutorial.com/csharp/example/2858/break

"While is on loop number 3."
"While is on loop number 4."
"While is on loop number 5."

Live Demo on .NET Fiddle

A while loop is Entry Controlled, as the condition is checked before the execution of the
enclosed code block. This means that the while loop wouldn't execute its statements if the
condition is false.

bool a = false;

while (a == true)
{
 Console.WriteLine("This will never be printed.");
}

Giving a while condition without provisioning it to become false at some point will result in an
infinite or endless loop. As far as possible, this should be avoided, however, there may be some
exceptional circumstances when you need this.

You can create such a loop as follows:

while (true)
{
//...
}

Note that the C# compiler will transform loops such as

while (true)
{
// ...
}

or

for(;;)
{
// ...
}

into

{
:label
// ...
goto label;
}

Note that a while loop may have any condition, no matter how complex, as long as it evaluates to
(or returns) a boolean value (bool). It may also contain a function that returns a boolean value (as

https://riptutorial.com/ 528

https://dotnetfiddle.net/KRQjV0

such a function evaluates to the same type as an expression such as `a==x'). For example,

while (AgriculturalService.MoreCornToPick(myFarm.GetAddress()))
{
 myFarm.PickCorn();
}

return

MSDN: The return statement terminates execution of the method in which it appears
and returns control to the calling method. It can also return an optional value. If the
method is a void type, the return statement can be omitted.

public int Sum(int valueA, int valueB)
{
 return valueA + valueB;
}

public void Terminate(bool terminateEarly)
{
 if (terminateEarly) return; // method returns to caller if true was passed in
 else Console.WriteLine("Not early"); // prints only if terminateEarly was false
}

in

The in keyword has three uses:

a) As part of the syntax in a foreach statement or as part of the syntax in a LINQ query

foreach (var member in sequence)
{
 // ...
}

b) In the context of generic interfaces and generic delegate types signifies contravariance for the
type parameter in question:

public interface IComparer<in T>
{
 // ...
}

c) In the context of LINQ query refers to the collection that is being queried

var query = from x in source select new { x.Name, x.ID, };

using

There are two types of using keyword usage, using statement and using directive:

https://riptutorial.com/ 529

using statement:

The using keyword ensures that objects that implement the IDisposable interface are properly
disposed after usage. There is a separate topic for the using statement

1.

using directive

The using directive has three usages, see the msdn page for the using directive. There is a
separate topic for the using directive.

2.

sealed

When applied to a class, the sealed modifier prevents other classes from inheriting from it.

class A { }
sealed class B : A { }
class C : B { } //error : Cannot derive from the sealed class

When applied to a virtual method (or virtual property), the sealed modifier prevents this method
(property) from being overriden in derived classes.

public class A
{
 public sealed override string ToString() // Virtual method inherited from class Object
 {
 return "Do not override me!";
 }
}

public class B: A
{
 public override string ToString() // Compile time error
 {
 return "An attempt to override";
 }
}

sizeof

Used to obtain the size in bytes for an unmanaged type

int byteSize = sizeof(byte) // 1
int sbyteSize = sizeof(sbyte) // 1
int shortSize = sizeof(short) // 2
int ushortSize = sizeof(ushort) // 2
int intSize = sizeof(int) // 4
int uintSize = sizeof(uint) // 4
int longSize = sizeof(long) // 8
int ulongSize = sizeof(ulong) // 8
int charSize = sizeof(char) // 2(Unicode)
int floatSize = sizeof(float) // 4
int doubleSize = sizeof(double) // 8
int decimalSize = sizeof(decimal) // 16
int boolSize = sizeof(bool) // 1

https://riptutorial.com/ 530

http://www.riptutorial.com/csharp/topic/38/using-statement
https://msdn.microsoft.com/en-us/library/sf0df423.aspx
http://www.riptutorial.com/csharp/topic/52/using-directive

static

The static modifier is used to declare a static member, which does not need to be instantiated in
order to be accessed, but instead is accessed simply through its name, i.e. DateTime.Now.

static can be used with classes, fields, methods, properties, operators, events, and constructors.

While an instance of a class contains a separate copy of all instance fields of the class, there is
only one copy of each static field.

class A
{
 static public int count = 0;

 public A()
 {
 count++;
 }
}

class Program
{
 static void Main(string[] args)
 {
 A a = new A();
 A b = new A();
 A c = new A();

 Console.WriteLine(A.count); // 3
 }
}

count equals to the total number of instances of A class.

The static modifier can also be used to declare a static constructor for a class, to initialize static
data or run code that only needs to be called once. Static constructors are called before the class
is referenced for the first time.

class A
{
 static public DateTime InitializationTime;

 // Static constructor
 static A()
 {
 InitializationTime = DateTime.Now;
 // Guaranteed to only run once
 Console.WriteLine(InitializationTime.ToString());
 }
}

A static class is marked with the static keyword, and can be used as a beneficial container for a
set of methods that work on parameters, but don't necessarily require being tied to an instance.
Because of the static nature of the class, it cannot be instantiated, but it can contain a static
constructor. Some features of a static class include:

https://riptutorial.com/ 531

Can't be inherited•
Can't inherit from anything other than Object•
Can contain a static constructor but not an instance constructor•
Can only contain static members•
Is sealed•

The compiler is also friendly and will let the developer know if any instance members exist within
the class. An example would be a static class that converts between US and Canadian metrics:

static class ConversionHelper {
 private static double oneGallonPerLitreRate = 0.264172;

 public static double litreToGallonConversion(int litres) {
 return litres * oneGallonPerLitreRate;
 }
}

When classes are declared static:

public static class Functions
{
 public static int Double(int value)
 {
 return value + value;
 }
}

all function, properties or members within the class also need to be declared static. No instance of
the class can be created. In essence a static class allows you to create bundles of functions that
are grouped together logically.

Since C#6 static can also be used alongside using to import static members and methods. They
can be used then without class name.

Old way, without using static:

using System;

public class ConsoleApplication
{
 public static void Main()
 {
 Console.WriteLine("Hello World!"); //Writeline is method belonging to static class
Console
 }

}

Example with using static

using static System.Console;

public class ConsoleApplication

https://riptutorial.com/ 532

{
 public static void Main()
 {
 WriteLine("Hello World!"); //Writeline is method belonging to static class Console
 }

}

Drawbacks

While static classes can be incredibly useful, they do come with their own caveats:

Once the static class has been called, the class is loaded into memory and cannot be run
through the garbage collector until the AppDomain housing the static class is unloaded.

•

A static class cannot implement an interface.•

int

int is an alias for System.Int32, which is a data type for signed 32-bit integers. This data type can
be found in mscorlib.dll which is implicitly referenced by every C# project when you create them.

Range: -2,147,483,648 to 2,147,483,647

int int1 = -10007;
var int2 = 2132012521;

long

The long keyword is used to represent signed 64-bit integers. It is an alias for the System.Int64
datatype present in mscorlib.dll, which is implicitly referenced by every C# project when you
create them.

Any long variable can be declared both explicitly and implicitly:

long long1 = 9223372036854775806; // explicit declaration, long keyword used
var long2 = -9223372036854775806L; // implicit declaration, 'L' suffix used

A long variable can hold any value from –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807, and can be useful in situations which a variable must hold a value
that exceeds the bounds of what other variables (such as the int variable) can hold.

ulong

Keyword used for unsigned 64-bit integers. It represents System.UInt64 data type found in
mscorlib.dll which is implicitly referenced by every C# project when you create them.

Range: 0 to 18,446,744,073,709,551,615

https://riptutorial.com/ 533

http://www.riptutorial.com/csharp/topic/26/keywords

ulong veryLargeInt = 18446744073609451315;
var anotherVeryLargeInt = 15446744063609451315UL;

dynamic

The dynamic keyword is used with dynamically typed objects. Objects declared as dynamic forego
compile-time static checks, and are instead evaluated at runtime.

using System;
using System.Dynamic;

dynamic info = new ExpandoObject();
info.Id = 123;
info.Another = 456;

Console.WriteLine(info.Another);
// 456

Console.WriteLine(info.DoesntExist);
// Throws RuntimeBinderException

The following example uses dynamic with Newtonsoft's library Json.NET, in order to easily read
data from a deserialized JSON file.

try
{
 string json = @"{ x : 10, y : ""ho""}";
 dynamic deserializedJson = JsonConvert.DeserializeObject(json);
 int x = deserializedJson.x;
 string y = deserializedJson.y;
 // int z = deserializedJson.z; // throws RuntimeBinderException
}
catch (RuntimeBinderException e)
{
 // This exception is thrown when a property
 // that wasn't assigned to a dynamic variable is used
}

There are some limitations associated with the dynamic keyword. One of them is the use of
extension methods. The following example adds an extension method for string: SayHello.

static class StringExtensions
{
 public static string SayHello(this string s) => $"Hello {s}!";
}

The first approach will be to call it as usual (as for a string):

var person = "Person";
Console.WriteLine(person.SayHello());

dynamic manager = "Manager";
Console.WriteLine(manager.SayHello()); // RuntimeBinderException

https://riptutorial.com/ 534

http://www.riptutorial.com/csharp/topic/762/dynamic-type

No compilation error, but at runtime you get a RuntimeBinderException. The workaround for this will
be to call the extension method via the static class:

var helloManager = StringExtensions.SayHello(manager);
Console.WriteLine(helloManager);

virtual, override, new

virtual and override

The virtual keyword allows a method, property, indexer or event to be overridden by derived
classes and present polymorphic behavior. (Members are non-virtual by default in C#)

public class BaseClass
{
 public virtual void Foo()
 {
 Console.WriteLine("Foo from BaseClass");
 }
}

In order to override a member, the override keyword is used in the derived classes. (Note the
signature of the members must be identical)

public class DerivedClass: BaseClass
{
 public override void Foo()
 {
 Console.WriteLine("Foo from DerivedClass");
 }
}

The polymorphic behavior of virtual members means that when invoked, the actual member being
executed is determined at runtime instead of at compile time. The overriding member in the most
derived class the particular object is an instance of will be the one executed.

In short, object can be declared of type BaseClass at compile time but if at runtime it is an instance
of DerivedClass then the overridden member will be executed:

BaseClass obj1 = new BaseClass();
obj1.Foo(); //Outputs "Foo from BaseClass"

obj1 = new DerivedClass();
obj1.Foo(); //Outputs "Foo from DerivedClass"

Overriding a method is optional:

public class SecondDerivedClass: DerivedClass {}

var obj1 = new SecondDerivedClass();

https://riptutorial.com/ 535

obj1.Foo(); //Outputs "Foo from DerivedClass"

new

Since only members defined as virtual are overridable and polymorphic, a derived class
redefining a non virtual member might lead to unexpected results.

public class BaseClass
{
 public void Foo()
 {
 Console.WriteLine("Foo from BaseClass");
 }
}

public class DerivedClass: BaseClass
{
 public void Foo()
 {
 Console.WriteLine("Foo from DerivedClass");
 }
}

BaseClass obj1 = new BaseClass();
obj1.Foo(); //Outputs "Foo from BaseClass"

obj1 = new DerivedClass();
obj1.Foo(); //Outputs "Foo from BaseClass" too!

When this happens, the member executed is always determined at compile time based on the
type of the object.

If the object is declared of type BaseClass (even if at runtime is of a derived class) then the
method of BaseClass is executed

•

If the object is declared of type DerivedClass then the method of DerivedClass is executed.•

This is usually an accident (When a member is added to the base type after an identical one was
added to the derived type) and a compiler warning CS0108 is generated in those scenarios.

If it was intentional, then the new keyword is used to suppress the compiler warning (And inform
other developers of your intentions!). the behavior remains the same, the new keyword just
suppresses the compiler warning.

public class BaseClass
{
 public void Foo()
 {
 Console.WriteLine("Foo from BaseClass");
 }
}

public class DerivedClass: BaseClass
{

https://riptutorial.com/ 536

 public new void Foo()
 {
 Console.WriteLine("Foo from DerivedClass");
 }
}

BaseClass obj1 = new BaseClass();
obj1.Foo(); //Outputs "Foo from BaseClass"

obj1 = new DerivedClass();
obj1.Foo(); //Outputs "Foo from BaseClass" too!

The usage of override is not optional

Unlike in C++, the usage of the override keyword is not optional:

public class A
{
 public virtual void Foo()
 {
 }
}

public class B : A
{
 public void Foo() // Generates CS0108
 {
 }
}

The above example also causes warning CS0108, because B.Foo() is not automatically overriding
A.Foo(). Add override when the intention is to override the base class and cause polymorphic
behavior, add new when you want non-polymorphic behavior and resolve the call using the static
type. The latter should be used with caution, as it may cause severe confusion.

The following code even results in an error:

public class A
{
 public void Foo()
 {
 }
}

public class B : A
{
 public override void Foo() // Error: Nothing to override
 {
 }
}

Derived classes can introduce polymorphism

https://riptutorial.com/ 537

The following code is perfectly valid (although rare):

 public class A
 {
 public void Foo()
 {
 Console.WriteLine("A");
 }
 }

 public class B : A
 {
 public new virtual void Foo()
 {
 Console.WriteLine("B");
 }
 }

Now all objects with a static reference of B (and its derivatives) use polymorphism to resolve Foo(),
while references of A use A.Foo().

A a = new A();
a.Foo(); // Prints "A";
a = new B();
a.Foo(); // Prints "A";
B b = new B();
b.Foo(); // Prints "B";

Virtual methods cannot be private

The C# compiler is strict in preventing senseless constructs. Methods marked as virtual cannot
be private. Because a private method cannot be seen from a derived type, it couldn't be
overwritten either. This fails to compile:

public class A
{
 private virtual void Foo() // Error: virtual methods cannot be private
 {
 }
}

async, await

The await keyword was added as part of C# 5.0 release which is supported from Visual Studio
2012 onwards. It leverages Task Parallel Library (TPL) which made the multi-threading relatively
easier. The async and await keywords are used in pair in the same function as shown below. The
await keyword is used to pause the current asynchronous method's execution until the awaited
asynchronous task is completed and/or its results returned. In order to use the await keyword, the
method that uses it must be marked with the async keyword.

Using async with void is strongly discouraged. For more info you can look here.

https://riptutorial.com/ 538

https://msdn.microsoft.com/en-us/magazine/jj991977.aspx

Example:

public async Task DoSomethingAsync()
{
 Console.WriteLine("Starting a useless process...");
 Stopwatch stopwatch = Stopwatch.StartNew();
 int delay = await UselessProcessAsync(1000);
 stopwatch.Stop();
 Console.WriteLine("A useless process took {0} milliseconds to execute.",
stopwatch.ElapsedMilliseconds);
}

public async Task<int> UselessProcessAsync(int x)
{
 await Task.Delay(x);
 return x;
}

Output:

"Starting a useless process..."

**... 1 second delay... **

"A useless process took 1000 milliseconds to execute."

The keyword pairs async and await can be omitted if a Task or Task<T> returning method only
returns a single asynchronous operation.

Rather than this:

public async Task PrintAndDelayAsync(string message, int delay)
{
 Debug.WriteLine(message);
 await Task.Delay(x);
}

It is preferred to do this:

public Task PrintAndDelayAsync(string message, int delay)
{
 Debug.WriteLine(message);
 return Task.Delay(x);
}

5.0

In C# 5.0 await cannot be used in catch and finally.

6.0

With C# 6.0 await can be used in catch and finally.

char

https://riptutorial.com/ 539

http://www.riptutorial.com/csharp/example/50/await-in-catch-and-finally

A char is single letter stored inside a variable. It is built-in value type which takes two bytes of
memory space. It represents System.Char data type found in mscorlib.dll which is implicitly
referenced by every C# project when you create them.

There are multiple ways to do this.

char c = 'c';1.
char c = '\u0063'; //Unicode2.
char c = '\x0063'; //Hex3.
char c = (char)99;//Integral4.

A char can be implicitly converted to ushort, int, uint, long, ulong, float, double, or decimal and
it will return the integer value of that char.

ushort u = c;

returns 99 etc.

However, there are no implicit conversions from other types to char. Instead you must cast them.

ushort u = 99;
 char c = (char)u;

lock

lock provides thread-safety for a block of code, so that it can be accessed by only one thread
within the same process. Example:

private static object _lockObj = new object();
static void Main(string[] args)
{
 Task.Run(() => TaskWork());
 Task.Run(() => TaskWork());
 Task.Run(() => TaskWork());

 Console.ReadKey();
}

private static void TaskWork()
{
 lock(_lockObj)
 {
 Console.WriteLine("Entered");

 Task.Delay(3000);
 Console.WriteLine("Done Delaying");

 // Access shared resources safely

 Console.WriteLine("Leaving");
 }
}

Output:

https://riptutorial.com/ 540

Entered
Done Delaying
Leaving
Entered
Done Delaying
Leaving
Entered
Done Delaying
Leaving

Use cases:

Whenever you have a block of code that might produce side-effects if executed by multiple
threads at the same time. The lock keyword along with a shared synchronization object (
_objLock in the example) can be used to prevent that.

Note that _objLock can't be null and multiple threads executing the code must use the same object
instance (either by making it a static field, or by using the same class instance for both threads)

From the compiler side, the lock keyword is a syntactic sugar that is replaced by
Monitor.Enter(_lockObj); and Monitor.Exit(_lockObj);. So if you replace the lock by surrounding
the block of code with these two methods, you would get the same results. You can see actual
code in Syntactic sugar in C# - lock example

null

A variable of a reference type can hold either a valid reference to an instance or a null reference.
The null reference is the default value of reference type variables, as well as nullable value types.

null is the keyword that represents a null reference.

As an expression, it can be used to assign the null reference to variables of the aforementioned
types:

object a = null;
string b = null;
int? c = null;
List<int> d = null;

Non-nullable value types cannot be assigned a null reference. All the following assignments are
invalid:

int a = null;
float b = null;
decimal c = null;

The null reference should not be confused with valid instances of various types such as:

an empty list (new List<int>())•
an empty string ("")•

https://riptutorial.com/ 541

http://stackoverflow.com/documentation/c%23/2994/syntactic-sugar-in-c-sharp/10166/lock#t=20160723121800624366

the number zero (0, 0f, 0m)•
the null character ('\0')•

Sometimes, it is meaningful to check if something is either null or an empty/default object. The
System.String.IsNullOrEmpty(String) method may be used to check this, or you may implement
your own equivalent method.

private void GreetUser(string userName)
{
 if (String.IsNullOrEmpty(userName))
 {
 //The method that called us either sent in an empty string, or they sent us a null
reference. Either way, we need to report the problem.
 throw new InvalidOperationException("userName may not be null or empty.");
 }
 else
 {
 //userName is acceptable.
 Console.WriteLine("Hello, " + userName + "!");
 }
}

internal

The internal keyword is an access modifier for types and type members. Internal types or
members are accessible only within files in the same assembly

usage:

public class BaseClass
{
 // Only accessible within the same assembly
 internal static int x = 0;
}

The difference between different access modifiers is clarified here

Access modifiers

public

The type or member can be accessed by any other code in the same
assembly or another assembly that references it.

private

The type or member can only be accessed by code in the same class or
struct.

protected

The type or member can only be accessed by code in the same class or
struct, or in a derived class.

https://riptutorial.com/ 542

https://msdn.microsoft.com/en-us/library/7c5ka91b.aspx
http://stackoverflow.com/a/614844/266562

internal

The type or member can be accessed by any code in the same assembly,
but not from another assembly.

protected internal

The type or member can be accessed by any code in the same assembly,
or by any derived class in another assembly.

When no access modifier is set, a default access modifier is used. So there is always some form
of access modifier even if it's not set.

where

where can serve two purposes in C#: type constraining in a generic argument, and filtering LINQ
queries.

In a generic class, let's consider

public class Cup<T>
{
 // ...
}

T is called a type parameter. The class definition can impose constraints on the actual types that
can be supplied for T.

The following kinds of constraints can be applied:

value type•
reference type•
default constructor•
inheritance and implementation•

value type

In this case only structs (this includes 'primitive' data types such as int, boolean etc) can be
supplied

public class Cup<T> where T : struct
{
 // ...
}

reference type

In this case only class types can be supplied

public class Cup<T> where T : class

https://riptutorial.com/ 543

{
 // ...
}

hybrid value/reference type

Occasionally it is desired to restrict type arguments to those available in a database, and these will
usually map to value types and strings. As all type restrictions must be met, it is not possible to
specify where T : struct or string (this is not valid syntax). A workaround is to restrict type
arguments to IConvertible which has built in types of "... Boolean, SByte, Byte, Int16, UInt16,
Int32, UInt32, Int64, UInt64, Single, Double, Decimal, DateTime, Char, and String." It is possible
other objects will implement IConvertible, though this is rare in practice.

public class Cup<T> where T : IConvertible
{
 // ...
}

default constructor

Only types that contain a default constructor will be allowed. This includes value types and classes
that contain a default (parameterless) constructor

public class Cup<T> where T : new
{
 // ...
}

inheritance and implementation

Only types that inherit from a certain base class or implement a certain interface can be supplied.

public class Cup<T> where T : Beverage
{
 // ...
}

public class Cup<T> where T : IBeer
{
 // ...
}

The constraint can even reference another type parameter:

public class Cup<T, U> where U : T
{
 // ...
}

Multiple constraints can be specified for a type argument:

https://riptutorial.com/ 544

https://msdn.microsoft.com/en-us/library/system.iconvertible(v=vs.110).aspx

public class Cup<T> where T : class, new()
{
 // ...
}

The previous examples show generic constraints on a class
definition, but constraints can be used anywhere a type
argument is supplied: classes, structs, interfaces, methods,
etc.

where can also be a LINQ clause. In this case it is analogous to WHERE in SQL:

int[] nums = { 5, 2, 1, 3, 9, 8, 6, 7, 2, 0 };

var query =
 from num in nums
 where num < 5
 select num;

 foreach (var n in query)
 {
 Console.Write(n + " ");
 }
 // prints 2 1 3 2 0

extern

The extern keyword is used to declare methods that are implemented externally. This can be used
in conjunction with the DllImport attribute to call into unmanaged code using Interop services.
which in this case it will come with static modifier

For Example:

using System.Runtime.InteropServices;
public class MyClass
{
 [DllImport("User32.dll")]
 private static extern int SetForegroundWindow(IntPtr point);

 public void ActivateProcessWindow(Process p)
 {
 SetForegroundWindow(p.MainWindowHandle);
 }
}

This uses the SetForegroundWindow method imported from the User32.dll library

This can also be used to define an external assembly alias. which let us to reference different
versions of same components from single assembly.

To reference two assemblies with the same fully-qualified type names, an alias must be specified

https://riptutorial.com/ 545

at a command prompt, as follows:

/r:GridV1=grid.dll
/r:GridV2=grid20.dll

This creates the external aliases GridV1 and GridV2. To use these aliases from within a program,
reference them by using the extern keyword. For example:

extern alias GridV1;
extern alias GridV2;

bool

Keyword for storing the Boolean values true and false. bool is an alias of System.Boolean.

The default value of a bool is false.

bool b; // default value is false
b = true; // true
b = ((5 + 2) == 6); // false

For a bool to allow null values it must be initialized as a bool?.

The default value of a bool? is null.

bool? a // default value is null

when

The when is a keyword added in C# 6, and it is used for exception filtering.

Before the introduction of the when keyword, you could have had one catch clause for each type of
exception; with the addition of the keyword, a more fine-grained control is now possible.

A when expression is attached to a catch branch, and only if the when condition is true, the catch
clause will be executed. It is possible to have several catch clauses with the same exception class
types, and different when conditions.

private void CatchException(Action action)
{
 try
 {
 action.Invoke();
 }

 // exception filter
 catch (Exception ex) when (ex.Message.Contains("when"))
 {
 Console.WriteLine("Caught an exception with when");
 }

https://riptutorial.com/ 546

 catch (Exception ex)
 {
 Console.WriteLine("Caught an exception without when");
 }
}

private void Method1() { throw new Exception("message for exception with when"); }
private void Method2() { throw new Exception("message for general exception"); }

CatchException(Method1);
CatchException(Method2);

unchecked

The unchecked keyword prevents the compiler from checking for overflows/underflows.

For example:

const int ConstantMax = int.MaxValue;
unchecked
{
 int1 = 2147483647 + 10;
}
int1 = unchecked(ConstantMax + 10);

Without the unchecked keyword, neither of the two addition operations will compile.

When is this useful?

This is useful as it may help speed up calculations that definitely will not overflow since checking
for overflow takes time, or when an overflow/underflow is desired behavior (for instance, when
generating a hash code).

void

The reserved word "void" is an alias of System.Void type, and has two uses:

Declare a method that doesn't have a return value:1.

public void DoSomething()
{
 // Do some work, don't return any value to the caller.
}

A method with a return type of void can still have the return keyword in its body. This is useful
when you want to exit the method's execution and return the flow to the caller:

public void DoSomething()
{
 // Do some work...

https://riptutorial.com/ 547

 if (condition)
 return;

 // Do some more work if the condition evaluated to false.
}

Declare a pointer to an unknown type in an unsafe context.2.

In an unsafe context, a type may be a pointer type, a value type, or a reference type. A pointer
type declaration is usually type* identifier, where the type is a known type - i.e int* myInt, but
can also be void* identifier, where the type is unknown.

Note that declaring a void pointer type is discouraged by Microsoft.

if, if...else, if... else if

The if statement is used to control the flow of the program. An if statement identifies which
statement to run based on the value of a Boolean expression.

For a single statement, the braces{} are optional but recommended.

int a = 4;
if(a % 2 == 0)
{
 Console.WriteLine("a contains an even number");
}
// output: "a contains an even number"

The if can also have an else clause, that will be executed in case the condition evaluates to false:

int a = 5;
if(a % 2 == 0)
{
 Console.WriteLine("a contains an even number");
}
else
{
 Console.WriteLine("a contains an odd number");
}
// output: "a contains an odd number"

The if...else if construct lets you specify multiple conditions:

int a = 9;
if(a % 2 == 0)
{
 Console.WriteLine("a contains an even number");
}
else if(a % 3 == 0)
{
 Console.WriteLine("a contains an odd number that is a multiple of 3");

https://riptutorial.com/ 548

https://msdn.microsoft.com/en-us/library/y31yhkeb.aspx

}
else
{
 Console.WriteLine("a contains an odd number");
}
// output: "a contains an odd number that is a multiple of 3"

Important to note that if a condition is met in the above
example , the control skips other tests and jumps to the end
of that particular if else construct.So, the order of tests is
important if you are using if .. else if construct

C# Boolean expressions use short-circuit evaluation. This is important in cases where evaluating
conditions may have side effects:

if (someBooleanMethodWithSideEffects() && someOtherBooleanMethodWithSideEffects()) {
 //...
}

There's no guarantee that someOtherBooleanMethodWithSideEffects will actually run.

It's also important in cases where earlier conditions ensure that it's "safe" to evaluate later ones.
For example:

if (someCollection != null && someCollection.Count > 0) {
 // ..
}

The order is very important in this case because, if we reverse the order:

if (someCollection.Count > 0 && someCollection != null) {

it will throw a NullReferenceException if someCollection is null.

do

The do operator iterates over a block of code until a conditional query equals false. The do-while
loop can also be interrupted by a goto, return, break or throw statement.

The syntax for the do keyword is:

do { code block; } while(condition);

Example:

int i = 0;

do

https://riptutorial.com/ 549

https://en.wikipedia.org/wiki/Short-circuit_evaluation
http://www.riptutorial.com/csharp/example/193/goto
http://www.riptutorial.com/csharp/example/4600/return
http://www.riptutorial.com/csharp/example/2858/break

{
 Console.WriteLine("Do is on loop number {0}.", i);
} while (i++ < 5);

Output:

"Do is on loop number 1."
"Do is on loop number 2."
"Do is on loop number 3."
"Do is on loop number 4."
"Do is on loop number 5."

Unlike the while loop, the do-while loop is Exit Controlled. This means that the do-while loop
would execute its statements at least once, even if the condition fails the first time.

bool a = false;

do
{
 Console.WriteLine("This will be printed once, even if a is false.");
} while (a == true);

operator

Most of the built-in operators (including conversion operators) can be overloaded by using the
operator keyword along with the public and static modifiers.

The operators comes in three forms: unary operators, binary operators and conversion operators.

Unary and binary operators requires at least one parameter of same type as the containing type,
and some requires a complementary matching operator.

Conversion operators must convert to or from the enclosing type.

public struct Vector32
{

 public Vector32(int x, int y)
 {
 X = x;
 Y = y;
 }

 public int X { get; }
 public int Y { get; }

 public static bool operator ==(Vector32 left, Vector32 right)
 => left.X == right.X && left.Y == right.Y;

 public static bool operator !=(Vector32 left, Vector32 right)
 => !(left == right);

 public static Vector32 operator +(Vector32 left, Vector32 right)
 => new Vector32(left.X + right.X, left.Y + right.Y);

https://riptutorial.com/ 550

http://www.riptutorial.com/csharp/example/4396/while
https://msdn.microsoft.com/en-us/library/6a71f45d.aspx

 public static Vector32 operator +(Vector32 left, int right)
 => new Vector32(left.X + right, left.Y + right);

 public static Vector32 operator +(int left, Vector32 right)
 => right + left;

 public static Vector32 operator -(Vector32 left, Vector32 right)
 => new Vector32(left.X - right.X, left.Y - right.Y);

 public static Vector32 operator -(Vector32 left, int right)
 => new Vector32(left.X - right, left.Y - right);

 public static Vector32 operator -(int left, Vector32 right)
 => right - left;

 public static implicit operator Vector64(Vector32 vector)
 => new Vector64(vector.X, vector.Y);

 public override string ToString() => $"{{{X}, {Y}}}";

}

public struct Vector64
{

 public Vector64(long x, long y)
 {
 X = x;
 Y = y;
 }

 public long X { get; }
 public long Y { get; }

 public override string ToString() => $"{{{X}, {Y}}}";

}

Example

var vector1 = new Vector32(15, 39);
var vector2 = new Vector32(87, 64);

Console.WriteLine(vector1 == vector2); // false
Console.WriteLine(vector1 != vector2); // true
Console.WriteLine(vector1 + vector2); // {102, 103}
Console.WriteLine(vector1 - vector2); // {-72, -25}

struct

A struct type is a value type that is typically used to encapsulate small groups of related variables,
such as the coordinates of a rectangle or the characteristics of an item in an inventory.

Classes are reference types, structs are value types.

using static System.Console;

https://riptutorial.com/ 551

http://stackoverflow.com/a/3924092/266562

namespace ConsoleApplication1
{
 struct Point
 {
 public int X;
 public int Y;

 public override string ToString()
 {
 return $"X = {X}, Y = {Y}";
 }

 public void Display(string name)
 {
 WriteLine(name + ": " + ToString());
 }
 }

 class Program
 {
 static void Main()
 {
 var point1 = new Point {X = 10, Y = 20};
 // it's not a reference but value type
 var point2 = point1;
 point2.X = 777;
 point2.Y = 888;
 point1.Display(nameof(point1)); // point1: X = 10, Y = 20
 point2.Display(nameof(point2)); // point2: X = 777, Y = 888

 ReadKey();
 }
 }
}

Structs can also contain constructors, constants, fields, methods, properties, indexers, operators,
events, and nested types, although if several such members are required, you should consider
making your type a class instead.

Some suggestions from MS on when to use struct and when to use class:

CONSIDER

defining a struct instead of a class if instances of the type are small and commonly short-lived or
are commonly embedded in other objects.

AVOID

defining a struct unless the type has all of the following characteristics:

It logically represents a single value, similar to primitive types (int, double, etc.)•
It has an instance size under 16 bytes.•
It is immutable.•
It will not have to be boxed frequently.•

https://riptutorial.com/ 552

https://msdn.microsoft.com/en-us/library/ms229017.aspx

switch

The switch statement is a control statement that selects a switch section to execute from a list of
candidates. A switch statement includes one or more switch sections. Each switch section
contains one or more case labels followed by one or more statements. If no case label contains a
matching value, control is transferred to the default section, if there is one. Case fall-through is not
supported in C#, strictly speaking. However, if 1 or more case labels are empty, execution will
follow the code of the next case block which contains code. This allows grouping of multiple case
labels with the same implementation. In the following example, if month equals 12, the code in case
2 will be executed since the case labels 12 1 and 2 are grouped. If a case block is not empty, a break
must be present before the next case label, otherwise the compiler will flag an error.

int month = DateTime.Now.Month; // this is expected to be 1-12 for Jan-Dec

switch (month)
{
 case 12:
 case 1:
 case 2:
 Console.WriteLine("Winter");
 break;
 case 3:
 case 4:
 case 5:
 Console.WriteLine("Spring");
 break;
 case 6:
 case 7:
 case 8:
 Console.WriteLine("Summer");
 break;
 case 9:
 case 10:
 case 11:
 Console.WriteLine("Autumn");
 break;
 default:
 Console.WriteLine("Incorrect month index");
 break;
}

A case can only be labeled by a value known at compile time (e.g. 1, "str", Enum.A), so a variable
isn't a valid case label, but a const or an Enum value is (as well as any literal value).

interface

An interface contains the signatures of methods, properties and events. The derived classes
defines the members as the interface contains only the declaration of the members.

An interface is declared using the interface keyword.

interface IProduct
{
 decimal Price { get; }

https://riptutorial.com/ 553

http://stackoverflow.com/questions/tagged/interface+c%23
http://stackoverflow.com/questions/tagged/signature+c%23

}

class Product : IProduct
{
 const decimal vat = 0.2M;

 public Product(decimal price)
 {
 _price = price;
 }

 private decimal _price;
 public decimal Price { get { return _price * (1 + vat); } }
}

unsafe

The unsafe keyword can be used in type or method declarations or to declare an inline block.

The purpose of this keyword is to enable the use of the unsafe subset of C# for the block in
question. The unsafe subset includes features like pointers, stack allocation, C-like arrays, and so
on.

Unsafe code is not verifiable and that's why its usage is discouraged. Compilation of unsafe code
requires passing a switch to the C# compiler. Additionally, the CLR requires that the running
assembly has full trust.

Despite these limitations, unsafe code has valid usages in making some operations more
performant (e.g. array indexing) or easier (e.g. interop with some unmanaged libraries).

As a very simple example

// compile with /unsafe
class UnsafeTest
{
 unsafe static void SquarePtrParam(int* p)
 {
 *p *= *p; // the '*' dereferences the pointer.
 //Since we passed in "the address of i", this becomes "i *= i"
 }

 unsafe static void Main()
 {
 int i = 5;
 // Unsafe method: uses address-of operator (&):
 SquarePtrParam(&i); // "&i" means "the address of i". The behavior is similar to "ref i"
 Console.WriteLine(i); // Output: 25
 }
}

While working with pointers, we can change the values of memory locations directly, rather than
having to address them by name. Note that this often requires the use of the fixed keyword to
prevent possible memory corruption as the garbage collector moves things around (otherwise, you
may get error CS0212). Since a variable that has been "fixed" cannot be written to, we also often

https://riptutorial.com/ 554

http://www.riptutorial.com/csharp/example/59/fixed
https://msdn.microsoft.com/en-us/library/29ak9b70(v=vs.140).aspx

have to have a second pointer that starts out pointing to the same location as the first.

void Main()
{
 int[] intArray = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

 UnsafeSquareArray(intArray);
 foreach(int i in intArray)
 Console.WriteLine(i);
}

unsafe static void UnsafeSquareArray(int[] pArr)
{
 int len = pArr.Length;

 //in C or C++, we could say
 // int* a = &(pArr[0])
 // however, C# requires you to "fix" the variable first
 fixed(int* fixedPointer = &(pArr[0]))
 {
 //Declare a new int pointer because "fixedPointer" cannot be written to.
 // "p" points to the same address space, but we can modify it
 int* p = fixedPointer;

 for (int i = 0; i < len; i++)
 {
 *p *= *p; //square the value, just like we did in SquarePtrParam, above
 p++; //move the pointer to the next memory space.
 // NOTE that the pointer will move 4 bytes since "p" is an
 // int pointer and an int takes 4 bytes

 //the above 2 lines could be written as one, like this:
 // "*p *= *p++;"
 }
 }
}

Output:

1
4
9
16
25
36
49
64
81
100

unsafe also allows the use of stackalloc which will allocate memory on the stack like _alloca in the
C run-time library. We can modify the above example to use stackalloc as follows:

unsafe void Main()
{
 const int len=10;
 int* seedArray = stackalloc int[len];

https://riptutorial.com/ 555

http://www.riptutorial.com/csharp/example/57/stackalloc

 //We can no longer use the initializer "{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}" as before.
 // We have at least 2 options to populate the array. The end result of either
 // option will be the same (doing both will also be the same here).

 //FIRST OPTION:
 int* p = seedArray; // we don't want to lose where the array starts, so we
 // create a shadow copy of the pointer
 for(int i=1; i<=len; i++)
 *p++ = i;
 //end of first option

 //SECOND OPTION:
 for(int i=0; i<len; i++)
 seedArray[i] = i+1;
 //end of second option

 UnsafeSquareArray(seedArray, len);
 for(int i=0; i< len; i++)
 Console.WriteLine(seedArray[i]);
}

//Now that we are dealing directly in pointers, we don't need to mess around with
// "fixed", which dramatically simplifies the code
unsafe static void UnsafeSquareArray(int* p, int len)
{
 for (int i = 0; i < len; i++)
 *p *= *p++;
}

(Output is the same as above)

implicit

The implicit keyword is used to overload a conversion operator. For example, you may declare a
Fraction class that should automatically be converted to a double when needed, and that can be
automatically converted from int:

class Fraction(int numerator, int denominator)
{
 public int Numerator { get; } = numerator;
 public int Denominator { get; } = denominator;
 // ...
 public static implicit operator double(Fraction f)
 {
 return f.Numerator / (double) f.Denominator;
 }
 public static implicit operator Fraction(int i)
 {
 return new Fraction(i, 1);
 }
}

true, false

The true and false keywords have two uses:

https://riptutorial.com/ 556

As literal Boolean values1.

var myTrueBool = true;
var myFalseBool = false;

As operators that can be overloaded2.

public static bool operator true(MyClass x)
{
 return x.value >= 0;
}

public static bool operator false(MyClass x)
{
 return x.value < 0;
}

Overloading the false operator was useful prior to C# 2.0, before the introduction of Nullable types.
A type that overloads the true operator, must also overload the false operator.

string

string is an alias to the .NET datatype System.String, which allows text (sequences of characters)
to be stored.

Notation:

string a = "Hello";
var b = "world";
var f = new string(new []{ 'h', 'i', '!' }); // hi!

Each character in the string is encoded in UTF-16, which means that each character will require a
minimum 2 bytes of storage space.

ushort

A numeric type used to store 16-bit positive integers. ushort is an alias for System.UInt16, and takes
up 2 bytes of memory.

Valid range is 0 to 65535.

ushort a = 50; // 50
ushort b = 65536; // Error, cannot be converted
ushort c = unchecked((ushort)65536); // Overflows (wraps around to 0)

sbyte

A numeric type used to store 8-bit signed integers. sbyte is an alias for System.SByte, and takes up
1 byte of memory. For the unsigned equivalent, use byte.

https://riptutorial.com/ 557

Valid range is -127 to 127 (the leftover is used to store the sign).

sbyte a = 127; // 127
sbyte b = -127; // -127
sbyte c = 200; // Error, cannot be converted
sbyte d = unchecked((sbyte)129); // -127 (overflows)

var

An implicitly-typed local variable that is strongly typed just as if the user had declared the type.
Unlike other variable declarations, the compiler determines the type of variable that this represents
based on the value that is assigned to it.

var i = 10; // implicitly typed, the compiler must determine what type of variable this is
int i = 10; // explicitly typed, the type of variable is explicitly stated to the compiler

// Note that these both represent the same type of variable (int) with the same value (10).

Unlike other types of variables, variable definitions with this keyword need to be initialized when
declared. This is due to the var keyword representing an implicitly-typed variable.

var i;
i = 10;

// This code will not run as it is not initialized upon declaration.

The var keyword can also be used to create new datatypes on the fly. These new datatypes are
known as anonymous types. They are quite useful, as they allow a user to define a set of
properties without having to explicitly declare any kind of object type first.

Plain anonymous type

var a = new { number = 1, text = "hi" };

LINQ query that returns an anonymous type

public class Dog
{
 public string Name { get; set; }
 public int Age { get; set; }
}

public class DogWithBreed
{
 public Dog Dog { get; set; }
 public string BreedName { get; set; }
}

public void GetDogsWithBreedNames()
{
 var db = new DogDataContext(ConnectString);
 var result = from d in db.Dogs

https://riptutorial.com/ 558

 join b in db.Breeds on d.BreedId equals b.BreedId
 select new
 {
 DogName = d.Name,
 BreedName = b.BreedName
 };

 DoStuff(result);
}

You can use var keyword in foreach statement

public bool hasItemInList(List<String> list, string stringToSearch)
{
 foreach(var item in list)
 {
 if(((string)item).equals(stringToSearch))
 return true;
 }

 return false;
}

delegate

Delegates are types that represent a reference to a method. They are used for passing methods
as arguments to other methods.

Delegates can hold static methods, instance methods, anonymous methods, or lambda
expressions.

class DelegateExample
{
 public void Run()
 {
 //using class method
 InvokeDelegate(WriteToConsole);

 //using anonymous method
 DelegateInvoker di = delegate (string input)
 {
 Console.WriteLine(string.Format("di: {0} ", input));
 return true;
 };
 InvokeDelegate(di);

 //using lambda expression
 InvokeDelegate(input => false);
 }

 public delegate bool DelegateInvoker(string input);

 public void InvokeDelegate(DelegateInvoker func)
 {
 var ret = func("hello world");
 Console.WriteLine(string.Format(" > delegate returned {0}", ret));
 }

https://riptutorial.com/ 559

 public bool WriteToConsole(string input)
 {
 Console.WriteLine(string.Format("WriteToConsole: '{0}'", input));
 return true;
 }
}

When assigning a method to a delegate it is important to note that the method must have the
same return type as well as parameters. This differs from 'normal' method overloading, where only
the parameters define the signature of the method.

Events are built on top of delegates.

event

An event allows the developer to implement a notification pattern.

Simple example

public class Server
{
 // defines the event
 public event EventHandler DataChangeEvent;

 void RaiseEvent()
 {
 var ev = DataChangeEvent;
 if(ev != null)
 {
 ev(this, EventArgs.Empty);
 }
 }
}

public class Client
{
 public void Client(Server server)
 {
 // client subscribes to the server's DataChangeEvent
 server.DataChangeEvent += server_DataChanged;
 }

 private void server_DataChanged(object sender, EventArgs args)
 {
 // notified when the server raises the DataChangeEvent
 }
}

MSDN reference

partial

The keyword partial can be used during type definition of class, struct, or interface to allow the
type definition to be split into several files. This is useful to incorporate new features in auto

https://riptutorial.com/ 560

https://msdn.microsoft.com/en-CA/library/awbftdfh.aspx

generated code.

File1.cs

namespace A
{
 public partial class Test
 {
 public string Var1 {get;set;}
 }
}

File2.cs

namespace A
{
 public partial class Test
 {
 public string Var2 {get;set;}
 }
}

Note: A class can be split into any number of files. However, all declaration must be under same
namespace and the same assembly.

Methods can also be declared partial using the partial keyword. In this case one file will contain
only the method definition and another file will contain the implementation.

A partial method has its signature defined in one part of a partial type, and its
implementation defined in another part of the type. Partial methods enable class
designers to provide method hooks, similar to event handlers, that developers may
decide to implement or not. If the developer does not supply an implementation, the
compiler removes the signature at compile time. The following conditions apply to
partial methods:

Signatures in both parts of the partial type must match.•
The method must return void.•
No access modifiers are allowed. Partial methods are implicitly private.•

-- MSDN

File1.cs

namespace A
{
 public partial class Test
 {
 public string Var1 {get;set;}
 public partial Method1(string str);
 }
}

https://riptutorial.com/ 561

File2.cs

namespace A
{
 public partial class Test
 {
 public string Var2 {get;set;}
 public partial Method1(string str)
 {
 Console.WriteLine(str);
 }
 }
}

Note: The type containing the partial method must also be declared partial.

Read Keywords online: https://riptutorial.com/csharp/topic/26/keywords

https://riptutorial.com/ 562

https://riptutorial.com/csharp/topic/26/keywords

Chapter 90: Lambda expressions

Remarks

A lambda expression is a syntax for creating anonymous functions inline. More formally, from the
C# Programming Guide:

A lambda expression is an anonymous function that you can use to create delegates or
expression tree types. By using lambda expressions, you can write local functions that
can be passed as arguments or returned as the value of function calls.

A lambda expression is created by using the => operator. Put any parameters on the lefthand side
of the operator. On the righthand side, put an expression that can use those parameters; this
expression will resolve as the return value of the function. More rarely, if necessary, a whole {code
block} can be used on the righthand side. If the return type is not void, the block will contain a
return statement.

Examples

Passing a Lambda Expression as a Parameter to a Method

List<int> l2 = l1.FindAll(x => x > 6);

Here x => x > 6 is a lambda expression acting as a predicate that makes sure that only elements
above 6 are returned.

Lambda Expressions as Shorthand for Delegate Initialization

public delegate int ModifyInt(int input);
ModifyInt multiplyByTwo = x => x * 2;

The above Lambda expression syntax is equivalent to the following verbose code:

public delegate int ModifyInt(int input);

ModifyInt multiplyByTwo = delegate(int x){
 return x * 2;
};

Lambdas for both `Func` and `Action`

Typically lambdas are used for defining simple functions (generally in the context of a linq
expression):

var incremented = myEnumerable.Select(x => x + 1);

https://riptutorial.com/ 563

https://msdn.microsoft.com/en-us/library/bb397687.aspx

Here the return is implicit.

However, it is also possible to pass actions as lambdas:

myObservable.Do(x => Console.WriteLine(x));

Lambda Expressions with Multiple Parameters or No Parameters

Use parentheses around the expression to the left of the => operator to indicate multiple
parameters.

delegate int ModifyInt(int input1, int input2);
ModifyInt multiplyTwoInts = (x,y) => x * y;

Similarly, an empty set of parentheses indicates that the function does not accept parameters.

delegate string ReturnString();
ReturnString getGreeting = () => "Hello world.";

Put Multiple Statements in a Statement Lambda

Unlike an expression lambda, a statement lambda can contain multiple statements separated by
semicolons.

delegate void ModifyInt(int input);

ModifyInt addOneAndTellMe = x =>
{
 int result = x + 1;
 Console.WriteLine(result);
};

Note that the statements are enclosed in braces {}.

Remember that statement lambdas cannot be used to create expression trees.

Lambdas can be emitted both as `Func` and `Expression`

Assuming the following Person class:

public class Person
{
 public string Name { get; set; }
 public int Age { get; set; }
}

The following lambda:

p => p.Age > 18

https://riptutorial.com/ 564

Can be passed as an argument to both methods:

public void AsFunc(Func<Person, bool> func)
public void AsExpression(Expression<Func<Person, bool>> expr)

Because the compiler is capable of transforming lambdas both to delegates and Expressions.

Obviously, LINQ providers rely heavily on Expressions (exposed mainly through the IQueryable<T>
interface) in order to be able to parse queries and translate them to store queries.

Lambda Expression as an Event Handler

Lambda expressions can be used to handle events, which is useful when:

The handler is short.•
The handler never needs to be unsubscribed.•

A good situation in which a lambda event handler might be used is given below:

smtpClient.SendCompleted += (sender, args) => Console.WriteLine("Email sent");

If unsubscribing a registered event handler at some future point in the code is necessary, the
event handler expression should be saved to a variable, and the registration/unregistration done
through that variable:

EventHandler handler = (sender, args) => Console.WriteLine("Email sent");

smtpClient.SendCompleted += handler;
smtpClient.SendCompleted -= handler;

The reason that this is done rather than simply retyping the lambda expression verbatim to
unsubscribe it (-=) is that the C# compiler won't necessarily consider the two expressions equal:

EventHandler handlerA = (sender, args) => Console.WriteLine("Email sent");
EventHandler handlerB = (sender, args) => Console.WriteLine("Email sent");
Console.WriteLine(handlerA.Equals(handlerB)); // May return "False"

Note that if additional statements are added to the lambda expression, then the required
surrounding curly braces may be accidentally omitted, without causing compile-time error. For
example:

smtpClient.SendCompleted += (sender, args) => Console.WriteLine("Email sent");
emailSendButton.Enabled = true;

This will compile, but will result in adding the lambda expression (sender, args) =>
Console.WriteLine("Email sent"); as an event handler, and executing the statement
emailSendButton.Enabled = true; immediately. To fix this, the contents of the lambda must be
surrounded in curly braces. This can be avoided by using curly braces from the start, being
cautious when adding additional statements to a lambda-event-handler, or surrounding the lambda

https://riptutorial.com/ 565

in round brackets from the start:

smtpClient.SendCompleted += ((sender, args) => Console.WriteLine("Email sent"));
//Adding an extra statement will result in a compile-time error

Read Lambda expressions online: https://riptutorial.com/csharp/topic/46/lambda-expressions

https://riptutorial.com/ 566

https://riptutorial.com/csharp/topic/46/lambda-expressions

Chapter 91: Lambda Expressions

Remarks

Closures

Lambda expressions will implicitly capture variables used and create a closure. A closure is a
function along with some state context. The compiler will generate a closure whenever a lambda
expression 'encloses' a value from its surrounding context.

E.g. when the following is executed

Func<object, bool> safeApplyFiltererPredicate = o => (o != null) && filterer.Predicate(i);

safeApplyFilterPredicate refers to a newly created object which has a private reference to the
current value of filterer, and whose Invoke method behaves like

o => (o != null) && filterer.Predicate(i);

This can be important, because as long as the reference to the value now in
safeApplyFilterPredicate is maintained, there will be a reference to the object which filterer
currently refers to. This has an effect on garbage collection, and may cause unexpected behaviour
if the object which filterer currently refers to is mutated.

On the other hand, closures can be used to deliberate effect to encapsulate a behaviour which
involves references to other objects.

E.g.

var logger = new Logger();
Func<int, int> Add1AndLog = i => {
 logger.Log("adding 1 to " + i);
 return (i + 1);
};

Closures can also be used to model state machines:

Func<int, int> MyAddingMachine() {
 var i = 0;
 return x => i += x;
};

Examples

Basic lambda expressions

https://riptutorial.com/ 567

http://csharpindepth.com/Articles/Chapter5/Closures.aspx

Func<int, int> add1 = i => i + 1;

Func<int, int, int> add = (i, j) => i + j;

// Behaviourally equivalent to:

int Add1(int i)
{
 return i + 1;
}

int Add(int i, int j)
{
 return i + j;
}

...

Console.WriteLine(add1(42)); //43
Console.WriteLine(Add1(42)); //43
Console.WriteLine(add(100, 250)); //350
Console.WriteLine(Add(100, 250)); //350

Basic lambda expressions with LINQ

// assume source is {0, 1, 2, ..., 10}

var evens = source.Where(n => n%2 == 0);
// evens = {0, 2, 4, ... 10}

var strings = source.Select(n => n.ToString());
// strings = {"0", "1", ..., "10"}

Using lambda syntax to create a closure

See remarks for discussion of closures. Suppose we have an interface:

public interface IMachine<TState, TInput>
{
 TState State { get; }
 public void Input(TInput input);
}

and then the following is executed:

IMachine<int, int> machine = ...;
Func<int, int> machineClosure = i => {
 machine.Input(i);
 return machine.State;
};

Now machineClosure refers to a function from int to int, which behind the scenes uses the IMachine
instance which machine refers to in order to carry out the computation. Even if the reference machine
goes out of scope, as long as the machineClosure object is maintained, the original IMachine

https://riptutorial.com/ 568

instance will be retained as part of a 'closure', automatically defined by the compiler.

Warning: this can mean that the same function call returns different values at different times (e.g.
In this example if the machine keeps a sum of its inputs). In lots of cases, this may be unexpected
and is to be avoided for any code in a functional style - accidental and unexpected closures can be
a source of bugs.

Lambda syntax with statement block body

Func<int, string> doubleThenAddElevenThenQuote = i => {
 var doubled = 2 * i;
 var addedEleven = 11 + doubled;
 return $"'{addedEleven}'";
};

Lambda expressions with System.Linq.Expressions

Expression<Func<int, bool>> checkEvenExpression = i => i%2 == 0;
// lambda expression is automatically converted to an Expression<Func<int, bool>>

Read Lambda Expressions online: https://riptutorial.com/csharp/topic/7057/lambda-expressions

https://riptutorial.com/ 569

https://riptutorial.com/csharp/topic/7057/lambda-expressions

Chapter 92: LINQ Queries

Introduction

LINQ is an acronym which stands for Language INtegrated Query. It is a concept which integrates
a query language by offering a consistent model for working with data across various kinds of data
sources and formats; you use the same basic coding patterns to query and transform data in XML
documents, SQL databases, ADO.NET Datasets, .NET collections, and any other format for which
a LINQ provider is available.

Syntax

Query syntax :

from <range variable> in <collection>○

[from <range variable> in <collection>, ...]○

<filter, joining, grouping, aggregate operators, ...> <lambda expression>○

<select or groupBy operator> <formulate the result>○

•

Method syntax :

Enumerable.Aggregate(func)○

Enumerable.Aggregate(seed, func)○

Enumerable.Aggregate(seed, func, resultSelector)○

Enumerable.All(predicate)○

Enumerable.Any()○

Enumerable.Any(predicate)○

Enumerable.AsEnumerable()○

Enumerable.Average()○

Enumerable.Average(selector)○

Enumerable.Cast<Result>()○

Enumerable.Concat(second)○

Enumerable.Contains(value)○

Enumerable.Contains(value, comparer)○

Enumerable.Count()○

Enumerable.Count(predicate)○

Enumerable.DefaultIfEmpty()○

Enumerable.DefaultIfEmpty(defaultValue)○

Enumerable.Distinct()○

Enumerable.Distinct(comparer)○

Enumerable.ElementAt(index)○

Enumerable.ElementAtOrDefault(index)○

Enumerable.Empty()○

Enumerable.Except(second)○

Enumerable.Except(second, comparer)○

•

https://riptutorial.com/ 570

Enumerable.First()○

Enumerable.First(predicate)○

Enumerable.FirstOrDefault()○

Enumerable.FirstOrDefault(predicate)○

Enumerable.GroupBy(keySelector)○

Enumerable.GroupBy(keySelector, resultSelector)○

Enumerable.GroupBy(keySelector, elementSelector)○

Enumerable.GroupBy(keySelector, comparer)○

Enumerable.GroupBy(keySelector, resultSelector, comparer)○

Enumerable.GroupBy(keySelector, elementSelector, resultSelector)○

Enumerable.GroupBy(keySelector, elementSelector, comparer)○

Enumerable.GroupBy(keySelector, elementSelector, resultSelector, comparer)○

Enumerable.Intersect(second)○

Enumerable.Intersect(second, comparer)○

Enumerable.Join(inner, outerKeySelector, innerKeySelector, resultSelector)○

Enumerable.Join(inner, outerKeySelector, innerKeySelector, resultSelector, comparer)○

Enumerable.Last()○

Enumerable.Last(predicate)○

Enumerable.LastOrDefault()○

Enumerable.LastOrDefault(predicate)○

Enumerable.LongCount()○

Enumerable.LongCount(predicate)○

Enumerable.Max()○

Enumerable.Max(selector)○

Enumerable.Min()○

Enumerable.Min(selector)○

Enumerable.OfType<TResult>()○

Enumerable.OrderBy(keySelector)○

Enumerable.OrderBy(keySelector, comparer)○

Enumerable.OrderByDescending(keySelector)○

Enumerable.OrderByDescending(keySelector, comparer)○

Enumerable.Range(start, count)○

Enumerable.Repeat(element, count)○

Enumerable.Reverse()○

Enumerable.Select(selector)○

Enumerable.SelectMany(selector)○

Enumerable.SelectMany(collectionSelector, resultSelector)○

Enumerable.SequenceEqual(second)○

Enumerable.SequenceEqual(second, comparer)○

Enumerable.Single()○

Enumerable.Single(predicate)○

Enumerable.SingleOrDefault()○

Enumerable.SingleOrDefault(predicate)○

Enumerable.Skip(count)○

Enumerable.SkipWhile(predicate)○

Enumerable.Sum()○

https://riptutorial.com/ 571

Enumerable.Sum(selector)○

Enumerable.Take(count)○

Enumerable.TakeWhile(predicate)○

orderedEnumerable.ThenBy(keySelector)○

orderedEnumerable.ThenBy(keySelector, comparer)○

orderedEnumerable.ThenByDescending(keySelector)○

orderedEnumerable.ThenByDescending(keySelector, comparer)○

Enumerable.ToArray()○

Enumerable.ToDictionary(keySelector)○

Enumerable.ToDictionary(keySelector, elementSelector)○

Enumerable.ToDictionary(keySelector, comparer)○

Enumerable.ToDictionary(keySelector, elementSelector, comparer)○

Enumerable.ToList()○

Enumerable.ToLookup(keySelector)○

Enumerable.ToLookup(keySelector, elementSelector)○

Enumerable.ToLookup(keySelector, comparer)○

Enumerable.ToLookup(keySelector, elementSelector, comparer)○

Enumerable.Union(second)○

Enumerable.Union(second, comparer)○

Enumerable.Where(predicate)○

Enumerable.Zip(second, resultSelector)○

Remarks

To use LINQ queries you need to import System.Linq.

The Method Syntax is more powerful and flexible, but the Query Syntax may be simpler and more
familiar. All queries written in Query syntax are translated into the functional syntax by the
compiler, so performance is the same.

Query objects are not evaluated until they are used, so they can be changed or added to without a
performance penalty.

Examples

Where

Returns a subset of items which the specified predicate is true for them.

List<string> trees = new List<string>{ "Oak", "Birch", "Beech", "Elm", "Hazel", "Maple" };

Method syntax

// Select all trees with name of length 3
var shortTrees = trees.Where(tree => tree.Length == 3); // Oak, Elm

https://riptutorial.com/ 572

Query syntax

var shortTrees = from tree in trees
 where tree.Length == 3
 select tree; // Oak, Elm

Select - Transforming elements

Select allows you to apply a transformation to every element in any data structure implementing
IEnumerable.

Getting the first character of each string in the following list:

List<String> trees = new List<String>{ "Oak", "Birch", "Beech", "Elm", "Hazel", "Maple" };

Using regular (lambda) syntax

//The below select stament transforms each element in tree into its first character.
IEnumerable<String> initials = trees.Select(tree => tree.Substring(0, 1));
foreach (String initial in initials) {
 System.Console.WriteLine(initial);
}

Output:

O
B
B
E
H
M

Live Demo on .NET Fiddle

Using LINQ Query Syntax

initials = from tree in trees
 select tree.Substring(0, 1);

Chaining methods

Many LINQ functions both operate on an IEnumerable<TSource> and also return an
IEnumerable<TResult>. The type parameters TSource and TResult may or may not refer to the same
type, depending on the method in question and any functions passed to it.

A few examples of this are

public static IEnumerable<TResult> Select<TSource, TResult>(

https://riptutorial.com/ 573

https://dotnetfiddle.net/yYLT0K
https://msdn.microsoft.com/en-us/library/system.linq.enumerable(v=vs.110).aspx

 this IEnumerable<TSource> source,
 Func<TSource, TResult> selector
)

public static IEnumerable<TSource> Where<TSource>(
 this IEnumerable<TSource> source,
 Func<TSource, int, bool> predicate
)

public static IOrderedEnumerable<TSource> OrderBy<TSource, TKey>(
 this IEnumerable<TSource> source,
 Func<TSource, TKey> keySelector
)

While some method chaining may require an entire set to be worked prior to moving on, LINQ
takes advantage of deferred execution by using yield return MSDN which creates an Enumerable
and an Enumerator behind the scenes. The process of chaining in LINQ is essentially building an
enumerable (iterator) for the original set -- which is deferred -- until materialized by enumerating
the enumerable.

This allows these functions to be fluently chained wiki, where one function can act directly on the
result of another. This style of code can be used to perform many sequence based operations in a
single statement.

For example, it's possible to combine Select, Where and OrderBy to transform, filter and sort a
sequence in a single statement.

var someNumbers = { 4, 3, 2, 1 };

var processed = someNumbers
 .Select(n => n * 2) // Multiply each number by 2
 .Where(n => n != 6) // Keep all the results, except for 6
 .OrderBy(n => n); // Sort in ascending order

Output:

2
4
8

Live Demo on .NET Fiddle

Any functions that both extend and return the generic IEnumerable<T> type can be used as chained
clauses in a single statement. This style of fluent programming is powerful, and should be
considered when creating your own extension methods.

Range and Repeat

The Range and Repeat static methods on Enumerable can be used to generate simple sequences.

Range

https://riptutorial.com/ 574

http://stackoverflow.com/documentation/c%23/68/linq-queries/8001/deferred-execution
https://blogs.msdn.microsoft.com/oldnewthing/20080812-00/?p=21273/
https://blogs.msdn.microsoft.com/oldnewthing/20080812-00/?p=21273/
http://www.riptutorial.com/csharp/example/17356/enumerating-the-enumerable
http://www.riptutorial.com/csharp/example/17356/enumerating-the-enumerable
https://en.wikipedia.org/wiki/Fluent_interface
https://en.wikipedia.org/wiki/Fluent_interface
https://dotnetfiddle.net/3Gta8X
http://www.riptutorial.com/csharp/topic/20/extension-methods

Enumerable.Range() generates a sequence of integers given a starting value and a count.

// Generate a collection containing the numbers 1-100 ([1, 2, 3, ..., 98, 99, 100])
var range = Enumerable.Range(1,100);

Live Demo on .NET Fiddle

Repeat

Enumerable.Repeat() generates a sequence of repeating elements given an element and the
number of repetitions required.

// Generate a collection containing "a", three times (["a","a","a"])
var repeatedValues = Enumerable.Repeat("a", 3);

Live Demo on .NET Fiddle

Skip and Take

The Skip method returns a collection excluding a number of items from the beginning of the
source collection. The number of items excluded is the number given as an argument. If there are
less items in the collection than specified in the argument then an empty collection is returned.

The Take method returns a collection containing a number of elements from the beginning of the
source collection. The number of items included is the number given as an argument. If there are
less items in the collection than specified in the argument then the collection returned will contain
the same elements as the source collection.

var values = new [] { 5, 4, 3, 2, 1 };

var skipTwo = values.Skip(2); // { 3, 2, 1 }
var takeThree = values.Take(3); // { 5, 4, 3 }
var skipOneTakeTwo = values.Skip(1).Take(2); // { 4, 3 }
var takeZero = values.Take(0); // An IEnumerable<int> with 0 items

Live Demo on .NET Fiddle

Skip and Take are commonly used together to paginate results, for instance:

IEnumerable<T> GetPage<T>(IEnumerable<T> collection, int pageNumber, int resultsPerPage) {
 int startIndex = (pageNumber - 1) * resultsPerPage;
 return collection.Skip(startIndex).Take(resultsPerPage);
}

Warning: LINQ to Entities only supports Skip on ordered queries. If you try to use Skip
without ordering you will get a NotSupportedException with the message "The
method 'Skip' is only supported for sorted input in LINQ to Entities. The method
'OrderBy' must be called before the method 'Skip'."

https://riptutorial.com/ 575

https://dotnetfiddle.net/jA0VB1
https://dotnetfiddle.net/KpZfpt
https://dotnetfiddle.net/U2b76y
http://www.riptutorial.com/csharp/example/4389/query-ordering---orderby---thenby---orderbydescending---thenbydescending--

First, FirstOrDefault, Last, LastOrDefault, Single, and SingleOrDefault

All six methods return a single value of the sequence type, and can be called with or without a
predicate.

Depending on the number of elements that match the predicate or, if no predicate is supplied, the
number of elements in the source sequence, they behave as follows:

First()

Returns the first element of a sequence, or the first element matching the provided predicate.•
If the sequence contains no elements, an InvalidOperationException is thrown with the
message: "Sequence contains no elements".

•

If the sequence contains no elements matching the provided predicate, an
InvalidOperationException is thrown with the message "Sequence contains no matching
element".

•

Example

// Returns "a":
new[] { "a" }.First();

// Returns "a":
new[] { "a", "b" }.First();

// Returns "b":
new[] { "a", "b" }.First(x => x.Equals("b"));

// Returns "ba":
new[] { "ba", "be" }.First(x => x.Contains("b"));

// Throws InvalidOperationException:
new[] { "ca", "ce" }.First(x => x.Contains("b"));

// Throws InvalidOperationException:
new string[0].First();

Live Demo on .NET Fiddle

FirstOrDefault()

Returns the first element of a sequence, or the first element matching the provided predicate.•
If the sequence contains no elements, or no elements matching the provided predicate,
returns the default value of the sequence type using default(T).

•

Example

// Returns "a":
new[] { "a" }.FirstOrDefault();

https://riptutorial.com/ 576

https://dotnetfiddle.net/ESYLcU
http://www.riptutorial.com/csharp/example/109/default

// Returns "a":
new[] { "a", "b" }.FirstOrDefault();

// Returns "b":
new[] { "a", "b" }.FirstOrDefault(x => x.Equals("b"));

// Returns "ba":
new[] { "ba", "be" }.FirstOrDefault(x => x.Contains("b"));

// Returns null:
new[] { "ca", "ce" }.FirstOrDefault(x => x.Contains("b"));

// Returns null:
new string[0].FirstOrDefault();

Live Demo on .NET Fiddle

Last()

Returns the last element of a sequence, or the last element matching the provided predicate.•
If the sequence contains no elements, an InvalidOperationException is thrown with the
message "Sequence contains no elements."

•

If the sequence contains no elements matching the provided predicate, an
InvalidOperationException is thrown with the message "Sequence contains no matching
element".

•

Example

// Returns "a":
new[] { "a" }.Last();

// Returns "b":
new[] { "a", "b" }.Last();

// Returns "a":
new[] { "a", "b" }.Last(x => x.Equals("a"));

// Returns "be":
new[] { "ba", "be" }.Last(x => x.Contains("b"));

// Throws InvalidOperationException:
new[] { "ca", "ce" }.Last(x => x.Contains("b"));

// Throws InvalidOperationException:
new string[0].Last();

LastOrDefault()

Returns the last element of a sequence, or the last element matching the provided predicate.•
If the sequence contains no elements, or no elements matching the provided predicate, •

https://riptutorial.com/ 577

https://dotnetfiddle.net/XJ93lr

returns the default value of the sequence type using default(T).

Example

// Returns "a":
new[] { "a" }.LastOrDefault();

// Returns "b":
new[] { "a", "b" }.LastOrDefault();

// Returns "a":
new[] { "a", "b" }.LastOrDefault(x => x.Equals("a"));

 // Returns "be":
new[] { "ba", "be" }.LastOrDefault(x => x.Contains("b"));

// Returns null:
new[] { "ca", "ce" }.LastOrDefault(x => x.Contains("b"));

// Returns null:
new string[0].LastOrDefault();

Single()

If the sequence contains exactly one element, or exactly one element matching the provided
predicate, that element is returned.

•

If the sequence contains no elements, or no elements matching the provided predicate, an
InvalidOperationException is thrown with the message "Sequence contains no elements".

•

If the sequence contains more than one element, or more than one element matching the
provided predicate, an InvalidOperationException is thrown with the message "Sequence
contains more than one element".

•

Note: in order to evaluate whether the sequence contains exactly one element, at most two
elements has to be enumerated.

•

Example

// Returns "a":
new[] { "a" }.Single();

// Throws InvalidOperationException because sequence contains more than one element:
new[] { "a", "b" }.Single();

// Returns "b":
new[] { "a", "b" }.Single(x => x.Equals("b"));

// Throws InvalidOperationException:
new[] { "a", "b" }.Single(x => x.Equals("c"));

// Throws InvalidOperationException:
new string[0].Single();

// Throws InvalidOperationException because sequence contains more than one element:
new[] { "a", "a" }.Single();

https://riptutorial.com/ 578

SingleOrDefault()

If the sequence contains exactly one element, or exactly one element matching the provided
predicate, that element is returned.

•

If the sequence contains no elements, or no elements matching the provided predicate,
default(T) is returned.

•

If the sequence contains more than one element, or more than one element matching the
provided predicate, an InvalidOperationException is thrown with the message "Sequence
contains more than one element".

•

If the sequence contains no elements matching the provided predicate, returns the default
value of the sequence type using default(T).

•

Note: in order to evaluate whether the sequence contains exactly one element, at most two
elements has to be enumerated.

•

Example

// Returns "a":
new[] { "a" }.SingleOrDefault();

// returns "a"
new[] { "a", "b" }.SingleOrDefault(x => x == "a");

// Returns null:
new[] { "a", "b" }.SingleOrDefault(x => x == "c");

// Throws InvalidOperationException:
new[] { "a", "a" }.SingleOrDefault(x => x == "a");

// Throws InvalidOperationException:
new[] { "a", "b" }.SingleOrDefault();

// Returns null:
new string[0].SingleOrDefault();

Recommendations

Although you can use FirstOrDefault, LastOrDefault or SingleOrDefault to check whether a
sequence contains any items, Any or Count are more reliable. This is because a return value
of default(T) from one of these three methods doesn't prove that the sequence is empty, as
the value of the first / last / single element of the sequence could equally be default(T)

•

Decide on which methods fits your code's purpose the most. For instance, use Single only if
you must ensure that there is a single item in the collection matching your predicate —
otherwise use First; as Single throw an exception if the sequence has more than one
matching element. This of course applies to the "*OrDefault"-counterparts as well.

•

Regarding efficiency: Although it's often appropriate to ensure that there is only one item (
Single) or, either only one or zero (SingleOrDefault) items, returned by a query, both of these

•

https://riptutorial.com/ 579

methods require more, and often the entirety, of the collection to be examined to ensure
there in no second match to the query. This is unlike the behavior of, for example, the First
method, which can be satisfied after finding the first match.

Except

The Except method returns the set of items which are contained in the first collection but are not
contained in the second. The default IEqualityComparer is used to compare the items within the two
sets. There is an overload which accepts an IEqualityComparer as an argument.

Example:

int[] first = { 1, 2, 3, 4 };
int[] second = { 0, 2, 3, 5 };

IEnumerable<int> inFirstButNotInSecond = first.Except(second);
// inFirstButNotInSecond = { 1, 4 }

Output:

1
4

Live Demo on .NET Fiddle

In this case .Except(second) excludes elements contained in the array second, namely 2 and 3 (0
and 5 are not contained in the first array and are skipped).

Note that Except implies Distinct (i.e., it removes repeated elements). For example:

int[] third = { 1, 1, 1, 2, 3, 4 };

IEnumerable<int> inThirdButNotInSecond = third.Except(second);
// inThirdButNotInSecond = { 1, 4 }

Output:

1
4

Live Demo on .NET Fiddle

In this case, the elements 1 and 4 are returned only once.

Implementing IEquatable or providing the function an IEqualityComparer will allow using a different
method to compare the elements. Note that the GetHashCode method should also be overridden so
that it will return an identical hash code for object that are identical according to the IEquatable
implementation.

Example With IEquatable:

https://riptutorial.com/ 580

https://msdn.microsoft.com/en-us/library/ms132151(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms132151(v=vs.110).aspx
https://dotnetfiddle.net/m3EqTQ
https://dotnetfiddle.net/VlXBUp
https://msdn.microsoft.com/en-us/library/ms131187(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms132151(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.object.gethashcode(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms131187(v=vs.110).aspx

class Holiday : IEquatable<Holiday>
{
 public string Name { get; set; }

 public bool Equals(Holiday other)
 {
 return Name == other.Name;
 }

 // GetHashCode must return true whenever Equals returns true.
 public override int GetHashCode()
 {
 //Get hash code for the Name field if it is not null.
 return Name?.GetHashCode() ?? 0;
 }
}

public class Program
{
 public static void Main()
 {
 List<Holiday> holidayDifference = new List<Holiday>();

 List<Holiday> remoteHolidays = new List<Holiday>
 {
 new Holiday { Name = "Xmas" },
 new Holiday { Name = "Hanukkah" },
 new Holiday { Name = "Ramadan" }
 };

 List<Holiday> localHolidays = new List<Holiday>
 {
 new Holiday { Name = "Xmas" },
 new Holiday { Name = "Ramadan" }
 };

 holidayDifference = remoteHolidays
 .Except(localHolidays)
 .ToList();

 holidayDifference.ForEach(x => Console.WriteLine(x.Name));
 }
}

Output:

Hanukkah

Live Demo on .NET Fiddle

SelectMany: Flattening a sequence of sequences

var sequenceOfSequences = new [] { new [] { 1, 2, 3 }, new [] { 4, 5 }, new [] { 6 } };
var sequence = sequenceOfSequences.SelectMany(x => x);
// returns { 1, 2, 3, 4, 5, 6 }

Use SelectMany() if you have, or you are creating a sequence of sequences, but you want the

https://riptutorial.com/ 581

https://dotnetfiddle.net/9ilGqy

result as one long sequence.

In LINQ Query Syntax:

var sequence = from subSequence in sequenceOfSequences
 from item in subSequence
 select item;

If you have a collection of collections and would like to be able to work on data from parent and
child collection at the same time, it is also possible with SelectMany.

Let's define simple classes

public class BlogPost
{
 public int Id { get; set; }
 public string Content { get; set; }
 public List<Comment> Comments { get; set; }
}

public class Comment
{
 public int Id { get; set; }
 public string Content { get; set; }
}

Let's assume we have following collection.

List<BlogPost> posts = new List<BlogPost>()
{
 new BlogPost()
 {
 Id = 1,
 Comments = new List<Comment>()
 {
 new Comment()
 {
 Id = 1,
 Content = "It's really great!",
 },
 new Comment()
 {
 Id = 2,
 Content = "Cool post!"
 }
 }
 },
 new BlogPost()
 {
 Id = 2,
 Comments = new List<Comment>()
 {
 new Comment()
 {
 Id = 3,
 Content = "I don't think you're right",
 },

https://riptutorial.com/ 582

 new Comment()
 {
 Id = 4,
 Content = "This post is a complete nonsense"
 }
 }
 }
};

Now we want to select comments Content along with Id of BlogPost associated with this comment.
In order to do so, we can use appropriate SelectMany overload.

var commentsWithIds = posts.SelectMany(p => p.Comments, (post, comment) => new { PostId =
post.Id, CommentContent = comment.Content });

Our commentsWithIds looks like this

{
 PostId = 1,
 CommentContent = "It's really great!"
},
{
 PostId = 1,
 CommentContent = "Cool post!"
},
{
 PostId = 2,
 CommentContent = "I don't think you're right"
},
{
 PostId = 2,
 CommentContent = "This post is a complete nonsense"
}

SelectMany

The SelectMany linq method 'flattens' an IEnumerable<IEnumerable<T>> into an IEnumerable<T>. All of
the T elements within the IEnumerable instances contained in the source IEnumerable will be
combined into a single IEnumerable.

var words = new [] { "a,b,c", "d,e", "f" };
var splitAndCombine = words.SelectMany(x => x.Split(','));
// returns { "a", "b", "c", "d", "e", "f" }

If you use a selector function which turns input elements into sequences, the result will be the
elements of those sequences returned one by one.

Note that, unlike Select(), the number of elements in the output doesn't need to be the same as
were in the input.

More real-world example

class School

https://riptutorial.com/ 583

{
 public Student[] Students { get; set; }
}

class Student
{
 public string Name { get; set; }
}

var schools = new [] {
 new School(){ Students = new [] { new Student { Name="Bob"}, new Student { Name="Jack"}
}},
 new School(){ Students = new [] { new Student { Name="Jim"}, new Student { Name="John"} }}
};

var allStudents = schools.SelectMany(s=> s.Students);

foreach(var student in allStudents)
{
 Console.WriteLine(student.Name);
}

Output:

Bob
Jack
Jim
John

Live Demo on .NET Fiddle

All

All is used to check, if all elements of a collection match a condition or not.
see also: .Any

1. Empty parameter

All: is not allowed to be used with empty parameter.

2. Lambda expression as parameter

All: Returns true if all elements of collection satisfies the lambda expression and false otherwise:

var numbers = new List<int>(){ 1, 2, 3, 4, 5};
bool result = numbers.All(i => i < 10); // true
bool result = numbers.All(i => i >= 3); // false

3. Empty collection

All: Returns true if the collection is empty and a lambda expression is supplied:

https://riptutorial.com/ 584

https://dotnetfiddle.net/LNyymI
http://www.riptutorial.com/csharp/example/5098/any

var numbers = new List<int>();
bool result = numbers.All(i => i >= 0); // true

Note: All will stop iteration of the collection as soon as it finds an element not matching the
condition. This means that the collection will not necessarily be fully enumerated; it will only be
enumerated far enough to find the first item not matching the condition.

Query collection by type / cast elements to type

interface IFoo { }
class Foo : IFoo { }
class Bar : IFoo { }

var item0 = new Foo();
var item1 = new Foo();
var item2 = new Bar();
var item3 = new Bar();
var collection = new IFoo[] { item0, item1, item2, item3 };

Using OfType

var foos = collection.OfType<Foo>(); // result: IEnumerable<Foo> with item0 and item1
var bars = collection.OfType<Bar>(); // result: IEnumerable<Bar> item item2 and item3
var foosAndBars = collection.OfType<IFoo>(); // result: IEnumerable<IFoo> with all four items

Using Where

var foos = collection.Where(item => item is Foo); // result: IEnumerable<IFoo> with item0 and
item1
var bars = collection.Where(item => item is Bar); // result: IEnumerable<IFoo> with item2 and
item3

Using Cast

var bars = collection.Cast<Bar>(); // throws InvalidCastException on the 1st
item
var foos = collection.Cast<Foo>(); // throws InvalidCastException on the 3rd
item
var foosAndBars = collection.Cast<IFoo>(); // OK

Union

Merges two collections to create a distinct collection using the default equality comparer

int[] numbers1 = { 1, 2, 3 };
int[] numbers2 = { 2, 3, 4, 5 };

var allElement = numbers1.Union(numbers2); // AllElement now contains 1,2,3,4,5

Live Demo on .NET Fiddle

https://riptutorial.com/ 585

https://dotnetfiddle.net/oet2Uq

JOINS

Joins are used to combine different lists or tables holding data via a common key.

Like in SQL, the following kinds of Joins are supported in LINQ:
Inner, Left, Right, Cross and Full Outer Joins.

The following two lists are used in the examples below:

var first = new List<string>(){ "a","b","c"}; // Left data
var second = new List<string>(){ "a", "c", "d"}; // Right data

(Inner) Join

var result = from f in first
 join s in second on f equals s
 select new { f, s };

var result = first.Join(second,
 f => f,
 s => s,
 (f, s) => new { f, s });

// Result: {"a","a"}
// {"c","c"}

Left outer join

var leftOuterJoin = from f in first
 join s in second on f equals s into temp
 from t in temp.DefaultIfEmpty()
 select new { First = f, Second = t};

// Or can also do:
var leftOuterJoin = from f in first
 from s in second.Where(x => x == f).DefaultIfEmpty()
 select new { First = f, Second = s};

// Result: {"a","a"}
// {"b", null}
// {"c","c"}

// Left outer join method syntax
var leftOuterJoinFluentSyntax = first.GroupJoin(second,
 f => f,
 s => s,
 (f, s) => new { First = f, Second = s })
 .SelectMany(temp => temp.Second.DefaultIfEmpty(),
 (f, s) => new { First = f.First, Second = s });

Right Outer Join

https://riptutorial.com/ 586

var rightOuterJoin = from s in second
 join f in first on s equals f into temp
 from t in temp.DefaultIfEmpty()
 select new {First=t,Second=s};

// Result: {"a","a"}
// {"c","c"}
// {null,"d"}

Cross Join

var CrossJoin = from f in first
 from s in second
 select new { f, s };

// Result: {"a","a"}
// {"a","c"}
// {"a","d"}
// {"b","a"}
// {"b","c"}
// {"b","d"}
// {"c","a"}
// {"c","c"}
// {"c","d"}

Full Outer Join

var fullOuterjoin = leftOuterJoin.Union(rightOuterJoin);

// Result: {"a","a"}
// {"b", null}
// {"c","c"}
// {null,"d"}

Practical example

The examples above have a simple data structure so you can focus on understanding the different
LINQ joins technically, but in the real world you would have tables with columns you need to join.

In the following example, there is just one class Region used, in reality you would join two or more
different tables which hold the same key (in this example first and second are joined via the
common key ID).

Example: Consider the following data structure:

public class Region
{
 public Int32 ID;
 public string RegionDescription;

 public Region(Int32 pRegionID, string pRegionDescription=null)
 {

https://riptutorial.com/ 587

 ID = pRegionID; RegionDescription = pRegionDescription;
 }
}

Now prepare the data (i.e. populate with data):

// Left data
var first = new List<Region>()
 { new Region(1), new Region(3), new Region(4) };
// Right data
var second = new List<Region>()
 {
 new Region(1, "Eastern"), new Region(2, "Western"),
 new Region(3, "Northern"), new Region(4, "Southern")
 };

You can see that in this example first doesn't contain any region descriptions so you want to join
them from second. Then the inner join would look like:

// do the inner join
var result = from f in first
 join s in second on f.ID equals s.ID
 select new { f.ID, s.RegionDescription };

 // Result: {1,"Eastern"}
 // {3, Northern}
 // {4,"Southern"}

This result has created anonymous objects on the fly, which is fine, but we have already created a
proper class - so we can specify it: Instead of select new { f.ID, s.RegionDescription }; we can
say select new Region(f.ID, s.RegionDescription);, which will return the same data but will create
objects of type Region - that will maintain compatibility with the other objects.

Live demo on .NET fiddle

Distinct

Returns unique values from an IEnumerable. Uniqueness is determined using the default equality
comparer.

int[] array = { 1, 2, 3, 4, 2, 5, 3, 1, 2 };

var distinct = array.Distinct();
// distinct = { 1, 2, 3, 4, 5 }

To compare a custom data type, we need to implement the IEquatable<T> interface and provide
GetHashCode and Equals methods for the type. Or the equality comparer may be overridden:

class SSNEqualityComparer : IEqualityComparer<Person> {
 public bool Equals(Person a, Person b) => return a.SSN == b.SSN;
 public int GetHashCode(Person p) => p.SSN;

https://riptutorial.com/ 588

https://dotnetfiddle.net/pP6enP

}

List<Person> people;

distinct = people.Distinct(SSNEqualityComparer);

GroupBy one or multiple fields

Lets assume we have some Film model:

public class Film {
 public string Title { get; set; }
 public string Category { get; set; }
 public int Year { get; set; }
}

Group by Category property:

foreach (var grp in films.GroupBy(f => f.Category)) {
 var groupCategory = grp.Key;
 var numberOfFilmsInCategory = grp.Count();
}

Group by Category and Year:

foreach (var grp in films.GroupBy(f => new { Category = f.Category, Year = f.Year })) {
 var groupCategory = grp.Key.Category;
 var groupYear = grp.Key.Year;
 var numberOfFilmsInCategory = grp.Count();
}

Using Range with various Linq methods

You can use the Enumerable class alongside Linq queries to convert for loops into Linq one liners.

Select Example

Opposed to doing this:

var asciiCharacters = new List<char>();
for (var x = 0; x < 256; x++)
{
 asciiCharacters.Add((char)x);
}

You can do this:

var asciiCharacters = Enumerable.Range(0, 256).Select(a => (char) a);

Where Example

https://riptutorial.com/ 589

In this example, 100 numbers will be generated and even ones will be extracted

var evenNumbers = Enumerable.Range(1, 100).Where(a => a % 2 == 0);

Query Ordering - OrderBy() ThenBy() OrderByDescending()
ThenByDescending()

string[] names= { "mark", "steve", "adam" };

Ascending:

Query Syntax

var sortedNames =
 from name in names
 orderby name
 select name;

Method Syntax

var sortedNames = names.OrderBy(name => name);

sortedNames contains the names in following order: "adam","mark","steve"

Descending:

Query Syntax

var sortedNames =
 from name in names
 orderby name descending
 select name;

Method Syntax

var sortedNames = names.OrderByDescending(name => name);

sortedNames contains the names in following order: "steve","mark","adam"

Order by several fields

Person[] people =
{
 new Person { FirstName = "Steve", LastName = "Collins", Age = 30},
 new Person { FirstName = "Phil" , LastName = "Collins", Age = 28},
 new Person { FirstName = "Adam" , LastName = "Ackerman", Age = 29},
 new Person { FirstName = "Adam" , LastName = "Ackerman", Age = 15}
};

Query Syntax

https://riptutorial.com/ 590

var sortedPeople = from person in people
 orderby person.LastName, person.FirstName, person.Age descending
 select person;

Method Syntax

 sortedPeople = people.OrderBy(person => person.LastName)
 .ThenBy(person => person.FirstName)
 .ThenByDescending(person => person.Age);

Result

1. Adam Ackerman 29
2. Adam Ackerman 15
3. Phil Collins 28
4. Steve Collins 30

Basics

LINQ is largely beneficial for querying collections (or arrays).

For example, given the following sample data:

var classroom = new Classroom
{
 new Student { Name = "Alice", Grade = 97, HasSnack = true },
 new Student { Name = "Bob", Grade = 82, HasSnack = false },
 new Student { Name = "Jimmy", Grade = 71, HasSnack = true },
 new Student { Name = "Greg", Grade = 90, HasSnack = false },
 new Student { Name = "Joe", Grade = 59, HasSnack = false }
}

We can "query" on this data using LINQ syntax. For example, to retrieve all students who have a
snack today:

var studentsWithSnacks = from s in classroom.Students
 where s.HasSnack
 select s;

Or, to retrieve students with a grade of 90 or above, and only return their names, not the full
Student object:

var topStudentNames = from s in classroom.Students
 where s.Grade >= 90
 select s.Name;

The LINQ feature is comprised of two syntaxes that perform the same functions, have nearly
identical performance, but are written very differently. The syntax in the example above is called
query syntax. The following example, however, illustrates method syntax. The same data will be
returned as in the example above, but the way the query is written is different.

https://riptutorial.com/ 591

var topStudentNames = classroom.Students
 .Where(s => s.Grade >= 90)
 .Select(s => s.Name);

GroupBy

GroupBy is an easy way to sort a IEnumerable<T> collection of items into distinct groups.

Simple Example

In this first example, we end up with two groups, odd and even items.

List<int> iList = new List<int>() { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
var grouped = iList.GroupBy(x => x % 2 == 0);

//Groups iList into odd [13579] and even[2468] items

foreach(var group in grouped)
{
 foreach (int item in group)
 {
 Console.Write(item); // 135792468 (first odd then even)
 }
}

More Complex Example

Let's take grouping a list of people by age as an example. First, we'll create a Person object which
has two properties, Name and Age.

public class Person
{
 public int Age {get; set;}
 public string Name {get; set;}
}

Then we create our sample list of people with various names and ages.

List<Person> people = new List<Person>();
people.Add(new Person{Age = 20, Name = "Mouse"});
people.Add(new Person{Age = 30, Name = "Neo"});
people.Add(new Person{Age = 40, Name = "Morpheus"});
people.Add(new Person{Age = 30, Name = "Trinity"});
people.Add(new Person{Age = 40, Name = "Dozer"});
people.Add(new Person{Age = 40, Name = "Smith"});

Then we create a LINQ query to group our list of people by age.

var query = people.GroupBy(x => x.Age);

Doing so, we can see the Age for each group, and have a list of each person in the group.

https://riptutorial.com/ 592

foreach(var result in query)
{
 Console.WriteLine(result.Key);

 foreach(var person in result)
 Console.WriteLine(person.Name);
}

This results in the following output:

20
Mouse
30
Neo
Trinity
40
Morpheus
Dozer
Smith

You can play with the live demo on .NET Fiddle

Any

Any is used to check if any element of a collection matches a condition or not.
see also: .All, Any and FirstOrDefault: best practice

1. Empty parameter

Any: Returns true if the collection has any elements and false if the collection is empty:

var numbers = new List<int>();
bool result = numbers.Any(); // false

var numbers = new List<int>(){ 1, 2, 3, 4, 5};
bool result = numbers.Any(); //true

2. Lambda expression as parameter

Any: Returns true if the collection has one or more elements that meet the condition in the lambda
expression:

var arrayOfStrings = new string[] { "a", "b", "c" };
arrayOfStrings.Any(item => item == "a"); // true
arrayOfStrings.Any(item => item == "d"); // false

3. Empty collection

Any: Returns false if the collection is empty and a lambda expression is supplied:

https://riptutorial.com/ 593

https://dotnetfiddle.net/VFOZ1x
http://www.riptutorial.com/csharp/example/2773/all
http://www.riptutorial.com/csharp/example/16731/any-and-first-ordefault----best-practice

var numbers = new List<int>();
bool result = numbers.Any(i => i >= 0); // false

Note: Any will stop iteration of the collection as soon as it finds an element matching the condition.
This means that the collection will not necessarily be fully enumerated; it will only be enumerated
far enough to find the first item matching the condition.

Live Demo on .NET Fiddle

ToDictionary

The ToDictionary() LINQ method can be used to generate a Dictionary<TKey, TElement> collection
based on a given IEnumerable<T> source.

IEnumerable<User> users = GetUsers();
Dictionary<int, User> usersById = users.ToDictionary(x => x.Id);

In this example, the single argument passed to ToDictionary is of type Func<TSource, TKey>, which
returns the key for each element.

This is a concise way to perform the following operation:

Dictionary<int, User> usersById = new Dictionary<int User>();
foreach (User u in users)
{
 usersById.Add(u.Id, u);
}

You can also pass a second parameter to the ToDictionary method, which is of type Func<TSource,
TElement> and returns the Value to be added for each entry.

IEnumerable<User> users = GetUsers();
Dictionary<int, string> userNamesById = users.ToDictionary(x => x.Id, x => x.Name);

It is also possible to specify the IComparer that is used to compare key values. This can be useful
when the key is a string and you want it to match case-insensitive.

IEnumerable<User> users = GetUsers();
Dictionary<string, User> usersByCaseInsenstiveName = users.ToDictionary(x => x.Name,
StringComparer.InvariantCultureIgnoreCase);

var user1 = usersByCaseInsenstiveName["john"];
var user2 = usersByCaseInsenstiveName["JOHN"];
user1 == user2; // Returns true

Note: the ToDictionary method requires all keys to be unique, there must be no duplicate keys. If
there are, then an exception is thrown: ArgumentException: An item with the same key has already
been added. If you have a scenario where you know that you will have multiple elements with the
same key, then you are better off using ToLookup instead.

https://riptutorial.com/ 594

https://dotnetfiddle.net/IQ4wG4
http://www.riptutorial.com/csharp/example/14871/tolookup

Aggregate

Aggregate Applies an accumulator function over a sequence.

int[] intList = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = intList.Aggregate((prevSum, current) => prevSum + current);
// sum = 55

At the first step prevSum = 1•
At the second prevSum = prevSum(at the first step) + 2•
At the i-th step prevSum = prevSum(at the (i-1) step) + i-th element of the array•

string[] stringList = { "Hello", "World", "!" };
string joinedString = stringList.Aggregate((prev, current) => prev + " " + current);
// joinedString = "Hello World !"

A second overload of Aggregate also receives an seed parameter which is the initial accumulator
value. This can be used to calculate multiple conditions on a collection without iterating it more
than once.

List<int> items = new List<int> { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 };

For the collection of items we want to calculate

The total .Count1.
The amount of even numbers2.
Collect each forth item3.

Using Aggregate it can be done like this:

var result = items.Aggregate(new { Total = 0, Even = 0, FourthItems = new List<int>() },
 (accumelative,item) =>
 new {
 Total = accumelative.Total + 1,
 Even = accumelative.Even + (item % 2 == 0 ? 1 : 0),
 FourthItems = (accumelative.Total + 1)%4 == 0 ?
 new List<int>(accumelative.FourthItems) { item } :
 accumelative.FourthItems
 });
// Result:
// Total = 12
// Even = 6
// FourthItems = [4, 8, 12]

Note that using an anonymous type as the seed one has to instantiate a new object each item
because the properties are read only. Using a custom class one can simply assign the information
and no new is needed (only when giving the initial seed parameter

Defining a variable inside a Linq query (let keyword)

https://riptutorial.com/ 595

In order to define a variable inside a linq expression, you can use the let keyword. This is usually
done in order to store the results of intermediate sub-queries, for example:

 int[] numbers = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

 var aboveAverages = from number in numbers
 let average = numbers.Average()
 let nSquared = Math.Pow(number,2)
 where nSquared > average
 select number;

 Console.WriteLine("The average of the numbers is {0}.", numbers.Average());

 foreach (int n in aboveAverages)
 {
 Console.WriteLine("Query result includes number {0} with square of {1}.", n,
Math.Pow(n,2));
 }

Output:

The average of the numbers is 4.5.
Query result includes number 3 with square of 9.
Query result includes number 4 with square of 16.
Query result includes number 5 with square of 25.
Query result includes number 6 with square of 36.
Query result includes number 7 with square of 49.
Query result includes number 8 with square of 64.
Query result includes number 9 with square of 81.

View Demo

SkipWhile

SkipWhile() is used to exclude elements until first non-match (this might be counter intuitive to
most)

int[] list = { 42, 42, 6, 6, 6, 42 };
var result = list.SkipWhile(i => i == 42);
// Result: 6, 6, 6, 42

DefaultIfEmpty

DefaultIfEmpty is used to return a Default Element if the Sequence contains no elements. This
Element can be the Default of the Type or a user defined instance of that Type. Example:

var chars = new List<string>() { "a", "b", "c", "d" };

chars.DefaultIfEmpty("N/A").FirstOrDefault(); // returns "a";

chars.Where(str => str.Length > 1)
 .DefaultIfEmpty("N/A").FirstOrDefault(); // return "N/A"

https://riptutorial.com/ 596

https://dotnetfiddle.net/zbjrHZ

chars.Where(str => str.Length > 1)
 .DefaultIfEmpty().First(); // returns null;

Usage in Left Joins:

With DefaultIfEmpty the traditional Linq Join can return a default object if no match was found.
Thus acting as a SQL's Left Join. Example:

var leftSequence = new List<int>() { 99, 100, 5, 20, 102, 105 };
var rightSequence = new List<char>() { 'a', 'b', 'c', 'i', 'd' };

var numbersAsChars = from l in leftSequence
 join r in rightSequence
 on l equals (int)r into leftJoin
 from result in leftJoin.DefaultIfEmpty('?')
 select new
 {
 Number = l,
 Character = result
 };

foreach(var item in numbersAsChars)
{
 Console.WriteLine("Num = {0} ** Char = {1}", item.Number, item.Character);
}

ouput:

Num = 99 Char = c
Num = 100 Char = d
Num = 5 Char = ?
Num = 20 Char = ?
Num = 102 Char = ?
Num = 105 Char = i

In the case where a DefaultIfEmpty is used (without specifying a default value) and that will result
will no matching items on the right sequence one must make sure that the object is not null before
accessing its properties. Otherwise it will result in a NullReferenceException. Example:

var leftSequence = new List<int> { 1, 2, 5 };
var rightSequence = new List<dynamic>()
 {
 new { Value = 1 },
 new { Value = 2 },
 new { Value = 3 },
 new { Value = 4 },
 };

var numbersAsChars = (from l in leftSequence
 join r in rightSequence
 on l equals r.Value into leftJoin
 from result in leftJoin.DefaultIfEmpty()
 select new
 {
 Left = l,

https://riptutorial.com/ 597

 // 5 will not have a matching object in the right so result
 // will be equal to null.
 // To avoid an error use:
 // - C# 6.0 or above - ?.
 // - Under - result == null ? 0 : result.Value
 Right = result?.Value
 }).ToList();

SequenceEqual

SequenceEqual is used to compare two IEnumerable<T> sequences with each other.

int[] a = new int[] {1, 2, 3};
int[] b = new int[] {1, 2, 3};
int[] c = new int[] {1, 3, 2};

bool returnsTrue = a.SequenceEqual(b);
bool returnsFalse = a.SequenceEqual(c);

Count and LongCount

Count returns the number of elements in an IEnumerable<T>. Count also exposes an optional
predicate parameter that allows you to filter the elements you want to count.

int[] array = { 1, 2, 3, 4, 2, 5, 3, 1, 2 };

int n = array.Count(); // returns the number of elements in the array
int x = array.Count(i => i > 2); // returns the number of elements in the array greater than 2

LongCount works the same way as Count but has a return type of long and is used for counting
IEnumerable<T> sequences that are longer than int.MaxValue

int[] array = GetLargeArray();

long n = array.LongCount(); // returns the number of elements in the array
long x = array.LongCount(i => i > 100); // returns the number of elements in the array greater
than 100

Incrementally building a query

Because LINQ uses deferred execution, we can have a query object that doesn't actually contain
the values, but will return the values when evaluated. We can thus dynamically build the query
based on our control flow, and evaluate it once we are finished:

IEnumerable<VehicleModel> BuildQuery(int vehicleType, SearchModel search, int start = 1, int
count = -1) {
 IEnumerable<VehicleModel> query = _entities.Vehicles
 .Where(x => x.Active && x.Type == vehicleType)
 .Select(x => new VehicleModel {
 Id = v.Id,
 Year = v.Year,
 Class = v.Class,

https://riptutorial.com/ 598

 Make = v.Make,
 Model = v.Model,
 Cylinders = v.Cylinders ?? 0
 });

We can conditionally apply filters:

 if (!search.Years.Contains("all", StringComparer.OrdinalIgnoreCase))
 query = query.Where(v => search.Years.Contains(v.Year));

 if (!search.Makes.Contains("all", StringComparer.OrdinalIgnoreCase)) {
 query = query.Where(v => search.Makes.Contains(v.Make));
 }

 if (!search.Models.Contains("all", StringComparer.OrdinalIgnoreCase)) {
 query = query.Where(v => search.Models.Contains(v.Model));
 }

 if (!search.Cylinders.Equals("all", StringComparer.OrdinalIgnoreCase)) {
 decimal minCylinders = 0;
 decimal maxCylinders = 0;
 switch (search.Cylinders) {
 case "2-4":
 maxCylinders = 4;
 break;
 case "5-6":
 minCylinders = 5;
 maxCylinders = 6;
 break;
 case "8":
 minCylinders = 8;
 maxCylinders = 8;
 break;
 case "10+":
 minCylinders = 10;
 break;
 }
 if (minCylinders > 0) {
 query = query.Where(v => v.Cylinders >= minCylinders);
 }
 if (maxCylinders > 0) {
 query = query.Where(v => v.Cylinders <= maxCylinders);
 }
 }

We can add a sort order to the query based on a condition:

 switch (search.SortingColumn.ToLower()) {
 case "make_model":
 query = query.OrderBy(v => v.Make).ThenBy(v => v.Model);
 break;
 case "year":
 query = query.OrderBy(v => v.Year);
 break;
 case "engine_size":
 query = query.OrderBy(v => v.EngineSize).ThenBy(v => v.Cylinders);
 break;
 default:
 query = query.OrderBy(v => v.Year); //The default sorting.

https://riptutorial.com/ 599

 }

Our query can be defined to start from a given point:

 query = query.Skip(start - 1);

and defined to return a specific number of records:

 if (count > -1) {
 query = query.Take(count);
 }
 return query;
}

Once we have the query object, we can evaluate the results with a foreach loop, or one of the
LINQ methods that returns a set of values, such as ToList or ToArray:

SearchModel sm;

// populate the search model here
// ...

List<VehicleModel> list = BuildQuery(5, sm).ToList();

Zip

The Zip extension method acts upon two collections. It pairs each element in the two series
together based on position. With a Func instance, we use Zip to handle elements from the two C#
collections in pairs. If the series differ in size, the extra elements of the larger series will be
ignored.

To take an example from the book "C# in a Nutshell",

int[] numbers = { 3, 5, 7 };
string[] words = { "three", "five", "seven", "ignored" };
IEnumerable<string> zip = numbers.Zip(words, (n, w) => n + "=" + w);

Output:

3=three
5=five
7=seven

View Demo

GroupJoin with outer range variable

Customer[] customers = Customers.ToArray();
Purchase[] purchases = Purchases.ToArray();

https://riptutorial.com/ 600

https://dotnetfiddle.net/nIA5E9

var groupJoinQuery =
 from c in customers
 join p in purchases on c.ID equals p.CustomerID
 into custPurchases
 select new
 {
 CustName = c.Name,
 custPurchases
 };

ElementAt and ElementAtOrDefault

ElementAt will return the item at index n. If n is not within the range of the enumerable, throws an
ArgumentOutOfRangeException.

int[] numbers = { 1, 2, 3, 4, 5 };
numbers.ElementAt(2); // 3
numbers.ElementAt(10); // throws ArgumentOutOfRangeException

ElementAtOrDefault will return the item at index n. If n is not within the range of the enumerable,
returns a default(T).

int[] numbers = { 1, 2, 3, 4, 5 };
numbers.ElementAtOrDefault(2); // 3
numbers.ElementAtOrDefault(10); // 0 = default(int)

Both ElementAt and ElementAtOrDefault are optimized for when the source is an IList<T> and
normal indexing will be used in those cases.

Note that for ElementAt, if the provided index is greater than the size of the IList<T>, the list should
(but is technically not guaranteed to) throw an ArgumentOutOfRangeException.

Linq Quantifiers

Quantifier operations return a Boolean value if some or all of the elements in a sequence satisfy a
condition. In this article, we will see some common LINQ to Objects scenarios where we can use
these operators. There are 3 Quantifiers operations that can be used in LINQ:

All – used to determine whether all the elements in a sequence satisfy a condition. Eg:

int[] array = { 10, 20, 30 };

// Are all elements >= 10? YES
array.All(element => element >= 10);

// Are all elements >= 20? NO
array.All(element => element >= 20);

// Are all elements < 40? YES
array.All(element => element < 40);

https://riptutorial.com/ 601

Any - used to determine whether any elements in a sequence satisfy a condition. Eg:

int[] query=new int[] { 2, 3, 4 }
query.Any (n => n == 3);

Contains - used to determine whether a sequence contains a specified element. Eg:

//for int array
int[] query =new int[] { 1,2,3 };
query.Contains(1);

//for string array
string[] query={"Tom","grey"};
query.Contains("Tom");

//for a string
var stringValue="hello";
stringValue.Contains("h");

Joining multiple sequences

Consider entities Customer, Purchase and PurchaseItem as follows:

public class Customer
{
 public string Id { get; set } // A unique Id that identifies customer
 public string Name {get; set; }
}

public class Purchase
{
 public string Id { get; set }
 public string CustomerId {get; set; }
 public string Description { get; set; }
}

public class PurchaseItem
{
 public string Id { get; set }
 public string PurchaseId {get; set; }
 public string Detail { get; set; }
}

Consider following sample data for above entities:

var customers = new List<Customer>()
 {
 new Customer() {
 Id = Guid.NewGuid().ToString(),
 Name = "Customer1"
 },

 new Customer() {
 Id = Guid.NewGuid().ToString(),
 Name = "Customer2"
 }

https://riptutorial.com/ 602

 };

 var purchases = new List<Purchase>()
 {
 new Purchase() {
 Id = Guid.NewGuid().ToString(),
 CustomerId = customers[0].Id,
 Description = "Customer1-Purchase1"
 },

 new Purchase() {
 Id = Guid.NewGuid().ToString(),
 CustomerId = customers[0].Id,
 Description = "Customer1-Purchase2"
 },

 new Purchase() {
 Id = Guid.NewGuid().ToString(),
 CustomerId = customers[1].Id,
 Description = "Customer2-Purchase1"
 },

 new Purchase() {
 Id = Guid.NewGuid().ToString(),
 CustomerId = customers[1].Id,
 Description = "Customer2-Purchase2"
 }
 };

 var purchaseItems = new List<PurchaseItem>()
 {
 new PurchaseItem() {
 Id = Guid.NewGuid().ToString(),
 PurchaseId= purchases[0].Id,
 Detail = "Purchase1-PurchaseItem1"
 },

 new PurchaseItem() {
 Id = Guid.NewGuid().ToString(),
 PurchaseId= purchases[1].Id,
 Detail = "Purchase2-PurchaseItem1"
 },

 new PurchaseItem() {
 Id = Guid.NewGuid().ToString(),
 PurchaseId= purchases[1].Id,
 Detail = "Purchase2-PurchaseItem2"
 },

 new PurchaseItem() {
 Id = Guid.NewGuid().ToString(),
 PurchaseId= purchases[3].Id,
 Detail = "Purchase3-PurchaseItem1"
 }
 };

Now, consider below linq query:

var result = from c in customers
 join p in purchases on c.Id equals p.CustomerId // first join

https://riptutorial.com/ 603

 join pi in purchaseItems on p.Id equals pi.PurchaseId // second join
 select new
 {
 c.Name, p.Description, pi.Detail
 };

To output the result of above query:

foreach(var resultItem in result)
{
 Console.WriteLine($"{resultItem.Name}, {resultItem.Description}, {resultItem.Detail}");
}

The output of the query would be:

Customer1, Customer1-Purchase1, Purchase1-PurchaseItem1

Customer1, Customer1-Purchase2, Purchase2-PurchaseItem1

Customer1, Customer1-Purchase2, Purchase2-PurchaseItem2

Customer2, Customer2-Purchase2, Purchase3-PurchaseItem1

Live Demo on .NET Fiddle

Joining on multiple keys

 PropertyInfo[] stringProps = typeof (string).GetProperties();//string properties
 PropertyInfo[] builderProps = typeof(StringBuilder).GetProperties();//stringbuilder
properties

 var query =
 from s in stringProps
 join b in builderProps
 on new { s.Name, s.PropertyType } equals new { b.Name, b.PropertyType }
 select new
 {
 s.Name,
 s.PropertyType,
 StringToken = s.MetadataToken,
 StringBuilderToken = b.MetadataToken
 };

Note that anonymous types in above join must contain same properties since objects are
considered equal only if all their properties are equal. Otherwise query won't compile.

Select with Func selector - Use to get ranking of elements

On of the overloads of the Select extension methods also passes the index of the current item in
the collection being selected. These are a few uses of it.

Get the "row number" of the items

https://riptutorial.com/ 604

https://dotnetfiddle.net/Db8uqp

var rowNumbers = collection.OrderBy(item => item.Property1)
 .ThenBy(item => item.Property2)
 .ThenByDescending(item => item.Property3)
 .Select((item, index) => new { Item = item, RowNumber = index })
 .ToList();

Get the rank of an item within its group

var rankInGroup = collection.GroupBy(item => item.Property1)
 .OrderBy(group => group.Key)
 .SelectMany(group => group.OrderBy(item => item.Property2)
 .ThenByDescending(item => item.Property3)
 .Select((item, index) => new
 {
 Item = item,
 RankInGroup = index
 })).ToList();

Get the ranking of groups (also known in Oracle as dense_rank)

var rankOfBelongingGroup = collection.GroupBy(item => item.Property1)
 .OrderBy(group => group.Key)
 .Select((group, index) => new
 {
 Items = group,
 Rank = index
 })
 .SelectMany(v => v.Items, (s, i) => new
 {
 Item = i,
 DenseRank = s.Rank
 }).ToList();

For testing this you can use:

public class SomeObject
{
 public int Property1 { get; set; }
 public int Property2 { get; set; }
 public int Property3 { get; set; }

 public override string ToString()
 {
 return string.Join(", ", Property1, Property2, Property3);
 }
}

And data:

List<SomeObject> collection = new List<SomeObject>
{
 new SomeObject { Property1 = 1, Property2 = 1, Property3 = 1},
 new SomeObject { Property1 = 1, Property2 = 2, Property3 = 1},
 new SomeObject { Property1 = 1, Property2 = 2, Property3 = 2},
 new SomeObject { Property1 = 2, Property2 = 1, Property3 = 1},
 new SomeObject { Property1 = 2, Property2 = 2, Property3 = 1},

https://riptutorial.com/ 605

 new SomeObject { Property1 = 2, Property2 = 2, Property3 = 1},
 new SomeObject { Property1 = 2, Property2 = 3, Property3 = 1}
};

TakeWhile

TakeWhile returns elements from a sequence as long as the condition is true

int[] list = { 1, 10, 40, 50, 44, 70, 4 };
var result = list.TakeWhile(item => item < 50).ToList();
// result = { 1, 10, 40 }

Sum

The Enumerable.Sum extension method calculates the sum of numeric values.

In case the collection's elements are themselves numbers, you can calculate the sum directly.

int[] numbers = new int[] { 1, 4, 6 };
Console.WriteLine(numbers.Sum()); //outputs 11

In case the type of the elements is a complex type, you can use a lambda expression to specify
the value that should be calculated:

var totalMonthlySalary = employees.Sum(employee => employee.MonthlySalary);

Sum extension method can calculate with the following types:

Int32•
Int64•
Single•
Double•
Decimal•

In case your collection contains nullable types, you can use the null-coalescing operator to set a
default value for null elements:

int?[] numbers = new int?[] { 1, null, 6 };
Console.WriteLine(numbers.Sum(number => number ?? 0)); //outputs 7

ToLookup

ToLookup returns a data structure that allows indexing. It is an extension method. It
produces an ILookup instance that can be indexed or enumerated using a foreach-
loop. The entries are combined into groupings at each key. - dotnetperls

string[] array = { "one", "two", "three" };
//create lookup using string length as key

https://riptutorial.com/ 606

var lookup = array.ToLookup(item => item.Length);

//join the values whose lengths are 3
Console.WriteLine(string.Join(",",lookup[3]));
//output: one,two

Another Example:

int[] array = { 1,2,3,4,5,6,7,8 };
//generate lookup for odd even numbers (keys will be 0 and 1)
var lookup = array.ToLookup(item => item % 2);

//print even numbers after joining
Console.WriteLine(string.Join(",",lookup[0]));
//output: 2,4,6,8

//print odd numbers after joining
Console.WriteLine(string.Join(",",lookup[1]));
//output: 1,3,5,7

Build your own Linq operators for IEnumerable

One of the great things about Linq is that it is so easy to extend. You just need to create an
extension method whose argument is IEnumerable<T>.

public namespace MyNamespace
{
 public static class LinqExtensions
 {
 public static IEnumerable<List<T>> Batch<T>(this IEnumerable<T> source, int batchSize)
 {
 var batch = new List<T>();
 foreach (T item in source)
 {
 batch.Add(item);
 if (batch.Count == batchSize)
 {
 yield return batch;
 batch = new List<T>();
 }
 }
 if (batch.Count > 0)
 yield return batch;
 }
 }
}

This example splits the items in an IEnumerable<T> into lists of a fixed size, the last list containing
the remainder of the items. Notice how the object to which the extension method is applied is
passed in (argument source) as the initial argument using the this keyword. Then the yield
keyword is used to output the next item in the output IEnumerable<T> before continuing with
execution from that point (see yield keyword).

This example would be used in your code like this:

https://riptutorial.com/ 607

http://www.riptutorial.com/csharp/example/33/extension-methods---overview
http://www.riptutorial.com/csharp/topic/61/yield-keyword

//using MyNamespace;
var items = new List<int> { 2, 3, 4, 5, 6 };
foreach (List<int> sublist in items.Batch(3))
{
 // do something
}

On the first loop, sublist would be {2, 3, 4} and on the second {5, 6}.

Custom LinQ methods can be combined with standard LinQ methods too. e.g.:

//using MyNamespace;
var result = Enumerable.Range(0, 13) // generate a list
 .Where(x => x%2 == 0) // filter the list or do something other
 .Batch(3) // call our extension method
 .ToList() // call other standard methods

This query will return even numbers grouped in batches with a size of 3: {0, 2, 4}, {6, 8, 10},
{12}

Remember you need a using MyNamespace; line in order to be able to access the extension method.

Using SelectMany instead of nested loops

Given 2 lists

var list1 = new List<string> { "a", "b", "c" };
var list2 = new List<string> { "1", "2", "3", "4" };

if you want to output all permutations you could use nested loops like

var result = new List<string>();
foreach (var s1 in list1)
 foreach (var s2 in list2)
 result.Add($"{s1}{s2}");

Using SelectMany you can do the same operation as

var result = list1.SelectMany(x => list2.Select(y => $"{x}{y}", x, y)).ToList();

Any and First(OrDefault) - best practice

I won't explain what Any and FirstOrDefault does because there are already two good example
about them. See Any and First, FirstOrDefault, Last, LastOrDefault, Single, and SingleOrDefault
for more information.

A pattern I often see in code which should be avoided is

if (myEnumerable.Any(t=>t.Foo == "Bob"))
{
 var myFoo = myEnumerable.First(t=>t.Foo == "Bob");

https://riptutorial.com/ 608

http://www.riptutorial.com/csharp/example/5098/any
http://www.riptutorial.com/csharp/example/329/first--firstordefault--last--lastordefault--single--and-singleordefault

 //Do stuff
}

It could be written more efficiently like this

var myFoo = myEnumerable.FirstOrDefault(t=>t.Foo == "Bob");
if (myFoo != null)
{
 //Do stuff
}

By using the second example, the collection is searched only once and give the same result as the
first one. The same idea can be applied to Single.

GroupBy Sum and Count

Let's take a sample class:

public class Transaction
{
 public string Category { get; set; }
 public DateTime Date { get; set; }
 public decimal Amount { get; set; }
}

Now, let us consider a list of transactions:

var transactions = new List<Transaction>
{
 new Transaction { Category = "Saving Account", Amount = 56, Date =
DateTime.Today.AddDays(1) },
 new Transaction { Category = "Saving Account", Amount = 10, Date = DateTime.Today.AddDays(-
10) },
 new Transaction { Category = "Credit Card", Amount = 15, Date = DateTime.Today.AddDays(1)
},
 new Transaction { Category = "Credit Card", Amount = 56, Date = DateTime.Today },
 new Transaction { Category = "Current Account", Amount = 100, Date =
DateTime.Today.AddDays(5) },
};

If you want to calculate category wise sum of amount and count, you can use GroupBy as follows:

var summaryApproach1 = transactions.GroupBy(t => t.Category)
 .Select(t => new
 {
 Category = t.Key,
 Count = t.Count(),
 Amount = t.Sum(ta => ta.Amount),
 }).ToList();

Console.WriteLine("-- Summary: Approach 1 --");
summaryApproach1.ForEach(
 row => Console.WriteLine($"Category: {row.Category}, Amount: {row.Amount}, Count:
{row.Count}"));

https://riptutorial.com/ 609

Alternatively, you can do this in one step:

var summaryApproach2 = transactions.GroupBy(t => t.Category, (key, t) =>
{
 var transactionArray = t as Transaction[] ?? t.ToArray();
 return new
 {
 Category = key,
 Count = transactionArray.Length,
 Amount = transactionArray.Sum(ta => ta.Amount),
 };
}).ToList();

Console.WriteLine("-- Summary: Approach 2 --");
summaryApproach2.ForEach(
row => Console.WriteLine($"Category: {row.Category}, Amount: {row.Amount}, Count:
{row.Count}"));

Output for both the above queries would be same:

Category: Saving Account, Amount: 66, Count: 2

Category: Credit Card, Amount: 71, Count: 2

Category: Current Account, Amount: 100, Count: 1

Live Demo in .NET Fiddle

Reverse

Inverts the order of the elements in a sequence.•
If there is no items throws a ArgumentNullException: source is null.•

Example:

// Create an array.
int[] array = { 1, 2, 3, 4 }; //Output:
// Call reverse extension method on the array. //4
var reverse = array.Reverse(); //3
// Write contents of array to screen. //2
foreach (int value in reverse) //1
 Console.WriteLine(value);

Live code example

Remeber that Reverse() may work diffrent depending on the chain order of your LINQ statements.

 //Create List of chars
 List<int> integerlist = new List<int>() { 1, 2, 3, 4, 5, 6 };

 //Reversing the list then taking the two first elements
 IEnumerable<int> reverseFirst = integerlist.Reverse<int>().Take(2);

 //Taking 2 elements and then reversing only thos two

https://riptutorial.com/ 610

https://dotnetfiddle.net/1PfLGq#
https://dotnetfiddle.net/ckrWUo

 IEnumerable<int> reverseLast = integerlist.Take(2).Reverse();

 //reverseFirst output: 6, 5
 //reverseLast output: 2, 1

Live code example

Reverse() works by buffering everything then walk through it backwards, whitch is not very
efficient, but neither is OrderBy from that perspective.

In LINQ-to-Objects, there are buffering operations (Reverse, OrderBy, GroupBy, etc) and non-
buffering operations (Where, Take, Skip, etc).

Example: Non-buffering Reverse extention

public static IEnumerable<T> Reverse<T>(this IList<T> list) {
 for (int i = list.Count - 1; i >= 0; i--)
 yield return list[i];
}

Live code example

This method can encounter problems if u mutate the list while iterating.

Enumerating the Enumerable

The IEnumerable<T> interface is the base interface for all generic enumerators and is a
quintessential part of understanding LINQ. At its core, it represents the sequence.

This underlying interface is inherited by all of the generic collections, such as Collection<T>, Array,
List<T>, Dictionary<TKey,TValue> Class, and HashSet<T>.

In addition to representing the sequence, any class that inherits from IEnumerable<T> must
provide an IEnumerator<T>. The enumerator exposes the iterator for the enumerable, and these
two interconnected interfaces and ideas are the source of the saying "enumerate the enumerable".

"Enumerating the enumerable" is an important phrase. The enumerable is simply a structure for
how to iterate, it does not hold any materialized objects. For example, when sorting, an
enumerable may hold the criteria of the field to sort, but using .OrderBy() in itself will return an
IEnumerable<T> which only knows how to sort. Using a call which will materialize the objects, as
in iterate the set, is known as enumerating (for example .ToList()). The enumeration process will
use the the enumerable definition of how in order to move through the series and return the
relevant objects (in order, filtered, projected, etc.).

Only once the enumerable has been enumerated does it cause the materialization of the objects,
which is when metrics like time complexity (how long it should take related to series size) and
spacial complexity (how much space it should use related to series size) can be measured.

Creating your own class that inherits from IEnumerable<T> can be a little complicated depending
on the underlying series that needs to be enumerable. In general it is best to use one of the

https://riptutorial.com/ 611

https://dotnetfiddle.net/ckrWUo
https://dotnetfiddle.net/ckrWUo
https://msdn.microsoft.com/en-us/library/ms132397(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.array(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/6sh2ey19(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/xfhwa508(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/bb359438(v=vs.110).aspx
https://en.wikipedia.org/wiki/Time_complexity

existing generic collections. That said, it is also possible to inherit from the IEnumerable<T>
interface without having a defined array as the underlying structure.

For example, using the Fibonacci series as the underlying sequence. Note that the call to Where
simply builds an IEnumerable, and it is not until a call to enumerate that enumerable is made that
any of the values are materialized.

void Main()
{
 Fibonacci Fibo = new Fibonacci();
 IEnumerable<long> quadrillionplus = Fibo.Where(i => i > 1000000000000);
 Console.WriteLine("Enumerable built");
 Console.WriteLine(quadrillionplus.Take(2).Sum());
 Console.WriteLine(quadrillionplus.Skip(2).First());

 IEnumerable<long> fibMod612 = Fibo.OrderBy(i => i % 612);
 Console.WriteLine("Enumerable built");
 Console.WriteLine(fibMod612.First());//smallest divisible by 612
}

public class Fibonacci : IEnumerable<long>
{
 private int max = 90;

 //Enumerator called typically from foreach
 public IEnumerator GetEnumerator() {
 long n0 = 1;
 long n1 = 1;
 Console.WriteLine("Enumerating the Enumerable");
 for(int i = 0; i < max; i++){
 yield return n0+n1;
 n1 += n0;
 n0 = n1-n0;
 }
 }

 //Enumerable called typically from linq
 IEnumerator<long> IEnumerable<long>.GetEnumerator() {
 long n0 = 1;
 long n1 = 1;
 Console.WriteLine("Enumerating the Enumerable");
 for(int i = 0; i < max; i++){
 yield return n0+n1;
 n1 += n0;
 n0 = n1-n0;
 }
 }
}

Output

Enumerable built
Enumerating the Enumerable
4052739537881
Enumerating the Enumerable
4052739537881
Enumerable built
Enumerating the Enumerable

https://riptutorial.com/ 612

14930352

The strength in the second set (the fibMod612) is that even though we made the call to order our
entire set of Fibonacci numbers, since only one value was taken using .First() the time
complexity was O(n) as only 1 value needed to be compared during the ordering algorithm's
execution. This is because our enumerator only asked for 1 value, and so the entire enumerable
did not have to be materialized. Had we used .Take(5) instead of .First() the enumerator would
have asked for 5 values, and at most 5 values would need to be materialized. Compared to
needing to order an entire set and then take the first 5 values, the principle of saves a lot of
execution time and space.

OrderBy

Orders a collection by a specified value.

When the value is an integer, double or float it starts with the minimum value, which means that
you get first the negative values, than zero and afterwords the positive values (see Example 1).

When you order by a char the method compares the ascii values of the chars to sort the collection
(see Example 2).

When you sort strings the OrderBy method compares them by taking a look at their CultureInfo
but normaly starting with the first letter in the alphabet (a,b,c...).

This kind of order is called ascending, if you want it the other way round you need descending
(see OrderByDescending).

Example 1:

int[] numbers = {2, 1, 0, -1, -2};
IEnumerable<int> ascending = numbers.OrderBy(x => x);
// returns {-2, -1, 0, 1, 2}

Example 2:

 char[] letters = {' ', '!', '?', '[', '{', '+', '1', '9', 'a', 'A', 'b', 'B', 'y', 'Y', 'z',
'Z'};
 IEnumerable<char> ascending = letters.OrderBy(x => x);
 // returns { ' ', '!', '+', '1', '9', '?', 'A', 'B', 'Y', 'Z', '[', 'a', 'b', 'y', 'z', '{' }

Example:

class Person
{
 public string Name { get; set; }
 public int Age { get; set; }
}

var people = new[]
{
 new Person {Name = "Alice", Age = 25},

https://riptutorial.com/ 613

https://msdn.microsoft.com/en-us/library/xk2wykcz(VS.71).aspx

 new Person {Name = "Bob", Age = 21},
 new Person {Name = "Carol", Age = 43}
};
var youngestPerson = people.OrderBy(x => x.Age).First();
var name = youngestPerson.Name; // Bob

OrderByDescending

Orders a collection by a specified value.

When the value is an integer, double or float it starts with the maximal value, which means that
you get first the positive values, than zero and afterwords the negative values (see Example 1).

When you order by a char the method compares the ascii values of the chars to sort the collection
(see Example 2).

When you sort strings the OrderBy method compares them by taking a look at their CultureInfo
but normaly starting with the last letter in the alphabet (z,y,x,...).

This kind of order is called descending, if you want it the other way round you need ascending
(see OrderBy).

Example 1:

int[] numbers = {-2, -1, 0, 1, 2};
IEnumerable<int> descending = numbers.OrderByDescending(x => x);
// returns {2, 1, 0, -1, -2}

Example 2:

char[] letters = {' ', '!', '?', '[', '{', '+', '1', '9', 'a', 'A', 'b', 'B', 'y', 'Y', 'z',
'Z'};
IEnumerable<char> descending = letters.OrderByDescending(x => x);
// returns { '{', 'z', 'y', 'b', 'a', '[', 'Z', 'Y', 'B', 'A', '?', '9', '1', '+', '!', ' ' }

Example 3:

class Person
{
 public string Name { get; set; }
 public int Age { get; set; }
}

var people = new[]
{
 new Person {Name = "Alice", Age = 25},
 new Person {Name = "Bob", Age = 21},
 new Person {Name = "Carol", Age = 43}
};
var oldestPerson = people.OrderByDescending(x => x.Age).First();
var name = oldestPerson.Name; // Carol

https://riptutorial.com/ 614

https://msdn.microsoft.com/en-us/library/xk2wykcz(VS.71).aspx

Concat

Merges two collections (without removing duplicates)

List<int> foo = new List<int> { 1, 2, 3 };
List<int> bar = new List<int> { 3, 4, 5 };

// Through Enumerable static class
var result = Enumerable.Concat(foo, bar).ToList(); // 1,2,3,3,4,5

// Through extension method
var result = foo.Concat(bar).ToList(); // 1,2,3,3,4,5

Contains

MSDN:

Determines whether a sequence contains a specified element by using a specified
IEqualityComparer<T>

List<int> numbers = new List<int> { 1, 2, 3, 4, 5 };
var result1 = numbers.Contains(4); // true
var result2 = numbers.Contains(8); // false

List<int> secondNumberCollection = new List<int> { 4, 5, 6, 7 };
// Note that can use the Intersect method in this case
var result3 = secondNumberCollection.Where(item => numbers.Contains(item)); // will be true
only for 4,5

Using a user defined object:

public class Person
{
 public string Name { get; set; }
}

List<Person> objects = new List<Person>
{
 new Person { Name = "Nikki"},
 new Person { Name = "Gilad"},
 new Person { Name = "Phil"},
 new Person { Name = "John"}
};

//Using the Person's Equals method - override Equals() and GetHashCode() - otherwise it
//will compare by reference and result will be false
var result4 = objects.Contains(new Person { Name = "Phil" }); // true

Using the Enumerable.Contains(value, comparer) overload:

public class Compare : IEqualityComparer<Person>
{
 public bool Equals(Person x, Person y)
 {
 return x.Name == y.Name;

https://riptutorial.com/ 615

 }
 public int GetHashCode(Person codeh)
 {
 return codeh.Name.GetHashCode();
 }
}

var result5 = objects.Contains(new Person { Name = "Phil" }, new Compare()); // true

A smart usage of Contains would be to replace multiple if clauses to a Contains call.

So instead of doing this:

if(status == 1 || status == 3 || status == 4)
{
 //Do some business operation
}
else
{
 //Do something else
}

Do this:

if(new int[] {1, 3, 4 }.Contains(status)
{
 //Do some business operaion
}
else
{
 //Do something else
}

Read LINQ Queries online: https://riptutorial.com/csharp/topic/68/linq-queries

https://riptutorial.com/ 616

https://riptutorial.com/csharp/topic/68/linq-queries

Chapter 93: Linq to Objects

Introduction

LINQ to Objects refers to the use of LINQ queries with any IEnumerable collection.

Examples

How LINQ to Object executes queries

LINQ queries do not execute immediately. When you are building the query you are simply storing
the query for future execution. Only when you actually request to iterate the query is the query
executed (e.g. in a for loop, when calling ToList, Count, Max, Average, First, etc.)

This is considered deferred execution. This allows you to build up the query in multiple steps,
potentially modifying it based on conditional statements, and then execute it later only once you
require the result.

Given the code:

var query = from n in numbers
 where n % 2 != 0
 select n;

The example above only stores the query into query variable. It does not execute the query itself.

The foreach statement forces the query execution:

foreach(var n in query) {
 Console.WriteLine($"Number selected {n}");
}

Some LINQ methods will also trigger the query execution, Count, First, Max, Average. They return
single values. ToList and ToArray collects result and turn them to a List or a Array respectively.

Be aware that it is possible for you to iterate across the query multiple times if you call multiple
LINQ functions on the same query. This could give you different results at each call. If you only
want to work with one data set, be sure to save it into a list or array.

Using LINQ to Objects in C#

A simple SELECT query in Linq

static void Main(string[] args)
{
 string[] cars = { "VW Golf",
 "Opel Astra",

https://riptutorial.com/ 617

 "Audi A4",
 "Ford Focus",
 "Seat Leon",
 "VW Passat",
 "VW Polo",
 "Mercedes C-Class" };

 var list = from car in cars
 select car;

 StringBuilder sb = new StringBuilder();

 foreach (string entry in list)
 {
 sb.Append(entry + "\n");
 }

 Console.WriteLine(sb.ToString());
 Console.ReadLine();
}

In the example above, an array of strings (cars) is used as a collection of objects to be queried
using LINQ. In a LINQ query, the from clause comes first in order to introduce the data source
(cars) and the range variable (car). When the query is executed, the range variable will serve as a
reference to each successive element in cars. Because the compiler can infer the type of car, you
do not have to specify it explicitly

When the above code is compiled and executed, it produces the following result:

SELECT with a WHERE Clause

var list = from car in cars
 where car.Contains("VW")
 select car;

The WHERE clause is used to query the string array (cars) to find and return a subset of array
which satisfies the WHERE clause.

When the above code is compiled and executed, it produces the following result:

https://riptutorial.com/ 618

https://i.stack.imgur.com/lG65Q.png

Generating an Ordered List

var list = from car in cars
 orderby car ascending
 select car;

Sometimes it is useful to sort the returned data. The orderby clause will cause the elements to be
sorted according to the default comparer for the type being sorted.

When the above code is compiled and executed, it produces the following result:

Working with a custom type

In this example, a typed list is created, populated, and then queried

public class Car
{
 public String Name { get; private set; }
 public int UnitsSold { get; private set; }

 public Car(string name, int unitsSold)
 {
 Name = name;
 UnitsSold = unitsSold;
 }
}

class Program
{
 static void Main(string[] args)
 {

 var car1 = new Car("VW Golf", 270952);
 var car2 = new Car("Opel Astra", 56079);
 var car3 = new Car("Audi A4", 52493);
 var car4 = new Car("Ford Focus", 51677);
 var car5 = new Car("Seat Leon", 42125);
 var car6 = new Car("VW Passat", 97586);

https://riptutorial.com/ 619

https://i.stack.imgur.com/llGXx.png
https://i.stack.imgur.com/ODH55.png

 var car7 = new Car("VW Polo", 69867);
 var car8 = new Car("Mercedes C-Class", 67549);

 var cars = new List<Car> {
 car1, car2, car3, car4, car5, car6, car7, car8 };
 var list = from car in cars
 select car.Name;

 foreach (var entry in list)
 {
 Console.WriteLine(entry);
 }
 Console.ReadLine();
 }
}

When the above code is compiled and executed, it produces the following result:

Until now the examples don't seem amazing as one can just iterate through the array to do
basically the same. However, with the few examples below you can see how to create more
complex queries with LINQ to Objects and achieve more with a lot less of code.

In the example below we can select cars that have been sold over 60000 units and sort them over
the number of units sold:

var list = from car in cars
 where car.UnitsSold > 60000
 orderby car.UnitsSold descending
 select car;

StringBuilder sb = new StringBuilder();

foreach (var entry in list)
{
 sb.AppendLine($"{entry.Name} - {entry.UnitsSold}");
}
Console.WriteLine(sb.ToString());

When the above code is compiled and executed, it produces the following result:

https://riptutorial.com/ 620

https://i.stack.imgur.com/0jUOC.png

In the example below we can select cars that have sold an odd number of units and order them
alphabetically over its name:

var list = from car in cars
 where car.UnitsSold % 2 != 0
 orderby car.Name ascending
 select car;

When the above code is compiled and executed, it produces the following result:

Read Linq to Objects online: https://riptutorial.com/csharp/topic/9405/linq-to-objects

https://riptutorial.com/ 621

https://i.stack.imgur.com/ZDeTt.png
https://i.stack.imgur.com/fJnTp.png
https://riptutorial.com/csharp/topic/9405/linq-to-objects

Chapter 94: LINQ to XML

Examples

Read XML using LINQ to XML

<?xml version="1.0" encoding="utf-8" ?>
<Employees>
 <Employee>
 <EmpId>1</EmpId>
 <Name>Sam</Name>
 <Sex>Male</Sex>
 <Phone Type="Home">423-555-0124</Phone>
 <Phone Type="Work">424-555-0545</Phone>
 <Address>
 <Street>7A Cox Street</Street>
 <City>Acampo</City>
 <State>CA</State>
 <Zip>95220</Zip>
 <Country>USA</Country>
 </Address>
</Employee>
<Employee>
 <EmpId>2</EmpId>
 <Name>Lucy</Name>
 <Sex>Female</Sex>
 <Phone Type="Home">143-555-0763</Phone>
 <Phone Type="Work">434-555-0567</Phone>
 <Address>
 <Street>Jess Bay</Street>
 <City>Alta</City>
 <State>CA</State>
 <Zip>95701</Zip>
 <Country>USA</Country>
 </Address>
 </Employee>
</Employees>

To read that XML file using LINQ

XDocument xdocument = XDocument.Load("Employees.xml");
IEnumerable<XElement> employees = xdocument.Root.Elements();
foreach (var employee in employees)
{
 Console.WriteLine(employee);
}

To access single element

XElement xelement = XElement.Load("Employees.xml");
IEnumerable<XElement> employees = xelement.Root.Elements();
Console.WriteLine("List of all Employee Names :");
foreach (var employee in employees)
{

https://riptutorial.com/ 622

 Console.WriteLine(employee.Element("Name").Value);
}

To access multiple elements

XElement xelement = XElement.Load("Employees.xml");
IEnumerable<XElement> employees = xelement.Root.Elements();
Console.WriteLine("List of all Employee Names along with their ID:");
foreach (var employee in employees)
{
 Console.WriteLine("{0} has Employee ID {1}",
 employee.Element("Name").Value,
 employee.Element("EmpId").Value);
}

To access all Elements having a specific attribute

XElement xelement = XElement.Load("Employees.xml");
var name = from nm in xelement.Root.Elements("Employee")
 where (string)nm.Element("Sex") == "Female"
 select nm;
Console.WriteLine("Details of Female Employees:");
foreach (XElement xEle in name)
Console.WriteLine(xEle);

To access specific element having a specific attribute

XElement xelement = XElement.Load("..\\..\\Employees.xml");
var homePhone = from phoneno in xelement.Root.Elements("Employee")
 where (string)phoneno.Element("Phone").Attribute("Type") == "Home"
 select phoneno;
Console.WriteLine("List HomePhone Nos.");
foreach (XElement xEle in homePhone)
{
 Console.WriteLine(xEle.Element("Phone").Value);
}

Read LINQ to XML online: https://riptutorial.com/csharp/topic/2773/linq-to-xml

https://riptutorial.com/ 623

https://riptutorial.com/csharp/topic/2773/linq-to-xml

Chapter 95: Literals

Syntax

bool: true or false•
byte: None, integer literal implicitly converted from int•
sbyte: None, integer literal implicitly converted from int•
char: Wrap the value with single-quotes•
decimal: M or m•
double: D, d, or a real number•
float: F or f•
int: None, default for integral values within the range of int•
uint: U, u, or integral values within the range of uint•
long: L, l, or integral values within the range of long•
ulong: UL, ul, Ul, uL, LU, lu, Lu, lU, or integral values within the range of ulong•
short: None, integer literal implicitly converted from int•
ushort: None, integer literal implicitly converted from int•
string: Wrap the value with double-quotes, optionally prepended with @•
null: The literal null•

Examples

int literals

int literals are defined by simply using integral values within the range of int:

int i = 5;

uint literals

uint literals are defined by using the suffix U or u, or by using an integral values within the range of
uint:

uint ui = 5U;

string literals

string literals are defined by wrapping the value with double-quotes ":

string s = "hello, this is a string literal";

String literals may contain escape sequences. See String Escape Sequences

Additionally, C# supports verbatim string literals (See Verbatim Strings). These are defined by

https://riptutorial.com/ 624

http://www.riptutorial.com/csharp/topic/39/string-escape-sequences
http://www.riptutorial.com/csharp/topic/16/verbatim-strings

wrapping the value with double-quotes ", and prepending it with @. Escape sequences are ignored
in verbatim string literals, and all whitespace characters are included:

string s = @"The path is:
C:\Windows\System32";
//The backslashes and newline are included in the string

char literals

char literals are defined by wrapping the value with single-quotes ':

char c = 'h';

Character literals may contain escape sequences. See String Escape Sequences

A character literal must be exactly one character long (after all escape sequences have been
evaluated). Empty character literals are not valid. The default character (returned by default(char)
or new char()) is '\0', or the NULL character (not to be confused with the null literal and null
references).

byte literals

byte type has no literal suffix. Integer literals are implicitly converted from int:

byte b = 127;

sbyte literals

sbyte type has no literal suffix. Integer literals are implicitly converted from int:

sbyte sb = 127;

decimal literals

decimal literals are defined by using the suffix M or m on a real number:

decimal m = 30.5M;

double literals

double literals are defined by using the suffix D or d, or by using a real number:

double d = 30.5D;

float literals

https://riptutorial.com/ 625

http://www.riptutorial.com/csharp/topic/39/string-escape-sequences

float literals are defined by using the suffix F or f, or by using a real number:

float f = 30.5F;

long literals

long literals are defined by using the suffix L or l, or by using an integral values within the range of
long:

long l = 5L;

ulong literal

ulong literals are defined by using the suffix UL, ul, Ul, uL, LU, lu, Lu, or lU, or by using an integral
values within the range of ulong:

ulong ul = 5UL;

short literal

short type has no literal. Integer literals are implicitly converted from int:

short s = 127;

ushort literal

ushort type has no literal suffix. Integer literals are implicitly converted from int:

ushort us = 127;

bool literals

bool literals are either true or false;

bool b = true;

Read Literals online: https://riptutorial.com/csharp/topic/2655/literals

https://riptutorial.com/ 626

https://riptutorial.com/csharp/topic/2655/literals

Chapter 96: Lock Statement

Syntax

lock (obj) {}•

Remarks

Using the lock statement you can control different threads' access to code within the code block. It
is commonly used to prevent race conditions, for example multiple threads reading and removing
items from a collection. As locking forces threads to wait for other threads to exit a code block it
can cause delays that could be solved with other synchronization methods.

MSDN

The lock keyword marks a statement block as a critical section by obtaining the mutual-
exclusion lock for a given object, executing a statement, and then releasing the lock.

The lock keyword ensures that one thread does not enter a critical section of code
while another thread is in the critical section. If another thread tries to enter a locked
code, it will wait, block, until the object is released.

Best practice is to define a private object to lock on, or a private static object variable
to protect data common to all instances.

In C# 5.0 and later, the lock statement is equivalent to:

bool lockTaken = false;
try
{
 System.Threading.Monitor.Enter(refObject, ref lockTaken);
 // code
}
finally
{
 if (lockTaken)
 System.Threading.Monitor.Exit(refObject);
}

For C# 4.0 and earlier, the lock statement is equivalent to:

System.Threading.Monitor.Enter(refObject);
try
{
 // code
}
finally
{
 System.Threading.Monitor.Exit(refObject);

https://riptutorial.com/ 627

}

Examples

Simple usage

Common usage of lock is a critical section.

In the following example ReserveRoom is supposed to be called from different threads.
Synchronization with lock is the simplest way to prevent race condition here. Method body is
surrounded with lock which ensures that two or more threads cannot execute it simultaneously.

public class Hotel
{
 private readonly object _roomLock = new object();

 public void ReserveRoom(int roomNumber)
 {
 // lock keyword ensures that only one thread executes critical section at once
 // in this case, reserves a hotel room of given number
 // preventing double bookings
 lock (_roomLock)
 {
 // reserve room logic goes here
 }
 }
}

If a thread reaches lock-ed block while another thread is running within it, the former will wait
another to exit the block.

Best practice is to define a private object to lock on, or a private static object variable to
protect data common to all instances.

Throwing exception in a lock statement

Following code will release the lock. There will be no problem. Behind the scenes lock statement
works as try finally

lock(locker)
{
 throw new Exception();
}

More can be seen in the C# 5.0 Specification:

A lock statement of the form

lock (x) ...

where x is an expression of a reference-type, is precisely equivalent to

https://riptutorial.com/ 628

https://msdn.microsoft.com/en-us/library/aa664735%28VS.71%29.aspx?f=255&MSPPError=-2147217396

bool __lockWasTaken = false;
try {
 System.Threading.Monitor.Enter(x, ref __lockWasTaken);
 ...
}
finally {
 if (__lockWasTaken) System.Threading.Monitor.Exit(x);
}

except that x is only evaluated once.

Return in a lock statement

Following code will release lock.

lock(locker)
{
 return 5;
}

For a detailed explanation, this SO answer is recommended.

Using instances of Object for lock

When using C#'s inbuilt lock statement an instance of some type is needed, but its state does not
matter. An instance of object is perfect for this:

public class ThreadSafe {
 private static readonly object locker = new object();

 public void SomeThreadSafeMethod() {
 lock (locker) {
 // Only one thread can be here at a time.
 }
 }
}

NB. instances of Type should not be used for this (in the code above typeof(ThreadSafe)) because
instances of Type are shared across AppDomains and thus the extent of the lock can expectedly
include code it shouldn't (eg. if ThreadSafe is loaded into two AppDomains in the same process
then locking on its Type instance would mutually lock).

Anti-Patterns and gotchas

Locking on an stack-allocated / local variable

One of the fallacies while using lock is the usage of local objects as locker in a function. Since
these local object instances will differ on each call of the function, lock will not perform as
expected.

https://riptutorial.com/ 629

http://stackoverflow.com/a/266718/1519458

List<string> stringList = new List<string>();

public void AddToListNotThreadSafe(string something)
{
 // DO NOT do this, as each call to this method
 // will lock on a different instance of an Object.
 // This provides no thread safety, it only degrades performance.
 var localLock = new Object();
 lock(localLock)
 {
 stringList.Add(something);
 }
}

// Define object that can be used for thread safety in the AddToList method
readonly object classLock = new object();

public void AddToList(List<string> stringList, string something)
{
 // USE THE classLock instance field to achieve a
 // thread-safe lock before adding to stringList
 lock(classLock)
 {
 stringList.Add(something);
 }
}

Assuming that locking restricts access to the
synchronizing object itself

If one thread calls: lock(obj) and another thread calls obj.ToString() second thread is not going to
be blocked.

object obj = new Object();

public void SomeMethod()
{
 lock(obj)
 {
 //do dangerous stuff
 }
 }

 //Meanwhile on other tread
 public void SomeOtherMethod()
 {
 var objInString = obj.ToString(); //this does not block
 }

Expecting subclasses to know when to lock

Sometimes base classes are designed such that their subclasses are required to use a lock when

https://riptutorial.com/ 630

accessing certain protected fields:

public abstract class Base
{
 protected readonly object padlock;
 protected readonly List<string> list;

 public Base()
 {
 this.padlock = new object();
 this.list = new List<string>();
 }

 public abstract void Do();
}

public class Derived1 : Base
{
 public override void Do()
 {
 lock (this.padlock)
 {
 this.list.Add("Derived1");
 }
 }
}

public class Derived2 : Base
{
 public override void Do()
 {
 this.list.Add("Derived2"); // OOPS! I forgot to lock!
 }
}

It is much safer to encapsulate locking by using a Template Method:

public abstract class Base
{
 private readonly object padlock; // This is now private
 protected readonly List<string> list;

 public Base()
 {
 this.padlock = new object();
 this.list = new List<string>();
 }

 public void Do()
 {
 lock (this.padlock) {
 this.DoInternal();
 }
 }

 protected abstract void DoInternal();
}

public class Derived1 : Base

https://riptutorial.com/ 631

https://en.wikipedia.org/wiki/Template_method_pattern

{
 protected override void DoInternal()
 {
 this.list.Add("Derived1"); // Yay! No need to lock
 }
}

Locking on a boxed ValueType variable does
not synchronize

In the following example, a private variable is implicitly boxed as it's supplied as an object
argument to a function, expecting a monitor resource to lock at. The boxing occurs just prior to
calling the IncInSync function, so the boxed instance corresponds to a different heap object each
time the function is called.

public int Count { get; private set; }

private readonly int counterLock = 1;

public void Inc()
{
 IncInSync(counterLock);
}

private void IncInSync(object monitorResource)
{
 lock (monitorResource)
 {
 Count++;
 }
}

Boxing occurs in the Inc function:

BulemicCounter.Inc:
IL_0000: nop
IL_0001: ldarg.0
IL_0002: ldarg.0
IL_0003: ldfld UserQuery+BulemicCounter.counterLock
IL_0008: box System.Int32**
IL_000D: call UserQuery+BulemicCounter.IncInSync
IL_0012: nop
IL_0013: ret

It does not mean that a boxed ValueType can't be used for monitor locking at all:

private readonly object counterLock = 1;

Now boxing occurs in constructor, which is fine for locking:

IL_0001: ldc.i4.1

https://riptutorial.com/ 632

IL_0002: box System.Int32
IL_0007: stfld UserQuery+BulemicCounter.counterLock

Using locks unnecessarily when a safer
alternative exists

A very common pattern is to use a private List or Dictionary in a thread safe class and lock every
time it is accessed:

public class Cache
{
 private readonly object padlock;
 private readonly Dictionary<string, object> values;

 public WordStats()
 {
 this.padlock = new object();
 this.values = new Dictionary<string, object>();
 }

 public void Add(string key, object value)
 {
 lock (this.padlock)
 {
 this.values.Add(key, value);
 }
 }

 /* rest of class omitted */
}

If there are multiple methods accessing the values dictionary, the code can get very long and,
more importantly, locking all the time obscures its intent. Locking is also very easy to forget and
lack of proper locking can cause very hard to find bugs.

By using a ConcurrentDictionary, we can avoid locking completely:

public class Cache
{
 private readonly ConcurrentDictionary<string, object> values;

 public WordStats()
 {
 this.values = new ConcurrentDictionary<string, object>();
 }

 public void Add(string key, object value)
 {
 this.values.Add(key, value);
 }

 /* rest of class omitted */
}

https://riptutorial.com/ 633

https://msdn.microsoft.com/en-us/library/dd287191%28v=vs.110%29.aspx?f=255&MSPPError=-2147217396

Using concurrent collections also improves performance because all of them employ lock-free
techniques to some extent.

Read Lock Statement online: https://riptutorial.com/csharp/topic/1495/lock-statement

https://riptutorial.com/ 634

https://blogs.msdn.microsoft.com/pfxteam/2010/01/26/faq-are-all-of-the-new-concurrent-collections-lock-free/
https://blogs.msdn.microsoft.com/pfxteam/2010/01/26/faq-are-all-of-the-new-concurrent-collections-lock-free/
https://riptutorial.com/csharp/topic/1495/lock-statement

Chapter 97: Looping

Examples

Looping styles

While

The most trivial loop type. Only drawback is there is no intrinsic clue to know where you are in the
loop.

/// loop while the condition satisfies
while(condition)
{
 /// do something
}

Do

Similar to while, but the condition is evaluated at the end of the loop instead of the beginning. This
results in executing the loops at least once.

do
{
 /// do something
} while(condition) /// loop while the condition satisfies

For

Another trivial loop style. While looping an index (i) gets increased and you can use it. It is usually
used for handling arrays.

for (int i = 0; i < array.Count; i++)
{
 var currentItem = array[i];
 /// do something with "currentItem"
}

Foreach

Modernized way of looping through IEnumarable objects. Good thing that you don't have to think
about the index of the item or the item count of the list.

foreach (var item in someList)
{
 /// do something with "item"
}

Foreach Method

https://riptutorial.com/ 635

While the other styles are used for selecting or updating the elements in collections, this style is
usually used for calling a method straight away for all elements in a collection.

list.ForEach(item => item.DoSomething());

// or
list.ForEach(item => DoSomething(item));

// or using a method group
list.ForEach(Console.WriteLine);

// using an array
Array.ForEach(myArray, Console.WriteLine);

It is important to note that this method in only available on List<T> instances and as a static
method on Array - it is not part of Linq.

Linq Parallel Foreach

Just like Linq Foreach, except this one does the job in a parallel manner. Meaning that all the
items in the collection will run the given action at the same time, simultaneously.

collection.AsParallel().ForAll(item => item.DoSomething());

/// or
collection.AsParallel().ForAll(item => DoSomething(item));

break

Sometimes loop condition should be checked in the middle of the loop. The former is arguably
more elegant than the latter:

for (;;)
{
 // precondition code that can change the value of should_end_loop expression

 if (should_end_loop)
 break;

 // do something
}

Alternative:

bool endLoop = false;
for (; !endLoop;)
{
 // precondition code that can set endLoop flag

 if (!endLoop)
 {
 // do something
 }
}

https://riptutorial.com/ 636

Note: In nested loops and/or switch must use more than just a simple break.

Foreach Loop

foreach will iterate over any object of a class that implements IEnumerable (take note that
IEnumerable<T> inherits from it). Such objects include some built-in ones, but not limit to: List<T>,
T[] (arrays of any type), Dictionary<TKey, TSource>, as well as interfaces like IQueryable and
ICollection, etc.

syntax

foreach(ItemType itemVariable in enumerableObject)
 statement;

remarks

The type ItemType does not need to match the precise type of the items, it just needs to be
assignable from the type of the items

1.

Instead of ItemType, alternatively var can be used which will infer the items type from the
enumerableObject by inspecting the generic argument of the IEnumerable implementation

2.

The statement can be a block, a single statement or even an empty statement (;)3.
If enumerableObject is not implementing IEnumerable, the code will not compile4.
During each iteration the current item is cast to ItemType (even if this is not specified but
compiler-inferred via var) and if the item cannot be cast an InvalidCastException will be
thrown.

5.

Consider this example:

var list = new List<string>();
list.Add("Ion");
list.Add("Andrei");
foreach(var name in list)
{
 Console.WriteLine("Hello " + name);
}

is equivalent to:

var list = new List<string>();
list.Add("Ion");
list.Add("Andrei");
IEnumerator enumerator;
try
{
 enumerator = list.GetEnumerator();
 while(enumerator.MoveNext())
 {
 string name = (string)enumerator.Current;
 Console.WriteLine("Hello " + name);
 }
}
finally

https://riptutorial.com/ 637

{
 if (enumerator != null)
 enumerator.Dispose();
}

While loop

int n = 0;
while (n < 5)
{
 Console.WriteLine(n);
 n++;
}

Output:

0
1
2
3
4

IEnumerators can be iterated with a while loop:

// Call a custom method that takes a count, and returns an IEnumerator for a list
// of strings with the names of theh largest city metro areas.
IEnumerator<string> largestMetroAreas = GetLargestMetroAreas(4);

while (largestMetroAreas.MoveNext())
{
 Console.WriteLine(largestMetroAreas.Current);
}

Sample output:

Tokyo/Yokohama
New York Metro
Sao Paulo
Seoul/Incheon

For Loop

A For Loop is great for doing things a certain amount of time. It's like a While Loop but the
increment is included with the condition.

A For Loop is set up like this:

for (Initialization; Condition; Increment)
{
 // Code
}

https://riptutorial.com/ 638

Initialization - Makes a new local variable that can only be used in the loop.
Condition - The loop only runs when the condition is true.
Increment - How the variable changes every time the loop runs.

An example:

for (int i = 0; i < 5; i++)
{
 Console.WriteLine(i);
}

Output:

0
1
2
3
4

You can also leave out spaces in the For Loop, but you have to have all semicolons for it to
function.

int input = Console.ReadLine();

for (; input < 10; input + 2)
{
 Console.WriteLine(input);
}

Output for 3:

3
5
7
9
11

Do - While Loop

It is similar to a while loop, except that it tests the condition at the end of the loop body. The Do -
While loop executes the loop once irrespective of whether the condition is true or not.

int[] numbers = new int[] { 6, 7, 8, 10 };

// Sum values from the array until we get a total that's greater than 10,
// or until we run out of values.
int sum = 0;
int i = 0;
do
{
 sum += numbers[i];

https://riptutorial.com/ 639

 i++;
} while (sum <= 10 && i < numbers.Length);

System.Console.WriteLine(sum); // 13

Nested loops

// Print the multiplication table up to 5s
for (int i = 1; i <= 5; i++)
{
 for (int j = 1; j <= 5; j++)
 {
 int product = i * j;
 Console.WriteLine("{0} times {1} is {2}", i, j, product);
 }
}

continue

In addition to break, there is also the keyword continue. Instead of breaking completely the loop, it
will simply skip the current iteration. It could be useful if you don't want some code to be executed
if a particular value is set.

Here's a simple example:

for (int i = 1; i <= 10; i++)
{
 if (i < 9)
 continue;

 Console.WriteLine(i);
}

Will result in:

9
10

Note: Continue is often most useful in while or do-while loops. For-loops, with well-defined exit
conditions, may not benefit as much.

Read Looping online: https://riptutorial.com/csharp/topic/2064/looping

https://riptutorial.com/ 640

https://riptutorial.com/csharp/topic/2064/looping

Chapter 98: Making a variable thread safe

Examples

Controlling access to a variable in a Parallel.For loop

using System;
using System.Threading;
using System.Threading.Tasks;

class Program
{
 static void Main(string[] args)
 {
 object sync = new object();
 int sum = 0;
 Parallel.For(1, 1000, (i) => {
 lock(sync) sum = sum + i; // lock is necessary

 // As a practical matter, ensure this `parallel for` executes
 // on multiple threads by simulating a lengthy operation.
 Thread.Sleep(1);
 });
 Console.WriteLine("Correct answer should be 499500. sum is: {0}", sum);
 }
}

It is not sufficient to just do sum = sum + i without the lock because the read-modify-write operation
is not atomic. A thread will overwrite any external modifications to sum that occur after it has read
the current value of sum, but before it stores the modified value of sum + i back into sum.

Read Making a variable thread safe online: https://riptutorial.com/csharp/topic/4140/making-a-
variable-thread-safe

https://riptutorial.com/ 641

https://riptutorial.com/csharp/topic/4140/making-a-variable-thread-safe
https://riptutorial.com/csharp/topic/4140/making-a-variable-thread-safe

Chapter 99: Methods

Examples

Declaring a Method

Every method has a unique signature consisting of a accessor (public, private, ...) ,optional
modifier (abstract), a name and if needed method parameters. Note, that the return type is not part
of the signature. A method prototype looks like the following:

AccessModifier OptionalModifier ReturnType MethodName(InputParameters)
{
 //Method body
}

AccessModifier can be public, protected, pirvate or by default internal.

OptionalModifier can be static abstract virtual override new or sealed.

ReturnType can be void for no return or can be any type from the basic ones, as int to complex
classes.

a Method may have some or no input parameters. to set parameters for a method, you should
declare each one like normal variable declarations (like int a), and for more than one parameter
you should use comma between them (like int a, int b).

Parameters may have default values. for this you should set a value for the parameter (like int a =
0). if a parameter has a default value, setting the input value is optional.

The following method example returns the sum of two integers:

private int Sum(int a, int b)
{
 return a + b;
}

Calling a Method

Calling a static method:

// Single argument
System.Console.WriteLine("Hello World");

// Multiple arguments
string name = "User";
System.Console.WriteLine("Hello, {0}!", name);

Calling a static method and storing its return value:

https://riptutorial.com/ 642

string input = System.Console.ReadLine();

Calling an instance method:

int x = 42;
// The instance method called here is Int32.ToString()
string xAsString = x.ToString();

Calling a generic method

// Assuming a method 'T[] CreateArray<T>(int size)'
DateTime[] dates = CreateArray<DateTime>(8);

Parameters and Arguments

A method can declare any number of parameters (in this example, i, s and o are the parameters):

static void DoSomething(int i, string s, object o) {
 Console.WriteLine(String.Format("i={0}, s={1}, o={2}", i, s, o));
}

Parameters can be used to pass values into a method, so that the method can work with them.
This can be every kind of work like printing the values, or making modifications to the object
referenced by a parameter, or storing the values.

When you call the method, you need to pass an actual value for every parameter. At this point, the
values that you actually pass to the method call are called Arguments:

DoSomething(x, "hello", new object());

Return Types

A method can return either nothing (void), or a value of a specified type:

// If you don't want to return a value, use void as return type.
static void ReturnsNothing() {
 Console.WriteLine("Returns nothing");
}

// If you want to return a value, you need to specify its type.
static string ReturnsHelloWorld() {
 return "Hello World";
}

If your method specifies a return value, the method must return a value. You do this using the
return statement. Once a return statement has been reached, it returns the specified value and
any code after it will not be run anymore (exceptions are finally blocks, which will still be
executed before the method returns).

If your method returns nothing (void), you can still use the return statement without a value if you

https://riptutorial.com/ 643

want to return from the method immediately. At the end of such a method, a return statement
would be unnecessary though.

Examples of valid return statements:

return;
return 0;
return x * 2;
return Console.ReadLine();

Throwing an exception can end method execution without returning a value. Also, there are
iterator blocks, where return values are generated by using the yield keyword, but those are
special cases that will not be explained at this point.

Default Parameters

You can use default parameters if you want to provide the option to leave out parameters:

static void SaySomething(string what = "ehh") {
 Console.WriteLine(what);
}

static void Main() {
 // prints "hello"
 SaySomething("hello");
 // prints "ehh"
 SaySomething(); // The compiler compiles this as if we had typed SaySomething("ehh")
}

When you call such a method and omit a parameter for which a default value is provided, the
compiler inserts that default value for you.

Keep in mind that parameters with default values need to be written after parameters without
default values.

static void SaySomething(string say, string what = "ehh") {
 //Correct
 Console.WriteLine(say + what);
 }

static void SaySomethingElse(string what = "ehh", string say) {
 //Incorrect
 Console.WriteLine(say + what);
 }

WARNING: Because it works that way, default values can be problematic in some cases. If you
change the default value of a method parameter and don't recompile all callers of that method,
those callers will still use the default value that was present when they were compiled, possibly
causing inconsistencies.

Method overloading

https://riptutorial.com/ 644

Definition : When multiple methods with the same name are declared with different parameters, it
is referred to as method overloading. Method overloading typically represents functions that are
identical in their purpose but are written to accept different data types as their parameters.

Factors affecting

Number of Arguments•
Type of arguments•
Return Type**•

Consider a method named Area that will perform calculation functions, which will accepts various
arguments and return the result.

Example

public string Area(int value1)
{
 return String.Format("Area of Square is {0}", value1 * value1);
}

This method will accepts one argument and return a string, if we call the method with an
integer(say 5) the output will be "Area of Square is 25".

public double Area(double value1, double value2)
{
 return value1 * value2;
}

Similarly if we pass two double values to this method the output will be the product of the two
values and are of type double. This can be used of multiplication as well as finding the Area of
rectangles

public double Area(double value1)
{
 return 3.14 * Math.Pow(value1,2);
}

This can be used specially for finding the area of circle, which will accepts a double value(radius)
and return another double value as its Area.

Each of these methods can be called normally without conflict - the compiler will examine the
parameters of each method call to determine which version of Area needs to be used.

string squareArea = Area(2);
double rectangleArea = Area(32.0, 17.5);
double circleArea = Area(5.0); // all of these are valid and will compile.

**Note that return type alone cannot differentiate between two methods. For instance, if we had
two definitions for Area that had the same parameters, like so:

https://riptutorial.com/ 645

public string Area(double width, double height) { ... }
public double Area(double width, double height) { ... }
// This will NOT compile.

If we need to have our class use the same method names that return different values, we can
remove the issues of ambiguity by implementing an interface and explicitly defining its usage.

public interface IAreaCalculatorString {

 public string Area(double width, double height);

}

public class AreaCalculator : IAreaCalculatorString {

 public string IAreaCalculatorString.Area(double width, double height) { ... }
 // Note that the method call now explicitly says it will be used when called through
 // the IAreaCalculatorString interface, allowing us to resolve the ambiguity.
 public double Area(double width, double height) { ... }

Anonymous method

Anonymous methods provide a technique to pass a code block as a delegate parameter. They are
methods with a body, but no name.

delegate int IntOp(int lhs, int rhs);

class Program
{
 static void Main(string[] args)
 {
 // C# 2.0 definition
 IntOp add = delegate(int lhs, int rhs)
 {
 return lhs + rhs;
 };

 // C# 3.0 definition
 IntOp mul = (lhs, rhs) =>
 {
 return lhs * rhs;
 };

 // C# 3.0 definition - shorthand
 IntOp sub = (lhs, rhs) => lhs - rhs;

 // Calling each method
 Console.WriteLine("2 + 3 = " + add(2, 3));
 Console.WriteLine("2 * 3 = " + mul(2, 3));
 Console.WriteLine("2 - 3 = " + sub(2, 3));
 }
}

Access rights

https://riptutorial.com/ 646

// static: is callable on a class even when no instance of the class has been created
public static void MyMethod()

// virtual: can be called or overridden in an inherited class
public virtual void MyMethod()

// internal: access is limited within the current assembly
internal void MyMethod()

//private: access is limited only within the same class
private void MyMethod()

//public: access right from every class / assembly
public void MyMethod()

//protected: access is limited to the containing class or types derived from it
protected void MyMethod()

//protected internal: access is limited to the current assembly or types derived from the
containing class.
protected internal void MyMethod()

Read Methods online: https://riptutorial.com/csharp/topic/60/methods

https://riptutorial.com/ 647

https://riptutorial.com/csharp/topic/60/methods

Chapter 100:
Microsoft.Exchange.WebServices

Examples

Retrieve Specified User's Out of Office Settings

First let's create an ExchangeManager object, where the constructor will connect to the services for
us. It also has a GetOofSettings method, which will return the OofSettings object for the specified
email address :

using System;
using System.Web.Configuration;
using Microsoft.Exchange.WebServices.Data;

namespace SetOutOfOffice
{
 class ExchangeManager
 {
 private ExchangeService Service;

 public ExchangeManager()
 {
 var password =
WebConfigurationManager.ConnectionStrings["Password"].ConnectionString;
 Connect("exchangeadmin", password);
 }
 private void Connect(string username, string password)
 {
 var service = new ExchangeService(ExchangeVersion.Exchange2010_SP2);
 service.Credentials = new WebCredentials(username, password);
 service.AutodiscoverUrl("autodiscoveremail@domain.com" ,
RedirectionUrlValidationCallback);

 Service = service;
 }
 private static bool RedirectionUrlValidationCallback(string redirectionUrl)
 {
 return
redirectionUrl.Equals("https://mail.domain.com/autodiscover/autodiscover.xml");
 }
 public OofSettings GetOofSettings(string email)
 {
 return Service.GetUserOofSettings(email);
 }
 }
}

We can now call this elsewhere like this:

var em = new ExchangeManager();
var oofSettings = em.GetOofSettings("testemail@domain.com");

https://riptutorial.com/ 648

Update Specific User's Out of Office Settings

Using the class below, we can connect to Exchange and then set a specific user's out of office
settings with UpdateUserOof:

using System;
using System.Web.Configuration;
using Microsoft.Exchange.WebServices.Data;

class ExchangeManager
{
 private ExchangeService Service;

 public ExchangeManager()
 {
 var password = WebConfigurationManager.ConnectionStrings["Password"].ConnectionString;
 Connect("exchangeadmin", password);
 }
 private void Connect(string username, string password)
 {
 var service = new ExchangeService(ExchangeVersion.Exchange2010_SP2);
 service.Credentials = new WebCredentials(username, password);
 service.AutodiscoverUrl("autodiscoveremail@domain.com" ,
RedirectionUrlValidationCallback);

 Service = service;
 }
 private static bool RedirectionUrlValidationCallback(string redirectionUrl)
 {
 return redirectionUrl.Equals("https://mail.domain.com/autodiscover/autodiscover.xml");
 }
 /// <summary>
 /// Updates the given user's Oof settings with the given details
 /// </summary>
 public void UpdateUserOof(int oofstate, DateTime starttime, DateTime endtime, int
externalaudience, string internalmsg, string externalmsg, string emailaddress)
 {
 var newSettings = new OofSettings
 {
 State = (OofState)oofstate,
 Duration = new TimeWindow(starttime, endtime),
 ExternalAudience = (OofExternalAudience)externalaudience,
 InternalReply = internalmsg,
 ExternalReply = externalmsg
 };

 Service.SetUserOofSettings(emailaddress, newSettings);
 }
}

Update the user settings with the following:

var oofState = 1;
var startDate = new DateTime(01,08,2016);
var endDate = new DateTime(15,08,2016);
var externalAudience = 1;
var internalMessage = "I am not in the office!";
var externalMessage = "I am not in the office and neither are you!"

https://riptutorial.com/ 649

var theUser = "theuser@domain.com";

var em = new ExchangeManager();
em.UpdateUserOof(oofstate, startDate, endDate, externalAudience, internalMessage,
externalMessage, theUser);

Note that you can format the messages using standard html tags.

Read Microsoft.Exchange.WebServices online: https://riptutorial.com/csharp/topic/4863/microsoft-
exchange-webservices

https://riptutorial.com/ 650

https://riptutorial.com/csharp/topic/4863/microsoft-exchange-webservices
https://riptutorial.com/csharp/topic/4863/microsoft-exchange-webservices

Chapter 101: Named and Optional Arguments

Remarks

Named Arguments

Ref: MSDN Named arguments enable you to specify an argument for a particular parameter by
associating the argument with the parameter’s name rather than with the parameter’s position in
the parameter list.

As said by MSDN, A named argument ,

Enables you to pass the argument to the function by associating the parameter’s name.•
No needs for remembering the parameters position that we are not aware of always.•
No need to look the order of the parameters in the parameters list of called function.•
We can specify parameter for each arguments by its name.•

Optional Arguments

Ref: MSDN The definition of a method, constructor, indexer, or delegate can specify that its
parameters are required or that they are optional. Any call must provide arguments for all required
parameters, but can omit arguments for optional parameters.

As said by MSDN, a Optional Argument,

We can omit the argument in the call if that argument is an Optional Argument•
Every Optional Argument has its own default value•
It will take default value if we do not supply the value•
A default value of a Optional Argument must be a

Constant expression.○

Must be a value type such as enum or struct.○

Must be an expression of the form default(valueType)○

•

It must be set at the end of parameter list•

Examples

Named Arguments

Consider following is our function call.

FindArea(120, 56);

In this our first argument is length (ie 120) and second argument is width (ie 56). And we are
calculating the area by that function. And following is the function definition.

private static double FindArea(int length, int width)

https://riptutorial.com/ 651

 {
 try
 {
 return (length* width);
 }
 catch (Exception)
 {
 throw new NotImplementedException();
 }
 }

So in the first function call, we just passed the arguments by its position. Right?

double area;
Console.WriteLine("Area with positioned argument is: ");
area = FindArea(120, 56);
Console.WriteLine(area);
Console.Read();

If you run this, you will get an output as follows.

Now here it comes the features of a named arguments. Please see the preceding function call.

Console.WriteLine("Area with Named argument is: ");
area = FindArea(length: 120, width: 56);
Console.WriteLine(area);
Console.Read();

Here we are giving the named arguments in the method call.

area = FindArea(length: 120, width: 56);

Now if you run this program, you will get the same result. We can give the names vice versa in the
method call if we are using the named arguments.

https://riptutorial.com/ 652

http://i.stack.imgur.com/aCYyR.png

Console.WriteLine("Area with Named argument vice versa is: ");
area = FindArea(width: 120, length: 56);
Console.WriteLine(area);
Console.Read();

One of the important use of a named argument is, when you use this in your program it improves
the readability of your code. It simply says what your argument is meant to be, or what it is?.

You can give the positional arguments too. That means, a combination of both positional argument
and named argument.

Console.WriteLine("Area with Named argument Positional Argument : ");
 area = FindArea(120, width: 56);
 Console.WriteLine(area);
 Console.Read();

In the above example we passed 120 as the length and 56 as a named argument for the
parameter width.

There are some limitations too. We will discuss the limitation of a named arguments now.

Limitation of using a Named Argument

Named argument specification must appear after all fixed arguments have been specified.

If you use a named argument before a fixed argument you will get a compile time error as follows.

Named argument specification must appear after all fixed arguments have been specified

Optional Arguments

Consider preceding is our function definition with optional arguments.

private static double FindAreaWithOptional(int length, int width=56)
 {
 try
 {
 return (length * width);
 }
 catch (Exception)
 {
 throw new NotImplementedException();

https://riptutorial.com/ 653

http://i.stack.imgur.com/n8z4Y.png

 }
 }

Here we have set the value for width as optional and gave value as 56. If you note, the
IntelliSense itself shows you the optional argument as shown in the below image.

Console.WriteLine("Area with Optional Argument : ");
area = FindAreaWithOptional(120);
Console.WriteLine(area);
Console.Read();

Note that we did not get any error while compiling and it will give you an output as follows.

Using Optional Attribute.

Another way of implementing the optional argument is by using the [Optional] keyword. If you do
not pass the value for the optional argument, the default value of that datatype is assigned to that
argument. The Optional keyword is present in “Runtime.InteropServices” namespace.

using System.Runtime.InteropServices;
private static double FindAreaWithOptional(int length, [Optional]int width)
 {
 try
 {
 return (length * width);
 }
 catch (Exception)
 {
 throw new NotImplementedException();
 }

https://riptutorial.com/ 654

https://i.stack.imgur.com/Uaszw.png
https://i.stack.imgur.com/3BWQA.png

 }

area = FindAreaWithOptional(120); //area=0

And when we call the function, we get 0 because the second argument is not passed and the
default value of int is 0 and so the product is 0.

Read Named and Optional Arguments online: https://riptutorial.com/csharp/topic/5220/named-and-
optional-arguments

https://riptutorial.com/ 655

https://riptutorial.com/csharp/topic/5220/named-and-optional-arguments
https://riptutorial.com/csharp/topic/5220/named-and-optional-arguments

Chapter 102: Named Arguments

Examples

Named Arguments can make your code more clear

Consider this simple class:

class SmsUtil
{
 public bool SendMessage(string from, string to, string message, int retryCount, object
attachment)
 {
 // Some code
 }
}

Before C# 3.0 it was:

var result = SmsUtil.SendMessage("Mehran", "Maryam", "Hello there!", 12, null);

you can make this method call even more clear with named arguments:

var result = SmsUtil.SendMessage(
 from: "Mehran",
 to: "Maryam",
 message "Hello there!",
 retryCount: 12,
 attachment: null);

Named arguments and optional paramaters

You can combine named arguments with optional parameters.

Let see this method:

public sealed class SmsUtil
{
 public static bool SendMessage(string from, string to, string message, int retryCount = 5,
object attachment = null)
 {
 // Some code
 }
}

When you want to call this method without set retryCount argument :

var result = SmsUtil.SendMessage(
 from : "Cihan",
 to : "Yakar",

https://riptutorial.com/ 656

 message : "Hello there!",
 attachment : new object());

Argument order is not necessary

You can place named arguments in any order you want.

Sample Method:

public static string Sample(string left, string right)
{
 return string.Join("-",left,right);
}

Call Sample:

Console.WriteLine (Sample(left:"A",right:"B"));
Console.WriteLine (Sample(right:"A",left:"B"));

Results:

A-B
B-A

Named Arguments avoids bugs on optional parameters

Always use Named Arguments to optional parameters, to avoid potential bugs when the method is
modified.

class Employee
{
 public string Name { get; private set; }

 public string Title { get; set; }

 public Employee(string name = "<No Name>", string title = "<No Title>")
 {
 this.Name = name;
 this.Title = title;
 }
}

var jack = new Employee("Jack", "Associate"); //bad practice in this line

The above code compiles and works fine, until the constructor is changed some day like:

//Evil Code: add optional parameters between existing optional parameters
public Employee(string name = "<No Name>", string department = "intern", string title = "<No
Title>")
{
 this.Name = name;
 this.Department = department;

https://riptutorial.com/ 657

 this.Title = title;
}

//the below code still compiles, but now "Associate" is an argument of "department"
var jack = new Employee("Jack", "Associate");

Best practice to avoid bugs when "someone else in the team" made mistakes:

var jack = new Employee(name: "Jack", title: "Associate");

Read Named Arguments online: https://riptutorial.com/csharp/topic/2076/named-arguments

https://riptutorial.com/ 658

https://riptutorial.com/csharp/topic/2076/named-arguments

Chapter 103: nameof Operator

Introduction

The nameof operator allows you to get the name of a variable, type or member in string form
without hard-coding it as a literal.

The operation is evaluated at compile-time, which means that you can rename a referenced
identifier, using an IDE's rename feature, and the name string will update with it.

Syntax

nameof(expression)•

Examples

Basic usage: Printing a variable name

The nameof operator allows you to get the name of a variable, type or member in string form
without hard-coding it as a literal. The operation is evaluated at compile-time, which means that
you can rename, using an IDE's rename feature, a referenced identifier and the name string will
update with it.

var myString = "String Contents";
Console.WriteLine(nameof(myString));

Would output

myString

because the name of the variable is "myString". Refactoring the variable name would change the
string.

If called on a reference type, the nameof operator returns the name of the current reference, not the
name or type name of the underlying object. For example:

string greeting = "Hello!";
Object mailMessageBody = greeting;

Console.WriteLine(nameof(greeting)); // Returns "greeting"
Console.WriteLine(nameof(mailMessageBody)); // Returns "mailMessageBody", NOT "greeting"!

Printing a parameter name

Snippet

https://riptutorial.com/ 659

public void DoSomething(int paramValue)
{
 Console.WriteLine(nameof(paramValue));
}

...

int myValue = 10;
DoSomething(myValue);

Console Output

paramValue

Raising PropertyChanged event

Snippet

public class Person : INotifyPropertyChanged
{
 private string _address;

 public event PropertyChangedEventHandler PropertyChanged;

 private void OnPropertyChanged(string propertyName)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }

 public string Address
 {
 get { return _address; }
 set
 {
 if (_address == value)
 {
 return;
 }

 _address = value;
 OnPropertyChanged(nameof(Address));
 }
 }
}

...

var person = new Person();
person.PropertyChanged += (s,e) => Console.WriteLine(e.PropertyName);

person.Address = "123 Fake Street";

Console Output

Address

Handling PropertyChanged events

https://riptutorial.com/ 660

Snippet

public class BugReport : INotifyPropertyChanged
{
 public string Title { ... }
 public BugStatus Status { ... }
}

...

private void BugReport_PropertyChanged(object sender, PropertyChangedEventArgs e)
{
 var bugReport = (BugReport)sender;

 switch (e.PropertyName)
 {
 case nameof(bugReport.Title):
 Console.WriteLine("{0} changed to {1}", e.PropertyName, bugReport.Title);
 break;

 case nameof(bugReport.Status):
 Console.WriteLine("{0} changed to {1}", e.PropertyName, bugReport.Status);
 break;
 }
}

...

var report = new BugReport();
report.PropertyChanged += BugReport_PropertyChanged;

report.Title = "Everything is on fire and broken";
report.Status = BugStatus.ShowStopper;

Console Output

Title changed to Everything is on fire and broken

Status changed to ShowStopper

Applied to a generic type parameter

Snippet

public class SomeClass<TItem>
{
 public void PrintTypeName()
 {
 Console.WriteLine(nameof(TItem));
 }
}

...

var myClass = new SomeClass<int>();
myClass.PrintTypeName();

https://riptutorial.com/ 661

Console.WriteLine(nameof(SomeClass<int>));

Console Output

TItem

SomeClass

Applied to qualified identifiers

Snippet

Console.WriteLine(nameof(CompanyNamespace.MyNamespace));
Console.WriteLine(nameof(MyClass));
Console.WriteLine(nameof(MyClass.MyNestedClass));
Console.WriteLine(nameof(MyNamespace.MyClass.MyNestedClass.MyStaticProperty));

Console Output

MyNamespace

MyClass

MyNestedClass

MyStaticProperty

Argument Checking and Guard Clauses

Prefer

public class Order
{
 public OrderLine AddOrderLine(OrderLine orderLine)
 {
 if (orderLine == null) throw new ArgumentNullException(nameof(orderLine));
 ...
 }
}

Over

public class Order
{
 public OrderLine AddOrderLine(OrderLine orderLine)
 {
 if (orderLine == null) throw new ArgumentNullException("orderLine");
 ...
 }
}

Using the nameof feature makes it easier to refactor method parameters.

https://riptutorial.com/ 662

Strongly typed MVC action links

Instead of the usual loosely typed:

@Html.ActionLink("Log in", "UserController", "LogIn")

You can now make action links strongly typed:

@Html.ActionLink("Log in", @typeof(UserController), @nameof(UserController.LogIn))

Now if you want to refactor your code and rename the UserController.LogIn method to
UserController.SignIn, you don't need to worry about searching for all string occurrences. The
compiler will do the job.

Read nameof Operator online: https://riptutorial.com/csharp/topic/80/nameof-operator

https://riptutorial.com/ 663

https://riptutorial.com/csharp/topic/80/nameof-operator

Chapter 104: Naming Conventions

Introduction

This topic outlines some basic naming conventions used when writing in the C# language. Like all
conventions, they are not enforced by the compiler, but will ensure readability between
developers.

For comprehensive .NET framework design guidelines, see
docs.microsoft.com/dotnet/standard/design-guidelines.

Remarks

Choose easily readable identifier names

For example, a property named HorizontalAlignment is more readable in English than
AlignmentHorizontal.

Favor readability over brevity

The property name CanScrollHorizontally is better than ScrollableX (an obscure reference to the X-
axis).

Avoid using underscores, hyphens, or any other non-alphanumeric characters.

Do not use Hungarian notation

Hungarian notation is the practice of including a prefix in identifiers to encode some metadata
about the parameter, such as the data type of the identifier, e.g. string strName.

Also, avoid using identifiers that conflict with keywords already used within C#.

Abbreviations and acronyms

In general, you should not use abbreviations or acronyms; these make your names less readable.
Similarly, it is difficult to know when it is safe to assume that an acronym is widely recognized.

Examples

Capitalization conventions

The following terms describe different ways to case identifiers.

https://riptutorial.com/ 664

https://docs.microsoft.com/dotnet/standard/design-guidelines/

Pascal Casing

The first letter in the identifier and the first letter of each subsequent concatenated word are
capitalized. You can use Pascal case for identifiers of three or more characters. For example:
BackColor

Camel Casing

The first letter of an identifier is lowercase and the first letter of each subsequent concatenated
word is capitalized. For example: backColor

Uppercase

All letters in the identifier are capitalized. For example: IO

Rules

When an identifier consists of multiple words, do not use separators, such as underscores ("_") or
hyphens ("-"), between words. Instead, use casing to indicate the beginning of each word.

The following table summarizes the capitalization rules for identifiers and provides examples for
the different types of identifiers:

Identifier Case Example

Local variable Camel carName

Class Pascal AppDomain

Enumeration type Pascal ErrorLevel

Enumeration values Pascal FatalError

Event Pascal ValueChanged

Exception class Pascal WebException

Read-only static field Pascal RedValue

Interface Pascal IDisposable

Method Pascal ToString

Namespace Pascal System.Drawing

Parameter Camel typeName

https://riptutorial.com/ 665

Identifier Case Example

Property Pascal BackColor

More information can be found on MSDN.

Interfaces

Interfaces should be named with nouns or noun phrases, or adjectives that describe behaviour.
For example IComponent uses a descriptive noun, ICustomAttributeProvider uses a noun phrase and
IPersistable uses an adjective.

Interface names should be prefixed with the letter I, to indicate that the type is an interface, and
Pascal case should be used.

Below are correctly named interfaces:

public interface IServiceProvider
public interface IFormatable

Private fields

There are two common conventions for private fields: camelCase and
_camelCaseWithLeadingUnderscore.

Camel case

public class Rational
{
 private readonly int numerator;
 private readonly int denominator;

 public Rational(int numerator, int denominator)
 {
 // "this" keyword is required to refer to the class-scope field
 this.numerator = numerator;
 this.denominator = denominator;
 }
}

Camel case with underscore

public class Rational
{
 private readonly int _numerator;
 private readonly int _denominator;

 public Rational(int numerator, int denominator)
 {
 // Names are unique, so "this" keyword is not required

https://riptutorial.com/ 666

https://msdn.microsoft.com/library/ms229043(v=vs.110).aspx

 _numerator = numerator;
 _denominator = denominator;
 }
}

Namespaces

The general format for namespaces is:

<Company>.(<Product>|<Technology>)[.<Feature>][.<Subnamespace>].

Examples include:

Fabrikam.Math
Litware.Security

Prefixing namespace names with a company name prevents namespaces from different
companies from having the same name.

Enums

Use a singular name for most Enums

public enum Volume
{
 Low,
 Medium,
 High
}

Use a plural name for Enum types that are bit fields

[Flags]
public enum MyColors
{
 Yellow = 1,
 Green = 2,
 Red = 4,
 Blue = 8
}

Note: Always add the FlagsAttribute to a bit field Enum type.

Do not add 'enum' as a suffix

public enum VolumeEnum // Incorrect

https://riptutorial.com/ 667

https://msdn.microsoft.com/en-us/library/system.flagsattribute(v=vs.110).aspx

Do not use the enum name in each entry

public enum Color
{
 ColorBlue, // Remove Color, unnecessary
 ColorGreen,
}

Exceptions

Add 'exception' as a suffix

Custom exception names should be suffixed with "-Exception".

Below are correctly named exceptions:

public class MyCustomException : Exception
public class FooException : Exception

Read Naming Conventions online: https://riptutorial.com/csharp/topic/2330/naming-conventions

https://riptutorial.com/ 668

https://riptutorial.com/csharp/topic/2330/naming-conventions

Chapter 105: Networking

Syntax

TcpClient(string host, int port);•

Remarks

You can get the NetworkStream from a TcpClient with client.GetStream() and pass it into a
StreamReader/StreamWriter to gain access to their async read and write methods.

Examples

Basic TCP Communication Client

This code example creates a TCP client, sends "Hello World" over the socket connection, and
then writes the server response to the console before closing the connection.

// Declare Variables
string host = "stackoverflow.com";
int port = 9999;
int timeout = 5000;

// Create TCP client and connect
using (var _client = new TcpClient(host, port))
using (var _netStream = _client.GetStream())
{
 _netStream.ReadTimeout = timeout;

 // Write a message over the socket
 string message = "Hello World!";
 byte[] dataToSend = System.Text.Encoding.ASCII.GetBytes(message);
 _netStream.Write(dataToSend, 0, dataToSend.Length);

 // Read server response
 byte[] recvData = new byte[256];
 int bytes = _netStream.Read(recvData, 0, recvData.Length);
 message = System.Text.Encoding.ASCII.GetString(recvData, 0, bytes);
 Console.WriteLine(string.Format("Server: {0}", message));
};// The client and stream will close as control exits the using block (Equivilent but safer
than calling Close();

Download a file from a web server

Downloading a file from the internet is a very common task required by almost every application
your likely to build.

To accomplish this, you can use the "System.Net.WebClient" class.

The simplest use of this, using the "using" pattern, is shown below:

https://riptutorial.com/ 669

https://msdn.microsoft.com/en-us/library/system.net.webclient.aspx%22System.Net.WebClient%22

using (var webClient = new WebClient())
{
 webClient.DownloadFile("http://www.server.com/file.txt", "C:\\file.txt");
}

What this example does is it uses "using" to make sure that your web client is cleaned up correctly
when finished, and simply transfers the named resource from the URL in the first parameter, to the
named file on your local hard drive in the second parameter.

The first parameter is of type "System.Uri", the second parameter is of type "System.String"

You can also use this function is an async form, so that it goes off and performs the download in
the background, while your application get's on with something else, using the call in this way is of
major importance in modern applications, as it helps to keep your user interface responsive.

When you use the Async methods, you can hook up event handlers that allow you to monitor the
progress, so that you could for example, update a progress bar, something like the following:

var webClient = new WebClient())
webClient.DownloadFileCompleted += new AsyncCompletedEventHandler(Completed);
webClient.DownloadProgressChanged += new DownloadProgressChangedEventHandler(ProgressChanged);
webClient.DownloadFileAsync("http://www.server.com/file.txt", "C:\\file.txt");

One important point to remember if you use the Async versions however, and that's "Be very
carefull about using them in a 'using' syntax".

The reason for this is quite simple. Once you call the download file method, it will return
immediately. If you have this in a using block, you will return then exit that block, and immediately
dispose the class object, and thus cancel your download in progress.

If you use the 'using' way of performing an Async transfer, then be sure to stay inside the
enclosing block until the transfer completes.

Async TCP Client

Using async/await in C# applications simplifies multi-threading. This is how you can use
async/await in conjunction with a TcpClient.

// Declare Variables
string host = "stackoverflow.com";
int port = 9999;
int timeout = 5000;

// Create TCP client and connect
// Then get the netstream and pass it
// To our StreamWriter and StreamReader
using (var client = new TcpClient())
using (var netstream = client.GetStream())
using (var writer = new StreamWriter(netstream))
using (var reader = new StreamReader(netstream))
{
 // Asynchronsly attempt to connect to server

https://riptutorial.com/ 670

https://msdn.microsoft.com/en-us/library/system.uri.aspx%22System.Uri%22
https://msdn.microsoft.com/en-us/library/system.string.aspx%22System.String%22

 await client.ConnectAsync(host, port);

 // AutoFlush the StreamWriter
 // so we don't go over the buffer
 writer.AutoFlush = true;

 // Optionally set a timeout
 netstream.ReadTimeout = timeout;

 // Write a message over the TCP Connection
 string message = "Hello World!";
 await writer.WriteLineAsync(message);

 // Read server response
 string response = await reader.ReadLineAsync();
 Console.WriteLine(string.Format($"Server: {response}"));
}
// The client and stream will close as control exits
// the using block (Equivilent but safer than calling Close();

Basic UDP Client

This code example creates a UDP client then sends "Hello World" across the network to the
intended recipient. A listener does not have to be active, as UDP Is connectionless and will
broadcast the message regardless. Once the message is sent, the clients work is done.

byte[] data = Encoding.ASCII.GetBytes("Hello World");
string ipAddress = "192.168.1.141";
string sendPort = 55600;
try
{
 using (var client = new UdpClient())
 {
 IPEndPoint ep = new IPEndPoint(IPAddress.Parse(ipAddress), sendPort);
 client.Connect(ep);
 client.Send(data, data.Length);
 }
}
catch (Exception ex)
{
 Console.WriteLine(ex.ToString());
}

Below is an example of a UDP listener to complement the above client. It will constantly sit and
listen for traffic on a given port and simply write that data to the console. This example contains a
control flag 'done' that is not set internally and relies on something to set this to allow for ending the
listener and exiting.

bool done = false;
int listenPort = 55600;
using(UdpClinet listener = new UdpClient(listenPort))
{
 IPEndPoint listenEndPoint = new IPEndPoint(IPAddress.Any, listenPort);
 while(!done)
 {
 byte[] receivedData = listener.Receive(ref listenPort);

https://riptutorial.com/ 671

 Console.WriteLine("Received broadcast message from client {0}",
listenEndPoint.ToString());

 Console.WriteLine("Decoded data is:");
 Console.WriteLine(Encoding.ASCII.GetString(receivedData)); //should be "Hello World"
sent from above client
 }
}

Read Networking online: https://riptutorial.com/csharp/topic/1352/networking

https://riptutorial.com/ 672

https://riptutorial.com/csharp/topic/1352/networking

Chapter 106: Nullable types

Syntax

Nullable<int> i = 10;•
int? j = 11;•
int? k = null;•
DateTime? DateOfBirth = DateTime.Now;•
decimal? Amount = 1.0m;•
bool? IsAvailable = true;•
char? Letter = 'a';•
(type)? variableName•

Remarks

Nullable types can represent all the values of an underlying type as well as null.

The syntax T? is shorthand for Nullable<T>

Nullable values are System.ValueType objects actually, so they can be boxed and unboxed. Also,
null value of a nullable object is not the same as null value of a reference object, it's just a flag.

When a nullable object boxing, the null value is converted to null reference, and non-null value is
converted to non-nullable underlying type.

DateTime? dt = null;
var o = (object)dt;
var result = (o == null); // is true

DateTime? dt = new DateTime(2015, 12, 11);
var o = (object)dt;
var dt2 = (DateTime)dt; // correct cause o contains DateTime value

The second rule leads to correct, but paradoxical code:

DateTime? dt = new DateTime(2015, 12, 11);
var o = (object)dt;
var type = o.GetType(); // is DateTime, not Nullable<DateTime>

In short form:

DateTime? dt = new DateTime(2015, 12, 11);
var type = dt.GetType(); // is DateTime, not Nullable<DateTime>

Examples

https://riptutorial.com/ 673

Initialising a nullable

For null values:

Nullable<int> i = null;

Or:

int? i = null;

Or:

var i = (int?)null;

For non-null values:

Nullable<int> i = 0;

Or:

int? i = 0;

Check if a Nullable has a value

int? i = null;

if (i != null)
{
 Console.WriteLine("i is not null");
}
else
{
 Console.WriteLine("i is null");
}

Which is the same as:

if (i.HasValue)
{
 Console.WriteLine("i is not null");
}
else
{
 Console.WriteLine("i is null");
}

Get the value of a nullable type

Given following nullable int

https://riptutorial.com/ 674

int? i = 10;

In case default value is needed, you can assign one using null coalescing operator,
GetValueOrDefault method or check if nullable int HasValue before assignment.

int j = i ?? 0;
int j = i.GetValueOrDefault(0);
int j = i.HasValue ? i.Value : 0;

The following usage is always unsafe. If i is null at runtime, a System.InvalidOperationException will
be thrown. At design time, if a value is not set, you'll get a Use of unassigned local variable 'i'
error.

int j = i.Value;

Getting a default value from a nullable

The .GetValueOrDefault() method returns a value even if the .HasValue property is false (unlike the
Value property, which throws an exception).

class Program
{
 static void Main()
 {
 int? nullableExample = null;
 int result = nullableExample.GetValueOrDefault();
 Console.WriteLine(result); // will output the default value for int - 0
 int secondResult = nullableExample.GetValueOrDefault(1);
 Console.WriteLine(secondResult) // will output our specified default - 1
 int thirdResult = nullableExample ?? 1;
 Console.WriteLine(secondResult) // same as the GetValueOrDefault but a bit shorter
 }
}

Output:

0
1

Check if a generic type parameter is a nullable type

public bool IsTypeNullable<T>()
{
 return Nullable.GetUnderlyingType(typeof(T))!=null;
}

Default value of nullable types is null

public class NullableTypesExample

https://riptutorial.com/ 675

http://www.riptutorial.com/csharp/topic/37/null-coalescing-operator

{
 static int? _testValue;

 public static void Main()
 {
 if(_testValue == null)
 Console.WriteLine("null");
 else
 Console.WriteLine(_testValue.ToString());
 }
}

Output:

null

Effective usage of underlying Nullable argument

Any nullable type is a generic type. And any nullable type is a value type.

There are some tricks which allow to effectively use the result of the Nullable.GetUnderlyingType
method when creating code related to reflection/code-generation purposes:

public static class TypesHelper {
 public static bool IsNullable(this Type type) {
 Type underlyingType;
 return IsNullable(type, out underlyingType);
 }
 public static bool IsNullable(this Type type, out Type underlyingType) {
 underlyingType = Nullable.GetUnderlyingType(type);
 return underlyingType != null;
 }
 public static Type GetNullable(Type type) {
 Type underlyingType;
 return IsNullable(type, out underlyingType) ? type : NullableTypesCache.Get(type);
 }
 public static bool IsExactOrNullable(this Type type, Func<Type, bool> predicate) {
 Type underlyingType;
 if(IsNullable(type, out underlyingType))
 return IsExactOrNullable(underlyingType, predicate);
 return predicate(type);
 }
 public static bool IsExactOrNullable<T>(this Type type)
 where T : struct {
 return IsExactOrNullable(type, t => Equals(t, typeof(T)));
 }
}

The usage:

Type type = typeof(int).GetNullable();
Console.WriteLine(type.ToString());

if(type.IsNullable())
 Console.WriteLine("Type is nullable.");
Type underlyingType;

https://riptutorial.com/ 676

https://msdn.microsoft.com/en-us/library/system.nullable.getunderlyingtype(v=vs.110).aspx
http://www.riptutorial.com/csharp/topic/28/reflection

if(type.IsNullable(out underlyingType))
 Console.WriteLine("The underlying type is " + underlyingType.Name + ".");
if(type.IsExactOrNullable<int>())
 Console.WriteLine("Type is either exact or nullable Int32.");
if(!type.IsExactOrNullable(t => t.IsEnum))
 Console.WriteLine("Type is neither exact nor nullable enum.");

Output:

System.Nullable`1[System.Int32]
Type is nullable.
The underlying type is Int32.
Type is either exact or nullable Int32.
Type is neither exact nor nullable enum.

PS. The NullableTypesCache is defined as follows:

static class NullableTypesCache {
 readonly static ConcurrentDictionary<Type, Type> cache = new ConcurrentDictionary<Type,
Type>();
 static NullableTypesCache() {
 cache.TryAdd(typeof(byte), typeof(Nullable<byte>));
 cache.TryAdd(typeof(short), typeof(Nullable<short>));
 cache.TryAdd(typeof(int), typeof(Nullable<int>));
 cache.TryAdd(typeof(long), typeof(Nullable<long>));
 cache.TryAdd(typeof(float), typeof(Nullable<float>));
 cache.TryAdd(typeof(double), typeof(Nullable<double>));
 cache.TryAdd(typeof(decimal), typeof(Nullable<decimal>));
 cache.TryAdd(typeof(sbyte), typeof(Nullable<sbyte>));
 cache.TryAdd(typeof(ushort), typeof(Nullable<ushort>));
 cache.TryAdd(typeof(uint), typeof(Nullable<uint>));
 cache.TryAdd(typeof(ulong), typeof(Nullable<ulong>));
 //...
 }
 readonly static Type NullableBase = typeof(Nullable<>);
 internal static Type Get(Type type) {
 // Try to avoid the expensive MakeGenericType method call
 return cache.GetOrAdd(type, t => NullableBase.MakeGenericType(t));
 }
}

Read Nullable types online: https://riptutorial.com/csharp/topic/1240/nullable-types

https://riptutorial.com/ 677

https://riptutorial.com/csharp/topic/1240/nullable-types

Chapter 107: Null-Coalescing Operator

Syntax

var result = possibleNullObject ?? defaultValue;•

Parameters

Parameter Details

possibleNullObject
The value to test for null value. If non null, this value is returned. Must be
a nullable type.

defaultValue
The value returned if possibleNullObject is null. Must be the same type
as possibleNullObject.

Remarks

The null coalescing operator itself is two consecutive question mark characters: ??

It is a shorthand for the conditional expression:

possibleNullObject != null ? possibleNullObject : defaultValue

The left-side operand (object being tested) must be a nullable value type or reference type, or a
compile error will occur.

The ?? operator works for both reference types and value types.

Examples

Basic usage

Using the null-coalescing operator (??) allows you to specify a default value for a nullable type if
the left-hand operand is null.

string testString = null;
Console.WriteLine("The specified string is - " + (testString ?? "not provided"));

Live Demo on .NET Fiddle

This is logically equivalent to:

string testString = null;

https://riptutorial.com/ 678

https://msdn.microsoft.com/en-us/library/ms173224.aspx
https://dotnetfiddle.net/GNosPU

if (testString == null)
{
 Console.WriteLine("The specified string is - not provided");
}
else
{
 Console.WriteLine("The specified string is - " + testString);
}

or using the ternary operator (?:) operator:

string testString = null;
Console.WriteLine("The specified string is - " + (testString == null ? "not provided" :
testString));

Null fall-through and chaining

The left-hand operand must be nullable, while the right-hand operand may or may not be. The
result will be typed accordingly.

Non-nullable

int? a = null;
int b = 3;
var output = a ?? b;
var type = output.GetType();

Console.WriteLine($"Output Type :{type}");
Console.WriteLine($"Output value :{output}");

Output:

Type :System.Int32
value :3

View Demo

Nullable

int? a = null;
int? b = null;
var output = a ?? b;

output will be of type int? and equal to b, or null.

Multiple Coalescing

Coalescing can also be done in chains:

int? a = null;
int? b = null;
int c = 3;

https://riptutorial.com/ 679

http://www.riptutorial.com/csharp/example/6029/----ternary-operator
https://dotnetfiddle.net/hKHOcN

var output = a ?? b ?? c;

var type = output.GetType();
Console.WriteLine($"Type :{type}");
Console.WriteLine($"value :{output}");

Output:

Type :System.Int32
value :3

View Demo

Null Conditional Chaining

The null coalescing operator can be used in tandem with the null propagation operator to provide
safer access to properties of objects.

object o = null;
var output = o?.ToString() ?? "Default Value";

Output:

Type :System.String
value :Default Value

View Demo

Null coalescing operator with method calls

The null coalescing operator makes it easy to ensure that a method that may return null will fall
back to a default value.

Without the null coalescing operator:

string name = GetName();

if (name == null)
 name = "Unknown!";

With the null coalescing operator:

string name = GetName() ?? "Unknown!";

Use existing or create new

A common usage scenario that this feature really helps with is when you are looking for an object
in a collection and need to create a new one if it does not already exist.

IEnumerable<MyClass> myList = GetMyList();

https://riptutorial.com/ 680

https://dotnetfiddle.net/xC8Bmc
http://www.riptutorial.com/csharp/example/51/null-propagation
https://dotnetfiddle.net/nk1QRn

var item = myList.SingleOrDefault(x => x.Id == 2) ?? new MyClass { Id = 2 };

Lazy properties initialization with null coalescing operator

private List<FooBar> _fooBars;

public List<FooBar> FooBars
{
 get { return _fooBars ?? (_fooBars = new List<FooBar>()); }
}

The first time the property .FooBars is accessed the _fooBars variable will evaluate as null, thus
falling through to the assignment statement assigns and evaluates to the resulting value.

Thread safety

This is not thread-safe way of implementing lazy properties. For thread-safe laziness, use the
Lazy<T> class built into the .NET Framework.

C# 6 Syntactic Sugar using expression
bodies

Note that since C# 6, this syntax can be simplified using expression body for the property:

private List<FooBar> _fooBars;

public List<FooBar> FooBars => _fooBars ?? (_fooBars = new List<FooBar>());

Subsequent accesses to the property will yield the value stored in the _fooBars variable.

Example in the MVVM pattern

This is often used when implementing commands in the MVVM pattern. Instead of initializing the
commands eagerly with the construction of a viewmodel, commands are lazily initialized using this
pattern as follows:

private ICommand _actionCommand = null;
public ICommand ActionCommand =>
 _actionCommand ?? (_actionCommand = new DelegateCommand(DoAction));

Read Null-Coalescing Operator online: https://riptutorial.com/csharp/topic/37/null-coalescing-
operator

https://riptutorial.com/ 681

http://www.riptutorial.com/csharp/example/6795/lazy--thread-safe-singleton--using-lazy-t--
https://riptutorial.com/csharp/topic/37/null-coalescing-operator
https://riptutorial.com/csharp/topic/37/null-coalescing-operator

Chapter 108: Null-conditional Operators

Syntax

X?.Y; //null if X is null else X.Y•
X?.Y?.Z; //null if X is null or Y is null else X.Y.Z•
X?[index]; //null if X is null else X[index]•
X?.ValueMethod(); //null if X is null else the result of X.ValueMethod();•
X?.VoidMethod(); //do nothing if X is null else call X.VoidMethod();•

Remarks

Note that when using the null coalescing operator on a value type T you will get a Nullable<T>
back.

Examples

Null-Conditional Operator

The ?. operator is syntactic sugar to avoid verbose null checks. It's also known as the Safe
navigation operator.

Class used in the following example:

public class Person
{
 public int Age { get; set; }
 public string Name { get; set; }
 public Person Spouse { get; set; }
}

If an object is potentially null (such as a function that returns a reference type) the object must first
be checked for null to prevent a possible NullReferenceException. Without the null-conditional
operator, this would look like:

Person person = GetPerson();

int? age = null;
if (person != null)
 age = person.Age;

The same example using the null-conditional operator:

Person person = GetPerson();

var age = person?.Age; // 'age' will be of type 'int?', even if 'person' is not null

https://riptutorial.com/ 682

https://en.wikipedia.org/wiki/Safe_navigation_operator
https://en.wikipedia.org/wiki/Safe_navigation_operator

Chaining the Operator

The null-conditional operator can be combined on the members and sub-members of an object.

// Will be null if either `person` or `person.Spouse` are null
int? spouseAge = person?.Spouse?.Age;

Combining with the Null-Coalescing Operator

The null-conditional operator can be combined with the null-coalescing operator to provide a
default value:

// spouseDisplayName will be "N/A" if person, Spouse, or Name is null
var spouseDisplayName = person?.Spouse?.Name ?? "N/A";

The Null-Conditional Index

Similarly to the ?. operator, the null-conditional index operator checks for null values when
indexing into a collection that may be null.

string item = collection?[index];

is syntactic sugar for

string item = null;
if(collection != null)
{
 item = collection[index];
}

Avoiding NullReferenceExceptions

var person = new Person
{
 Address = null;
};

var city = person.Address.City; //throws a NullReferenceException
var nullableCity = person.Address?.City; //returns the value of null

This effect can be chained together:

var person = new Person
{
 Address = new Address
 {
 State = new State
 {

https://riptutorial.com/ 683

http://www.riptutorial.com/csharp/topic/37/null-coalescing-operator

 Country = null
 }
 }
};

// this will always return a value of at least "null" to be stored instead
// of throwing a NullReferenceException
var countryName = person?.Address?.State?.Country?.Name;

Null-conditional Operator can be used with Extension Method

Extension Method can work on null references, but you can use ?. to null-check anyway.

public class Person
{
 public string Name {get; set;}
}

public static class PersonExtensions
{
 public static int GetNameLength(this Person person)
 {
 return person == null ? -1 : person.Name.Length;
 }
}

Normally, the method will be triggered for null references, and return -1:

Person person = null;
int nameLength = person.GetNameLength(); // returns -1

Using ?. the method will not be triggered for null references, and the type is int?:

Person person = null;
int? nameLength = person?.GetNameLength(); // nameLength is null.

This behavior is actually expected from the way in which the ?. operator works: it will avoid making
instance method calls for null instances, in order to avoid NullReferenceExceptions. However, the
same logic applies to the extension method, despite the difference on how the method is declared.

For more information on why the extension method is called in the first example, please see the
Extension methods - null checking documentation.

Read Null-conditional Operators online: https://riptutorial.com/csharp/topic/41/null-conditional-
operators

https://riptutorial.com/ 684

http://www.riptutorial.com/csharp/example/161/null-checking
http://www.riptutorial.com/csharp/example/173/null-conditional-operator
http://www.riptutorial.com/csharp/example/173/null-conditional-operator
http://www.riptutorial.com/csharp/example/161/null-checking
https://riptutorial.com/csharp/topic/41/null-conditional-operators
https://riptutorial.com/csharp/topic/41/null-conditional-operators

Chapter 109: NullReferenceException

Examples

NullReferenceException explained

A NullReferenceException is thrown when you try to access a non-static member (property, method,
field or event) of a reference object but it is null.

Car myFirstCar = new Car();
Car mySecondCar = null;
Color myFirstColor = myFirstCar.Color; // No problem as myFirstCar exists / is not null
Color mySecondColor = mySecondCar.Color; // Throws a NullReferenceException
// as mySecondCar is null and yet we try to access its color.

To debug such an exception, it's quite easy: on the line where the exception is thrown, you just
have to look before every '.' or '[', or on rare occasions '('.

myGarage.CarCollection[currentIndex.Value].Color = theCarInTheStreet.Color;

Where does my exception come from? Either:

myGarage is null•
myGarage.CarCollection is null•
currentIndex is null•
myGarage.CarCollection[currentIndex.Value] is null•
theCarInTheStreet is null•

In debug mode, you only have to put your mouse cursor on every of these elements and you will
find your null reference. Then, what you have to do is understand why it doesn't have a value. The
correction totally depends on the goal of your method.

Have you forgotten to instantiate/initialize it?

myGarage.CarCollection = new Car[10];

Are you supposed to do something different if the object is null?

if (myGarage == null)
{
 Console.WriteLine("Maybe you should buy a garage first!");
}

Or maybe someone gave you a null argument, and was not supposed to:

if (theCarInTheStreet == null)
{

https://riptutorial.com/ 685

 throw new ArgumentNullException("theCarInTheStreet");
}

In any case, remember that a method should never throw a NullReferenceException. If it does,
that means you have forgotten to check something.

Read NullReferenceException online:
https://riptutorial.com/csharp/topic/2702/nullreferenceexception

https://riptutorial.com/ 686

https://riptutorial.com/csharp/topic/2702/nullreferenceexception

Chapter 110: O(n) Algorithm for circular
rotation of an array

Introduction

In my path to studying programming there have been simple, but interesting problems to solve as
exercises. One of those problems was to rotate an array(or another collection) by a certain value.
Here I will share with you a simple formula to do it.

Examples

Example of a generic method that rotates an array by a given shift

I would like to point out that we rotate left when the shifting value is negative and we rotate right
when the value is positive.

 public static void Main()
 {
 int[] array = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 int shiftCount = 1;
 Rotate(ref array, shiftCount);
 Console.WriteLine(string.Join(", ", array));
 // Output: [10, 1, 2, 3, 4, 5, 6, 7, 8, 9]

 array = new []{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 shiftCount = 15;
 Rotate(ref array, shiftCount);
 Console.WriteLine(string.Join(", ", array));
 // Output: [6, 7, 8, 9, 10, 1, 2, 3, 4, 5]

 array = new[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 shiftCount = -1;
 Rotate(ref array, shiftCount);
 Console.WriteLine(string.Join(", ", array));
 // Output: [2, 3, 4, 5, 6, 7, 8, 9, 10, 1]

 array = new[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 shiftCount = -35;
 Rotate(ref array, shiftCount);
 Console.WriteLine(string.Join(", ", array));
 // Output: [6, 7, 8, 9, 10, 1, 2, 3, 4, 5]
 }

 private static void Rotate<T>(ref T[] array, int shiftCount)
 {
 T[] backupArray= new T[array.Length];

 for (int index = 0; index < array.Length; index++)
 {
 backupArray[(index + array.Length + shiftCount % array.Length) % array.Length] =
array[index];
 }

https://riptutorial.com/ 687

 array = backupArray;
 }

The thing that is important in this code is the formula with which we find the new index value after
the rotation.

(index + array.Length + shiftCount % array.Length) % array.Length

Here is a little more information about it:

(shiftCount % array.Length) -> we normalize the shifting value to be in the length of the array
(since in an array with length 10, shifting 1 or 11 is the same thing, the same goes for -1 and -11).

array.Length + (shiftCount % array.Length) -> this is done due to left rotations to make sure we
do not go into a negative index, but rotate it to the end of the array. Without it for an array with
length 10 for index 0 and a rotation -1 we would go into a negative number (-1) and not get the
real rotation index value, which is 9. (10 + (-1 % 10) = 9)

index + array.Length + (shiftCount % array.Length) -> not much to say here as we apply the
rotation to the index to get the new index. (0 + 10 + (-1 % 10) = 9)

index + array.Length + (shiftCount % array.Length) % array.Length -> the second
normalization is making sure that the new index value does not go outside of the array, but rotates
the value in the beginning of the array. It is for right rotations, since in an array with length 10
without it for index 9 and a rotation 1 we would go into index 10, which is outside of the array, and
not get the real rotation index value is 0. ((9 + 10 + (1 % 10)) % 10 = 0)

Read O(n) Algorithm for circular rotation of an array online:
https://riptutorial.com/csharp/topic/9770/o-n--algorithm-for-circular-rotation-of-an-array

https://riptutorial.com/ 688

https://riptutorial.com/csharp/topic/9770/o-n--algorithm-for-circular-rotation-of-an-array

Chapter 111: Object initializers

Syntax

SomeClass sc = new SomeClass { Property1 = value1, Property2 = value2, ... };•
SomeClass sc = new SomeClass(param1, param2, ...) { Property1 = value1, Property2 =
value2, ... }

•

Remarks

The constructor parentheses can only be omitted if the type being instantiated has a default
(parameterless) constructor available.

Examples

Simple usage

Object initializers are handy when you need to create an object and set a couple of properties right
away, but the available constructors are not sufficient. Say you have a class

public class Book
{
 public string Title { get; set; }
 public string Author { get; set; }

 // the rest of class definition
}

To initialize a new instance of the class with an initializer:

Book theBook = new Book { Title = "Don Quixote", Author = "Miguel de Cervantes" };

This is equivalent to

Book theBook = new Book();
theBook.Title = "Don Quixote";
theBook.Author = "Miguel de Cervantes";

Usage with anonymous types

Object initializers are the only way to initialize anonymous types, which are types generated by the
compiler.

var album = new { Band = "Beatles", Title = "Abbey Road" };

For that reason object initializers are widely used in LINQ select queries, since they provide a

https://riptutorial.com/ 689

convenient way to specify which parts of a queried object you are interested in.

var albumTitles = from a in albums
 select new
 {
 Title = a.Title,
 Artist = a.Band
 };

Usage with non-default constructors

You can combine object initializers with constructors to initialize types if necessary. Take for
example a class defined as such:

public class Book {
 public string Title { get; set; }
 public string Author { get; set; }

 public Book(int id) {
 //do things
 }

 // the rest of class definition
}

var someBook = new Book(16) { Title = "Don Quixote", Author = "Miguel de Cervantes" }

This will first instantiate a Book with the Book(int) constructor, then set each property in the
initializer. It is equivalent to:

var someBook = new Book(16);
someBook.Title = "Don Quixote";
someBook.Author = "Miguel de Cervantes";

Read Object initializers online: https://riptutorial.com/csharp/topic/738/object-initializers

https://riptutorial.com/ 690

https://riptutorial.com/csharp/topic/738/object-initializers

Chapter 112: Object Oriented Programming In
C#

Introduction

This topic try to tell us how we can write programs based on OOP approach.But we don't try to
teach Object Oriented Programming paradigm. We'll be covering following topics:
Classes,Properties,Inheritance,Polymorphism,Interfaces and so on.

Examples

Classes:

Skeleton of declaring class is:

<>:Required

[]:Optional

[private/public/protected/internal] class <Desired Class Name> [:[Inherited
class][,][[Interface Name 1],[Interface Name 2],...]
{
 //Your code
}

Don't worry if you can't understand whole syntax,We'll be get familiar with all part of that.for first
example consider following class:

class MyClass
{
 int i = 100;
 public void getMyValue()
 {
 Console.WriteLine(this.i);//Will print number 100 in output
 }
}

in this class we create variable i with int type and with default private Access Modifiers and
getMyValue() method with public access modifiers.

Read Object Oriented Programming In C# online: https://riptutorial.com/csharp/topic/9856/object-
oriented-programming-in-csharp

https://riptutorial.com/ 691

https://msdn.microsoft.com/en-us/library/ms173121.aspx
https://riptutorial.com/csharp/topic/9856/object-oriented-programming-in-csharp
https://riptutorial.com/csharp/topic/9856/object-oriented-programming-in-csharp

Chapter 113: ObservableCollection

Examples

Initialize ObservableCollection

ObservableCollection is a collection of type T like List<T> which means that it holds objects of type T
.

From documentation we read that :

ObservableCollectionrepresents a dynamic data collection that provides notifications
when items get added, removed, or when the entire list is refreshed.

The key difference from other collections is that ObservableCollection implements the interfaces
INotifyCollectionChanged and INotifyPropertyChanged and immediately raise notification event when
a new object is added or removed and when collection is cleared.

This is especially useful for conneting the UI and backend of an application without having to write
extra code because when an object is added to or removed from an observable collection, the UI
is automatically updated.

The first step in order to use it is to include

using System.Collections.ObjectModel

You can either create an empty instance of a collection for example of type string

ObservableCollection<string> collection = new ObservableCollection<string>();

or an instance that is filled with data

 ObservableCollection<string> collection = new ObservableCollection<string>()
 {
 "First_String", "Second_String"
 };

Remember as in all IList collection, index starts from 0 (IList.Item Property).

Read ObservableCollection online: https://riptutorial.com/csharp/topic/7351/observablecollection-t-

https://riptutorial.com/ 692

https://msdn.microsoft.com/en-us/library/ewthkb10(v=vs.110).aspx
https://riptutorial.com/csharp/topic/7351/observablecollection-t-

Chapter 114: Operators

Introduction

In C#, an operator is a program element that is applied to one or more operands in an expression
or statement. Operators that take one operand, such as the increment operator (++) or new, are
referred to as unary operators. Operators that take two operands, such as arithmetic operators (+,-
,*,/), are referred to as binary operators. One operator, the conditional operator (?:), takes three
operands and is the sole ternary operator in C#.

Syntax

public static OperandType operator operatorSymbol(OperandType operand1)•
public static OperandType operator operatorSymbol(OperandType operand1,
OperandType2 operand2)

•

Parameters

Parameter Details

operatorSymbol The operator being overloaded, e.g. +, -, /, *

OperandType The type that will be returned by the overloaded operator.

operand1 The first operand to be used in performing the operation.

operand2
The second operand to be used in performing the operation, when doing
binary operations.

statements Optional code needed to perform the operation before returning the result.

Remarks

All operators are defined as static methods and they are not virtual and they are not inherited.

Operator Precedence

All operators have a particular "precedence" depending on which group the operator falls in
(operators of the same group have equal precedence). Meaning some operators will be applied
before others. What follows is a list of groups (containing their respective operators) ordered by
precedence (highest first):

Primary Operators•

https://riptutorial.com/ 693

https://docs.microsoft.com/en-us/dotnet/csharp/program

a.b - Member access.○

a?.b - Null conditional member access.○

-> - Pointer dereferencing combined with member access.○

f(x) - Function invocation.○

a[x] - Indexer.○

a?[x] - Null conditional indexer.○

x++ - Postfix increment.○

x-- - Postfix decrement.○

new - Type instantiation.○

default(T) - Returns the default initialized value of type T.○

typeof - Returns the Type object of the operand.○

checked - Enables numeric overflow checking.○

unchecked - Disables numeric overflow checking.○

delegate - Declares and returns a delegate instance.○

sizeof - Returns the size in bytes of the type operand.○

Unary Operators

+x - Returns x.○

-x - Numeric negation.○

!x - Logical negation.○

~x - Bitwise complement/declares destructors.○

++x - Prefix increment.○

--x - Prefix decrement.○

(T)x - Type casting.○

await - Awaits a Task.○

&x - Returns the address (pointer) of x.○

*x - Pointer dereferencing.○

•

Multiplicative Operators

x * y - Multiplication.○

x / y - Division.○

x % y - Modulus.○

•

Additive Operators

x + y - Addition.○

x – y - Subtraction.○

•

Bitwise Shift Operators

x << y - Shift bits left.○

x >> y - Shift bits right.○

•

Relational/Type-testing Operators

x < y - Less than.○

x > y - Greater than.○

•

https://riptutorial.com/ 694

x <= y - Less than or equal to.○

x >= y - Greater than or equal to.○

is - Type compatibility.○

as - Type conversion.○

Equality Operators

x == y - Equality.○

x != y - Not equal.○

•

Logical AND Operator

x & y - Logical/bitwise AND.○

•

Logical XOR Operator

x ^ y - Logical/bitwise XOR.○

•

Logical OR Operator

x | y - Logical/bitwise OR.○

•

Conditional AND Operator

x && y - Short-circuiting logical AND.○

•

Conditional OR Operator

x || y - Short-circuiting logical OR.○

•

Null-coalescing Operator

x ?? y - Returns x if it is not null; otherwise, returns y.○

•

Conditional Operator

x ? y : z - Evaluates/returns y if x is true; otherwise, evaluates z.○

•

Related Content

Null-Coalescing Operator•

Null-Conditional Operator•

nameof Operator•

Examples

Overloadable Operators

https://riptutorial.com/ 695

http://www.riptutorial.com/csharp/topic/37/null-coalescing-operator
http://www.riptutorial.com/csharp/topic/41/null-conditional-operators
http://www.riptutorial.com/csharp/topic/80/nameof-operator

C# allows user-defined types to overload operators by defining static member functions using the
operator keyword.
The following example illustrates an implementation of the + operator.

If we have a Complex class which represents a complex number:

public struct Complex
{
 public double Real { get; set; }
 public double Imaginary { get; set; }
}

And we want to add the option to use the + operator for this class. i.e.:

Complex a = new Complex() { Real = 1, Imaginary = 2 };
Complex b = new Complex() { Real = 4, Imaginary = 8 };
Complex c = a + b;

We will need to overload the + operator for the class. This is done using a static function and the
operator keyword:

public static Complex operator +(Complex c1, Complex c2)
{
 return new Complex
 {
 Real = c1.Real + c2.Real,
 Imaginary = c1.Imaginary + c2.Imaginary
 };
}

Operators such as +, -, *, / can all be overloaded. This also includes Operators that don't return
the same type (for example, == and != can be overloaded, despite returning booleans) The rule
below relating to pairs is also enforced here.

Comparison operators have to be overloaded in pairs (e.g. if < is overloaded, > also needs to be
overloaded).

A full list of overloadable operators (as well as non-overloadable operators and the restrictions
placed on some overloadable operators) can be seen at MSDN - Overloadable Operators (C#
Programming Guide).

7.0

overloading of operator is was introduced with the pattern matching mechanism of C# 7.0. For
details see Pattern Matching

Given a type Cartesian defined as follows

public class Cartesian
{
 public int X { get; }
 public int Y { get; }

https://riptutorial.com/ 696

https://msdn.microsoft.com/en-us/library/8edha89s.aspx
https://msdn.microsoft.com/en-us/library/8edha89s.aspx
http://www.riptutorial.com/csharp/example/13323/pattern-matching

}

An overloadable operator is could e.g. be defined for Polar coordinates

public static class Polar
{
 public static bool operator is(Cartesian c, out double R, out double Theta)
 {
 R = Math.Sqrt(c.X*c.X + c.Y*c.Y);
 Theta = Math.Atan2(c.Y, c.X);
 return c.X != 0 || c.Y != 0;
 }
}

which can be used like this

var c = Cartesian(3, 4);
if (c is Polar(var R, *))
{
 Console.WriteLine(R);
}

(The example is taken from the Roslyn Pattern Matching Documentation)

Relational Operators

Equals

Checks whether the supplied operands (arguments) are equal

"a" == "b" // Returns false.
"a" == "a" // Returns true.
1 == 0 // Returns false.
1 == 1 // Returns true.
false == true // Returns false.
false == false // Returns true.

Unlike Java, the equality comparison operator works natively with strings.

The equality comparison operator will work with operands of differing types if an implicit cast exists
from one to the other. If no suitable implicit cast exists, you may call an explicit cast or use a
method to convert to a compatible type.

1 == 1.0 // Returns true because there is an implicit cast from int to double.
new Object() == 1.0 // Will not compile.
MyStruct.AsInt() == 1 // Calls AsInt() on MyStruct and compares the resulting int with 1.

Unlike Visual Basic.NET, the equality comparison operator is not the same as the equality
assignment operator.

var x = new Object();
var y = new Object();

https://riptutorial.com/ 697

https://github.com/dotnet/roslyn/blob/future/docs/features/patterns.md

x == y // Returns false, the operands (objects in this case) have different references.
x == x // Returns true, both operands have the same reference.

Not to be confused with the assignment operator (=).

For value types, the operator returns true if both operands are equal in value.
For reference types, the operator returns true if both operands are equal in reference (not value).
An exception is that string objects will be compared with value equality.

Not Equals

Checks whether the supplied operands are not equal.

"a" != "b" // Returns true.
"a" != "a" // Returns false.
1 != 0 // Returns true.
1 != 1 // Returns false.
false != true // Returns true.
false != false // Returns false.

var x = new Object();
var y = new Object();
x != y // Returns true, the operands have different references.
x != x // Returns false, both operands have the same reference.

This operator effectively returns the opposite result to that of the equals (==) operator

Greater Than

Checks whether the first operand is greater than the second operand.

3 > 5 //Returns false.
1 > 0 //Returns true.
2 > 2 //Return false.

var x = 10;
var y = 15;
x > y //Returns false.
y > x //Returns true.

Less Than

Checks whether the first operand is less than the second operand.

2 < 4 //Returns true.
1 < -3 //Returns false.
2 < 2 //Return false.

var x = 12;
var y = 22;
x < y //Returns true.
y < x //Returns false.

Greater Than Equal To

https://riptutorial.com/ 698

Checks whether the first operand is greater than equal to the second operand.

7 >= 8 //Returns false.
0 >= 0 //Returns true.

Less Than Equal To

Checks whether the first operand is less than equal to the second operand.

2 <= 4 //Returns true.
1 <= -3 //Returns false.
1 <= 1 //Returns true.

Short-circuiting Operators

By definition, the short-circuiting boolean operators will only evaluate the second operand if the
first operand can not determine the overall result of the expression.

It means that, if you are using && operator as firstCondition && secondCondition it will evaluate
secondCondition only when firstCondition is true and ofcource the overall result will be true only if
both of firstOperand and secondOperand are evaluated to true. This is useful in many scenarios,
for example imagine that you want to check whereas your list has more than three elements but
you also have to check if list has been initialized to not run into NullReferenceException. You can
achieve this as below:

bool hasMoreThanThreeElements = myList != null && mList.Count > 3;

mList.Count > 3 will not be checked untill myList != null is met.

Logical AND

&& is the short-circuiting counterpart of the standard boolean AND (&) operator.

var x = true;
var y = false;

x && x // Returns true.
x && y // Returns false (y is evaluated).
y && x // Returns false (x is not evaluated).
y && y // Returns false (right y is not evaluated).

Logical OR

|| is the short-circuiting counterpart of the standard boolean OR (|) operator.

var x = true;
var y = false;

x || x // Returns true (right x is not evaluated).
x || y // Returns true (y is not evaluated).
y || x // Returns true (x and y are evaluated).

https://riptutorial.com/ 699

y || y // Returns false (y and y are evaluated).

Example usage

if(object != null && object.Property)
// object.Property is never accessed if object is null, because of the short circuit.
 Action1();
else
 Action2();

sizeof

Returns an int holding the size of a type* in bytes.

sizeof(bool) // Returns 1.
sizeof(byte) // Returns 1.
sizeof(sbyte) // Returns 1.
sizeof(char) // Returns 2.
sizeof(short) // Returns 2.
sizeof(ushort) // Returns 2.
sizeof(int) // Returns 4.
sizeof(uint) // Returns 4.
sizeof(float) // Returns 4.
sizeof(long) // Returns 8.
sizeof(ulong) // Returns 8.
sizeof(double) // Returns 8.
sizeof(decimal) // Returns 16.

*Only supports certain primitive types in safe context.

In an unsafe context, sizeof can be used to return the size of other primitive types and structs.

public struct CustomType
{
 public int value;
}

static void Main()
{
 unsafe
 {
 Console.WriteLine(sizeof(CustomType)); // outputs: 4
 }
}

Overloading equality operators

Overloading just equality operators is not enough. Under different circumstances, all of the
following can be called:

object.Equals and object.GetHashCode1.
IEquatable<T>.Equals (optional, allows avoiding boxing)2.
operator == and operator != (optional, allows using operators)3.

https://riptutorial.com/ 700

When overriding Equals, GetHashCode must also be overriden. When implementing Equals, there are
many special cases: comparing to objects of a different type, comparing to self etc.

When NOT overridden Equals method and == operator behave differently for classes and structs.
For classes just references are compared, and for structs values of properties are compared via
reflection what can negatively affect performance. == can not be used for comparing structs unless
it is overridden.

Generally equality operation must obey the following rules:

Must not throw exceptions.•
Reflexivity: A always equals A (may not be true for NULL values in some systems).•
Transitvity: if A equals B, and B equals C, then A equals C.•
If A equals B, then A and B have equal hash codes.•
Inheritance tree independence: if B and C are instances of Class2 inherited from Class1:
Class1.Equals(A,B) must always return the same value as the call to Class2.Equals(A,B).

•

class Student : IEquatable<Student>
{
 public string Name { get; set; } = "";

 public bool Equals(Student other)
 {
 if (ReferenceEquals(other, null)) return false;
 if (ReferenceEquals(other, this)) return true;
 return string.Equals(Name, other.Name);
 }

 public override bool Equals(object obj)
 {
 if (ReferenceEquals(null, obj)) return false;
 if (ReferenceEquals(this, obj)) return true;

 return Equals(obj as Student);
 }

 public override int GetHashCode()
 {
 return Name?.GetHashCode() ?? 0;
 }

 public static bool operator ==(Student left, Student right)
 {
 return Equals(left, right);
 }

 public static bool operator !=(Student left, Student right)
 {
 return !Equals(left, right);
 }
}

Class Member Operators: Member Access

var now = DateTime.UtcNow;

https://riptutorial.com/ 701

//accesses member of a class. In this case the UtcNow property.

Class Member Operators: Null Conditional Member Access

var zipcode = myEmployee?.Address?.ZipCode;
//returns null if the left operand is null.
//the above is the equivalent of:
var zipcode = (string)null;
if (myEmployee != null && myEmployee.Address != null)
 zipcode = myEmployee.Address.ZipCode;

Class Member Operators: Function Invocation

var age = GetAge(dateOfBirth);
//the above calls the function GetAge passing parameter dateOfBirth.

Class Member Operators: Aggregate Object Indexing

var letters = "letters".ToCharArray();
char letter = letters[1];
Console.WriteLine("Second Letter is {0}",letter);
//in the above example we take the second character from the array
//by calling letters[1]
//NB: Array Indexing starts at 0; i.e. the first letter would be given by letters[0].

Class Member Operators: Null Conditional Indexing

var letters = null;
char? letter = letters?[1];
Console.WriteLine("Second Letter is {0}",letter);
//in the above example rather than throwing an error because letters is null
//letter is assigned the value null

"Exclusive or" Operator

The operator for an "exclusive or" (for short XOR) is: ^

This operator returns true when one, but only one, of the supplied bools are true.

true ^ false // Returns true
false ^ true // Returns true
false ^ false // Returns false
true ^ true // Returns false

Bit-Shifting Operators

The shift operators allow programmers to adjust an integer by shifting all of its bits to the left or the
right. The following diagram shows the affect of shifting a value to the left by one digit.

https://riptutorial.com/ 702

Left-Shift

uint value = 15; // 00001111

uint doubled = value << 1; // Result = 00011110 = 30
uint shiftFour = value << 4; // Result = 11110000 = 240

Right-Shift

uint value = 240; // 11110000

uint halved = value >> 1; // Result = 01111000 = 120
uint shiftFour = value >> 4; // Result = 00001111 = 15

Implicit Cast and Explicit Cast Operators

C# allows user-defined types to control assignment and casting through the use of the explicit
and implicit keywords. The signature of the method takes the form:

public static <implicit/explicit> operator <ResultingType>(<SourceType> myType)

The method cannot take any more arguments, nor can it be an instance method. It can, however,
access any private members of type it is defined within.

An example of both an implicit and explicit cast:

public class BinaryImage
{
 private bool[] _pixels;

 public static implicit operator ColorImage(BinaryImage im)
 {
 return new ColorImage(im);
 }

 public static explicit operator bool[](BinaryImage im)
 {
 return im._pixels;
 }
}

Allowing the following cast syntax:

var binaryImage = new BinaryImage();
ColorImage colorImage = binaryImage; // implicit cast, note the lack of type
bool[] pixels = (bool[])binaryImage; // explicit cast, defining the type

The cast operators can work both ways, going from your type and going to your type:

public class BinaryImage
{
 public static explicit operator ColorImage(BinaryImage im)

https://riptutorial.com/ 703

 {
 return new ColorImage(im);
 }

 public static explicit operator BinaryImage(ColorImage cm)
 {
 return new BinaryImage(cm);
 }
}

Finally, the as keyword, which can be involved in casting within a type hierarchy, is not valid in this
situation. Even after defining either an explicit or implicit cast, you cannot do:

ColorImage cm = myBinaryImage as ColorImage;

It will generate a compilation error.

Binary operators with assignment

C# has several operators that can be combined with an = sign to evaluate the result of the
operator and then assign the result to the original variable.

Example:

x += y

is the same as

x = x + y

Assignment operators:

+=•
-=•
*=•
/=•
%=•
&=•
|=•
^=•
<<=•
>>=•

? : Ternary Operator

Returns one of two values depending on the value of a Boolean expression.

Syntax:

condition ? expression_if_true : expression_if_false;

https://riptutorial.com/ 704

Example:

string name = "Frank";
Console.WriteLine(name == "Frank" ? "The name is Frank" : "The name is not Frank");

The ternary operator is right-associative which allows for compound ternary expressions to be
used. This is done by adding additional ternary equations in either the true or false position of a
parent ternary equation. Care should be taken to ensure readability, but this can be useful
shorthand in some circumstances.

In this example, a compound ternary operation evaluates a clamp function and returns the current
value if it's within the range, the min value if it's below the range, or the max value if it's above the
range.

light.intensity = Clamp(light.intensity, minLight, maxLight);

public static float Clamp(float val, float min, float max)
{
 return (val < min) ? min : (val > max) ? max : val;
}

Ternary operators can also be nested, such as:

a ? b ? "a is true, b is true" : "a is true, b is false" : "a is false"

// This is evaluated from left to right and can be more easily seen with parenthesis:

a ? (b ? x : y) : z

// Where the result is x if a && b, y if a && !b, and z if !a

When writing compound ternary statements, it's common to use parenthesis or indentation to
improve readability.

The types of expression_if_true and expression_if_false must be identical or there must be an
implicit conversion from one to the other.

condition ? 3 : "Not three"; // Doesn't compile because `int` and `string` lack an implicit
conversion.

condition ? 3.ToString() : "Not three"; // OK because both possible outputs are strings.

condition ? 3 : 3.5; // OK because there is an implicit conversion from `int` to `double`. The
ternary operator will return a `double`.

condition ? 3.5 : 3; // OK because there is an implicit conversion from `int` to `double`. The
ternary operator will return a `double`.

The type and conversion requirements apply to your own classes too.

public class Car
{}

https://riptutorial.com/ 705

public class SportsCar : Car
{}

public class SUV : Car
{}

condition ? new SportsCar() : new Car(); // OK because there is an implicit conversion from
`SportsCar` to `Car`. The ternary operator will return a reference of type `Car`.

condition ? new Car() : new SportsCar(); // OK because there is an implicit conversion from
`SportsCar` to `Car`. The ternary operator will return a reference of type `Car`.

condition ? new SportsCar() : new SUV(); // Doesn't compile because there is no implicit
conversion from `SportsCar` to SUV or `SUV` to `SportsCar`. The compiler is not smart enough
to realize that both of them have an implicit conversion to `Car`.

condition ? new SportsCar() as Car : new SUV() as Car; // OK because both expressions evaluate
to a reference of type `Car`. The ternary operator will return a reference of type `Car`.

typeof

Gets System.Type object for a type.

System.Type type = typeof(Point) //System.Drawing.Point
System.Type type = typeof(IDisposable) //System.IDisposable
System.Type type = typeof(Colors) //System.Drawing.Color
System.Type type = typeof(List<>) //System.Collections.Generic.List`1[T]

To get the run-time type, use GetType method to obtain the System.Type of the current instance.

Operator typeof takes a type name as parameter, which is specified at compile time.

public class Animal {}
public class Dog : Animal {}

var animal = new Dog();

Assert.IsTrue(animal.GetType() == typeof(Animal)); // fail, animal is typeof(Dog)
Assert.IsTrue(animal.GetType() == typeof(Dog)); // pass, animal is typeof(Dog)
Assert.IsTrue(animal is Animal); // pass, animal implements Animal

default Operator

Value Type (where T : struct)

The built-in primitive data types, such as char, int, and float, as well as user-defined types
declared with struct, or enum. Their default value is new T() :

default(int) // 0
default(DateTime) // 0001-01-01 12:00:00 AM
default(char) // '\0' This is the "null character", not a zero or a line break.
default(Guid) // 00000000-0000-0000-0000-000000000000
default(MyStruct) // new MyStruct()

https://riptutorial.com/ 706

// Note: default of an enum is 0, and not the first *key* in that enum
// so it could potentially fail the Enum.IsDefined test
default(MyEnum) // (MyEnum)0

Reference Type (where T : class)

Any class, interface, array or delegate type. Their default value is null :

default(object) // null
default(string) // null
default(MyClass) // null
default(IDisposable) // null
default(dynamic) // null

nameof Operator

Returns a string that represents the unqualified name of a variable, type, or member.

int counter = 10;
nameof(counter); // Returns "counter"
Client client = new Client();
nameof(client.Address.PostalCode)); // Returns "PostalCode"

The nameof operator was introduced in C# 6.0. It is evaluated at compile-time and the returned
string value is inserted inline by the compiler, so it can be used in most cases where the constant
string can be used (e.g., the case labels in a switch statement, attributes, etc...). It can be useful in
cases like raising & logging exceptions, attributes, MVC Action links, etc...

?. (Null Conditional Operator)

6.0

Introduced in C# 6.0, the Null Conditional Operator ?. will immediately return null if the expression
on its left-hand side evaluates to null, instead of throwing a NullReferenceException. If its left-hand
side evaluates to a non-null value, it is treated just like a normal . operator. Note that because it
might return null, its return type is always a nullable type. That means that for a struct or primitive
type, it is wrapped into a Nullable<T>.

var bar = Foo.GetBar()?.Value; // will return null if GetBar() returns null
var baz = Foo.GetBar()?.IntegerValue; // baz will be of type Nullable<int>, i.e. int?

This comes handy when firing events. Normally you would have to wrap the event call in an if
statement checking for null and raise the event afterwards, which introduces the possibility of a
race condition. Using the Null conditional operator this can be fixed in the following way:

event EventHandler<string> RaiseMe;
RaiseMe?.Invoke("Event raised");

https://riptutorial.com/ 707

http://www.riptutorial.com/csharp/example/51/null-propagation

Postfix and Prefix increment and decrement

Postfix increment X++ will add 1 to x

var x = 42;
x++;
Console.WriteLine(x); // 43

Postfix decrement X-- will subtract one

var x = 42
x--;
Console.WriteLine(x); // 41

++x is called prefix increment it increments the value of x and then returns x while x++ returns the
value of x and then increments

var x = 42;
Console.WriteLine(++x); // 43
System.out.println(x); // 43

while

var x = 42;
Console.WriteLine(x++); // 42
System.out.println(x); // 43

both are commonly used in for loop

for(int i = 0; i < 10; i++)
{
}

=> Lambda operator

3.0

The => operator has the same precedence as the assignment operator = and is right-associative.

It is used to declare lambda expressions and also it is widely used with LINQ Queries:

string[] words = { "cherry", "apple", "blueberry" };

int shortestWordLength = words.Min((string w) => w.Length); //5

When used in LINQ extensions or queries the type of the objects can usually be skipped as it is
inferred by the compiler:

int shortestWordLength = words.Min(w => w.Length); //also compiles with the same result

https://riptutorial.com/ 708

http://www.riptutorial.com/csharp/example/4735/basics

The general form of lambda operator is the following:

(input parameters) => expression

The parameters of the lambda expression are specified before => operator, and the actual
expression/statement/block to be executed is to the right of the operator:

// expression
(int x, string s) => s.Length > x

// expression
(int x, int y) => x + y

// statement
(string x) => Console.WriteLine(x)

// block
(string x) => {
 x += " says Hello!";
 Console.WriteLine(x);
 }

This operator can be used to easily define delegates, without writing an explicit method:

delegate void TestDelegate(string s);

TestDelegate myDelegate = s => Console.WriteLine(s + " World");

myDelegate("Hello");

instead of

void MyMethod(string s)
{
 Console.WriteLine(s + " World");
}

delegate void TestDelegate(string s);

TestDelegate myDelegate = MyMethod;

myDelegate("Hello");

Assignment operator '='

The assignment operator = sets thr left hand operand's value to the value of right hand operand,
and return that value:

int a = 3; // assigns value 3 to variable a
int b = a = 5; // first assigns value 5 to variable a, then does the same for variable b
Console.WriteLine(a = 3 + 4); // prints 7

?? Null-Coalescing Operator

https://riptutorial.com/ 709

The Null-Coalescing operator ?? will return the left-hand side when not null. If it is null, it will return
the right-hand side.

object foo = null;
object bar = new object();

var c = foo ?? bar;
//c will be bar since foo was null

The ?? operator can be chained which allows the removal of if checks.

//config will be the first non-null returned.
var config = RetrieveConfigOnMachine() ??
 RetrieveConfigFromService() ??
 new DefaultConfiguration();

Read Operators online: https://riptutorial.com/csharp/topic/18/operators

https://riptutorial.com/ 710

https://riptutorial.com/csharp/topic/18/operators

Chapter 115: Overflow

Examples

Integer overflow

There is a maximum capacity an integer can store. And when you go over that limit, it will loop
back to the negative side. For int, it is 2147483647

int x = int.MaxValue; //MaxValue is 2147483647
x = unchecked(x + 1); //make operation explicitly unchecked so that the example
also works when the check for arithmetic overflow/underflow is enabled in the project settings

Console.WriteLine(x); //Will print -2147483648
Console.WriteLine(int.MinValue); //Same as Min value

For any integers out of this range use namespace System.Numerics which has datatype
BigInteger. Check below link for more information https://msdn.microsoft.com/en-
us/library/system.numerics.biginteger(v=vs.110).aspx

Overflow during operation

Overflow also happens during the operation. In the following example, x is an int, 1 is an int by
default. Therefore addition is an int addition. And the result will be an int. And it will overflow.

int x = int.MaxValue; //MaxValue is 2147483647
long y = x + 1; //It will be overflown
Console.WriteLine(y); //Will print -2147483648
Console.WriteLine(int.MinValue); //Same as Min value

You can prevent that by using 1L. Now 1 will be a long and addition will be a long addition

int x = int.MaxValue; //MaxValue is 2147483647
long y = x + 1L; //It will be OK
Console.WriteLine(y); //Will print 2147483648

Ordering matters

There is overflow in the following code

int x = int.MaxValue;
Console.WriteLine(x + x + 1L); //prints -1

Whereas in the following code there is no overflow

int x = int.MaxValue;
Console.WriteLine(x + 1L + x); //prints 4294967295

https://riptutorial.com/ 711

https://msdn.microsoft.com/en-us/library/system.numerics.biginteger(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.numerics.biginteger(v=vs.110).aspx

This is due to the left-to-right ordering of the operations. In the first code fragment x + x overflows
and after that it becomes a long. On the other hand x + 1L becomes long and after that x is added
to this value.

Read Overflow online: https://riptutorial.com/csharp/topic/3303/overflow

https://riptutorial.com/ 712

https://riptutorial.com/csharp/topic/3303/overflow

Chapter 116: Overload Resolution

Remarks

The process of overload resolution is described in the C# specification, section 7.5.3. Also relevant
are the sections 7.5.2 (type inference) and 7.6.5 (invocation expressions).

How overload resolution works will probably be changed in C# 7. The design notes indicate that
Microsoft will roll out a new system for determining which method is better (in complicated
scenarios).

Examples

Basic Overloading Example

This code contains an overloaded method named Hello:

class Example
{
 public static void Hello(int arg)
 {
 Console.WriteLine("int");
 }

 public static void Hello(double arg)
 {
 Console.WriteLine("double");
 }

 public static void Main(string[] args)
 {
 Hello(0);
 Hello(0.0);
 }
}

When the Main method is called, it will print

int
double

At compile-time, when the compiler finds the method call Hello(0), it finds all methods with the
name Hello. In this case, it finds two of them. It then tries to determine which of the methods is
better. The algorithm for determining which method is better is complex, but it usually boils down
to "make as few implicit conversions as possible".

Thus, in the case of Hello(0), no conversion is needed for the method Hello(int) but an implicit
numeric conversion is needed for the method Hello(double). Thus, the first method is chosen by
the compiler.

https://riptutorial.com/ 713

https://www.microsoft.com/en-us/download/details.aspx?id=7029

In the case of Hello(0.0), there is no way to convert 0.0 to an int implicitly, so the method
Hello(int) is not even considered for overload resolution. Only method remains and so it is chosen
by the compiler.

"params" is not expanded, unless necessary.

The following program:

class Program
{
 static void Method(params Object[] objects)
 {
 System.Console.WriteLine(objects.Length);
 }
 static void Method(Object a, Object b)
 {
 System.Console.WriteLine("two");
 }
 static void Main(string[] args)
 {
 object[] objectArray = new object[5];

 Method(objectArray);
 Method(objectArray, objectArray);
 Method(objectArray, objectArray, objectArray);
 }
}

will print:

5
two
3

The call expression Method(objectArray) could be interpreted in two ways: a single Object argument
that happens to be an array (so the program would output 1 because that would be the number of
arguments, or as an array of arguments, given in the normal form, as though the method Method
did not have the keyword params. In these situations, the normal, non-expanded form always takes
precedence. So, the program outputs 5.

In the second expression, Method(objectArray, objectArray), both the expanded form of the first
method and the traditional second method are applicable. In this case also, non-expanded forms
take precedence, so the program prints two.

In the third expression, Method(objectArray, objectArray, objectArray), the only option is to use the
expanded form of the first method, and so the program prints 3.

Passing null as one of the arguments

If you have

void F1(MyType1 x) {

https://riptutorial.com/ 714

 // do something
}

void F1(MyType2 x) {
 // do something else
}

and for some reason you need to call the first overload of F1 but with x = null, then doing simply

F1(null);

will not compile as the call is ambiguous. To counter this you can do

F1(null as MyType1);

Read Overload Resolution online: https://riptutorial.com/csharp/topic/77/overload-resolution

https://riptutorial.com/ 715

https://riptutorial.com/csharp/topic/77/overload-resolution

Chapter 117: Parallel LINQ (PLINQ)

Syntax

ParallelEnumerable.Aggregate(func)•
ParallelEnumerable.Aggregate(seed, func)•
ParallelEnumerable.Aggregate(seed, updateAccumulatorFunc, combineAccumulatorsFunc,
resultSelector)

•

ParallelEnumerable.Aggregate(seedFactory, updateAccumulatorFunc,
combineAccumulatorsFunc, resultSelector)

•

ParallelEnumerable.All(predicate)•
ParallelEnumerable.Any()•
ParallelEnumerable.Any(predicate)•
ParallelEnumerable.AsEnumerable()•
ParallelEnumerable.AsOrdered()•
ParallelEnumerable.AsParallel()•
ParallelEnumerable.AsSequential()•
ParallelEnumerable.AsUnordered()•
ParallelEnumerable.Average(selector)•
ParallelEnumerable.Cast()•
ParallelEnumerable.Concat(second)•
ParallelEnumerable.Contains(value)•
ParallelEnumerable.Contains(value, comparer)•
ParallelEnumerable.Count()•
ParallelEnumerable.Count(predicate)•
ParallelEnumerable.DefaultIfEmpty()•
ParallelEnumerable.DefaultIfEmpty(defaultValue)•
ParallelEnumerable.Distinct()•
ParallelEnumerable.Distinct(comparer)•
ParallelEnumerable.ElementAt(index)•
ParallelEnumerable.ElementAtOrDefault(index)•
ParallelEnumerable.Empty()•
ParallelEnumerable.Except(second)•
ParallelEnumerable.Except(second, comparer)•
ParallelEnumerable.First()•
ParallelEnumerable.First(predicate)•
ParallelEnumerable.FirstOrDefault()•
ParallelEnumerable.FirstOrDefault(predicate)•
ParallelEnumerable.ForAll(action)•
ParallelEnumerable.GroupBy(keySelector)•
ParallelEnumerable.GroupBy(keySelector, comparer)•
ParallelEnumerable.GroupBy(keySelector, elementSelector)•
ParallelEnumerable.GroupBy(keySelector, elementSelector, comparer)•
ParallelEnumerable.GroupBy(keySelector, resultSelector)•

https://riptutorial.com/ 716

ParallelEnumerable.GroupBy(keySelector, resultSelector, comparer)•
ParallelEnumerable.GroupBy(keySelector, elementSelector, ruleSelector)•
ParallelEnumerable.GroupBy(keySelector, elementSelector, ruleSelector, comparer)•
ParallelEnumerable.GroupJoin(inner, outerKeySelector, innerKeySelector, resultSelector)•
ParallelEnumerable.GroupJoin(inner, outerKeySelector, innerKeySelector, resultSelector,
comparer)

•

ParallelEnumerable.Intersect(second)•
ParallelEnumerable.Intersect(second, comparer)•
ParallelEnumerable.Join(inner, outerKeySelector, innerKeySelector, resultSelector)•
ParallelEnumerable.Join(inner, outerKeySelector, innerKeySelector, resultSelector,
comparer)

•

ParallelEnumerable.Last()•
ParallelEnumerable.Last(predicate)•
ParallelEnumerable.LastOrDefault()•
ParallelEnumerable.LastOrDefault(predicate)•
ParallelEnumerable.LongCount()•
ParallelEnumerable.LongCount(predicate)•
ParallelEnumerable.Max()•
ParallelEnumerable.Max(selector)•
ParallelEnumerable.Min()•
ParallelEnumerable.Min(selector)•
ParallelEnumerable.OfType()•
ParallelEnumerable.OrderBy(keySelector)•
ParallelEnumerable.OrderBy(keySelector, comparer)•
ParallelEnumerable.OrderByDescending(keySelector)•
ParallelEnumerable.OrderByDescending(keySelector, comparer)•
ParallelEnumerable.Range(start, count)•
ParallelEnumerable.Repeat(element, count)•
ParallelEnumerable.Reverse()•
ParallelEnumerable.Select(selector)•
ParallelEnumerable.SelectMany(selector)•
ParallelEnumerable.SelectMany(collectionSelector, resultSelector)•
ParallelEnumerable.SequenceEqual(second)•
ParallelEnumerable.SequenceEqual(second, comparer)•
ParallelEnumerable.Single()•
ParallelEnumerable.Single(predicate)•
ParallelEnumerable.SingleOrDefault()•
ParallelEnumerable.SingleOrDefault(predicate)•
ParallelEnumerable.Skip(count)•
ParallelEnumerable.SkipWhile(predicate)•
ParallelEnumerable.Sum()•
ParallelEnumerable.Sum(selector)•
ParallelEnumerable.Take(count)•
ParallelEnumerable.TakeWhile(predicate)•
ParallelEnumerable.ThenBy(keySelector)•
ParallelEnumerable.ThenBy(keySelector, comparer)•

https://riptutorial.com/ 717

ParallelEnumerable.ThenByDescending(keySelector)•
ParallelEnumerable.ThenByDescending(keySelector, comparer)•
ParallelEnumerable.ToArray()•
ParallelEnumerable.ToDictionary(keySelector)•
ParallelEnumerable.ToDictionary(keySelector, comparer)•
ParallelEnumerable.ToDictionary(elementSelector)•
ParallelEnumerable.ToDictionary(elementSelector, comparer)•
ParallelEnumerable.ToList()•
ParallelEnumerable.ToLookup(keySelector)•
ParallelEnumerable.ToLookup(keySelector, comparer)•
ParallelEnumerable.ToLookup(keySelector, elementSelector)•
ParallelEnumerable.ToLookup(keySelector, elementSelector, comparer)•
ParallelEnumerable.Union(second)•
ParallelEnumerable.Union(second, comparer)•
ParallelEnumerable.Where(predicate)•
ParallelEnumerable.WithCancellation(cancellationToken)•
ParallelEnumerable.WithDegreeOfParallelism(degreeOfParallelism)•
ParallelEnumerable.WithExecutionMode(executionMode)•
ParallelEnumerable.WithMergeOptions(mergeOptions)•
ParallelEnumerable.Zip(second, resultSelector)•

Examples

Simple example

This example shows how PLINQ can be used to calculate the even numbers between 1 and
10,000 using multiple threads. Note that the resulting list will won't be ordered!

var sequence = Enumerable.Range(1, 10000);
var evenNumbers = sequence.AsParallel()
 .Where(x => x % 2 == 0)
 .ToList();

// evenNumbers = { 4, 26, 28, 30, ... }
// Order will vary with different runs

WithDegreeOfParallelism

The degree of parallelism is the maximum number of concurrently executing tasks that will be
used to process the query.

var sequence = Enumerable.Range(1, 10000);
var evenNumbers = sequence.AsParallel()
 .WithDegreeOfParallelism(4)
 .Where(x => x % 2 == 0);

AsOrdered

https://riptutorial.com/ 718

This example shows how PLINQ can be used to calculate the even numbers between 1 and
10,000 using multiple threads. Order will be maintained in the resulting list, however keep in mind
that AsOrdered may hurt performance for a large numbers of elements, so un-ordered processing is
preferred when possible.

var sequence = Enumerable.Range(1, 10000);
var evenNumbers = sequence.AsParallel()
 .AsOrdered()
 .Where(x => x % 2 == 0)
 .ToList();

// evenNumbers = { 2, 4, 6, 8, ..., 10000 }

AsUnordered

Ordered sequences may hurt performance when dealing with a large number of elements. To
mitigate this, it's possible to call AsUnordered when the sequence order is no longer necessary.

var sequence = Enumerable.Range(1, 10000).Select(x => -1 * x); // -1, -2, ...
var evenNumbers = sequence.AsParallel()
 .OrderBy(x => x)
 .Take(5000)
 .AsUnordered()
 .Where(x => x % 2 == 0) // This line won't be affected by ordering
 .ToList();

Read Parallel LINQ (PLINQ) online: https://riptutorial.com/csharp/topic/3569/parallel-linq--plinq-

https://riptutorial.com/ 719

https://riptutorial.com/csharp/topic/3569/parallel-linq--plinq-

Chapter 118: Partial class and methods

Introduction

Partial classes provides us an option to split classes into multiple parts and in multiple source files.
All parts are combined into one single class during compile time. All parts should contain the
keyword partial,should be of the same accessibility. All parts should be present in the same
assembly for it to be included during compile time.

Syntax

public partial class MyPartialClass { }•

Remarks

Partial classes must be defined within the same assembly, and namespace, as the class that
they are extending.

•

All parts of the class must use the partial keyword.•

All parts of the class must have the same accessibility; public/protected/private etc..•

If any part uses the abstract keyword, then the combined type is considered abstract.•

If any part uses the sealed keyword, then the combined type is considered sealed.•

If any part uses the a base type, then the combined type inherits from that type.•

The combined type inherits all the interfaces defined on all the partial classes.•

Examples

Partial classes

Partial classes provide an ability to split class declaration (usually into separate files). A common
problem that can be solved with partial classes is allowing users to modify auto-generated code
without fearing that their changes will be overwritten if the code is regenerated. Also multiple
developers can work on same class or methods.

using System;

namespace PartialClassAndMethods
{
 public partial class PartialClass
 {
 public void ExampleMethod() {
 Console.WriteLine("Method call from the first declaration.");

https://riptutorial.com/ 720

 }
 }

 public partial class PartialClass
 {
 public void AnotherExampleMethod()
 {
 Console.WriteLine("Method call from the second declaration.");
 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 PartialClass partial = new PartialClass();
 partial.ExampleMethod(); // outputs "Method call from the first declaration."
 partial.AnotherExampleMethod(); // outputs "Method call from the second
declaration."
 }
 }
}

Partial methods

Partial method consists of the definition in one partial class declaration (as a common scenario - in
the auto-generated one) and the implementation in another partial class declaration.

using System;

namespace PartialClassAndMethods
{
 public partial class PartialClass // Auto-generated
 {
 partial void PartialMethod();
 }

 public partial class PartialClass // Human-written
 {
 public void PartialMethod()
 {
 Console.WriteLine("Partial method called.");
 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 PartialClass partial = new PartialClass();
 partial.PartialMethod(); // outputs "Partial method called."
 }
 }
}

Partial classes inheriting from a base class

https://riptutorial.com/ 721

When inheriting from any base class, only one partial class needs to have the base class
specified.

// PartialClass1.cs
public partial class PartialClass : BaseClass {}

// PartialClass2.cs
public partial class PartialClass {}

You can specify the same base class in more than one partial class. It will get flagged as
redundant by some IDE tools, but it does compile correctly.

// PartialClass1.cs
public partial class PartialClass : BaseClass {}

// PartialClass2.cs
public partial class PartialClass : BaseClass {} // base class here is redundant

You cannot specify different base classes in multiple partial classes, it will result in a compiler
error.

// PartialClass1.cs
public partial class PartialClass : BaseClass {} // compiler error

// PartialClass2.cs
public partial class PartialClass : OtherBaseClass {} // compiler error

Read Partial class and methods online: https://riptutorial.com/csharp/topic/3674/partial-class-and-
methods

https://riptutorial.com/ 722

https://riptutorial.com/csharp/topic/3674/partial-class-and-methods
https://riptutorial.com/csharp/topic/3674/partial-class-and-methods

Chapter 119: Performing HTTP requests

Examples

Creating and sending an HTTP POST request

using System.Net;
using System.IO;

...

string requestUrl = "https://www.example.com/submit.html";
HttpWebRequest request = HttpWebRequest.CreateHttp(requestUrl);
request.Method = "POST";

// Optionally, set properties of the HttpWebRequest, such as:
request.AutomaticDecompression = DecompressionMethods.Deflate | DecompressionMethods.GZip;
request.ContentType = "application/x-www-form-urlencoded";
// Could also set other HTTP headers such as Request.UserAgent, Request.Referer,
// Request.Accept, or other headers via the Request.Headers collection.

// Set the POST request body data. In this example, the POST data is in
// application/x-www-form-urlencoded format.
string postData = "myparam1=myvalue1&myparam2=myvalue2";
using (var writer = new StreamWriter(request.GetRequestStream()))
{
 writer.Write(postData);
}

// Submit the request, and get the response body from the remote server.
string responseFromRemoteServer;
using (HttpWebResponse response = (HttpWebResponse)request.GetResponse())
{
 using (StreamReader reader = new StreamReader(response.GetResponseStream()))
 {
 responseFromRemoteServer = reader.ReadToEnd();
 }
}

Creating and sending an HTTP GET request

using System.Net;
using System.IO;

...

string requestUrl = "https://www.example.com/page.html";
HttpWebRequest request = HttpWebRequest.CreateHttp(requestUrl);

// Optionally, set properties of the HttpWebRequest, such as:
request.AutomaticDecompression = DecompressionMethods.GZip | DecompressionMethods.Deflate;
request.Timeout = 2 * 60 * 1000; // 2 minutes, in milliseconds

// Submit the request, and get the response body.
string responseBodyFromRemoteServer;

https://riptutorial.com/ 723

using (HttpWebResponse response = (HttpWebResponse)request.GetResponse())
{
 using (StreamReader reader = new StreamReader(response.GetResponseStream()))
 {
 responseBodyFromRemoteServer = reader.ReadToEnd();
 }
}

Error handling of specific HTTP response codes (such as 404 Not Found)

using System.Net;

...

string serverResponse;
try
{
 // Call a method that performs an HTTP request (per the above examples).
 serverResponse = PerformHttpRequest();
}
catch (WebException ex)
{
 if (ex.Status == WebExceptionStatus.ProtocolError)
 {
 HttpWebResponse response = ex.Response as HttpWebResponse;
 if (response != null)
 {
 if ((int)response.StatusCode == 404) // Not Found
 {
 // Handle the 404 Not Found error
 // ...
 }
 else
 {
 // Could handle other response.StatusCode values here.
 // ...
 }
 }
 }
 else
 {
 // Could handle other error conditions here, such as
WebExceptionStatus.ConnectFailure.
 // ...
 }
}

Sending asynchronous HTTP POST request with JSON body

public static async Task PostAsync(this Uri uri, object value)
{
 var content = new ObjectContext(value.GetType(), value, new JsonMediaTypeFormatter());

 using (var client = new HttpClient())
 {
 return await client.PostAsync(uri, content);
 }

https://riptutorial.com/ 724

}

. . .

var uri = new Uri("http://stackoverflow.com/documentation/c%23/1971/performing-http-
requests");
await uri.PostAsync(new { foo = 123.45, bar = "Richard Feynman" });

Sending asynchronous HTTP GET request and reading JSON request

public static async Task<TResult> GetAnsync<TResult>(this Uri uri)
{
 using (var client = new HttpClient())
 {
 var message = await client.GetAsync(uri);

 if (!message.IsSuccessStatusCode)
 throw new Exception();

 return message.ReadAsAsync<TResult>();
 }
}

. . .

public class Result
{
 public double foo { get; set; }

 public string bar { get; set; }
}

var uri = new Uri("http://stackoverflow.com/documentation/c%23/1971/performing-http-
requests");
var result = await uri.GetAsync<Result>();

Retrieve HTML for Web Page (Simple)

string contents = "";
string url = "http://msdn.microsoft.com";

using (System.Net.WebClient client = new System.Net.WebClient())
{
 contents = client.DownloadString(url);
}

Console.WriteLine(contents);

Read Performing HTTP requests online: https://riptutorial.com/csharp/topic/1971/performing-http-
requests

https://riptutorial.com/ 725

https://riptutorial.com/csharp/topic/1971/performing-http-requests
https://riptutorial.com/csharp/topic/1971/performing-http-requests

Chapter 120: Pointers

Remarks

Pointers and unsafe

Due to their nature, pointers produce unverifiable code. Thus, usage of any pointer type requires
an unsafe context.

The type System.IntPtr is a safe wrapper around a void*. It is intended as a more convenient
alternative to void* when an unsafe context isn't otherwise required to perform the task at hand.

Undefined behavior

Like in C and C++, incorrect usage of pointers can invoke undefined behavior, with possible side-
effects being memory corruption and execution of unintended code. Due to the unverifiable nature
of most pointer operations, correct usage of pointers is entirely a responsibility of the programmer.

Types that support pointers

Unlike C and C++, not all C# types have corresponding pointer types. A type T may have a
corresponding pointer type if both of the following criteria apply:

T is a struct type or a pointer type.•
T contains only members that satisfy both of these criteria recursively.•

Examples

Pointers for array access

This example demonstrates how pointers can be used for C-like access to C# arrays.

unsafe
{
 var buffer = new int[1024];
 fixed (int* p = &buffer[0])
 {
 for (var i = 0; i < buffer.Length; i++)
 {
 *(p + i) = i;
 }
 }
}

https://riptutorial.com/ 726

The unsafe keyword is required because pointer access will not emit any bounds checks that are
normally emitted when accessing C# arrays the regular way.

The fixed keyword tells the C# compiler to emit instructions to pin the object in an exception-safe
way. Pinning is required to ensure that the garbage collector will not move the array in memory, as
that would invalidate any pointers pointing within the array.

Pointer arithmetic

Addition and subtraction in pointers works differently from integers. When a pointer is incremented
or decremented, the address it points to is increased or decreased by the size of the referent type.

For example, the type int (alias for System.Int32) has a size of 4. If an int can be stored in address
0, the subsequent int can be stored in address 4, and so on. In code:

var ptr = (int*)IntPtr.Zero;
Console.WriteLine(new IntPtr(ptr)); // prints 0
ptr++;
Console.WriteLine(new IntPtr(ptr)); // prints 4
ptr++;
Console.WriteLine(new IntPtr(ptr)); // prints 8

Similarly, the type long (alias for System.Int64) has a size of 8. If a long can be stored in address 0,
the subsequent longcan be stored in address 8, and so on. In code:

var ptr = (long*)IntPtr.Zero;
Console.WriteLine(new IntPtr(ptr)); // prints 0
ptr++;
Console.WriteLine(new IntPtr(ptr)); // prints 8
ptr++;
Console.WriteLine(new IntPtr(ptr)); // prints 16

The type void is special and void pointers are also special and they are used as catch-all pointers
when the type isn't known or doesn't matter. Due to their size-agnostic nature, void pointers
cannot be incremented or decremented:

var ptr = (void*)IntPtr.Zero;
Console.WriteLine(new IntPtr(ptr));
ptr++; // compile-time error
Console.WriteLine(new IntPtr(ptr));
ptr++; // compile-time error
Console.WriteLine(new IntPtr(ptr));

The asterisk is part of the type

In C and C++, the asterisk in the declaration of a pointer variable is part of the expression being
declared. In C#, the asterisk in the declaration is part of the type.

In C, C++ and C#, the following snippet declares an int pointer:

int* a;

https://riptutorial.com/ 727

In C and C++, the following snippet declares an int pointer and an int variable. In C#, it declares
two int pointers:

int* a, b;

In C and C++, the following snippet declares two int pointers. In C#, it is invalid:

int *a, *b;

void*

C# inherits from C and C++ the usage of void* as a type-agnostic and size-agnostic pointer.

void* ptr;

Any pointer type can be assigned to void* using an implicit conversion:

int* p1 = (int*)IntPtr.Zero;
void* ptr = p1;

The reverse requires an explicit conversion:

int* p1 = (int*)IntPtr.Zero;
void* ptr = p1;
int* p2 = (int*)ptr;

Member access using ->

C# inherits from C and C++ the usage of the symbol -> as a means of accessing the members of
an instance through a typed pointer.

Consider the following struct:

struct Vector2
{
 public int X;
 public int Y;
}

This is an example of the usage of -> to access its members:

Vector2 v;
v.X = 5;
v.Y = 10;

Vector2* ptr = &v;
int x = ptr->X;
int y = ptr->Y;
string s = ptr->ToString();

https://riptutorial.com/ 728

Console.WriteLine(x); // prints 5
Console.WriteLine(y); // prints 10
Console.WriteLine(s); // prints Vector2

Generic pointers

The criteria that a type must satisfy in order to support pointers (see Remarks) cannot be
expressed in terms of generic constraints. Therefore, any attempt to declare a pointer to a type
provided through a generic type parameter will fail.

void P<T>(T obj)
 where T : struct
{
 T* ptr = &obj; // compile-time error
}

Read Pointers online: https://riptutorial.com/csharp/topic/5524/pointers

https://riptutorial.com/ 729

https://riptutorial.com/csharp/topic/5524/pointers

Chapter 121: Pointers & Unsafe Code

Examples

Introduction to unsafe code

C# allows using pointer variables in a function of code block when it is marked by the unsafe
modifier. The unsafe code or the unmanaged code is a code block that uses a pointer variable.

A pointer is a variable whose value is the address of another variable i.e., the direct address of the
memory location. similar to any variable or constant, you must declare a pointer before you can
use it to store any variable address.

The general form of a pointer declaration is:

type *var-name;

Following are valid pointer declarations:

int *ip; /* pointer to an integer */
double *dp; /* pointer to a double */
float *fp; /* pointer to a float */
char *ch /* pointer to a character */

The following example illustrates use of pointers in C#, using the unsafe modifier:

using System;
namespace UnsafeCodeApplication
{
 class Program
 {
 static unsafe void Main(string[] args)
 {
 int var = 20;
 int* p = &var;
 Console.WriteLine("Data is: {0} ", var);
 Console.WriteLine("Address is: {0}", (int)p);
 Console.ReadKey();
 }
 }
}

When the above code wass compiled and executed, it produces the following result:

Data is: 20
Address is: 99215364

Instead of declaring an entire method as unsafe, you can also declare a part of the code as
unsafe:

https://riptutorial.com/ 730

// safe code
unsafe
{
 // you can use pointers here
}
// safe code

Retrieving the Data Value Using a Pointer

You can retrieve the data stored at the located referenced by the pointer variable, using the
ToString() method. The following example demonstrates this:

using System;
namespace UnsafeCodeApplication
{
 class Program
 {
 public static void Main()
 {
 unsafe
 {
 int var = 20;
 int* p = &var;
 Console.WriteLine("Data is: {0} " , var);
 Console.WriteLine("Data is: {0} " , p->ToString());
 Console.WriteLine("Address is: {0} " , (int)p);
 }

 Console.ReadKey();
 }
 }
}

When the above code was compiled and executed, it produces the following result:

Data is: 20
Data is: 20
Address is: 77128984

Passing Pointers as Parameters to Methods

You can pass a pointer variable to a method as parameter. The following example illustrates this:

using System;
namespace UnsafeCodeApplication
{
 class TestPointer
 {
 public unsafe void swap(int* p, int *q)
 {
 int temp = *p;
 *p = *q;
 *q = temp;
 }

https://riptutorial.com/ 731

 public unsafe static void Main()
 {
 TestPointer p = new TestPointer();
 int var1 = 10;
 int var2 = 20;
 int* x = &var1;
 int* y = &var2;

 Console.WriteLine("Before Swap: var1:{0}, var2: {1}", var1, var2);
 p.swap(x, y);

 Console.WriteLine("After Swap: var1:{0}, var2: {1}", var1, var2);
 Console.ReadKey();
 }
 }
}

When the above code is compiled and executed, it produces the following result:

Before Swap: var1: 10, var2: 20
After Swap: var1: 20, var2: 10

Accessing Array Elements Using a Pointer

In C#, an array name and a pointer to a data type same as the array data, are not the same
variable type. For example, int *p and int[] p, are not same type. You can increment the pointer
variable p because it is not fixed in memory but an array address is fixed in memory, and you can't
increment that.

Therefore, if you need to access an array data using a pointer variable, as we traditionally do in C,
or C++, you need to fix the pointer using the fixed keyword.

The following example demonstrates this:

using System;
namespace UnsafeCodeApplication
{
 class TestPointer
 {
 public unsafe static void Main()
 {
 int[] list = {10, 100, 200};
 fixed(int *ptr = list)

 /* let us have array address in pointer */
 for (int i = 0; i < 3; i++)
 {
 Console.WriteLine("Address of list[{0}]={1}",i,(int)(ptr + i));
 Console.WriteLine("Value of list[{0}]={1}", i, *(ptr + i));
 }

 Console.ReadKey();
 }
 }
}

https://riptutorial.com/ 732

When the above code was compiled and executed, it produces the following result:

Address of list[0] = 31627168
Value of list[0] = 10
Address of list[1] = 31627172
Value of list[1] = 100
Address of list[2] = 31627176
Value of list[2] = 200

Compiling Unsafe Code

For compiling unsafe code, you have to specify the /unsafe command-line switch with command-
line compiler.

For example, to compile a program named prog1.cs containing unsafe code, from command line,
give the command:

csc /unsafe prog1.cs

If you are using Visual Studio IDE then you need to enable use of unsafe code in the project
properties.

To do this:

Open project properties by double clicking the properties node in the Solution Explorer.•
Click on the Build tab.•
Select the option "Allow unsafe code"•

Read Pointers & Unsafe Code online: https://riptutorial.com/csharp/topic/5514/pointers---unsafe-
code

https://riptutorial.com/ 733

https://i.stack.imgur.com/2aPFY.png
https://riptutorial.com/csharp/topic/5514/pointers---unsafe-code
https://riptutorial.com/csharp/topic/5514/pointers---unsafe-code

Chapter 122: Polymorphism

Examples

Another Polymorphism Example

Polymorphism is one of the pillar of OOP. Poly derives from a Greek term which means 'multiple
forms'.

Below is an example which exhibits Polymorphism. The class Vehicle takes multiple forms as a
base class.

The Derived classes Ducati and Lamborghini inherits from Vehicle and overrides the base class's
Display() method, to display its own NumberOfWheels.

public class Vehicle
{
 protected int NumberOfWheels { get; set; } = 0;
 public Vehicle()
 {
 }

 public virtual void Display()
 {
 Console.WriteLine($"The number of wheels for the {nameof(Vehicle)} is
{NumberOfWheels}");
 }
}

public class Ducati : Vehicle
{
 public Ducati()
 {
 NoOfWheels = 2;
 }

 public override void Display()
 {
 Console.WriteLine($"The number of wheels for the {nameof(Ducati)} is
{NumberOfWheels}");
 }
}

public class Lamborghini : Vehicle
{
 public Lamborghini()
 {
 NoOfWheels = 4;
 }

 public override void Display()
 {
 Console.WriteLine($"The number of wheels for the {nameof(Lamborghini)} is
{NumberOfWheels}");
 }

https://riptutorial.com/ 734

}

Below is the code snippet where Polymorphism is exhibited. The object is created for the base
type Vehicle using a variable vehicle at Line 1. It calls the base class method Display() at Line 2
and display the output as shown.

 static void Main(string[] args)
 {
 Vehicle vehicle = new Vehicle(); //Line 1
 vehicle.Display(); //Line 2
 vehicle = new Ducati(); //Line 3
 vehicle.Display(); //Line 4
 vehicle = new Lamborghini(); //Line 5
 vehicle.Display(); //Line 6
 }

At Line 3, the vehicle object is pointed to the derived class Ducati and calls its Display() method,
which displays the output as shown. Here comes the polymorphic behavior, even though the
object vehicle is of type Vehicle, it calls the derived class method Display() as the type Ducati
overrides the base class Display() method, since the vehicle object is pointed towards Ducati.

The same explanation is applicable when it invokes the Lamborghini type's Display() method.

The Output is shown below

The number of wheels for the Vehicle is 0 // Line 2
The number of wheels for the Ducati is 2 // Line 4
The number of wheels for the Lamborghini is 4 // Line 6

Types of Polymorphism

Polymorphism means that a operation can also be applied to values of some other types.

There are multiple types of Polymorphism:

Ad hoc polymorphism:
contains function overloading. The target is that a Method can be used with different types
without the need of being generic.

•

Parametric polymorphism:
is the use of generic types. See Generics

•

Subtyping:
has the target inherit of a class to generalize a similar functionality

•

Ad hoc polymorphism

The target of Ad hoc polymorphism is to create a method, that can be called by different datatypes
without a need of type-conversion in the function call or generics. The following method(s)
sumInt(par1, par2) can be called with different datatypes and has for each combination of types a

https://riptutorial.com/ 735

http://www.riptutorial.com/csharp/topic/27/generics

own implementation:

public static int sumInt(int a, int b)
{
 return a + b;
}

public static int sumInt(string a, string b)
{
 int _a, _b;

 if(!Int32.TryParse(a, out _a))
 _a = 0;

 if(!Int32.TryParse(b, out _b))
 _b = 0;

 return _a + _b;
}

public static int sumInt(string a, int b)
{
 int _a;

 if(!Int32.TryParse(a, out _a))
 _a = 0;

 return _a + b;
}

public static int sumInt(int a, string b)
{
 return sumInt(b,a);
}

Here's a example call:

public static void Main()
{
 Console.WriteLine(sumInt(1 , 2)); // 3
 Console.WriteLine(sumInt("3","4")); // 7
 Console.WriteLine(sumInt("5", 6)); // 11
 Console.WriteLine(sumInt(7 ,"8")); // 15
}

Subtyping

Subtyping is the use of inherit from a base class to generalize a similar behavior:

public interface Car{
 void refuel();
}

public class NormalCar : Car
{

https://riptutorial.com/ 736

 public void refuel()
 {
 Console.WriteLine("Refueling with petrol");
 }
}

public class ElectricCar : Car
{
 public void refuel()
 {
 Console.WriteLine("Charging battery");
 }
}

Both classes NormalCar and ElectricCar now have a method to refuel, but their own
implementation. Here's a Example:

public static void Main()
{
 List<Car> cars = new List<Car>(){
 new NormalCar(),
 new ElectricCar()
 };

 cars.ForEach(x => x.refuel());
}

The output will be was following:

Refueling with petrol
Charging battery

Read Polymorphism online: https://riptutorial.com/csharp/topic/1589/polymorphism

https://riptutorial.com/ 737

https://riptutorial.com/csharp/topic/1589/polymorphism

Chapter 123: Preprocessor directives

Syntax

#define [symbol] // Defines a compiler symbol.•
#undef [symbol] // Undefines a compiler symbol.•
#warning [warning message] // Generates a compiler warning. Useful with #if.•
#error [error message] // Generates a compiler error. Useful with #if.•
#line [line number] (file name) // Overrides the compiler line number (and optionally source
file name). Used with T4 text templates.

•

#pragma warning [disable|restore] [warning numbers] // Disables/restores compiler warnings.•
#pragma checksum "[filename]" "[guid]" "[checksum]" // Validates a source file's contents.•
#region [region name] // Defines a collapsible code region.•
#endregion // Ends a code region block.•
#if [condition] // Executes the code below if the condition is true.•
#else // Used after an #if.•
#elif [condition] // Used after an #if.•
#endif // Ends a conditional block started with #if.•

Remarks

Preprocessor directives are typically used to make source programs easy to change and easy to
compile in different execution environments. Directives in the source file tell the preprocessor to
perform specific actions. For example, the preprocessor can replace tokens in the text, insert the
contents of other files into the source file, or suppress compilation of part of the file by removing
sections of text. Preprocessor lines are recognized and carried out before macro expansion.
Therefore, if a macro expands into something that looks like a preprocessor command, that
command is not recognized by the preprocessor.

Preprocessor statements use the same character set as source file statements, with the exception
that escape sequences are not supported. The character set used in preprocessor statements is
the same as the execution character set. The preprocessor also recognizes negative character
values.

Conditional Expressions

Conditional expressions (#if, #elif, etc) do support a limited subset of boolean operators. They
are:

== and !=. These can only be used for testing whether the symbol is true (defined) or false
(not defined)

•

&&, ||, !•
()•

For example:

https://riptutorial.com/ 738

https://msdn.microsoft.com/en-us/library/bb126445.aspx

#if !DEBUG && (SOME_SYMBOL || SOME_OTHER_SYMBOL) && RELEASE == true
Console.WriteLine("OK!");
#endif

would compile code that prints "OK!" to the console if DEBUG is not defined, either SOME_SYMBOL or
SOME_OTHER_SYMBOL is defined, and RELEASE is defined.

Note: These substitutions are done at compile time and are therefore not available for inspection
at run time. Code eliminated through use of #if is not part of the compiler's output.

See Also: C# Preprocessor Directives at MSDN.

Examples

Conditional Expressions

When the following is compiled, it will return a different value depending on which directives are
defined.

// Compile with /d:A or /d:B to see the difference
string SomeFunction()
{
#if A
 return "A";
#elif B
 return "B";
#else
 return "C";
#endif
}

Conditional expressions are typically used to log additional information for debug builds.

void SomeFunc()
{
 try
 {
 SomeRiskyMethod();
 }
 catch (ArgumentException ex)
 {
 #if DEBUG
 log.Error("SomeFunc", ex);
 #endif

 HandleException(ex);
 }
}

Generating Compiler Warnings and Errors

Compiler warnings can be generated using the #warning directive, and errors can likewise be
generated using the #error directive.

https://riptutorial.com/ 739

https://msdn.microsoft.com/en-us/library/ed8yd1ha.aspx

#if SOME_SYMBOL
#error This is a compiler Error.
#elif SOME_OTHER_SYMBOL
#warning This is a compiler Warning.
#endif

Defining and Undefining Symbols

A compiler symbol is a keyword that is defined at compile-time that can be checked for to
conditionally execute specific sections of code.

There are three ways to define a compiler symbol. They can be defined via code:

#define MYSYMBOL

They can be defined in Visual Studio, under Project Properties > Build > Conditional Compilation
Symbols:

(Note that DEBUG and TRACE have their own checkboxes and do not need to be specified explicitly.)

Or they can be defined at compile-time using the /define:[name] switch on the C# compiler, csc.exe
.

You can also undefined symbols using the #undefine directive.

The most prevalent example of this is the DEBUG symbol, which gets defined by Visual Studio when
an application is compiled in Debug mode (versus Release mode).

public void DoBusinessLogic()
{
 try
 {
 AuthenticateUser();
 LoadAccount();
 ProcessAccount();
 FinalizeTransaction();
 }
 catch (Exception ex)
 {
#if DEBUG

https://riptutorial.com/ 740

 System.Diagnostics.Trace.WriteLine("Unhandled exception!");
 System.Diagnostics.Trace.WriteLine(ex);
 throw;
#else
 LoggingFramework.LogError(ex);
 DisplayFriendlyErrorMessage();
#endif
 }
}

In the example above, when an error occurs in the business logic of the application, if the
application is compiled in Debug mode (and the DEBUG symbol is set), the error will be written to the
trace log, and the exception will be re-thrown for debugging. However, if the application is
compiled in Release mode (and no DEBUG symbol is set), a logging framework is used to quietly log
the error, and a friendly error message is displayed to the end user.

Region Blocks

Use #region and #endregion to define a collapsible code region.

#region Event Handlers

public void Button_Click(object s, EventArgs e)
{
 // ...
}

public void DropDown_SelectedIndexChanged(object s, EventArgs e)
{
 // ...
}

#endregion

These directives are only beneficial when an IDE that supports collapsible regions (such as Visual
Studio) is used to edit the code.

Other Compiler Instructions

Line

#line controls the line number and filename reported by the compiler when outputting warnings
and errors.

void Test()
{
 #line 42 "Answer"
 #line filename "SomeFile.cs"
 int life; // compiler warning CS0168 in "SomeFile.cs" at Line 42
 #line default
 // compiler warnings reset to default
}

https://riptutorial.com/ 741

https://www.visualstudio.com/en-us/visual-studio-homepage-vs.aspx
https://www.visualstudio.com/en-us/visual-studio-homepage-vs.aspx

Pragma Checksum

#pragma checksum allows the specification of a specific checksum for a generated program database
(PDB) for debugging.

#pragma checksum "MyCode.cs" "{00000000-0000-0000-0000-000000000000}" "{0123456789A}"

Using the Conditional attribute

Adding a Conditional attribute from System.Diagnostics namespace to a method is a clean way to
control which methods are called in your builds and which are not.

#define EXAMPLE_A

using System.Diagnostics;
class Program
{
 static void Main()
 {
 ExampleA(); // This method will be called
 ExampleB(); // This method will not be called
 }

 [Conditional("EXAMPLE_A")]
 static void ExampleA() {...}

 [Conditional("EXAMPLE_B")]
 static void ExampleB() {...}
}

Disabling and Restoring Compiler Warnings

You can disable compiler warnings using #pragma warning disable and restore them using #pragma
warning restore:

#pragma warning disable CS0168

// Will not generate the "unused variable" compiler warning since it was disabled
var x = 5;

#pragma warning restore CS0168

// Will generate a compiler warning since the warning was just restored
var y = 8;

Comma-separated warning numbers are allowed:

#pragma warning disable CS0168, CS0219

The CS prefix is optional, and can even be intermixed (though this is not a best practice):

https://riptutorial.com/ 742

#pragma warning disable 0168, 0219, CS0414

Custom Preprocessors at project level

It is convenient to set custom conditional preprocessing at project level when some actions need
to be skipped lets say for tests.

Go to Solution Explorer -> Click Right Mouse on project you want to set variable to -> Properties ->
Build -> In General find field Conditional compilation symbols and enter your conditional variable
here

Code example that will skip some code:

public void Init()
{
 #if !IGNOREREFRESHDB
 // will skip code here
 db.Initialize();
 #endif
}

Read Preprocessor directives online: https://riptutorial.com/csharp/topic/755/preprocessor-

https://riptutorial.com/ 743

http://i.stack.imgur.com/B2pi1.png
https://riptutorial.com/csharp/topic/755/preprocessor-directives

directives

https://riptutorial.com/ 744

https://riptutorial.com/csharp/topic/755/preprocessor-directives

Chapter 124: Properties

Remarks

Properties combine the class data storage of fields with the accessibility of methods. Sometimes it
may be hard to decide whether to use a property, a property referencing a field, or a method
referencing a field. As a rule of thumb:

Properties should be used without an internal field if they only get and/or set values; with no
other logic occurring. In such cases, adding an internal field would be adding code for no
benefit.

•

Properties should be used with internal fields when you need to manipulate or validate the
data. An example may be removing leading and trailing spaces from strings or ensuring that
a date is not in the past.

•

With regards to Methods vs Properties, where you can both retrieve (get) and update (set) a value,
a property is the better choice. Also, .Net provides a lot of functionality that makes use of a class's
structure; e.g. adding a grid to a form, .Net will by default list all properties of the class on that
form; thus to make best use of such conventions plan to use properties when this behaviour would
be typically desirable, and methods where you'd prefer for the types to not be automatically added.

Examples

Various Properties in Context

public class Person
{
 //Id property can be read by other classes, but only set by the Person class
 public int Id {get; private set;}
 //Name property can be retrieved or assigned
 public string Name {get; set;}

 private DateTime dob;
 //Date of Birth property is stored in a private variable, but retrieved or assigned
through the public property.
 public DateTime DOB
 {
 get { return this.dob; }
 set { this.dob = value; }
 }
 //Age property can only be retrieved; it's value is derived from the date of birth
 public int Age
 {
 get
 {
 int offset = HasHadBirthdayThisYear() ? 0 : -1;
 return DateTime.UtcNow.Year - this.dob.Year + offset;
 }
 }

https://riptutorial.com/ 745

 //this is not a property but a method; though it could be rewritten as a property if
desired.
 private bool HasHadBirthdayThisYear()
 {
 bool hasHadBirthdayThisYear = true;
 DateTime today = DateTime.UtcNow;
 if (today.Month > this.dob.Month)
 {
 hasHadBirthdayThisYear = true;
 }
 else
 {
 if (today.Month == this.dob.Month)
 {
 hasHadBirthdayThisYear = today.Day > this.dob.Day;
 }
 else
 {
 hasHadBirthdayThisYear = false;
 }
 }
 return hasHadBirthdayThisYear;
 }
}

Public Get

Getters are used to expose values from classes.

string name;
public string Name
{
 get { return this.name; }
}

Public Set

Setters are used to assign values to properties.

string name;
public string Name
{
 set { this.name = value; }
}

Accessing Properties

class Program
{
 public static void Main(string[] args)
 {
 Person aPerson = new Person("Ann Xena Sample", new DateTime(1984, 10, 22));
 //example of accessing properties (Id, Name & DOB)
 Console.WriteLine("Id is: \t{0}\nName is:\t'{1}'.\nDOB is: \t{2:yyyy-MM-dd}.\nAge is:

https://riptutorial.com/ 746

\t{3}", aPerson.Id, aPerson.Name, aPerson.DOB, aPerson.GetAgeInYears());
 //example of setting properties

 aPerson.Name = " Hans Trimmer ";
 aPerson.DOB = new DateTime(1961, 11, 11);
 //aPerson.Id = 5; //this won't compile as Id's SET method is private; so only
accessible within the Person class.
 //aPerson.DOB = DateTime.UtcNow.AddYears(1); //this would throw a runtime error as
there's validation to ensure the DOB is in past.

 //see how our changes above take effect; note that the Name has been trimmed
 Console.WriteLine("Id is: \t{0}\nName is:\t'{1}'.\nDOB is: \t{2:yyyy-MM-dd}.\nAge is:
\t{3}", aPerson.Id, aPerson.Name, aPerson.DOB, aPerson.GetAgeInYears());

 Console.WriteLine("Press any key to continue");
 Console.Read();
 }
}

public class Person
{
 private static int nextId = 0;
 private string name;
 private DateTime dob; //dates are held in UTC; i.e. we disregard timezones
 public Person(string name, DateTime dob)
 {
 this.Id = ++Person.nextId;
 this.Name = name;
 this.DOB = dob;
 }
 public int Id
 {
 get;
 private set;
 }
 public string Name
 {
 get { return this.name; }
 set
 {
 if (string.IsNullOrWhiteSpace(value)) throw new InvalidNameException(value);
 this.name = value.Trim();
 }
 }
 public DateTime DOB
 {
 get { return this.dob; }
 set
 {
 if (value < DateTime.UtcNow.AddYears(-200) || value > DateTime.UtcNow) throw new
InvalidDobException(value);
 this.dob = value;
 }
 }
 public int GetAgeInYears()
 {
 DateTime today = DateTime.UtcNow;
 int offset = HasHadBirthdayThisYear() ? 0 : -1;
 return today.Year - this.dob.Year + offset;
 }
 private bool HasHadBirthdayThisYear()

https://riptutorial.com/ 747

 {
 bool hasHadBirthdayThisYear = true;
 DateTime today = DateTime.UtcNow;
 if (today.Month > this.dob.Month)
 {
 hasHadBirthdayThisYear = true;
 }
 else
 {
 if (today.Month == this.dob.Month)
 {
 hasHadBirthdayThisYear = today.Day > this.dob.Day;
 }
 else
 {
 hasHadBirthdayThisYear = false;
 }
 }
 return hasHadBirthdayThisYear;
 }
}

public class InvalidNameException : ApplicationException
{
 const string InvalidNameExceptionMessage = "'{0}' is an invalid name.";
 public InvalidNameException(string value):
base(string.Format(InvalidNameExceptionMessage,value)){}
}
public class InvalidDobException : ApplicationException
{
 const string InvalidDobExceptionMessage = "'{0:yyyy-MM-dd}' is an invalid DOB. The date
must not be in the future, or over 200 years in the past.";
 public InvalidDobException(DateTime value):
base(string.Format(InvalidDobExceptionMessage,value)){}
}

Default Values for Properties

Setting a default value can be done by using Initializers (C#6)

public class Name
{
 public string First { get; set; } = "James";
 public string Last { get; set; } = "Smith";
}

If it is read only you can return values like this:

 public class Name
 {
 public string First => "James";
 public string Last => "Smith";
 }

Auto-implemented properties

https://riptutorial.com/ 748

Auto-implemented properties were introduced in C# 3.
An auto-implemented property is declared with an empty getter and setter (accessors):

public bool IsValid { get; set; }

When an auto-implemented property is written in your code, the compiler creates a private
anonymous field that can only be accessed through the property's accessors.

The above auto-implemented property statement is equivalent to writing this lengthy code:

private bool _isValid;
public bool IsValid
{
 get { return _isValid; }
 set { _isValid = value; }
}

Auto-implemented properties cannot have any logic in their accessors, for example:

public bool IsValid { get; set { PropertyChanged("IsValid"); } } // Invalid code

An auto-implemented property can however have different access modifiers for its accessors:

public bool IsValid { get; private set; }

C# 6 allows auto-implemented properties to have no setter at all (making it immutable, since its
value can be set only inside the constructor or hard coded):

public bool IsValid { get; }
public bool IsValid { get; } = true;

For more information on initializing auto-implemented properties, read the Auto-property initializers
documentation.

Read-only properties

Declaration

A common misunderstanding, especially beginners, have is read-only property is the one marked
with readonly keyword. That's not correct and in fact following is a compile time error:

public readonly string SomeProp { get; set; }

A property is read-only when it only has a getter.

public string SomeProp { get; }

https://riptutorial.com/ 749

https://msdn.microsoft.com/en-us/library/bb384054.aspx
http://www.riptutorial.com/csharp/example/47/auto-property-initializers

Using read-only properties to create
immutable classes

public Address
{
 public string ZipCode { get; }
 public string City { get; }
 public string StreetAddress { get; }

 public Address(
 string zipCode,
 string city,
 string streetAddress)
 {
 if (zipCode == null)
 throw new ArgumentNullException(nameof(zipCode));
 if (city == null)
 throw new ArgumentNullException(nameof(city));
 if (streetAddress == null)
 throw new ArgumentNullException(nameof(streetAddress));

 ZipCode = zipCode;
 City = city;
 StreetAddress = streetAddress;
 }
}

Read Properties online: https://riptutorial.com/csharp/topic/49/properties

https://riptutorial.com/ 750

https://riptutorial.com/csharp/topic/49/properties

Chapter 125: Reactive Extensions (Rx)

Examples

Observing TextChanged event on a TextBox

An observable is created from the TextChanged event of the TextBox. Also any input is only
selected if it's different from the last input and if there was no input within 0.5 seconds. The output
in this example is sent to the console.

Observable
 .FromEventPattern(textBoxInput, "TextChanged")
 .Select(s => ((TextBox) s.Sender).Text)
 .Throttle(TimeSpan.FromSeconds(0.5))
 .DistinctUntilChanged()
 .Subscribe(text => Console.WriteLine(text));

Streaming Data from Database with Observable

Assume having a method returning IEnumerable<T>, f.e.

private IEnumerable<T> GetData()
{
 try
 {
 // return results from database
 }
 catch(Exception exception)
 {
 throw;
 }
}

Creates an Observable and starts a method asynchronously. SelectMany flattens the collection and
the subscription is fired every 200 elements through Buffer.

int bufferSize = 200;

Observable
 .Start(() => GetData())
 .SelectMany(s => s)
 .Buffer(bufferSize)
 .ObserveOn(SynchronizationContext.Current)
 .Subscribe(items =>
 {
 Console.WriteLine("Loaded {0} elements", items.Count);

 // do something on the UI like incrementing a ProgressBar
 },
 () => Console.WriteLine("Completed loading"));

https://riptutorial.com/ 751

Read Reactive Extensions (Rx) online: https://riptutorial.com/csharp/topic/5770/reactive-
extensions--rx-

https://riptutorial.com/ 752

https://riptutorial.com/csharp/topic/5770/reactive-extensions--rx-
https://riptutorial.com/csharp/topic/5770/reactive-extensions--rx-

Chapter 126: Read & Understand Stacktraces

Introduction

A stack trace is a great aid when debugging a program. You will get a stack trace when your
program throws an Exception, and sometimes when the program terminates abnormally.

Examples

Stack trace for a simple NullReferenceException in Windows Forms

Let's create a small piece of code that throws an exception:

private void button1_Click(object sender, EventArgs e)
{
 string msg = null;
 msg.ToCharArray();
}

If we execute this, we get the following Exception and stack trace:

System.NullReferenceException: "Object reference not set to an instance of an object."
 at WindowsFormsApplication1.Form1.button1_Click(Object sender, EventArgs e) in
F:\WindowsFormsApplication1\WindowsFormsApplication1\Form1.cs:line 29
 at System.Windows.Forms.Control.OnClick(EventArgs e)
 at System.Windows.Forms.Button.OnClick(EventArgs e)
 at System.Windows.Forms.Button.OnMouseUp(MouseEventArgs mevent)

The stack trace goes on like that, but this part will suffice for our purposes.

At the top of the stack trace we see the line:

at WindowsFormsApplication1.Form1.button1_Click(Object sender, EventArgs e) in
F:\WindowsFormsApplication1\WindowsFormsApplication1\Form1.cs:line 29

This is the most important part. It tells us the exact line where the Exception occurred: line 29 in
Form1.cs .
So, this is where you begin your search.

The second line is

at System.Windows.Forms.Control.OnClick(EventArgs e)

This is the method that called button1_Click. So now we know that button1_Click, where the error
occurred, was called from System.Windows.Forms.Control.OnClick.

We can continue like this; the third line is

https://riptutorial.com/ 753

at System.Windows.Forms.Button.OnClick(EventArgs e)

This is, in turn, the code that called System.windows.Forms.Control.OnClick.

The stack trace is the list of functions that was called until your code encountered the Exception.
And by following this, you can figure out which execution path your code followed until it ran into
trouble!

Note that the stack trace includes calls from the .Net system; you don't normally need to follow all
Microsofts System.Windows.Forms code to find out what went wrong, only the code that belongs to
your own application.

So, why is this called a "stack trace"?
Because, every time a program calls a method, it keeps track of where it was. It has a data
structure called the "stack", where it dumps its last location.
If it is done executing the method, it looks on the stack to see where it was before it called the
method - and continues from there.

So the stack lets the computer know where it left off, before calling a new method.

But it also serves as a debugging help. Like a detective tracing the steps that a criminal took when
committing their crime, a programmer can use the stack to trace the steps a program took before it
crashed.

Read Read & Understand Stacktraces online: https://riptutorial.com/csharp/topic/8923/read---
understand-stacktraces

https://riptutorial.com/ 754

https://riptutorial.com/csharp/topic/8923/read---understand-stacktraces
https://riptutorial.com/csharp/topic/8923/read---understand-stacktraces

Chapter 127: Reading and writing .zip files

Syntax

public static ZipArchive OpenRead(string archiveFileName)1.

Parameters

Parameter Details

archiveFileName
The path to the archive to open, specified as a relative or absolute path. A
relative path is interpreted as relative to the current working directory.

Examples

Writing to a zip file

To write a new .zip file:

System.IO.Compression
System.IO.Compression.FileSystem

using (FileStream zipToOpen = new FileStream(@"C:\temp", FileMode.Open))
{
 using (ZipArchive archive = new ZipArchive(zipToOpen, ZipArchiveMode.Update))
 {
 ZipArchiveEntry readmeEntry = archive.CreateEntry("Readme.txt");
 using (StreamWriter writer = new StreamWriter(readmeEntry.Open()))
 {
 writer.WriteLine("Information about this package.");
 writer.WriteLine("========================");
 }
 }
}

Writing Zip Files in-memory

The following example will return the byte[] data of a zipped file containing the files provided to it,
without needing access to the file system.

public static byte[] ZipFiles(Dictionary<string, byte[]> files)
{
 using (MemoryStream ms = new MemoryStream())
 {
 using (ZipArchive archive = new ZipArchive(ms, ZipArchiveMode.Update))
 {
 foreach (var file in files)
 {

https://riptutorial.com/ 755

 ZipArchiveEntry orderEntry = archive.CreateEntry(file.Key); //create a file
with this name
 using (BinaryWriter writer = new BinaryWriter(orderEntry.Open()))
 {
 writer.Write(file.Value); //write the binary data
 }
 }
 }
 //ZipArchive must be disposed before the MemoryStream has data
 return ms.ToArray();
 }
}

Get files from a Zip file

This example gets a listing of files from the provided zip archive binary data:

public static Dictionary<string, byte[]> GetFiles(byte[] zippedFile)
{
 using (MemoryStream ms = new MemoryStream(zippedFile))
 using (ZipArchive archive = new ZipArchive(ms, ZipArchiveMode.Read))
 {
 return archive.Entries.ToDictionary(x => x.FullName, x => ReadStream(x.Open()));
 }
}

private static byte[] ReadStream(Stream stream)
{
 using (var ms = new MemoryStream())
 {
 stream.CopyTo(ms);
 return ms.ToArray();
 }
}

The following example shows how to open a zip archive and extract all .txt
files to a folder

using System;
using System.IO;
using System.IO.Compression;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 string zipPath = @"c:\example\start.zip";
 string extractPath = @"c:\example\extract";

 using (ZipArchive archive = ZipFile.OpenRead(zipPath))
 {
 foreach (ZipArchiveEntry entry in archive.Entries)
 {
 if (entry.FullName.EndsWith(".txt", StringComparison.OrdinalIgnoreCase))
 {

https://riptutorial.com/ 756

 entry.ExtractToFile(Path.Combine(extractPath, entry.FullName));
 }
 }
 }
 }
 }
}

Read Reading and writing .zip files online: https://riptutorial.com/csharp/topic/6709/reading-and-
writing--zip-files

https://riptutorial.com/ 757

https://riptutorial.com/csharp/topic/6709/reading-and-writing--zip-files
https://riptutorial.com/csharp/topic/6709/reading-and-writing--zip-files

Chapter 128: Recursion

Remarks

Note that using recursion can have a severe impact on your code, as each recursive function call
will be appended to the stack. If there are too many calls this could lead to a StackOverflow
Exception. Most "natural recursive functions" can be written as a for, while or foreach loop
construct, and whilst not looking so posh or clever will be more efficient.

Always think twice and use recursion carefully - know why you use it:

recursion should be used when you know the number of recursive calls isn't excessive
excessive means, it depends on how much memory is available○

•

recursion is used because it is clearer and cleaner code version, it's more readable than an
iterative or loop-based function. Often this is the case because it gives cleaner and more
compact code (aka less lines of code).

but be aware, it can be less efficient! For example in the Fibonacci recursion, to
compute the nth number in the sequence, the calculation time will grow exponentially!

○

•

If you want more theory, please read:

https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/recursion2.html•
https://en.wikipedia.org/wiki/Recursion#In_computer_science•

Examples

Recursively describe an object structure

Recursion is when a method calls itself. Preferably it will do so until a specific condition is met and
then it will exit the method normally, returning to the point from which the method was called. If
not, a stack overflow exception might occur due to too many recursive calls.

/// <summary>
/// Create an object structure the code can recursively describe
/// </summary>
public class Root
{
 public string Name { get; set; }
 public ChildOne Child { get; set; }
}
public class ChildOne
{
 public string ChildOneName { get; set; }
 public ChildTwo Child { get; set; }
}
public class ChildTwo
{
 public string ChildTwoName { get; set; }
}

https://riptutorial.com/ 758

https://www.cs.umd.edu/class/fall2002/cmsc214/Tutorial/recursion2.html
https://en.wikipedia.org/wiki/Recursion#In_computer_science

/// <summary>
/// The console application with the recursive function DescribeTypeOfObject
/// </summary>
public class Program
{
 static void Main(string[] args)
 {
 // point A, we call the function with type 'Root'
 DescribeTypeOfObject(typeof(Root));
 Console.WriteLine("Press a key to exit");
 Console.ReadKey();
 }

 static void DescribeTypeOfObject(Type type)
 {
 // get all properties of this type
 Console.WriteLine($"Describing type {type.Name}");
 PropertyInfo[] propertyInfos = type.GetProperties();
 foreach (PropertyInfo pi in propertyInfos)
 {
 Console.WriteLine($"Has property {pi.Name} of type {pi.PropertyType.Name}");
 // is a custom class type? describe it too
 if (pi.PropertyType.IsClass && !pi.PropertyType.FullName.StartsWith("System."))
 {
 // point B, we call the function type this property
 DescribeTypeOfObject(pi.PropertyType);
 }
 }
 // done with all properties
 // we return to the point where we were called
 // point A for the first call
 // point B for all properties of type custom class
 }
}

Recursion in plain English

Recursion can be defined as:

A method that calls itself until a specific condition is met.

An excellent and simple example of recursion is a method that will get the factorial of a given
number:

public int Factorial(int number)
{
 return number == 0 ? 1 : n * Factorial(number - 1);
}

In this method, we can see that the method will take an argument, number.

Step by step:

Given the example, executing Factorial(4)

Is number (4) == 1?1.

https://riptutorial.com/ 759

No? return 4 * Factorial(number-1) (3)2.
Because the method is called once again, it now repeats the first step using Factorial(3) as
the new argument.

3.

This continues until Factorial(1) is executed and number (1) == 1 returns 1.4.
Overall, the calculation "builds up" 4 * 3 * 2 * 1 and finally returns 24.5.

The key to understanding recursion is that the method calls a new instance of itself. After
returning, the execution of the calling instance continues.

Using Recursion to Get Directory Tree

One of the uses of recursion is to navigate through a hierarchical data structure, like a file system
directory tree, without knowing how many levels the tree has or the number of objects on each
level. In this example, you will see how to use recursion on a directory tree to find all sub-
directories of a specified directory and print the whole tree to the console.

internal class Program
{
 internal const int RootLevel = 0;
 internal const char Tab = '\t';

 internal static void Main()
 {
 Console.WriteLine("Enter the path of the root directory:");
 var rootDirectorypath = Console.ReadLine();

 Console.WriteLine(
 $"Getting directory tree of '{rootDirectorypath}'");

 PrintDirectoryTree(rootDirectorypath);
 Console.WriteLine("Press 'Enter' to quit...");
 Console.ReadLine();
 }

 internal static void PrintDirectoryTree(string rootDirectoryPath)
 {
 try
 {
 if (!Directory.Exists(rootDirectoryPath))
 {
 throw new DirectoryNotFoundException(
 $"Directory '{rootDirectoryPath}' not found.");
 }

 var rootDirectory = new DirectoryInfo(rootDirectoryPath);
 PrintDirectoryTree(rootDirectory, RootLevel);
 }
 catch (DirectoryNotFoundException e)
 {
 Console.WriteLine(e.Message);
 }
 }

 private static void PrintDirectoryTree(
 DirectoryInfo directory, int currentLevel)
 {

https://riptutorial.com/ 760

 var indentation = string.Empty;
 for (var i = RootLevel; i < currentLevel; i++)
 {
 indentation += Tab;
 }

 Console.WriteLine($"{indentation}-{directory.Name}");
 var nextLevel = currentLevel + 1;
 try
 {
 foreach (var subDirectory in directory.GetDirectories())
 {
 PrintDirectoryTree(subDirectory, nextLevel);
 }
 }
 catch (UnauthorizedAccessException e)
 {
 Console.WriteLine($"{indentation}-{e.Message}");
 }
 }
}

This code is somewhat more complicated than the bare minimum to complete this task, as it
includes exception checking to handle any issues with getting the directories. Below you will find a
break-down of the code into smaller segments with explanations of each.

Main:

The main method takes an input from a user as a string, which is to be used as the path to the root
directory. It then calls the PrintDirectoryTree method with this string as the parameter.

PrintDirectoryTree(string):

This is the first of two methods that handle the actual directory tree printing. This method takes a
string representing the path to the root directory as a parameter. It checks if the path is an actual
directory, and if not, throws a DirectoryNotFoundException which is then handled in the catch block.
If the path is a real directory, a DirectoryInfo object rootDirectory is created from the path, and the
second PrintDirectoryTree method is called with the rootDirectory object and RootLevel, which is
an integer constant with a value of zero.

PrintDirectoryTree(DirectoryInfo, int):

This second method handles the brunt of the work. It takes a DirectoryInfo and an integer as
parameters. The DirectoryInfo is the current directory, and the integer is the depth of the directory
relative to the root. For ease of reading, the output is indented for each level deep the current
directory is, so that the output looks like this:

-Root
 -Child 1
 -Child 2
 -Grandchild 2.1
 -Child 3

Once the current directory is printed, its sub directories are retrieved, and this method is then

https://riptutorial.com/ 761

called on each of them with a depth level value of one more than the current. That part is the
recursion: the method calling itself. The program will run in this manner until it has visited every
directory in the tree. When it reached a directory with no sub directories, the method will return
automatically.

This method also catches an UnauthorizedAccessException, which is thrown if any of the sub
directories of the current directory are protected by the system. The error message is printed at
the current indentation level for consistency.

The method below provides a more basic approach to this problem:

internal static void PrintDirectoryTree(string directoryName)
{
 try
 {
 if (!Directory.Exists(directoryName)) return;
 Console.WriteLine(directoryName);
 foreach (var d in Directory.GetDirectories(directoryName))
 {
 PrintDirectoryTree(d);
 }
 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }
}

This does not include the specific error checking or output formatting of the first approach, but it
effectively does the same thing. Since it only uses strings as opposed to DirectoryInfo, it cannot
provide access to other directory properties like permissions.

Fibonacci Sequence

You can calculate a number in the Fibonacci sequence using recursion.

Following the math theory of F(n) = F(n-2) + F(n-1), for any i > 0,

// Returns the i'th Fibonacci number
public int fib(int i) {
 if(i <= 2) {
 // Base case of the recursive function.
 // i is either 1 or 2, whose associated Fibonacci sequence numbers are 1 and 1.
 return 1;
 }
 // Recursive case. Return the sum of the two previous Fibonacci numbers.
 // This works because the definition of the Fibonacci sequence specifies
 // that the sum of two adjacent elements equals the next element.
 return fib(i - 2) + fib(i - 1);

}

fib(10); // Returns 55

https://riptutorial.com/ 762

Factorial calculation

The factorial of a number (denoted with !, as for instance 9!) is the multiplication of that number
with the factorial of one lower. So, for instance, 9! = 9 x 8! = 9 x 8 x 7! = 9 x 8 x 7 x 6 x 5 x 4 x 3 x
2 x 1.

So in code that becomes, using recursion:

long Factorial(long x)
{
 if (x < 1)
 {
 throw new OutOfRangeException("Factorial can only be used with positive numbers.");
 }

 if (x == 1)
 {
 return 1;
 } else {
 return x * Factorial(x - 1);
 }
}

PowerOf calculation

Calculating the power of a given number can be done recursively as well. Given a base number n
and exponent e, we need to make sure to split the problem in chunks by decreasing the exponent
e.

Theoretical Example:

2² = 2x2•
2³ = 2x2x2 or, 2³ = 2² x 2
In there lies the secret of our recursive algorithm (see the code below). This is about taking
the problem and separating it into smaller and simpler to solve chunks.

•

Notes
when the base number is 0, we have to be aware to return 0 as 0³ = 0 x 0 x 0○

when the exponent is 0, we have to be aware to always return 1, as this is a
mathematical rule.

○

•

Code Example:

public int CalcPowerOf(int b, int e) {
 if (b == 0) { return 0; } // when base is 0, it doesn't matter, it will always return 0
 if (e == 0) { return 1; } // math rule, exponent 0 always returns 1
 return b * CalcPowerOf(b, e - 1); // actual recursive logic, where we split the problem,
aka: 2³ = 2 * 2² etc..
}

Tests in xUnit to verify the logic:
Although this is not necessary, it's always good to write tests to verify your logic. I include those

https://riptutorial.com/ 763

here written in the xUnit framework.

 [Theory]
 [MemberData(nameof(PowerOfTestData))]
 public void PowerOfTest(int @base, int exponent, int expected) {
 Assert.Equal(expected, CalcPowerOf(@base, exponent));
 }

 public static IEnumerable<object[]> PowerOfTestData() {
 yield return new object[] { 0, 0, 0 };
 yield return new object[] { 0, 1, 0 };
 yield return new object[] { 2, 0, 1 };
 yield return new object[] { 2, 1, 2 };
 yield return new object[] { 2, 2, 4 };
 yield return new object[] { 5, 2, 25 };
 yield return new object[] { 5, 3, 125 };
 yield return new object[] { 5, 4, 625 };
}

Read Recursion online: https://riptutorial.com/csharp/topic/2470/recursion

https://riptutorial.com/ 764

https://xunit.github.io/
https://riptutorial.com/csharp/topic/2470/recursion

Chapter 129: Reflection

Introduction

Reflection is a C# language mechanism for accessing dynamic object properties on runtime.
Typically, reflection is used to fetch the information about dynamic object type and object attribute
values. In REST application, for example, reflection could be used to iterate through serialized
response object.

Remark: According to MS guidelines performance critical code should avoid reflection. See
https://msdn.microsoft.com/en-us/library/ff647790.aspx

Remarks

Reflection allows code to access information about the assemblies, modules and types at run-time
(program execution). This can then be further used to dynamically create, modify or access types.
Types include properties, methods, fields and attributes.

Further Reading :

Reflection(C#)

Reflection in .Net Framework

Examples

Get a System.Type

For an instance of a type:

var theString = "hello";
var theType = theString.GetType();

From the type itself:

var theType = typeof(string);

Get the members of a type

using System;
using System.Reflection;
using System.Linq;

public class Program
{
 public static void Main()

https://riptutorial.com/ 765

https://msdn.microsoft.com/en-us/library/ff647790.aspx
https://msdn.microsoft.com/en-us/library/mt656691.aspx
https://msdn.microsoft.com/en-us/library/mt656691.aspx
https://msdn.microsoft.com/en-us/library/f7ykdhsy%28v=vs.110%29.aspx

 {
 var members = typeof(object)
 .GetMembers(BindingFlags.Public |
 BindingFlags.Static |
 BindingFlags.Instance);

 foreach (var member in members)
 {
 bool inherited = member.DeclaringType.Equals(typeof(object).Name);
 Console.WriteLine($"{member.Name} is a {member.MemberType}, " +
 $"it has {(inherited ? "":"not")} been inherited.");
 }
 }
}

Output (see note about output order further down):

GetType is a Method, it has not been inherited.
GetHashCode is a Method, it has not been inherited.
ToString is a Method, it has not been inherited.
Equals is a Method, it has not been inherited.
Equals is a Method, it has not been inherited.
ReferenceEquals is a Method, it has not been inherited.
.ctor is a Constructor, it has not been inherited.

We can also use the GetMembers() without passing any BindingFlags. This will return all public
members of that specific type.

One thing to note that GetMembers does not return the members in any particular order, so never
rely on the order that GetMembers returns you.

View Demo

Get a method and invoke it

Get Instance method and invoke it

using System;

public class Program
{
 public static void Main()
 {
 var theString = "hello";
 var method = theString
 .GetType()
 .GetMethod("Substring",
 new[] {typeof(int), typeof(int)}); //The types of the method
arguments
 var result = method.Invoke(theString, new object[] {0, 4});
 Console.WriteLine(result);
 }
}

Output:

https://riptutorial.com/ 766

https://dotnetfiddle.net/bJczwn

hell

View Demo

Get Static method and invoke it

On the other hand, if the method is static, you do not need an instance to call it.

var method = typeof(Math).GetMethod("Exp");
var result = method.Invoke(null, new object[] {2});//Pass null as the first argument (no need
for an instance)
Console.WriteLine(result); //You'll get e^2

Output:

7.38905609893065

View Demo

Getting and setting properties

Basic usage:

PropertyInfo prop = myInstance.GetType().GetProperty("myProperty");
// get the value myInstance.myProperty
object value = prop.GetValue(myInstance);

int newValue = 1;
// set the value myInstance.myProperty to newValue
prop.setValue(myInstance, newValue);

Setting read-only automatically-implemented properties can be done through it's backing field (in
.NET Framework name of backing field is "k__BackingField"):

// get backing field info
FieldInfo fieldInfo = myInstance.GetType()
 .GetField("<myProperty>k__BackingField", BindingFlags.Instance | BindingFlags.NonPublic);

int newValue = 1;
// set the value of myInstance.myProperty backing field to newValue
fieldInfo.SetValue(myInstance, newValue);

Custom Attributes

Find properties with a custom attribute - MyAttribute

var props = t.GetProperties(BindingFlags.NonPublic | BindingFlags.Public |
 BindingFlags.Instance).Where(
 prop => Attribute.IsDefined(prop, typeof(MyAttribute)));

Find all custom attributes on a given property

https://riptutorial.com/ 767

https://dotnetfiddle.net/AF8RVe
https://dotnetfiddle.net/vNEsyk

var attributes = typeof(t).GetProperty("Name").GetCustomAttributes(false);

Enumerate all classes with custom attribute - MyAttribute

static IEnumerable<Type> GetTypesWithAttribute(Assembly assembly) {
 foreach(Type type in assembly.GetTypes()) {
 if (type.GetCustomAttributes(typeof(MyAttribute), true).Length > 0) {
 yield return type;
 }
 }
}

Read value of a custom attribute at runtime

public static class AttributeExtensions
{

 /// <summary>
 /// Returns the value of a member attribute for any member in a class.
 /// (a member is a Field, Property, Method, etc...)
 /// <remarks>
 /// If there is more than one member of the same name in the class, it will return the
first one (this applies to overloaded methods)
 /// </remarks>
 /// <example>
 /// Read System.ComponentModel Description Attribute from method 'MyMethodName' in
class 'MyClass':
 /// var Attribute = typeof(MyClass).GetAttribute("MyMethodName",
(DescriptionAttribute d) => d.Description);
 /// </example>
 /// <param name="type">The class that contains the member as a type</param>
 /// <param name="MemberName">Name of the member in the class</param>
 /// <param name="valueSelector">Attribute type and property to get (will return first
instance if there are multiple attributes of the same type)</param>
 /// <param name="inherit">true to search this member's inheritance chain to find the
attributes; otherwise, false. This parameter is ignored for properties and events</param>
 /// </summary>
 public static TValue GetAttribute<TAttribute, TValue>(this Type type, string
MemberName, Func<TAttribute, TValue> valueSelector, bool inherit = false) where TAttribute :
Attribute
 {
 var att =
type.GetMember(MemberName).FirstOrDefault().GetCustomAttributes(typeof(TAttribute),
inherit).FirstOrDefault() as TAttribute;
 if (att != null)
 {
 return valueSelector(att);
 }
 return default(TValue);
 }
 }

Usage

//Read System.ComponentModel Description Attribute from method 'MyMethodName' in class
'MyClass'
var Attribute = typeof(MyClass).GetAttribute("MyMethodName", (DescriptionAttribute d) =>

https://riptutorial.com/ 768

d.Description);

Looping through all the properties of a class

Type type = obj.GetType();
//To restrict return properties. If all properties are required don't provide flag.
BindingFlags flags = BindingFlags.Public | BindingFlags.Instance;
PropertyInfo[] properties = type.GetProperties(flags);

foreach (PropertyInfo property in properties)
{
 Console.WriteLine("Name: " + property.Name + ", Value: " + property.GetValue(obj, null));
}

Determining generic arguments of instances of generic types

If you have an instance of a generic type but for some reason don't know the specific type, you
might want to determine the generic arguments that were used to create this instance.

Let's say someone created an instance of List<T> like that and passes it to a method:

var myList = new List<int>();
ShowGenericArguments(myList);

where ShowGenericArguments has this signature:

public void ShowGenericArguments(object o)

so at compile time you don't have any idea what generic arguments have been used to create o.
Reflection provides a lot of methods to inspect generic types. At first, we can determine if the type
of o is a generic type at all:

public void ShowGenericArguments(object o)
{
 if (o == null) return;

 Type t = o.GetType();
 if (!t.IsGenericType) return;
 ...

Type.IsGenericType returns true if the type is a generic type and false if not.

But this is not all we want to know. List<> itself is a generic type, too. But we only want to examine
instances of specific constructed generic types. A constructed generic type is for example a
List<int> that has a specific type argument for all its generic parameters.

The Type class provides two more properties, IsConstructedGenericType and IsGenericTypeDefinition
, to distinguish these constructed generic types from generic type definitions:

typeof(List<>).IsGenericType // true

https://riptutorial.com/ 769

https://msdn.microsoft.com/en-us/library/system.type(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.type.isgenerictype(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.type.isconstructedgenerictype(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.type.isgenerictypedefinition(v=vs.110).aspx

typeof(List<>).IsGenericTypeDefinition // true
typeof(List<>).IsConstructedGenericType// false

typeof(List<int>).IsGenericType // true
typeof(List<int>).IsGenericTypeDefinition // false
typeof(List<int>).IsConstructedGenericType// true

To enumerate the generic arguments of an instance, we can use the GetGenericArguments() method
that returns an Type array containing the generic type arguments:

public void ShowGenericArguments(object o)
{
 if (o == null) return;
 Type t = o.GetType();
 if (!t.IsConstructedGenericType) return;

 foreach(Type genericTypeArgument in t.GetGenericArguments())
 Console.WriteLine(genericTypeArgument.Name);
}

So the call from above (ShowGenericArguments(myList)) results in this output:

Int32

Get a generic method and invoke it

Let's say you have class with generic methods. And you need to call its functions with reflection.

public class Sample
{
 public void GenericMethod<T>()
 {
 // ...
 }

 public static void StaticMethod<T>()
 {
 //...
 }
}

Let's say we want to call the GenericMethod with type string.

Sample sample = new Sample();//or you can get an instance via reflection

MethodInfo method = typeof(Sample).GetMethod("GenericMethod");
MethodInfo generic = method.MakeGenericMethod(typeof(string));
generic.Invoke(sample, null);//Since there are no arguments, we are passing null

For the static method you do not need an instance. Therefore the first argument will also be null.

MethodInfo method = typeof(Sample).GetMethod("StaticMethod");
MethodInfo generic = method.MakeGenericMethod(typeof(string));

https://riptutorial.com/ 770

https://msdn.microsoft.com/en-us/library/system.type.getgenericarguments(v=vs.110).aspx

generic.Invoke(null, null);

Create an instance of a Generic Type and invoke it's method

var baseType = typeof(List<>);
var genericType = baseType.MakeGenericType(typeof(String));
var instance = Activator.CreateInstance(genericType);
var method = genericType.GetMethod("GetHashCode");
var result = method.Invoke(instance, new object[] { });

Instantiating classes that implement an interface (e.g. plugin activation)

If you want your application to support a plug-in system, for example to load plug-ins from
assemblies located in plugins folder:

interface IPlugin
{
 string PluginDescription { get; }
 void DoWork();
}

This class would be located in a separate dll

class HelloPlugin : IPlugin
{
 public string PluginDescription => "A plugin that says Hello";
 public void DoWork()
 {
 Console.WriteLine("Hello");
 }
}

Your application's plugin loader would find the dll files, get all types in those assemblies that
implement IPlugin, and create instances of those.

 public IEnumerable<IPlugin> InstantiatePlugins(string directory)
 {
 var pluginAssemblyNames = Directory.GetFiles(directory, "*.addin.dll").Select(name =>
new FileInfo(name).FullName).ToArray();
 //load the assemblies into the current AppDomain, so we can instantiate the types
later
 foreach (var fileName in pluginAssemblyNames)
 AppDomain.CurrentDomain.Load(File.ReadAllBytes(fileName));
 var assemblies = pluginAssemblyNames.Select(System.Reflection.Assembly.LoadFile);
 var typesInAssembly = assemblies.SelectMany(asm => asm.GetTypes());
 var pluginTypes = typesInAssembly.Where(type => typeof
(IPlugin).IsAssignableFrom(type));
 return pluginTypes.Select(Activator.CreateInstance).Cast<IPlugin>();
 }

Creating an instance of a Type

https://riptutorial.com/ 771

The simplest way is to use the Activator class.

However, even though Activator performance have been improved since .NET 3.5, using
Activator.CreateInstance() is bad option sometimes, due to (relatively) low performance: Test 1,
Test 2, Test 3...

With Activator class

Type type = typeof(BigInteger);
object result = Activator.CreateInstance(type); //Requires parameterless constructor.
Console.WriteLine(result); //Output: 0
result = Activator.CreateInstance(type, 123); //Requires a constructor which can receive an
'int' compatible argument.
Console.WriteLine(result); //Output: 123

You can pass an object array to Activator.CreateInstance if you have more than one parameter.

// With a constructor such as MyClass(int, int, string)
Activator.CreateInstance(typeof(MyClass), new object[] { 1, 2, "Hello World" });

Type type = typeof(someObject);
var instance = Activator.CreateInstance(type);

For a generic type

The MakeGenericType method turns an open generic type (like List<>) into a concrete type (like
List<string>) by applying type arguments to it.

// generic List with no parameters
Type openType = typeof(List<>);

// To create a List<string>
Type[] tArgs = { typeof(string) };
Type target = openType.MakeGenericType(tArgs);

// Create an instance - Activator.CreateInstance will call the default constructor.
// This is equivalent to calling new List<string>().
List<string> result = (List<string>)Activator.CreateInstance(target);

The List<> syntax is not permitted outside of a typeof expression.

Without Activator class

Using new keyword (will do for parameterless constructors)

T GetInstance<T>() where T : new()
{
 T instance = new T();
 return instance;

https://riptutorial.com/ 772

https://blogs.msdn.microsoft.com/haibo_luo/2005/11/17/activator-createinstance-and-beyond/
https://codingsolution.wordpress.com/2013/07/12/activator-createinstance-is-slow/
http://stackoverflow.com/questions/6069661/does-system-activator-createinstancet-have-performance-issues-big-enough-to-di

}

Using Invoke method

// Get the instance of the desired constructor (here it takes a string as a parameter).
ConstructorInfo c = typeof(T).GetConstructor(new[] { typeof(string) });
// Don't forget to check if such constructor exists
if (c == null)
 throw new InvalidOperationException(string.Format("A constructor for type '{0}' was not
found.", typeof(T)));
T instance = (T)c.Invoke(new object[] { "test" });

Using Expression trees

Expression trees represent code in a tree-like data structure, where each node is an expression.
As MSDN explains:

Expression is a sequence of one or more operands and zero or more operators that
can be evaluated to a single value, object, method, or namespace. Expressions can
consist of a literal value, a method invocation, an operator and its operands, or a
simple name. Simple names can be the name of a variable, type member, method
parameter, namespace or type.

public class GenericFactory<TKey, TType>
 {
 private readonly Dictionary<TKey, Func<object[], TType>> _registeredTypes; //
dictionary, that holds constructor functions.
 private object _locker = new object(); // object for locking dictionary, to guarantee
thread safety

 public GenericFactory()
 {
 _registeredTypes = new Dictionary<TKey, Func<object[], TType>>();
 }

 /// <summary>
 /// Find and register suitable constructor for type
 /// </summary>
 /// <typeparam name="TType"></typeparam>
 /// <param name="key">Key for this constructor</param>
 /// <param name="parameters">Parameters</param>
 public void Register(TKey key, params Type[] parameters)
 {
 ConstructorInfo ci = typeof(TType).GetConstructor(BindingFlags.Public |
BindingFlags.Instance, null, CallingConventions.HasThis, parameters, new ParameterModifier[] {
}); // Get the instance of ctor.
 if (ci == null)
 throw new InvalidOperationException(string.Format("Constructor for type '{0}'
was not found.", typeof(TType)));

 Func<object[], TType> ctor;

 lock (_locker)
 {
 if (!_registeredTypes.TryGetValue(key, out ctor)) // check if such ctor
already been registered

https://riptutorial.com/ 773

https://msdn.microsoft.com/en-us/library/ms173144.aspx

 {
 var pExp = Expression.Parameter(typeof(object[]), "arguments"); // create
parameter Expression
 var ctorParams = ci.GetParameters(); // get parameter info from
constructor

 var argExpressions = new Expression[ctorParams.Length]; // array that will
contains parameter expessions
 for (var i = 0; i < parameters.Length; i++)
 {

 var indexedAcccess = Expression.ArrayIndex(pExp,
Expression.Constant(i));

 if (!parameters[i].IsClass && !parameters[i].IsInterface) // check if
parameter is a value type
 {
 var localVariable = Expression.Variable(parameters[i],
"localVariable"); // if so - we should create local variable that will store paraameter value

 var block = Expression.Block(new[] { localVariable },
 Expression.IfThenElse(Expression.Equal(indexedAcccess,
Expression.Constant(null)),
 Expression.Assign(localVariable,
Expression.Default(parameters[i])),
 Expression.Assign(localVariable,
Expression.Convert(indexedAcccess, parameters[i]))
),
 localVariable
);

 argExpressions[i] = block;

 }
 else
 argExpressions[i] = Expression.Convert(indexedAcccess,
parameters[i]);
 }
 var newExpr = Expression.New(ci, argExpressions); // create expression
that represents call to specified ctor with the specified arguments.

 _registeredTypes.Add(key, Expression.Lambda(newExpr, new[] { pExp
}).Compile() as Func<object[], TType>); // compile expression to create delegate, and add
fucntion to dictionary
 }
 }
 }

 /// <summary>
 /// Returns instance of registered type by key.
 /// </summary>
 /// <typeparam name="TType"></typeparam>
 /// <param name="key"></param>
 /// <param name="args"></param>
 /// <returns></returns>
 public TType Create(TKey key, params object[] args)
 {
 Func<object[], TType> foo;
 if (_registeredTypes.TryGetValue(key, out foo))
 {
 return (TType)foo(args);

https://riptutorial.com/ 774

 }

 throw new ArgumentException("No type registered for this key.");
 }
 }

Could be used like this:

 public class TestClass
 {
 public TestClass(string parameter)
 {
 Console.Write(parameter);
 }
 }

public void TestMethod()
{
 var factory = new GenericFactory<string, TestClass>();
 factory.Register("key", typeof(string));
 TestClass newInstance = factory.Create("key", "testParameter");
}

Using FormatterServices.GetUninitializedObject

T instance = (T)FormatterServices.GetUninitializedObject(typeof(T));

In case of using FormatterServices.GetUninitializedObject constructors and field initializers will not
be called. It is meant to be used in serializers and remoting engines

Get a Type by name with namespace

To do this you need a reference to the assembly which contains the type. If you have another type
available which you know is in the same assembly as the one you want you can do this:

typeof(KnownType).Assembly.GetType(typeName);

where typeName is the name of the type you are looking for (including the namespace) , and
KnownType is the type you know is in the same assembly.

•

Less efficient but more general is as follows:

Type t = null;
foreach (Assembly ass in AppDomain.CurrentDomain.GetAssemblies())
{
 if (ass.FullName.StartsWith("System."))
 continue;
 t = ass.GetType(typeName);
 if (t != null)
 break;
}

https://riptutorial.com/ 775

Notice the check to exclude scanning System namespace assemblies to speed up the search. If
your type may actually be a CLR type, you will have to delete these two lines.

If you happen to have the fully assembly-qualified type name including the assembly you can
simply get it with

Type.GetType(fullyQualifiedName);

Get a Strongly-Typed Delegate to a Method or Property via Reflection

When performance is a concern, invoking a method via reflection (i.e. via the MethodInfo.Invoke
method) is not ideal. However, it is relatively straightforward to obtain a more performant strongly-
typed delegate using the Delegate.CreateDelegate function. The performance penalty for using
reflection is incurred only during the delegate-creation process. Once the delegate is created,
there is little-to-no performance penalty for invoking it:

// Get a MethodInfo for the Math.Max(int, int) method...
var maxMethod = typeof(Math).GetMethod("Max", new Type[] { typeof(int), typeof(int) });
// Now get a strongly-typed delegate for Math.Max(int, int)...
var stronglyTypedDelegate = (Func<int, int, int>)Delegate.CreateDelegate(typeof(Func<int, int,
int>), null, maxMethod);
// Invoke the Math.Max(int, int) method using the strongly-typed delegate...
Console.WriteLine("Max of 3 and 5 is: {0}", stronglyTypedDelegate(3, 5));

This technique can be extended to properties as well. If we have a class named MyClass with an
int property named MyIntProperty, the code to get a strongly-typed getter would be (the following
example assumes 'target' is a valid instance of MyClass):

// Get a MethodInfo for the MyClass.MyIntProperty getter...
var theProperty = typeof(MyClass).GetProperty("MyIntProperty");
var theGetter = theProperty.GetGetMethod();
// Now get a strongly-typed delegate for MyIntProperty that can be executed against any
MyClass instance...
var stronglyTypedGetter = (Func<MyClass, int>)Delegate.CreateDelegate(typeof(Func<MyClass,
int>), theGetter);
// Invoke the MyIntProperty getter against MyClass instance 'target'...
Console.WriteLine("target.MyIntProperty is: {0}", stronglyTypedGetter(target));

...and the same can be done for the setter:

// Get a MethodInfo for the MyClass.MyIntProperty setter...
var theProperty = typeof(MyClass).GetProperty("MyIntProperty");
var theSetter = theProperty.GetSetMethod();
// Now get a strongly-typed delegate for MyIntProperty that can be executed against any
MyClass instance...
var stronglyTypedSetter = (Action<MyClass, int>)Delegate.CreateDelegate(typeof(Action<MyClass,
int>), theSetter);
// Set MyIntProperty to 5...
stronglyTypedSetter(target, 5);

Read Reflection online: https://riptutorial.com/csharp/topic/28/reflection

https://riptutorial.com/ 776

https://riptutorial.com/csharp/topic/28/reflection

Chapter 130: Regex Parsing

Syntax

new Regex(pattern); //Creates a new instance with a defined pattern.•
Regex.Match(input); //Starts the lookup and returns the Match.•
Regex.Matches(input); //Starts the lookup and returns a MatchCollection•

Parameters

Name Details

Pattern
The string pattern that has to be used for the lookup. For more
information: msdn

RegexOptions
[Optional]

The common options in here are Singleline and Multiline. They are
changing the behaviour of pattern-elements like the dot (.) which won't
cover a NewLine (\n) in Multiline-Mode but in SingleLine-Mode. Default
behaviour: msdn

Timeout
[Optional]

Where patterns are getting more complex the lookup can consume more
time. This is the passed timeout for the lookup just as known from
network-programming.

Remarks

Needed using

using System.Text.RegularExpressions;

Nice to have

You can test your patterns online without the need of compiling your solution to get results
here: Click me

•

Regex101 Example: Click me•

Especially beginners are tended to overkill their tasks with regex because it feels powerful and in
the right place for complexer text-based lookups. This is the point where people try to parse xml-
documents with regex without even asking theirselfes if there could be an already finished class
for this task like XmlDocument.

Regex should be the last weapon to pick agains complexity. At least dont forget putting in some
effort to search for the right way before writing down 20 lines of patterns.

https://riptutorial.com/ 777

https://msdn.microsoft.com/en-us/library/ae5bf541(v=vs.90).aspx
https://msdn.microsoft.com/en-US/library/yd1hzczs(v=vs.110).aspx#Default
https://regex101.com/
https://regex101.com/r/cG9lP5/1

Examples

Single match

using System.Text.RegularExpressions;

string pattern = ":(.*?):";
string lookup = "--:text in here:--";

// Instanciate your regex object and pass a pattern to it
Regex rgxLookup = new Regex(pattern, RegexOptions.Singleline, TimeSpan.FromSeconds(1));
// Get the match from your regex-object
Match mLookup = rgxLookup.Match(lookup);

// The group-index 0 always covers the full pattern.
// Matches inside parentheses will be accessed through the index 1 and above.
string found = mLookup.Groups[1].Value;

Result:

found = "text in here"

Multiple matches

using System.Text.RegularExpressions;

List<string> found = new List<string>();
string pattern = ":(.*?):";
string lookup = "--:text in here:--:another one:-:third one:---!123:fourth:";

// Instanciate your regex object and pass a pattern to it
Regex rgxLookup = new Regex(pattern, RegexOptions.Singleline, TimeSpan.FromSeconds(1));
MatchCollection mLookup = rgxLookup.Matches(lookup);

foreach(Match match in mLookup)
{
 found.Add(match.Groups[1].Value);
}

Result:

found = new List<string>() { "text in here", "another one", "third one", "fourth" }

Read Regex Parsing online: https://riptutorial.com/csharp/topic/3774/regex-parsing

https://riptutorial.com/ 778

https://riptutorial.com/csharp/topic/3774/regex-parsing

Chapter 131: Runtime Compile

Examples

RoslynScript

Microsoft.CodeAnalysis.CSharp.Scripting.CSharpScript is a new C# script engine.

var code = "(1 + 2).ToString()";
var run = await CSharpScript.RunAsync(code, ScriptOptions.Default);
var result = (string)run.ReturnValue;
Console.WriteLine(result); //output 3

You can compile and run any statements, variables, methods, classes or any code segments.

CSharpCodeProvider

Microsoft.CSharp.CSharpCodeProvider can be used to compile C# classes.

var code = @"
 public class Abc {
 public string Get() { return ""abc""; }
 }
";

var options = new CompilerParameters();
options.GenerateExecutable = false;
options.GenerateInMemory = false;

var provider = new CSharpCodeProvider();
var compile = provider.CompileAssemblyFromSource(options, code);

var type = compile.CompiledAssembly.GetType("Abc");
var abc = Activator.CreateInstance(type);

var method = type.GetMethod("Get");
var result = method.Invoke(abc, null);

Console.WriteLine(result); //output: abc

Read Runtime Compile online: https://riptutorial.com/csharp/topic/3139/runtime-compile

https://riptutorial.com/ 779

https://riptutorial.com/csharp/topic/3139/runtime-compile

Chapter 132: Singleton Implementation

Examples

Statically Initialized Singleton

public class Singleton
{
 private readonly static Singleton instance = new Singleton();
 private Singleton() { }
 public static Singleton Instance => instance;
}

This implementation is thread-safe because in this case instance object is initialized in the static
constructor. The CLR already ensures that all static constructors are executed thread-safe.

Mutating instance is not a thread-safe operation, therefore the readonly attribute guarantees
immutability after initialization.

Lazy, thread-safe Singleton (using Double Checked Locking)

This thread-safe version of a singleton was necessary in the early versions of .NET where static
initialization was not guaranteed to be thread-safe. In more modern versions of the framework a
statically initialized singleton is usually preferred because it is very easy to make implementation
mistakes in the following pattern.

public sealed class ThreadSafeSingleton
{
 private static volatile ThreadSafeSingleton instance;
 private static object lockObject = new Object();

 private ThreadSafeSingleton()
 {
 }

 public static ThreadSafeSingleton Instance
 {
 get
 {
 if (instance == null)
 {
 lock (lockObject)
 {
 if (instance == null)
 {
 instance = new ThreadSafeSingleton();
 }
 }
 }

 return instance;
 }

https://riptutorial.com/ 780

http://www.riptutorial.com/csharp/example/3863/statically-initialized-singleton

 }
}

Notice that the if (instance == null) check is done twice: once before the lock is acquired, and
once afterwards. This implementation would still be thread-safe even without the first null check.
However, that would mean that a lock would be acquired every time the instance is requested, and
that would cause performance to suffer. The first null check is added so that the lock is not
acquired unless it's necessary. The second null check makes sure that only the first thread to
acquire the lock then creates the instance. The other threads will find the instance to be populated
and skip ahead.

Lazy, thread-safe Singleton (using Lazy)

.Net 4.0 type Lazy guarantees thread-safe object initialization, so this type could be used to make
Singletons.

public class LazySingleton
{
 private static readonly Lazy<LazySingleton> _instance =
 new Lazy<LazySingleton>(() => new LazySingleton());

 public static LazySingleton Instance
 {
 get { return _instance.Value; }
 }

 private LazySingleton() { }
}

Using Lazy<T> will make sure that the object is only instantiated when it is used somewhere in the
calling code.

A simple usage will be like:

using System;

public class Program
{
 public static void Main()
 {
 var instance = LazySingleton.Instance;
 }
}

Live Demo on .NET Fiddle

Lazy, thread safe singleton (for .NET 3.5 or older, alternate implementation)

Because in .NET 3.5 and older you don't have Lazy<T> class you use the following pattern:

public class Singleton
{

https://riptutorial.com/ 781

https://dotnetfiddle.net/oHVpK3
https://msdn.microsoft.com/en-us/library/dd642331(v=vs.110).aspx

 private Singleton() // prevents public instantiation
 {
 }

 public static Singleton Instance
 {
 get
 {
 return Nested.instance;
 }
 }

 private class Nested
 {
 // Explicit static constructor to tell C# compiler
 // not to mark type as beforefieldinit
 static Nested()
 {
 }

 internal static readonly Singleton instance = new Singleton();
 }
}

This is inspired from Jon Skeet's blog post.

Because the Nested class is nested and private the instantiation of the singleton instance will not
be triggered by accessing other members of the Sigleton class (such as a public readonly
property, for example).

Disposing of the Singleton instance when it is no longer needed

Most examples show instantiating and holding a LazySingleton object until the owning application
has terminated, even if that object is no longer needed by the application. A solution to this is to
implement IDisposable and set the object instance to null as follows:

public class LazySingleton : IDisposable
{
 private static volatile Lazy<LazySingleton> _instance;
 private static volatile int _instanceCount = 0;
 private bool _alreadyDisposed = false;

public static LazySingleton Instance
{
 get
 {
 if (_instance == null)
 _instance = new Lazy<LazySingleton>(() => new LazySingleton());
 _instanceCount++;
 return _instance.Value;
 }
}

private LazySingleton() { }

// Public implementation of Dispose pattern callable by consumers.
public void Dispose()

https://riptutorial.com/ 782

http://www.yoda.arachsys.com/csharp/singleton.html

{
 if (--_instanceCount == 0) // No more references to this object.
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }
}

// Protected implementation of Dispose pattern.
protected virtual void Dispose(bool disposing)
{
 if (_alreadyDisposed) return;

 if (disposing)
 {
 _instance = null; // Allow GC to dispose of this instance.
 // Free any other managed objects here.
 }

 // Free any unmanaged objects here.
 _alreadyDisposed = true;
}

The above code disposes of the instance prior to application termination but only if consumers call
Dispose() on the object after every use. Since there is no guarantee that this will happen or a way
to force it, there is also no guarantee that the instance will ever be disposed. But if this class is
being used internally then it's easier to ensure that the Dispose() method is being called after each
use. An example follows:

public class Program
{
 public static void Main()
 {
 using (var instance = LazySingleton.Instance)
 {
 // Do work with instance
 }
 }
}

Please note that this example is not thread-safe.

Read Singleton Implementation online: https://riptutorial.com/csharp/topic/1192/singleton-
implementation

https://riptutorial.com/ 783

https://riptutorial.com/csharp/topic/1192/singleton-implementation
https://riptutorial.com/csharp/topic/1192/singleton-implementation

Chapter 133: Static Classes

Examples

Static keyword

The static keyword means 2 things:

This value does not change from object to object but rather changes on a class as a whole1.
Static properties and methods don't require an instance.2.

public class Foo
{
 public Foo{
 Counter++;
 NonStaticCounter++;
 }

 public static int Counter { get; set; }
 public int NonStaticCounter { get; set; }
}

public class Program
{
 static void Main(string[] args)
 {
 //Create an instance
 var foo1 = new Foo();
 Console.WriteLine(foo1.NonStaticCounter); //this will print "1"

 //Notice this next call doesn't access the instance but calls by the class name.
 Console.WriteLine(Foo.Counter); //this will also print "1"

 //Create a second instance
 var foo2 = new Foo();

 Console.WriteLine(foo2.NonStaticCounter); //this will print "1"

 Console.WriteLine(Foo.Counter); //this will now print "2"
 //The static property incremented on both instances and can persist for the whole
class

 }
}

Static Classes

The "static" keyword when referring to a class has three effects:

You cannot create an instance of a static class (this even removes the default constructor)1.
All properties and methods in the class must be static as well.2.
A static class is a sealed class, meaning it cannot be inherited.3.

https://riptutorial.com/ 784

public static class Foo
{
 //Notice there is no constructor as this cannot be an instance
 public static int Counter { get; set; }
 public static int GetCount()
 {
 return Counter;
 }
}

public class Program
{
 static void Main(string[] args)
 {
 Foo.Counter++;
 Console.WriteLine(Foo.GetCount()); //this will print 1

 //var foo1 = new Foo();
 //this line would break the code as the Foo class does not have a constructor
 }
}

Static class lifetime

A static class is lazily initialized on member access and lives for the duration of the application
domain.

void Main()
{
 Console.WriteLine("Static classes are lazily initialized");
 Console.WriteLine("The static constructor is only invoked when the class is first
accessed");
 Foo.SayHi();

 Console.WriteLine("Reflecting on a type won't trigger its static .ctor");
 var barType = typeof(Bar);

 Console.WriteLine("However, you can manually trigger it with
System.Runtime.CompilerServices.RuntimeHelpers");
 RuntimeHelpers.RunClassConstructor(barType.TypeHandle);
}

// Define other methods and classes here
public static class Foo
{
 static Foo()
 {
 Console.WriteLine("static Foo.ctor");
 }
 public static void SayHi()
 {
 Console.WriteLine("Foo: Hi");
 }
}
public static class Bar
{
 static Bar()
 {

https://riptutorial.com/ 785

 Console.WriteLine("static Bar.ctor");
 }
}

Read Static Classes online: https://riptutorial.com/csharp/topic/1653/static-classes

https://riptutorial.com/ 786

https://riptutorial.com/csharp/topic/1653/static-classes

Chapter 134: Stopwatches

Syntax

stopWatch.Start() - Starts Stopwatch.•
stopWatch.Stop() - Stops Stopwatch.•
stopWatch.Elapsed - Gets the total elapsed time measured by the current interval.•

Remarks

Stopwatches are often used in benchmarking programs to time code and see how optimal different
segments of code take to run.

Examples

Creating an Instance of a Stopwatch

A Stopwatch instance can measure elapsed time over several intervals with the total elapsed time
being all individual intervals added together. This gives a reliable method of measuring elapsed
time between two or more events.

Stopwatch stopWatch = new Stopwatch();
stopWatch.Start();

double d = 0;
for (int i = 0; i < 1000 * 1000 * 1000; i++)
{
 d += 1;
}

stopWatch.Stop();
Console.WriteLine("Time elapsed: {0:hh\\:mm\\:ss\\.fffffff}", stopWatch.Elapsed);

Stopwach is in System.Diagnostics so you need to add using System.Diagnostics; to your file.

IsHighResolution

The IsHighResolution property indicates whether the timer is based on a high-resolution
performance counter or based on the DateTime class.

•

This field is read-only.•

// Display the timer frequency and resolution.
if (Stopwatch.IsHighResolution)
{
 Console.WriteLine("Operations timed using the system's high-resolution performance
counter.");
}
else

https://riptutorial.com/ 787

{
 Console.WriteLine("Operations timed using the DateTime class.");
}

long frequency = Stopwatch.Frequency;
Console.WriteLine(" Timer frequency in ticks per second = {0}",
 frequency);
long nanosecPerTick = (1000L*1000L*1000L) / frequency;
Console.WriteLine(" Timer is accurate within {0} nanoseconds",
 nanosecPerTick);
}

https://dotnetfiddle.net/ckrWUo

The timer used by the Stopwatch class depends on the system hardware and operating system.
IsHighResolution is true if the Stopwatch timer is based on a high-resolution performance counter.
Otherwise, IsHighResolution is false, which indicates that the Stopwatch timer is based on the
system timer.

Ticks in Stopwatch are machine/OS dependent, thus you should never count on the ration of
Stopwatch ticks to seconds to be the same between two systems, and possibly even on the same
system after a reboot. Thus, you can never count on Stopwatch ticks to be the same interval as
DateTime/TimeSpan ticks.

To get system-independent time, make sure to use the Stopwatch’s Elapsed or
ElapsedMilliseconds properties, which already take the Stopwatch.Frequency (ticks per second)
into account.

Stopwatch should always be used over Datetime for timing processes as it is more lightweight and
uses Dateime if it cant use a high-resolution performance counter.

Source

Read Stopwatches online: https://riptutorial.com/csharp/topic/3676/stopwatches

https://riptutorial.com/ 788

https://dotnetfiddle.net/ckrWUo
http://geekswithblogs.net/BlackRabbitCoder/archive/2012/01/12/c.net-little-pitfalls-stopwatch-ticks-are-not-timespan-ticks.aspx
https://riptutorial.com/csharp/topic/3676/stopwatches

Chapter 135: Stream

Examples

Using Streams

A stream is an object that provides a low-level means to transfer data. They themselves do not act
as data containers.

The data that we deal with is in form of byte array(byte []). The functions for reading and writing
are all byte orientated, e.g. WriteByte().

There are no functions for dealing with integers, strings etc. This makes the stream very general-
purpose, but less simple to work with if, say, you just want to transfer text. Streams can be
particularly very helpful when you are dealing with large amount of data.

We will need to use different type of Stream based where it needs to be written/read from (i.e. the
backing store). For example, if the source is a file, we need to use FileStream:

string filePath = @"c:\Users\exampleuser\Documents\userinputlog.txt";
using (FileStream fs = new FileStream(filePath, FileMode.Open, FileAccess.Read,
FileShare.ReadWrite))
{
 // do stuff here...

 fs.Close();
}

Similarly, MemoryStream is used if the backing store is memory:

// Read all bytes in from a file on the disk.
byte[] file = File.ReadAllBytes(“C:\\file.txt”);

// Create a memory stream from those bytes.
using (MemoryStream memory = new MemoryStream(file))
{
 // do stuff here...
}

Similarly, System.Net.Sockets.NetworkStream is used for network access.

All Streams are derived from the generic class System.IO.Stream. Data cannot be directly read or
written from streams. The .NET Framework provides helper classes such as StreamReader,
StreamWriter, BinaryReader and BinaryWriter that convert between native types and the low-level
stream interface, and transfer the data to or from the stream for you.

Reading and writing to streams can be done via StreamReader and StreamWriter. One should be
careful when closing these. By default, closing will also close contained stream as well and make it
unusable for further uses. This default behaviour can be change by using a constructor which has

https://riptutorial.com/ 789

https://msdn.microsoft.com/en-us/library/gg712952(v=vs.110).aspx

bool leaveOpen parameter and setting its value as true.

StreamWriter:

FileStream fs = new FileStream("sample.txt", FileMode.Create);
StreamWriter sw = new StreamWriter(fs);
string NextLine = "This is the appended line.";
sw.Write(NextLine);
sw.Close();
//fs.Close(); There is no need to close fs. Closing sw will also close the stream it contains.

StreamReader:

using (var ms = new MemoryStream())
{
 StreamWriter sw = new StreamWriter(ms);
 sw.Write(123);
 //sw.Close(); This will close ms and when we try to use ms later it will cause an
exception
 sw.Flush(); //You can send the remaining data to stream. Closing will do this
automatically
 // We need to set the position to 0 in order to read
 // from the beginning.
 ms.Position = 0;
 StreamReader sr = new StreamReader(ms);
 var myStr = sr.ReadToEnd();
 sr.Close();
 ms.Close();
}

Since Classes Stream, StreamReader, StreamWriter, etc. implement the IDisposable interface, we can
call the Dispose() method on objects of these classes.

Read Stream online: https://riptutorial.com/csharp/topic/3114/stream

https://riptutorial.com/ 790

https://riptutorial.com/csharp/topic/3114/stream

Chapter 136: String Concatenate

Remarks

If you are creating a dynamic string, It is a good practice to opt for StringBuilder class rather than
joining strings using + or Concat method as each +/Concat creates a new string object everytime it is
executed.

Examples

+ Operator

string s1 = "string1";
string s2 = "string2";

string s3 = s1 + s2; // "string1string2"

Concatenate strings using System.Text.StringBuilder

Concatenating strings using a StringBuilder can offer performance advantages over simple string
concatenation using +. This is due to the way memory is allocated. Strings are reallocated with
each concatenation, StringBuilders allocate memory in blocks only reallocating when the current
block is exhausted. This can make a huge difference when doing a lot of small concatenations.

StringBuilder sb = new StringBuilder();
for (int i = 1; i <= 5; i++)
{
 sb.Append(i);
 sb.Append(" ");
}
Console.WriteLine(sb.ToString()); // "1 2 3 4 5 "

Calls to Append() can be daisy chained, because it returns a reference to the StringBuilder:

StringBuilder sb = new StringBuilder();
sb.Append("some string ")
 .Append("another string");

Concat string array elements using String.Join

The String.Join method can be used to concatenate multiple elements from a string array.

string[] value = {"apple", "orange", "grape", "pear"};
string separator = ", ";

string result = String.Join(separator, value, 1, 2);
Console.WriteLine(result);

https://riptutorial.com/ 791

https://msdn.microsoft.com/en-us/library/system.text.stringbuilder(v=vs.110).aspx

Produces the following output: "orange, grape"

This example uses the String.Join(String, String[], Int32, Int32) overload, which specifies the
start index and count on top of the separator and value.

If you do not wish to use the startIndex and count overloads, you can join all string given. Like this:

string[] value = {"apple", "orange", "grape", "pear"};
string separator = ", ";
string result = String.Join(separator, value);
Console.WriteLine(result);

which will produce;

apple, orange, grape, pear

Concatenation of two strings using $

$ provides an easy and a concise method to concatenate multiple strings.

var str1 = "text1";
var str2 = " ";
var str3 = "text3";
string result2 = $"{str1}{str2}{str3}"; //"text1 text3"

Read String Concatenate online: https://riptutorial.com/csharp/topic/3616/string-concatenate

https://riptutorial.com/ 792

https://riptutorial.com/csharp/topic/3616/string-concatenate

Chapter 137: String Escape Sequences

Syntax

\' — single quote (0x0027)•
\" — double quote (0x0022)•
\\ — backslash (0x005C)•
\0 — null (0x0000)•
\a — alert (0x0007)•
\b — backspace (0x0008)•
\f — form feed (0x000C)•
\n — new line (0x000A)•
\r — carriage return (0x000D)•
\t — horizontal tab (0x0009)•
\v — vertical tab (0x000B)•
\u0000 - \uFFFF — Unicode character•
\x0 - \xFFFF — Unicode character (code with variable length)•
\U00000000 - \U0010FFFF — Unicode character (for generating surrogates)•

Remarks

String escape sequences are transformed to the corresponding character at compile time.
Ordinary strings that happen to contain backwards slashes are not transformed.

For example, the strings notEscaped and notEscaped2 below are not transformed to a newline
character, but will stay as two different characters ('\' and 'n').

string escaped = "\n";
string notEscaped = "\\" + "n";
string notEscaped2 = "\\n";

Console.WriteLine(escaped.Length); // 1
Console.WriteLine(notEscaped.Length); // 2
Console.WriteLine(notEscaped2.Length); // 2

Examples

Unicode character escape sequences

string sqrt = "\u221A"; // √
string emoji = "\U0001F601"; //
string text = "\u0022Hello World\u0022"; // "Hello World"
string variableWidth = "\x22Hello World\x22"; // "Hello World"

Escaping special symbols in character literals

https://riptutorial.com/ 793

Apostrophes

char apostrophe = '\'';

Backslash

char oneBackslash = '\\';

Escaping special symbols in string literals

Backslash

// The filename will be c:\myfile.txt in both cases
string filename = "c:\\myfile.txt";
string filename = @"c:\myfile.txt";

The second example uses a verbatim string literal, which doesn't treat the backslash as an escape
character.

Quotes

string text = "\"Hello World!\", said the quick brown fox.";
string verbatimText = @"""Hello World!"", said the quick brown fox.";

Both variables will contain the same text.

"Hello World!", said the quick brown fox.

Newlines

Verbatim string literals can contain newlines:

string text = "Hello\r\nWorld!";
string verbatimText = @"Hello
World!";

Both variables will contain the same text.

Unrecognized escape sequences produce compile-time errors

The following examples will not compile:

string s = "\c";
char c = '\c';

Instead, they will produce the error Unrecognized escape sequence at compile time.

Using escape sequences in identifiers

https://riptutorial.com/ 794

http://www.riptutorial.com/csharp/topic/16/verbatim-strings

Escape sequences are not restricted to string and char literals.

Suppose you need to override a third-party method:

protected abstract IEnumerable<Texte> ObtenirŒuvres();

and suppose the character Œ is not available in the character encoding you use for your C# source
files. You are lucky, it is permitted to use escapes of the type \u#### or \U######## in identifiers in
the code. So it is legal to write:

protected override IEnumerable<Texte> Obtenir\u0152uvres()
{
 // ...
}

and the C# compiler will know Œ and \u0152 are the same character.

(However, it might be a good idea to switch to UTF-8 or a similar encoding that can handle all
characters.)

Read String Escape Sequences online: https://riptutorial.com/csharp/topic/39/string-escape-
sequences

https://riptutorial.com/ 795

https://riptutorial.com/csharp/topic/39/string-escape-sequences
https://riptutorial.com/csharp/topic/39/string-escape-sequences

Chapter 138: String Interpolation

Syntax

$"content {expression} content"•
$"content {expression:format} content"•
$"content {expression} {{content in braces}} content}"•
$"content {expression:format} {{content in braces}} content}"•

Remarks

String interpolation is a shorthand for the string.Format() method that makes it easier to build
strings with variable and expression values inside of them.

var name = "World";
var oldWay = string.Format("Hello, {0}!", name); // returns "Hello, World"
var newWay = $"Hello, {name}!"; // returns "Hello, World"

Examples

Expressions

Full expressions can also be used in interpolated strings.

var StrWithMathExpression = $"1 + 2 = {1 + 2}"; // -> "1 + 2 = 3"

string world = "world";
var StrWithFunctionCall = $"Hello, {world.ToUpper()}!"; // -> "Hello, WORLD!"

Live Demo on .NET Fiddle

Format dates in strings

var date = new DateTime(2015, 11, 11);
var str = $"It's {date:MMMM d, yyyy}, make a wish!";
System.Console.WriteLine(str);

You can also use the DateTime.ToString method to format the DateTime object. This will produce the
same output as the code above.

var date = new DateTime(2015, 11, 11);
var str = date.ToString("MMMM d, yyyy");
str = "It's " + str + ", make a wish!";
Console.WriteLine(str);

Output:

https://riptutorial.com/ 796

https://dotnetfiddle.net/u9lzeg
https://msdn.microsoft.com/en-us/library/zdtaw1bw(v=vs.110).aspx

It's November 11, 2015, make a wish!

Live Demo on .NET Fiddle

Live Demo using DateTime.ToString

Note: MM stands for months and mm for minutes. Be very careful when using these as
mistakes can introduce bugs that may be difficult to discover.

Simple Usage

var name = "World";
var str = $"Hello, {name}!";
//str now contains: "Hello, World!";

Behind the scenes

Internally this

$"Hello, {name}!"

Will be compiled to something like this:

string.Format("Hello, {0}!", name);

Padding the output

String can be formatted to accept a padding parameter that will specify how many character
positions the inserted string will use :

${value, padding}

NOTE: Positive padding values indicate left padding and negative padding values
indicate right padding.

Left Padding

A left padding of 5 (adds 3 spaces before the value of number, so it takes up a total of 5 character
positions in the resulting string.)

var number = 42;
var str = $"The answer to life, the universe and everything is {number, 5}.";
//str is "The answer to life, the universe and everything is 42.";
// ^^^^^
System.Console.WriteLine(str);

Output:

https://riptutorial.com/ 797

https://dotnetfiddle.net/DpRwV5
https://dotnetfiddle.net/YnV9J0

The answer to life, the universe and everything is 42.

Live Demo on .NET Fiddle

Right Padding

Right padding, which uses a negative padding value, will add spaces to the end of the current
value.

var number = 42;
var str = $"The answer to life, the universe and everything is ${number, -5}.";
//str is "The answer to life, the universe and everything is 42 .";
// ^^^^^
System.Console.WriteLine(str);

Output:

The answer to life, the universe and everything is 42 .

Live Demo on .NET Fiddle

Padding with Format Specifiers

You can also use existing formatting specifiers in conjunction with padding.

var number = 42;
var str = $"The answer to life, the universe and everything is ${number, 5:f1}";
//str is "The answer to life, the universe and everything is 42.1 ";
// ^^^^^

Live Demo on .NET Fiddle

Formatting numbers in strings

You can use a colon and the standard numeric format syntax to control how numbers are
formatted.

var decimalValue = 120.5;

var asCurrency = $"It costs {decimalValue:C}";
// String value is "It costs $120.50" (depending on your local currency settings)

var withThreeDecimalPlaces = $"Exactly {decimalValue:F3}";
// String value is "Exactly 120.500"

var integerValue = 57;

var prefixedIfNecessary = $"{integerValue:D5}";
// String value is "00057"

https://riptutorial.com/ 798

https://dotnetfiddle.net/PpZXmk
https://dotnetfiddle.net/QtKjGF
https://dotnetfiddle.net/34ZxP0
https://msdn.microsoft.com/en-us/library/dwhawy9k.aspx

Live Demo on .NET Fiddle

Read String Interpolation online: https://riptutorial.com/csharp/topic/22/string-interpolation

https://riptutorial.com/ 799

https://dotnetfiddle.net/z2XbG7
https://riptutorial.com/csharp/topic/22/string-interpolation

Chapter 139: String Manipulation

Examples

Changing the case of characters within a String

The System.String class supports a number of methods to convert between uppercase and
lowercase characters in a string.

System.String.ToLowerInvariant is used to return a String object converted to lowercase.•

System.String.ToUpperInvariant is used to return a String object converted to uppercase.•

Note: The reason to use the invariant versions of these methods is to prevent producing
unexpected culture-specific letters. This is explained here in detail.

Example:

string s = "My String";
s = s.ToLowerInvariant(); // "my string"
s = s.ToUpperInvariant(); // "MY STRING"

Note that you can choose to specify a specific Culture when converting to lowercase and
uppercase by using the String.ToLower(CultureInfo) and String.ToUpper(CultureInfo) methods
accordingly.

Finding a string within a string

Using the System.String.Contains you can find out if a particular string exists within a string. The
method returns a boolean, true if the string exists else false.

string s = "Hello World";
bool stringExists = s.Contains("ello"); //stringExists =true as the string contains the
substring

Using the System.String.IndexOf method, you can locate the starting position of a substring within
an existing string.
Note the returned position is zero-based, a value of -1 is returned if the substring is not found.

string s = "Hello World";
int location = s.IndexOf("ello"); // location = 1

To find the first location from the end of a string, use the System.String.LastIndexOf method:

string s = "Hello World";
int location = s.LastIndexOf("l"); // location = 9

https://riptutorial.com/ 800

https://msdn.microsoft.com/en-us/library/system.string(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.string.tolowerinvariant(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.string.toupperinvariant(v=vs.110).aspx
http://stackoverflow.com/a/19778131/1379664
https://msdn.microsoft.com/en-us/library/system.globalization.cultureinfo(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/s8z5yt00(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/24kc78ka(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dy85x1sa(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/k8b1470s(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.string.lastindexof(v=vs.110).aspx

Removing (Trimming) white-space from a string

The System.String.Trim method can be used to remove all leading and trailing white-space
characters from a string:

string s = " String with spaces at both ends ";
s = s.Trim(); // s = "String with spaces at both ends"

In addition:

To remove white-space only from the beginning of a string use: System.String.TrimStart•

To remove white-space only from the end of a string use: System.String.TrimEnd•

Substring to extract part of a string.

The System.String.Substring method can be used to extract a portion of the string.

string s ="A portion of word that is retained";
s=str.Substring(26); //s="retained"

s1 = s.Substring(0,5); //s="A por"

Replacing a string within a string

Using the System.String.Replace method, you can replace part of a string with another string.

string s = "Hello World";
s = s.Replace("World", "Universe"); // s = "Hello Universe"

All the occurrences of the search string are replaced:

string s = "Hello World";
s = s.Replace("l", "L"); // s = "HeLLo WorLD"

String.Replace can also be used to remove part of a string, by specifying an empty string as the
replacement value:

string s = "Hello World";
s = s.Replace("ell", String.Empty); // s = "Ho World"

Splitting a string using a delimiter

Use the System.String.Split method to return a string array that contains substrings of the original
string, split based on a specified delimiter:

string sentence = "One Two Three Four";
string[] stringArray = sentence.Split(' ');

https://riptutorial.com/ 801

https://msdn.microsoft.com/en-us/library/t97s7bs3(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.string.trimstart(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.string.trimend(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/hxthx5h6(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/fk49wtc1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.string.split(v=vs.110).aspx

foreach (string word in stringArray)
{
 Console.WriteLine(word);
}

Output:

One
Two
Three
Four

Concatenate an array of strings into a single string

The System.String.Join method allows to concatenate all elements in a string array, using a
specified separator between each element:

string[] words = {"One", "Two", "Three", "Four"};
string singleString = String.Join(",", words); // singleString = "One,Two,Three,Four"

String Concatenation

String Concatenation can be done by using the System.String.Concat method, or (much easier)
using the + operator:

string first = "Hello ";
string second = "World";

string concat = first + second; // concat = "Hello World"
concat = String.Concat(first, second); // concat = "Hello World"

Read String Manipulation online: https://riptutorial.com/csharp/topic/3599/string-manipulation

https://riptutorial.com/ 802

https://msdn.microsoft.com/en-us/library/57a79xd0(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.string.concat(v=vs.110).aspx
https://riptutorial.com/csharp/topic/3599/string-manipulation

Chapter 140: String.Format

Introduction

The Format methods are a set of overloads in the System.String class used to create strings that
combine objects into specific string representations. This information can be applied to
String.Format, various WriteLine methods as well as other methods in the .NET framework.

Syntax

string.Format(string format, params object[] args)•
string.Format(IFormatProvider provider, string format, params object[] args)•
$"string {text} blablabla" // Since C#6•

Parameters

Parameter Details

format
A composite format string, which defines the way args should be combined into
a string.

args
A sequence of objects to be combined into a string. Since this uses a params
argument, you can either use a comma-separated list of arguments or an actual
object array.

provider
A collection of ways of formatting objects to strings. Typical values include
CultureInfo.InvariantCulture and CultureInfo.CurrentCulture.

Remarks

Notes:

String.Format() handles null arguments without throwing an exception.•
There are overloads that replace the args parameter with one, two, or three object
parameters.

•

Examples

Places where String.Format is 'embedded' in the framework

There are several places where you can use String.Format indirectly: The secret is to look for the
overload with the signature string format, params object[] args, e.g.:

https://riptutorial.com/ 803

https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.string(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/txafckwd(v=vs.110).aspx
http://www.riptutorial.com/csharp/example/2513/params
https://msdn.microsoft.com/en-us/library/system.globalization.cultureinfo.invariantculture(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.globalization.cultureinfo.currentculture(v=vs.110).aspx

Console.WriteLine(String.Format("{0} - {1}", name, value));

Can be replaced with shorter version:

Console.WriteLine("{0} - {1}", name, value);

There are other methods which also use String.Formate.g.:

Debug.WriteLine(); // and Print()
StringBuilder.AppendFormat();

Using custom number format

NumberFormatInfo can be used for formatting both integer and float numbers.

// invariantResult is "1,234,567.89"
var invarianResult = string.Format(CultureInfo.InvariantCulture, "{0:#,###,##}", 1234567.89);

// NumberFormatInfo is one of classes that implement IFormatProvider
var customProvider = new NumberFormatInfo
{
 NumberDecimalSeparator = "_NS_", // will be used instead of ','
 NumberGroupSeparator = "_GS_", // will be used instead of '.'
};

// customResult is "1_GS_234_GS_567_NS_89"
var customResult = string.Format(customProvider, "{0:#,###.##}", 1234567.89);

Create a custom format provider

public class CustomFormat : IFormatProvider, ICustomFormatter
{
 public string Format(string format, object arg, IFormatProvider formatProvider)
 {
 if (!this.Equals(formatProvider))
 {
 return null;
 }

 if (format == "Reverse")
 {
 return String.Join("", arg.ToString().Reverse());
 }

 return arg.ToString();
 }

 public object GetFormat(Type formatType)
 {
 return formatType==typeof(ICustomFormatter) ? this:null;
 }
}

Usage:

https://riptutorial.com/ 804

String.Format(new CustomFormat(), "-> {0:Reverse} <-", "Hello World");

Output:

-> dlroW olleH <-

Align left/ right, pad with spaces

The second value in the curly braces dictates the length of the replacement string. By adjusting
the second value to be positive or negative, the alignment of the string can be changed.

string.Format("LEFT: string: ->{0,-5}<- int: ->{1,-5}<-", "abc", 123);
string.Format("RIGHT: string: ->{0,5}<- int: ->{1,5}<-", "abc", 123);

Output:

LEFT: string: ->abc <- int: ->123 <-
RIGHT: string: -> abc<- int: -> 123<-

Numeric formats

// Integral types as hex
string.Format("Hexadecimal: byte2: {0:x2}; byte4: {0:X4}; char: {1:x2}", 123, (int)'A');

// Integers with thousand separators
string.Format("Integer, thousand sep.: {0:#,#}; fixed length: >{0,10:#,#}<", 1234567);

// Integer with leading zeroes
string.Format("Integer, leading zeroes: {0:00}; ", 1);

// Decimals
string.Format("Decimal, fixed precision: {0:0.000}; as percents: {0:0.00%}", 0.12);

Output:

Hexadecimal: byte2: 7b; byte4: 007B; char: 41
Integer, thousand sep.: 1,234,567; fixed length: > 1,234,567<
Integer, leading zeroes: 01;
Decimal, fixed precision: 0.120; as percents: 12.00%

Currency Formatting

The "c" (or currency) format specifier converts a number to a string that represents a currency
amount.

string.Format("{0:c}", 112.236677) // $112.23 - defaults to system

Precision

https://riptutorial.com/ 805

Default is 2. Use c1, c2, c3 and so on to control precision.

string.Format("{0:C1}", 112.236677) //$112.2
string.Format("{0:C3}", 112.236677) //$112.237
string.Format("{0:C4}", 112.236677) //$112.2367
string.Format("{0:C9}", 112.236677) //$112.236677000

Currency Symbol

Pass CultureInfo instance to use custom culture symbol.1.

string.Format(new CultureInfo("en-US"), "{0:c}", 112.236677); //$112.24
string.Format(new CultureInfo("de-DE"), "{0:c}", 112.236677); //112,24 €
string.Format(new CultureInfo("hi-IN"), "{0:c}", 112.236677); // 112.24

Use any string as currency symbol. Use NumberFormatInfo as to customize currency symbol.2.

NumberFormatInfo nfi = new CultureInfo("en-US", false).NumberFormat;
nfi = (NumberFormatInfo) nfi.Clone();
nfi.CurrencySymbol = "?";
string.Format(nfi, "{0:C}", 112.236677); //?112.24
nfi.CurrencySymbol = "?%^&";
string.Format(nfi, "{0:C}", 112.236677); //?%^&112.24

Position of Currency Symbol

Use CurrencyPositivePattern for positive values and CurrencyNegativePattern for negative values.

NumberFormatInfo nfi = new CultureInfo("en-US", false).NumberFormat;
nfi.CurrencyPositivePattern = 0;
string.Format(nfi, "{0:C}", 112.236677); //$112.24 - default
nfi.CurrencyPositivePattern = 1;
string.Format(nfi, "{0:C}", 112.236677); //112.24$
nfi.CurrencyPositivePattern = 2;
string.Format(nfi, "{0:C}", 112.236677); //$ 112.24
nfi.CurrencyPositivePattern = 3;
string.Format(nfi, "{0:C}", 112.236677); //112.24 $

Negative pattern usage is the same as positive pattern. A lot more use cases please refer to
original link.

Custom Decimal Separator

NumberFormatInfo nfi = new CultureInfo("en-US", false).NumberFormat;
nfi.CurrencyPositivePattern = 0;
nfi.CurrencyDecimalSeparator = "..";
string.Format(nfi, "{0:C}", 112.236677); //$112..24

Since C# 6.0

https://riptutorial.com/ 806

https://msdn.microsoft.com/en-us/library/system.globalization.numberformatinfo.currencypositivepattern(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.globalization.numberformatinfo.currencynegativepattern(v=vs.110).aspx

6.0

Since C# 6.0 it is possible to use string interpolation in place of String.Format.

string name = "John";
string lastname = "Doe";
Console.WriteLine($"Hello {name} {lastname}!");

Hello John Doe!

More examples for this under the topic C# 6.0 features: String interpolation.

Escaping curly brackets inside a String.Format() expression

string outsidetext = "I am outside of bracket";
string.Format("{{I am in brackets!}} {0}", outsidetext);

//Outputs "{I am in brackets!} I am outside of bracket"

Date Formatting

DateTime date = new DateTime(2016, 07, 06, 18, 30, 14);
// Format: year, month, day hours, minutes, seconds

Console.Write(String.Format("{0:dd}",date));

//Format by Culture info
String.Format(new System.Globalization.CultureInfo("mn-MN"),"{0:dddd}",date);

6.0

Console.Write($"{date:ddd}");

output :

06
Лхагва
06

Specifier Meaning Sample Result

d Date {0:d} 7/6/2016

dd Day, zero-padded {0:dd} 06

ddd Short day name {0:ddd} Wed

dddd Full day name {0:dddd} Wednesday

D Long date {0:D} Wednesday, July 6, 2016

f Full date and time, short {0:f} Wednesday, July 6, 2016 6:30 PM

https://riptutorial.com/ 807

http://www.riptutorial.com/csharp/example/49/string-interpolation

Specifier Meaning Sample Result

ff Second fractions, 2 digits {0:ff} 20

fff Second fractions, 3 digits {0:fff} 201

ffff Second fractions, 4 digits {0:ffff} 2016

F Full date and time, long {0:F} Wednesday, July 6, 2016 6:30:14 PM

g Default date and time {0:g} 7/6/2016 6:30 PM

gg Era {0:gg} A.D

hh Hour (2 digits, 12H) {0:hh} 06

HH Hour (2 digits, 24H) {0:HH} 18

M Month and day {0:M} July 6

mm Minutes, zero-padded {0:mm} 30

MM Month, zero-padded {0:MM} 07

MMM 3-letter month name {0:MMM} Jul

MMMM Full month name {0:MMMM} July

ss Seconds {0:ss} 14

r RFC1123 date {0:r} Wed, 06 Jul 2016 18:30:14 GMT

s Sortable date string {0:s} 2016-07-06T18:30:14

t Short time {0:t} 6:30 PM

T Long time {0:T} 6:30:14 PM

tt AM/PM {0:tt} PM

u Universal sortable local time {0:u} 2016-07-06 18:30:14Z

U Universal GMT {0:U} Wednesday, July 6, 2016 9:30:14 AM

Y Month and year {0:Y} July 2016

yy 2 digit year {0:yy} 16

yyyy 4 digit year {0:yyyy} 2016

zz 2 digit timezone offset {0:zz} +09

https://riptutorial.com/ 808

Specifier Meaning Sample Result

zzz full time zone offset {0:zzz} +09:00

ToString()

The ToString() method is present on all reference object types. This is due to all reference types
being derived from Object which has the ToString() method on it. The ToString() method on the
object base class returns the type name. The fragment below will print out "User" to the console.

public class User
{
 public string Name { get; set; }
 public int Id { get; set; }
}

...

var user = new User {Name = "User1", Id = 5};
Console.WriteLine(user.ToString());

However, the class User can also override ToString() in order to alter the string it returns. The
code fragment below prints out "Id: 5, Name: User1" to the console.

public class User
{
 public string Name { get; set; }
 public int Id { get; set; }
 public override ToString()
 {
 return string.Format("Id: {0}, Name: {1}", Id, Name);
 }
}

...

var user = new User {Name = "User1", Id = 5};
Console.WriteLine(user.ToString());

Relationship with ToString()

While the String.Format() method is certainly useful in formatting data as strings, it may often be a
bit overkill, especially when dealing with a single object as seen below :

String.Format("{0:C}", money); // yields "$42.00"

An easier approach might be to simply use the ToString() method available on all objects within
C#. It supports all of the same standard and custom formatting strings, but doesn't require the
necessary parameter mapping as there will only be a single argument :

money.ToString("C"); // yields "$42.00"

https://riptutorial.com/ 809

https://msdn.microsoft.com/en-us/library/dwhawy9k(v=vs.110).aspx

Caveats & Formatting Restrictions

While this approach may be simpler in some scenarios, the ToString() approach is limited with
regards to adding left or right padding like you might do within the String.Format() method :

String.Format("{0,10:C}", money); // yields " $42.00"

In order to accomplish this same behavior with the ToString() method, you would need to use
another method like PadLeft() or PadRight() respectively :

money.ToString("C").PadLeft(10); // yields " $42.00"

Read String.Format online: https://riptutorial.com/csharp/topic/79/string-format

https://riptutorial.com/ 810

https://riptutorial.com/csharp/topic/79/string-format

Chapter 141: StringBuilder

Examples

What a StringBuilder is and when to use one

A StringBuilder represents a series of characters, which unlike a normal string, are mutable. Often
times there is a need to modify strings that we've already made, but the standard string object is
not mutable. This means that each time a string is modified, a new string object needs to be
created, copied to, and then reassigned.

string myString = "Apples";
mystring += " are my favorite fruit";

In the above example, myString initially only has the value "Apples". However, when we
concatenate `" are my favorite fruit"', what the string class does internally needs to do involves:

Creating a new array of characters equal to the length of myString and the new string we are
appending.

•

Copying all of the characters of myString into the beginning of our new array and copying the
new string into the end of the array.

•

Create a new string object in memory and reassign it to myString.•

For a single concatenation, this is relatively trivial. However, what if needed to perform many
append operations, say, in a loop?

String myString = "";
for (int i = 0; i < 10000; i++)
 myString += " "; // puts 10,000 spaces into our string

Due to the repeated copying and object creation, this will bring significantly degrade the
performance of our program. We can avoid this by instead using a StringBuilder.

StringBuilder myStringBuilder = new StringBuilder();
for (int i = 0; i < 10000; i++)
 myStringBuilder.Append(' ');

Now when the same loop is run, the performance and speed of the execution time of the program
will be significantly faster than using a normal string. To make the StringBuilder back into a normal
string, we can simply call the ToString() method of StringBuilder.

However, this isn't the only optimization StringBuilder has. In order to further optimize functions,
we can take advantage of other properties that help improve performance.

StringBuilder sb = new StringBuilder(10000); // initializes the capacity to 10000

https://riptutorial.com/ 811

https://msdn.microsoft.com/en-us/library/system.text.stringbuilder(v=vs.110).aspx

If we know in advance how long our StringBuilder needs to be, we can specify its size ahead of
time, which will prevent it from needing to resize the character array it has internally.

sb.Append('k', 2000);

Though using StringBuilder for appending is much faster than a string, it can run even faster if you
only need to add a single character many times.

Once you have completed building your string, you may use the ToString() method on the
StringBuilder to convert it to a basic string. This is often necessary because the StringBuilder
class does not inherit from string.

For example, here is how you can use a StringBuilder to create a string:

string RepeatCharacterTimes(char character, int times)
{
 StringBuilder builder = new StringBuilder("");
 for (int counter = 0; counter < times; counter++)
 {
 //Append one instance of the character to the StringBuilder.
 builder.Append(character);
 }
 //Convert the result to string and return it.
 return builder.ToString();
}

In conclusion, StringBuilder should be used in place of string when many modifications to a string
need to be made with performance in mind.

Use StringBuilder to create string from a large number of records

public string GetCustomerNamesCsv()
{
 List<CustomerData> customerDataRecords = GetCustomerData(); // Returns a large number of
records, say, 10000+

 StringBuilder customerNamesCsv = new StringBuilder();
 foreach (CustomerData record in customerDataRecords)
 {
 customerNamesCsv
 .Append(record.LastName)
 .Append(',')
 .Append(record.FirstName)
 .Append(Environment.NewLine);
 }

 return customerNamesCsv.ToString();
}

Read StringBuilder online: https://riptutorial.com/csharp/topic/4675/stringbuilder

https://riptutorial.com/ 812

https://riptutorial.com/csharp/topic/4675/stringbuilder

Chapter 142: Structs

Remarks

Unlike classes, a struct is a value type, and is created on the local stack and not on the managed
heap, by default. This means that once the specific stack goes out of scope, the struct is de-
allocated. Contained reference types of de-allocated structs are also swept, once the GC
determines they are not longer referenced to by the struct.

structs cannot inherit and cannot be bases for inheritance, they are implicitly sealed, and also
cannot include protected members. However, a struct can implement an interface, as classes do.

Examples

Declaring a struct

public struct Vector
{
 public int X;
 public int Y;
 public int Z;
}

public struct Point
{
 public decimal x, y;

 public Point(decimal pointX, decimal pointY)
 {
 x = pointX;
 y = pointY;
 }
}

struct instance fields can be set via a parametrized constructor or individually after struct
construction.

•

Private members can only be initialized by the constructor.•

struct defines a sealed type that implicitly inherits from System.ValueType.•

Structs cannot inherit from any other type, but they can implement interfaces.•

Structs are copied on assignment, meaning all data is copied to the new instance and
changes to one of them are not reflected by the other.

•

A struct cannot be null, although it can used as a nullable type:

Vector v1 = null; //illegal

•

https://riptutorial.com/ 813

Vector? v2 = null; //OK
Nullable<Vector> v3 = null // OK

Structs can be instantiated with or without using the new operator.

//Both of these are acceptable
Vector v1 = new Vector();
v1.X = 1;
v1.Y = 2;
v1.Z = 3;

Vector v2;
v2.X = 1;
v2.Y = 2;
v2.Z = 3;

However, the new operator must be used in order to use an initializer:

Vector v1 = new MyStruct { X=1, Y=2, Z=3 }; // OK
Vector v2 { X=1, Y=2, Z=3 }; // illegal

•

A struct can declare everything a class can declare, with a few exceptions:

A struct cannot declare a parameterless constructor. struct instance fields can be set via a
parameterized constructor or individually after struct construction. Private members can only
be initialized by the constructor.

•

A struct cannot declare members as protected, since it is implicitly sealed.•
Struct fields can only be initialized if they are const or static.•

Struct usage

With constructor:

Vector v1 = new Vector();
v1.X = 1;
v1.Y = 2;
v1.Z = 3;

Console.WriteLine("X = {0}, Y = {1}, Z = {2}",v1.X,v1.Y,v1.Z);
// Output X=1,Y=2,Z=3

Vector v1 = new Vector();
//v1.X is not assigned
v1.Y = 2;
v1.Z = 3;

Console.WriteLine("X = {0}, Y = {1}, Z = {2}",v1.X,v1.Y,v1.Z);
// Output X=0,Y=2,Z=3

Point point1 = new Point();
point1.x = 0.5;
point1.y = 0.6;

Point point2 = new Point(0.5, 0.6);

https://riptutorial.com/ 814

Without constructor:

Vector v1;
v1.Y = 2;
v1.Z = 3;

Console.WriteLine("X = {0}, Y = {1}, Z = {2}",v1.X,v1.Y,v1.Z);
//Output ERROR "Use of possibly unassigned field 'X'

Vector v1;
v1.X = 1;
v1.Y = 2;
v1.Z = 3;

Console.WriteLine("X = {0}, Y = {1}, Z = {2}",v1.X,v1.Y,v1.Z);
// Output X=1,Y=2,Z=3

Point point3;
point3.x = 0.5;
point3.y = 0.6;

If we use a struct with its constructor, we aren't going to have problems with unassigned field
(each unassigned field has null value).

Unlike classes, a struct doesn't have to be constructed, i.e. there is no need to use the new
keyword, unless you need to call one of the constructors. A struct does not require the new
keyword because is a value-type and thus cannot be null.

Struct implementing interface

public interface IShape
{
 decimal Area();
}

public struct Rectangle : IShape
{
 public decimal Length { get; set; }
 public decimal Width { get; set; }

 public decimal Area()
 {
 return Length * Width;
 }
}

Structs are copied on assignment

Sinse structs are value types all the data is copied on assignment, and any modification to the new
copy does not change the data for the original copy. The code snippet below shows that p1 is
copied to p2 and changes made on p1 does not affect p2 instance.

var p1 = new Point {
 x = 1,

https://riptutorial.com/ 815

 y = 2
};

Console.WriteLine($"{p1.x} {p1.y}"); // 1 2

var p2 = p1;
Console.WriteLine($"{p2.x} {p2.y}"); // Same output: 1 2

p1.x = 3;
Console.WriteLine($"{p1.x} {p1.y}"); // 3 2
Console.WriteLine($"{p2.x} {p2.y}"); // p2 remain the same: 1 2

Read Structs online: https://riptutorial.com/csharp/topic/778/structs

https://riptutorial.com/ 816

https://riptutorial.com/csharp/topic/778/structs

Chapter 143: Structural Design Patterns

Introduction

Structural design patterns are patterns that describe how objects and classes can be combined
and form a large structure and that ease design by identifying a simple way to realize relationships
between entities. There are seven structural patterns described. They are as follows: Adapter,
Bridge, Composite, Decorator, Facade, Flyweight and Proxy

Examples

Adapter Design Pattern

“Adapter” as the name suggests is the object which lets two mutually incompatible
interfaces communicate with each other.

For example: if you buy a Iphone 8 (or any other Apple product) you need alot of
adapters. Because the default interface does not support audio jac or USB. With these
adapters you can use earphones with wires or you can use a normal Ethernet cable.
So "two mutually incompatible interfaces communicate with each other".

So in technical terms this means: Convert the interface of a class into another
interface that a clients expect. Adapter let classes work together that couldn't otherwise
because of incompatible interfaces. The classes and objects participating in this
pattern are:

The adapter pattern exits out 4 elements

ITarget: This is the interface which is used by the client to achieve functionality.1.
Adaptee: This is the functionality which the client desires but its interface is not
compatible with the client.

2.

Client: This is the class which wants to achieve some functionality by using the
adaptee’s code.

3.

Adapter: This is the class which would implement ITarget and would call the
Adaptee code which the client wants to call.

4.

UML

https://riptutorial.com/ 817

https://en.wikipedia.org/wiki/Adapter_pattern

First code Example (Theoretical example).

public interface ITarget
{
 void MethodA();
}

public class Adaptee
{
 public void MethodB()
 {
 Console.WriteLine("MethodB() is called");
 }
}

public class Client
{
 private ITarget target;

 public Client(ITarget target)
 {
 this.target = target;
 }

 public void MakeRequest()
 {
 target.MethodA();
 }
}

public class Adapter : Adaptee, ITarget
{
 public void MethodA()
 {
 MethodB();
 }
}

Second code example (Real world imlementation)

/// <summary>
/// Interface: This is the interface which is used by the client to achieve functionality.
/// </summary>

https://riptutorial.com/ 818

https://i.stack.imgur.com/oYMFy.gif

public interface ITarget
{
 List<string> GetEmployeeList();
}

/// <summary>
/// Adaptee: This is the functionality which the client desires but its interface is not
compatible with the client.
/// </summary>
public class CompanyEmplyees
{
 public string[][] GetEmployees()
 {
 string[][] employees = new string[4][];

 employees[0] = new string[] { "100", "Deepak", "Team Leader" };
 employees[1] = new string[] { "101", "Rohit", "Developer" };
 employees[2] = new string[] { "102", "Gautam", "Developer" };
 employees[3] = new string[] { "103", "Dev", "Tester" };

 return employees;
 }
}

/// <summary>
/// Client: This is the class which wants to achieve some functionality by using the adaptee’s
code (list of employees).
/// </summary>
public class ThirdPartyBillingSystem
{
 /*
 * This class is from a thirt party and you do'n have any control over it.
 * But it requires a Emplyee list to do its work
 */

 private ITarget employeeSource;

 public ThirdPartyBillingSystem(ITarget employeeSource)
 {
 this.employeeSource = employeeSource;
 }

 public void ShowEmployeeList()
 {
 // call the clietn list in the interface
 List<string> employee = employeeSource.GetEmployeeList();

 Console.WriteLine("######### Employee List ##########");
 foreach (var item in employee)
 {
 Console.Write(item);
 }

 }
}

/// <summary>
/// Adapter: This is the class which would implement ITarget and would call the Adaptee code
which the client wants to call.
/// </summary>
public class EmployeeAdapter : CompanyEmplyees, ITarget

https://riptutorial.com/ 819

{
 public List<string> GetEmployeeList()
 {
 List<string> employeeList = new List<string>();
 string[][] employees = GetEmployees();
 foreach (string[] employee in employees)
 {
 employeeList.Add(employee[0]);
 employeeList.Add(",");
 employeeList.Add(employee[1]);
 employeeList.Add(",");
 employeeList.Add(employee[2]);
 employeeList.Add("\n");
 }

 return employeeList;
 }
}

///
/// Demo
///
class Programs
{
 static void Main(string[] args)
 {
 ITarget Itarget = new EmployeeAdapter();
 ThirdPartyBillingSystem client = new ThirdPartyBillingSystem(Itarget);
 client.ShowEmployeeList();
 Console.ReadKey();
 }
}

When to use

Allow a system to use classes of another system that is incompatible with it.•
Allow communication between new and already existing system which are independent to
each other

•

Ado.Net SqlAdapter, OracleAdapter, MySqlAdapter are best example of Adapter Pattern.•

Read Structural Design Patterns online: https://riptutorial.com/csharp/topic/9764/structural-design-
patterns

https://riptutorial.com/ 820

https://riptutorial.com/csharp/topic/9764/structural-design-patterns
https://riptutorial.com/csharp/topic/9764/structural-design-patterns

Chapter 144: Synchronization Context in
Async-Await

Examples

Pseudocode for async/await keywords

Consider a simple asynchronous method:

async Task Foo()
{
 Bar();
 await Baz();
 Qux();
}

Simplifying, we can say that this code actually means the following:

Task Foo()
{
 Bar();
 Task t = Baz();
 var context = SynchronizationContext.Current;
 t.ContinueWith(task) =>
 {
 if (context == null)
 Qux();
 else
 context.Post((obj) => Qux(), null);
 }, TaskScheduler.Current);

 return t;
}

It means that async/await keywords use current synchronization context if it exists. I.e. you can
write library code that would work correctly in UI, Web, and Console applications.

Source article.

Disabling synchronization context

To disable synchronization context you should call the ConfigureAwait method:

async Task() Foo()
{
 await Task.Run(() => Console.WriteLine("Test"));
}

. . .

https://riptutorial.com/ 821

https://blogs.msdn.microsoft.com/pfxteam/2012/01/20/await-synchronizationcontext-and-console-apps/
https://msdn.microsoft.com/en-us/library/system.threading.tasks.task.configureawait(v=vs.110).aspx

Foo().ConfigureAwait(false);

ConfigureAwait provides a means to avoid the default SynchronizationContext
capturing behavior; passing false for the flowContext parameter prevents the
SynchronizationContext from being used to resume execution after the await.

Quote from It's All About the SynchronizationContext.

Why SynchronizationContext is so important?

Consider this example:

private void button1_Click(object sender, EventArgs e)
{
 label1.Text = RunTooLong();
}

This method will freeze UI application until the RunTooLong will be completed. The application will be
unresponsive.

You can try run inner code asynchronously:

private void button1_Click(object sender, EventArgs e)
{
 Task.Run(() => label1.Text = RunTooLong());
}

But this code won't execute because inner body may be run on non-UI thread and it shouldn't
change UI properties directly:

private void button1_Click(object sender, EventArgs e)
{
 Task.Run(() =>
 {
 var label1Text = RunTooLong();

 if (label1.InvokeRequired)
 lable1.BeginInvoke((Action) delegate() { label1.Text = label1Text; });
 else
 label1.Text = label1Text;
 });
}

Now don't forget always to use this pattern. Or, try SynchronizationContext.Post that will make it for
you:

private void button1_Click(object sender, EventArgs e)
{
 Task.Run(() =>
 {
 var label1Text = RunTooLong();
 SynchronizationContext.Current.Post((obj) =>

https://riptutorial.com/ 822

https://msdn.microsoft.com/en-us/magazine/gg598924.aspx
https://nnish.com/2010/03/14/accessing-wpf-controls-on-a-non-ui-thread/
https://nnish.com/2010/03/14/accessing-wpf-controls-on-a-non-ui-thread/
https://lostechies.com/gabrielschenker/2009/01/23/synchronizing-calls-to-the-ui-in-a-multi-threaded-application/

 {
 label1.Text = label1 Text);
 }, null);
 });
}

Read Synchronization Context in Async-Await online:
https://riptutorial.com/csharp/topic/7381/synchronization-context-in-async-await

https://riptutorial.com/ 823

https://riptutorial.com/csharp/topic/7381/synchronization-context-in-async-await

Chapter 145:
System.DirectoryServices.Protocols.LdapConnection

Examples

Authenticated SSL LDAP connection, SSL cert does not match reverse DNS

Set up some constants for the server and authentication information. Assuming LDAPv3, but it's
easy enough to change that.

// Authentication, and the name of the server.
private const string LDAPUser =
"cn=example:app:mygroup:accts,ou=Applications,dc=example,dc=com";
private readonly char[] password = { 'p', 'a', 's', 's', 'w', 'o', 'r', 'd' };
private const string TargetServer = "ldap.example.com";

// Specific to your company. Might start "cn=manager" instead of "ou=people", for example.
private const string CompanyDN = "ou=people,dc=example,dc=com";

Actually create the connection with three parts: an LdapDirectoryIdentifier (the server), and
NetworkCredentials.

// Configure server and port. LDAP w/ SSL, aka LDAPS, uses port 636.
// If you don't have SSL, don't give it the SSL port.
LdapDirectoryIdentifier identifier = new LdapDirectoryIdentifier(TargetServer, 636);

// Configure network credentials (userid and password)
var secureString = new SecureString();
foreach (var character in password)
 secureString.AppendChar(character);
NetworkCredential creds = new NetworkCredential(LDAPUser, secureString);

// Actually create the connection
LdapConnection connection = new LdapConnection(identifier, creds)
{
 AuthType = AuthType.Basic,
 SessionOptions =
 {
 ProtocolVersion = 3,
 SecureSocketLayer = true
 }
};

// Override SChannel reverse DNS lookup.
// This gets us past the "The LDAP server is unavailable." exception
// Could be
// connection.SessionOptions.VerifyServerCertificate += { return true; };
// but some certificate validation is probably good.
connection.SessionOptions.VerifyServerCertificate +=
 (sender, certificate) => certificate.Subject.Contains(string.Format("CN={0},",
TargetServer));

https://riptutorial.com/ 824

Use the LDAP server, e.g. search for someone by userid for all objectClass values. The
objectClass is present to demonstrates a compound search: The ampersand is the boolean "and"
operator for the two query clauses.

 SearchRequest searchRequest = new SearchRequest(
 CompanyDN,
 string.Format((&(objectClass=*)(uid={0})), uid),
 SearchScope.Subtree,
 null
);

// Look at your results
foreach (SearchResultEntry entry in searchResponse.Entries) {
 // do something
}

Super Simple anonymous LDAP

Assuming LDAPv3, but it's easy enough to change that. This is anonymous, unencrypted LDAPv3
LdapConnection creation.

private const string TargetServer = "ldap.example.com";

Actually create the connection with three parts: an LdapDirectoryIdentifier (the server), and
NetworkCredentials.

// Configure server and credentials
LdapDirectoryIdentifier identifier = new LdapDirectoryIdentifier(TargetServer);
NetworkCredential creds = new NetworkCredential();
LdapConnection connection = new LdapConnection(identifier, creds)
{
 AuthType=AuthType.Anonymous,
 SessionOptions =
 {
 ProtocolVersion = 3
 }
};

To use the connection, something like this would get people with the surname Smith

SearchRequest searchRequest = new SearchRequest("dn=example,dn=com", "(sn=Smith)",
SearchScope.Subtree,null);

Read System.DirectoryServices.Protocols.LdapConnection online:
https://riptutorial.com/csharp/topic/5177/system-directoryservices-protocols-ldapconnection

https://riptutorial.com/ 825

https://riptutorial.com/csharp/topic/5177/system-directoryservices-protocols-ldapconnection

Chapter 146:
System.Management.Automation

Remarks

The System.Management.Automation namespace is the root namespace for Windows
PowerShell.

System.Management.Automation is an extension library from Microsoft and it can be added to
Visual Studio projects via NuGet package manager or package manager console.

PM> Install-Package System.Management.Automation

Examples

Invoke simple synchronous pipeline

Get the current date and time.

public class Program
{
 static void Main()
 {
 // create empty pipeline
 PowerShell ps = PowerShell.Create();

 // add command
 ps.AddCommand("Get-Date");

 // run command(s)
 Console.WriteLine("Date: {0}", ps.Invoke().First());

 Console.ReadLine();
 }
}

https://riptutorial.com/ 826

https://www.nuget.org/packages/System.Management.Automation
http://i.stack.imgur.com/QJlb8.png

Read System.Management.Automation online: https://riptutorial.com/csharp/topic/4988/system-
management-automation

https://riptutorial.com/ 827

http://i.stack.imgur.com/x2IIE.png
https://riptutorial.com/csharp/topic/4988/system-management-automation
https://riptutorial.com/csharp/topic/4988/system-management-automation

Chapter 147: T4 Code Generation

Syntax

T4 Syntax•
<#@...#> //Declaring properties including templates, assemblies and namespaces and the
language the template uses

•

Plain Text //Declaring text that can be looped through for the files generated•
<#=...#> //Declaring Scripts•
<#+...#> //Declaring scriptlets•
<#...#> //Declaring text blocks•

Examples

Runtime Code Generation

<#@ template language="C#" #> //Language of your project
<#@ assembly name="System.Core" #>
<#@ import namespace="System.Linq" #>
<#@ import namespace="System.Text" #>
<#@ import namespace="System.Collections.Generic" #>

Read T4 Code Generation online: https://riptutorial.com/csharp/topic/4824/t4-code-generation

https://riptutorial.com/ 828

https://riptutorial.com/csharp/topic/4824/t4-code-generation

Chapter 148: Task Parallel Library

Examples

Parallel.ForEach

An example that uses Parallel.ForEach loop to ping a given array of website urls.

static void Main()
{
 string [] urls =
 {
 "www.stackoverflow.com",
 "www.google.net",
 "www.facebook.com",
 "www.twitter.com"
 };

 System.Threading.Tasks.Parallel.ForEach(urls, url =>
 {
 var ping = new System.Net.NetworkInformation.Ping();

 var result = ping.Send(url);

 if (result.Status == System.Net.NetworkInformation.IPStatus.Success)
 {
 Console.WriteLine(string.Format("{0} is online", url));
 }
 });
}

Parallel.For

An example that uses Parallel.For loop to ping a given array of website urls.

static void Main()
{
 string [] urls =
 {
 "www.stackoverflow.com",
 "www.google.net",
 "www.facebook.com",
 "www.twitter.com"
 };

 System.Threading.Tasks.Parallel.For(0, urls.Length, i =>
 {
 var ping = new System.Net.NetworkInformation.Ping();

 var result = ping.Send(urls[i]);

 if (result.Status == System.Net.NetworkInformation.IPStatus.Success)
 {
 Console.WriteLine(string.Format("{0} is online", urls[i]));

https://riptutorial.com/ 829

 }
 });
}

Parallel.Invoke

Invoking methods or actions in parallel (Parallel region)

static void Main()
{
 string [] urls =
 {
 "www.stackoverflow.com",
 "www.google.net",
 "www.facebook.com",
 "www.twitter.com"
 };

 System.Threading.Tasks.Parallel.Invoke(
 () => PingUrl(urls[0]),
 () => PingUrl(urls[1]),
 () => PingUrl(urls[2]),
 () => PingUrl(urls[3])
);
}

void PingUrl(string url)
{
 var ping = new System.Net.NetworkInformation.Ping();

 var result = ping.Send(url);

 if (result.Status == System.Net.NetworkInformation.IPStatus.Success)
 {
 Console.WriteLine(string.Format("{0} is online", url));
 }
}

An async cancellable polling Task that waits between iterations

public class Foo
{
 private const int TASK_ITERATION_DELAY_MS = 1000;
 private CancellationTokenSource _cts;

 public Foo()
 {
 this._cts = new CancellationTokenSource();
 }

 public void StartExecution()
 {
 Task.Factory.StartNew(this.OwnCodeCancelableTask_EveryNSeconds, this._cts.Token);
 }

 public void CancelExecution()
 {

https://riptutorial.com/ 830

 this._cts.Cancel();
 }

 /// <summary>
 /// "Infinite" loop that runs every N seconds. Good for checking for a heartbeat or
updates.
 /// </summary>
 /// <param name="taskState">The cancellation token from our _cts field, passed in the
StartNew call</param>
 private async void OwnCodeCancelableTask_EveryNSeconds(object taskState)
 {
 var token = (CancellationToken)taskState;

 while (!token.IsCancellationRequested)
 {
 Console.WriteLine("Do the work that needs to happen every N seconds in this
loop");

 // Passing token here allows the Delay to be cancelled if your task gets
cancelled.
 await Task.Delay(TASK_ITERATION_DELAY_MS, token);
 }
 }
}

A cancellable polling Task using CancellationTokenSource

public class Foo
{
 private CancellationTokenSource _cts;

 public Foo()
 {
 this._cts = new CancellationTokenSource();
 }

 public void StartExecution()
 {
 Task.Factory.StartNew(this.OwnCodeCancelableTask, this._cts.Token);
 }

 public void CancelExecution()
 {
 this._cts.Cancel();
 }

 /// <summary>
 /// "Infinite" loop with no delays. Writing to a database while pulling from a buffer for
example.
 /// </summary>
 /// <param name="taskState">The cancellation token from our _cts field, passed in the
StartNew call</param>
 private void OwnCodeCancelableTask(object taskState)
 {
 var token = (CancellationToken) taskState; //Our cancellation token passed from
StartNew();

 while (!token.IsCancellationRequested)
 {

https://riptutorial.com/ 831

 Console.WriteLine("Do your task work in this loop");
 }
 }
}

Async version of PingUrl

 static void Main(string[] args)
 {
 string url = "www.stackoverflow.com";
 var pingTask = PingUrlAsync(url);
 Console.WriteLine($"Waiting for response from {url}");
 Task.WaitAll(pingTask);
 Console.WriteLine(pingTask.Result);
 }

 static async Task<string> PingUrlAsync(string url)
 {
 string response = string.Empty;
 var ping = new System.Net.NetworkInformation.Ping();

 var result = await ping.SendPingAsync(url);

 await Task.Delay(5000); //simulate slow internet

 if (result.Status == System.Net.NetworkInformation.IPStatus.Success)
 {
 response = $"{url} is online";
 }

 return response;
 }

Read Task Parallel Library online: https://riptutorial.com/csharp/topic/1010/task-parallel-library

https://riptutorial.com/ 832

https://riptutorial.com/csharp/topic/1010/task-parallel-library

Chapter 149: Task Parallel Library (TPL)
Dataflow Constructs

Examples

JoinBlock

(Collects 2-3 inputs and combines them into a Tuple)

Like BatchBlock, JoinBlock<T1, T2, …> is able to group data from multiple data sources. In fact,
that’s JoinBlock<T1, T2, …>’s primary purpose.

For example, a JoinBlock<string, double, int> is an ISourceBlock<Tuple<string, double, int>>.

As with BatchBlock, JoinBlock<T1, T2,…> is capable of operating in both greedy and non-greedy
mode.

In the default greedy mode, all data offered to targets are accepted, even if the other target
doesn’t have the necessary data with which to form a tuple.

•

In non-greedy mode, the block’s targets will postpone data until all targets have been offered
the necessary data to create a tuple, at which point the block will engage in a two-phase
commit protocol to atomically retrieve all necessary items from the sources. This
postponement makes it possible for another entity to consume the data in the meantime so
as to allow the overall system to make forward progress.

•

Processing Requests with a Limited Number of Pooled Objects

var throttle = new JoinBlock<ExpensiveObject, Request>();
for(int i=0; i<10; i++)
{
 requestProcessor.Target1.Post(new ExpensiveObject());
}

var processor = new Transform<Tuple<ExpensiveObject, Request>, ExpensiveObject>(pair =>
{
 var resource = pair.Item1;
 var request = pair.Item2;

 request.ProcessWith(resource);

 return resource;
});

https://riptutorial.com/ 833

http://i.stack.imgur.com/mmXJ8.png

throttle.LinkTo(processor);
processor.LinkTo(throttle.Target1);

Introduction to TPL Dataflow by Stephen Toub

BroadcastBlock

(Copy an item and send the copies to every block that it’s linked to)

Unlike BufferBlock, BroadcastBlock’s mission in life is to enable all targets linked from the block to
get a copy of every element published, continually overwriting the “current” value with those
propagated to it.

Additionally, unlike BufferBlock, BroadcastBlock doesn’t hold on to data unnecessarily. After a
particular datum has been offered to all targets, that element will be overwritten by whatever piece
of data is next in line (as with all dataflow blocks, messages are handled in FIFO order). That
element will be offered to all targets, and so on.

Asynchronous Producer/Consumer with a Throttled Producer

var ui = TaskScheduler.FromCurrentSynchronizationContext();
var bb = new BroadcastBlock<ImageData>(i => i);

var saveToDiskBlock = new ActionBlock<ImageData>(item =>
 item.Image.Save(item.Path)
);

var showInUiBlock = new ActionBlock<ImageData>(item =>
 imagePanel.AddImage(item.Image),
 new DataflowBlockOptions { TaskScheduler =
TaskScheduler.FromCurrentSynchronizationContext() }
);

bb.LinkTo(saveToDiskBlock);
bb.LinkTo(showInUiBlock);

Exposing Status from an Agent

public class MyAgent
{
 public ISourceBlock<string> Status { get; private set; }

 public MyAgent()
 {

https://riptutorial.com/ 834

https://www.microsoft.com/en-us/download/details.aspx?id=14782
http://i.stack.imgur.com/ZStaY.png

 Status = new BroadcastBlock<string>();
 Run();
 }

 private void Run()
 {
 Status.Post("Starting");
 Status.Post("Doing cool stuff");
 …
 Status.Post("Done");
 }
}

Introduction to TPL Dataflow by Stephen Toub

WriteOnceBlock

(Readonly variable: Memorizes its first data item and passes out copies of it as its output. Ignores
all other data items)

If BufferBlock is the most fundamental block in TPL Dataflow, WriteOnceBlock is the simplest.
It stores at most one value, and once that value has been set, it will never be replaced or
overwritten.

You can think of WriteOnceBlock in as being similar to a readonly member variable in C#, except
instead of only being settable in a constructor and then being immutable, it’s only settable once
and is then immutable.

Splitting a Task’s Potential Outputs

public static async void SplitIntoBlocks(this Task<T> task,
 out IPropagatorBlock<T> result,
 out IPropagatorBlock<Exception> exception)
{
 result = new WriteOnceBlock<T>(i => i);
 exception = new WriteOnceBlock<Exception>(i => i);

 try
 {
 result.Post(await task);
 }
 catch(Exception ex)
 {
 exception.Post(ex);
 }
}

https://riptutorial.com/ 835

https://www.microsoft.com/en-us/download/details.aspx?id=14782
http://i.stack.imgur.com/7M5Mp.png

Introduction to TPL Dataflow by Stephen Toub

BatchedJoinBlock

(Collects a certain number of total items from 2-3 inputs and groups them into a Tuple of
collections of data items)

BatchedJoinBlock<T1, T2,…> is in a sense a combination of BatchBlock and JoinBlock<T1,
T2,…>.
Whereas JoinBlock<T1, T2,…> is used to aggregate one input from each target into a tuple, and
BatchBlock is used to aggregate N inputs into a collection, BatchedJoinBlock<T1, T2,…> is used
to gather N inputs from across all of the targets into tuples of collections.

Scatter/Gather

Consider a scatter/gather problem where N operations are launched, some of which may succeed
and produce string outputs, and others of which may fail and produce Exceptions.

var batchedJoin = new BatchedJoinBlock<string, Exception>(10);

for (int i=0; i<10; i++)
{
 Task.Factory.StartNew(() => {
 try { batchedJoin.Target1.Post(DoWork()); }
 catch(Exception ex) { batchJoin.Target2.Post(ex); }
 });
}

var results = await batchedJoin.ReceiveAsync();

foreach(string s in results.Item1)
{
 Console.WriteLine(s);
}

foreach(Exception e in results.Item2)
{
 Console.WriteLine(e);
}

Introduction to TPL Dataflow by Stephen Toub

TransformBlock

(Select, one-to-one)

https://riptutorial.com/ 836

https://www.microsoft.com/en-us/download/details.aspx?id=14782
http://i.stack.imgur.com/FSgue.png
https://www.microsoft.com/en-us/download/details.aspx?id=14782

As with ActionBlock, TransformBlock<TInput, TOutput> enables the execution of a delegate to
perform some action for each input datum; unlike with ActionBlock, this processing has an
output. This delegate can be a Func<TInput, TOutput>, in which case processing of that element
is considered completed when the delegate returns, or it can be a Func<TInput,Task>, in which
case processing of that element is considered completed not when the delegate returns but when
the returned Task completes. For those familiar with LINQ, it’s somewhat similar to Select() in that
it takes an input, transforms that input in some manner, and then produces an output.

By default, TransformBlock<TInput, TOutput> processes its data sequentially with a
MaxDegreeOfParallelism equal to 1. In addition to receiving buffered input and processing it, this
block will take all of its processed output and buffer that as well (data that has not been processed,
and data that has been processed).

It has 2 tasks: One to process the data, and one to push data to the next block.

A Concurrent Pipeline

var compressor = new TransformBlock<byte[], byte[]>(input => Compress(input));
var encryptor = new TransformBlock<byte[], byte[]>(input => Encrypt(input));

compressor.LinkTo(Encryptor);

Introduction to TPL Dataflow by Stephen Toub

ActionBlock

(foreach)

This class can be thought of logically as a buffer for data to be processed combined with tasks for
processing that data, with the “dataflow block” managing both. In its most basic usage, we can
instantiate an ActionBlock and “post” data to it; the delegate provided at the ActionBlock’s
construction will be executed asynchronously for every piece of data posted.

Synchronous Computation

https://riptutorial.com/ 837

http://i.stack.imgur.com/jQcFo.png
https://www.microsoft.com/en-us/download/details.aspx?id=14782
http://i.stack.imgur.com/exRaP.png

var ab = new ActionBlock<TInput>(i =>
{
 Compute(i);
});
…
ab.Post(1);
ab.Post(2);
ab.Post(3);

Throttling Asynchronous Downloads to at most 5 concurrently

var downloader = new ActionBlock<string>(async url =>
{
 byte [] imageData = await DownloadAsync(url);
 Process(imageData);
}, new DataflowBlockOptions { MaxDegreeOfParallelism = 5 });

downloader.Post("http://website.com/path/to/images");
downloader.Post("http://another-website.com/path/to/images");

Introduction to TPL Dataflow by Stephen Toub

TransformManyBlock

(SelectMany, 1-m: The results of this mapping are “flattened”, just like LINQ’s SelectMany)

TransformManyBlock<TInput, TOutput> is very similar to TransformBlock<TInput, TOutput>.
The key difference is that whereas a TransformBlock<TInput, TOutput> produces one and only
one output for each input, TransformManyBlock<TInput, TOutput> produces any number (zero or
more) outputs for each input. As with ActionBlock and TransformBlock<TInput, TOutput>, this
processing may be specified using delegates, both for synchronous and asynchronous
processing.

A Func<TInput, IEnumerable> is used for synchronous, and a Func<TInput, Task<IEnumerable>>
is used for asynchronous. As with both ActionBlock and TransformBlock<TInput, TOutput>,
TransformManyBlock<TInput, TOutput> defaults to sequential processing, but may be configured
otherwise.

The mapping delegate retuns a collection of items, which are inserted individually into the output
buffer.

Asynchronous Web Crawler

var downloader = new TransformManyBlock<string, string>(async url =>

https://riptutorial.com/ 838

https://www.microsoft.com/en-us/download/details.aspx?id=14782
http://i.stack.imgur.com/h7mip.png

{
 Console.WriteLine(“Downloading “ + url);
 try
 {
 return ParseLinks(await DownloadContents(url));
 }
 catch{}

 return Enumerable.Empty<string>();
});
downloader.LinkTo(downloader);

Expanding an Enumerable Into Its Constituent Elements

var expanded = new TransformManyBlock<T[], T>(array => array);

Filtering by going from 1 to 0 or 1 elements

public IPropagatorBlock<T> CreateFilteredBuffer<T>(Predicate<T> filter)
{
 return new TransformManyBlock<T, T>(item =>
 filter(item) ? new [] { item } : Enumerable.Empty<T>());
}

Introduction to TPL Dataflow by Stephen Toub

BatchBlock

(Groups a certain number of sequential data items into collections of data items)

BatchBlock combines N single items into one batch item, represented as an array of elements. An
instance is created with a specific batch size, and the block then creates a batch as soon as it’s
received that number of elements, asynchronously outputting the batch to the output buffer.

BatchBlock is capable of executing in both greedy and non-greedy modes.

In the default greedy mode, all messages offered to the block from any number of sources
are accepted and buffered to be converted into batches.

•

In non-greedy mode, all messages are postponed from sources until enough sources
have offered messages to the block to create a batch. Thus, a BatchBlock can be used
to receive 1 element from each of N sources, N elements from 1 source, and a myriad
of options in between.

○•

Batching Requests into groups of 100 to Submit to a Database

https://riptutorial.com/ 839

https://www.microsoft.com/en-us/download/details.aspx?id=14782
http://i.stack.imgur.com/tLRyw.png

var batchRequests = new BatchBlock<Request>(batchSize:100);
var sendToDb = new ActionBlock<Request[]>(reqs => SubmitToDatabase(reqs));

batchRequests.LinkTo(sendToDb);

Creating a batch once a second

var batch = new BatchBlock<T>(batchSize:Int32.MaxValue);
new Timer(() => { batch.TriggerBatch(); }).Change(1000, 1000);

Introduction to TPL Dataflow by Stephen Toub

BufferBlock

(FIFO Queue: The data that comes in is the data that goes out)

In short, BufferBlock provides an unbounded or bounded buffer for storing instances of T.
You can “post” instances of T to the block, which cause the data being posted to be stored in a
first-in-first-out (FIFO) order by the block.
You can “receive” from the block, which allows you to synchronously or asynchronously obtain
instances of T previously stored or available in the future (again, FIFO).

Asynchronous Producer/Consumer with a Throttled Producer

// Hand-off through a bounded BufferBlock<T>
private static BufferBlock<int> _Buffer = new BufferBlock<int>(
 new DataflowBlockOptions { BoundedCapacity = 10 });

// Producer
private static async void Producer()
{
 while(true)
 {
 await _Buffer.SendAsync(Produce());
 }
}

// Consumer
private static async Task Consumer()
{
 while(true)
 {
 Process(await _Buffer.ReceiveAsync());
 }
}

https://riptutorial.com/ 840

https://www.microsoft.com/en-us/download/details.aspx?id=14782
http://i.stack.imgur.com/S5vXJ.png

// Start the Producer and Consumer
private static async Task Run()
{
 await Task.WhenAll(Producer(), Consumer());
}

Introduction to TPL Dataflow by Stephen Toub

Read Task Parallel Library (TPL) Dataflow Constructs online:
https://riptutorial.com/csharp/topic/3110/task-parallel-library--tpl--dataflow-constructs

https://riptutorial.com/ 841

https://www.microsoft.com/en-us/download/details.aspx?id=14782
https://riptutorial.com/csharp/topic/3110/task-parallel-library--tpl--dataflow-constructs

Chapter 150: Threading

Remarks

A thread is a part of a program that can execute independently of other parts. It can perform tasks
simultaneously with other threads. Multithreading is a feature that enables programs to perform
concurrent processing so that more than one operation can be done at a time.

For example, you can use threading to update a timer or counter in the background while
simultaneously performing other tasks in the foreground.

Multithreaded applications are more responsive to user input and are also easily scalable,
because the developer can add threads as and when the workload increases.

By default, a C# program has one thread - the main program thread. However, secondary threads
can be created and used to execute code in parallel with the primary thread. Such threads are
called worker threads.

To control the operation of a thread, the CLR delegates a function to the operating system known
as Thread Scheduler. A thread scheduler assures that all the threads are allocated proper
execution time. It also checks that the threads that are blocked or locked do not consume much of
the CPU time.

The .NET Framework System.Threading namespace makes using threads easier.
System.Threading enables multithreading by providing a number of classes and interfaces. Apart
from providing types and classes for a particular thread, it also defines types to hold a collection of
threads, timer class and so on. It also provides its support by allowing synchronized access to
shared data.

Thread is the main class in the System.Threading namespace. Other classes include AutoResetEvent,
Interlocked, Monitor, Mutex, and ThreadPool.

Some of the delegates that are present in the System.Threading namespace include ThreadStart,
TimerCallback, and WaitCallback.

Enumerations in System.Threading namespace include ThreadPriority, ThreadState, and
EventResetMode.

In .NET Framework 4 and later versions, multithreaded programming is made easier and simpler
through the System.Threading.Tasks.Parallel and System.Threading.Tasks.Task classes, Parallel
LINQ (PLINQ), new concurrent collection classes in the System.Collections.Concurrent namespace,
and a new task-based programming model.

Examples

Simple Complete Threading Demo

https://riptutorial.com/ 842

class Program
{
 static void Main(string[] args)
 {
 // Create 2 thread objects. We're using delegates because we need to pass
 // parameters to the threads.
 var thread1 = new Thread(new ThreadStart(() => PerformAction(1)));
 var thread2 = new Thread(new ThreadStart(() => PerformAction(2)));

 // Start the threads running
 thread1.Start();
 // NB: as soon as the above line kicks off the thread, the next line starts;
 // even if thread1 is still processing.
 thread2.Start();

 // Wait for thread1 to complete before continuing
 thread1.Join();
 // Wait for thread2 to complete before continuing
 thread2.Join();

 Console.WriteLine("Done");
 Console.ReadKey();
 }

 // Simple method to help demonstrate the threads running in parallel.
 static void PerformAction(int id)
 {
 var rnd = new Random(id);
 for (int i = 0; i < 100; i++)
 {
 Console.WriteLine("Thread: {0}: {1}", id, i);
 Thread.Sleep(rnd.Next(0, 1000));
 }
 }
}

Simple Complete Threading Demo using Tasks

class Program
{
 static void Main(string[] args)
 {
 // Run 2 Tasks.
 var task1 = Task.Run(() => PerformAction(1)));
 var task2 = Task.Run(() => PerformAction(2)));

 // Wait (i.e. block this thread) until both Tasks are complete.
 Task.WaitAll(new [] { task1, task2 });

 Console.WriteLine("Done");
 Console.ReadKey();
 }

 // Simple method to help demonstrate the threads running in parallel.
 static void PerformAction(int id)
 {
 var rnd = new Random(id);
 for (int i = 0; i < 100; i++)
 {

https://riptutorial.com/ 843

 Console.WriteLine("Task: {0}: {1}", id, i);
 Thread.Sleep(rnd.Next(0, 1000));
 }
 }
}

Explicit Task Parallism

 private static void explicitTaskParallism()
 {
 Thread.CurrentThread.Name = "Main";

 // Create a task and supply a user delegate by using a lambda expression.
 Task taskA = new Task(() => Console.WriteLine($"Hello from task {nameof(taskA)}."));
 Task taskB = new Task(() => Console.WriteLine($"Hello from task {nameof(taskB)}."));

 // Start the task.
 taskA.Start();
 taskB.Start();

 // Output a message from the calling thread.
 Console.WriteLine("Hello from thread '{0}'.",
 Thread.CurrentThread.Name);
 taskA.Wait();
 taskB.Wait();
 Console.Read();
 }

Implicit Task Parallelism

 private static void Main(string[] args)
 {
 var a = new A();
 var b = new B();
 //implicit task parallelism
 Parallel.Invoke(
 () => a.DoSomeWork(),
 () => b.DoSomeOtherWork()
);

 }

Creating and Starting a Second Thread

If you're doing multiple long calculations, you can run them at the same time on different threads
on your computer. To do this, we make a new Thread and have it point to a different method.

using System.Threading;

class MainClass {
 static void Main() {
 var thread = new Thread(Secondary);
 thread.Start();
 }

https://riptutorial.com/ 844

 static void Secondary() {
 System.Console.WriteLine("Hello World!");
 }
}

Starting a thread with parameters

using System.Threading;

class MainClass {
 static void Main() {
 var thread = new Thread(Secondary);
 thread.Start("SecondThread");
 }

 static void Secondary(object threadName) {
 System.Console.WriteLine("Hello World from thread: " + threadName);
 }
}

Creating One Thread Per Processor

Environment.ProcessorCount Gets the number of logical processors on the current
machine.

The CLR will then schedule each thread to a logical processor, this theoretically could mean each
thread on a different logical processor, all threads on a single logical processor or some other
combination.

using System;
using System.Threading;

class MainClass {
 static void Main() {
 for (int i = 0; i < Environment.ProcessorCount; i++) {
 var thread = new Thread(Secondary);
 thread.Start(i);
 }

 }

 static void Secondary(object threadNumber) {
 System.Console.WriteLine("Hello World from thread: " + threadNumber);
 }
}

Avoiding Reading and Writing Data Simultaneously

Sometimes, you want your threads to simultaneously share data. When this happens it is
important to be aware of the code and lock any parts that could go wrong. A simple example of
two threads counting is shown below.

Here is some dangerous (incorrect) code:

https://riptutorial.com/ 845

using System.Threading;

class MainClass
{
 static int count { get; set; }

 static void Main()
 {
 for (int i = 1; i <= 2; i++)
 {
 var thread = new Thread(ThreadMethod);
 thread.Start(i);
 Thread.Sleep(500);
 }
 }

 static void ThreadMethod(object threadNumber)
 {
 while (true)
 {
 var temp = count;
 System.Console.WriteLine("Thread " + threadNumber + ": Reading the value of
count.");
 Thread.Sleep(1000);
 count = temp + 1;
 System.Console.WriteLine("Thread " + threadNumber + ": Incrementing the value of
count to:" + count);
 Thread.Sleep(1000);
 }
 }
}

You'll notice, instead of counting 1,2,3,4,5... we count 1,1,2,2,3...

To fix this problem, we need to lock the value of count, so that multiple different threads cannot
read and write to it at the same time. With the addition of a lock and a key, we can prevent the
threads from accessing the data simultaneously.

using System.Threading;

class MainClass
{

 static int count { get; set; }
 static readonly object key = new object();

 static void Main()
 {
 for (int i = 1; i <= 2; i++)
 {
 var thread = new Thread(ThreadMethod);
 thread.Start(i);
 Thread.Sleep(500);
 }
 }

 static void ThreadMethod(object threadNumber)
 {
 while (true)

https://riptutorial.com/ 846

 {
 lock (key)
 {
 var temp = count;
 System.Console.WriteLine("Thread " + threadNumber + ": Reading the value of
count.");
 Thread.Sleep(1000);
 count = temp + 1;
 System.Console.WriteLine("Thread " + threadNumber + ": Incrementing the value
of count to:" + count);
 }
 Thread.Sleep(1000);
 }
 }
}

Parallel.ForEach Loop

If you have a foreach loop that you want to speed up and you don't mind what order the output is
in, you can convert it to a parallel foreach loop by doing the following:

using System;
using System.Threading;
using System.Threading.Tasks;

public class MainClass {

 public static void Main() {
 int[] Numbers = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 // Single-threaded
 Console.WriteLine("Normal foreach loop: ");
 foreach (var number in Numbers) {
 Console.WriteLine(longCalculation(number));
 }
 // This is the Parallel (Multi-threaded solution)
 Console.WriteLine("Parallel foreach loop: ");
 Parallel.ForEach(Numbers, number => {
 Console.WriteLine(longCalculation(number));
 });
 }

 private static int longCalculation(int number) {
 Thread.Sleep(1000); // Sleep to simulate a long calculation
 return number * number;
 }
}

Deadlocks (two threads waiting on eachother)

A deadlock is what occurs when two or more threads are waiting for eachother to complete or to
release a resource in such a way that they wait forever.

A typical scenario of two threads waiting on eachother to complete is when a Windows Forms GUI
thread waits for a worker thread and the worker thread attempts to invoke an object managed by
the GUI thread. Observe that with this code exmaple, clicking button1 will cause the program to
hang.

https://riptutorial.com/ 847

private void button1_Click(object sender, EventArgs e)
{
 Thread workerthread= new Thread(dowork);
 workerthread.Start();
 workerthread.Join();
 // Do something after
}

private void dowork()
{
 // Do something before
 textBox1.Invoke(new Action(() => textBox1.Text = "Some Text"));
 // Do something after
}

workerthread.Join() is a call that blocks the calling thread until workerthread completes.
textBox1.Invoke(invoke_delegate) is a call that blocks the calling thread until the GUI thread has
processed invoke_delegate, but this call causes deadlocks if the GUI thread is already waiting for
the calling thread to complete.

To get around this, one can use a non-blocking way of invoking the textbox instead:

private void dowork()
{
 // Do work
 textBox1.BeginInvoke(new Action(() => textBox1.Text = "Some Text"));
 // Do work that is not dependent on textBox1 being updated first
}

However, this will cause trouble if you need to run code that is dependent on the textbox being
updated first. In that case, run that as part of the invoke, but be aware that this will make it run on
the GUI thread.

private void dowork()
{
 // Do work
 textBox1.BeginInvoke(new Action(() => {
 textBox1.Text = "Some Text";
 // Do work dependent on textBox1 being updated first,
 // start another worker thread or raise an event
 }));
 // Do work that is not dependent on textBox1 being updated first
}

Alternatively start af whole new thread and let that one do the waiting on the GUI thread, so that
workerthread might complete.

private void dowork()
{
 // Do work
 Thread workerthread2 = new Thread(() =>
 {
 textBox1.Invoke(new Action(() => textBox1.Text = "Some Text"));
 // Do work dependent on textBox1 being updated first,
 // start another worker thread or raise an event

https://riptutorial.com/ 848

 });
 workerthread2.Start();
 // Do work that is not dependent on textBox1 being updated first
}

To minimize the risk of running into a deadlock of mutual waiting, always avoid circular references
between threads when possible. A hierarchy of threads where lower-ranking threads only leave
messages for higher-ranking threads and never waiting on them will not run into this kind of issue.
However, it would still be vulnerable to deadlocks based on resource locking.

Deadlocks (hold resource and wait)

A deadlock is what occurs when two or more threads are waiting for eachother to complete or to
release a resource in such a way that they wait forever.

If thread1 holds a lock on resource A and is waiting for resource B to be released while thread2
holds resource B and is waiting for resource A to be released, they are deadlocked.

Clicking button1 for the following example code will cause your application to get into
aforementioned deadlocked state and hang

private void button_Click(object sender, EventArgs e)
{
 DeadlockWorkers workers = new DeadlockWorkers();
 workers.StartThreads();
 textBox.Text = workers.GetResult();
}

private class DeadlockWorkers
{
 Thread thread1, thread2;

 object resourceA = new object();
 object resourceB = new object();

 string output;

 public void StartThreads()
 {
 thread1 = new Thread(Thread1DoWork);
 thread2 = new Thread(Thread2DoWork);
 thread1.Start();
 thread2.Start();
 }

 public string GetResult()
 {
 thread1.Join();
 thread2.Join();
 return output;
 }

 public void Thread1DoWork()
 {
 Thread.Sleep(100);
 lock (resourceA)

https://riptutorial.com/ 849

 {
 Thread.Sleep(100);
 lock (resourceB)
 {
 output += "T1#";
 }
 }
 }

 public void Thread2DoWork()
 {
 Thread.Sleep(100);
 lock (resourceB)
 {
 Thread.Sleep(100);
 lock (resourceA)
 {
 output += "T2#";
 }
 }
 }
}

To avoid being deadlocked this way, one can use Monitor.TryEnter(lock_object,
timeout_in_milliseconds) to check if a lock is held on an object already. If Monitor.TryEnter does
not succeed in acquiring a lock on lock_object before timeout_in_milliseconds, it returns false,
giving the thread a chance to release other held resources and yielding, thus giving other threads
a chance to complete as in this slightly modified version of the above:

private void button_Click(object sender, EventArgs e)
{
 MonitorWorkers workers = new MonitorWorkers();
 workers.StartThreads();
 textBox.Text = workers.GetResult();
}

private class MonitorWorkers
{
 Thread thread1, thread2;

 object resourceA = new object();
 object resourceB = new object();

 string output;

 public void StartThreads()
 {
 thread1 = new Thread(Thread1DoWork);
 thread2 = new Thread(Thread2DoWork);
 thread1.Start();
 thread2.Start();
 }

 public string GetResult()
 {
 thread1.Join();
 thread2.Join();
 return output;
 }

https://riptutorial.com/ 850

 public void Thread1DoWork()
 {
 bool mustDoWork = true;
 Thread.Sleep(100);
 while (mustDoWork)
 {
 lock (resourceA)
 {
 Thread.Sleep(100);
 if (Monitor.TryEnter(resourceB, 0))
 {
 output += "T1#";
 mustDoWork = false;
 Monitor.Exit(resourceB);
 }
 }
 if (mustDoWork) Thread.Yield();
 }
 }

 public void Thread2DoWork()
 {
 Thread.Sleep(100);
 lock (resourceB)
 {
 Thread.Sleep(100);
 lock (resourceA)
 {
 output += "T2#";
 }
 }
 }
}

Note that this workaround relies on thread2 being stubborn about its locks and thread1 being
willing to yield, such that thread2 always take precedence. Also note that thread1 has to redo the
work it did after locking resource A, when it yields. Therefore be careful when implementing this
approach with more than one yielding thread, as you'll then run the risk of entering a so-called
livelock - a state which would occur if two threads kept doing the first bit of their work and then
yield mutually, starting over repeatedly.

Read Threading online: https://riptutorial.com/csharp/topic/51/threading

https://riptutorial.com/ 851

https://riptutorial.com/csharp/topic/51/threading

Chapter 151: Timers

Syntax

myTimer.Interval - sets how often the "Tick" event is called (in milliseconds)•
myTimer.Enabled - boolean value that sets the timer to be enabled / disabled•
myTimer.Start() - Starts the timer.•
myTimer.Stop() - Stops the timer.•

Remarks

If using Visual Studio, Timers can be added as a control directly to your form from the toolbox.

Examples

Multithreaded Timers

System.Threading.Timer - Simplest multithreaded timer. Contains two methods and one constructor.

Example: A timer calls the DataWrite method, which writes "multithread executed..." after five
seconds have elapsed, and then every second after that until the user presses Enter:

using System;
using System.Threading;
class Program
{
 static void Main()
 {
 // First interval = 5000ms; subsequent intervals = 1000ms
 Timer timer = new Timer (DataWrite, "multithread executed...", 5000, 1000);
 Console.ReadLine();
 timer.Dispose(); // This both stops the timer and cleans up.
 }

 static void DataWrite (object data)
 {
 // This runs on a pooled thread
 Console.WriteLine (data); // Writes "multithread executed..."
 }
}

Note : Will post a separate section for disposing multithreaded timers.

Change - This method can be called when you would like change the timer interval.

Timeout.Infinite - If you want to fire just once. Specify this in the last argument of the constructor.

System.Timers - Another timer class provided by .NET Framework. It wraps the
System.Threading.Timer.

https://riptutorial.com/ 852

Features:

IComponent - Allowing it to be sited in the Visual Studio’s Designer’s component tray•
Interval property instead of a Change method•
Elapsed event instead of a callback delegate•
Enabled property to start and stop the timer (default value = false)•
Start & Stop methods in case if you get confused by Enabled property (above point)•
AutoReset - for indicating a recurring event (default value = true)•
SynchronizingObject property with Invoke and BeginInvoke methods for safely calling methods
on WPF elements and Windows Forms controls

•

Example representing all the above features:

using System;
using System.Timers; // Timers namespace rather than Threading
class SystemTimer
{
 static void Main()
 {
 Timer timer = new Timer(); // Doesn't require any args
 timer.Interval = 500;
 timer.Elapsed += timer_Elapsed; // Uses an event instead of a delegate
 timer.Start(); // Start the timer
 Console.ReadLine();
 timer.Stop(); // Stop the timer
 Console.ReadLine();
 timer.Start(); // Restart the timer
 Console.ReadLine();
 timer.Dispose(); // Permanently stop the timer
 }

 static void timer_Elapsed(object sender, EventArgs e)
 {
 Console.WriteLine ("Tick");
 }
}

Multithreaded timers - use the thread pool to allow a few threads to serve many timers. It means
that callback method or Elapsed event may trigger on a different thread each time it is called.

Elapsed - this event always fires on time—regardless of whether the previous Elapsed event
finished executing. Because of this, callbacks or event handlers must be thread-safe. The
accuracy of multithreaded timers depends on the OS, and is typically in the 10–20 ms.

interop - when ever you need greater accuracy use this and call the Windows multimedia timer.
This has accuracy down to 1 ms and it is defined in winmm.dll.

timeBeginPeriod - Call this first to inform OS that you need high timing accuracy

timeSetEvent - call this after timeBeginPeriod to start a multimedia timer.

timeKillEvent - call this when you are done, this stops the timer

https://riptutorial.com/ 853

timeEndPeriod - Call this to inform the OS that you no longer need high timing accuracy.

You can find complete examples on the Internet that use the multimedia timer by searching for the
keywords dllimport winmm.dll timesetevent.

Creating an Instance of a Timer

Timers are used to perform tasks at specific intervals of time (Do X every Y seconds) Below is an
example of creating a new instance of a Timer.

NOTE: This applies to Timers using WinForms. If using WPF, you may want to look into
DispatcherTimer

 using System.Windows.Forms; //Timers use the Windows.Forms namespace

 public partial class Form1 : Form
 {

 Timer myTimer = new Timer(); //create an instance of Timer named myTimer

 public Form1()
 {
 InitializeComponent();
 }

 }

Assigning the "Tick" event handler to a Timer

All actions performed in a timer are handled in the "Tick" event.

public partial class Form1 : Form
{

 Timer myTimer = new Timer();

 public Form1()
 {
 InitializeComponent();

 myTimer.Tick += myTimer_Tick; //assign the event handler named "myTimer_Tick"
 }

 private void myTimer_Tick(object sender, EventArgs e)
 {
 // Perform your actions here.
 }
}

Example: Using a Timer to perform a simple countdown.

 public partial class Form1 : Form

https://riptutorial.com/ 854

 {

 Timer myTimer = new Timer();
 int timeLeft = 10;

 public Form1()
 {
 InitializeComponent();

 //set properties for the Timer
 myTimer.Interval = 1000;
 myTimer.Enabled = true;

 //Set the event handler for the timer, named "myTimer_Tick"
 myTimer.Tick += myTimer_Tick;

 //Start the timer as soon as the form is loaded
 myTimer.Start();

 //Show the time set in the "timeLeft" variable
 lblCountDown.Text = timeLeft.ToString();

 }

 private void myTimer_Tick(object sender, EventArgs e)
 {
 //perform these actions at the interval set in the properties.
 lblCountDown.Text = timeLeft.ToString();
 timeLeft -= 1;

 if (timeLeft < 0)
 {
 myTimer.Stop();
 }
 }
 }

Results in...

And so on...

https://riptutorial.com/ 855

http://i.stack.imgur.com/VZlnr.png
http://i.stack.imgur.com/30t8F.png

Read Timers online: https://riptutorial.com/csharp/topic/3829/timers

https://riptutorial.com/ 856

https://riptutorial.com/csharp/topic/3829/timers

Chapter 152: Tuples

Examples

Creating tuples

Tuples are created using generic types Tuple<T1>-Tuple<T1,T2,T3,T4,T5,T6,T7,T8>. Each of the
types represents a tuple containing 1 to 8 elements. Elements can be of different types.

// tuple with 4 elements
var tuple = new Tuple<string, int, bool, MyClass>("foo", 123, true, new MyClass());

Tuples can also be created using static Tuple.Create methods. In this case, the types of the
elements are inferred by the C# Compiler.

// tuple with 4 elements
var tuple = Tuple.Create("foo", 123, true, new MyClass());

7.0

Since C# 7.0, Tuples can be easily created using ValueTuple.

var tuple = ("foo", 123, true, new MyClass());

Elements can be named for easier decomposition.

(int number, bool flag, MyClass instance) tuple = (123, true, new MyClass());

Accessing tuple elements

To access tuple elements use Item1-Item8 properties. Only the properties with index number less
or equal to tuple size are going to be available (i.e. one cannot access Item3 property in
Tuple<T1,T2>).

var tuple = new Tuple<string, int, bool, MyClass>("foo", 123, true, new MyClass());
var item1 = tuple.Item1; // "foo"
var item2 = tuple.Item2; // 123
var item3 = tuple.Item3; // true
var item4 = tuple.Item4; // new My Class()

Comparing and sorting Tuples

Tuples can be compared based on their elements.

As an example, an enumerable whose elements are of type Tuple can be sorted based on
comparisons operators defined on a specified element:

https://riptutorial.com/ 857

http://www.riptutorial.com/csharp/example/6329/language-support-for-tuples

List<Tuple<int, string>> list = new List<Tuple<int, string>>();
list.Add(new Tuple<int, string>(2, "foo"));
list.Add(new Tuple<int, string>(1, "bar"));
list.Add(new Tuple<int, string>(3, "qux"));

list.Sort((a, b) => a.Item2.CompareTo(b.Item2)); //sort based on the string element

foreach (var element in list) {
 Console.WriteLine(element);
}

// Output:
// (1, bar)
// (2, foo)
// (3, qux)

Or to reverse the sort use:

list.Sort((a, b) => b.Item2.CompareTo(a.Item2));

Return multiple values from a method

Tuples can be used to return multiple values from a method without using out parameters. In the
following example AddMultiply is used to return two values (sum, product).

void Write()
{
 var result = AddMultiply(25, 28);
 Console.WriteLine(result.Item1);
 Console.WriteLine(result.Item2);
}

Tuple<int, int> AddMultiply(int a, int b)
{
 return new Tuple<int, int>(a + b, a * b);
}

Output:

53
700

Now C# 7.0 offers an alternative way to return multiple values from methods using value tuples
More info about ValueTuple struct.

Read Tuples online: https://riptutorial.com/csharp/topic/838/tuples

https://riptutorial.com/ 858

http://www.riptutorial.com/csharp/example/6329/language-support-for-tuples
http://www.riptutorial.com/csharp/example/6329/language-support-for-tuples
http://www.riptutorial.com/csharp/example/6329/language-support-for-tuples
https://riptutorial.com/csharp/topic/838/tuples

Chapter 153: Type Conversion

Remarks

Type conversion is converting one type of data to another type. It is also known as Type Casting.
In C#, type casting has two forms:

Implicit type conversion - These conversions are performed by C# in a type-safe manner. For
example, are conversions from smaller to larger integral types and conversions from derived
classes to base classes.

Explicit type conversion - These conversions are done explicitly by users using the pre-defined
functions. Explicit conversions require a cast operator.

Examples

MSDN implicit operator example

class Digit
{
 public Digit(double d) { val = d; }
 public double val;

 // User-defined conversion from Digit to double
 public static implicit operator double(Digit d)
 {
 Console.WriteLine("Digit to double implict conversion called");
 return d.val;
 }
 // User-defined conversion from double to Digit
 public static implicit operator Digit(double d)
 {
 Console.WriteLine("double to Digit implict conversion called");
 return new Digit(d);
 }
}

class Program
{
 static void Main(string[] args)
 {
 Digit dig = new Digit(7);
 //This call invokes the implicit "double" operator
 double num = dig;
 //This call invokes the implicit "Digit" operator
 Digit dig2 = 12;
 Console.WriteLine("num = {0} dig2 = {1}", num, dig2.val);
 Console.ReadLine();
 }
}

Output:

https://riptutorial.com/ 859

Digit to double implict conversion called
double to Digit implict conversion called
num = 7 dig2 = 12

Live Demo on .NET Fiddle

Explicit Type Conversion

using System;
namespace TypeConversionApplication
{
 class ExplicitConversion
 {
 static void Main(string[] args)
 {
 double d = 5673.74;
 int i;

 // cast double to int.
 i = (int)d;
 Console.WriteLine(i);
 Console.ReadKey();
 }
 }
}

Read Type Conversion online: https://riptutorial.com/csharp/topic/3489/type-conversion

https://riptutorial.com/ 860

https://dotnetfiddle.net/n1AeWS
https://riptutorial.com/csharp/topic/3489/type-conversion

Chapter 154: Unsafe Code in .NET

Remarks

In order to be able to use the unsafe keyword in a .Net project, you must check "Allow unsafe
code" in Project Properties => Build

•

Using unsafe code can improve performance, however, it is at the expense of code safety
(hence the term unsafe).

•

For instance, when you use a for loop an array like so:

for (int i = 0; i < array.Length; i++)
{
 array[i] = 0;
}

.NET Framework ensures that you do not exceed the bounds of the array, throwing an
IndexOutOfRangeException if the index exceeds the bounds.

However, if you use unsafe code, you may exceed the array's bounds like so:

unsafe
{
 fixed (int* ptr = array)
 {
 for (int i = 0; i <= array.Length; i++)
 {
 *(ptr+i) = 0;
 }
 }
}

Examples

Unsafe Array Index

void Main()
{
 unsafe
 {
 int[] a = {1, 2, 3};
 fixed(int* b = a)
 {
 Console.WriteLine(b[4]);
 }
 }
}

Running this code creates an array of length 3, but then tries to get the 5th item (index 4). On my
machine, this printed 1910457872, but the behavior is not defined.

https://riptutorial.com/ 861

Without the unsafe block, you cannot use pointers, and therefore cannot access values past the
end of an array without causing an exception to be thrown.

Using unsafe with arrays

When accessing arrays with pointers, there are no bounds check and therefore no
IndexOutOfRangeException will be thrown. This makes the code faster.

Assigning values to an array with a pointer:

class Program
{
 static void Main(string[] args)
 {
 unsafe
 {
 int[] array = new int[1000];
 fixed (int* ptr = array)
 {
 for (int i = 0; i < array.Length; i++)
 {
 *(ptr+i) = i; //assigning the value with the pointer
 }
 }
 }
 }
}

While the safe and normal counterpart would be:

class Program
{
 static void Main(string[] args)
 {
 int[] array = new int[1000];

 for (int i = 0; i < array.Length; i++)
 {
 array[i] = i;
 }
 }
}

The unsafe part will generally be faster and the difference in performance can vary depending on
the complexity of the elements in the array as well as the logic applied to each one. Even though it
may be faster, it should be used with care since it is harder to maintain and easier to break.

Using unsafe with strings

var s = "Hello"; // The string referenced by variable 's' is normally immutable, but
 // since it is memory, we could change it if we can access it in an
 // unsafe way.

unsafe // allows writing to memory; methods on System.String don't allow this

https://riptutorial.com/ 862

{
 fixed (char* c = s) // get pointer to string originally stored in read only memory
 for (int i = 0; i < s.Length; i++)
 c[i] = 'a'; // change data in memory allocated for original string "Hello"
}
Console.WriteLine(s); // The variable 's' still refers to the same System.String
 // value in memory, but the contents at that location were
 // changed by the unsafe write above.
 // Displays: "aaaaa"

Read Unsafe Code in .NET online: https://riptutorial.com/csharp/topic/81/unsafe-code-in--net

https://riptutorial.com/ 863

https://riptutorial.com/csharp/topic/81/unsafe-code-in--net

Chapter 155: Using Directive

Remarks

The using keyword is both a directive (this topic) and a statement.

For the using statement (i.e. to encapsulate the scope of an IDisposable object, ensuring that
outside of that scope the object becomes cleanly disposed) please see Using Statement.

Examples

Basic Usage

using System;
using BasicStuff = System;
using Sayer = System.Console;
using static System.Console; //From C# 6

class Program
{
 public static void Main()
 {
 System.Console.WriteLine("Ignoring usings and specifying full type name");
 Console.WriteLine("Thanks to the 'using System' directive");
 BasicStuff.Console.WriteLine("Namespace aliasing");
 Sayer.WriteLine("Type aliasing");
 WriteLine("Thanks to the 'using static' directive (from C# 6)");
 }
}

Reference a Namespace

using System.Text;
//allows you to access classes within this namespace such as StringBuilder
//without prefixing them with the namespace. i.e:

//...
var sb = new StringBuilder();
//instead of
var sb = new System.Text.StringBuilder();

Associate an Alias with a Namespace

using st = System.Text;
//allows you to access classes within this namespace such as StringBuilder
//prefixing them with only the defined alias and not the full namespace. i.e:

//...
var sb = new st.StringBuilder();
//instead of

https://riptutorial.com/ 864

http://www.riptutorial.com/csharp/topic/38/using-statement

var sb = new System.Text.StringBuilder();

Access Static Members of a Class

6.0

Allows you to import a specific type and use the type's static members without qualifying them with
the type name. This shows an example using static methods:

using static System.Console;

// ...

string GetName()
{
 WriteLine("Enter your name.");
 return ReadLine();
}

And this shows an example using static properties and methods:

using static System.Math;

namespace Geometry
{
 public class Circle
 {
 public double Radius { get; set; };

 public double Area => PI * Pow(Radius, 2);
 }
}

Associate an Alias to Resolve Conflicts

If you are using multiple namespaces that may have same-name classes(such as System.Random
and UnityEngine.Random), you can use an alias to specify that Random comes from one or the other
without having to use the entire namespace in the call.

For instance:

using UnityEngine;
using System;

Random rnd = new Random();

This will cause the compiler to be unsure which Random to evaluate the new variable as. Instead,
you can do:

using UnityEngine;
using System;
using Random = System.Random;

https://riptutorial.com/ 865

Random rnd = new Random();

This doesn't preclude you from calling the other by it's fully qualified namespace, like this:

using UnityEngine;
using System;
using Random = System.Random;

Random rnd = new Random();
int unityRandom = UnityEngine.Random.Range(0,100);

rnd will be a System.Random variable and unityRandom will be a UnityEngine.Random variable.

Using alias directives

You can use using in order to set an alias for a namespace or type. More detail can be found in
here.

Syntax:

using <identifier> = <namespace-or-type-name>;

Example:

using NewType = Dictionary<string, Dictionary<string,int>>;
NewType multiDictionary = new NewType();
//Use instances as you are using the original one
multiDictionary.Add("test", new Dictionary<string,int>());

Read Using Directive online: https://riptutorial.com/csharp/topic/52/using-directive

https://riptutorial.com/ 866

https://msdn.microsoft.com/en-us/library/aa664765(v=vs.71).aspx
https://riptutorial.com/csharp/topic/52/using-directive

Chapter 156: Using json.net

Introduction

Using JSON.net JsonConverter class.

Examples

Using JsonConverter on simple values

Example using JsonCoverter to deserialize the runtime property from the api response into a
Timespan Object in the Movies model

JSON (
http://www.omdbapi.com/?i=tt1663662)

{
 Title: "Pacific Rim",
 Year: "2013",
 Rated: "PG-13",
 Released: "12 Jul 2013",
 Runtime: "131 min",
 Genre: "Action, Adventure, Sci-Fi",
 Director: "Guillermo del Toro",
 Writer: "Travis Beacham (screenplay), Guillermo del Toro (screenplay), Travis Beacham
(story)",
 Actors: "Charlie Hunnam, Diego Klattenhoff, Idris Elba, Rinko Kikuchi",
 Plot: "As a war between humankind and monstrous sea creatures wages on, a former pilot and
a trainee are paired up to drive a seemingly obsolete special weapon in a desperate effort to
save the world from the apocalypse.",
 Language: "English, Japanese, Cantonese, Mandarin",
 Country: "USA",
 Awards: "Nominated for 1 BAFTA Film Award. Another 6 wins & 46 nominations.",
 Poster: "https://images-na.ssl-images-
amazon.com/images/M/MV5BMTY3MTI5NjQ4Nl5BMl5BanBnXkFtZTcwOTU1OTU0OQ@@._V1_SX300.jpg",
 Ratings: [{
 Source: "Internet Movie Database",
 Value: "7.0/10"
 },
 {
 Source: "Rotten Tomatoes",
 Value: "71%"
 },
 {
 Source: "Metacritic",
 Value: "64/100"
 }
],
 Metascore: "64",
 imdbRating: "7.0",

https://riptutorial.com/ 867

http://www.newtonsoft.com/json
http://www.newtonsoft.com/json/help/html/T_Newtonsoft_Json_JsonConverter.htm
https://msdn.microsoft.com/en-us/library/system.timespan(v=vs.110).aspx
http://www.omdbapi.com/?i=tt1663662)

 imdbVotes: "398,198",
 imdbID: "tt1663662",
 Type: "movie",
 DVD: "15 Oct 2013",
 BoxOffice: "$101,785,482.00",
 Production: "Warner Bros. Pictures",
 Website: "http://pacificrimmovie.com",
 Response: "True"
}

Movie Model

using Project.Serializers;
using Newtonsoft.Json;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.Threading.Tasks;

namespace Project.Models
{
 [DataContract]
 public class Movie
 {
 public Movie() { }

 [DataMember]
 public int Id { get; set; }

 [DataMember]
 public string ImdbId { get; set; }

 [DataMember]
 public string Title { get; set; }

 [DataMember]
 public DateTime Released { get; set; }

 [DataMember]
 [JsonConverter(typeof(RuntimeSerializer))]
 public TimeSpan Runtime { get; set; }

 }
}

RuntimeSerializer

using Newtonsoft.Json;
using Newtonsoft.Json.Linq;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text.RegularExpressions;

https://riptutorial.com/ 868

using System.Threading.Tasks;

namespace Project.Serializers
{
 public class RuntimeSerializer : JsonConverter
 {
 public override bool CanConvert(Type objectType)
 {
 return objectType == typeof(TimeSpan);
 }

 public override object ReadJson(JsonReader reader, Type objectType, object
existingValue, JsonSerializer serializer)
 {
 if (reader.TokenType == JsonToken.Null)
 return null;

 JToken jt = JToken.Load(reader);
 String value = jt.Value<String>();

 Regex rx = new Regex("(\\s*)min$");
 value = rx.Replace(value, (m) => "");

 int timespanMin;
 if(!Int32.TryParse(value, out timespanMin))
 {
 throw new NotSupportedException();
 }

 return new TimeSpan(0, timespanMin, 0);
 }

 public override void WriteJson(JsonWriter writer, object value, JsonSerializer
serializer)
 {
 serializer.Serialize(writer, value);
 }
 }
}

Calling It

Movie m = JsonConvert.DeserializeObject<Movie>(apiResponse));

Collect all fields of JSON object

using Newtonsoft.Json.Linq;
using System.Collections.Generic;

public class JsonFieldsCollector
{
 private readonly Dictionary<string, JValue> fields;

 public JsonFieldsCollector(JToken token)
 {
 fields = new Dictionary<string, JValue>();

https://riptutorial.com/ 869

 CollectFields(token);
 }

 private void CollectFields(JToken jToken)
 {
 switch (jToken.Type)
 {
 case JTokenType.Object:
 foreach (var child in jToken.Children<JProperty>())
 CollectFields(child);
 break;
 case JTokenType.Array:
 foreach (var child in jToken.Children())
 CollectFields(child);
 break;
 case JTokenType.Property:
 CollectFields(((JProperty) jToken).Value);
 break;
 default:
 fields.Add(jToken.Path, (JValue)jToken);
 break;
 }
 }

 public IEnumerable<KeyValuePair<string, JValue>> GetAllFields() => fields;
}

Usage:

var json = JToken.Parse(/* JSON string */);
var fieldsCollector = new JsonFieldsCollector(json);
var fields = fieldsCollector.GetAllFields();

foreach (var field in fields)
 Console.WriteLine($"{field.Key}: '{field.Value}'");

Demo
For this JSON object

{
 "User": "John",
 "Workdays": {
 "Monday": true,
 "Tuesday": true,
 "Friday": false
 },
 "Age": 42
}

expected output will be:

User: 'John'
Workdays.Monday: 'True'
Workdays.Tuesday: 'True'
Workdays.Friday: 'False'
Age: '42'

https://riptutorial.com/ 870

Read Using json.net online: https://riptutorial.com/csharp/topic/9879/using-json-net

https://riptutorial.com/ 871

https://riptutorial.com/csharp/topic/9879/using-json-net

Chapter 157: Using SQLite in C#

Examples

Creating simple CRUD using SQLite in C#

First of all we need to add SQLite support to our application. There are two ways of doing that

Download DLL suiting your system from SQLite download page and then add to the project
manually

•

Add SQLite dependency via NuGet•

We'll do it the second way

First open the NuGet menu

and search for System.Data.SQLite, select it and hit Install

https://riptutorial.com/ 872

https://sqlite.org/download.html
https://i.stack.imgur.com/owqid.png

Installation can also be done from Package Manager Console with

PM> Install-Package System.Data.SQLite

Or for only core features

PM> Install-Package System.Data.SQLite.Core

That's it for the download, so we can go right into coding.

First create a simple SQLite database with this table and add it as a file to the project

CREATE TABLE User(
 Id INTEGER PRIMARY KEY AUTOINCREMENT,
 FirstName TEXT NOT NULL,
 LastName TEXT NOT NULL
);

Also do not forget to set the Copy to Output Directory property of the file to Copy if newer of
Copy always, based on your needs

https://riptutorial.com/ 873

https://i.stack.imgur.com/4N4MH.png
https://docs.nuget.org/ndocs/tools/package-manager-console
https://i.stack.imgur.com/baf9b.png

Create a class called User, which will be the base entity for our database

private class User
{
 public string FirstName { get; set; }
 public string Lastname { get; set; }
}

We'll write two methods for query execution, first one for inserting, updating or removing from
database

private int ExecuteWrite(string query, Dictionary<string, object> args)
{
 int numberOfRowsAffected;

 //setup the connection to the database
 using (var con = new SQLiteConnection("Data Source=test.db"))
 {
 con.Open();

 //open a new command
 using (var cmd = new SQLiteCommand(query, con))
 {
 //set the arguments given in the query
 foreach (var pair in args)
 {
 cmd.Parameters.AddWithValue(pair.Key, pair.Value);
 }

 //execute the query and get the number of row affected
 numberOfRowsAffected = cmd.ExecuteNonQuery();
 }

 return numberOfRowsAffected;
 }
}

and the second one for reading from database

private DataTable Execute(string query)
{
 if (string.IsNullOrEmpty(query.Trim()))
 return null;

 using (var con = new SQLiteConnection("Data Source=test.db"))
 {
 con.Open();
 using (var cmd = new SQLiteCommand(query, con))
 {
 foreach (KeyValuePair<string, object> entry in args)
 {
 cmd.Parameters.AddWithValue(entry.Key, entry.Value);
 }

 var da = new SQLiteDataAdapter(cmd);

 var dt = new DataTable();
 da.Fill(dt);

https://riptutorial.com/ 874

 da.Dispose();
 return dt;
 }
 }
}

Now lets get into our CRUD methods

Adding user

private int AddUser(User user)
{
 const string query = "INSERT INTO User(FirstName, LastName) VALUES(@firstName,
@lastName)";

 //here we are setting the parameter values that will be actually
 //replaced in the query in Execute method
 var args = new Dictionary<string, object>
 {
 {"@firstName", user.FirstName},
 {"@lastName", user.Lastname}
 };

 return ExecuteWrite(query, args);
}

Editing user

private int EditUser(User user)
{
 const string query = "UPDATE User SET FirstName = @firstName, LastName = @lastName WHERE
Id = @id";

 //here we are setting the parameter values that will be actually
 //replaced in the query in Execute method
 var args = new Dictionary<string, object>
 {
 {"@id", user.Id},
 {"@firstName", user.FirstName},
 {"@lastName", user.Lastname}
 };

 return ExecuteWrite(query, args);
}

Deleting user

private int DeleteUser(User user)
{
 const string query = "Delete from User WHERE Id = @id";

 //here we are setting the parameter values that will be actually
 //replaced in the query in Execute method
 var args = new Dictionary<string, object>
 {
 {"@id", user.Id}

https://riptutorial.com/ 875

 };

 return ExecuteWrite(query, args);
}

Getting user by Id

private User GetUserById(int id)
{
 var query = "SELECT * FROM User WHERE Id = @id";

 var args = new Dictionary<string, object>
 {
 {"@id", id}
 };

 DataTable dt = ExecuteRead(query, args);

 if (dt == null || dt.Rows.Count == 0)
 {
 return null;
 }

 var user = new User
 {
 Id = Convert.ToInt32(dt.Rows[0]["Id"]),
 FirstName = Convert.ToString(dt.Rows[0]["FirstName"]),
 Lastname = Convert.ToString(dt.Rows[0]["LastName"])
 };

 return user;
}

Executing Query

using (SQLiteConnection conn = new SQLiteConnection(@"Data
Source=data.db;Pooling=true;FailIfMissing=false"))
{
 conn.Open();
 using (SQLiteCommand cmd = new SQLiteCommand(conn))
 {
 cmd.CommandText = "query";
 using (SqlDataReader dr = cmd.ExecuteReader())
 {
 while(dr.Read())
 {
 //do stuff
 }
 }
 }
}

Note: Setting FailIfMissing to true creates the file data.db if missing. However, the file will be
empty. So, any required tables have to be recreated.

Read Using SQLite in C# online: https://riptutorial.com/csharp/topic/4960/using-sqlite-in-csharp

https://riptutorial.com/ 876

https://riptutorial.com/csharp/topic/4960/using-sqlite-in-csharp

Chapter 158: Using Statement

Introduction

Provides a convenient syntax that ensures the correct use of IDisposable objects.

Syntax

using (disposable) { }•
using (IDisposable disposable = new MyDisposable()) { }•

Remarks

The object in the using statement must implement the IDisposable interface.

using(var obj = new MyObject())
{
}

class MyObject : IDisposable
{
 public void Dispose()
 {
 // Cleanup
 }
}

More complete examples for IDisposable implementation can be found at the MSDN docs.

Examples

Using Statement Basics

using is syntactic sugar that allows you to guarantee that a resource is cleaned up without needing
an explicit try-finally block. This means your code will be much cleaner, and you won't leak non-
managed resources.

Standard Dispose cleanup pattern, for objects that implement the IDisposable interface (which the
FileStream's base class Stream does in .NET):

int Foo()
{
 var fileName = "file.txt";

 {
 FileStream disposable = null;

 try

https://riptutorial.com/ 877

https://docs.microsoft.com/en-us/dotnet/api/system.idisposable?view=netframework-4.7
https://msdn.microsoft.com/en-us/library/fs2xkftw(v=vs.110).aspx

 {
 disposable = File.Open(fileName, FileMode.Open);

 return disposable.ReadByte();
 }
 finally
 {
 // finally blocks are always run
 if (disposable != null) disposable.Dispose();
 }
 }
}

using simplifies your syntax by hiding the explicit try-finally:

int Foo()
{
 var fileName = "file.txt";

 using (var disposable = File.Open(fileName, FileMode.Open))
 {
 return disposable.ReadByte();
 }
 // disposable.Dispose is called even if we return earlier
}

Just like finally blocks always execute regardless of errors or returns, using always calls Dispose()
, even in the event of an error:

int Foo()
{
 var fileName = "file.txt";

 using (var disposable = File.Open(fileName, FileMode.Open))
 {
 throw new InvalidOperationException();
 }
 // disposable.Dispose is called even if we throw an exception earlier
}

Note: Since Dispose is guaranteed to be called irrespective of the code flow, it's a good idea to
make sure that Dispose never throws an exception when you implement IDisposable. Otherwise an
actual exception would get overridden by the new exception resulting in a debugging nightmare.

Returning from using block

using (var disposable = new DisposableItem())
{
 return disposable.SomeProperty;
}

Because of the semantics of try..finally to which the using block translates, the return statement
works as expected - the return value is evaluated before finally block is executed and the value
disposed. The order of evaluation is as follows:

https://riptutorial.com/ 878

Evaluate the try body1.
Evaluate and cache the returned value2.
Execute finally block3.
Return the cached return value4.

However, you may not return the variable disposable itself, as it would contain invalid, disposed
reference - see related example.

Multiple using statements with one block

It is possible to use multiple nested using statements without added multiple levels of nested
braces. For example:

using (var input = File.OpenRead("input.txt"))
{
 using (var output = File.OpenWrite("output.txt"))
 {
 input.CopyTo(output);
 } // output is disposed here
} // input is disposed here

An alternative is to write:

using (var input = File.OpenRead("input.txt"))
using (var output = File.OpenWrite("output.txt"))
{
 input.CopyTo(output);
} // output and then input are disposed here

Which is exactly equivalent to the first example.

Note: Nested using statements might trigger Microsoft Code Analysis rule CS2002 (see this
answer for clarification) and generate a warning. As explained in the linked answer, it is generally
safe to nest using statements.

When the types within the using statement are of the same type you can comma-delimit them and
specify the type only once (though this is uncommon):

using (FileStream file = File.Open("MyFile.txt"), file2 = File.Open("MyFile2.txt"))
{
}

This can also be used when the types have a shared hierarchy:

using (Stream file = File.Open("MyFile.txt"), data = new MemoryStream())
{
}

The var keyword cannot be used in the above example. A compilation error would occur. Even the
comma separated declaration won't work when the declared variables have types from different
hierarchies.

https://riptutorial.com/ 879

http://www.riptutorial.com/csharp/example/327/gotcha--returning-the-resource-which-you-are-disposing
https://msdn.microsoft.com/en-us/library/ms182334.aspx
http://stackoverflow.com/a/22323027/501011
http://stackoverflow.com/a/22323027/501011

Gotcha: returning the resource which you are disposing

The following is a bad idea because it would dispose the db variable before returning it.

public IDBContext GetDBContext()
{
 using (var db = new DBContext())
 {
 return db;
 }
}

This can also create more subtle mistakes:

public IEnumerable<Person> GetPeople(int age)
{
 using (var db = new DBContext())
 {
 return db.Persons.Where(p => p.Age == age);
 }
}

This looks ok, but the catch is that the LINQ expression evaluation is lazy, and will possibly only
be executed later when the underlying DBContext has already been disposed.

So in short the expression isn't evaluated before leaving the using. One possible solution to this
problem, which still makes use of using, is to cause the expression to evaluate immediately by
calling a method that will enumerate the result. For example ToList(), ToArray(), etc. If you are
using the newest version of Entity Framework you could use the async counterparts like
ToListAsync() or ToArrayAsync().

Below you find the example in action:

public IEnumerable<Person> GetPeople(int age)
{
 using (var db = new DBContext())
 {
 return db.Persons.Where(p => p.Age == age).ToList();
 }
}

It is important to note, though, that by calling ToList() or ToArray(), the expression will be eagerly
evaluated, meaning that all the persons with the specified age will be loaded to memory even if
you do not iterate on them.

Using statements are null-safe

You don't have to check the IDisposable object for null. using will not throw an exception and
Dispose() will not be called:

DisposableObject TryOpenFile()

https://riptutorial.com/ 880

{
 return null;
}

// disposable is null here, but this does not throw an exception
using (var disposable = TryOpenFile())
{
 // this will throw a NullReferenceException because disposable is null
 disposable.DoSomething();

 if(disposable != null)
 {
 // here we are safe because disposable has been checked for null
 disposable.DoSomething();
 }
}

Gotcha: Exception in Dispose method masking other errors in Using blocks

Consider the following block of code.

try
{
 using (var disposable = new MyDisposable())
 {
 throw new Exception("Couldn't perform operation.");
 }
}
catch (Exception ex)
{
 Console.WriteLine(ex.Message);
}

class MyDisposable : IDisposable
{
 public void Dispose()
 {
 throw new Exception("Couldn't dispose successfully.");
 }
}

You may expect to see "Couldn't perform operation" printed to the Console but you would actually
see "Couldn't dispose successfully." as the Dispose method is still called even after the first
exception is thrown.

It is worth being aware of this subtlety as it may be masking the real error that prevented the
object from being disposed and make it harder to debug.

Using Statements and Database Connections

The using keyword ensures that the resource defined within the statement only exists within the
scope of the statement itself. Any resources defined within the statement must implement the
IDisposable interface.

These are incredibly important when dealing with any connections that implement the IDisposable

https://riptutorial.com/ 881

interface as it can ensure the connections are not only properly closed but that their resources are
freed after the using statement is out of scope.

Common IDisposable Data Classes

Many of the following are data-related classes that implement the IDisposable interface and are
perfect candidates for a using statement :

SqlConnection,SqlCommand,SqlDataReader, etc.•
OleDbConnection,OleDbCommand,OleDbDataReader, etc.•
MySqlConnection, MySqlCommand, MySqlDbDataReader, etc.•
DbContext•

All of these are commonly used to access data through C# and will be commonly encountered
throughout building data-centric applications. Many other classes that are not mentioned that
implement the same FooConnection,FooCommand,FooDataReader classes can be expected to behave
the same way.

Common Access Pattern for ADO.NET Connections

A common pattern that can be used when accessing your data through an ADO.NET connection
might look as follows :

// This scopes the connection (your specific class may vary)
using(var connection = new SqlConnection("{your-connection-string}")
{
 // Build your query
 var query = "SELECT * FROM YourTable WHERE Property = @property");
 // Scope your command to execute
 using(var command = new SqlCommand(query, connection))
 {
 // Open your connection
 connection.Open();

 // Add your parameters here if necessary

 // Execute your query as a reader (again scoped with a using statement)
 using(var reader = command.ExecuteReader())
 {
 // Iterate through your results here
 }
 }
}

Or if you were just performing a simple update and didn't require a reader, the same basic concept
would apply :

using(var connection = new SqlConnection("{your-connection-string}"))
{
 var query = "UPDATE YourTable SET Property = Value WHERE Foo = @foo";
 using(var command = new SqlCommand(query,connection))
 {

https://riptutorial.com/ 882

 connection.Open();

 // Add parameters here

 // Perform your update
 command.ExecuteNonQuery();
 }
}

Using Statements with DataContexts

Many ORMs such as Entity Framework expose abstraction classes that are used to interact with
underlying databases in the form of classes like DbContext. These contexts generally implement the
IDisposable interface as well and should take advantage of this through using statements when
possible :

using(var context = new YourDbContext())
{
 // Access your context and perform your query
 var data = context.Widgets.ToList();
}

Using Dispose Syntax to define custom scope

For some use cases, you can use the using syntax to help define a custom scope. For example,
you can define the following class to execute code in a specific culture.

public class CultureContext : IDisposable
{
 private readonly CultureInfo originalCulture;

 public CultureContext(string culture)
 {
 originalCulture = CultureInfo.CurrentCulture;
 Thread.CurrentThread.CurrentCulture = new CultureInfo(culture);
 }

 public void Dispose()
 {
 Thread.CurrentThread.CurrentCulture = originalCulture;
 }
}

You can then use use this class to define blocks of code that execute in a specific culture.

Thread.CurrentThread.CurrentCulture = new CultureInfo("en-US");

using (new CultureContext("nl-NL"))
{
 // Code in this block uses the "nl-NL" culture
 Console.WriteLine(new DateTime(2016, 12, 25)); // Output: 25-12-2016 00:00:00
}

using (new CultureContext("es-ES"))

https://riptutorial.com/ 883

{
 // Code in this block uses the "es-ES" culture
 Console.WriteLine(new DateTime(2016, 12, 25)); // Output: 25/12/2016 0:00:00
}

// Reverted back to the original culture
Console.WriteLine(new DateTime(2016, 12, 25)); // Output: 12/25/2016 12:00:00 AM

Note: as we don't use the CultureContext instance we create, we don't assign a variable for it.

This technique is used by the BeginForm helper in ASP.NET MVC.

Executing code in constraint context

If you have code (a routine) you want to execute under a specific (constraint) context, you can use
dependency injection.

The following example shows the constraint of executing under an open SSL connection. This first
part would be in your library or framework, which you won't expose to the client code.

public static class SSLContext
{
 // define the delegate to inject
 public delegate void TunnelRoutine(BinaryReader sslReader, BinaryWriter sslWriter);

 // this allows the routine to be executed under SSL
 public static void ClientTunnel(TcpClient tcpClient, TunnelRoutine routine)
 {
 using (SslStream sslStream = new SslStream(tcpClient.GetStream(), true, _validate))
 {
 sslStream.AuthenticateAsClient(HOSTNAME, null, SslProtocols.Tls, false);

 if (!sslStream.IsAuthenticated)
 {
 throw new SecurityException("SSL tunnel not authenticated");
 }

 if (!sslStream.IsEncrypted)
 {
 throw new SecurityException("SSL tunnel not encrypted");
 }

 using (BinaryReader sslReader = new BinaryReader(sslStream))
 using (BinaryWriter sslWriter = new BinaryWriter(sslStream))
 {
 routine(sslReader, sslWriter);
 }
 }
 }
}

Now the client code which wants to do something under SSL but does not want to handle all the
SSL details. You can now do whatever you want inside the SSL tunnel, for example exchange a
symmetric key:

https://riptutorial.com/ 884

https://msdn.microsoft.com/en-us/library/dd410596%28v=vs.100%29.aspx

public void ExchangeSymmetricKey(BinaryReader sslReader, BinaryWriter sslWriter)
{
 byte[] bytes = new byte[8];
 (new RNGCryptoServiceProvider()).GetNonZeroBytes(bytes);
 sslWriter.Write(BitConverter.ToUInt64(bytes, 0));
}

You execute this routine as follows:

SSLContext.ClientTunnel(tcpClient, this.ExchangeSymmetricKey);

To do this, you need the using() clause because it is the only way (apart from a try..finally
block) you can guarantee the client code (ExchangeSymmetricKey) never exits without properly
disposing of the disposable resources. Without using() clause, you would never know if a routine
could break the context's constraint to dispose of those resources.

Read Using Statement online: https://riptutorial.com/csharp/topic/38/using-statement

https://riptutorial.com/ 885

https://riptutorial.com/csharp/topic/38/using-statement

Chapter 159: Value type vs Reference type

Syntax

Passing by reference: public void Double(ref int numberToDouble) { }•

Remarks

Introduction

Value types

Value types are the simpler of the two. Value types are often used to represent data itself. An
integer, a Boolean or a point in 3D space are all examples of good value types.

Value types (structs) are declared by using the struct keyword. See the syntax section for an
example of how to declare a new struct.

Generally speaking, We have 2 keywords that are used to declare value types:

Structs•
Enumerations•

Reference types

Reference types are slightly more complex. Reference types are traditional objects in the sense of
Object Oriented Programming. So, they support inheritance (and the benefits there of) and also
support finalizers.

In C# generally we have this reference types:

Classes•
Delegates•
Interfaces•

New reference types (classes) are declared using the class keyword. For an example, see the
syntax section for how to declare a new reference type.

Major Differences

The major differences between reference types and value types can be seen below.

Value types exist on the stack, reference types exist on the heap

This is the often mentioned difference between the two, but really, what it boils down to is that

https://riptutorial.com/ 886

when you use a value type in C#, such as an int, the program will use that variable to refer directly
to that value. If you say int mine = 0, then the variable mine refers directly to 0, which is efficient.
However, reference types actually hold (as the name suggests) a reference to the underlying
object, this is akin to pointers in other languages such as C++.

You might not notice the effects of this immediately, but the effects are there, are powerful and are
subtle. See the example on changing reference types elsewhere for an example.

This difference is the primary reason for the following other differences, and is worth knowing.

Value types don't change when you change them in a method, reference types
do

When a value type is passed into a method as a parameter, if the method changes the value in
any way, the value is not changed In contrast, passing a reference type into that same method
and changing it will change the underlying object, so that other things that use that same object
will have the newly changed object rather than their original value.

See the example of value types vs reference types in methods for more info.

What if I want to change them?

Simply pass them into your method using the "ref" keyword, and you are then passing this object
by reference. Meaning, it's the same object in memory. So modifications you make will be
respected. See the example on passing by reference for an example.

Value types cannot be null, reference types can

Pretty much as it says, you can assign null to a reference type, meaning the variable you've
assigned can have no actual object assigned to it. In the case of value types, however, this is not
possible. You can, however, use Nullable, to allow your value type to be nullable, if this is a
requirement, though if this is something you are considering, think strongly whether a class might
not be the best approach here, if it is your own type.

Examples

Changing values elsewhere

public static void Main(string[] args)
{
 var studentList = new List<Student>();
 studentList.Add(new Student("Scott", "Nuke"));
 studentList.Add(new Student("Vincent", "King"));
 studentList.Add(new Student("Craig", "Bertt"));

 // make a separate list to print out later
 var printingList = studentList; // this is a new list object, but holding the same student
objects inside it

https://riptutorial.com/ 887

 // oops, we've noticed typos in the names, so we fix those
 studentList[0].LastName = "Duke";
 studentList[1].LastName = "Kong";
 studentList[2].LastName = "Brett";

 // okay, we now print the list
 PrintPrintingList(printingList);
}

private static void PrintPrintingList(List<Student> students)
{
 foreach (Student student in students)
 {
 Console.WriteLine(string.Format("{0} {1}", student.FirstName, student.LastName));
 }
}

You'll notice that even though the printingList list was made before the corrections to student
names after the typos, the PrintPrintingList method still prints out the corrected names:

Scott Duke
Vincent Kong
Craig Brett

This is because both lists hold a list of references to the same students. SO changing the
underlying student object propogates to usages by either list.

Here's what the student class would look like.

public class Student
{
 public string FirstName { get; set; }
 public string LastName { get; set; }

 public Student(string firstName, string lastName)
 {
 this.FirstName = firstName;
 this.LastName = lastName;
 }
}

Passing by reference

If you want the Value Types vs Reference Types in methods example to work properly, use the ref
keyword in your method signature for the parameter you want to pass by reference, as well as
when you call the method.

public static void Main(string[] args)
{
 ...
 DoubleNumber(ref number); // calling code
 Console.WriteLine(number); // outputs 8
 ...
}

https://riptutorial.com/ 888

public void DoubleNumber(ref int number)
{
 number += number;
}

Making these changes would make the number update as expected, meaning the console output
for number would be 8.

Passing by reference using ref keyword.

From the documentation :

In C#, arguments can be passed to parameters either by value or by reference.
Passing by reference enables function members, methods, properties, indexers,
operators, and constructors to change the value of the parameters and have that
change persist in the calling environment. To pass a parameter by reference, use the
ref or out keyword.

The difference between ref and out is that out means that the passed parameter has to be
assigned before the function ends.in contrast parameters passed with ref can be changed or left
unchanged.

using System;

class Program
{
 static void Main(string[] args)
 {
 int a = 20;
 Console.WriteLine("Inside Main - Before Callee: a = {0}", a);
 Callee(a);
 Console.WriteLine("Inside Main - After Callee: a = {0}", a);

 Console.WriteLine("Inside Main - Before CalleeRef: a = {0}", a);
 CalleeRef(ref a);
 Console.WriteLine("Inside Main - After CalleeRef: a = {0}", a);

 Console.WriteLine("Inside Main - Before CalleeOut: a = {0}", a);
 CalleeOut(out a);
 Console.WriteLine("Inside Main - After CalleeOut: a = {0}", a);

 Console.ReadLine();
 }

 static void Callee(int a)
 {
 a = 5;
 Console.WriteLine("Inside Callee a : {0}", a);
 }

 static void CalleeRef(ref int a)
 {
 a = 6;
 Console.WriteLine("Inside CalleeRef a : {0}", a);
 }

https://riptutorial.com/ 889

https://msdn.microsoft.com/en-IN/library/0f66670z.aspx

 static void CalleeOut(out int a)
 {
 a = 7;
 Console.WriteLine("Inside CalleeOut a : {0}", a);
 }
}

Output :

Inside Main - Before Callee: a = 20
Inside Callee a : 5
Inside Main - After Callee: a = 20
Inside Main - Before CalleeRef: a = 20
Inside CalleeRef a : 6
Inside Main - After CalleeRef: a = 6
Inside Main - Before CalleeOut: a = 6
Inside CalleeOut a : 7
Inside Main - After CalleeOut: a = 7

Assignment

var a = new List<int>();
var b = a;
a.Add(5);
Console.WriteLine(a.Count); // prints 1
Console.WriteLine(b.Count); // prints 1 as well

Assigning to a variable of a List<int> does not create a copy of the List<int>. Instead, it copies the
reference to the List<int>. We call types that behave this way reference types.

Difference with method parameters ref and out

There are two possible ways to pass a value type by reference: ref and out. The difference is that
by passing it with ref the value must be initialized but not when passing it with out. Using out
ensures that the variable has a value after the method call:

public void ByRef(ref int value)
{
 Console.WriteLine(nameof(ByRef) + value);
 value += 4;
 Console.WriteLine(nameof(ByRef) + value);
}

public void ByOut(out int value)
{
 value += 4 // CS0269: Use of unassigned out parameter `value'
 Console.WriteLine(nameof(ByOut) + value); // CS0269: Use of unassigned out parameter
`value'

 value = 4;
 Console.WriteLine(nameof(ByOut) + value);
}

public void TestOut()

https://riptutorial.com/ 890

{
 int outValue1;
 ByOut(out outValue1); // prints 4

 int outValue2 = 10; // does not make any sense for out
 ByOut(out outValue2); // prints 4
}

public void TestRef()
{
 int refValue1;
 ByRef(ref refValue1); // S0165 Use of unassigned local variable 'refValue'

 int refValue2 = 0;
 ByRef(ref refValue2); // prints 0 and 4

 int refValue3 = 10;
 ByRef(ref refValue3); // prints 10 and 14
}

The catch is that by using out the parameter must be initialized before leaving the method,
therefore the following method is possible with ref but not with out:

public void EmtyRef(bool condition, ref int value)
{
 if (condition)
 {
 value += 10;
 }
}

public void EmtyOut(bool condition, out int value)
{
 if (condition)
 {
 value = 10;
 }
} //CS0177: The out parameter 'value' must be assigned before control leaves the current
method

This is because if condition does not hold, value goes unassigned.

ref vs out parameters

Code

class Program
{
 static void Main(string[] args)
 {
 int a = 20;
 Console.WriteLine("Inside Main - Before Callee: a = {0}", a);
 Callee(a);
 Console.WriteLine("Inside Main - After Callee: a = {0}", a);
 Console.WriteLine();

 Console.WriteLine("Inside Main - Before CalleeRef: a = {0}", a);

https://riptutorial.com/ 891

 CalleeRef(ref a);
 Console.WriteLine("Inside Main - After CalleeRef: a = {0}", a);
 Console.WriteLine();

 Console.WriteLine("Inside Main - Before CalleeOut: a = {0}", a);
 CalleeOut(out a);
 Console.WriteLine("Inside Main - After CalleeOut: a = {0}", a);
 Console.ReadLine();
 }

 static void Callee(int a)
 {
 a += 5;
 Console.WriteLine("Inside Callee a : {0}", a);
 }

 static void CalleeRef(ref int a)
 {
 a += 10;
 Console.WriteLine("Inside CalleeRef a : {0}", a);
 }

 static void CalleeOut(out int a)
 {
 // can't use a+=15 since for this method 'a' is not intialized only declared in the
method declaration
 a = 25; //has to be initialized
 Console.WriteLine("Inside CalleeOut a : {0}", a);
 }
}

Output

Inside Main - Before Callee: a = 20
Inside Callee a : 25
Inside Main - After Callee: a = 20

Inside Main - Before CalleeRef: a = 20
Inside CalleeRef a : 30
Inside Main - After CalleeRef: a = 30

Inside Main - Before CalleeOut: a = 30
Inside CalleeOut a : 25
Inside Main - After CalleeOut: a = 25

Read Value type vs Reference type online: https://riptutorial.com/csharp/topic/3014/value-type-vs-
reference-type

https://riptutorial.com/ 892

https://riptutorial.com/csharp/topic/3014/value-type-vs-reference-type
https://riptutorial.com/csharp/topic/3014/value-type-vs-reference-type

Chapter 160: Verbatim Strings

Syntax

@"verbatim strings are strings whose contents are not escaped, so in this case \n does not
represent the newline character but two individual characters: \ and n. Verbatim strings are
created prefixing the string contents with the @ character"

•

@"To escape quotation marks, ""double quotation marks"" are used."•

Remarks

To concatenate string literals, use the @ symbol at the beginning of each string.

var combinedString = @"\t means a tab" + @" and \n means a newline";

Examples

Multiline Strings

var multiLine = @"This is a

multiline paragraph";

Output:

This is a

multiline paragraph

Live Demo on .NET Fiddle

Multi-line strings that contain double-quotes can also be escaped just as they were on a single
line, because they are verbatim strings.

var multilineWithDoubleQuotes = @"I went to a city named

 ""San Diego""

 during summer vacation.";

Live Demo on .NET Fiddle

It should be noted that the spaces/tabulations at the start of lines 2 and 3 here are actually present
in the value of the variable; check this question for possible solutions.

https://riptutorial.com/ 893

https://dotnetfiddle.net/kfOUcH
https://dotnetfiddle.net/0hwJpf
http://stackoverflow.com/questions/7178136/multiline-formatting-for-verbatim-strings-in-c-sharp-prefix-with

Escaping Double Quotes

Double Quotes inside verbatim strings can be escaped by using 2 sequential double quotes "" to
represent one double quote " in the resulting string.

var str = @"""I don't think so,"" he said.";
Console.WriteLine(str);

Output:

"I don't think so," he said.

Live Demo on .NET Fiddle

Interpolated Verbatim Strings

Verbatim strings can be combined with the new String interpolation features found in C#6.

Console.WriteLine($@"Testing \n 1 2 {5 - 2}
New line");

Output:

Testing \n 1 2 3
New line

Live Demo on .NET Fiddle

As expected from a verbatim string, the backslashes are ignored as escape characters. And as
expected from an interpolated string, any expression inside curly braces is evaluated before being
inserted into the string at that position.

Verbatim strings instruct the compiler to not use character escapes

In a normal string, the backslash character is the escape character, which instructs the compiler to
look at the next character(s) to determine the actual character in the string. (Full list of character
escapes)

In verbatim strings, there are no character escapes (except for "" which is turned into a "). To use
a verbatim string, just prepend a @ before the starting quotes.

This verbatim string

var filename = @"c:\temp\newfile.txt"

Output:

c:\temp\newfile.txt

https://riptutorial.com/ 894

https://dotnetfiddle.net/c4OJoq
http://www.riptutorial.com/csharp/example/49/string-interpolation
https://dotnetfiddle.net/cWyQE2
http://www.riptutorial.com/csharp/topic/39/string-escape-sequences
http://www.riptutorial.com/csharp/topic/39/string-escape-sequences

As opposed to using an ordinary (non-verbatim) string:

var filename = "c:\temp\newfile.txt"

that will output:

c: emp
ewfile.txt

using character escaping. (The \t is replaced with a tab character and the \n is replace with a
newline.)

Live Demo on .NET Fiddle

Read Verbatim Strings online: https://riptutorial.com/csharp/topic/16/verbatim-strings

https://riptutorial.com/ 895

https://dotnetfiddle.net/7kslXQ
https://riptutorial.com/csharp/topic/16/verbatim-strings

Chapter 161: Windows Communication
Foundation

Introduction

Windows Communication Foundation (WCF) is a framework for building service-oriented
applications. Using WCF, you can send data as asynchronous messages from one service
endpoint to another. A service endpoint can be part of a continuously available service hosted by
IIS, or it can be a service hosted in an application. The messages can be as simple as a single
character or word sent as XML, or as complex as a stream of binary data.

Examples

Getting started sample

The service describes the operations it performs in a service contract that it exposes publicly as
metadata.

// Define a service contract.
[ServiceContract(Namespace="http://StackOverflow.ServiceModel.Samples")]
public interface ICalculator
{
 [OperationContract]
 double Add(double n1, double n2);
}

The service implementation calculates and returns the appropriate result, as shown in the
following example code.

// Service class that implements the service contract.
public class CalculatorService : ICalculator
{
 public double Add(double n1, double n2)
 {
 return n1 + n2;
 }
}

The service exposes an endpoint for communicating with the service, defined using a
configuration file (Web.config), as shown in the following sample configuration.

<services>
 <service
 name="StackOverflow.ServiceModel.Samples.CalculatorService"
 behaviorConfiguration="CalculatorServiceBehavior">
 <!-- ICalculator is exposed at the base address provided by
 host: http://localhost/servicemodelsamples/service.svc. -->
 <endpoint address=""

https://riptutorial.com/ 896

 binding="wsHttpBinding"
 contract="StackOverflow.ServiceModel.Samples.ICalculator" />
 ...
 </service>
</services>

The framework does not expose metadata by default. As such, the service turns on the
ServiceMetadataBehavior and exposes a metadata exchange (MEX) endpoint at
http://localhost/servicemodelsamples/service.svc/mex. The following configuration demonstrates
this.

<system.serviceModel>
 <services>
 <service
 name="StackOverflow.ServiceModel.Samples.CalculatorService"
 behaviorConfiguration="CalculatorServiceBehavior">
 ...
 <!-- the mex endpoint is explosed at
 http://localhost/servicemodelsamples/service.svc/mex -->
 <endpoint address="mex"
 binding="mexHttpBinding"
 contract="IMetadataExchange" />
 </service>
 </services>

 <!--For debugging purposes set the includeExceptionDetailInFaults
 attribute to true-->
 <behaviors>
 <serviceBehaviors>
 <behavior name="CalculatorServiceBehavior">
 <serviceMetadata httpGetEnabled="True"/>
 <serviceDebug includeExceptionDetailInFaults="False" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
</system.serviceModel>

The client communicates using a given contract type by using a client class that is generated by
the ServiceModel Metadata Utility Tool (Svcutil.exe).

Run the following command from the SDK command prompt in the client directory to generate the
typed proxy:

svcutil.exe /n:"http://StackOverflow.ServiceModel.Samples,StackOverflow.ServiceModel.Samples"
http://localhost/servicemodelsamples/service.svc/mex /out:generatedClient.cs

Like the service, the client uses a configuration file (App.config) to specify the endpoint with which
it wants to communicate. The client endpoint configuration consists of an absolute address for the
service endpoint, the binding, and the contract, as shown in the following example.

<client>
 <endpoint
 address="http://localhost/servicemodelsamples/service.svc"
 binding="wsHttpBinding"
 contract="StackOverflow.ServiceModel.Samples.ICalculator" />

https://riptutorial.com/ 897

http://localhost/servicemodelsamples/service.svc/mex

</client>

The client implementation instantiates the client and uses the typed interface to begin
communicating with the service, as shown in the following example code.

// Create a client.
CalculatorClient client = new CalculatorClient();

// Call the Add service operation.
double value1 = 100.00D;
double value2 = 15.99D;
double result = client.Add(value1, value2);
Console.WriteLine("Add({0},{1}) = {2}", value1, value2, result);

//Closing the client releases all communication resources.
client.Close();

Read Windows Communication Foundation online:
https://riptutorial.com/csharp/topic/10760/windows-communication-foundation

https://riptutorial.com/ 898

https://riptutorial.com/csharp/topic/10760/windows-communication-foundation

Chapter 162: XDocument and the
System.Xml.Linq namespace

Examples

Generate an XML document

The goal is to generate the following XML document:

<FruitBasket xmlns="http://www.fruitauthority.fake">
 <Fruit ID="F0001">
 <FruitName>Banana</FruitName>
 <FruitColor>Yellow</FruitColor>
 </Fruit>
 <Fruit ID="F0002">
 <FruitName>Apple</FruitName>
 <FruitColor>Red</FruitColor>
 </Fruit>
</FruitBasket>

Code:

XNamespace xns = "http://www.fruitauthority.fake";
XDeclaration xDeclaration = new XDeclaration("1.0", "utf-8", "yes");
XDocument xDoc = new XDocument(xDeclaration);
XElement xRoot = new XElement(xns + "FruitBasket");
xDoc.Add(xRoot);

XElement xelFruit1 = new XElement(xns + "Fruit");
XAttribute idAttribute1 = new XAttribute("ID", "F0001");
xelFruit1.Add(idAttribute1);
XElement xelFruitName1 = new XElement(xns + "FruitName", "Banana");
XElement xelFruitColor1 = new XElement(xns + "FruitColor", "Yellow");
xelFruit1.Add(xelFruitName1);
xelFruit1.Add(xelFruitColor1);
xRoot.Add(xelFruit1);

XElement xelFruit2 = new XElement(xns + "Fruit");
XAttribute idAttribute2 = new XAttribute("ID", "F0002");
xelFruit2.Add(idAttribute2);
XElement xelFruitName2 = new XElement(xns + "FruitName", "Apple");
XElement xelFruitColor2 = new XElement(xns + "FruitColor", "Red");
xelFruit2.Add(xelFruitName2);
xelFruit2.Add(xelFruitColor2);
xRoot.Add(xelFruit2);

Modify XML File

To modify an XML file with XDocument, you load the file into a variable of type XDocument, modify it in
memory, then save it, overwriting the original file. A common mistake is to modify the XML in
memory and expect the file on disk to change.

https://riptutorial.com/ 899

Given an XML file:

<?xml version="1.0" encoding="utf-8"?>
<FruitBasket xmlns="http://www.fruitauthority.fake">
 <Fruit>
 <FruitName>Banana</FruitName>
 <FruitColor>Yellow</FruitColor>
 </Fruit>
 <Fruit>
 <FruitName>Apple</FruitName>
 <FruitColor>Red</FruitColor>
 </Fruit>
</FruitBasket>

You want to modify the Banana's color to brown:

We need to know the path to the file on disk.1.
One overload of XDocument.Load receives a URI (file path).2.
Since the xml file uses a namespace, we must query with the namespace AND element
name.

3.

A Linq query utilizing C# 6 syntax to accommodate for the possibility of null values. Every .
used in this query has the potential to return a null set if the condition finds no elements.
Before C# 6 you would do this in multiple steps, checking for null along the way. The result is
the <Fruit> element that contains the Banana. Actually an IEnumerable<XElement>, which is
why the next step uses FirstOfDefault().

4.

Now we extract the FruitColor element out of the Fruit element we just found. Here we
assume there is just one, or we only care about the first one.

5.

If it is not null, we set the FruitColor to "Brown".6.
Finally, we save the XDocument, overwriting the original file on disk.7.

// 1.
string xmlFilePath = "c:\\users\\public\\fruit.xml";

// 2.
XDocument xdoc = XDocument.Load(xmlFilePath);

// 3.
XNamespace ns = "http://www.fruitauthority.fake";

//4.
var elBanana = xdoc.Descendants()?.
 Elements(ns + "FruitName")?.
 Where(x => x.Value == "Banana")?.
 Ancestors(ns + "Fruit");

// 5.
var elColor = elBanana.Elements(ns + "FruitColor").FirstOrDefault();

// 6.
if (elColor != null)
{
 elColor.Value = "Brown";
}

// 7.

https://riptutorial.com/ 900

xdoc.Save(xmlFilePath);

The file now looks like this:

<?xml version="1.0" encoding="utf-8"?>
<FruitBasket xmlns="http://www.fruitauthority.fake">
 <Fruit>
 <FruitName>Banana</FruitName>
 <FruitColor>Brown</FruitColor>
 </Fruit>
 <Fruit>
 <FruitName>Apple</FruitName>
 <FruitColor>Red</FruitColor>
 </Fruit>
</FruitBasket>

Generate an XML document using fluent syntax

Goal:

<FruitBasket xmlns="http://www.fruitauthority.fake">
 <Fruit>
 <FruitName>Banana</FruitName>
 <FruitColor>Yellow</FruitColor>
 </Fruit>
 <Fruit>
 <FruitName>Apple</FruitName>
 <FruitColor>Red</FruitColor>
 </Fruit>
</FruitBasket>

Code:

XNamespace xns = "http://www.fruitauthority.fake";
XDocument xDoc =
 new XDocument(new XDeclaration("1.0", "utf-8", "yes"),
 new XElement(xns + "FruitBasket",
 new XElement(xns + "Fruit",
 new XElement(xns + "FruitName", "Banana"),
 new XElement(xns + "FruitColor", "Yellow")),
 new XElement(xns + "Fruit",
 new XElement(xns + "FruitName", "Apple"),
 new XElement(xns + "FruitColor", "Red"))
));

Read XDocument and the System.Xml.Linq namespace online:
https://riptutorial.com/csharp/topic/1866/xdocument-and-the-system-xml-linq-namespace

https://riptutorial.com/ 901

https://riptutorial.com/csharp/topic/1866/xdocument-and-the-system-xml-linq-namespace

Chapter 163: XML Documentation Comments

Remarks

Some times you need to create extended text documentation from you xml comments.
Unfortunatly there is no standard way for it.

But there are some separate projects that you can use for this case:

Sandcastle•
Docu•
NDoc•
DocFX•

Examples

Simple method annotation

Documentation comments are placed directly above the method or class they describe. They
begin with three forward slashes ///, and allow meta information to be stored via XML.

/// <summary>
/// Bar method description
/// </summary>
public void Bar()
{

}

Information inside the tags can be used by Visual Studio and other tools to provide services such
as IntelliSense:

See also Microsoft's list of common documentation tags.

Interface and class documentation comments

/// <summary>
/// This interface can do Foo
/// </summary>
public interface ICanDoFoo

https://riptutorial.com/ 902

http://sandcastle.codeplex.com/
http://docu.jagregory.com/
http://sandcastle.codeplex.com/
https://dotnet.github.io/docfx/
https://i.stack.imgur.com/NDAnP.png
https://msdn.microsoft.com/en-us/library/5ast78ax.aspx

{
 // ...
}

/// <summary>
/// This Bar class implements ICanDoFoo interface
/// </summary>
public class Bar : ICanDoFoo
{
 // ...
}

Result

Interface summary

Class summary

Method documentation comment with param and returns elements

/// <summary>
/// Returns the data for the specified ID and timestamp.
/// </summary>
/// <param name="id">The ID for which to get data. </param>
/// <param name="time">The DateTime for which to get data. </param>
/// <returns>A DataClass instance with the result. </returns>
public DataClass GetData(int id, DateTime time)
{
 // ...
}

IntelliSense shows you the description for each parameter:

Tip: If Intellisense doesn't display in Visual Studio, delete the first bracket or comma and then type
it again.

Generating XML from documentation comments

https://riptutorial.com/ 903

https://i.stack.imgur.com/ExpwI.png
https://i.stack.imgur.com/730eY.png
https://i.stack.imgur.com/cH3OQ.png

To generate an XML documentation file from documentation comments in the code, use the /doc
option with the csc.exe C# compiler.

In Visual Studio 2013/2015, In Project -> Properties -> Build -> Output, check the XML
documentation file checkbox:

When you build the project, an XML file will be produced by the compiler with a name
corresponding to the project name (e.g. XMLDocumentation.dll -> XMLDocumentation.xml).

When you use the assembly in another project, make sure that the XML file is in the same
directory as the DLL being referenced.

This example:

/// <summary>
/// Data class description
/// </summary>
public class DataClass
{
 /// <summary>
 /// Name property description
 /// </summary>
 public string Name { get; set; }
}

/// <summary>
/// Foo function
/// </summary>
public class Foo
{
 /// <summary>
 /// This method returning some data
 /// </summary>
 /// <param name="id">Id parameter</param>
 /// <param name="time">Time parameter</param>
 /// <returns>Data will be returned</returns>
 public DataClass GetData(int id, DateTime time)
 {
 return new DataClass();
 }
}

Produces this xml on build:

https://riptutorial.com/ 904

https://i.stack.imgur.com/tXXQy.png

<?xml version="1.0"?>
<doc>
 <assembly>
 <name>XMLDocumentation</name>
 </assembly>
 <members>
 <member name="T:XMLDocumentation.DataClass">
 <summary>
 Data class description
 </summary>
 </member>
 <member name="P:XMLDocumentation.DataClass.Name">
 <summary>
 Name property description
 </summary>
 </member>
 <member name="T:XMLDocumentation.Foo">
 <summary>
 Foo function
 </summary>
 </member>
 <member name="M:XMLDocumentation.Foo.GetData(System.Int32,System.DateTime)">
 <summary>
 This method returning some data
 </summary>
 <param name="id">Id parameter</param>
 <param name="time">Time parameter</param>
 <returns>Data will be returned</returns>
 </member>
 </members>
</doc>

Referencing another class in documentation

The <see> tag can be used to link to another class. It contains the cref member which should
contain the name of the class that is to be referenced. Visual Studio will provide Intellsense when
writing this tag and such references will be processed when renaming the referenced class, too.

/// <summary>
/// You might also want to check out <see cref="SomeOtherClass"/>.
/// </summary>
public class SomeClass
{
}

In Visual Studio Intellisense popups such references will also be displayed colored in the text.

To reference a generic class, use something similar to the following:

/// <summary>
/// An enhanced version of <see cref="List{T}"/>.
/// </summary>
public class SomeGenericClass<T>
{
}

https://riptutorial.com/ 905

Read XML Documentation Comments online: https://riptutorial.com/csharp/topic/740/xml-
documentation-comments

https://riptutorial.com/ 906

https://riptutorial.com/csharp/topic/740/xml-documentation-comments
https://riptutorial.com/csharp/topic/740/xml-documentation-comments

Chapter 164: XmlDocument and the
System.Xml namespace

Examples

Basic XML document interaction

public static void Main()
{
 var xml = new XmlDocument();
 var root = xml.CreateElement("element");
 // Creates an attribute, so the element will now be "<element attribute='value' />"
 root.SetAttribute("attribute", "value");

 // All XML documents must have one, and only one, root element
 xml.AppendChild(root);

 // Adding data to an XML document
 foreach (var dayOfWeek in Enum.GetNames((typeof(DayOfWeek))))
 {
 var day = xml.CreateElement("dayOfWeek");
 day.SetAttribute("name", dayOfWeek);

 // Don't forget to add the new value to the current document!
 root.AppendChild(day);
 }

 // Looking for data using XPath; BEWARE, this is case-sensitive
 var monday = xml.SelectSingleNode("//dayOfWeek[@name='Monday']");
 if (monday != null)
 {
 // Once you got a reference to a particular node, you can delete it
 // by navigating through its parent node and asking for removal
 monday.ParentNode.RemoveChild(monday);
 }

 // Displays the XML document in the screen; optionally can be saved to a file
 xml.Save(Console.Out);
}

Reading from XML document

An example XML file

 <Sample>
 <Account>
 <One number="12"/>
 <Two number="14"/>
 </Account>
 <Account>
 <One number="14"/>
 <Two number="16"/>
 </Account>

https://riptutorial.com/ 907

 </Sample>

Reading from this XML file:

 using System.Xml;
 using System.Collections.Generic;

 public static void Main(string fullpath)
 {
 var xmldoc = new XmlDocument();
 xmldoc.Load(fullpath);

 var oneValues = new List<string>();

 // Getting all XML nodes with the tag name
 var accountNodes = xmldoc.GetElementsByTagName("Account");
 for (var i = 0; i < accountNodes.Count; i++)
 {
 // Use Xpath to find a node
 var account = accountNodes[i].SelectSingleNode("./One");
 if (account != null && account.Attributes != null)
 {
 // Read node attribute
 oneValues.Add(account.Attributes["number"].Value);
 }
 }
}

XmlDocument vs XDocument (Example and comparison)

There are several ways interact with an Xml file.

Xml Document1.
XDocument2.
XmlReader/XmlWriter3.

Before LINQ to XML we were used XMLDocument for manipulations in XML like
adding attributes, elements and so on. Now LINQ to XML uses XDocument for the
same kind of thing. Syntaxes are much easier than XMLDocument and it requires a
minimal amount of code.

Also XDocument is mutch faster as XmlDocument. XmlDoucument is an old and dirty
solution for query an XML document.

I am going to show some examples of XmlDocument class and XDocument class
class:

Load XML file

string filename = @"C:\temp\test.xml";

XmlDocument

https://riptutorial.com/ 908

https://msdn.microsoft.com/en-us/library/system.xml.xmldocument(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.xml.linq.xdocument(v=vs.110).aspx

XmlDocument _doc = new XmlDocument();
_doc.Load(filename);

XDocument

XDocument _doc = XDocument.Load(fileName);

Create XmlDocument

XmlDocument

XmlDocument doc = new XmlDocument();
XmlElement root = doc.CreateElement("root");
root.SetAttribute("name", "value");
XmlElement child = doc.CreateElement("child");
child.InnerText = "text node";
root.AppendChild(child);
doc.AppendChild(root);

XDocument

 XDocument doc = new XDocument(
 new XElement("Root", new XAttribute("name", "value"),
 new XElement("Child", "text node"))
);

/*result*/
<root name="value">
 <child>"TextNode"</child>
</root>

Change InnerText of node in XML

XmlDocument

XmlNode node = _doc.SelectSingleNode("xmlRootNode");
node.InnerText = value;

XDocument

 XElement rootNote = _doc.XPathSelectElement("xmlRootNode");
rootNode.Value = "New Value";

Save File after edit

Make sure to safe the xml after any change.

// Safe XmlDocument and XDocument
_doc.Save(filename);

Retreive Values from XML

https://riptutorial.com/ 909

XmlDocument

 XmlNode node = _doc.SelectSingleNode("xmlRootNode/levelOneChildNode");
string text = node.InnerText;

XDocument

 XElement node = _doc.XPathSelectElement("xmlRootNode/levelOneChildNode");
 string text = node.Value;

Retreive value from all from all child elements where attribute = something.

XmlDocument

List<string> valueList = new List<string>();
 foreach (XmlNode n in nodelist)
 {
 if(n.Attributes["type"].InnerText == "City")
 {
 valueList.Add(n.Attributes["type"].InnerText);
 }
 }

XDocument

var accounts = _doc.XPathSelectElements("/data/summary/account").Where(c =>
c.Attribute("type").Value == "setting").Select(c => c.Value);

Append a node

XmlDocument

XmlNode nodeToAppend = doc.CreateElement("SecondLevelNode");
nodeToAppend.InnerText = "This title is created by code";

/* Append node to parent */
XmlNode firstNode= _doc.SelectSingleNode("xmlRootNode/levelOneChildNode");
firstNode.AppendChild(nodeToAppend);

/*After a change make sure to safe the document*/
_doc.Save(fileName);

XDocument

_doc.XPathSelectElement("ServerManagerSettings/TcpSocket").Add(new
XElement("SecondLevelNode"));

 /*After a change make sure to safe the document*/
_doc.Save(fileName);

Read XmlDocument and the System.Xml namespace online:
https://riptutorial.com/csharp/topic/1528/xmldocument-and-the-system-xml-namespace

https://riptutorial.com/ 910

https://riptutorial.com/csharp/topic/1528/xmldocument-and-the-system-xml-namespace

Chapter 165: Yield Keyword

Introduction

When you use the yield keyword in a statement, you indicate that the method, operator, or get
accessor in which it appears is an iterator. Using yield to define an iterator removes the need for
an explicit extra class (the class that holds the state for an enumeration) when you implement the
IEnumerable and IEnumerator pattern for a custom collection type.

Syntax

yield return [TYPE]•
yield break•

Remarks

Putting the yield keyword in a method with the return type of IEnumerable, IEnumerable<T>,
IEnumerator, or IEnumerator<T> tells the compiler to generate an implementation of the return type (
IEnumerable or IEnumerator) that, when looped over, runs the method up to each "yield" to get each
result.

The yield keyword is useful when you want to return "the next" element of a theoretically unlimited
sequence, so calculating the entire sequence beforehand would be impossible, or when
calculating the complete sequence of values before returning would lead to an undesirable pause
for the user.

yield break can also be used to terminate the sequence at any time.

As the yield keyword requires an iterator interface type as the return type, such as IEnumerable<T>,
you cannot use this in an async method as this returns a Task<IEnumerable<T>> object.

Further reading

https://msdn.microsoft.com/en-us/library/9k7k7cf0.aspx•

Examples

Simple Usage

The yield keyword is used to define a function which returns an IEnumerable or IEnumerator (as well
as their derived generic variants) whose values are generated lazily as a caller iterates over the
returned collection. Read more about the purpose in the remarks section.

The following example has a yield return statement that's inside a for loop.

https://riptutorial.com/ 911

https://msdn.microsoft.com/en-us/library/9k7k7cf0.aspx
http://www.riptutorial.com/csharp/topic/61/yield-keyword

public static IEnumerable<int> Count(int start, int count)
{
 for (int i = 0; i <= count; i++)
 {
 yield return start + i;
 }
}

Then you can call it:

foreach (int value in Count(start: 4, count: 10))
{
 Console.WriteLine(value);
}

Console Output

4
5
6
...
14

Live Demo on .NET Fiddle

Each iteration of the foreach statement body creates a call to the Count iterator function. Each call
to the iterator function proceeds to the next execution of the yield return statement, which occurs
during the next iteration of the for loop.

More Pertinent Usage

public IEnumerable<User> SelectUsers()
{
 // Execute an SQL query on a database.
 using (IDataReader reader = this.Database.ExecuteReader(CommandType.Text, "SELECT Id, Name
FROM Users"))
 {
 while (reader.Read())
 {
 int id = reader.GetInt32(0);
 string name = reader.GetString(1);
 yield return new User(id, name);
 }
 }
}

There are other ways of getting an IEnumerable<User> from an SQL database, of course -- this just
demonstrates that you can use yield to turn anything that has "sequence of elements" semantics
into an IEnumerable<T> that someone can iterate over.

Early Termination

You can extend the functionality of existing yield methods by passing in one or more values or

https://riptutorial.com/ 912

https://dotnetfiddle.net/qtKObr

elements that could define a terminating condition within the function by calling a yield break to
stop the inner loop from executing.

public static IEnumerable<int> CountUntilAny(int start, HashSet<int> earlyTerminationSet)
{
 int curr = start;

 while (true)
 {
 if (earlyTerminationSet.Contains(curr))
 {
 // we've hit one of the ending values
 yield break;
 }

 yield return curr;

 if (curr == Int32.MaxValue)
 {
 // don't overflow if we get all the way to the end; just stop
 yield break;
 }

 curr++;
 }
}

The above method would iterate from a given start position until one of the values within the
earlyTerminationSet was encountered.

// Iterate from a starting point until you encounter any elements defined as
// terminating elements
var terminatingElements = new HashSet<int>{ 7, 9, 11 };
// This will iterate from 1 until one of the terminating elements is encountered (7)
foreach(var x in CountUntilAny(1,terminatingElements))
{
 // This will write out the results from 1 until 7 (which will trigger terminating)
 Console.WriteLine(x);
}

Output:

1
2
3
4
5
6

Live Demo on .NET Fiddle

Correctly checking arguments

An iterator method is not executed until the return value is enumerated. It's therefore

https://riptutorial.com/ 913

https://dotnetfiddle.net/pctiOz

advantageous to assert preconditions outside of the iterator.

public static IEnumerable<int> Count(int start, int count)
{
 // The exception will throw when the method is called, not when the result is iterated
 if (count < 0)
 throw new ArgumentOutOfRangeException(nameof(count));

 return CountCore(start, count);
}

private static IEnumerable<int> CountCore(int start, int count)
{
 // If the exception was thrown here it would be raised during the first MoveNext()
 // call on the IEnumerator, potentially at a point in the code far away from where
 // an incorrect value was passed.
 for (int i = 0; i < count; i++)
 {
 yield return start + i;
 }
}

Calling Side Code (Usage):

// Get the count
var count = Count(1,10);
// Iterate the results
foreach(var x in count)
{
 Console.WriteLine(x);
}

Output:

1
2
3
4
5
6
7
8
9
10

Live Demo on .NET Fiddle

When a method uses yield to generate an enumerable the compiler creates a state machine that
when iterated over will run code up to a yield. It then returns the yielded item, and saves its state.

This means you won't find out about invalid arguments (passing null etc.) when you first call the
method (because that creates the state machine), only when you try and access the first element
(because only then does the code within the method get ran by the state machine). By wrapping it

https://riptutorial.com/ 914

https://dotnetfiddle.net/yIYxo6

in a normal method that first checks arguments you can check them when the method is called.
This is an example of failing fast.

When using C# 7+, the CountCore function can be conveniently hidden into the Count function as a
local function. See example here.

Return another Enumerable within a method returning Enumerable

public IEnumerable<int> F1()
{
 for (int i = 0; i < 3; i++)
 yield return i;

 //return F2(); // Compile Error!!
 foreach (var element in F2())
 yield return element;
}

public int[] F2()
{
 return new[] { 3, 4, 5 };
}

Lazy Evaluation

Only when the foreach statement moves to the next item does the iterator block evaluate up to the
next yield statement.

Consider the following example:

private IEnumerable<int> Integers()
{
 var i = 0;
 while(true)
 {
 Console.WriteLine("Inside iterator: " + i);
 yield return i;
 i++;
 }
}

private void PrintNumbers()
{
 var numbers = Integers().Take(3);
 Console.WriteLine("Starting iteration");

 foreach(var number in numbers)
 {
 Console.WriteLine("Inside foreach: " + number);
 }
}

This will output:

Starting iteration

https://riptutorial.com/ 915

http://www.riptutorial.com/csharp/example/6330/local-functions

Inside iterator: 0
Inside foreach: 0
Inside iterator: 1
Inside foreach: 1
Inside iterator: 2
Inside foreach: 2

View Demo

As a consequence:

"Starting iteration" is printed first even though the iterator method was called before the line
printing it because the line Integers().Take(3); does not actually starts iteration (no call to
IEnumerator.MoveNext() was made)

•

The lines printing to console alternate between the one inside the iterator method and the
one inside the foreach, rather than all the ones inside the iterator method evaluating first

•

This program terminates due to the .Take() method, even though the iterator method has a
while true which it never breaks out of.

•

Try...finally

If an iterator method has a yield inside a try...finally, then the returned IEnumerator will execute
the finally statement when Dispose is called on it, as long as the current point of evaluation is
inside the try block.

Given the function:

private IEnumerable<int> Numbers()
{
 yield return 1;
 try
 {
 yield return 2;
 yield return 3;
 }
 finally
 {
 Console.WriteLine("Finally executed");
 }
}

When calling:

private void DisposeOutsideTry()
{
 var enumerator = Numbers().GetEnumerator();

 enumerator.MoveNext();
 Console.WriteLine(enumerator.Current);
 enumerator.Dispose();
}

https://riptutorial.com/ 916

https://dotnetfiddle.net/2qGV0B

Then it prints:

1

View Demo

When calling:

private void DisposeInsideTry()
{
 var enumerator = Numbers().GetEnumerator();

 enumerator.MoveNext();
 Console.WriteLine(enumerator.Current);
 enumerator.MoveNext();
 Console.WriteLine(enumerator.Current);
 enumerator.Dispose();
}

Then it prints:

1
2
Finally executed

View Demo

Using yield to create an IEnumerator when implementing IEnumerable

The IEnumerable<T> interface has a single method, GetEnumerator(), which returns an IEnumerator<T>
.

While the yield keyword can be used to directly create an IEnumerable<T>, it can also be used in
exactly the same way to create an IEnumerator<T>. The only thing that changes is the return type of
the method.

This can be useful if we want to create our own class which implements IEnumerable<T>:

public class PrintingEnumerable<T> : IEnumerable<T>
{
 private IEnumerable<T> _wrapped;

 public PrintingEnumerable(IEnumerable<T> wrapped)
 {
 _wrapped = wrapped;
 }

 // This method returns an IEnumerator<T>, rather than an IEnumerable<T>
 // But the yield syntax and usage is identical.
 public IEnumerator<T> GetEnumerator()
 {
 foreach(var item in _wrapped)
 {
 Console.WriteLine("Yielding: " + item);

https://riptutorial.com/ 917

https://dotnetfiddle.net/MJt7dt
https://dotnetfiddle.net/HlMroV

 yield return item;
 }
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 return GetEnumerator();
 }
}

(Note that this particular example is just illustrative, and could be more cleanly implemented with a
single iterator method returning an IEnumerable<T>.)

Eager evaluation

The yield keyword allows lazy-evaluation of the collection. Forcibly loading the whole collection
into memory is called eager evaluation.

The following code shows this:

IEnumerable<int> myMethod()
{
 for(int i=0; i <= 8675309; i++)
 {
 yield return i;
 }
}
...
// define the iterator
var it = myMethod.Take(3);
// force its immediate evaluation
// list will contain 0, 1, 2
var list = it.ToList();

Calling ToList, ToDictionary or ToArray will force the immediate evaluation of the enumeration,
retrieving all the elements into a collection.

Lazy Evaluation Example: Fibonacci Numbers

using System;
using System.Collections.Generic;
using System.Linq;
using System.Numerics; // also add reference to System.Numberics

namespace ConsoleApplication33
{
 class Program
 {
 private static IEnumerable<BigInteger> Fibonacci()
 {
 BigInteger prev = 0;
 BigInteger current = 1;
 while (true)
 {
 yield return current;

https://riptutorial.com/ 918

 var next = prev + current;
 prev = current;
 current = next;
 }
 }

 static void Main()
 {
 // print Fibonacci numbers from 10001 to 10010
 var numbers = Fibonacci().Skip(10000).Take(10).ToArray();
 Console.WriteLine(string.Join(Environment.NewLine, numbers));
 }
 }
}

How it works under the hood (I recommend to decompile resulting .exe file in IL Disaambler tool):

C# compiler generates a class implementing IEnumerable<BigInteger> and
IEnumerator<BigInteger> (<Fibonacci>d__0 in ildasm).

1.

This class implements a state machine. State consists of current position in method and
values of local variables.

2.

The most interesting code are in bool IEnumerator.MoveNext() method. Basically, what
MoveNext() do:

Restores current state. Variables like prev and current become fields in our class (
<current>5__2 and <prev>5__1 in ildasm). In our method we have two positions (
<>1__state): first at the opening curly brace, second at yield return.

•

Executes code until next yield return or yield break/}.•
For yield return resulting value is saved, so Current property can return it. true is
returned. At this point current state is saved again for the next MoveNext invocation.

•

For yield break/} method just returns false meaning iteration is done.•

3.

Also note, that 10001th number is 468 bytes long. State machine only saves current and prev
variables as fields. While if we would like to save all numbers in the sequence from the first to the
10000th, the consumed memory size will be over 4 megabytes. So lazy evaluation, if properly
used, can reduce memory footprint in some cases.

The difference between break and yield break

Using yield break as opposed to break might not be as obvious as one may think. There are lot of
bad examples on the Internet where the usage of the two is interchangeable and doesn't really
demonstrate the difference.

The confusing part is that both of the keywords (or key phrases) make sense only within loops (
foreach, while...) So when to choose one over the other?

It's important to realize that once you use the yield keyword in a method you effectively turn the
method into an iterator. The only purpose of the such method is then to iterate over a finite or
infinite collection and yield (output) its elements. Once the purpose is fulfilled, there's no reason to
continue method's execution. Sometimes, it happens naturally with the last closing bracket of the
method }. But sometimes, you want to end the method prematurely. In a normal (non-iterating)
method you would use the return keyword. But you can't use return in an iterator, you have to use

https://riptutorial.com/ 919

https://msdn.microsoft.com/en-us/library/9k7k7cf0.aspx
https://msdn.microsoft.com/en-us/library/mt639331.aspx
https://msdn.microsoft.com/en-us/library/1h3swy84.aspx

yield break. In other words, yield break for an iterator is the same as return for a standard
method. Whereas, the break statement just terminates the closest loop.

Let's see some examples:

 /// <summary>
 /// Yields numbers from 0 to 9
 /// </summary>
 /// <returns>{0,1,2,3,4,5,6,7,8,9}</returns>
 public static IEnumerable<int> YieldBreak()
 {
 for (int i = 0; ; i++)
 {
 if (i < 10)
 {
 // Yields a number
 yield return i;
 }
 else
 {
 // Indicates that the iteration has ended, everything
 // from this line on will be ignored
 yield break;
 }
 }
 yield return 10; // This will never get executed
 }

 /// <summary>
 /// Yields numbers from 0 to 10
 /// </summary>
 /// <returns>{0,1,2,3,4,5,6,7,8,9,10}</returns>
 public static IEnumerable<int> Break()
 {
 for (int i = 0; ; i++)
 {
 if (i < 10)
 {
 // Yields a number
 yield return i;
 }
 else
 {
 // Terminates just the loop
 break;
 }
 }
 // Execution continues
 yield return 10;
 }

Read Yield Keyword online: https://riptutorial.com/csharp/topic/61/yield-keyword

https://riptutorial.com/ 920

https://msdn.microsoft.com/en-us/library/adbctzc4.aspx
https://riptutorial.com/csharp/topic/61/yield-keyword

Credits

S.
No

Chapters Contributors

4444, A. Raza, A_Arnold
, aalaap, Aaron Hudon,
abishekshivan, Ade
Stringer, Aleksandur
Murfitt, Almir Vuk, Alok
Singh, Andrii Abramov,
AndroidMechanic,
Aravind Suresh, Artemix,
Ben Aaronson, Bernard
Vander Beken, Bjørn-
Roger Kringsjå,
Blachshma, Blorgbeard,
bpoiss, Br0k3nL1m1ts,
Callum Watkins, Carlos
Muñoz, Chad Levy,
Chris Nantau,
Christopher Ronning,
Community, Confiqure,
crunchy, David G., David
Pine, DavidG, DAXaholic
, Delphi.Boy, Durgpal
Singh, DWright, Ehsan
Sajjad, Elie Saad, Emre
Bolat, enrico.bacis,
fabriciorissetto,
FadedAce, Florian
Greinacher, Florian Koch
, Frankenstine Joe,
Gennady Trubach,
GingerHead, Gordon
Bell, gracacs, G-Wiz, H.
Pauwelyn, Happypig375,
Henrik H, HodofHod,
Hywel Rees, iliketocode,
Iordanis , Jamie Rees,
Jawa, jnovo, John
Slegers, Kayathiri, ken2k
, Kevin Montrose, Kritner
, Krzyserious,
leumas1960, M Monis

1 Getting started with C# Language

https://riptutorial.com/ 921

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/5050431/a-arnold
https://riptutorial.com/contributor/44257/aalaap
https://riptutorial.com/contributor/459102/aaron-hudon
https://riptutorial.com/contributor/2630469/abishekshivan
https://riptutorial.com/contributor/942330/ade-stringer
https://riptutorial.com/contributor/942330/ade-stringer
https://riptutorial.com/contributor/3549636/aleksandur-murfitt
https://riptutorial.com/contributor/3549636/aleksandur-murfitt
https://riptutorial.com/contributor/5165961/almir-vuk
https://riptutorial.com/contributor/3955698/alok-singh
https://riptutorial.com/contributor/3955698/alok-singh
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/1957401/androidmechanic
https://riptutorial.com/contributor/5903674/aravind-suresh
https://riptutorial.com/contributor/694852/artemix
https://riptutorial.com/contributor/1366855/ben-aaronson
https://riptutorial.com/contributor/65545/bernard-vander-beken
https://riptutorial.com/contributor/65545/bernard-vander-beken
https://riptutorial.com/contributor/1842065/bjorn-roger-kringsja
https://riptutorial.com/contributor/1842065/bjorn-roger-kringsja
https://riptutorial.com/contributor/1379664/blachshma
https://riptutorial.com/contributor/369/blorgbeard
https://riptutorial.com/contributor/2039482/bpoiss
https://riptutorial.com/contributor/2128435/br0k3nl1m1ts
https://riptutorial.com/contributor/4415734/callum-watkins
https://riptutorial.com/contributor/186133/carlos-munoz
https://riptutorial.com/contributor/186133/carlos-munoz
https://riptutorial.com/contributor/118697/chad-levy
https://riptutorial.com/contributor/5647664/chris-nantau
https://riptutorial.com/contributor/2898801/christopher-ronning
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/903291/confiqure
https://riptutorial.com/contributor/1091479/crunchy
https://riptutorial.com/contributor/3838549/david-g-
https://riptutorial.com/contributor/2410379/david-pine
https://riptutorial.com/contributor/2410379/david-pine
https://riptutorial.com/contributor/1663001/davidg
https://riptutorial.com/contributor/1830293/daxaholic
https://riptutorial.com/contributor/2468348/delphi-boy
https://riptutorial.com/contributor/1759015/durgpal-singh
https://riptutorial.com/contributor/1759015/durgpal-singh
https://riptutorial.com/contributor/49251/dwright
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/4443244/elie-saad
https://riptutorial.com/contributor/6382007/emre-bolat
https://riptutorial.com/contributor/6382007/emre-bolat
https://riptutorial.com/contributor/1003123/enrico-bacis
https://riptutorial.com/contributor/890890/fabriciorissetto
https://riptutorial.com/contributor/2179786/fadedace
https://riptutorial.com/contributor/31985/florian-greinacher
https://riptutorial.com/contributor/31985/florian-greinacher
https://riptutorial.com/contributor/3326982/florian-koch
https://riptutorial.com/contributor/6040382/frankenstine-joe
https://riptutorial.com/contributor/5230294/gennady-trubach
https://riptutorial.com/contributor/1358722/gingerhead
https://riptutorial.com/contributor/16473/gordon-bell
https://riptutorial.com/contributor/16473/gordon-bell
https://riptutorial.com/contributor/3701267/gracacs
https://riptutorial.com/contributor/29805/g-wiz
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/5429648/happypig375
https://riptutorial.com/contributor/439761/henrik-h
https://riptutorial.com/contributor/882455/hodofhod
https://riptutorial.com/contributor/3521193/hywel-rees
https://riptutorial.com/contributor/3739391/iliketocode
https://riptutorial.com/contributor/6797139/iordanis
https://riptutorial.com/contributor/3329836/jamie-rees
https://riptutorial.com/contributor/50939/jawa
https://riptutorial.com/contributor/3042204/jnovo
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/5950520/kayathiri
https://riptutorial.com/contributor/870604/ken2k
https://riptutorial.com/contributor/80572/kevin-montrose
https://riptutorial.com/contributor/2312877/kritner
https://riptutorial.com/contributor/6697368/krzyserious
https://riptutorial.com/contributor/6865749/leumas1960
https://riptutorial.com/contributor/4428123/m-monis-ahmed-khan

Ahmed Khan, Mahmoud
Elgindy, Malick, Marcus
Höglund, Mateen Ulhaq,
Matt, Matt, Matt, Matt,
Michael B, Michael
Brandon Morris, Miljen
Mikic, Millan Sanchez,
Nate Barbettini, Nick,
Nick Cox, Nipun Tripathi,
NotMyself, Ojen,
PashaPash, pijemcolu,
Prateek, Raj Rao, Rajput
, Rakitić, Rion Williams,
RokumDev, RomCoo,
Ryan Hilbert, sebingel,
SeeuD1, solidcell,
Steven Ackley, sumit
sharma, Tofix, Tom
Bowers, Travis J, Tushar
patel, User 00000,
user3185569, Ven,
Victor Tomaili, viggity,
void, Wen Qin, Ziad Akiki
, Zze

2 .NET Compiler Platform (Roslyn) 4444, Lukáš Lánský

3 Access Modifiers

Botond Balázs, H.
Pauwelyn, hatcyl, John,
Justin Rohr, Kobi, Robert
Woods, Thaoden,
ZenLulz

4
Access network shared folder with username and
password

Mohsin khan

5 Accessing Databases

ATechieThought,
ravindra, Rion Williams,
The_Outsider,
user2321864

6 Action Filters Lokesh_Ram

7 Aliases of built-in types
Racil Hilan, Rahul Nikate
, Stephen Leppik

Aaron Hudon, Andrew
Diamond, Denuath,

8 An overview of c# collections

https://riptutorial.com/ 922

https://riptutorial.com/contributor/4428123/m-monis-ahmed-khan
https://riptutorial.com/contributor/5181623/mahmoud-elgindy
https://riptutorial.com/contributor/5181623/mahmoud-elgindy
https://riptutorial.com/contributor/3205529/malick
https://riptutorial.com/contributor/4870358/marcus-hoglund
https://riptutorial.com/contributor/4870358/marcus-hoglund
https://riptutorial.com/contributor/365102/mateen-ulhaq
https://riptutorial.com/contributor/1016343/matt
https://riptutorial.com/contributor/2641576/matt
https://riptutorial.com/contributor/2877471/matt
https://riptutorial.com/contributor/5024726/matt
https://riptutorial.com/contributor/5255018/michael-b
https://riptutorial.com/contributor/5004298/michael-brandon-morris
https://riptutorial.com/contributor/5004298/michael-brandon-morris
https://riptutorial.com/contributor/1460628/miljen-mikic
https://riptutorial.com/contributor/1460628/miljen-mikic
https://riptutorial.com/contributor/6338634/millan-sanchez
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/2639721/nick
https://riptutorial.com/contributor/56151/nick-cox
https://riptutorial.com/contributor/6661752/nipun-tripathi
https://riptutorial.com/contributor/303/notmyself
https://riptutorial.com/contributor/1334542/ojen
https://riptutorial.com/contributor/1988244/pashapash
https://riptutorial.com/contributor/2966939/pijemcolu
https://riptutorial.com/contributor/500773/prateek
https://riptutorial.com/contributor/44815/raj-rao
https://riptutorial.com/contributor/6621584/rajput
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/2371323/rokumdev
https://riptutorial.com/contributor/5867869/romcoo
https://riptutorial.com/contributor/2884225/ryan-hilbert
https://riptutorial.com/contributor/4663866/sebingel
https://riptutorial.com/contributor/3288649/seeud1
https://riptutorial.com/contributor/343299/solidcell
https://riptutorial.com/contributor/2004122/steven-ackley
https://riptutorial.com/contributor/5871911/sumit-sharma
https://riptutorial.com/contributor/5871911/sumit-sharma
https://riptutorial.com/contributor/7356672/tofix
https://riptutorial.com/contributor/2862621/tom-bowers
https://riptutorial.com/contributor/2862621/tom-bowers
https://riptutorial.com/contributor/1026459/travis-j
https://riptutorial.com/contributor/5614523/tushar-patel
https://riptutorial.com/contributor/5614523/tushar-patel
https://riptutorial.com/contributor/1087335/user-00000
https://riptutorial.com/contributor/3185569/user3185569
https://riptutorial.com/contributor/1737909/ven
https://riptutorial.com/contributor/919495/victor-tomaili
https://riptutorial.com/contributor/4572/viggity
https://riptutorial.com/contributor/1029287/void
https://riptutorial.com/contributor/7421086/wen-qin
https://riptutorial.com/contributor/1477726/ziad-akiki
https://riptutorial.com/contributor/3509591/zze
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/577067/lukas-lansky
https://riptutorial.com/contributor/943102/botond-balazs
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/1419853/hatcyl
https://riptutorial.com/contributor/33/john
https://riptutorial.com/contributor/6508822/justin-rohr
https://riptutorial.com/contributor/7586/kobi
https://riptutorial.com/contributor/5120312/robert-woods
https://riptutorial.com/contributor/5120312/robert-woods
https://riptutorial.com/contributor/3129340/thaoden
https://riptutorial.com/contributor/2780334/zenlulz
https://riptutorial.com/contributor/4115956/mohsin-khan
https://riptutorial.com/contributor/3768367/atechiethought
https://riptutorial.com/contributor/4590867/ravindra
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/7793375/the-outsider
https://riptutorial.com/contributor/2321864/user2321864
https://riptutorial.com/contributor/4887911/lokesh-ram
https://riptutorial.com/contributor/3215948/racil-hilan
https://riptutorial.com/contributor/3936696/rahul-nikate
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/459102/aaron-hudon
https://riptutorial.com/contributor/2921949/andrew-diamond
https://riptutorial.com/contributor/2921949/andrew-diamond
https://riptutorial.com/contributor/3699612/denuath

Jeremy Kato, Jon
Schneider, Jorge, Juha
Palomäki, Leon
Husmann, Michael
Mairegger, Michael
Richardson, Nikita, rene,
Rob, Sebi, TarkaDaal,
wertzui, Will Ray

9 Anonymous types
Fernando Matsumoto,
goric, Stephen Leppik

10 Arrays

A_Arnold, Aaron Hudon,
Alexey Groshev, Anas
Tasadduq, Andrii
Abramov, Baddie,
Benjamin Hodgson,
bluray, coyote, D.J.,
das_keyboard, Fernando
Matsumoto, granmirupa,
Jaydip Jadhav, Jeppe
Stig Nielsen, Jon
Schneider, Ogoun,
RamenChef, Robert
Columbia, Shyju,
The_Outsider, Thomas
Weller, tonirush, Tormod
Haugene, Wasabi Fan,
Wen Qin, Xiobiq, Yotam
Salmon

11 ASP.NET Identity
HappyCoding,
Skullomania

12 AssemblyInfo.cs Examples

Adi Lester, Ameya
Deshpande,
AndreyAkinshin, Boggin,
Dodzi Dzakuma, dove,
Joel Martinez,
pinkfloydx33, Ralf
Bönning, Theodoros
Chatzigiannakis, Wasabi
Fan

Dieter Meemken, Kyrylo
M, nik, Pavel Mayorov,
sebingel, Underscore,
Xander Luciano, Yehor

13
Async/await, Backgroundworker, Task and Thread
Examples

https://riptutorial.com/ 923

https://riptutorial.com/contributor/6352535/jeremy-kato
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/6470718/jorge
https://riptutorial.com/contributor/350615/juha-palomaki
https://riptutorial.com/contributor/350615/juha-palomaki
https://riptutorial.com/contributor/4248617/leon-husmann
https://riptutorial.com/contributor/4248617/leon-husmann
https://riptutorial.com/contributor/2964291/michael-mairegger
https://riptutorial.com/contributor/2964291/michael-mairegger
https://riptutorial.com/contributor/1812515/michael-richardson
https://riptutorial.com/contributor/1812515/michael-richardson
https://riptutorial.com/contributor/5472058/nikita
https://riptutorial.com/contributor/578411/rene
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/1463584/sebi
https://riptutorial.com/contributor/55155/tarkadaal
https://riptutorial.com/contributor/1378307/wertzui
https://riptutorial.com/contributor/4270650/will-ray
https://riptutorial.com/contributor/5119090/fernando-matsumoto
https://riptutorial.com/contributor/940/goric
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/5050431/a-arnold
https://riptutorial.com/contributor/459102/aaron-hudon
https://riptutorial.com/contributor/2266600/alexey-groshev
https://riptutorial.com/contributor/3881809/anas-tasadduq
https://riptutorial.com/contributor/3881809/anas-tasadduq
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/4785179/baddie
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/6157936/bluray
https://riptutorial.com/contributor/6624788/coyote
https://riptutorial.com/contributor/1630329/d-j-
https://riptutorial.com/contributor/6624040/das-keyboard
https://riptutorial.com/contributor/5119090/fernando-matsumoto
https://riptutorial.com/contributor/5119090/fernando-matsumoto
https://riptutorial.com/contributor/4532326/granmirupa
https://riptutorial.com/contributor/4964923/jaydip-jadhav
https://riptutorial.com/contributor/1336654/jeppe-stig-nielsen
https://riptutorial.com/contributor/1336654/jeppe-stig-nielsen
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/6625499/ogoun
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/40521/shyju
https://riptutorial.com/contributor/7793375/the-outsider
https://riptutorial.com/contributor/480982/thomas-weller
https://riptutorial.com/contributor/480982/thomas-weller
https://riptutorial.com/contributor/4519426/tonirush
https://riptutorial.com/contributor/1461602/tormod-haugene
https://riptutorial.com/contributor/1461602/tormod-haugene
https://riptutorial.com/contributor/2422874/wasabi-fan
https://riptutorial.com/contributor/7421086/wen-qin
https://riptutorial.com/contributor/4247808/xiobiq
https://riptutorial.com/contributor/3873323/yotam-salmon
https://riptutorial.com/contributor/3873323/yotam-salmon
https://riptutorial.com/contributor/2272357/happycoding
https://riptutorial.com/contributor/1800891/skullomania
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/2609817/ameya-deshpande
https://riptutorial.com/contributor/2609817/ameya-deshpande
https://riptutorial.com/contributor/184842/andreyakinshin
https://riptutorial.com/contributor/444244/boggin
https://riptutorial.com/contributor/920322/dodzi-dzakuma
https://riptutorial.com/contributor/30913/dove
https://riptutorial.com/contributor/5416/joel-martinez
https://riptutorial.com/contributor/491907/pinkfloydx33
https://riptutorial.com/contributor/5881616/ralf-bonning
https://riptutorial.com/contributor/5881616/ralf-bonning
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis
https://riptutorial.com/contributor/2422874/wasabi-fan
https://riptutorial.com/contributor/2422874/wasabi-fan
https://riptutorial.com/contributor/5066895/dieter-meemken
https://riptutorial.com/contributor/438180/kyrylo-m
https://riptutorial.com/contributor/438180/kyrylo-m
https://riptutorial.com/contributor/1731397/nik
https://riptutorial.com/contributor/4340086/pavel-mayorov
https://riptutorial.com/contributor/4663866/sebingel
https://riptutorial.com/contributor/1775471/underscore
https://riptutorial.com/contributor/1425140/xander-luciano
https://riptutorial.com/contributor/8422514/yehor-hromadskyi

Hromadskyi

14 Async-Await

Aaron Hudon, AGB,
aholmes, Ant P, Benjol,
BrunoLM, Conrad.Dean,
Craig Brett, Donald
Webb, EJoshuaS,
EvilTak, gdyrrahitis,
George Duckett, Grimm
The Opiner, Guanxi,
guntbert, H. Pauwelyn,
jdpilgrim, ken2k, Kevin
Montrose, marshal craft,
Michael Richardson,
Moerwald, Nate
Barbettini, nickguletskii,
Pavel Mayorov, Pavel
Voronin, pinkfloydx33,
Rob, Serg Rogovtsev,
Stefano d'Antonio,
Stephen Leppik,
SynerCoder, trashr0x,
Tseng, user2321864,
Vincent

15 Asynchronous Socket Timon Post

16 Attributes

Alexander Mandt,
Andrew Diamond, Doruk,
LosManos, Lukas
Kolletzki,
NikolayKondratyev,
Pavel Sapehin, SysVoid,
TKharaishvili

17 BackgroundWorker
Bovaz, Draken, ephtee,
Jacobr365, Will

18 BigInteger
4444, Ed Marty, James
Hughes, Rob,
The_Outsider

19 Binary Serialization
David, Maxim,
RamenChef, Stephen
Leppik

20 BindingList
Bovaz, Stephen Leppik,
yumaikas

https://riptutorial.com/ 924

https://riptutorial.com/contributor/8422514/yehor-hromadskyi
https://riptutorial.com/contributor/459102/aaron-hudon
https://riptutorial.com/contributor/3159635/agb
https://riptutorial.com/contributor/1801382/aholmes
https://riptutorial.com/contributor/1043198/ant-p
https://riptutorial.com/contributor/11410/benjol
https://riptutorial.com/contributor/340760/brunolm
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/718940/craig-brett
https://riptutorial.com/contributor/3663686/donald-webb
https://riptutorial.com/contributor/3663686/donald-webb
https://riptutorial.com/contributor/4032703/ejoshuas
https://riptutorial.com/contributor/4038191/eviltak
https://riptutorial.com/contributor/2347434/gdyrrahitis
https://riptutorial.com/contributor/593627/george-duckett
https://riptutorial.com/contributor/1158692/grimm-the-opiner
https://riptutorial.com/contributor/1158692/grimm-the-opiner
https://riptutorial.com/contributor/1938828/guanxi
https://riptutorial.com/contributor/1938486/guntbert
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/1282864/jdpilgrim
https://riptutorial.com/contributor/870604/ken2k
https://riptutorial.com/contributor/80572/kevin-montrose
https://riptutorial.com/contributor/80572/kevin-montrose
https://riptutorial.com/contributor/4113567/marshal-craft
https://riptutorial.com/contributor/1812515/michael-richardson
https://riptutorial.com/contributor/6270170/moerwald
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/704104/nickguletskii
https://riptutorial.com/contributor/4340086/pavel-mayorov
https://riptutorial.com/contributor/921054/pavel-voronin
https://riptutorial.com/contributor/921054/pavel-voronin
https://riptutorial.com/contributor/491907/pinkfloydx33
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/1105881/serg-rogovtsev
https://riptutorial.com/contributor/1262354/stefano-d-antonio
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/637425/synercoder
https://riptutorial.com/contributor/4302070/trashr0x
https://riptutorial.com/contributor/455493/tseng
https://riptutorial.com/contributor/2321864/user2321864
https://riptutorial.com/contributor/4558911/vincent
https://riptutorial.com/contributor/6314392/timon-post
https://riptutorial.com/contributor/4896211/alexander-mandt
https://riptutorial.com/contributor/2921949/andrew-diamond
https://riptutorial.com/contributor/1397858/doruk
https://riptutorial.com/contributor/521554/losmanos
https://riptutorial.com/contributor/2329663/lukas-kolletzki
https://riptutorial.com/contributor/2329663/lukas-kolletzki
https://riptutorial.com/contributor/4182275/nikolaykondratyev
https://riptutorial.com/contributor/2900278/pavel-sapehin
https://riptutorial.com/contributor/4808250/sysvoid
https://riptutorial.com/contributor/1936841/tkharaishvili
https://riptutorial.com/contributor/2669614/bovaz
https://riptutorial.com/contributor/833070/draken
https://riptutorial.com/contributor/4036249/ephtee
https://riptutorial.com/contributor/3874053/jacobr365
https://riptutorial.com/contributor/1228/will
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/36007/ed-marty
https://riptutorial.com/contributor/4700841/james-hughes
https://riptutorial.com/contributor/4700841/james-hughes
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/7793375/the-outsider
https://riptutorial.com/contributor/1467396/david
https://riptutorial.com/contributor/6781477/maxim
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/2669614/bovaz
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/823592/yumaikas

21 Built-in Types

Alexander Mandt, David,
F_V, Haseeb Asif,
matteeyah, Patrick
Hofman, Wai Ha Lee

22 C# 3.0 Features
0xFF, bob0the0mighty,
FrenkyB, H. Pauwelyn,
ken2k, Maniero, Rob

23 C# 4.0 Features

Benjamin Hodgson,
Botond Balázs, H.
Pauwelyn, Proxima,
Sibeesh Venu,
Squidward, Theodoros
Chatzigiannakis

24 C# 5.0 Features
Abob, alex.b, H.
Pauwelyn

A_Arnold, Aaron
Anodide, Aaron Hudon,
Adil Mammadov, Adriano
Repetti, AER, AGB,
Akshay Anand, Alan
McBee, Alex Logan,
Amitay Stern,
anaximander, andre_ss6
, Andrea,
AndroidMechanic, Ares,
Arthur Rizzo, Ashwin
Ramaswami, avishayp,
Balagurunathan
Marimuthu, Bardia, Ben
Aaronson, Blubberguy22
, Bobson, bpoiss,
Bradley Uffner, Bret
Copeland, C4u, Callum
Watkins, Chad Levy,
Charlie H, ChrFin,
Community,
Conrad.Dean, Cyprien
Autexier, Dan, Daniel
Minnaar, Daniel
Stradowski, DarkV1,
dasblinkenlight, David,
David G., David Pine,
Deepak gupta, DLeh,
dotctor, Durgpal Singh,

25 C# 6.0 Features

https://riptutorial.com/ 925

https://riptutorial.com/contributor/4896211/alexander-mandt
https://riptutorial.com/contributor/1467396/david
https://riptutorial.com/contributor/6033166/f-v
https://riptutorial.com/contributor/148671/haseeb-asif
https://riptutorial.com/contributor/1139722/matteeyah
https://riptutorial.com/contributor/993547/patrick-hofman
https://riptutorial.com/contributor/993547/patrick-hofman
https://riptutorial.com/contributor/1364007/wai-ha-lee
https://riptutorial.com/contributor/1991423/0xff
https://riptutorial.com/contributor/3433452/bob0the0mighty
https://riptutorial.com/contributor/867703/frenkyb
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/870604/ken2k
https://riptutorial.com/contributor/221800/maniero
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/943102/botond-balazs
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/1242773/proxima
https://riptutorial.com/contributor/5550507/sibeesh-venu
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis
https://riptutorial.com/contributor/4111606/abob
https://riptutorial.com/contributor/248406/alex-b
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/5050431/a-arnold
https://riptutorial.com/contributor/398546/aaron-anodide
https://riptutorial.com/contributor/398546/aaron-anodide
https://riptutorial.com/contributor/459102/aaron-hudon
https://riptutorial.com/contributor/1380428/adil-mammadov
https://riptutorial.com/contributor/1207195/adriano-repetti
https://riptutorial.com/contributor/1207195/adriano-repetti
https://riptutorial.com/contributor/4644817/aer
https://riptutorial.com/contributor/3159635/agb
https://riptutorial.com/contributor/2797802/akshay-anand
https://riptutorial.com/contributor/100596/alan-mcbee
https://riptutorial.com/contributor/100596/alan-mcbee
https://riptutorial.com/contributor/6161714/alex-logan
https://riptutorial.com/contributor/3676450/amitay-stern
https://riptutorial.com/contributor/1448943/anaximander
https://riptutorial.com/contributor/2267418/andre-ss6
https://riptutorial.com/contributor/909742/andrea
https://riptutorial.com/contributor/1957401/androidmechanic
https://riptutorial.com/contributor/2887760/ares
https://riptutorial.com/contributor/330334/arthur-rizzo
https://riptutorial.com/contributor/1950269/ashwin-ramaswami
https://riptutorial.com/contributor/1950269/ashwin-ramaswami
https://riptutorial.com/contributor/1801536/avishayp
https://riptutorial.com/contributor/4337436/balagurunathan-marimuthu
https://riptutorial.com/contributor/4337436/balagurunathan-marimuthu
https://riptutorial.com/contributor/295036/bardia
https://riptutorial.com/contributor/1366855/ben-aaronson
https://riptutorial.com/contributor/1366855/ben-aaronson
https://riptutorial.com/contributor/3842050/blubberguy22
https://riptutorial.com/contributor/298754/bobson
https://riptutorial.com/contributor/2039482/bpoiss
https://riptutorial.com/contributor/526724/bradley-uffner
https://riptutorial.com/contributor/2210128/bret-copeland
https://riptutorial.com/contributor/2210128/bret-copeland
https://riptutorial.com/contributor/2326753/c4u
https://riptutorial.com/contributor/4415734/callum-watkins
https://riptutorial.com/contributor/4415734/callum-watkins
https://riptutorial.com/contributor/118697/chad-levy
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/472434/chrfin
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/1036079/cyprien-autexier
https://riptutorial.com/contributor/1036079/cyprien-autexier
https://riptutorial.com/contributor/1011724/dan
https://riptutorial.com/contributor/767215/daniel-minnaar
https://riptutorial.com/contributor/767215/daniel-minnaar
https://riptutorial.com/contributor/5449709/daniel-stradowski
https://riptutorial.com/contributor/5449709/daniel-stradowski
https://riptutorial.com/contributor/6275934/darkv1
https://riptutorial.com/contributor/335858/dasblinkenlight
https://riptutorial.com/contributor/1467396/david
https://riptutorial.com/contributor/3838549/david-g-
https://riptutorial.com/contributor/2410379/david-pine
https://riptutorial.com/contributor/4819309/deepak-gupta
https://riptutorial.com/contributor/526704/dleh
https://riptutorial.com/contributor/3970411/dotctor
https://riptutorial.com/contributor/1759015/durgpal-singh

Ehsan Sajjad, el2iot2,
Emre Bolat, enrico.bacis,
Erik Schierboom,
fabriciorissetto, faso,
Franck Dernoncourt,
FrankerZ, Gabor
Kecskemeti, Gary, Gates
Wong, Geoff,
GingerHead, Gordon
Bell, Guillaume Pascal,
H. Pauwelyn, hankide,
Henrik H, iliketocode,
Iordanis , Irfan, Ivan
Yurchenko, J. Steen,
Jacob Linney, Jamie
Rees, Jason Sturges,
Jeppe Stig Nielsen, Jim,
JNYRanger, Joe, Joel
Etherton, John Slegers,
Johnbot, Jojodmo, Jonas
S, Juan, Kapep, ken2k,
Kit, Konamiman, Krikor
Ailanjian, Lafexlos, LaoR
, Lasse Vågsæther
Karlsen, M.kazem
Akhgary, Mafii, Magisch,
Makyen, MANISH
KUMAR CHOUDHARY,
Marc, MarcinJuraszek,
Mark Shevchenko,
Matas Vaitkevicius,
Mateen Ulhaq, Matt,
Matt, Matt, Matt Thomas,
Maximillian Laumeister,
mbrdev, Mellow, Michael
Mairegger, Michael
Richardson, Michał
Perłakowski, mike z,
Minhas Kamal, Mitch
Talmadge, Mohammad
Mirmostafa, Mr.Mindor,
mshsayem,
MuiBienCarlota, Nate
Barbettini, Nicholas Sizer
, nik, nollidge, Nuri
Tasdemir, Oliver Mellet,
Orlando William, Osama

https://riptutorial.com/ 926

https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/8668/el2iot2
https://riptutorial.com/contributor/6382007/emre-bolat
https://riptutorial.com/contributor/1003123/enrico-bacis
https://riptutorial.com/contributor/2071395/erik-schierboom
https://riptutorial.com/contributor/890890/fabriciorissetto
https://riptutorial.com/contributor/2814905/faso
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/4875631/frankerz
https://riptutorial.com/contributor/6572/gabor-kecskemeti
https://riptutorial.com/contributor/6572/gabor-kecskemeti
https://riptutorial.com/contributor/6549908/gary
https://riptutorial.com/contributor/2425670/gates-wong
https://riptutorial.com/contributor/2425670/gates-wong
https://riptutorial.com/contributor/55487/geoff
https://riptutorial.com/contributor/1358722/gingerhead
https://riptutorial.com/contributor/16473/gordon-bell
https://riptutorial.com/contributor/16473/gordon-bell
https://riptutorial.com/contributor/4186872/guillaume-pascal
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/6625726/hankide
https://riptutorial.com/contributor/439761/henrik-h
https://riptutorial.com/contributor/3739391/iliketocode
https://riptutorial.com/contributor/6797139/iordanis
https://riptutorial.com/contributor/3275134/irfan
https://riptutorial.com/contributor/3731444/ivan-yurchenko
https://riptutorial.com/contributor/3731444/ivan-yurchenko
https://riptutorial.com/contributor/64976/j--steen
https://riptutorial.com/contributor/4381800/jacob-linney
https://riptutorial.com/contributor/3329836/jamie-rees
https://riptutorial.com/contributor/3329836/jamie-rees
https://riptutorial.com/contributor/798448/jason-sturges
https://riptutorial.com/contributor/1336654/jeppe-stig-nielsen
https://riptutorial.com/contributor/231821/jim
https://riptutorial.com/contributor/2359643/jnyranger
https://riptutorial.com/contributor/1324810/joe
https://riptutorial.com/contributor/250832/joel-etherton
https://riptutorial.com/contributor/250832/joel-etherton
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/958732/johnbot
https://riptutorial.com/contributor/2767207/jojodmo
https://riptutorial.com/contributor/1492826/jonas-s
https://riptutorial.com/contributor/1492826/jonas-s
https://riptutorial.com/contributor/1022339/juan
https://riptutorial.com/contributor/897024/kapep
https://riptutorial.com/contributor/870604/ken2k
https://riptutorial.com/contributor/64348/kit
https://riptutorial.com/contributor/4574/konamiman
https://riptutorial.com/contributor/1615769/krikor-ailanjian
https://riptutorial.com/contributor/1615769/krikor-ailanjian
https://riptutorial.com/contributor/3134251/lafexlos
https://riptutorial.com/contributor/3070733/laor
https://riptutorial.com/contributor/267/lasse-vagsather-karlsen
https://riptutorial.com/contributor/267/lasse-vagsather-karlsen
https://riptutorial.com/contributor/4767498/m-kazem-akhgary
https://riptutorial.com/contributor/4767498/m-kazem-akhgary
https://riptutorial.com/contributor/5962841/mafii
https://riptutorial.com/contributor/5389107/magisch
https://riptutorial.com/contributor/3773011/makyen
https://riptutorial.com/contributor/4523305/manish-kumar-choudhary
https://riptutorial.com/contributor/4523305/manish-kumar-choudhary
https://riptutorial.com/contributor/4382892/marc
https://riptutorial.com/contributor/1163867/marcinjuraszek
https://riptutorial.com/contributor/1051621/mark-shevchenko
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/365102/mateen-ulhaq
https://riptutorial.com/contributor/1016343/matt
https://riptutorial.com/contributor/2641576/matt
https://riptutorial.com/contributor/5024726/matt
https://riptutorial.com/contributor/3063273/matt-thomas
https://riptutorial.com/contributor/2234742/maximillian-laumeister
https://riptutorial.com/contributor/6747696/mbrdev
https://riptutorial.com/contributor/3125553/mellow
https://riptutorial.com/contributor/2964291/michael-mairegger
https://riptutorial.com/contributor/2964291/michael-mairegger
https://riptutorial.com/contributor/1812515/michael-richardson
https://riptutorial.com/contributor/1812515/michael-richardson
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/517852/mike-z
https://riptutorial.com/contributor/4684058/minhas-kamal
https://riptutorial.com/contributor/2364405/mitch-talmadge
https://riptutorial.com/contributor/2364405/mitch-talmadge
https://riptutorial.com/contributor/1477810/mohammad-mirmostafa
https://riptutorial.com/contributor/1477810/mohammad-mirmostafa
https://riptutorial.com/contributor/391656/mr-mindor
https://riptutorial.com/contributor/152349/mshsayem
https://riptutorial.com/contributor/231977/muibiencarlota
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/242311/nicholas-sizer
https://riptutorial.com/contributor/1731397/nik
https://riptutorial.com/contributor/2911/nollidge
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/12001/oliver-mellet
https://riptutorial.com/contributor/979293/orlando-william
https://riptutorial.com/contributor/3926461/osama-abusitta

AbuSitta, Panda, Parth
Patel, Patrick, Pavel
Voronin, PSN, qJake,
QoP, Racil Hilan,
Radouane ROUFID,
Rahul Nikate, Raidri,
Rajeev, Rakitić, ravindra,
rdans, Reeven, Richa
Garg, Richard, Rion
Williams, Rob, Robban,
Robert Columbia, Ryan
Hilbert, ryanyuyu, Sam,
Sam Axe, Samuel,
Sender, Shekhar, Shoe,
Slayther, solidcell,
Squidward, Squirrel,
stackptr, stark, Stilgar,
Sunny R Gupta, Suren
Srapyan, Sworgkh,
syb0rg, takrl, Tamir
Vered, Theodoros
Chatzigiannakis, Timothy
Shields, Tom Droste,
Travis J, Trent,
Trikaldarshi, Troyen,
Tushar patel, tzachs, Uri
Agassi, Uriil, uTeisT,
vcsjones, Ven, viggity,
Vishal Madhvani, Vlad,
Wai Ha Lee, Xiaoy312,
Yury Kerbitskov, Zano,
Ze Rubeus, Zimm1

Adil Mammadov, afuna,
Amitay Stern, Amr
Badawy, Andreas Pähler
, Andrew Diamond, Avi
Turner, Benjamin
Hodgson, Blorgbeard,
bluray, Botond Balázs,
Bovaz, Cerbrus,
Clueless, Conrad.Dean,
Dale Chen, David Pine,
Degusto, Didgeridoo,
Diligent Key Presser,
ECC-Dan, Emre Bolat,
fallaciousreasoning,

26 C# 7.0 Features

https://riptutorial.com/ 927

https://riptutorial.com/contributor/3926461/osama-abusitta
https://riptutorial.com/contributor/5022249/panda
https://riptutorial.com/contributor/4414656/parth-patel
https://riptutorial.com/contributor/4414656/parth-patel
https://riptutorial.com/contributor/38892/patrick
https://riptutorial.com/contributor/921054/pavel-voronin
https://riptutorial.com/contributor/921054/pavel-voronin
https://riptutorial.com/contributor/4161385/psn
https://riptutorial.com/contributor/334053/qjake
https://riptutorial.com/contributor/4484822/qop
https://riptutorial.com/contributor/3215948/racil-hilan
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/3936696/rahul-nikate
https://riptutorial.com/contributor/2610249/raidri
https://riptutorial.com/contributor/1705895/rajeev
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/4590867/ravindra
https://riptutorial.com/contributor/2617732/rdans
https://riptutorial.com/contributor/6620084/reeven
https://riptutorial.com/contributor/5417658/richa-garg
https://riptutorial.com/contributor/5417658/richa-garg
https://riptutorial.com/contributor/67392/richard
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/162506/robban
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/2884225/ryan-hilbert
https://riptutorial.com/contributor/2884225/ryan-hilbert
https://riptutorial.com/contributor/4320665/ryanyuyu
https://riptutorial.com/contributor/2246344/sam
https://riptutorial.com/contributor/74015/sam-axe
https://riptutorial.com/contributor/312325/samuel
https://riptutorial.com/contributor/1074944/sender
https://riptutorial.com/contributor/297257/shekhar
https://riptutorial.com/contributor/493122/shoe
https://riptutorial.com/contributor/4936137/slayther
https://riptutorial.com/contributor/343299/solidcell
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/3283003/squirrel
https://riptutorial.com/contributor/2469027/stackptr
https://riptutorial.com/contributor/1507325/stark
https://riptutorial.com/contributor/122507/stilgar
https://riptutorial.com/contributor/1477051/sunny-r-gupta
https://riptutorial.com/contributor/5496973/suren-srapyan
https://riptutorial.com/contributor/5496973/suren-srapyan
https://riptutorial.com/contributor/3741893/sworgkh
https://riptutorial.com/contributor/1937270/syb0rg
https://riptutorial.com/contributor/520044/takrl
https://riptutorial.com/contributor/3256506/tamir-vered
https://riptutorial.com/contributor/3256506/tamir-vered
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis
https://riptutorial.com/contributor/1828879/timothy-shields
https://riptutorial.com/contributor/1828879/timothy-shields
https://riptutorial.com/contributor/1761723/tom-droste
https://riptutorial.com/contributor/1026459/travis-j
https://riptutorial.com/contributor/1222199/trent
https://riptutorial.com/contributor/1215724/trikaldarshi
https://riptutorial.com/contributor/538247/troyen
https://riptutorial.com/contributor/5614523/tushar-patel
https://riptutorial.com/contributor/1087692/tzachs
https://riptutorial.com/contributor/1120015/uri-agassi
https://riptutorial.com/contributor/1120015/uri-agassi
https://riptutorial.com/contributor/1017161/uriil
https://riptutorial.com/contributor/4635792/uteist
https://riptutorial.com/contributor/492405/vcsjones
https://riptutorial.com/contributor/1737909/ven
https://riptutorial.com/contributor/4572/viggity
https://riptutorial.com/contributor/3883735/vishal-madhvani
https://riptutorial.com/contributor/276994/vlad
https://riptutorial.com/contributor/1364007/wai-ha-lee
https://riptutorial.com/contributor/561113/xiaoy312
https://riptutorial.com/contributor/2753469/yury-kerbitskov
https://riptutorial.com/contributor/166848/zano
https://riptutorial.com/contributor/4232386/ze-rubeus
https://riptutorial.com/contributor/6444116/zimm1
https://riptutorial.com/contributor/1380428/adil-mammadov
https://riptutorial.com/contributor/4471415/afuna
https://riptutorial.com/contributor/3676450/amitay-stern
https://riptutorial.com/contributor/84216/amr-badawy
https://riptutorial.com/contributor/84216/amr-badawy
https://riptutorial.com/contributor/2177505/andreas-pahler
https://riptutorial.com/contributor/2921949/andrew-diamond
https://riptutorial.com/contributor/900570/avi-turner
https://riptutorial.com/contributor/900570/avi-turner
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/369/blorgbeard
https://riptutorial.com/contributor/6157936/bluray
https://riptutorial.com/contributor/943102/botond-balazs
https://riptutorial.com/contributor/2669614/bovaz
https://riptutorial.com/contributor/1835379/cerbrus
https://riptutorial.com/contributor/377756/clueless
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/3843312/dale-chen
https://riptutorial.com/contributor/2410379/david-pine
https://riptutorial.com/contributor/5199584/degusto
https://riptutorial.com/contributor/1307725/didgeridoo
https://riptutorial.com/contributor/3909293/diligent-key-presser
https://riptutorial.com/contributor/1038611/ecc-dan
https://riptutorial.com/contributor/6382007/emre-bolat
https://riptutorial.com/contributor/3260044/fallaciousreasoning

ferday, Florian
Greinacher, ganchito55,
Ginkgo, H. Pauwelyn,
Henrik H, Icy Defiance,
Igor Ševo, iliketocode,
Jatin Sanghvi, Jean-
Bernard Pellerin, Jesse
Williams, Jon Schoning,
Kimmax, Kobi, Kris
Vandermotten, Kritner,
leppie, Llwyd, Maakep,
maf-soft, Marc Gravell,
MarcinJuraszek, Mariano
Desanze, Matt Rowland,
Matt Thomas, MemphiZ,
mnoronha, MotKohn,
Name, Nate Barbettini,
Nico, Niek, nietras,
NikolayKondratyev, Nuri
Tasdemir, PashaPash,
Pavel Mayorov, PeteGO,
petrzjunior, Philippe,
Pratik, Priyank Gadhiya,
Pyritie, qJake, Raidri,
Rakitić, RamenChef,
Ray Vega, RBT, René
Vogt, Rob, samuelesque
, Squidward, Stavm,
Stefano, Stefano
d'Antonio, Stilgar, Tim
Pohlmann, Uriil,
user1304444,
user2321864,
user3185569, uTeisT,
Uwe Keim, Vlad, Vlad,
Wai Ha Lee, Wasabi Fan
, WerWet, wezten,
Wojciech Czerniak, Zze

27 C# Authentication handler Abbas Galiyakotwala

28 C# Script
mehrandvd, Squidward,
Stephen Leppik

29 Caching Aliaksei Futryn, th1rdey3

Benjamin Hodgson, MSE
, RamenChef,

30 Casting

https://riptutorial.com/ 928

https://riptutorial.com/contributor/7018474/ferday
https://riptutorial.com/contributor/31985/florian-greinacher
https://riptutorial.com/contributor/31985/florian-greinacher
https://riptutorial.com/contributor/5684370/ganchito55
https://riptutorial.com/contributor/5504421/ginkgo
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/439761/henrik-h
https://riptutorial.com/contributor/1995101/icy-defiance
https://riptutorial.com/contributor/2515628/igor-sevo
https://riptutorial.com/contributor/3739391/iliketocode
https://riptutorial.com/contributor/470119/jatin-sanghvi
https://riptutorial.com/contributor/103959/jean-bernard-pellerin
https://riptutorial.com/contributor/103959/jean-bernard-pellerin
https://riptutorial.com/contributor/2072504/jesse-williams
https://riptutorial.com/contributor/2072504/jesse-williams
https://riptutorial.com/contributor/176876/jon-schoning
https://riptutorial.com/contributor/2373114/kimmax
https://riptutorial.com/contributor/7586/kobi
https://riptutorial.com/contributor/1403794/kris-vandermotten
https://riptutorial.com/contributor/1403794/kris-vandermotten
https://riptutorial.com/contributor/2312877/kritner
https://riptutorial.com/contributor/15541/leppie
https://riptutorial.com/contributor/1015054/llwyd
https://riptutorial.com/contributor/6730803/maakep
https://riptutorial.com/contributor/1855801/maf-soft
https://riptutorial.com/contributor/23354/marc-gravell
https://riptutorial.com/contributor/1163867/marcinjuraszek
https://riptutorial.com/contributor/146513/mariano-desanze
https://riptutorial.com/contributor/146513/mariano-desanze
https://riptutorial.com/contributor/2856868/matt-rowland
https://riptutorial.com/contributor/3063273/matt-thomas
https://riptutorial.com/contributor/130465/memphiz
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/5976576/motkohn
https://riptutorial.com/contributor/6938867/name
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/6469077/nico
https://riptutorial.com/contributor/4714567/niek
https://riptutorial.com/contributor/98692/nietras
https://riptutorial.com/contributor/4182275/nikolaykondratyev
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/1988244/pashapash
https://riptutorial.com/contributor/4340086/pavel-mayorov
https://riptutorial.com/contributor/860539/petego
https://riptutorial.com/contributor/2534697/petrzjunior
https://riptutorial.com/contributor/920/philippe
https://riptutorial.com/contributor/11711/pratik
https://riptutorial.com/contributor/4955986/priyank-gadhiya
https://riptutorial.com/contributor/1719460/pyritie
https://riptutorial.com/contributor/334053/qjake
https://riptutorial.com/contributor/2610249/raidri
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4872/ray-vega
https://riptutorial.com/contributor/465053/rbt
https://riptutorial.com/contributor/5528593/rene-vogt
https://riptutorial.com/contributor/5528593/rene-vogt
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/1574931/samuelesque
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/3933927/stavm
https://riptutorial.com/contributor/3091524/stefano
https://riptutorial.com/contributor/1262354/stefano-d-antonio
https://riptutorial.com/contributor/1262354/stefano-d-antonio
https://riptutorial.com/contributor/122507/stilgar
https://riptutorial.com/contributor/4961688/tim-pohlmann
https://riptutorial.com/contributor/4961688/tim-pohlmann
https://riptutorial.com/contributor/1017161/uriil
https://riptutorial.com/contributor/1304444/user1304444
https://riptutorial.com/contributor/2321864/user2321864
https://riptutorial.com/contributor/3185569/user3185569
https://riptutorial.com/contributor/4635792/uteist
https://riptutorial.com/contributor/107625/uwe-keim
https://riptutorial.com/contributor/276994/vlad
https://riptutorial.com/contributor/3383776/vlad
https://riptutorial.com/contributor/1364007/wai-ha-lee
https://riptutorial.com/contributor/2422874/wasabi-fan
https://riptutorial.com/contributor/5739006/werwet
https://riptutorial.com/contributor/428724/wezten
https://riptutorial.com/contributor/2445606/wojciech-czerniak
https://riptutorial.com/contributor/3509591/zze
https://riptutorial.com/contributor/1887150/abbas-galiyakotwala
https://riptutorial.com/contributor/1831530/mehrandvd
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/5857924/aliaksei-futryn
https://riptutorial.com/contributor/1682148/th1rdey3
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/3008260/mse
https://riptutorial.com/contributor/6392939/ramenchef

StriplingWarrior

31 Checked and Unchecked
Botond Balázs, Rahul
Nikate, Sam Johnson,
ZenLulz

32 CLSCompliantAttribute mybirthname, Rob

33 Code Contracts MegaTron

34 Code Contracts and Assertions Roy Dictus

35 Collection Initializers

Aphelion, ASh, Bart
Jolling, Chronocide,
CodeCaster, CyberFox,
DLeh, Jacob Linney,
Jeromy Irvine, Jonas S,
Matas Vaitkevicius, Rob,
robert demartino, rudygt,
Squidward, Tamir Vered,
TarkaDaal, Thulani
Chivandikwa, WMios

36 Comments and regions

Bad, Botond Balázs,
Jonathan Zúñiga,
MrDKOz, Ranjit Singh,
Squidward

37 Common String Operations

Austin T French,
Blachshma, bluish,
CharithJ, Chief Wiggum,
cyberj0g, Daryl, deloreyk
, jaycer, Jaydip Jadhav,
Jon G, Jon Schneider,
juergen d, Konamiman,
Maniero, Paul Weiland,
Racil Hilan, RoelF,
Stefan Steiger, Steven,
The_Outsider, tiedied61,
un-lucky, WizardOfMenlo

38 Conditional Statements

Alexander Mandt,
Ameya Deshpande,
EJoshuaS, H. Pauwelyn,
Hayden, Kroltan,
RamenChef, Sklivvz

Adam Sills, Adi Lester,
Adriano Repetti, Andrei

39 Constructors and Finalizers

https://riptutorial.com/ 929

https://riptutorial.com/contributor/120955/striplingwarrior
https://riptutorial.com/contributor/943102/botond-balazs
https://riptutorial.com/contributor/3936696/rahul-nikate
https://riptutorial.com/contributor/3936696/rahul-nikate
https://riptutorial.com/contributor/28627/sam-johnson
https://riptutorial.com/contributor/2780334/zenlulz
https://riptutorial.com/contributor/2147652/mybirthname
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/4275342/megatron
https://riptutorial.com/contributor/651188/roy-dictus
https://riptutorial.com/contributor/296526/aphelion
https://riptutorial.com/contributor/1506454/ash
https://riptutorial.com/contributor/411831/bart-jolling
https://riptutorial.com/contributor/411831/bart-jolling
https://riptutorial.com/contributor/3390550/chronocide
https://riptutorial.com/contributor/266143/codecaster
https://riptutorial.com/contributor/1148434/cyberfox
https://riptutorial.com/contributor/526704/dleh
https://riptutorial.com/contributor/4381800/jacob-linney
https://riptutorial.com/contributor/8223/jeromy-irvine
https://riptutorial.com/contributor/1492826/jonas-s
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/6784398/robert-demartino
https://riptutorial.com/contributor/2213985/rudygt
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/3256506/tamir-vered
https://riptutorial.com/contributor/55155/tarkadaal
https://riptutorial.com/contributor/611628/thulani-chivandikwa
https://riptutorial.com/contributor/611628/thulani-chivandikwa
https://riptutorial.com/contributor/3830876/wmios
https://riptutorial.com/contributor/4383472/bad
https://riptutorial.com/contributor/943102/botond-balazs
https://riptutorial.com/contributor/1560233/jonathan-zuniga
https://riptutorial.com/contributor/863551/mrdkoz
https://riptutorial.com/contributor/1530742/ranjit-singh
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/2040569/austin-t-french
https://riptutorial.com/contributor/1379664/blachshma
https://riptutorial.com/contributor/505893/bluish
https://riptutorial.com/contributor/591656/charithj
https://riptutorial.com/contributor/2360972/chief-wiggum
https://riptutorial.com/contributor/4939144/cyberj0g
https://riptutorial.com/contributor/204285/daryl
https://riptutorial.com/contributor/1148915/deloreyk
https://riptutorial.com/contributor/4463445/jaycer
https://riptutorial.com/contributor/4964923/jaydip-jadhav
https://riptutorial.com/contributor/2541934/jon-g
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/575376/juergen-d
https://riptutorial.com/contributor/4574/konamiman
https://riptutorial.com/contributor/221800/maniero
https://riptutorial.com/contributor/3867754/paul-weiland
https://riptutorial.com/contributor/3215948/racil-hilan
https://riptutorial.com/contributor/120480/roelf
https://riptutorial.com/contributor/155077/stefan-steiger
https://riptutorial.com/contributor/869576/steven
https://riptutorial.com/contributor/7793375/the-outsider
https://riptutorial.com/contributor/5667026/tiedied61
https://riptutorial.com/contributor/5195227/un-lucky
https://riptutorial.com/contributor/4338316/wizardofmenlo
https://riptutorial.com/contributor/4896211/alexander-mandt
https://riptutorial.com/contributor/2609817/ameya-deshpande
https://riptutorial.com/contributor/4032703/ejoshuas
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/4406995/hayden
https://riptutorial.com/contributor/1045510/kroltan
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/7028/sklivvz
https://riptutorial.com/contributor/13322/adam-sills
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/1207195/adriano-repetti
https://riptutorial.com/contributor/1796/andrei-rinea

Rînea, Andrew Diamond,
Arjan Einbu, Avia,
BackDoorNoBaby,
BanksySan, Ben Fogel,
Benjamin Hodgson,
Benjol, Bogdan Gavril,
Bovaz, Carlos Muñoz,
Dan Hulme, Daryl, DLeh,
Dmitry Bychenko,
drusellers, Ehsan Sajjad,
Fernando Matsumoto,
guntbert, hatchet, Ian,
Jeremy Kato, Jon Skeet,
Julien Roncaglia, kamilk,
Konamiman, ltiveron,
Michael Richardson,
Neel, Oly, Pavel
Mayorov, Pavel Sapehin,
Pavel Voronin, Peter
Hommel, pinkfloydx33,
Robert Columbia,
RomCoo, Roy Dictus,
Sam, Saravanan Sachi,
Seph, Sklivvz,
The_Cthulhu_Kid, Tim
Medora, usr, Verena
Haunschmid, void,
Wouter, ZenLulz

40
Creating a Console Application using a Plain-Text
Editor and the C# Compiler (csc.exe)

delete me

41
Creating Own MessageBox in Windows Form
Application

Mansel Davies,
Vaibhav_Welcomes_You

42 Creational Design Patterns

DWright, Jan Bońkowski,
Mark Shevchenko, Parth
Patel, PedroSouki,
Pierre Theate, Sondre,
Tushar patel

43 Cryptography (System.Security.Cryptography)
glaubergft, MikeS159,
Ogglas, Pete

44 Data Annotation
Maxime, Mikko Viitala,
The_Outsider, Will Ray

AbdulRahman Ansari, 45 DateTime Methods

https://riptutorial.com/ 930

https://riptutorial.com/contributor/1796/andrei-rinea
https://riptutorial.com/contributor/2921949/andrew-diamond
https://riptutorial.com/contributor/19594/arjan-einbu
https://riptutorial.com/contributor/1565508/avia
https://riptutorial.com/contributor/2099774/backdoornobaby
https://riptutorial.com/contributor/442351/banksysan
https://riptutorial.com/contributor/1399195/ben-fogel
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/11410/benjol
https://riptutorial.com/contributor/21634/bogdan-gavril
https://riptutorial.com/contributor/2669614/bovaz
https://riptutorial.com/contributor/186133/carlos-munoz
https://riptutorial.com/contributor/967945/dan-hulme
https://riptutorial.com/contributor/204285/daryl
https://riptutorial.com/contributor/526704/dleh
https://riptutorial.com/contributor/2319407/dmitry-bychenko
https://riptutorial.com/contributor/392558/drusellers
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/5119090/fernando-matsumoto
https://riptutorial.com/contributor/1938486/guntbert
https://riptutorial.com/contributor/834261/hatchet
https://riptutorial.com/contributor/5666987/ian
https://riptutorial.com/contributor/6352535/jeremy-kato
https://riptutorial.com/contributor/22656/jon-skeet
https://riptutorial.com/contributor/46594/julien-roncaglia
https://riptutorial.com/contributor/1371188/kamilk
https://riptutorial.com/contributor/4574/konamiman
https://riptutorial.com/contributor/3177711/ltiveron
https://riptutorial.com/contributor/1812515/michael-richardson
https://riptutorial.com/contributor/1997103/neel
https://riptutorial.com/contributor/5181199/oly
https://riptutorial.com/contributor/4340086/pavel-mayorov
https://riptutorial.com/contributor/4340086/pavel-mayorov
https://riptutorial.com/contributor/2900278/pavel-sapehin
https://riptutorial.com/contributor/921054/pavel-voronin
https://riptutorial.com/contributor/1071090/peter-hommel
https://riptutorial.com/contributor/1071090/peter-hommel
https://riptutorial.com/contributor/491907/pinkfloydx33
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/5867869/romcoo
https://riptutorial.com/contributor/651188/roy-dictus
https://riptutorial.com/contributor/2246344/sam
https://riptutorial.com/contributor/3725478/saravanan-sachi
https://riptutorial.com/contributor/288747/seph
https://riptutorial.com/contributor/7028/sklivvz
https://riptutorial.com/contributor/1091551/the-cthulhu-kid
https://riptutorial.com/contributor/453277/tim-medora
https://riptutorial.com/contributor/453277/tim-medora
https://riptutorial.com/contributor/122718/usr
https://riptutorial.com/contributor/1117932/verena-haunschmid
https://riptutorial.com/contributor/1117932/verena-haunschmid
https://riptutorial.com/contributor/1029287/void
https://riptutorial.com/contributor/4491768/wouter
https://riptutorial.com/contributor/2780334/zenlulz
https://riptutorial.com/contributor/6123921/delete-me
https://riptutorial.com/contributor/7291581/mansel-davies
https://riptutorial.com/contributor/7845508/vaibhav-welcomes-you
https://riptutorial.com/contributor/49251/dwright
https://riptutorial.com/contributor/2672386/jan-bonkowski
https://riptutorial.com/contributor/2672386/jan-bonkowski
https://riptutorial.com/contributor/1051621/mark-shevchenko
https://riptutorial.com/contributor/4414656/parth-patel
https://riptutorial.com/contributor/4414656/parth-patel
https://riptutorial.com/contributor/4166211/pedrosouki
https://riptutorial.com/contributor/4297063/pierre-theate
https://riptutorial.com/contributor/5024822/sondre
https://riptutorial.com/contributor/5614523/tushar-patel
https://riptutorial.com/contributor/2830647/glaubergft
https://riptutorial.com/contributor/2623411/mikes159
https://riptutorial.com/contributor/3850405/ogglas
https://riptutorial.com/contributor/3682967/pete
https://riptutorial.com/contributor/2525304/maxime
https://riptutorial.com/contributor/1061668/mikko-viitala
https://riptutorial.com/contributor/7793375/the-outsider
https://riptutorial.com/contributor/4270650/will-ray
https://riptutorial.com/contributor/1894233/abdulrahman-ansari

C4u, Christian Gollhardt,
Felipe Oriani, Guilherme
de Jesus Santos, James
Hughes, Matas
Vaitkevicius,
midnightsyntax, Mostafiz
, Oluwafemi, Pavel
Yermalovich, Sondre,
theinarasu, Thulani
Chivandikwa

46 Delegates

Aaron Hudon, Adam,
Ben Aaronson, Benjamin
Hodgson, Bradley Uffner
, CalmBit, Cihan Yakar,
CodeWarrior, EyasSH,
Huseyin Durmus, Jasmin
Solanki, Jeppe Stig
Nielsen, Jon G, Jonas S,
Matt, NikolayKondratyev,
niksofteng, Rajput, Richa
Garg, Sam Farajpour
Ghamari, Shog9, Stu,
Thulani Chivandikwa,
trashr0x

47 Dependency Injection
Buh Buh, iaminvinicble,
Kyle Trauberman, Wiktor
Dębski

48 Diagnostics
Jasmin Solanki, Luke
Ryan, TylerH

49 Dynamic type

Daryl, David, H.
Pauwelyn, Kilazur, Mark
Shevchenko, Nate
Barbettini, Rob

Aaron Hudon, Abdul
Rehman Sayed, Adrian
Iftode, aholmes, alex,
Blachshma, Chris
Oldwood, Diligent Key
Presser, dlatikay, Dmitry
Bychenko, dove,
Ghost4Man, H.
Pauwelyn, ja72, Jon
Schneider, Kit, konkked,

50 Enum

https://riptutorial.com/ 931

https://riptutorial.com/contributor/2326753/c4u
https://riptutorial.com/contributor/2441442/christian-gollhardt
https://riptutorial.com/contributor/316799/felipe-oriani
https://riptutorial.com/contributor/396200/guilherme-de-jesus-santos
https://riptutorial.com/contributor/396200/guilherme-de-jesus-santos
https://riptutorial.com/contributor/4700841/james-hughes
https://riptutorial.com/contributor/4700841/james-hughes
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/278354/midnightsyntax
https://riptutorial.com/contributor/5154423/mostafiz
https://riptutorial.com/contributor/1753728/oluwafemi
https://riptutorial.com/contributor/1389423/pavel-yermalovich
https://riptutorial.com/contributor/1389423/pavel-yermalovich
https://riptutorial.com/contributor/5024822/sondre
https://riptutorial.com/contributor/1937699/theinarasu
https://riptutorial.com/contributor/611628/thulani-chivandikwa
https://riptutorial.com/contributor/611628/thulani-chivandikwa
https://riptutorial.com/contributor/459102/aaron-hudon
https://riptutorial.com/contributor/3938395/adam
https://riptutorial.com/contributor/1366855/ben-aaronson
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/526724/bradley-uffner
https://riptutorial.com/contributor/1626606/calmbit
https://riptutorial.com/contributor/168941/cihan-yakar
https://riptutorial.com/contributor/281348/codewarrior
https://riptutorial.com/contributor/864313/eyassh
https://riptutorial.com/contributor/4549550/huseyin-durmus
https://riptutorial.com/contributor/6493825/jasmin-solanki
https://riptutorial.com/contributor/6493825/jasmin-solanki
https://riptutorial.com/contributor/1336654/jeppe-stig-nielsen
https://riptutorial.com/contributor/1336654/jeppe-stig-nielsen
https://riptutorial.com/contributor/2541934/jon-g
https://riptutorial.com/contributor/1492826/jonas-s
https://riptutorial.com/contributor/1016343/matt
https://riptutorial.com/contributor/4182275/nikolaykondratyev
https://riptutorial.com/contributor/1440057/niksofteng
https://riptutorial.com/contributor/6621584/rajput
https://riptutorial.com/contributor/5417658/richa-garg
https://riptutorial.com/contributor/5417658/richa-garg
https://riptutorial.com/contributor/1071632/sam-farajpour-ghamari
https://riptutorial.com/contributor/1071632/sam-farajpour-ghamari
https://riptutorial.com/contributor/811/shog9
https://riptutorial.com/contributor/414/stu
https://riptutorial.com/contributor/611628/thulani-chivandikwa
https://riptutorial.com/contributor/4302070/trashr0x
https://riptutorial.com/contributor/444335/buh-buh
https://riptutorial.com/contributor/5370858/iaminvinicble
https://riptutorial.com/contributor/21461/kyle-trauberman
https://riptutorial.com/contributor/2759578/wiktor-debski
https://riptutorial.com/contributor/2759578/wiktor-debski
https://riptutorial.com/contributor/2759578/wiktor-debski
https://riptutorial.com/contributor/6493825/jasmin-solanki
https://riptutorial.com/contributor/657237/luke-ryan
https://riptutorial.com/contributor/657237/luke-ryan
https://riptutorial.com/contributor/2756409/tylerh
https://riptutorial.com/contributor/227436/daryl
https://riptutorial.com/contributor/1467396/david
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/3283203/kilazur
https://riptutorial.com/contributor/1051621/mark-shevchenko
https://riptutorial.com/contributor/1051621/mark-shevchenko
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/459102/aaron-hudon
https://riptutorial.com/contributor/4054186/abdul-rehman-sayed
https://riptutorial.com/contributor/4054186/abdul-rehman-sayed
https://riptutorial.com/contributor/782754/adrian-iftode
https://riptutorial.com/contributor/782754/adrian-iftode
https://riptutorial.com/contributor/1801382/aholmes
https://riptutorial.com/contributor/1445568/alex
https://riptutorial.com/contributor/1379664/blachshma
https://riptutorial.com/contributor/106119/chris-oldwood
https://riptutorial.com/contributor/106119/chris-oldwood
https://riptutorial.com/contributor/3909293/diligent-key-presser
https://riptutorial.com/contributor/3909293/diligent-key-presser
https://riptutorial.com/contributor/1132334/dlatikay
https://riptutorial.com/contributor/2319407/dmitry-bychenko
https://riptutorial.com/contributor/2319407/dmitry-bychenko
https://riptutorial.com/contributor/30913/dove
https://riptutorial.com/contributor/2992984/ghost4man
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/380384/ja72
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/64348/kit
https://riptutorial.com/contributor/1322693/konkked

Kyle Trauberman, Martin
Zikmund, Matthew
Whited, Maxime, mbrdev
, Michael Mairegger,
MuiBienCarlota,
NikolayKondratyev,
Osama AbuSitta, PSGuy
, recursive, Richa Garg,
Richard, Rob, sdgfsdh,
Sergii Lischuk, Squirrel,
Stefano d'Antonio,
Tanner Swett, TarkaDaal
, Theodoros
Chatzigiannakis, vesi,
Wasabi Fan, Yanai

51 Equality Operator Vadim Martynov

52 Equals and GetHashCode

Alexey, BanksySan,
hatcyl, ja72, Jeppe Stig
Nielsen, meJustAndrew,
Rob, scher, Timitry,
viggity

53 Events

Aaron Hudon, Adi Lester
, Benjol,
CheGuevarasBeret,
dcastro, matteeyah,
meJustAndrew,
mhoward, nik, niksofteng
, NotEnoughData,
OliPro007, paulius_l,
PSGuy, Reza Aghaei,
Roy Dictus, Squidward,
Steven, vbnet3d

0x49D1, Abdul Rehman
Sayed, Adam Lear, Adil
Mammadov, Andrew
Diamond, Aseem
Gautam, Athafoud,
Botond Balázs, Collin
Stevens, Danny Chen,
Dmitry Bychenko, dove,
Eldar Dordzhiev,
fabriciorissetto, faso, flq,
George Duckett, Gilad
Naaman, Gudradain,

54 Exception Handling

https://riptutorial.com/ 932

https://riptutorial.com/contributor/21461/kyle-trauberman
https://riptutorial.com/contributor/732221/martin-zikmund
https://riptutorial.com/contributor/732221/martin-zikmund
https://riptutorial.com/contributor/89586/matthew-whited
https://riptutorial.com/contributor/89586/matthew-whited
https://riptutorial.com/contributor/2525304/maxime
https://riptutorial.com/contributor/6747696/mbrdev
https://riptutorial.com/contributor/2964291/michael-mairegger
https://riptutorial.com/contributor/231977/muibiencarlota
https://riptutorial.com/contributor/4182275/nikolaykondratyev
https://riptutorial.com/contributor/3926461/osama-abusitta
https://riptutorial.com/contributor/3205613/psguy
https://riptutorial.com/contributor/44743/recursive
https://riptutorial.com/contributor/5417658/richa-garg
https://riptutorial.com/contributor/259656/richard
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/1256041/sdgfsdh
https://riptutorial.com/contributor/1385562/sergii-lischuk
https://riptutorial.com/contributor/3283003/squirrel
https://riptutorial.com/contributor/1262354/stefano-d-antonio
https://riptutorial.com/contributor/1108505/tanner-swett
https://riptutorial.com/contributor/55155/tarkadaal
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis
https://riptutorial.com/contributor/1976786/vesi
https://riptutorial.com/contributor/2422874/wasabi-fan
https://riptutorial.com/contributor/3457592/yanai
https://riptutorial.com/contributor/5649561/vadim-martynov
https://riptutorial.com/contributor/2936295/alexey
https://riptutorial.com/contributor/442351/banksysan
https://riptutorial.com/contributor/1419853/hatcyl
https://riptutorial.com/contributor/380384/ja72
https://riptutorial.com/contributor/1336654/jeppe-stig-nielsen
https://riptutorial.com/contributor/1336654/jeppe-stig-nielsen
https://riptutorial.com/contributor/6357360/mejustandrew
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/4968864/scher
https://riptutorial.com/contributor/4469336/timitry
https://riptutorial.com/contributor/4572/viggity
https://riptutorial.com/contributor/459102/aaron-hudon
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/11410/benjol
https://riptutorial.com/contributor/1775191/cheguevarasberet
https://riptutorial.com/contributor/857807/dcastro
https://riptutorial.com/contributor/1139722/matteeyah
https://riptutorial.com/contributor/6357360/mejustandrew
https://riptutorial.com/contributor/2855875/mhoward
https://riptutorial.com/contributor/1731397/nik
https://riptutorial.com/contributor/1440057/niksofteng
https://riptutorial.com/contributor/4149474/notenoughdata
https://riptutorial.com/contributor/5487099/olipro007
https://riptutorial.com/contributor/813135/paulius-l
https://riptutorial.com/contributor/3205613/psguy
https://riptutorial.com/contributor/3110834/reza-aghaei
https://riptutorial.com/contributor/651188/roy-dictus
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/869576/steven
https://riptutorial.com/contributor/1620916/vbnet3d
https://riptutorial.com/contributor/47672/0x49d1
https://riptutorial.com/contributor/4054186/abdul-rehman-sayed
https://riptutorial.com/contributor/4054186/abdul-rehman-sayed
https://riptutorial.com/contributor/105971/adam-lear
https://riptutorial.com/contributor/1380428/adil-mammadov
https://riptutorial.com/contributor/1380428/adil-mammadov
https://riptutorial.com/contributor/2921949/andrew-diamond
https://riptutorial.com/contributor/2921949/andrew-diamond
https://riptutorial.com/contributor/213469/aseem-gautam
https://riptutorial.com/contributor/213469/aseem-gautam
https://riptutorial.com/contributor/2279200/athafoud
https://riptutorial.com/contributor/943102/botond-balazs
https://riptutorial.com/contributor/6456360/collin-stevens
https://riptutorial.com/contributor/6456360/collin-stevens
https://riptutorial.com/contributor/323924/danny-chen
https://riptutorial.com/contributor/2319407/dmitry-bychenko
https://riptutorial.com/contributor/30913/dove
https://riptutorial.com/contributor/3994425/eldar-dordzhiev
https://riptutorial.com/contributor/890890/fabriciorissetto
https://riptutorial.com/contributor/2814905/faso
https://riptutorial.com/contributor/51428/flq
https://riptutorial.com/contributor/593627/george-duckett
https://riptutorial.com/contributor/389222/gilad-naaman
https://riptutorial.com/contributor/389222/gilad-naaman
https://riptutorial.com/contributor/3043529/gudradain

Jack, James Hughes,
Jamie Rees, John Meyer
, Jonesopolis,
MadddinTribleD,
Marimba, Matas
Vaitkevicius, Matt,
matteeyah, Mendhak,
Michael Bisbjerg, Nate
Barbettini, Nathaniel
Ford, nik0lias, niksofteng
, Oly, Pavel Pája Halbich
, Pavel Voronin, PMF,
Racil Hilan, raidensan,
Rasa , Robert Columbia,
RomCoo, Sam Hanley,
Scott Koland, Squidward
, Steve Dunn, Thulani
Chivandikwa, vesi

55 Expression Trees

Benjamin Hodgson,
dasblinkenlight, Dileep,
George Duckett,
just.another.programmer
, Matas Vaitkevicius,
matteeyah,
meJustAndrew, Nathan
Tuggy,
NikolayKondratyev, Rob,
Ruben Steins, Stephen
Leppik, Рахул Маквана

Aaron Hudon,
AbdulRahman Ansari,
Adi Lester, Adil
Mammadov, AGB,
AldoRomo88,
anaximander, Aphelion,
Ashwin Ramaswami,
ATechieThought, Ben
Aaronson, Benjol, binki,
Bjørn-Roger Kringsjå,
Blachshma, Blorgbeard,
Brett Veenstra, brijber,
Callum Watkins, Chad
McGrath, Charlie H,
Chris Akridge,
Chronocide,

56 Extension Methods

https://riptutorial.com/ 933

https://riptutorial.com/contributor/7951438/jack
https://riptutorial.com/contributor/4700841/james-hughes
https://riptutorial.com/contributor/3329836/jamie-rees
https://riptutorial.com/contributor/1368293/john-meyer
https://riptutorial.com/contributor/1786428/jonesopolis
https://riptutorial.com/contributor/3719687/madddintribled
https://riptutorial.com/contributor/5504438/marimba
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1016343/matt
https://riptutorial.com/contributor/1139722/matteeyah
https://riptutorial.com/contributor/974369/mendhak
https://riptutorial.com/contributor/1246988/michael-bisbjerg
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/537674/nik0lias
https://riptutorial.com/contributor/1440057/niksofteng
https://riptutorial.com/contributor/5181199/oly
https://riptutorial.com/contributor/2916232/pavel-paja-halbich
https://riptutorial.com/contributor/921054/pavel-voronin
https://riptutorial.com/contributor/2905768/pmf
https://riptutorial.com/contributor/3215948/racil-hilan
https://riptutorial.com/contributor/2928544/raidensan
https://riptutorial.com/contributor/7009137/rasa
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/5867869/romcoo
https://riptutorial.com/contributor/3486353/sam-hanley
https://riptutorial.com/contributor/865646/scott-koland
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/28901/steve-dunn
https://riptutorial.com/contributor/611628/thulani-chivandikwa
https://riptutorial.com/contributor/611628/thulani-chivandikwa
https://riptutorial.com/contributor/1976786/vesi
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/335858/dasblinkenlight
https://riptutorial.com/contributor/526955/dileep
https://riptutorial.com/contributor/593627/george-duckett
https://riptutorial.com/contributor/794234/just-another-programmer
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1139722/matteeyah
https://riptutorial.com/contributor/6357360/mejustandrew
https://riptutorial.com/contributor/4099598/nathan-tuggy
https://riptutorial.com/contributor/4099598/nathan-tuggy
https://riptutorial.com/contributor/4182275/nikolaykondratyev
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/1280810/ruben-steins
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/3709746/-------------
https://riptutorial.com/contributor/459102/aaron-hudon
https://riptutorial.com/contributor/1894233/abdulrahman-ansari
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/1380428/adil-mammadov
https://riptutorial.com/contributor/1380428/adil-mammadov
https://riptutorial.com/contributor/3159635/agb
https://riptutorial.com/contributor/2233835/aldoromo88
https://riptutorial.com/contributor/1448943/anaximander
https://riptutorial.com/contributor/296526/aphelion
https://riptutorial.com/contributor/1950269/ashwin-ramaswami
https://riptutorial.com/contributor/3768367/atechiethought
https://riptutorial.com/contributor/1366855/ben-aaronson
https://riptutorial.com/contributor/1366855/ben-aaronson
https://riptutorial.com/contributor/11410/benjol
https://riptutorial.com/contributor/429091/binki
https://riptutorial.com/contributor/1842065/bjorn-roger-kringsja
https://riptutorial.com/contributor/1379664/blachshma
https://riptutorial.com/contributor/369/blorgbeard
https://riptutorial.com/contributor/307/brett-veenstra
https://riptutorial.com/contributor/2772050/brijber
https://riptutorial.com/contributor/4415734/callum-watkins
https://riptutorial.com/contributor/828624/chad-mcgrath
https://riptutorial.com/contributor/828624/chad-mcgrath
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/2709212/chris-akridge
https://riptutorial.com/contributor/3390550/chronocide

CorrectorBot, cubrr,
Dan-Cook, Daniel
Stradowski, David G.,
David Pine, Deepak
gupta, diiN__________,
DLeh, Dmitry Bychenko,
DoNot, DWright, Ðаn,
Ehsan Sajjad, ekolis,
el2iot2, Elton,
enrico.bacis, Erik
Schierboom, ethorn10,
extremeboredom, Ezra,
fahadash, Federico
Allocati, Fernando
Matsumoto, FrankerZ,
gdziadkiewicz, Gilad
Naaman, GregC,
Gudradain, H. Pauwelyn,
HimBromBeere, Hsu Wei
Cheng, Icy Defiance,
Jamie Rees, Jeppe Stig
Nielsen, John Peters,
John Slegers, Jon
Erickson, Jonas S,
Jonesopolis, Kev, Kevin
Avignon, Kevin DiTraglia
, Kobi, Konamiman,
krillgar, Kurtis Beavers,
Kyle Trauberman,
Lafexlos, LMK, lothlarias,
Lukáš Lánský, Magisch,
Marc, MarcE, Marek
Musielak, Martin
Zikmund, Matas
Vaitkevicius, Matt, Matt
Dillard, Maximilian Ast,
mbrdev,
MDTech.us_MAN,
meJustAndrew, Michael
Benford, Michael
Freidgeim, Michael
Richardson, Michał
Perłakowski, Nate
Barbettini, Nick Larsen,
Nico, Nisarg Shah, Nuri
Tasdemir, Parth Patel,
pinkfloydx33, PMF,

https://riptutorial.com/ 934

https://riptutorial.com/contributor/6667732/correctorbot
https://riptutorial.com/contributor/996081/cubrr
https://riptutorial.com/contributor/6845125/dan-cook
https://riptutorial.com/contributor/5449709/daniel-stradowski
https://riptutorial.com/contributor/5449709/daniel-stradowski
https://riptutorial.com/contributor/3838549/david-g-
https://riptutorial.com/contributor/2410379/david-pine
https://riptutorial.com/contributor/4819309/deepak-gupta
https://riptutorial.com/contributor/4819309/deepak-gupta
https://riptutorial.com/contributor/5809511/diin----------
https://riptutorial.com/contributor/526704/dleh
https://riptutorial.com/contributor/2319407/dmitry-bychenko
https://riptutorial.com/contributor/1764853/donot
https://riptutorial.com/contributor/49251/dwright
https://riptutorial.com/contributor/8877/--n
https://riptutorial.com/contributor/8877/--n
https://riptutorial.com/contributor/8877/--n
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/1159763/ekolis
https://riptutorial.com/contributor/8668/el2iot2
https://riptutorial.com/contributor/208161/elton
https://riptutorial.com/contributor/1003123/enrico-bacis
https://riptutorial.com/contributor/2071395/erik-schierboom
https://riptutorial.com/contributor/2071395/erik-schierboom
https://riptutorial.com/contributor/746045/ethorn10
https://riptutorial.com/contributor/543554/extremeboredom
https://riptutorial.com/contributor/7347193/ezra
https://riptutorial.com/contributor/1411014/fahadash
https://riptutorial.com/contributor/4262449/federico-allocati
https://riptutorial.com/contributor/4262449/federico-allocati
https://riptutorial.com/contributor/5119090/fernando-matsumoto
https://riptutorial.com/contributor/5119090/fernando-matsumoto
https://riptutorial.com/contributor/4875631/frankerz
https://riptutorial.com/contributor/2976345/gdziadkiewicz
https://riptutorial.com/contributor/389222/gilad-naaman
https://riptutorial.com/contributor/389222/gilad-naaman
https://riptutorial.com/contributor/90475/gregc
https://riptutorial.com/contributor/3043529/gudradain
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/2528063/himbrombeere
https://riptutorial.com/contributor/2544776/hsu-wei-cheng
https://riptutorial.com/contributor/2544776/hsu-wei-cheng
https://riptutorial.com/contributor/1995101/icy-defiance
https://riptutorial.com/contributor/3329836/jamie-rees
https://riptutorial.com/contributor/1336654/jeppe-stig-nielsen
https://riptutorial.com/contributor/1336654/jeppe-stig-nielsen
https://riptutorial.com/contributor/1522548/john-peters
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1950/jon-erickson
https://riptutorial.com/contributor/1950/jon-erickson
https://riptutorial.com/contributor/1492826/jonas-s
https://riptutorial.com/contributor/1786428/jonesopolis
https://riptutorial.com/contributor/419/kev
https://riptutorial.com/contributor/4154141/kevin-avignon
https://riptutorial.com/contributor/4154141/kevin-avignon
https://riptutorial.com/contributor/1316346/kevin-ditraglia
https://riptutorial.com/contributor/7586/kobi
https://riptutorial.com/contributor/4574/konamiman
https://riptutorial.com/contributor/1195056/krillgar
https://riptutorial.com/contributor/4109723/kurtis-beavers
https://riptutorial.com/contributor/21461/kyle-trauberman
https://riptutorial.com/contributor/3134251/lafexlos
https://riptutorial.com/contributor/4433080/lmk
https://riptutorial.com/contributor/462060/lothlarias
https://riptutorial.com/contributor/577067/lukas-lansky
https://riptutorial.com/contributor/5389107/magisch
https://riptutorial.com/contributor/105443/marc
https://riptutorial.com/contributor/7262/marce
https://riptutorial.com/contributor/157833/marek-musielak
https://riptutorial.com/contributor/157833/marek-musielak
https://riptutorial.com/contributor/732221/martin-zikmund
https://riptutorial.com/contributor/732221/martin-zikmund
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/2641576/matt
https://riptutorial.com/contributor/863/matt-dillard
https://riptutorial.com/contributor/863/matt-dillard
https://riptutorial.com/contributor/1466583/maximilian-ast
https://riptutorial.com/contributor/6747696/mbrdev
https://riptutorial.com/contributor/1610754/mdtech-us-man
https://riptutorial.com/contributor/6357360/mejustandrew
https://riptutorial.com/contributor/1349152/michael-benford
https://riptutorial.com/contributor/1349152/michael-benford
https://riptutorial.com/contributor/52277/michael-freidgeim
https://riptutorial.com/contributor/52277/michael-freidgeim
https://riptutorial.com/contributor/1812515/michael-richardson
https://riptutorial.com/contributor/1812515/michael-richardson
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/178082/nick-larsen
https://riptutorial.com/contributor/6469077/nico
https://riptutorial.com/contributor/5894241/nisarg-shah
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/4414656/parth-patel
https://riptutorial.com/contributor/491907/pinkfloydx33
https://riptutorial.com/contributor/2905768/pmf

Prashanth Benny, QoP,
Raidri, Reddy, Reeven,
Ricardo Amores, Richard
, Rion Williams, Rob,
Robert Columbia, Ryan
Hilbert, ryanyuyu, S. Tar

ık Çetin, Sam Axe, Shoe
, Sibeesh Venu, solidcell
, Sondre, Squidward,
Steven, styfle, SysVoid,
Tanner Swett, Timothy
Rascher, TKharaishvili,
T-moty, Tobbe, Tushar
patel, unarist,
user3185569, user40521
, Ven, Victor Tomaili,
viggity

57 File and Stream I/O

BanksySan, Blachshma,
dbmuller, DJCubed,
Feelbad Soussi Wolfgun
DZ, intox, Mikko Viitala,
Sender, Squidward,
Tolga Evcimen, Wasabi
Fan

58 FileSystemWatcher Sondre

59 Func delegates
Theodoros
Chatzigiannakis,
Valentin

60 Function with multiple return values
Adam, Alexey Mitev,
Durgpal Singh, Tolga
Evcimen

61 Functional Programming
Andrei Epure, Boggin,
Botond Balázs, richard

62 Garbage Collector in .Net

Andrei Rînea, da_sann,
Eamon Charles, J3soon,
Luke Ryan, Squidward,
Suren Srapyan

63 Generating Random Numbers in C#
A. Can Aydemir, Adi
Lester, Alexander Mandt
, DLeh, J3soon, Rob

https://riptutorial.com/ 935

https://riptutorial.com/contributor/6170109/prashanth-benny
https://riptutorial.com/contributor/4484822/qop
https://riptutorial.com/contributor/2610249/raidri
https://riptutorial.com/contributor/6025198/reddy
https://riptutorial.com/contributor/6620084/reeven
https://riptutorial.com/contributor/10136/ricardo-amores
https://riptutorial.com/contributor/67392/richard
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/2884225/ryan-hilbert
https://riptutorial.com/contributor/2884225/ryan-hilbert
https://riptutorial.com/contributor/4320665/ryanyuyu
https://riptutorial.com/contributor/6301627/s--tarik-cetin
https://riptutorial.com/contributor/6301627/s--tarik-cetin
https://riptutorial.com/contributor/74015/sam-axe
https://riptutorial.com/contributor/493122/shoe
https://riptutorial.com/contributor/5550507/sibeesh-venu
https://riptutorial.com/contributor/343299/solidcell
https://riptutorial.com/contributor/5024822/sondre
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/869576/steven
https://riptutorial.com/contributor/266535/styfle
https://riptutorial.com/contributor/4808250/sysvoid
https://riptutorial.com/contributor/1108505/tanner-swett
https://riptutorial.com/contributor/6620916/timothy-rascher
https://riptutorial.com/contributor/6620916/timothy-rascher
https://riptutorial.com/contributor/1936841/tkharaishvili
https://riptutorial.com/contributor/1401886/t-moty
https://riptutorial.com/contributor/54527/tobbe
https://riptutorial.com/contributor/5614523/tushar-patel
https://riptutorial.com/contributor/5614523/tushar-patel
https://riptutorial.com/contributor/2818869/unarist
https://riptutorial.com/contributor/3185569/user3185569
https://riptutorial.com/contributor/3444112/user40521
https://riptutorial.com/contributor/1737909/ven
https://riptutorial.com/contributor/919495/victor-tomaili
https://riptutorial.com/contributor/4572/viggity
https://riptutorial.com/contributor/442351/banksysan
https://riptutorial.com/contributor/1379664/blachshma
https://riptutorial.com/contributor/3449556/dbmuller
https://riptutorial.com/contributor/7310927/djcubed
https://riptutorial.com/contributor/4326253/feelbad-soussi-wolfgun-dz
https://riptutorial.com/contributor/4326253/feelbad-soussi-wolfgun-dz
https://riptutorial.com/contributor/1187795/intox
https://riptutorial.com/contributor/1061668/mikko-viitala
https://riptutorial.com/contributor/1074944/sender
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/1469980/tolga-evcimen
https://riptutorial.com/contributor/2422874/wasabi-fan
https://riptutorial.com/contributor/2422874/wasabi-fan
https://riptutorial.com/contributor/5024822/sondre
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis
https://riptutorial.com/contributor/5554372/valentin
https://riptutorial.com/contributor/3938395/adam
https://riptutorial.com/contributor/2870402/alexey-mitev
https://riptutorial.com/contributor/1759015/durgpal-singh
https://riptutorial.com/contributor/1469980/tolga-evcimen
https://riptutorial.com/contributor/1469980/tolga-evcimen
https://riptutorial.com/contributor/2261315/andrei-epure
https://riptutorial.com/contributor/444244/boggin
https://riptutorial.com/contributor/943102/botond-balazs
https://riptutorial.com/contributor/2958281/richard
https://riptutorial.com/contributor/1796/andrei-rinea
https://riptutorial.com/contributor/3928617/da-sann
https://riptutorial.com/contributor/6689617/eamon-charles
https://riptutorial.com/contributor/3917161/j3soon
https://riptutorial.com/contributor/657237/luke-ryan
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/5496973/suren-srapyan
https://riptutorial.com/contributor/3629505/a--can-aydemir
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/4896211/alexander-mandt
https://riptutorial.com/contributor/526704/dleh
https://riptutorial.com/contributor/3917161/j3soon
https://riptutorial.com/contributor/563532/rob

64 Generic Lambda Query Builder 4444, PedroSouki

65 Generics

AGB, andre_ss6, Ben
Aaronson, Benjamin
Hodgson, Benjol,
Bobson, Carsten,
darth_phoenixx,
dymanoid, Eamon
Charles, Ehsan Sajjad,
Gajendra, GregC, H.
Pauwelyn, ja72, Jim,
Kroltan, Matas
Vaitkevicius, mehmetgil,
meJustAndrew, Mord
Zuber, Mujassir Nasir,
Oly, Pavel Voronin,
Richa Garg, Sam, Sebi,
Sjoerd222888,
Theodoros
Chatzigiannakis,
user3185569, VictorB,
void, Wallace Zhang

66 Getting Started: Json with C#
Neo Vijay, Rob,
VitorCioletti

67 Guid

Bearington, Botond
Balázs, elibyy, Jonas S,
Osama AbuSitta,
Sherantha, TarkaDaal,
The_Outsider, Tim
Ebenezer, void

68
Handling FormatException when converting string to
other types

Rakitić, un-lucky

69 Hash Functions

Adi Lester, Callum
Watkins, EvenPrime,
ganchito55, Igor,
jHilscher, RamenChef,
ZenLulz

70
How to use C# Structs to create a Union type
(Similar to C Unions)

DLeh, Milton Hernandez,
Squidward, usr

71 ICloneable ja72, Rob

72 IComparable alex

https://riptutorial.com/ 936

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/4166211/pedrosouki
https://riptutorial.com/contributor/3159635/agb
https://riptutorial.com/contributor/2267418/andre-ss6
https://riptutorial.com/contributor/1366855/ben-aaronson
https://riptutorial.com/contributor/1366855/ben-aaronson
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/11410/benjol
https://riptutorial.com/contributor/298754/bobson
https://riptutorial.com/contributor/1254352/carsten
https://riptutorial.com/contributor/610404/darth-phoenixx
https://riptutorial.com/contributor/2846483/dymanoid
https://riptutorial.com/contributor/6689617/eamon-charles
https://riptutorial.com/contributor/6689617/eamon-charles
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/1590988/gajendra
https://riptutorial.com/contributor/90475/gregc
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/380384/ja72
https://riptutorial.com/contributor/2040068/jim
https://riptutorial.com/contributor/1045510/kroltan
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1780071/mehmetgil
https://riptutorial.com/contributor/6357360/mejustandrew
https://riptutorial.com/contributor/2523942/mord-zuber
https://riptutorial.com/contributor/2523942/mord-zuber
https://riptutorial.com/contributor/1122466/mujassir-nasir
https://riptutorial.com/contributor/5181199/oly
https://riptutorial.com/contributor/921054/pavel-voronin
https://riptutorial.com/contributor/5417658/richa-garg
https://riptutorial.com/contributor/2246344/sam
https://riptutorial.com/contributor/1463584/sebi
https://riptutorial.com/contributor/3737186/sjoerd222888
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis
https://riptutorial.com/contributor/3185569/user3185569
https://riptutorial.com/contributor/1541419/victorb
https://riptutorial.com/contributor/1029287/void
https://riptutorial.com/contributor/6627105/wallace-zhang
https://riptutorial.com/contributor/4972473/neo-vijay
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/7881582/vitorcioletti
https://riptutorial.com/contributor/1000737/bearington
https://riptutorial.com/contributor/943102/botond-balazs
https://riptutorial.com/contributor/943102/botond-balazs
https://riptutorial.com/contributor/925083/elibyy
https://riptutorial.com/contributor/1492826/jonas-s
https://riptutorial.com/contributor/3926461/osama-abusitta
https://riptutorial.com/contributor/5308318/sherantha
https://riptutorial.com/contributor/55155/tarkadaal
https://riptutorial.com/contributor/7793375/the-outsider
https://riptutorial.com/contributor/30273/tim-ebenezer
https://riptutorial.com/contributor/30273/tim-ebenezer
https://riptutorial.com/contributor/1029287/void
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/5195227/un-lucky
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/4415734/callum-watkins
https://riptutorial.com/contributor/4415734/callum-watkins
https://riptutorial.com/contributor/266562/evenprime
https://riptutorial.com/contributor/5684370/ganchito55
https://riptutorial.com/contributor/1260204/igor
https://riptutorial.com/contributor/2881450/jhilscher
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2780334/zenlulz
https://riptutorial.com/contributor/526704/dleh
https://riptutorial.com/contributor/6595463/milton-hernandez
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/122718/usr
https://riptutorial.com/contributor/380384/ja72
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/1445568/alex

73 IDisposable interface

Aaron Hudon, Adam,
BatteryBackupUnit, binki,
Bogdan Gavril, Bryan
Crosby, ChrisWue,
Dmitry Bychenko, Ehsan
Sajjad, H. Pauwelyn,
Jarrod Dixon, Josh
Peterson, Matas
Vaitkevicius, Maxime,
Nicholas Sizer,
OliPro007, Pavel
Mayorov, pinkfloydx33,
pyrocumulus,
RamenChef, Rob,
Thennarasan, Will Ray

74 IEnumerable

4444, Avia, Benjamin
Hodgson, Luke Ryan,
Olivier De Meulder,
The_Outsider

75 ILGenerator
Aleks Andreev,
thehennyy

76 Immutability
Boggin, Jon Schneider,
Oluwafemi, Tim
Ebenezer

77 Implementing Decorator Design Pattern Jan Bońkowski

78 Implementing Flyweight Design Pattern Jan Bońkowski

79 Import Google Contacts 4444, Supraj v

80 Including Font Resources Bales, Facebamm

81 Indexer
A_Arnold, Ehsan Sajjad,
jHilscher

Almir Vuk, andre_ss6,
Andrew Diamond,
Barathon, Ben Aaronson
, Ben Fogel, Benjol,
David L, deloreyk, Ehsan
Sajjad, harriyott, ja72,
Jon Ericson, Karthik,
Konamiman, MarcE,
Matas Vaitkevicius, Pete
Uh, Rion Williams,

82 Inheritance

https://riptutorial.com/ 937

https://riptutorial.com/contributor/459102/aaron-hudon
https://riptutorial.com/contributor/3938395/adam
https://riptutorial.com/contributor/684096/batterybackupunit
https://riptutorial.com/contributor/429091/binki
https://riptutorial.com/contributor/21634/bogdan-gavril
https://riptutorial.com/contributor/360944/bryan-crosby
https://riptutorial.com/contributor/360944/bryan-crosby
https://riptutorial.com/contributor/220986/chriswue
https://riptutorial.com/contributor/2319407/dmitry-bychenko
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/3/jarrod-dixon
https://riptutorial.com/contributor/381697/josh-peterson
https://riptutorial.com/contributor/381697/josh-peterson
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/2525304/maxime
https://riptutorial.com/contributor/242311/nicholas-sizer
https://riptutorial.com/contributor/5487099/olipro007
https://riptutorial.com/contributor/4340086/pavel-mayorov
https://riptutorial.com/contributor/4340086/pavel-mayorov
https://riptutorial.com/contributor/491907/pinkfloydx33
https://riptutorial.com/contributor/97000/pyrocumulus
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/6612972/thennarasan
https://riptutorial.com/contributor/4270650/will-ray
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/1565508/avia
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/657237/luke-ryan
https://riptutorial.com/contributor/1330328/olivier-de-meulder
https://riptutorial.com/contributor/7793375/the-outsider
https://riptutorial.com/contributor/4685428/aleks-andreev
https://riptutorial.com/contributor/4035472/thehennyy
https://riptutorial.com/contributor/444244/boggin
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/1753728/oluwafemi
https://riptutorial.com/contributor/30273/tim-ebenezer
https://riptutorial.com/contributor/30273/tim-ebenezer
https://riptutorial.com/contributor/2672386/jan-bonkowski
https://riptutorial.com/contributor/2672386/jan-bonkowski
https://riptutorial.com/contributor/2672386/jan-bonkowski
https://riptutorial.com/contributor/2672386/jan-bonkowski
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/4449101/supraj-v
https://riptutorial.com/contributor/5112579/bales
https://riptutorial.com/contributor/5182450/facebamm
https://riptutorial.com/contributor/5050431/a-arnold
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/2881450/jhilscher
https://riptutorial.com/contributor/5165961/almir-vuk
https://riptutorial.com/contributor/2267418/andre-ss6
https://riptutorial.com/contributor/2921949/andrew-diamond
https://riptutorial.com/contributor/3948904/barathon
https://riptutorial.com/contributor/1366855/ben-aaronson
https://riptutorial.com/contributor/1399195/ben-fogel
https://riptutorial.com/contributor/11410/benjol
https://riptutorial.com/contributor/1165998/david-l
https://riptutorial.com/contributor/1148915/deloreyk
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/5744/harriyott
https://riptutorial.com/contributor/380384/ja72
https://riptutorial.com/contributor/1438/jon-ericson
https://riptutorial.com/contributor/1210896/karthik
https://riptutorial.com/contributor/4574/konamiman
https://riptutorial.com/contributor/7262/marce
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1793785/pete-uh
https://riptutorial.com/contributor/1793785/pete-uh
https://riptutorial.com/contributor/557445/rion-williams

Robert Columbia, Steven
, Suren Srapyan,
VirusParadox, Yehuda
Shapira

83 Initializing Properties

Blorgbeard, hatchet,
jaycer, Michael Sorens,
Parth Patel, Stephen
Leppik

84 INotifyPropertyChanged interface
mbrdev, Stephen Leppik,
Vlad

85 Interfaces

Avia, Botond Balázs,
CyberFox, harriyott,
hellyale, Jeremy Kato,
MarcE, MSE, PMF,
Preston, Sigh,
Sometowngeek, Stagg,
Steven, user2441511

86 Interoperability

Balen Danny, Benjamin
Hodgson, Bovaz, Craig
Brett, Dean Van
Greunen, Gajendra, Jan
Bońkowski, Kimmax,
Marc Wittmann, Martin,
Pavel Durov, René Vogt,
RomCoo, Squidward

87 IQueryable interface
lucavgobbi, Michiel van
Oosterhout, RamenChef,
Rob

88 Iterators
Botond Balázs, Lijo,
Nate Barbettini, Tagc

4444, A_Arnold, Aaron
Hudon, Ade Stringer, Adi
Lester, Aditya Korti,
Adriano Repetti, AJ.,
Akshay Anand, Alex
Filatov, Alexander Pacha
, Amir Pourmand, Andrei
Rînea, Andrew Diamond,
Angela, Anna, Avia, Bart
, Ben, Ben Fogel,
Benjamin Hodgson,

89 Keywords

https://riptutorial.com/ 938

https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/869576/steven
https://riptutorial.com/contributor/5496973/suren-srapyan
https://riptutorial.com/contributor/3011017/virusparadox
https://riptutorial.com/contributor/954725/yehuda-shapira
https://riptutorial.com/contributor/954725/yehuda-shapira
https://riptutorial.com/contributor/369/blorgbeard
https://riptutorial.com/contributor/834261/hatchet
https://riptutorial.com/contributor/4463445/jaycer
https://riptutorial.com/contributor/115690/michael-sorens
https://riptutorial.com/contributor/4414656/parth-patel
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6747696/mbrdev
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/276994/vlad
https://riptutorial.com/contributor/1565508/avia
https://riptutorial.com/contributor/943102/botond-balazs
https://riptutorial.com/contributor/1148434/cyberfox
https://riptutorial.com/contributor/5744/harriyott
https://riptutorial.com/contributor/4645236/hellyale
https://riptutorial.com/contributor/6352535/jeremy-kato
https://riptutorial.com/contributor/7262/marce
https://riptutorial.com/contributor/3008260/mse
https://riptutorial.com/contributor/2905768/pmf
https://riptutorial.com/contributor/3906487/preston
https://riptutorial.com/contributor/1866/sigh
https://riptutorial.com/contributor/3993154/sometowngeek
https://riptutorial.com/contributor/214518/stagg
https://riptutorial.com/contributor/869576/steven
https://riptutorial.com/contributor/2441511/user2441511
https://riptutorial.com/contributor/5860544/balen-danny
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/2669614/bovaz
https://riptutorial.com/contributor/718940/craig-brett
https://riptutorial.com/contributor/718940/craig-brett
https://riptutorial.com/contributor/6651840/dean-van-greunen
https://riptutorial.com/contributor/6651840/dean-van-greunen
https://riptutorial.com/contributor/1590988/gajendra
https://riptutorial.com/contributor/2672386/jan-bonkowski
https://riptutorial.com/contributor/2672386/jan-bonkowski
https://riptutorial.com/contributor/2672386/jan-bonkowski
https://riptutorial.com/contributor/2373114/kimmax
https://riptutorial.com/contributor/2551007/marc-wittmann
https://riptutorial.com/contributor/108234/martin
https://riptutorial.com/contributor/5321395/pavel-durov
https://riptutorial.com/contributor/5528593/rene-vogt
https://riptutorial.com/contributor/5867869/romcoo
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/6580210/lucavgobbi
https://riptutorial.com/contributor/4830/michiel-van-oosterhout
https://riptutorial.com/contributor/4830/michiel-van-oosterhout
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/943102/botond-balazs
https://riptutorial.com/contributor/3065232/lijo
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/1636276/tagc
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/5050431/a-arnold
https://riptutorial.com/contributor/459102/aaron-hudon
https://riptutorial.com/contributor/459102/aaron-hudon
https://riptutorial.com/contributor/942330/ade-stringer
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/4635947/aditya-korti
https://riptutorial.com/contributor/1207195/adriano-repetti
https://riptutorial.com/contributor/27457/aj-
https://riptutorial.com/contributor/2797802/akshay-anand
https://riptutorial.com/contributor/2173016/alex-filatov
https://riptutorial.com/contributor/2173016/alex-filatov
https://riptutorial.com/contributor/448357/alexander-pacha
https://riptutorial.com/contributor/4201765/amir-pourmand
https://riptutorial.com/contributor/1796/andrei-rinea
https://riptutorial.com/contributor/1796/andrei-rinea
https://riptutorial.com/contributor/2921949/andrew-diamond
https://riptutorial.com/contributor/3815094/angela
https://riptutorial.com/contributor/1236868/anna
https://riptutorial.com/contributor/1565508/avia
https://riptutorial.com/contributor/318501/bart
https://riptutorial.com/contributor/397368/ben
https://riptutorial.com/contributor/1399195/ben-fogel
https://riptutorial.com/contributor/1523776/benjamin-hodgson

Bjørn-Roger Kringsjå,
Botz3000, Brandon,
brijber, BrunoLM,
BunkerMentality,
BurnsBA, bwegs, Callum
Watkins, Chris, Chris
Akridge, Chris H., Chris
Skardon, ChrisPatrick,
Chuu, Cihan Yakar, cl3m
, Craig Brett, Daniel,
Daniel J.G., Danny Chen
, Darren Davies, Daryl,
dasblinkenlight, David,
David G., David L, David
Pine, DAXaholic,
deadManN,
DeanoMachino,
digitlworld, Dmitry
Bychenko, dotctor,
DPenner1, Drew
Kennedy, DrewJordan,
Ehsan Sajjad, EJoshuaS
, Elad Lachmi, Eric
Lippert, EvenPrime, F_V,
Felix, fernacolo,
Fernando Matsumoto,
forsvarir, Francis Lord,
Gavin Greenwalt, gdoron
, George Duckett, Gilad
Naaman, goric, greatwolf
, H. Pauwelyn,
Happypig375, Icemanind
, Jack, Jacob Linney,
Jake, James Hughes,
Jcoffman, Jeppe Stig
Nielsen, jHilscher, João
Lourenço, John Slegers,
JohnD, Jon Schneider,
Jon Skeet,
JoshuaBehrens, Kilazur,
Kimmax, Kirk Woll, Kit,
Kjartan, kjhf, Konamiman
, Kyle Trauberman,
kyurthich, levininja,
lokusking, Mafii, Mamta
D, Mango Wong, MarcE,
MarcinJuraszek, Marco

https://riptutorial.com/ 939

https://riptutorial.com/contributor/1842065/bjorn-roger-kringsja
https://riptutorial.com/contributor/93652/botz3000
https://riptutorial.com/contributor/2584636/brandon
https://riptutorial.com/contributor/2772050/brijber
https://riptutorial.com/contributor/340760/brunolm
https://riptutorial.com/contributor/2039359/bunkermentality
https://riptutorial.com/contributor/1462295/burnsba
https://riptutorial.com/contributor/745750/bwegs
https://riptutorial.com/contributor/4415734/callum-watkins
https://riptutorial.com/contributor/4415734/callum-watkins
https://riptutorial.com/contributor/1068189/chris
https://riptutorial.com/contributor/2709212/chris-akridge
https://riptutorial.com/contributor/2709212/chris-akridge
https://riptutorial.com/contributor/6179247/chris-h-
https://riptutorial.com/contributor/2266/chris-skardon
https://riptutorial.com/contributor/2266/chris-skardon
https://riptutorial.com/contributor/1216172/chrispatrick
https://riptutorial.com/contributor/459975/chuu
https://riptutorial.com/contributor/168941/cihan-yakar
https://riptutorial.com/contributor/849105/cl3m
https://riptutorial.com/contributor/718940/craig-brett
https://riptutorial.com/contributor/4569506/daniel
https://riptutorial.com/contributor/1836935/daniel-j-g-
https://riptutorial.com/contributor/323924/danny-chen
https://riptutorial.com/contributor/1280410/darren-davies
https://riptutorial.com/contributor/204285/daryl
https://riptutorial.com/contributor/335858/dasblinkenlight
https://riptutorial.com/contributor/1467396/david
https://riptutorial.com/contributor/3838549/david-g-
https://riptutorial.com/contributor/1165998/david-l
https://riptutorial.com/contributor/2410379/david-pine
https://riptutorial.com/contributor/2410379/david-pine
https://riptutorial.com/contributor/1830293/daxaholic
https://riptutorial.com/contributor/1260751/deadmann
https://riptutorial.com/contributor/3444090/deanomachino
https://riptutorial.com/contributor/603523/digitlworld
https://riptutorial.com/contributor/2319407/dmitry-bychenko
https://riptutorial.com/contributor/2319407/dmitry-bychenko
https://riptutorial.com/contributor/3970411/dotctor
https://riptutorial.com/contributor/1607043/dpenner1
https://riptutorial.com/contributor/4204026/drew-kennedy
https://riptutorial.com/contributor/4204026/drew-kennedy
https://riptutorial.com/contributor/3845456/drewjordan
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/4032703/ejoshuas
https://riptutorial.com/contributor/625242/elad-lachmi
https://riptutorial.com/contributor/88656/eric-lippert
https://riptutorial.com/contributor/88656/eric-lippert
https://riptutorial.com/contributor/266562/evenprime
https://riptutorial.com/contributor/6033166/f-v
https://riptutorial.com/contributor/1107074/felix
https://riptutorial.com/contributor/414058/fernacolo
https://riptutorial.com/contributor/5119090/fernando-matsumoto
https://riptutorial.com/contributor/592182/forsvarir
https://riptutorial.com/contributor/4064630/francis-lord
https://riptutorial.com/contributor/3862819/gavin-greenwalt
https://riptutorial.com/contributor/601179/gdoron
https://riptutorial.com/contributor/593627/george-duckett
https://riptutorial.com/contributor/389222/gilad-naaman
https://riptutorial.com/contributor/389222/gilad-naaman
https://riptutorial.com/contributor/940/goric
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/5429648/happypig375
https://riptutorial.com/contributor/98094/icemanind
https://riptutorial.com/contributor/2373403/jack
https://riptutorial.com/contributor/4381800/jacob-linney
https://riptutorial.com/contributor/5351033/jake
https://riptutorial.com/contributor/4700841/james-hughes
https://riptutorial.com/contributor/430893/jcoffman
https://riptutorial.com/contributor/1336654/jeppe-stig-nielsen
https://riptutorial.com/contributor/1336654/jeppe-stig-nielsen
https://riptutorial.com/contributor/2881450/jhilscher
https://riptutorial.com/contributor/579576/joao-lourenco
https://riptutorial.com/contributor/579576/joao-lourenco
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/343911/johnd
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/22656/jon-skeet
https://riptutorial.com/contributor/1203643/joshuabehrens
https://riptutorial.com/contributor/3283203/kilazur
https://riptutorial.com/contributor/2373114/kimmax
https://riptutorial.com/contributor/189950/kirk-woll
https://riptutorial.com/contributor/64348/kit
https://riptutorial.com/contributor/336648/kjartan
https://riptutorial.com/contributor/2983132/kjhf
https://riptutorial.com/contributor/4574/konamiman
https://riptutorial.com/contributor/21461/kyle-trauberman
https://riptutorial.com/contributor/766040/kyurthich
https://riptutorial.com/contributor/2539607/levininja
https://riptutorial.com/contributor/4558029/lokusking
https://riptutorial.com/contributor/5962841/mafii
https://riptutorial.com/contributor/409265/mamta-d
https://riptutorial.com/contributor/409265/mamta-d
https://riptutorial.com/contributor/5137403/mango-wong
https://riptutorial.com/contributor/7262/marce
https://riptutorial.com/contributor/1163867/marcinjuraszek
https://riptutorial.com/contributor/2002588/marco-scabbiolo

Scabbiolo, Martin, Martin
Klinke, Martin Zikmund,
Matas Vaitkevicius,
Mateen Ulhaq, Matěj
Pokorný, Mat's Mug,
Matthew Whited, Max,
Maximilian Ast, Medeni
Baykal, Michael
Mairegger, Michael
Richardson, Michel
Keijzers, Mihail Shishkov
, mike z, Mr.Mindor,
Myster, Nicholas Sizer,
Nicholaus Lawson, Nick
Cox, Nico, nik,
niksofteng,
NotEnoughData,
numaroth, Nuri Tasdemir
, pascalhein, Pavel
Mayorov, Pavel Pája
Halbich, Pavel
Yermalovich, Pavieł
Kraskoŭski, Paweł Mach,
petelids, Peter Gordon,
Peter L., PMF, Rakitić,
RamenChef, ranieuwe,
Razan, RBT, Renan
Gemignani, Ringil, Rion
Williams, Rob, Robert
Columbia, ro
binmckenzie, RobSiklos,
Romain Vincent,
RomCoo, ryanyuyu, Sain
Pradeep, Sam, Sándor
Mátyás Márton, Sanjay
Radadiya, Scott,
sebingel, Skipper,
Sobieck, sohnryang,
somebody, Sondre,
Squidward, Stephen
Leppik, Sujay Sarma,
Suyash Kumar Singh,
svick, TarkaDaal,
th1rdey3, Thaoden,
Theodoros
Chatzigiannakis,

https://riptutorial.com/ 940

https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/108234/martin
https://riptutorial.com/contributor/1793/martin-klinke
https://riptutorial.com/contributor/1793/martin-klinke
https://riptutorial.com/contributor/732221/martin-zikmund
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/365102/mateen-ulhaq
https://riptutorial.com/contributor/2438165/matej-pokorny
https://riptutorial.com/contributor/2438165/matej-pokorny
https://riptutorial.com/contributor/2438165/matej-pokorny
https://riptutorial.com/contributor/1188513/mat-s-mug
https://riptutorial.com/contributor/89586/matthew-whited
https://riptutorial.com/contributor/189572/max
https://riptutorial.com/contributor/1466583/maximilian-ast
https://riptutorial.com/contributor/438570/medeni-baykal
https://riptutorial.com/contributor/438570/medeni-baykal
https://riptutorial.com/contributor/2964291/michael-mairegger
https://riptutorial.com/contributor/2964291/michael-mairegger
https://riptutorial.com/contributor/1812515/michael-richardson
https://riptutorial.com/contributor/1812515/michael-richardson
https://riptutorial.com/contributor/1187220/michel-keijzers
https://riptutorial.com/contributor/1187220/michel-keijzers
https://riptutorial.com/contributor/795797/mihail-shishkov
https://riptutorial.com/contributor/517852/mike-z
https://riptutorial.com/contributor/391656/mr-mindor
https://riptutorial.com/contributor/74449/myster
https://riptutorial.com/contributor/242311/nicholas-sizer
https://riptutorial.com/contributor/4316312/nicholaus-lawson
https://riptutorial.com/contributor/56151/nick-cox
https://riptutorial.com/contributor/56151/nick-cox
https://riptutorial.com/contributor/6469077/nico
https://riptutorial.com/contributor/1731397/nik
https://riptutorial.com/contributor/1440057/niksofteng
https://riptutorial.com/contributor/4149474/notenoughdata
https://riptutorial.com/contributor/2460971/numaroth
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/1652345/pascalhein
https://riptutorial.com/contributor/4340086/pavel-mayorov
https://riptutorial.com/contributor/4340086/pavel-mayorov
https://riptutorial.com/contributor/2916232/pavel-paja-halbich
https://riptutorial.com/contributor/2916232/pavel-paja-halbich
https://riptutorial.com/contributor/1389423/pavel-yermalovich
https://riptutorial.com/contributor/1389423/pavel-yermalovich
https://riptutorial.com/contributor/5378924/paviel-kraskouski
https://riptutorial.com/contributor/5378924/paviel-kraskouski
https://riptutorial.com/contributor/5378924/paviel-kraskouski
https://riptutorial.com/contributor/3887635/pawel-mach
https://riptutorial.com/contributor/3887635/pawel-mach
https://riptutorial.com/contributor/3791802/petelids
https://riptutorial.com/contributor/1476989/peter-gordon
https://riptutorial.com/contributor/6085569/peter-l-
https://riptutorial.com/contributor/2905768/pmf
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/543577/ranieuwe
https://riptutorial.com/contributor/2794064/razan
https://riptutorial.com/contributor/465053/rbt
https://riptutorial.com/contributor/1036496/renan-gemignani
https://riptutorial.com/contributor/1036496/renan-gemignani
https://riptutorial.com/contributor/4882032/ringil
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/446446/ro-binmckenzie
https://riptutorial.com/contributor/446446/ro-binmckenzie
https://riptutorial.com/contributor/446446/ro-binmckenzie
https://riptutorial.com/contributor/270348/robsiklos
https://riptutorial.com/contributor/6219628/romain-vincent
https://riptutorial.com/contributor/5867869/romcoo
https://riptutorial.com/contributor/4320665/ryanyuyu
https://riptutorial.com/contributor/795683/sain-pradeep
https://riptutorial.com/contributor/795683/sain-pradeep
https://riptutorial.com/contributor/2246344/sam
https://riptutorial.com/contributor/4353712/sandor-matyas-marton
https://riptutorial.com/contributor/4353712/sandor-matyas-marton
https://riptutorial.com/contributor/6536418/sanjay-radadiya
https://riptutorial.com/contributor/6536418/sanjay-radadiya
https://riptutorial.com/contributor/382456/scott
https://riptutorial.com/contributor/4663866/sebingel
https://riptutorial.com/contributor/4241435/skipper
https://riptutorial.com/contributor/2740086/sobieck
https://riptutorial.com/contributor/5769640/sohnryang
https://riptutorial.com/contributor/3323231/somebody
https://riptutorial.com/contributor/5024822/sondre
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/3624833/sujay-sarma
https://riptutorial.com/contributor/2957758/suyash-kumar-singh
https://riptutorial.com/contributor/41071/svick
https://riptutorial.com/contributor/55155/tarkadaal
https://riptutorial.com/contributor/1682148/th1rdey3
https://riptutorial.com/contributor/3129340/thaoden
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis

Thorsten Dittmar, Tim
Ebenezer, titol, tonirush,
topolm, Tot Zam,
user3185569, Valentin,
vcsjones, void, Wasabi
Fan, Wavum,
Woodchipper,
Xandrmoro, Zaheer Ul
Hassan, Zalomon, Zohar
Peled

90 Lambda expressions

Andrei Rînea, Benjamin
Hodgson, Benjol, David
L, David Pine, Federico
Allocati, Feelbad Soussi
Wolfgun DZ, Fernando
Matsumoto, H. Pauwelyn
, haim770, Matas
Vaitkevicius, Matt
Sherman, Michael
Mairegger, Michael
Richardson,
NotEnoughData, Oly,
RubberDuck, S.L. Barth,
Sunny R Gupta, Tagc,
Thriggle

91 Lambda Expressions H. Pauwelyn, Oly

Adam Clifford, Ade
Stringer, Adi Lester, Adil
Mammadov, Akshay
Anand, Aleksey L.,
Alexey Koptyaev, AMW,
anaximander, Andrew
Piliser, Ankit Vijay,
Aphelion, bbonch,
Benjamin Hodgson,
bmadtiger, BOBS,
BrunoLM, Bᴜᴅɪ,
bumbeishvili, callisto,
cbale, Chad McGrath,
Chris, Chris H., coyote,
Daniel Argüelles, Daniel
Corzo, darcyq, David,
David G., David Pine,
DavidG, die maus,

92 LINQ Queries

https://riptutorial.com/ 941

https://riptutorial.com/contributor/117362/thorsten-dittmar
https://riptutorial.com/contributor/30273/tim-ebenezer
https://riptutorial.com/contributor/30273/tim-ebenezer
https://riptutorial.com/contributor/4193860/titol
https://riptutorial.com/contributor/4519426/tonirush
https://riptutorial.com/contributor/6029659/topolm
https://riptutorial.com/contributor/4660897/tot-zam
https://riptutorial.com/contributor/3185569/user3185569
https://riptutorial.com/contributor/5554372/valentin
https://riptutorial.com/contributor/492405/vcsjones
https://riptutorial.com/contributor/1029287/void
https://riptutorial.com/contributor/2422874/wasabi-fan
https://riptutorial.com/contributor/2422874/wasabi-fan
https://riptutorial.com/contributor/5967068/wavum
https://riptutorial.com/contributor/1988163/woodchipper
https://riptutorial.com/contributor/2905103/xandrmoro
https://riptutorial.com/contributor/6585843/zaheer-ul-hassan
https://riptutorial.com/contributor/6585843/zaheer-ul-hassan
https://riptutorial.com/contributor/4647316/zalomon
https://riptutorial.com/contributor/3094533/zohar-peled
https://riptutorial.com/contributor/3094533/zohar-peled
https://riptutorial.com/contributor/1796/andrei-rinea
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/11410/benjol
https://riptutorial.com/contributor/1165998/david-l
https://riptutorial.com/contributor/1165998/david-l
https://riptutorial.com/contributor/2410379/david-pine
https://riptutorial.com/contributor/4262449/federico-allocati
https://riptutorial.com/contributor/4262449/federico-allocati
https://riptutorial.com/contributor/4326253/feelbad-soussi-wolfgun-dz
https://riptutorial.com/contributor/4326253/feelbad-soussi-wolfgun-dz
https://riptutorial.com/contributor/5119090/fernando-matsumoto
https://riptutorial.com/contributor/5119090/fernando-matsumoto
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/1625737/haim770
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/70613/matt-sherman
https://riptutorial.com/contributor/70613/matt-sherman
https://riptutorial.com/contributor/2964291/michael-mairegger
https://riptutorial.com/contributor/2964291/michael-mairegger
https://riptutorial.com/contributor/1812515/michael-richardson
https://riptutorial.com/contributor/1812515/michael-richardson
https://riptutorial.com/contributor/4149474/notenoughdata
https://riptutorial.com/contributor/5181199/oly
https://riptutorial.com/contributor/3198973/rubberduck
https://riptutorial.com/contributor/812149/s-l--barth
https://riptutorial.com/contributor/1477051/sunny-r-gupta
https://riptutorial.com/contributor/1636276/tagc
https://riptutorial.com/contributor/2701677/thriggle
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/5181199/oly
https://riptutorial.com/contributor/4559303/adam-clifford
https://riptutorial.com/contributor/942330/ade-stringer
https://riptutorial.com/contributor/942330/ade-stringer
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/1380428/adil-mammadov
https://riptutorial.com/contributor/1380428/adil-mammadov
https://riptutorial.com/contributor/2797802/akshay-anand
https://riptutorial.com/contributor/2797802/akshay-anand
https://riptutorial.com/contributor/1113002/aleksey-l-
https://riptutorial.com/contributor/5123592/alexey--koptyaev
https://riptutorial.com/contributor/6647009/amw
https://riptutorial.com/contributor/1448943/anaximander
https://riptutorial.com/contributor/879997/andrew-piliser
https://riptutorial.com/contributor/879997/andrew-piliser
https://riptutorial.com/contributor/921127/ankit-vijay
https://riptutorial.com/contributor/296526/aphelion
https://riptutorial.com/contributor/1513020/bbonch
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/3803708/bmadtiger
https://riptutorial.com/contributor/3206570/bobs
https://riptutorial.com/contributor/340760/brunolm
https://riptutorial.com/contributor/4607317/b---
https://riptutorial.com/contributor/4607317/b---
https://riptutorial.com/contributor/5369006/bumbeishvili
https://riptutorial.com/contributor/67249/callisto
https://riptutorial.com/contributor/3011495/cbale
https://riptutorial.com/contributor/828624/chad-mcgrath
https://riptutorial.com/contributor/536950/chris
https://riptutorial.com/contributor/6179247/chris-h-
https://riptutorial.com/contributor/6624788/coyote
https://riptutorial.com/contributor/710162/daniel-arguelles
https://riptutorial.com/contributor/2026740/daniel-corzo
https://riptutorial.com/contributor/2026740/daniel-corzo
https://riptutorial.com/contributor/740472/darcyq
https://riptutorial.com/contributor/1467396/david
https://riptutorial.com/contributor/3838549/david-g-
https://riptutorial.com/contributor/2410379/david-pine
https://riptutorial.com/contributor/1663001/davidg
https://riptutorial.com/contributor/4697655/die-maus

Diligent Key Presser,
Dmitry Bychenko, Dmitry
Egorov, dotctor, Ehsan
Sajjad, Erick, Erik
Schierboom, EvenPrime,
fabriciorissetto, faso,
Finickyflame, Florin M,
forsvarir, fubo,
gbellmann, Gene, Gert
Arnold, Gilad Green, H.
Pauwelyn, Hari Prasad,
hellyale, HimBromBeere,
hWright, iliketocode,
Ioannis Karadimas,
Jagadisha B S, James
Ellis-Jones, jao,
jiaweizhang, Jodrell, Jon
Bates, Jon G, Jon
Schneider, Jonas S,
karaken12, KevinM,
Koopakiller, leppie, LINQ
, Lohitha Palagiri,
ltiveron, Mafii, Martin
Zikmund, Matas
Vaitkevicius, Mateen
Ulhaq, Matt, Maxime,
mburleigh, Meloviz,
Mikko Viitala,
Mohammad Dehghan,
mok, Nate Barbettini,
Neel, Neha Jain, Néstor
Sánchez A., Nico, Noctis
, Pavel Mayorov, Pavel
Yermalovich, Paweł
Hemperek, Pedro, Phuc
Nguyen, pinkfloydx33,
przno, qJake, Racil Hilan
, rdans, Rémi, Rion
Williams, rjdevereux,
RobPethi, Ryan Abbott,
S. Rangeley, S.Akbari,
S.L. Barth, Salvador
Rubio Martinez, Sanjay
Radadiya, Satish Yadav,
sebingel, Sergio
Domínguez, SilentCoder,
Sivanantham Padikkasu,

https://riptutorial.com/ 942

https://riptutorial.com/contributor/3909293/diligent-key-presser
https://riptutorial.com/contributor/2319407/dmitry-bychenko
https://riptutorial.com/contributor/4295017/dmitry-egorov
https://riptutorial.com/contributor/4295017/dmitry-egorov
https://riptutorial.com/contributor/3970411/dotctor
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/8697/erick
https://riptutorial.com/contributor/2071395/erik-schierboom
https://riptutorial.com/contributor/2071395/erik-schierboom
https://riptutorial.com/contributor/266562/evenprime
https://riptutorial.com/contributor/890890/fabriciorissetto
https://riptutorial.com/contributor/2814905/faso
https://riptutorial.com/contributor/1922117/finickyflame
https://riptutorial.com/contributor/5077468/florin-m
https://riptutorial.com/contributor/592182/forsvarir
https://riptutorial.com/contributor/1315444/fubo
https://riptutorial.com/contributor/3465108/gbellmann
https://riptutorial.com/contributor/6176289/gene
https://riptutorial.com/contributor/861716/gert-arnold
https://riptutorial.com/contributor/861716/gert-arnold
https://riptutorial.com/contributor/6400526/gilad-green
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/4422347/hari-prasad
https://riptutorial.com/contributor/4645236/hellyale
https://riptutorial.com/contributor/2528063/himbrombeere
https://riptutorial.com/contributor/1788742/hwright
https://riptutorial.com/contributor/3739391/iliketocode
https://riptutorial.com/contributor/366313/ioannis-karadimas
https://riptutorial.com/contributor/1645454/jagadisha-b-s
https://riptutorial.com/contributor/76814/james-ellis-jones
https://riptutorial.com/contributor/76814/james-ellis-jones
https://riptutorial.com/contributor/106866/jao
https://riptutorial.com/contributor/4926126/jiaweizhang
https://riptutorial.com/contributor/659190/jodrell
https://riptutorial.com/contributor/371045/jon-bates
https://riptutorial.com/contributor/371045/jon-bates
https://riptutorial.com/contributor/2541934/jon-g
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/1492826/jonas-s
https://riptutorial.com/contributor/920242/karaken12
https://riptutorial.com/contributor/1686779/kevinm
https://riptutorial.com/contributor/1623754/koopakiller
https://riptutorial.com/contributor/15541/leppie
https://riptutorial.com/contributor/4190610/linq
https://riptutorial.com/contributor/5011068/lohitha-palagiri
https://riptutorial.com/contributor/3177711/ltiveron
https://riptutorial.com/contributor/5962841/mafii
https://riptutorial.com/contributor/732221/martin-zikmund
https://riptutorial.com/contributor/732221/martin-zikmund
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/365102/mateen-ulhaq
https://riptutorial.com/contributor/365102/mateen-ulhaq
https://riptutorial.com/contributor/1016343/matt
https://riptutorial.com/contributor/2525304/maxime
https://riptutorial.com/contributor/2326678/mburleigh
https://riptutorial.com/contributor/3553128/meloviz
https://riptutorial.com/contributor/1061668/mikko-viitala
https://riptutorial.com/contributor/1174942/mohammad-dehghan
https://riptutorial.com/contributor/3274830/mok
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/5651109/neel
https://riptutorial.com/contributor/5466575/neha-jain
https://riptutorial.com/contributor/183678/nestor-sanchez-a-
https://riptutorial.com/contributor/183678/nestor-sanchez-a-
https://riptutorial.com/contributor/6469077/nico
https://riptutorial.com/contributor/1698987/noctis
https://riptutorial.com/contributor/4340086/pavel-mayorov
https://riptutorial.com/contributor/1389423/pavel-yermalovich
https://riptutorial.com/contributor/1389423/pavel-yermalovich
https://riptutorial.com/contributor/5501613/pawel-hemperek
https://riptutorial.com/contributor/5501613/pawel-hemperek
https://riptutorial.com/contributor/5501613/pawel-hemperek
https://riptutorial.com/contributor/11099/pedro
https://riptutorial.com/contributor/2593799/phuc-nguyen
https://riptutorial.com/contributor/2593799/phuc-nguyen
https://riptutorial.com/contributor/491907/pinkfloydx33
https://riptutorial.com/contributor/1464298/przno
https://riptutorial.com/contributor/334053/qjake
https://riptutorial.com/contributor/3215948/racil-hilan
https://riptutorial.com/contributor/2617732/rdans
https://riptutorial.com/contributor/2145522/remi
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/74711/rjdevereux
https://riptutorial.com/contributor/4818089/robpethi
https://riptutorial.com/contributor/27908/ryan-abbott
https://riptutorial.com/contributor/5549892/s--rangeley
https://riptutorial.com/contributor/2946329/s-akbari
https://riptutorial.com/contributor/812149/s-l--barth
https://riptutorial.com/contributor/5571927/salvador-rubio-martinez
https://riptutorial.com/contributor/5571927/salvador-rubio-martinez
https://riptutorial.com/contributor/6536418/sanjay-radadiya
https://riptutorial.com/contributor/6536418/sanjay-radadiya
https://riptutorial.com/contributor/2525604/satish-yadav
https://riptutorial.com/contributor/4663866/sebingel
https://riptutorial.com/contributor/5575747/sergio-dominguez
https://riptutorial.com/contributor/5575747/sergio-dominguez
https://riptutorial.com/contributor/2820409/silentcoder
https://riptutorial.com/contributor/3615796/sivanantham-padikkasu

slawekwin, Sondre,
Squidward, Stephen
Leppik, Steve Trout,
Tamir Vered, techspider,
teo van kot, th1rdey3,
Theodoros
Chatzigiannakis, Tim Iles
, Tim S. Van Haren,
Tobbe, Tom, Travis J,
tungns304, Tushar patel,
user1304444,
user3185569, Valentin,
varocarbas, VictorB,
Vitaliy Fedorchenko,
vivek nuna, void, wali,
wertzui, WMios,
Xiaoy312, Yaakov Ellis,
Zev Spitz

93 Linq to Objects

brijber, Christian
Gollhardt, FortyTwo,
Kevin Green, Raphael
Pantaleão, Simon
Halsey, Tanveer Badar

94 LINQ to XML
Denis Elkhov, Stephen
Leppik, Uali

95 Literals
jaycer, NotEnoughData,
Racil Hilan

Aaron Hudon, Alexey
Groshev, Andrei Rînea,
Benjamin Hodgson,
Botond Balázs,
Christopher Currens,
Cihan Yakar, David Ben
Knoble, Denis Elkhov,
Diligent Key Presser,
George Duckett, George
Polevoy, Jargon, Jasmin
Solanki, Jivan, Mark
Shevchenko, Matas
Vaitkevicius, Mikko
Viitala, Nuri Tasdemir,
Oluwafemi, Pavel
Mayorov, Richard, Rob,
Scott Hannen,

96 Lock Statement

https://riptutorial.com/ 943

https://riptutorial.com/contributor/872363/slawekwin
https://riptutorial.com/contributor/5024822/sondre
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/148260/steve-trout
https://riptutorial.com/contributor/3256506/tamir-vered
https://riptutorial.com/contributor/2169261/techspider
https://riptutorial.com/contributor/1849444/teo-van-kot
https://riptutorial.com/contributor/1682148/th1rdey3
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis
https://riptutorial.com/contributor/487544/tim-iles
https://riptutorial.com/contributor/107009/tim-s--van-haren
https://riptutorial.com/contributor/54527/tobbe
https://riptutorial.com/contributor/1497128/tom
https://riptutorial.com/contributor/1026459/travis-j
https://riptutorial.com/contributor/4927427/tungns304
https://riptutorial.com/contributor/5614523/tushar-patel
https://riptutorial.com/contributor/1304444/user1304444
https://riptutorial.com/contributor/3185569/user3185569
https://riptutorial.com/contributor/5554372/valentin
https://riptutorial.com/contributor/2480047/varocarbas
https://riptutorial.com/contributor/1541419/victorb
https://riptutorial.com/contributor/2756471/vitaliy-fedorchenko
https://riptutorial.com/contributor/6527049/vivek-nuna
https://riptutorial.com/contributor/1029287/void
https://riptutorial.com/contributor/70609/wali
https://riptutorial.com/contributor/1378307/wertzui
https://riptutorial.com/contributor/3830876/wmios
https://riptutorial.com/contributor/561113/xiaoy312
https://riptutorial.com/contributor/51/yaakov-ellis
https://riptutorial.com/contributor/111794/zev-spitz
https://riptutorial.com/contributor/2772050/brijber
https://riptutorial.com/contributor/2441442/christian-gollhardt
https://riptutorial.com/contributor/2441442/christian-gollhardt
https://riptutorial.com/contributor/3110695/fortytwo
https://riptutorial.com/contributor/1274407/kevin-green
https://riptutorial.com/contributor/2989404/raphael-pantaleao
https://riptutorial.com/contributor/2989404/raphael-pantaleao
https://riptutorial.com/contributor/264020/simon-halsey
https://riptutorial.com/contributor/264020/simon-halsey
https://riptutorial.com/contributor/59081/tanveer-badar
https://riptutorial.com/contributor/585584/denis-elkhov
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/2461148/uali
https://riptutorial.com/contributor/4463445/jaycer
https://riptutorial.com/contributor/4149474/notenoughdata
https://riptutorial.com/contributor/3215948/racil-hilan
https://riptutorial.com/contributor/459102/aaron-hudon
https://riptutorial.com/contributor/2266600/alexey-groshev
https://riptutorial.com/contributor/2266600/alexey-groshev
https://riptutorial.com/contributor/1796/andrei-rinea
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/943102/botond-balazs
https://riptutorial.com/contributor/721276/christopher-currens
https://riptutorial.com/contributor/168941/cihan-yakar
https://riptutorial.com/contributor/4400820/david-ben-knoble
https://riptutorial.com/contributor/4400820/david-ben-knoble
https://riptutorial.com/contributor/585584/denis-elkhov
https://riptutorial.com/contributor/3909293/diligent-key-presser
https://riptutorial.com/contributor/593627/george-duckett
https://riptutorial.com/contributor/177317/george-polevoy
https://riptutorial.com/contributor/177317/george-polevoy
https://riptutorial.com/contributor/1786847/jargon
https://riptutorial.com/contributor/6493825/jasmin-solanki
https://riptutorial.com/contributor/6493825/jasmin-solanki
https://riptutorial.com/contributor/1500882/jivan
https://riptutorial.com/contributor/1051621/mark-shevchenko
https://riptutorial.com/contributor/1051621/mark-shevchenko
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1061668/mikko-viitala
https://riptutorial.com/contributor/1061668/mikko-viitala
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/1753728/oluwafemi
https://riptutorial.com/contributor/4340086/pavel-mayorov
https://riptutorial.com/contributor/4340086/pavel-mayorov
https://riptutorial.com/contributor/67392/richard
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/5101046/scott-hannen

Squidward, Vahid
Farahmandian

97 Looping

Alisson, Andrei Rînea, B
Hawkins, Benjamin
Hodgson, Botond Balázs
, connor, Dialecticus,
DJCubed, Freelex, Jon
Schneider, Oluwafemi,
Racil Hilan, Squidward,
Testing123, Tolga
Evcimen

98 Making a variable thread safe Wyck

99 Methods

Botz3000, F_V, fubo, H.
Pauwelyn, Icy Defiance,
Jasmin Solanki, Jeremy
Kato, Jon Schneider,
ken2k, Marco,
meJustAndrew, MSL,
S.Dav, Sjoerd222888,
TarkaDaal, un-lucky

100 Microsoft.Exchange.WebServices Bassie

101 Named and Optional Arguments

RamenChef, Sibeesh
Venu, Testing123,
The_Outsider, Tim
Yusupov

102 Named Arguments

Cihan Yakar, Danny
Chen, mehrandvd, Pan,
Pavel Mayorov, Stephen
Leppik

103 nameof Operator

Chad, Danny Chen,
heltonbiker, Kane,
MotKohn, Philip C,
pinkfloydx33, Racil Hilan,
Rob, Robert Columbia,
Sender, Sondre,
Stephen Leppik, Wasabi
Fan

104 Naming Conventions
Ben Aaronson, Callum
Watkins, PMF, ZenLulz

Adi Lester, Nicholaus 105 Networking

https://riptutorial.com/ 944

https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/1666800/vahid-farahmandian
https://riptutorial.com/contributor/1666800/vahid-farahmandian
https://riptutorial.com/contributor/2263507/alisson
https://riptutorial.com/contributor/1796/andrei-rinea
https://riptutorial.com/contributor/7014069/b-hawkins
https://riptutorial.com/contributor/7014069/b-hawkins
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/943102/botond-balazs
https://riptutorial.com/contributor/754604/connor
https://riptutorial.com/contributor/395718/dialecticus
https://riptutorial.com/contributor/7310927/djcubed
https://riptutorial.com/contributor/2376122/freelex
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/1753728/oluwafemi
https://riptutorial.com/contributor/3215948/racil-hilan
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/8184892/testing123
https://riptutorial.com/contributor/1469980/tolga-evcimen
https://riptutorial.com/contributor/1469980/tolga-evcimen
https://riptutorial.com/contributor/1563833/wyck
https://riptutorial.com/contributor/93652/botz3000
https://riptutorial.com/contributor/6033166/f-v
https://riptutorial.com/contributor/1315444/fubo
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/1995101/icy-defiance
https://riptutorial.com/contributor/6493825/jasmin-solanki
https://riptutorial.com/contributor/6352535/jeremy-kato
https://riptutorial.com/contributor/6352535/jeremy-kato
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/870604/ken2k
https://riptutorial.com/contributor/1249641/marco
https://riptutorial.com/contributor/6357360/mejustandrew
https://riptutorial.com/contributor/3279825/msl
https://riptutorial.com/contributor/5396396/s-dav
https://riptutorial.com/contributor/3737186/sjoerd222888
https://riptutorial.com/contributor/55155/tarkadaal
https://riptutorial.com/contributor/5195227/un-lucky
https://riptutorial.com/contributor/4671754/bassie
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5550507/sibeesh-venu
https://riptutorial.com/contributor/5550507/sibeesh-venu
https://riptutorial.com/contributor/8184892/testing123
https://riptutorial.com/contributor/7793375/the-outsider
https://riptutorial.com/contributor/2947364/tim-yusupov
https://riptutorial.com/contributor/2947364/tim-yusupov
https://riptutorial.com/contributor/168941/cihan-yakar
https://riptutorial.com/contributor/323924/danny-chen
https://riptutorial.com/contributor/323924/danny-chen
https://riptutorial.com/contributor/1831530/mehrandvd
https://riptutorial.com/contributor/7644534/pan
https://riptutorial.com/contributor/4340086/pavel-mayorov
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/1121833/chad
https://riptutorial.com/contributor/323924/danny-chen
https://riptutorial.com/contributor/401828/heltonbiker
https://riptutorial.com/contributor/113535/kane
https://riptutorial.com/contributor/5976576/motkohn
https://riptutorial.com/contributor/785671/philip-c
https://riptutorial.com/contributor/491907/pinkfloydx33
https://riptutorial.com/contributor/3215948/racil-hilan
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/1074944/sender
https://riptutorial.com/contributor/5024822/sondre
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/2422874/wasabi-fan
https://riptutorial.com/contributor/2422874/wasabi-fan
https://riptutorial.com/contributor/1366855/ben-aaronson
https://riptutorial.com/contributor/4415734/callum-watkins
https://riptutorial.com/contributor/4415734/callum-watkins
https://riptutorial.com/contributor/2905768/pmf
https://riptutorial.com/contributor/2780334/zenlulz
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/4316312/nicholaus-lawson

Lawson, Salih Karagoz,
shawty, Squirrel, Xander
Luciano

106 Nullable types

Benjamin Hodgson,
Braydie, DmitryG,
Gordon Bell, Jasmin
Solanki, Jon Schneider,
Konstantin Vdovkin,
Maximilian Ast, Mikko
Viitala, Nicholas Sizer,
Patrick Hofman, Pavel
Mayorov, pinkfloydx33,
Vitaliy Fedorchenko

107 Null-Coalescing Operator

aashishkoirala, Ankit
Rana, Aristos, Bradley
Uffner, David Arno,
David G., David Pine,
demonplus, Denis
Elkhov, Diligent Key
Presser, Eamon Charles,
Ehsan Sajjad,
eouw0o83hf, Fernando
Matsumoto, H. Pauwelyn
, Jodrell, Jon Schneider,
Jonesopolis, Martin
Zikmund, Mike C, Nate
Barbettini, Nic Foster,
petelids, Prateek, Rahul
Nikate, Rion Williams,
Rob, smead, tonirush,
Wasabi Fan, Will Ray

108 Null-conditional Operators

Alpha, dazerdude, DLeh,
Draken, George Duckett,
Jon Schneider, Kobi,
Max, Nathan, Nicholas
Sizer, Rob, Stephen
Leppik, tehDorf, Timothy
Shields, topolm, Wasabi
Fan

4444, Agramer,
Ashutosh, krimog, Kyle
Trauberman, Mathias
Müller, Philip C,
RamenChef, S.L. Barth,

109 NullReferenceException

https://riptutorial.com/ 945

https://riptutorial.com/contributor/4316312/nicholaus-lawson
https://riptutorial.com/contributor/6106129/salih-karagoz
https://riptutorial.com/contributor/431111/shawty
https://riptutorial.com/contributor/3283003/squirrel
https://riptutorial.com/contributor/1425140/xander-luciano
https://riptutorial.com/contributor/1425140/xander-luciano
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/4477493/braydie
https://riptutorial.com/contributor/1010363/dmitryg
https://riptutorial.com/contributor/16473/gordon-bell
https://riptutorial.com/contributor/6493825/jasmin-solanki
https://riptutorial.com/contributor/6493825/jasmin-solanki
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/1251346/konstantin-vdovkin
https://riptutorial.com/contributor/1466583/maximilian-ast
https://riptutorial.com/contributor/1061668/mikko-viitala
https://riptutorial.com/contributor/1061668/mikko-viitala
https://riptutorial.com/contributor/242311/nicholas-sizer
https://riptutorial.com/contributor/993547/patrick-hofman
https://riptutorial.com/contributor/4340086/pavel-mayorov
https://riptutorial.com/contributor/4340086/pavel-mayorov
https://riptutorial.com/contributor/491907/pinkfloydx33
https://riptutorial.com/contributor/2756471/vitaliy-fedorchenko
https://riptutorial.com/contributor/2662221/aashishkoirala
https://riptutorial.com/contributor/4877428/ankit-rana
https://riptutorial.com/contributor/4877428/ankit-rana
https://riptutorial.com/contributor/159270/aristos
https://riptutorial.com/contributor/526724/bradley-uffner
https://riptutorial.com/contributor/526724/bradley-uffner
https://riptutorial.com/contributor/7122/david-arno
https://riptutorial.com/contributor/3838549/david-g-
https://riptutorial.com/contributor/2410379/david-pine
https://riptutorial.com/contributor/462639/demonplus
https://riptutorial.com/contributor/585584/denis-elkhov
https://riptutorial.com/contributor/585584/denis-elkhov
https://riptutorial.com/contributor/3909293/diligent-key-presser
https://riptutorial.com/contributor/3909293/diligent-key-presser
https://riptutorial.com/contributor/6689617/eamon-charles
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/570190/eouw0o83hf
https://riptutorial.com/contributor/5119090/fernando-matsumoto
https://riptutorial.com/contributor/5119090/fernando-matsumoto
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/659190/jodrell
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/1786428/jonesopolis
https://riptutorial.com/contributor/732221/martin-zikmund
https://riptutorial.com/contributor/732221/martin-zikmund
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/967504/nic-foster
https://riptutorial.com/contributor/3791802/petelids
https://riptutorial.com/contributor/500773/prateek
https://riptutorial.com/contributor/3936696/rahul-nikate
https://riptutorial.com/contributor/3936696/rahul-nikate
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/2644015/smead
https://riptutorial.com/contributor/4519426/tonirush
https://riptutorial.com/contributor/2422874/wasabi-fan
https://riptutorial.com/contributor/4270650/will-ray
https://riptutorial.com/contributor/147507/alpha
https://riptutorial.com/contributor/1198352/dazerdude
https://riptutorial.com/contributor/526704/dleh
https://riptutorial.com/contributor/833070/draken
https://riptutorial.com/contributor/593627/george-duckett
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/7586/kobi
https://riptutorial.com/contributor/189572/max
https://riptutorial.com/contributor/1234583/nathan
https://riptutorial.com/contributor/242311/nicholas-sizer
https://riptutorial.com/contributor/242311/nicholas-sizer
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/892536/tehdorf
https://riptutorial.com/contributor/1828879/timothy-shields
https://riptutorial.com/contributor/1828879/timothy-shields
https://riptutorial.com/contributor/6029659/topolm
https://riptutorial.com/contributor/2422874/wasabi-fan
https://riptutorial.com/contributor/2422874/wasabi-fan
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/621665/agramer
https://riptutorial.com/contributor/2450556/ashutosh
https://riptutorial.com/contributor/1785191/krimog
https://riptutorial.com/contributor/21461/kyle-trauberman
https://riptutorial.com/contributor/21461/kyle-trauberman
https://riptutorial.com/contributor/3835956/mathias-muller
https://riptutorial.com/contributor/3835956/mathias-muller
https://riptutorial.com/contributor/785671/philip-c
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/812149/s-l--barth

Shelby115, Squidward,
vicky, Zikato

110 O(n) Algorithm for circular rotation of an array AFT

111 Object initializers

Andrei, Kroltan,
LeopardSkinPillBoxHat,
Marco, Nick DeVore,
Stephen Leppik

112 Object Oriented Programming In C# Yashar Aliabasi

113 ObservableCollection
demonplus, GeralexGR,
Jonathan Anctil,
MuiBienCarlota

Adam Houldsworth, Adi
Lester, Adil Mammadov,
Akshay Anand, Alan
McBee, Avi Turner, Ben
Fogel, Blorgbeard,
Blubberguy22, Chris
Jester-Young, David
Basarab, DLeh, Dmitry
Bychenko, dotctor,
Ehsan Sajjad,
fabriciorissetto,
Fernando Matsumoto, H.
Pauwelyn, Henrik H,
Jake Farley, Jasmin
Solanki, Jephron, Jeppe
Stig Nielsen, Jesse
Williams, Joe,
JohnLBevan, Jon
Schneider, Jonas S,
Kevin Montrose, Kimmax
, lokusking, Matas
Vaitkevicius,
meJustAndrew, Mikko
Viitala, mmushtaq,
Mohamed Belal, Nate
Barbettini, Nico, Oly,
pascalhein, Pavel
Voronin, petelids, Philip
C, Racil Hilan, RhysO,
Robert Columbia,
Rodolfo Fadino Junior,
Sachin Joseph, Sam,

114 Operators

https://riptutorial.com/ 946

https://riptutorial.com/contributor/1467644/shelby115
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/1805776/vicky
https://riptutorial.com/contributor/4609186/zikato
https://riptutorial.com/contributor/7894290/aft
https://riptutorial.com/contributor/728795/andrei
https://riptutorial.com/contributor/1045510/kroltan
https://riptutorial.com/contributor/22489/leopardskinpillboxhat
https://riptutorial.com/contributor/1249641/marco
https://riptutorial.com/contributor/1380/nick-devore
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/3819411/yashar-aliabasi
https://riptutorial.com/contributor/462639/demonplus
https://riptutorial.com/contributor/1509124/geralexgr
https://riptutorial.com/contributor/2363069/jonathan-anctil
https://riptutorial.com/contributor/231977/muibiencarlota
https://riptutorial.com/contributor/358221/adam-houldsworth
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/1380428/adil-mammadov
https://riptutorial.com/contributor/2797802/akshay-anand
https://riptutorial.com/contributor/100596/alan-mcbee
https://riptutorial.com/contributor/100596/alan-mcbee
https://riptutorial.com/contributor/900570/avi-turner
https://riptutorial.com/contributor/1399195/ben-fogel
https://riptutorial.com/contributor/1399195/ben-fogel
https://riptutorial.com/contributor/369/blorgbeard
https://riptutorial.com/contributor/3842050/blubberguy22
https://riptutorial.com/contributor/13/chris-jester-young
https://riptutorial.com/contributor/13/chris-jester-young
https://riptutorial.com/contributor/2469/david-basarab
https://riptutorial.com/contributor/2469/david-basarab
https://riptutorial.com/contributor/526704/dleh
https://riptutorial.com/contributor/2319407/dmitry-bychenko
https://riptutorial.com/contributor/2319407/dmitry-bychenko
https://riptutorial.com/contributor/3970411/dotctor
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/890890/fabriciorissetto
https://riptutorial.com/contributor/5119090/fernando-matsumoto
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/439761/henrik-h
https://riptutorial.com/contributor/6604242/jake-farley
https://riptutorial.com/contributor/6493825/jasmin-solanki
https://riptutorial.com/contributor/6493825/jasmin-solanki
https://riptutorial.com/contributor/1124622/jephron
https://riptutorial.com/contributor/1336654/jeppe-stig-nielsen
https://riptutorial.com/contributor/1336654/jeppe-stig-nielsen
https://riptutorial.com/contributor/2072504/jesse-williams
https://riptutorial.com/contributor/2072504/jesse-williams
https://riptutorial.com/contributor/1324810/joe
https://riptutorial.com/contributor/361842/johnlbevan
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/1492826/jonas-s
https://riptutorial.com/contributor/80572/kevin-montrose
https://riptutorial.com/contributor/2373114/kimmax
https://riptutorial.com/contributor/4558029/lokusking
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/6357360/mejustandrew
https://riptutorial.com/contributor/1061668/mikko-viitala
https://riptutorial.com/contributor/1061668/mikko-viitala
https://riptutorial.com/contributor/3814721/mmushtaq
https://riptutorial.com/contributor/4491779/mohamed-belal
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/6469077/nico
https://riptutorial.com/contributor/5181199/oly
https://riptutorial.com/contributor/1652345/pascalhein
https://riptutorial.com/contributor/921054/pavel-voronin
https://riptutorial.com/contributor/921054/pavel-voronin
https://riptutorial.com/contributor/3791802/petelids
https://riptutorial.com/contributor/785671/philip-c
https://riptutorial.com/contributor/785671/philip-c
https://riptutorial.com/contributor/3215948/racil-hilan
https://riptutorial.com/contributor/5269656/rhyso
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/6308481/rodolfo-fadino-junior
https://riptutorial.com/contributor/1724702/sachin-joseph
https://riptutorial.com/contributor/2246344/sam

slawekwin, slinzerthegod
, Squidward, Testing123,
TyCobb, Wasabi Fan,
Xiaoy312, Zaheer Ul
Hassan

115 Overflow
Akshay Anand, Nuri
Tasdemir, tonirush

116 Overload Resolution
Dunno, Petr Hudeček,
Stephen Leppik,
TorbenJ

117 Parallel LINQ (PLINQ) Adi Lester

118 Partial class and methods

Ben Jenkinson, Jonas S,
Rahul Nikate, Stephen
Leppik, Taras,
The_Outsider

119 Performing HTTP requests
Gordon Bell, Jon
Schneider, Mark
Shevchenko

120 Pointers
Jeppe Stig Nielsen,
Theodoros
Chatzigiannakis

121 Pointers & Unsafe Code
Aaron Hudon, Botond
Balázs, undefined

122 Polymorphism
Ade Stringer, ganchito55
, H. Pauwelyn, Karthik,
Maximilian Ast, void

123 Preprocessor directives

Andrei, Gilad Naaman,
Matas Vaitkevicius,
qJake, RamenChef,
theB, volvis

124 Properties

Botond Balázs, Callum
Watkins, Jeremy Kato,
John, JohnLBevan,
niksofteng, Stephen
Leppik, Zohar Peled

125 Reactive Extensions (Rx) stefankmitph

126 Read & Understand Stacktraces S.L. Barth

https://riptutorial.com/ 947

https://riptutorial.com/contributor/872363/slawekwin
https://riptutorial.com/contributor/1084022/slinzerthegod
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/8184892/testing123
https://riptutorial.com/contributor/359157/tycobb
https://riptutorial.com/contributor/2422874/wasabi-fan
https://riptutorial.com/contributor/561113/xiaoy312
https://riptutorial.com/contributor/6585843/zaheer-ul-hassan
https://riptutorial.com/contributor/6585843/zaheer-ul-hassan
https://riptutorial.com/contributor/2797802/akshay-anand
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/4519426/tonirush
https://riptutorial.com/contributor/2266261/dunno
https://riptutorial.com/contributor/1580088/petr-hudecek
https://riptutorial.com/contributor/1580088/petr-hudecek
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/1223253/torbenj
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/590382/ben-jenkinson
https://riptutorial.com/contributor/1492826/jonas-s
https://riptutorial.com/contributor/3936696/rahul-nikate
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/3941803/taras
https://riptutorial.com/contributor/7793375/the-outsider
https://riptutorial.com/contributor/16473/gordon-bell
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/1051621/mark-shevchenko
https://riptutorial.com/contributor/1051621/mark-shevchenko
https://riptutorial.com/contributor/1336654/jeppe-stig-nielsen
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis
https://riptutorial.com/contributor/459102/aaron-hudon
https://riptutorial.com/contributor/943102/botond-balazs
https://riptutorial.com/contributor/943102/botond-balazs
https://riptutorial.com/contributor/1256550/undefined
https://riptutorial.com/contributor/942330/ade-stringer
https://riptutorial.com/contributor/5684370/ganchito55
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/1210896/karthik
https://riptutorial.com/contributor/1466583/maximilian-ast
https://riptutorial.com/contributor/1029287/void
https://riptutorial.com/contributor/728795/andrei
https://riptutorial.com/contributor/389222/gilad-naaman
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/334053/qjake
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5240004/theb
https://riptutorial.com/contributor/6626317/volvis
https://riptutorial.com/contributor/943102/botond-balazs
https://riptutorial.com/contributor/4415734/callum-watkins
https://riptutorial.com/contributor/4415734/callum-watkins
https://riptutorial.com/contributor/6352535/jeremy-kato
https://riptutorial.com/contributor/33/john
https://riptutorial.com/contributor/361842/johnlbevan
https://riptutorial.com/contributor/1440057/niksofteng
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/3094533/zohar-peled
https://riptutorial.com/contributor/2273277/stefankmitph
https://riptutorial.com/contributor/812149/s-l--barth

127 Reading and writing .zip files
4444, DLeh, Naveen
Gogineni, Nisarg Shah

128 Recursion

Alexey Groshev, Botond
Balázs, connor, ephtee,
Florian Koch, Kroltan,
Michael Brandon Morris,
Mulder, Pan, qJake,
Robert Columbia, Roy
Dictus, SlaterCodes,
Yves Schelpe

129 Reflection

Alexander Mandt, Aman
Sharma, artemisart,
Aseem Gautam,
Axarydax, Benjamin
Hodgson, Botond Balázs
, Carson McManus,
Cigano Morrison Mendez
, Cihan Yakar, da_sann,
DVJex, Ehsan Sajjad, H.
Pauwelyn, Haim
Bendanan,
HimBromBeere, James
Ellis-Jones, James
Hughes, Jamie Rees,
Jan Peldřimovský, Johny
Skovdal, JSF, Kobi,
Konamiman, Kristijan,
Lovy, Matas Vaitkevicius
, Mourndark, Nuri
Tasdemir, pinkfloydx33,
Rekshino, René Vogt,
Sachin Chavan, Shuffler,
Sjoerd222888, Sklivvz,
Tamir Vered, Thriggle,
Travis J, uygar.raf,
Vadim Ovchinnikov,
wablab, Wai Ha Lee

130 Regex Parsing C4u

131 Runtime Compile
Artificial Stupidity,
Stephen Leppik, Tommy

Aaron Hudon, Adam, Adi
Lester, Andrei Rînea,
cbale, Disk Crasher,

132 Singleton Implementation

https://riptutorial.com/ 948

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/526704/dleh
https://riptutorial.com/contributor/8063119/naveen-gogineni
https://riptutorial.com/contributor/8063119/naveen-gogineni
https://riptutorial.com/contributor/5894241/nisarg-shah
https://riptutorial.com/contributor/2266600/alexey-groshev
https://riptutorial.com/contributor/943102/botond-balazs
https://riptutorial.com/contributor/943102/botond-balazs
https://riptutorial.com/contributor/754604/connor
https://riptutorial.com/contributor/4036249/ephtee
https://riptutorial.com/contributor/3326982/florian-koch
https://riptutorial.com/contributor/1045510/kroltan
https://riptutorial.com/contributor/5004298/michael-brandon-morris
https://riptutorial.com/contributor/1551567/mulder
https://riptutorial.com/contributor/7644534/pan
https://riptutorial.com/contributor/334053/qjake
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/651188/roy-dictus
https://riptutorial.com/contributor/651188/roy-dictus
https://riptutorial.com/contributor/602379/slatercodes
https://riptutorial.com/contributor/1155847/yves-schelpe
https://riptutorial.com/contributor/4896211/alexander-mandt
https://riptutorial.com/contributor/5777678/aman-sharma
https://riptutorial.com/contributor/5777678/aman-sharma
https://riptutorial.com/contributor/3125565/artemisart
https://riptutorial.com/contributor/213469/aseem-gautam
https://riptutorial.com/contributor/72746/axarydax
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/943102/botond-balazs
https://riptutorial.com/contributor/3315164/carson-mcmanus
https://riptutorial.com/contributor/1314276/cigano-morrison-mendez
https://riptutorial.com/contributor/168941/cihan-yakar
https://riptutorial.com/contributor/3928617/da-sann
https://riptutorial.com/contributor/4560343/dvjex
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/5048792/haim-bendanan
https://riptutorial.com/contributor/5048792/haim-bendanan
https://riptutorial.com/contributor/2528063/himbrombeere
https://riptutorial.com/contributor/76814/james-ellis-jones
https://riptutorial.com/contributor/76814/james-ellis-jones
https://riptutorial.com/contributor/4700841/james-hughes
https://riptutorial.com/contributor/4700841/james-hughes
https://riptutorial.com/contributor/3329836/jamie-rees
https://riptutorial.com/contributor/3506760/jan-peldrimovsky
https://riptutorial.com/contributor/3506760/jan-peldrimovsky
https://riptutorial.com/contributor/222134/johny-skovdal
https://riptutorial.com/contributor/222134/johny-skovdal
https://riptutorial.com/contributor/3957221/jsf
https://riptutorial.com/contributor/7586/kobi
https://riptutorial.com/contributor/4574/konamiman
https://riptutorial.com/contributor/2468037/kristijan
https://riptutorial.com/contributor/3250340/lovy
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1096201/mourndark
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/491907/pinkfloydx33
https://riptutorial.com/contributor/7713750/rekshino
https://riptutorial.com/contributor/5528593/rene-vogt
https://riptutorial.com/contributor/62889/sachin-chavan
https://riptutorial.com/contributor/2087604/shuffler
https://riptutorial.com/contributor/3737186/sjoerd222888
https://riptutorial.com/contributor/7028/sklivvz
https://riptutorial.com/contributor/3256506/tamir-vered
https://riptutorial.com/contributor/2701677/thriggle
https://riptutorial.com/contributor/1026459/travis-j
https://riptutorial.com/contributor/375051/uygar-raf
https://riptutorial.com/contributor/1548895/vadim-ovchinnikov
https://riptutorial.com/contributor/6443307/wablab
https://riptutorial.com/contributor/1364007/wai-ha-lee
https://riptutorial.com/contributor/2326753/c4u
https://riptutorial.com/contributor/5482465/artificial-stupidity
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6283700/tommy
https://riptutorial.com/contributor/459102/aaron-hudon
https://riptutorial.com/contributor/3938395/adam
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/1796/andrei-rinea
https://riptutorial.com/contributor/3011495/cbale
https://riptutorial.com/contributor/298511/disk-crasher

Ehsan Sajjad, Krzysztof
Branicki, lothlarias, Mark
Shevchenko, Pavel
Mayorov, Sklivvz,
snickro, Squidward,
Squirrel, Stephen Leppik
, Victor Tomaili,
Xandrmoro

133 Static Classes
MCronin, The_Outsider,
Xiaoy312

134 Stopwatches

Adam, demonplus,
dotctor, Gavin Greenwalt
, Jeppe Stig Nielsen,
Sondre

135 Stream

Danny Bogers,
jlawcordova, Jon
Schneider, Nuri
Tasdemir, Pushpendra

136 String Concatenate

Abdul Rehman Sayed,
Callum Watkins,
ChaoticTwist, Doruk,
Dweeberly, Jon
Schneider, Oluwafemi,
Rob, RubberDuck,
Testing123,
The_Outsider

137 String Escape Sequences

Benjol, Botond Balázs,
cubrr, Ed Gibbs, Jeppe
Stig Nielsen,
LegionMammal978,
Michael Richardson,
Peter Gordon, Petr Hude
ček, Squidward, tonirush

Arjan Einbu,
ATechieThought, avs099
, bluray, Brendan L,
Dave Zych, DLeh, Ehsan
Sajjad, fabriciorissetto,
Guilherme de Jesus
Santos, H. Pauwelyn,
Jon Skeet, Nate
Barbettini, RamenChef,

138 String Interpolation

https://riptutorial.com/ 949

https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/5297231/krzysztof-branicki
https://riptutorial.com/contributor/5297231/krzysztof-branicki
https://riptutorial.com/contributor/462060/lothlarias
https://riptutorial.com/contributor/1051621/mark-shevchenko
https://riptutorial.com/contributor/1051621/mark-shevchenko
https://riptutorial.com/contributor/4340086/pavel-mayorov
https://riptutorial.com/contributor/4340086/pavel-mayorov
https://riptutorial.com/contributor/7028/sklivvz
https://riptutorial.com/contributor/6622537/snickro
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/3283003/squirrel
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/919495/victor-tomaili
https://riptutorial.com/contributor/2905103/xandrmoro
https://riptutorial.com/contributor/5431884/mcronin
https://riptutorial.com/contributor/7793375/the-outsider
https://riptutorial.com/contributor/561113/xiaoy312
https://riptutorial.com/contributor/3938395/adam
https://riptutorial.com/contributor/462639/demonplus
https://riptutorial.com/contributor/3970411/dotctor
https://riptutorial.com/contributor/3862819/gavin-greenwalt
https://riptutorial.com/contributor/1336654/jeppe-stig-nielsen
https://riptutorial.com/contributor/5024822/sondre
https://riptutorial.com/contributor/3697715/danny-bogers
https://riptutorial.com/contributor/6811810/jlawcordova
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/3872578/pushpendra
https://riptutorial.com/contributor/4054186/abdul-rehman-sayed
https://riptutorial.com/contributor/4415734/callum-watkins
https://riptutorial.com/contributor/5996838/chaotictwist
https://riptutorial.com/contributor/1397858/doruk
https://riptutorial.com/contributor/1440105/dweeberly
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/1753728/oluwafemi
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/3198973/rubberduck
https://riptutorial.com/contributor/8184892/testing123
https://riptutorial.com/contributor/7793375/the-outsider
https://riptutorial.com/contributor/11410/benjol
https://riptutorial.com/contributor/943102/botond-balazs
https://riptutorial.com/contributor/996081/cubrr
https://riptutorial.com/contributor/2091410/ed-gibbs
https://riptutorial.com/contributor/1336654/jeppe-stig-nielsen
https://riptutorial.com/contributor/1336654/jeppe-stig-nielsen
https://riptutorial.com/contributor/3225276/legionmammal978
https://riptutorial.com/contributor/1812515/michael-richardson
https://riptutorial.com/contributor/1476989/peter-gordon
https://riptutorial.com/contributor/1580088/petr-hudecek
https://riptutorial.com/contributor/1580088/petr-hudecek
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/4519426/tonirush
https://riptutorial.com/contributor/19594/arjan-einbu
https://riptutorial.com/contributor/3768367/atechiethought
https://riptutorial.com/contributor/1246870/avs099
https://riptutorial.com/contributor/6157936/bluray
https://riptutorial.com/contributor/4672638/brendan-l
https://riptutorial.com/contributor/1630665/dave-zych
https://riptutorial.com/contributor/526704/dleh
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/890890/fabriciorissetto
https://riptutorial.com/contributor/396200/guilherme-de-jesus-santos
https://riptutorial.com/contributor/396200/guilherme-de-jesus-santos
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/22656/jon-skeet
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/6392939/ramenchef

Rion Williams,
Squidward, Stephen
Leppik, Tushar patel,
Wasabi Fan

139 String Manipulation
Blachshma, Jon
Schneider, sferencik,
The_Outsider

140 String.Format

Aaron Hudon, Akshay
Anand, Alexander Mandt
, Andrius, Aseem
Gautam, Benjol,
BrunoLM, Dmitry Egorov
, Don Vince, Dweeberly,
ebattulga, ejhn5, gdoron,
H. Pauwelyn, Hossein
Narimani Rad, Jasmin
Solanki, Marek Musielak,
Mark Shevchenko,
Matas Vaitkevicius,
Mendhak, MGB, nikchi,
Philip C, Rahul Nikate,
Raidri, RamenChef,
Richard, Richard, Rion
Williams, ryanyuyu, teo
van kot, Vincent, void,
Wyck

141 StringBuilder

ATechieThought, brijber,
Jeremy Kato, Jon
Schneider, Robert
Columbia, The_Outsider

142 Structs

abto, Alexey Groshev,
Benjamin Hodgson,
Botz3000, David, Elad
Lachmi, ganchito55, Jon
Schneider,
NikolayKondratyev

143 Structural Design Patterns Timon Post

144 Synchronization Context in Async-Await
codeape, Mark
Shevchenko,
RamenChef

145 System.DirectoryServices.Protocols.LdapConnection Andrew Stollak

https://riptutorial.com/ 950

https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/5614523/tushar-patel
https://riptutorial.com/contributor/2422874/wasabi-fan
https://riptutorial.com/contributor/1379664/blachshma
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/1540600/sferencik
https://riptutorial.com/contributor/7793375/the-outsider
https://riptutorial.com/contributor/459102/aaron-hudon
https://riptutorial.com/contributor/2797802/akshay-anand
https://riptutorial.com/contributor/2797802/akshay-anand
https://riptutorial.com/contributor/4896211/alexander-mandt
https://riptutorial.com/contributor/4590959/andrius
https://riptutorial.com/contributor/213469/aseem-gautam
https://riptutorial.com/contributor/213469/aseem-gautam
https://riptutorial.com/contributor/11410/benjol
https://riptutorial.com/contributor/340760/brunolm
https://riptutorial.com/contributor/4295017/dmitry-egorov
https://riptutorial.com/contributor/6023/don-vince
https://riptutorial.com/contributor/1440105/dweeberly
https://riptutorial.com/contributor/60200/ebattulga
https://riptutorial.com/contributor/1260699/ejhn5
https://riptutorial.com/contributor/601179/gdoron
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/1468295/hossein-narimani-rad
https://riptutorial.com/contributor/1468295/hossein-narimani-rad
https://riptutorial.com/contributor/6493825/jasmin-solanki
https://riptutorial.com/contributor/6493825/jasmin-solanki
https://riptutorial.com/contributor/157833/marek-musielak
https://riptutorial.com/contributor/1051621/mark-shevchenko
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/974369/mendhak
https://riptutorial.com/contributor/713846/mgb
https://riptutorial.com/contributor/2474926/nikchi
https://riptutorial.com/contributor/785671/philip-c
https://riptutorial.com/contributor/3936696/rahul-nikate
https://riptutorial.com/contributor/2610249/raidri
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/67392/richard
https://riptutorial.com/contributor/3949461/richard
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/4320665/ryanyuyu
https://riptutorial.com/contributor/1849444/teo-van-kot
https://riptutorial.com/contributor/1849444/teo-van-kot
https://riptutorial.com/contributor/4558911/vincent
https://riptutorial.com/contributor/1029287/void
https://riptutorial.com/contributor/1563833/wyck
https://riptutorial.com/contributor/3768367/atechiethought
https://riptutorial.com/contributor/2772050/brijber
https://riptutorial.com/contributor/6352535/jeremy-kato
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/7793375/the-outsider
https://riptutorial.com/contributor/2029849/abto
https://riptutorial.com/contributor/2266600/alexey-groshev
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/93652/botz3000
https://riptutorial.com/contributor/1467396/david
https://riptutorial.com/contributor/625242/elad-lachmi
https://riptutorial.com/contributor/625242/elad-lachmi
https://riptutorial.com/contributor/5684370/ganchito55
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/4182275/nikolaykondratyev
https://riptutorial.com/contributor/6314392/timon-post
https://riptutorial.com/contributor/3571/codeape
https://riptutorial.com/contributor/1051621/mark-shevchenko
https://riptutorial.com/contributor/1051621/mark-shevchenko
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2118890/andrew-stollak

146 System.Management.Automation Mikko Viitala

147 T4 Code Generation lloyd, Pavel Mayorov

148 Task Parallel Library

Benjamin Hodgson,
Brandon, Collin Stevens,
i3arnon, Mokhtar Ashour
, Murtuza Vohra

149 Task Parallel Library (TPL) Dataflow Constructs Droritos, Stephen Leppik

150 Threading

Aaron Hudon, Alexander
Petrov, Austin T French,
captainjamie, Eldar
Dordzhiev, H. Pauwelyn,
ionmike, Jacob Linney,
JohnLBevan,
leondepdelaw, Mamta D,
Matthijs Wessels, Mellow
, RamenChef, Zoba

151 Timers

Adam, Akshay Anand,
Benjamin Kozuch,
ephtee, RamenChef,
Thennarasan

152 Tuples

Bovaz, Chawin, EFrank,
H. Pauwelyn, Mark
Benovsky, Muhammad
Albarmawi, Nathan
Tuggy, Nikita, Nuri
Tasdemir, petrzjunior,
PMF, RaYell, slawekwin,
Squidward, tire0011

153 Type Conversion
Community, connor,
Ehsan Sajjad, Lijo

154 Unsafe Code in .NET

Andrew Piliser, cbale,
codekaizen, Danny
Varod, Isac, Jaroslav
Kadlec, MSE, Nisarg
Shah, Rahul Nikate,
Stephen Leppik, Uwe
Keim, ZenLulz

Fernando Matsumoto,
Jesse Williams,
JohnLBevan, Kit,

155 Using Directive

https://riptutorial.com/ 951

https://riptutorial.com/contributor/1061668/mikko-viitala
https://riptutorial.com/contributor/4527057/lloyd
https://riptutorial.com/contributor/4340086/pavel-mayorov
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/386703/brandon
https://riptutorial.com/contributor/6456360/collin-stevens
https://riptutorial.com/contributor/885318/i3arnon
https://riptutorial.com/contributor/1064714/mokhtar-ashour
https://riptutorial.com/contributor/6301707/murtuza-vohra
https://riptutorial.com/contributor/1006127/droritos
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/459102/aaron-hudon
https://riptutorial.com/contributor/5045688/alexander-petrov
https://riptutorial.com/contributor/5045688/alexander-petrov
https://riptutorial.com/contributor/2040569/austin-t-french
https://riptutorial.com/contributor/1830205/captainjamie
https://riptutorial.com/contributor/3994425/eldar-dordzhiev
https://riptutorial.com/contributor/3994425/eldar-dordzhiev
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/6295988/ionmike
https://riptutorial.com/contributor/4381800/jacob-linney
https://riptutorial.com/contributor/361842/johnlbevan
https://riptutorial.com/contributor/2416814/leondepdelaw
https://riptutorial.com/contributor/409265/mamta-d
https://riptutorial.com/contributor/210336/matthijs-wessels
https://riptutorial.com/contributor/3125553/mellow
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2599603/zoba
https://riptutorial.com/contributor/3938395/adam
https://riptutorial.com/contributor/2797802/akshay-anand
https://riptutorial.com/contributor/6547780/benjamin-kozuch
https://riptutorial.com/contributor/4036249/ephtee
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6612972/thennarasan
https://riptutorial.com/contributor/2669614/bovaz
https://riptutorial.com/contributor/5309534/chawin
https://riptutorial.com/contributor/28572/efrank
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/4697963/mark-benovsky
https://riptutorial.com/contributor/4697963/mark-benovsky
https://riptutorial.com/contributor/3980621/muhammad-albarmawi
https://riptutorial.com/contributor/3980621/muhammad-albarmawi
https://riptutorial.com/contributor/4099598/nathan-tuggy
https://riptutorial.com/contributor/4099598/nathan-tuggy
https://riptutorial.com/contributor/5472058/nikita
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/2534697/petrzjunior
https://riptutorial.com/contributor/2905768/pmf
https://riptutorial.com/contributor/137467/rayell
https://riptutorial.com/contributor/872363/slawekwin
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/1511384/tire0011
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/754604/connor
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/3065232/lijo
https://riptutorial.com/contributor/879997/andrew-piliser
https://riptutorial.com/contributor/3011495/cbale
https://riptutorial.com/contributor/58391/codekaizen
https://riptutorial.com/contributor/38368/danny-varod
https://riptutorial.com/contributor/38368/danny-varod
https://riptutorial.com/contributor/6087092/isac
https://riptutorial.com/contributor/2248454/jaroslav-kadlec
https://riptutorial.com/contributor/2248454/jaroslav-kadlec
https://riptutorial.com/contributor/3008260/mse
https://riptutorial.com/contributor/5894241/nisarg-shah
https://riptutorial.com/contributor/5894241/nisarg-shah
https://riptutorial.com/contributor/3936696/rahul-nikate
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/107625/uwe-keim
https://riptutorial.com/contributor/107625/uwe-keim
https://riptutorial.com/contributor/2780334/zenlulz
https://riptutorial.com/contributor/5119090/fernando-matsumoto
https://riptutorial.com/contributor/2072504/jesse-williams
https://riptutorial.com/contributor/361842/johnlbevan
https://riptutorial.com/contributor/64348/kit

Michael Freidgeim, Nuri
Tasdemir, RamenChef,
Tot Zam

156 Using json.net
Aleks Andreev,
Snipzwolf

157 Using SQLite in C#
Carmine,
NikolayKondratyev,
th1rdey3, Tim Yusupov

158 Using Statement

Adam Houldsworth,
Ahmar, Akshay Anand,
Alex Wiese, andre_ss6,
Aphelion, Benjol, Boris
Callens, Bradley
Grainger, Bradley Uffner,
bubbleking, Chris Marisic
, ChrisWue, Cristian T,
cubrr, Dan Ling, Danny
Chen, dav_i, David
Stockinger, dazerdude,
Denis Elkhov, Dmitry
Bychenko, Erik
Schierboom, Florian
Greinacher, gdoron, H.
Pauwelyn, Herbstein,
Jon Schneider, Jon
Skeet, Jonesopolis, JT.,
Ken Keenan, Kev, Kobi,
Kyle Trauberman, Lasse
Vågsæther Karlsen,
LegionMammal978,
Lorentz Vedeler, Martin,
Martin Zikmund, Maxime
, Nuri Tasdemir, Peter K,
Philip C, pid, René Vogt,
Rion Williams, Ryan
Abbott, Scott Koland,
Sean, Sparrow, styfle,
Sunny R Gupta,
Sworgkh, Thaoden,
The_Cthulhu_Kid, Tom
Droste, Tot Zam, Zaheer
Ul Hassan

Abdul Rehman Sayed,
Adam, Amir Pourmand,

159 Value type vs Reference type

https://riptutorial.com/ 952

https://riptutorial.com/contributor/52277/michael-freidgeim
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4660897/tot-zam
https://riptutorial.com/contributor/4685428/aleks-andreev
https://riptutorial.com/contributor/2683979/snipzwolf
https://riptutorial.com/contributor/3852459/carmine
https://riptutorial.com/contributor/4182275/nikolaykondratyev
https://riptutorial.com/contributor/1682148/th1rdey3
https://riptutorial.com/contributor/2947364/tim-yusupov
https://riptutorial.com/contributor/358221/adam-houldsworth
https://riptutorial.com/contributor/2337983/ahmar
https://riptutorial.com/contributor/2797802/akshay-anand
https://riptutorial.com/contributor/1411687/alex-wiese
https://riptutorial.com/contributor/2267418/andre-ss6
https://riptutorial.com/contributor/296526/aphelion
https://riptutorial.com/contributor/11410/benjol
https://riptutorial.com/contributor/11333/boris-callens
https://riptutorial.com/contributor/11333/boris-callens
https://riptutorial.com/contributor/23633/bradley-grainger
https://riptutorial.com/contributor/23633/bradley-grainger
https://riptutorial.com/contributor/526724/bradley-uffner
https://riptutorial.com/contributor/3241128/bubbleking
https://riptutorial.com/contributor/37055/chris-marisic
https://riptutorial.com/contributor/220986/chriswue
https://riptutorial.com/contributor/301198/cristian-t
https://riptutorial.com/contributor/996081/cubrr
https://riptutorial.com/contributor/66101/dan-ling
https://riptutorial.com/contributor/323924/danny-chen
https://riptutorial.com/contributor/323924/danny-chen
https://riptutorial.com/contributor/1185053/dav-i
https://riptutorial.com/contributor/501011/david-stockinger
https://riptutorial.com/contributor/501011/david-stockinger
https://riptutorial.com/contributor/1198352/dazerdude
https://riptutorial.com/contributor/585584/denis-elkhov
https://riptutorial.com/contributor/2319407/dmitry-bychenko
https://riptutorial.com/contributor/2319407/dmitry-bychenko
https://riptutorial.com/contributor/2071395/erik-schierboom
https://riptutorial.com/contributor/2071395/erik-schierboom
https://riptutorial.com/contributor/31985/florian-greinacher
https://riptutorial.com/contributor/31985/florian-greinacher
https://riptutorial.com/contributor/601179/gdoron
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/3350284/herbstein
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/22656/jon-skeet
https://riptutorial.com/contributor/22656/jon-skeet
https://riptutorial.com/contributor/1786428/jonesopolis
https://riptutorial.com/contributor/138653/jt-
https://riptutorial.com/contributor/118592/ken-keenan
https://riptutorial.com/contributor/419/kev
https://riptutorial.com/contributor/7586/kobi
https://riptutorial.com/contributor/21461/kyle-trauberman
https://riptutorial.com/contributor/267/lasse-vagsather-karlsen
https://riptutorial.com/contributor/267/lasse-vagsather-karlsen
https://riptutorial.com/contributor/3225276/legionmammal978
https://riptutorial.com/contributor/1993681/lorentz-vedeler
https://riptutorial.com/contributor/108234/martin
https://riptutorial.com/contributor/732221/martin-zikmund
https://riptutorial.com/contributor/2525304/maxime
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/4896952/peter-k
https://riptutorial.com/contributor/785671/philip-c
https://riptutorial.com/contributor/3227403/pid
https://riptutorial.com/contributor/5528593/rene-vogt
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/27908/ryan-abbott
https://riptutorial.com/contributor/27908/ryan-abbott
https://riptutorial.com/contributor/865646/scott-koland
https://riptutorial.com/contributor/26095/sean
https://riptutorial.com/contributor/6168519/sparrow
https://riptutorial.com/contributor/266535/styfle
https://riptutorial.com/contributor/1477051/sunny-r-gupta
https://riptutorial.com/contributor/3741893/sworgkh
https://riptutorial.com/contributor/3129340/thaoden
https://riptutorial.com/contributor/1091551/the-cthulhu-kid
https://riptutorial.com/contributor/1761723/tom-droste
https://riptutorial.com/contributor/1761723/tom-droste
https://riptutorial.com/contributor/4660897/tot-zam
https://riptutorial.com/contributor/6585843/zaheer-ul-hassan
https://riptutorial.com/contributor/6585843/zaheer-ul-hassan
https://riptutorial.com/contributor/4054186/abdul-rehman-sayed
https://riptutorial.com/contributor/3938395/adam
https://riptutorial.com/contributor/4201765/amir-pourmand

Blubberguy22,
Chronocide, Craig Brett,
docesam, GWigWam,
matiaslauriti,
meJustAndrew, Michael
Mairegger, Michele Ceo,
Moe Farag, Nate
Barbettini, RamenChef,
Rob, scher, Snympi,
Tagc, Theodoros
Chatzigiannakis

160 Verbatim Strings

Alan McBee, Amitay
Stern, Andrew Diamond,
Aphelion, Arjan Einbu,
avb, Bryan Crosby,
Charlie H, David G.,
devuxer, DLeh, Ehsan
Sajjad, Freelex, goric,
Jared Hooper, Jeremy
Kato, Jonas S, Kevin
Montrose, Kilazur,
Mateen Ulhaq, Ricardo
Amores, Rion Williams,
Sam Johnson, Sophie
Jackson-Lee, Squirrel,
th1rdey3

161 Windows Communication Foundation NtFreX

162 XDocument and the System.Xml.Linq namespace
Crowcoder, Jon
Schneider

163 XML Documentation Comments

Alexander Mandt, James
, jHilscher, Jon
Schneider, Nathan
Tuggy, teo van kot,
tsjnsn

164 XmlDocument and the System.Xml namespace

Alexander Petrov, Rokey
Ge, Rubens Farias,
Timon Post, Willy David
Jr

Aaron Hudon, Andrew
Diamond, Ben Aaronson
, ChrisPatrick, Damon
Smithies, David G.,

165 Yield Keyword

https://riptutorial.com/ 953

https://riptutorial.com/contributor/3842050/blubberguy22
https://riptutorial.com/contributor/3390550/chronocide
https://riptutorial.com/contributor/718940/craig-brett
https://riptutorial.com/contributor/365867/docesam
https://riptutorial.com/contributor/1383035/gwigwam
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/6357360/mejustandrew
https://riptutorial.com/contributor/2964291/michael-mairegger
https://riptutorial.com/contributor/2964291/michael-mairegger
https://riptutorial.com/contributor/5414193/michele-ceo
https://riptutorial.com/contributor/5248013/moe-farag
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/4968864/scher
https://riptutorial.com/contributor/435619/snympi
https://riptutorial.com/contributor/1636276/tagc
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis
https://riptutorial.com/contributor/100596/alan-mcbee
https://riptutorial.com/contributor/3676450/amitay-stern
https://riptutorial.com/contributor/3676450/amitay-stern
https://riptutorial.com/contributor/2921949/andrew-diamond
https://riptutorial.com/contributor/296526/aphelion
https://riptutorial.com/contributor/19594/arjan-einbu
https://riptutorial.com/contributor/1756547/avb
https://riptutorial.com/contributor/360944/bryan-crosby
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/3838549/david-g-
https://riptutorial.com/contributor/129164/devuxer
https://riptutorial.com/contributor/526704/dleh
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/2376122/freelex
https://riptutorial.com/contributor/940/goric
https://riptutorial.com/contributor/3872894/jared-hooper
https://riptutorial.com/contributor/6352535/jeremy-kato
https://riptutorial.com/contributor/6352535/jeremy-kato
https://riptutorial.com/contributor/1492826/jonas-s
https://riptutorial.com/contributor/80572/kevin-montrose
https://riptutorial.com/contributor/80572/kevin-montrose
https://riptutorial.com/contributor/3283203/kilazur
https://riptutorial.com/contributor/365102/mateen-ulhaq
https://riptutorial.com/contributor/10136/ricardo-amores
https://riptutorial.com/contributor/10136/ricardo-amores
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/28627/sam-johnson
https://riptutorial.com/contributor/2135302/sophie-jackson-lee
https://riptutorial.com/contributor/2135302/sophie-jackson-lee
https://riptutorial.com/contributor/3283003/squirrel
https://riptutorial.com/contributor/1682148/th1rdey3
https://riptutorial.com/contributor/6583901/ntfrex
https://riptutorial.com/contributor/276469/crowcoder
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/4896211/alexander-mandt
https://riptutorial.com/contributor/622140/james
https://riptutorial.com/contributor/2881450/jhilscher
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/4099598/nathan-tuggy
https://riptutorial.com/contributor/4099598/nathan-tuggy
https://riptutorial.com/contributor/1849444/teo-van-kot
https://riptutorial.com/contributor/1428544/tsjnsn
https://riptutorial.com/contributor/5045688/alexander-petrov
https://riptutorial.com/contributor/84543/rokey-ge
https://riptutorial.com/contributor/84543/rokey-ge
https://riptutorial.com/contributor/113794/rubens-farias
https://riptutorial.com/contributor/6314392/timon-post
https://riptutorial.com/contributor/6542896/willy-david-jr
https://riptutorial.com/contributor/6542896/willy-david-jr
https://riptutorial.com/contributor/459102/aaron-hudon
https://riptutorial.com/contributor/2921949/andrew-diamond
https://riptutorial.com/contributor/2921949/andrew-diamond
https://riptutorial.com/contributor/1366855/ben-aaronson
https://riptutorial.com/contributor/1216172/chrispatrick
https://riptutorial.com/contributor/2752395/damon-smithies
https://riptutorial.com/contributor/2752395/damon-smithies
https://riptutorial.com/contributor/3838549/david-g-

David Pine, Dmitry
Bychenko, dotctor,
Ehsan Sajjad, erfanrazi,
Gajendra, George
Duckett, H. Pauwelyn,
HimBromBeere, Jeremy
Kato, João Lourenço,
Joe Amenta, Julien
Roncaglia, just.ru,
Karthik AMR, Mark
Shevchenko, Michael
Richardson,
MuiBienCarlota, Myster,
Nate Barbettini, Noctis,
Nuri Tasdemir, Olivier
De Meulder, OP313,
ravindra, Ricardo
Amores, Rion Williams,
rocky, Sompom, Tot
Zam, un-lucky, Vlad,
void, Wasabi Fan,
Xiaoy312, ZenLulz

https://riptutorial.com/ 954

https://riptutorial.com/contributor/2410379/david-pine
https://riptutorial.com/contributor/2319407/dmitry-bychenko
https://riptutorial.com/contributor/2319407/dmitry-bychenko
https://riptutorial.com/contributor/3970411/dotctor
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/1213219/erfanrazi
https://riptutorial.com/contributor/1590988/gajendra
https://riptutorial.com/contributor/593627/george-duckett
https://riptutorial.com/contributor/593627/george-duckett
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/2528063/himbrombeere
https://riptutorial.com/contributor/6352535/jeremy-kato
https://riptutorial.com/contributor/6352535/jeremy-kato
https://riptutorial.com/contributor/579576/joao-lourenco
https://riptutorial.com/contributor/1083771/joe-amenta
https://riptutorial.com/contributor/46594/julien-roncaglia
https://riptutorial.com/contributor/46594/julien-roncaglia
https://riptutorial.com/contributor/1859889/just-ru
https://riptutorial.com/contributor/2020893/karthik-amr
https://riptutorial.com/contributor/1051621/mark-shevchenko
https://riptutorial.com/contributor/1051621/mark-shevchenko
https://riptutorial.com/contributor/1812515/michael-richardson
https://riptutorial.com/contributor/1812515/michael-richardson
https://riptutorial.com/contributor/231977/muibiencarlota
https://riptutorial.com/contributor/74449/myster
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/1698987/noctis
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/1330328/olivier-de-meulder
https://riptutorial.com/contributor/1330328/olivier-de-meulder
https://riptutorial.com/contributor/5261936/op313
https://riptutorial.com/contributor/4590867/ravindra
https://riptutorial.com/contributor/10136/ricardo-amores
https://riptutorial.com/contributor/10136/ricardo-amores
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/1332034/rocky
https://riptutorial.com/contributor/3723163/sompom
https://riptutorial.com/contributor/4660897/tot-zam
https://riptutorial.com/contributor/4660897/tot-zam
https://riptutorial.com/contributor/5195227/un-lucky
https://riptutorial.com/contributor/276994/vlad
https://riptutorial.com/contributor/1029287/void
https://riptutorial.com/contributor/2422874/wasabi-fan
https://riptutorial.com/contributor/561113/xiaoy312
https://riptutorial.com/contributor/2780334/zenlulz

	About
	Chapter 1: Getting started with C# Language
	Remarks
	Versions
	Examples
	Creating a new console application (Visual Studio)

	Explanation
	Using the command line
	Creating a new project in Visual Studio (console application) and Running it in Debug mode
	Creating a new program using Mono
	Creating a new program using .NET Core
	Command Prompt output
	Creating a new query using LinqPad
	Creating a new project using Xamarin Studio

	Chapter 2: .NET Compiler Platform (Roslyn)
	Examples
	Create workspace from MSBuild project
	Syntax tree
	Semantic model

	Chapter 3: Access Modifiers
	Remarks
	Examples
	public
	private
	internal
	protected
	protected internal
	Access Modifiers Diagrams

	Chapter 4: Access network shared folder with username and password
	Introduction
	Examples
	Code to access network shared file

	Chapter 5: Accessing Databases
	Examples
	ADO.NET Connections

	Common Data Provider Classes
	Common Access Pattern for ADO.NET Connections
	Entity Framework Connections

	Executing Entity Framework Queries
	Connection Strings

	Storing Your Connection String
	Different Connections for Different Providers

	Chapter 6: Action Filters
	Examples
	Custom Action Filters

	Chapter 7: Aliases of built-in types
	Examples
	Built-In Types Table

	Chapter 8: An overview of c# collections
	Examples
	HashSet
	SortedSet
	T[] (Array of T)
	List
	Dictionary

	Duplicate key when using collection initialization
	Stack
	LinkedList
	Queue

	Chapter 9: Anonymous types
	Examples
	Creating an anonymous type
	Anonymous vs dynamic
	Generic methods with anonymous types
	Instantiating generic types with anonymous types
	Anonymous type equality
	Implicitly typed arrays

	Chapter 10: Arrays
	Syntax
	Remarks
	Examples
	Array covariance
	Getting and setting array values
	Declaring an array
	Iterate over an array
	Multi-dimensional arrays
	Jagged arrays
	Checking if one array contains another array
	Initializing an array filled with a repeated non-default value
	Copying arrays
	Creating an array of sequential numbers

	Usage:
	Comparing arrays for equality
	Arrays as IEnumerable<> instances

	Chapter 11: ASP.NET Identity
	Introduction
	Examples
	How to implement password reset token in asp.net identity using user manager.

	Chapter 12: AssemblyInfo.cs Examples
	Remarks
	Examples
	[AssemblyTitle]
	[AssemblyProduct]
	Global and local AssemblyInfo
	[AssemblyVersion]
	Reading Assembly Attributes
	Automated versioning
	Common fields
	[AssemblyConfiguration]
	[InternalsVisibleTo]
	[AssemblyKeyFile]

	Chapter 13: Async/await, Backgroundworker, Task and Thread Examples
	Remarks
	Examples
	ASP.NET Configure Await
	Blocking
	ConfigureAwait
	Async/await
	BackgroundWorker
	Task
	Thread
	Task "run and forget" extension

	Chapter 14: Async-Await
	Introduction
	Remarks
	Examples
	Simple consecutive calls
	Try/Catch/Finally
	Web.config setup to target 4.5 for correct async behaviour.
	Concurrent calls
	Await operator and async keyword
	Returning a Task without await
	Blocking on async code can cause deadlocks
	Async/await will only improve performance if it allows the machine to do additional work

	Chapter 15: Asynchronous Socket
	Introduction
	Remarks
	Examples
	Asynchronous Socket (Client / Server) example.

	Chapter 16: Attributes
	Examples
	Creating a custom attribute
	Using an attribute
	Reading an attribute
	DebuggerDisplay Attribute
	Caller info attributes
	Reading an attribute from interface
	Obsolete Attribute

	Chapter 17: BackgroundWorker
	Syntax
	Remarks
	Examples
	Assigning Event Handlers to a BackgroundWorker
	Assigning Properties to a BackgroundWorker
	Creating a new BackgroundWorker instance
	Using a BackgroundWorker to complete a task.

	The result is the following...

	Chapter 18: BigInteger
	Remarks
	When To Use
	Alternatives
	Examples
	Calculate the First 1,000-Digit Fibonacci Number

	Chapter 19: Binary Serialization
	Remarks
	Examples
	Making an object serializable
	Controlling serialization behavior with attributes
	Adding more control by implementing ISerializable
	Serialization surrogates (Implementing ISerializationSurrogate)
	Serialization Binder
	Some gotchas in backward compatibility

	Chapter 20: BindingList
	Examples
	Avoiding N*2 iteration
	Add item to list

	Chapter 21: Built-in Types
	Examples
	Immutable reference type - string
	Value type - char
	Value type - short, int, long (signed 16 bit, 32 bit, 64 bit integers)
	Value type - ushort, uint, ulong (unsigned 16 bit, 32 bit, 64 bit integers)
	Value type - bool
	Comparisons with boxed value types
	Conversion of boxed value types

	Chapter 22: C# 3.0 Features
	Remarks
	Examples
	Implicitly typed variables (var)
	Language Integrated Queries (LINQ)
	Lambda expresions
	Anonymous types

	Chapter 23: C# 4.0 Features
	Examples
	Optional parameters and named arguments
	Variance
	Optional ref keyword when using COM
	Dynamic member lookup

	Chapter 24: C# 5.0 Features
	Syntax
	Parameters
	Remarks
	Examples
	Async & Await
	Caller Information Attributes

	Chapter 25: C# 6.0 Features
	Introduction
	Remarks
	Examples
	Operator nameof

	Workaround for previous versions (more detail)
	Expression-bodied function members

	Properties
	Indexers
	Methods
	Operators
	Limitations
	Exception filters
	Using exception filters
	Risky when clause
	Logging as a side effect

	The finally block
	Example: finally block
	Auto-property initializers

	Introduction
	Accessors With Different Visibility
	Read-Only Properties

	Old style (pre C# 6.0)
	Usage
	Cautionary notes
	Index initializers
	String interpolation

	Basic Example
	Using interpolation with verbatim string literals
	Expressions
	Escape sequences
	FormattableString type
	Implicit conversions
	Current and Invariant Culture Methods
	Behind the scenes
	String Interpolation and Linq
	Reusable Interpolated Strings
	String interpolation and localization
	Recursive interpolation
	Await in catch and finally
	Null propagation

	Basics
	Use with the Null-Coalescing Operator (??)
	Use with Indexers
	Use with void Functions
	Use with Event Invocation
	Limitations
	Gotchas
	Using static type
	Improved overload resolution
	Minor changes and bugfixes
	Using an extension method for collection initialization
	Disable Warnings Enhancements

	Chapter 26: C# 7.0 Features
	Introduction
	Examples
	out var declaration

	Example
	Limitations
	References
	Binary literals

	Flags enumerations
	Digit separators
	Language support for Tuples

	Basics
	Tuple Deconstruction
	Tuple Initialization
	h11
	Type inference
	Reflection and Tuple Field Names
	Use with generics and async
	Use with collections
	Differences between ValueTuple and Tuple
	References
	Local functions

	Example
	Example
	Example
	Pattern Matching
	switch expression
	is expression

	Example
	ref return and ref local

	Ref Return
	Ref Local
	Unsafe Ref Operations
	Links
	throw expressions
	Extended expression bodied members list
	ValueTask

	1. Performance increase
	2. Increased implementation flexibility
	Synchronous implementation:
	Asynchronous implementation

	Notes
	Chapter 27: C# Authentication handler
	Examples
	Authentication handler

	Chapter 28: C# Script
	Examples
	Simple code evaluation

	Chapter 29: Caching
	Examples
	MemoryCache

	Chapter 30: Casting
	Remarks
	Examples
	Cast an object to a base type
	Explicit Casting
	Safe Explicit Casting (`as` operator)
	Implicit Casting
	Checking compatibility without casting
	Explicit Numeric Conversions
	Conversion Operators
	LINQ Casting operations

	Chapter 31: Checked and Unchecked
	Syntax
	Examples
	Checked and Unchecked
	Checked and Unchecked as a scope

	Chapter 32: CLSCompliantAttribute
	Syntax
	Parameters
	Remarks
	Examples
	Access Modifier to which CLS rules apply
	Violation of CLS rule: Unsigned types / sbyte
	Violation of CLS rule: Same naming
	Violation of CLS rule: Identifier _
	Violation of CLS rule: Inherit from non CLSComplaint class

	Chapter 33: Code Contracts
	Syntax
	Remarks
	Examples
	Preconditions
	Postconditions
	Invariants
	Defining Contracts on Interface

	Chapter 34: Code Contracts and Assertions
	Examples
	Assertions to check logic should always be true

	Chapter 35: Collection Initializers
	Remarks
	Examples
	Collection initializers
	C# 6 Index Initializers

	Dictionary Initialization
	Collection initializers in custom classes
	Collection Initializers with Parameter Arrays
	Using collection initializer inside object initializer

	Chapter 36: Comments and regions
	Examples
	Comments

	Single line comments
	Multi line or delimited comments
	Regions
	Documentation comments

	Chapter 37: Common String Operations
	Examples
	Splitting a String by specific character
	Getting Substrings of a given string
	Determine whether a string begins with a given sequence
	Trimming Unwanted Characters Off the Start and/or End of Strings.

	String.Trim()
	String.TrimStart() and String.TrimEnd()
	Formatting a string
	Joining an array of strings into a new one
	Padding a string to a fixed length
	Construct a string from Array
	Formatting using ToString
	Getting x characters from the right side of a string
	Checking for empty String using String.IsNullOrEmpty() and String.IsNullOrWhiteSpace()
	Getting a char at specific index and enumerating the string
	Convert Decimal Number to Binary,Octal and Hexadecimal Format
	Splitting a String by another string
	Correctly reversing a string
	Replacing a string within a string
	Changing the case of characters within a String
	Concatenate an array of strings into a single string
	String Concatenation

	Chapter 38: Conditional Statements
	Examples
	If-Else Statement
	If-Else If-Else Statement
	Switch statements
	If statement conditions are standard boolean expressions and values

	Chapter 39: Constructors and Finalizers
	Introduction
	Remarks
	Examples
	Default Constructor
	Calling a constructor from another constructor
	Static constructor
	Calling the base class constructor
	Finalizers on derived classes
	Singleton constructor pattern
	Forcing a static constructor to be called
	Calling virtual methods in constructor
	Generic Static Constructors
	Exceptions in static constructors
	Constructor and Property Initialization

	Chapter 40: Creating a Console Application using a Plain-Text Editor and the C# Compiler (csc.exe)
	Examples
	Creating a Console application using a Plain-Text Editor and the C# Compiler

	Saving the Code
	Compiling the Source Code
	Chapter 41: Creating Own MessageBox in Windows Form Application
	Introduction
	Syntax
	Examples
	Creating Own MessageBox Control.
	How to use own created MessageBox control in another Windows Form application.

	Chapter 42: Creational Design Patterns
	Remarks
	Examples
	Singleton Pattern
	Factory Method pattern
	Builder Pattern
	Prototype Pattern
	Abstract Factory Pattern

	Chapter 43: Cryptography (System.Security.Cryptography)
	Examples
	Modern Examples of Symmetric Authenticated Encryption of a string
	Introduction to Symmetric and Asymmetric Encryption

	Symmetric Encryption
	Asymmetric Encryption
	Password Hashing
	Simple Symmetric File Encryption
	Cryptographically Secure Random Data
	Fast Asymmetric File Encryption

	Chapter 44: Data Annotation
	Examples
	DisplayNameAttribute (display attribute)
	EditableAttribute (data modeling attribute)
	Validation Attributes

	Example: RequiredAttribute
	Example: StringLengthAttribute
	Example: RangeAttribute
	Example: CustomValidationAttribute
	Creating a custom validation attribute
	Data Annotation Basics

	Usage
	Manually Execute Validation Attributes

	Validation Context
	Validate an Object and All of its Properties
	Validate a Property of an Object
	And More

	Chapter 45: DateTime Methods
	Examples
	DateTime.Add(TimeSpan)
	DateTime.AddDays(Double)
	DateTime.AddHours(Double)
	DateTime.AddMilliseconds(Double)
	DateTime.Compare(DateTime t1, DateTime t2)
	DateTime.DaysInMonth(Int32, Int32)
	DateTime.AddYears(Int32)
	Pure functions warning when dealing with DateTime
	DateTime.Parse(String)
	DateTime.TryParse(String, DateTime)
	Parse and TryParse with culture info
	DateTime as initializer in for-loop
	DateTime ToString, ToShortDateString, ToLongDateString and ToString formatted
	Current Date
	DateTime Formating
	DateTime.ParseExact(String, String, IFormatProvider)
	DateTime.TryParseExact(String, String, IFormatProvider, DateTimeStyles, DateTime)

	Chapter 46: Delegates
	Remarks

	Summary
	In-built delegate types: Action<...>, Predicate<T> and Func<...,TResult>
	Custom delegate types
	Invoking delegates
	Assigning to delegates
	Combining delegates
	Examples
	Underlying references of named method delegates
	Declaring a delegate type
	The Func, Action and Predicate delegate types
	Assigning a named method to a delegate
	Delegate Equality
	Assigning to a delegate by lambda
	Passing delegates as parameters
	Combine Delegates (Multicast Delegates)
	Safe invoke multicast delegate
	Closure inside a delegate
	Encapsulating transformations in funcs

	Chapter 47: Dependency Injection
	Remarks
	Examples
	Dependency injection using MEF
	Dependency Injection C# and ASP.NET with Unity

	Chapter 48: Diagnostics
	Examples
	Debug.WriteLine
	Redirecting log output with TraceListeners

	Chapter 49: Dynamic type
	Remarks
	Examples
	Creating a dynamic variable
	Returning dynamic
	Creating a dynamic object with properties
	Handling Specific Types Unknown at Compile Time

	Chapter 50: Enum
	Introduction
	Syntax
	Remarks
	Examples
	Get all the members values of an enum
	Enum as flags
	Test flags-style enum values with bitwise logic
	Enum to string and back
	Default value for enum == ZERO
	Enum basics
	Bitwise Manipulation using enums
	Using << notation for flags
	Adding additional description information to an enum value
	Add and remove values from flagged enum
	Enums can have unexpected values

	Chapter 51: Equality Operator
	Examples
	Equality kinds in c# and equality operator

	Chapter 52: Equals and GetHashCode
	Remarks
	Examples
	Default Equals behavior.
	Writing a good GetHashCode override
	Override Equals and GetHashCode on custom types
	Equals and GetHashCode in IEqualityComparator

	Chapter 53: Events
	Introduction
	Parameters
	Remarks
	Examples
	Declaring and Raising Events

	Declaring an Event
	Raising the Event
	Standard Event Declaration
	Anonymous Event Handler Declaration
	Non-Standard Event Declaration
	Creating custom EventArgs containing additional data
	Creating cancelable event
	Event Properties

	Chapter 54: Exception Handling
	Examples
	Basic Exception Handling
	Handling specific exception types
	Using the exception object
	Finally block
	Implementing IErrorHandler for WCF Services
	Creating Custom Exceptions

	Creating Custom Exception Class
	re-throwing
	serialization
	Using the ParserException
	Security Concerns
	Conclusion
	Exception Anti-patterns

	Swallowing Exceptions
	Baseball Exception Handling
	catch (Exception)
	Aggregate exceptions / multiple exceptions from one method
	Nesting of Exceptions & try catch blocks.
	Best Practices
	Cheatsheet
	DO NOT manage business logic with exceptions.
	DO NOT re-throw Exceptions
	DO NOT absorb exceptions with no logging
	Do not catch exceptions that you cannot handle
	Unhandled and Thread Exception
	Throwing an exception

	Chapter 55: Expression Trees
	Introduction
	Syntax
	Parameters
	Remarks

	Intro to Expression Trees
	Where we came from
	How to avoid flow inversion's memory and latency problems
	Expression trees save the day
	Creating expression trees

	Expression Trees and LINQ
	Notes
	Examples
	Creating Expression Trees by Using the API
	Compiling Expression Trees
	Parsing Expression Trees
	Create Expression Trees with a lambda expression
	Understanding the expressions API
	Expression Tree Basic
	Examining the Structure of an Expression using Visitor

	Chapter 56: Extension Methods
	Syntax
	Parameters
	Remarks
	Examples
	Extension methods - overview
	Explicitly using an extension method

	When to call extension methods as static methods
	Using static
	Null checking
	Extension methods can only see public (or internal) members of the extended class
	Generic Extension Methods
	Extension methods dispatch based on static type
	Extension methods aren't supported by dynamic code.
	Extension methods as strongly typed wrappers
	Extension methods for chaining
	Extension methods in combination with interfaces
	IList Extension Method Example: Comparing 2 Lists
	Extension methods with Enumeration
	Extensions and interfaces together enable DRY code and mixin-like functionality
	Extension methods for handling special cases
	Using Extension methods with Static methods and Callbacks
	Extension methods on Interfaces
	Using Extension methods to create beautiful mapper classes
	Using Extension methods to build new collection types (e.g. DictList)

	Chapter 57: File and Stream I/O
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Reading from a file using the System.IO.File class
	Writing lines to a file using the System.IO.StreamWriter class
	Writing to a file using the System.IO.File class
	Lazily reading a file line-by-line via an IEnumerable
	Create File
	Copy File
	Move File
	Delete File
	Files and Directories
	Async write text to a file using StreamWriter

	Chapter 58: FileSystemWatcher
	Syntax
	Parameters
	Examples
	Basic FileWatcher
	IsFileReady

	Chapter 59: Func delegates
	Syntax
	Parameters
	Examples
	Without parameters
	With multiple variables
	Lambda & anonymous methods
	Covariant & Contravariant Type Parameters

	Chapter 60: Function with multiple return values
	Remarks
	Examples
	"anonymous object" + "dynamic keyword" solution
	Tuple solution
	Ref and Out Parameters

	Chapter 61: Functional Programming
	Examples
	Func and Action
	Immutability
	Avoid Null References
	Higher-Order Functions
	Immutable collections

	Creating and adding items
	Creating using the builder
	Creating from an existing IEnumerable
	Chapter 62: Garbage Collector in .Net
	Examples
	Large Object Heap compaction
	Weak References

	Chapter 63: Generating Random Numbers in C#
	Syntax
	Parameters
	Remarks
	Examples
	Generate a random int
	Generate a Random double
	Generate a random int in a given range
	Generating the same sequence of random numbers over and over again
	Create multiple random class with different seeds simultaneously
	Generate a random character
	Generate a number that is a percentage of a max value

	Chapter 64: Generic Lambda Query Builder
	Remarks
	Examples
	QueryFilter class
	GetExpression Method
	GetExpression Private overload

	For one filter:
	For two filters:
	ConstantExpression Method
	Usage

	Output:
	Chapter 65: Generics
	Syntax
	Parameters
	Remarks
	Examples
	Type Parameters (Classes)
	Type Parameters (Methods)
	Type Parameters (Interfaces)
	Implicit type inference (methods)
	Type constraints (classes and interfaces)
	Type constraints (class and struct)
	Type constraints (new-keyword)
	Type inference (classes)
	Reflecting on type parameters
	Explicit type parameters
	Using generic method with an interface as a constraint type.
	Covariance
	Contravariance
	Invariance
	Variant interfaces
	Variant delegates
	Variant types as parameters and return values
	Checking equality of generic values.
	Generic type casting
	Configuration reader with generic type casting

	Chapter 66: Getting Started: Json with C#
	Introduction
	Examples
	Simple Json Example
	First things First: Library to work with Json
	C# Implementation
	Serialization
	Deserialization
	Serialization & De-Serialization Common Utilities function

	Chapter 67: Guid
	Introduction
	Remarks
	Examples
	Getting the string representation of a Guid
	Creating a Guid
	Declaring a nullable GUID

	Chapter 68: Handling FormatException when converting string to other types
	Examples
	Converting string to integer

	Chapter 69: Hash Functions
	Remarks
	Examples
	MD5
	SHA1
	SHA256
	SHA384
	SHA512
	PBKDF2 for Password Hashing
	Complete Password Hashing Solution using Pbkdf2

	Chapter 70: How to use C# Structs to create a Union type (Similar to C Unions)
	Remarks
	Examples
	C-Style Unions in C#
	Union Types in C# can also contain Struct fields

	Chapter 71: ICloneable
	Syntax
	Remarks
	Examples
	Implementing ICloneable in a class
	Implementing ICloneable in a struct

	Chapter 72: IComparable
	Examples
	Sort versions

	Chapter 73: IDisposable interface
	Remarks
	Examples
	In a class that contains only managed resources
	In a class with managed and unmanaged resources
	IDisposable, Dispose
	In an inherited class with managed resources
	using keyword

	Chapter 74: IEnumerable
	Introduction
	Remarks
	Examples
	IEnumerable
	IEnumerable with custom Enumerator

	Chapter 75: ILGenerator
	Examples
	Creates a DynamicAssembly that contains a UnixTimestamp helper method
	Create method override

	Chapter 76: Immutability
	Examples
	System.String class
	Strings and immutability

	Chapter 77: Implementing Decorator Design Pattern
	Remarks
	Examples
	Simulating cafeteria

	Chapter 78: Implementing Flyweight Design Pattern
	Examples
	Implementing map in RPG game

	Chapter 79: Import Google Contacts
	Remarks
	Examples
	Requirements
	Source code in the controller
	Source code in the view.

	Chapter 80: Including Font Resources
	Parameters
	Examples
	Instantiate 'Fontfamily' from Resources
	Integration method
	Usage with a 'Button'

	Chapter 81: Indexer
	Syntax
	Remarks
	Examples
	A simple indexer
	Indexer with 2 arguments and interface
	Overloading the indexer to create a SparseArray

	Chapter 82: Inheritance
	Syntax
	Remarks
	Examples
	Inheriting from a base class
	Inheriting from a class and implementing an interface
	Inheriting from a class and implementing multiple interfaces
	Testing and navigating inheritance
	Extending an abstract base class
	Constructors In A Subclass
	Inheritance. Constructors' calls sequence
	Inheriting methods
	Inheritance Anti-patterns

	Improper Inheritance
	Base class with recursive type specification

	Chapter 83: Initializing Properties
	Remarks
	Examples
	C# 6.0: Initialize an Auto-Implemented Property
	Initializing Property with a Backing Field
	Initializing Property in Constructor
	Property Initialization during object instantiation

	Chapter 84: INotifyPropertyChanged interface
	Remarks
	Examples
	Implementing INotifyPropertyChanged in C# 6
	INotifyPropertyChanged With Generic Set Method

	Chapter 85: Interfaces
	Examples
	Implementing an interface
	Implementing multiple interfaces
	Explicit interface implementation

	Hint:
	Note:
	Why we use interfaces
	Interface Basics
	"Hiding" members with Explicit Implementation
	IComparable as an Example of Implementing an Interface

	Chapter 86: Interoperability
	Remarks
	Examples
	Import function from unmanaged C++ DLL

	Finding the dynamic library
	Simple code to expose class for com
	C++ name mangling
	Calling conventions
	Dynamic loading and unloading of unmanaged DLLs
	Dealing with Win32 Errors
	Pinned Object
	Reading structures with Marshal

	Chapter 87: IQueryable interface
	Examples
	Translating a LINQ query to a SQL query

	Chapter 88: Iterators
	Remarks
	Examples
	Simple Numeric Iterator Example
	Creating Iterators Using Yield

	Chapter 89: Keywords
	Introduction
	Remarks
	Examples
	stackalloc
	volatile
	fixed
	Fixed Variables
	Fixed Array Size
	default
	readonly
	as
	is
	typeof
	const
	namespace
	try, catch, finally, throw
	continue
	ref, out
	checked, unchecked
	goto

	goto as a:
	Label:
	Case statement:
	Exception Retry
	enum
	base
	foreach
	params
	break
	abstract
	float, double, decimal

	float
	double
	decimal
	uint
	this
	for
	while
	return
	in
	using
	sealed
	sizeof
	static
	Drawbacks
	int
	long
	ulong
	dynamic
	virtual, override, new

	virtual and override
	new
	The usage of override is not optional
	Derived classes can introduce polymorphism
	Virtual methods cannot be private
	async, await
	char
	lock
	null
	internal
	where
	The previous examples show generic constraints on a class definition, but constraints can be used anywhere a type argument is supplied: classes, structs, interfaces, methods, etc.
	extern
	bool
	when
	unchecked

	When is this useful?
	void
	if, if...else, if... else if

	Important to note that if a condition is met in the above example , the control skips other tests and jumps to the end of that particular if else construct.So, the order of tests is important if you are using if .. else if construct
	do
	operator
	struct
	switch
	interface
	unsafe
	implicit
	true, false
	string
	ushort
	sbyte
	var
	delegate
	event
	partial

	Chapter 90: Lambda expressions
	Remarks
	Examples
	Passing a Lambda Expression as a Parameter to a Method
	Lambda Expressions as Shorthand for Delegate Initialization
	Lambdas for both `Func` and `Action`
	Lambda Expressions with Multiple Parameters or No Parameters
	Put Multiple Statements in a Statement Lambda
	Lambdas can be emitted both as `Func` and `Expression`
	Lambda Expression as an Event Handler

	Chapter 91: Lambda Expressions
	Remarks
	Closures
	Examples
	Basic lambda expressions
	Basic lambda expressions with LINQ
	Using lambda syntax to create a closure
	Lambda syntax with statement block body
	Lambda expressions with System.Linq.Expressions

	Chapter 92: LINQ Queries
	Introduction
	Syntax
	Remarks
	Examples
	Where

	Method syntax
	Query syntax
	Select - Transforming elements
	Chaining methods
	Range and Repeat

	Range
	Repeat
	Skip and Take
	First, FirstOrDefault, Last, LastOrDefault, Single, and SingleOrDefault

	First()
	FirstOrDefault()
	Last()
	LastOrDefault()
	Single()
	SingleOrDefault()
	Recommendations
	Except
	SelectMany: Flattening a sequence of sequences
	SelectMany
	All
	1. Empty parameter
	2. Lambda expression as parameter
	3. Empty collection
	Query collection by type / cast elements to type
	Union
	JOINS

	(Inner) Join
	Left outer join
	Right Outer Join
	Cross Join
	Full Outer Join
	Practical example
	Distinct
	GroupBy one or multiple fields
	Using Range with various Linq methods
	Query Ordering - OrderBy() ThenBy() OrderByDescending() ThenByDescending()
	Basics
	GroupBy

	Simple Example
	More Complex Example
	Any

	1. Empty parameter
	2. Lambda expression as parameter
	3. Empty collection
	ToDictionary
	Aggregate
	Defining a variable inside a Linq query (let keyword)
	SkipWhile
	DefaultIfEmpty

	Usage in Left Joins:
	SequenceEqual
	Count and LongCount
	Incrementally building a query
	Zip
	GroupJoin with outer range variable
	ElementAt and ElementAtOrDefault
	Linq Quantifiers
	Joining multiple sequences
	Joining on multiple keys
	Select with Func selector - Use to get ranking of elements
	TakeWhile
	Sum
	ToLookup
	Build your own Linq operators for IEnumerable
	Using SelectMany instead of nested loops
	Any and First(OrDefault) - best practice
	GroupBy Sum and Count
	Reverse
	Enumerating the Enumerable
	OrderBy
	OrderByDescending
	Concat
	Contains

	Chapter 93: Linq to Objects
	Introduction
	Examples
	How LINQ to Object executes queries
	Using LINQ to Objects in C#

	Chapter 94: LINQ to XML
	Examples
	Read XML using LINQ to XML

	Chapter 95: Literals
	Syntax
	Examples
	int literals
	uint literals
	string literals
	char literals
	byte literals
	sbyte literals
	decimal literals
	double literals
	float literals
	long literals
	ulong literal
	short literal
	ushort literal
	bool literals

	Chapter 96: Lock Statement
	Syntax
	Remarks
	Examples
	Simple usage
	Throwing exception in a lock statement
	Return in a lock statement
	Using instances of Object for lock
	Anti-Patterns and gotchas

	Locking on an stack-allocated / local variable
	Assuming that locking restricts access to the synchronizing object itself
	Expecting subclasses to know when to lock
	Locking on a boxed ValueType variable does not synchronize
	Using locks unnecessarily when a safer alternative exists
	Chapter 97: Looping
	Examples
	Looping styles
	break
	Foreach Loop
	While loop
	For Loop
	Do - While Loop
	Nested loops
	continue

	Chapter 98: Making a variable thread safe
	Examples
	Controlling access to a variable in a Parallel.For loop

	Chapter 99: Methods
	Examples
	Declaring a Method
	Calling a Method
	Parameters and Arguments
	Return Types
	Default Parameters
	Method overloading
	Anonymous method
	Access rights

	Chapter 100: Microsoft.Exchange.WebServices
	Examples
	Retrieve Specified User's Out of Office Settings
	Update Specific User's Out of Office Settings

	Chapter 101: Named and Optional Arguments
	Remarks
	Examples
	Named Arguments
	Optional Arguments

	Chapter 102: Named Arguments
	Examples
	Named Arguments can make your code more clear
	Named arguments and optional paramaters
	Argument order is not necessary
	Named Arguments avoids bugs on optional parameters

	Chapter 103: nameof Operator
	Introduction
	Syntax
	Examples
	Basic usage: Printing a variable name
	Printing a parameter name
	Raising PropertyChanged event
	Handling PropertyChanged events
	Applied to a generic type parameter
	Applied to qualified identifiers
	Argument Checking and Guard Clauses
	Strongly typed MVC action links

	Chapter 104: Naming Conventions
	Introduction
	Remarks
	Choose easily readable identifier names
	Favor readability over brevity
	Do not use Hungarian notation
	Abbreviations and acronyms
	Examples
	Capitalization conventions

	Pascal Casing
	Camel Casing
	Uppercase
	Rules
	Interfaces
	Private fields

	Camel case
	Camel case with underscore
	Namespaces
	Enums

	Use a singular name for most Enums
	Use a plural name for Enum types that are bit fields
	Do not add 'enum' as a suffix
	Do not use the enum name in each entry
	Exceptions

	Add 'exception' as a suffix

	Chapter 105: Networking
	Syntax
	Remarks
	Examples
	Basic TCP Communication Client
	Download a file from a web server
	Async TCP Client
	Basic UDP Client

	Chapter 106: Nullable types
	Syntax
	Remarks
	Examples
	Initialising a nullable
	Check if a Nullable has a value
	Get the value of a nullable type
	Getting a default value from a nullable
	Check if a generic type parameter is a nullable type
	Default value of nullable types is null
	Effective usage of underlying Nullable argument

	Chapter 107: Null-Coalescing Operator
	Syntax
	Parameters
	Remarks
	Examples
	Basic usage
	Null fall-through and chaining
	Null coalescing operator with method calls
	Use existing or create new
	Lazy properties initialization with null coalescing operator

	Thread safety
	C# 6 Syntactic Sugar using expression bodies
	Example in the MVVM pattern
	Chapter 108: Null-conditional Operators
	Syntax
	Remarks
	Examples
	Null-Conditional Operator

	Chaining the Operator
	Combining with the Null-Coalescing Operator
	The Null-Conditional Index
	Avoiding NullReferenceExceptions
	Null-conditional Operator can be used with Extension Method

	Chapter 109: NullReferenceException
	Examples
	NullReferenceException explained

	Chapter 110: O(n) Algorithm for circular rotation of an array
	Introduction
	Examples
	Example of a generic method that rotates an array by a given shift

	Chapter 111: Object initializers
	Syntax
	Remarks
	Examples
	Simple usage
	Usage with anonymous types
	Usage with non-default constructors

	Chapter 112: Object Oriented Programming In C#
	Introduction
	Examples
	Classes:

	Chapter 113: ObservableCollection
	Examples
	Initialize ObservableCollection

	Chapter 114: Operators
	Introduction
	Syntax
	Parameters
	Remarks
	Operator Precedence

	Examples
	Overloadable Operators
	Relational Operators
	Short-circuiting Operators
	sizeof
	Overloading equality operators
	Class Member Operators: Member Access
	Class Member Operators: Null Conditional Member Access
	Class Member Operators: Function Invocation
	Class Member Operators: Aggregate Object Indexing
	Class Member Operators: Null Conditional Indexing
	"Exclusive or" Operator
	Bit-Shifting Operators
	Implicit Cast and Explicit Cast Operators
	Binary operators with assignment
	? : Ternary Operator
	typeof
	default Operator

	Value Type (where T : struct)
	Reference Type (where T : class)
	nameof Operator
	?. (Null Conditional Operator)
	Postfix and Prefix increment and decrement
	=> Lambda operator
	Assignment operator '='
	?? Null-Coalescing Operator

	Chapter 115: Overflow
	Examples
	Integer overflow
	Overflow during operation
	Ordering matters

	Chapter 116: Overload Resolution
	Remarks
	Examples
	Basic Overloading Example
	"params" is not expanded, unless necessary.
	Passing null as one of the arguments

	Chapter 117: Parallel LINQ (PLINQ)
	Syntax
	Examples
	Simple example
	WithDegreeOfParallelism
	AsOrdered
	AsUnordered

	Chapter 118: Partial class and methods
	Introduction
	Syntax
	Remarks
	Examples
	Partial classes
	Partial methods
	Partial classes inheriting from a base class

	Chapter 119: Performing HTTP requests
	Examples
	Creating and sending an HTTP POST request
	Creating and sending an HTTP GET request
	Error handling of specific HTTP response codes (such as 404 Not Found)
	Sending asynchronous HTTP POST request with JSON body
	Sending asynchronous HTTP GET request and reading JSON request
	Retrieve HTML for Web Page (Simple)

	Chapter 120: Pointers
	Remarks

	Pointers and unsafe
	Undefined behavior
	Types that support pointers
	Examples
	Pointers for array access
	Pointer arithmetic
	The asterisk is part of the type
	void*
	Member access using ->
	Generic pointers

	Chapter 121: Pointers & Unsafe Code
	Examples
	Introduction to unsafe code
	Retrieving the Data Value Using a Pointer
	Passing Pointers as Parameters to Methods
	Accessing Array Elements Using a Pointer
	Compiling Unsafe Code

	Chapter 122: Polymorphism
	Examples
	Another Polymorphism Example
	Types of Polymorphism

	Ad hoc polymorphism
	Subtyping
	Chapter 123: Preprocessor directives
	Syntax
	Remarks
	Conditional Expressions
	Examples
	Conditional Expressions
	Generating Compiler Warnings and Errors
	Defining and Undefining Symbols
	Region Blocks
	Other Compiler Instructions

	Line
	Pragma Checksum
	Using the Conditional attribute
	Disabling and Restoring Compiler Warnings
	Custom Preprocessors at project level

	Chapter 124: Properties
	Remarks
	Examples
	Various Properties in Context
	Public Get
	Public Set
	Accessing Properties
	Default Values for Properties
	Auto-implemented properties
	Read-only properties

	Declaration
	Using read-only properties to create immutable classes
	Chapter 125: Reactive Extensions (Rx)
	Examples
	Observing TextChanged event on a TextBox
	Streaming Data from Database with Observable

	Chapter 126: Read & Understand Stacktraces
	Introduction
	Examples
	Stack trace for a simple NullReferenceException in Windows Forms

	Chapter 127: Reading and writing .zip files
	Syntax
	Parameters
	Examples
	Writing to a zip file
	Writing Zip Files in-memory
	Get files from a Zip file
	The following example shows how to open a zip archive and extract all .txt files to a folder

	Chapter 128: Recursion
	Remarks
	Examples
	Recursively describe an object structure
	Recursion in plain English
	Using Recursion to Get Directory Tree
	Fibonacci Sequence
	Factorial calculation
	PowerOf calculation

	Chapter 129: Reflection
	Introduction
	Remarks
	Examples
	Get a System.Type
	Get the members of a type
	Get a method and invoke it
	Getting and setting properties
	Custom Attributes
	Looping through all the properties of a class
	Determining generic arguments of instances of generic types
	Get a generic method and invoke it
	Create an instance of a Generic Type and invoke it's method
	Instantiating classes that implement an interface (e.g. plugin activation)
	Creating an instance of a Type

	With Activator class
	Without Activator class
	Get a Type by name with namespace
	Get a Strongly-Typed Delegate to a Method or Property via Reflection

	Chapter 130: Regex Parsing
	Syntax
	Parameters
	Remarks
	Examples
	Single match
	Multiple matches

	Chapter 131: Runtime Compile
	Examples
	RoslynScript
	CSharpCodeProvider

	Chapter 132: Singleton Implementation
	Examples
	Statically Initialized Singleton
	Lazy, thread-safe Singleton (using Double Checked Locking)
	Lazy, thread-safe Singleton (using Lazy)
	Lazy, thread safe singleton (for .NET 3.5 or older, alternate implementation)
	Disposing of the Singleton instance when it is no longer needed

	Chapter 133: Static Classes
	Examples
	Static keyword
	Static Classes
	Static class lifetime

	Chapter 134: Stopwatches
	Syntax
	Remarks
	Examples
	Creating an Instance of a Stopwatch
	IsHighResolution

	Chapter 135: Stream
	Examples
	Using Streams

	Chapter 136: String Concatenate
	Remarks
	Examples
	+ Operator
	Concatenate strings using System.Text.StringBuilder
	Concat string array elements using String.Join
	Concatenation of two strings using $

	Chapter 137: String Escape Sequences
	Syntax
	Remarks
	Examples
	Unicode character escape sequences
	Escaping special symbols in character literals
	Escaping special symbols in string literals
	Unrecognized escape sequences produce compile-time errors
	Using escape sequences in identifiers

	Chapter 138: String Interpolation
	Syntax
	Remarks
	Examples
	Expressions
	Format dates in strings
	Simple Usage

	Behind the scenes
	Padding the output

	Left Padding
	Right Padding
	Padding with Format Specifiers
	Formatting numbers in strings

	Chapter 139: String Manipulation
	Examples
	Changing the case of characters within a String
	Finding a string within a string
	Removing (Trimming) white-space from a string
	Replacing a string within a string
	Splitting a string using a delimiter
	Concatenate an array of strings into a single string
	String Concatenation

	Chapter 140: String.Format
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Places where String.Format is 'embedded' in the framework
	Using custom number format
	Create a custom format provider
	Align left/ right, pad with spaces
	Numeric formats
	Currency Formatting

	Precision
	Currency Symbol
	Position of Currency Symbol
	Custom Decimal Separator
	Since C# 6.0
	Escaping curly brackets inside a String.Format() expression
	Date Formatting
	ToString()
	Relationship with ToString()

	Caveats & Formatting Restrictions

	Chapter 141: StringBuilder
	Examples
	What a StringBuilder is and when to use one
	Use StringBuilder to create string from a large number of records

	Chapter 142: Structs
	Remarks
	Examples
	Declaring a struct
	Struct usage
	Struct implementing interface
	Structs are copied on assignment

	Chapter 143: Structural Design Patterns
	Introduction
	Examples
	Adapter Design Pattern

	Chapter 144: Synchronization Context in Async-Await
	Examples
	Pseudocode for async/await keywords
	Disabling synchronization context
	Why SynchronizationContext is so important?

	Chapter 145: System.DirectoryServices.Protocols.LdapConnection
	Examples
	Authenticated SSL LDAP connection, SSL cert does not match reverse DNS
	Super Simple anonymous LDAP

	Chapter 146: System.Management.Automation
	Remarks
	Examples
	Invoke simple synchronous pipeline

	Chapter 147: T4 Code Generation
	Syntax
	Examples
	Runtime Code Generation

	Chapter 148: Task Parallel Library
	Examples
	Parallel.ForEach
	Parallel.For
	Parallel.Invoke
	An async cancellable polling Task that waits between iterations
	A cancellable polling Task using CancellationTokenSource
	Async version of PingUrl

	Chapter 149: Task Parallel Library (TPL) Dataflow Constructs
	Examples
	JoinBlock
	BroadcastBlock
	WriteOnceBlock
	BatchedJoinBlock
	TransformBlock
	ActionBlock
	TransformManyBlock
	BatchBlock
	BufferBlock

	Chapter 150: Threading
	Remarks
	Examples
	Simple Complete Threading Demo
	Simple Complete Threading Demo using Tasks
	Explicit Task Parallism
	Implicit Task Parallelism
	Creating and Starting a Second Thread
	Starting a thread with parameters
	Creating One Thread Per Processor
	Avoiding Reading and Writing Data Simultaneously
	Parallel.ForEach Loop
	Deadlocks (two threads waiting on eachother)
	Deadlocks (hold resource and wait)

	Chapter 151: Timers
	Syntax
	Remarks
	Examples
	Multithreaded Timers

	Features:
	Creating an Instance of a Timer
	Assigning the "Tick" event handler to a Timer
	Example: Using a Timer to perform a simple countdown.

	Chapter 152: Tuples
	Examples
	Creating tuples
	Accessing tuple elements
	Comparing and sorting Tuples
	Return multiple values from a method

	Chapter 153: Type Conversion
	Remarks
	Examples
	MSDN implicit operator example
	Explicit Type Conversion

	Chapter 154: Unsafe Code in .NET
	Remarks
	Examples
	Unsafe Array Index
	Using unsafe with arrays
	Using unsafe with strings

	Chapter 155: Using Directive
	Remarks
	Examples
	Basic Usage
	Reference a Namespace
	Associate an Alias with a Namespace
	Access Static Members of a Class
	Associate an Alias to Resolve Conflicts
	Using alias directives

	Chapter 156: Using json.net
	Introduction
	Examples
	Using JsonConverter on simple values

	JSON (http://www.omdbapi.com/?i=tt1663662)
	Movie Model
	RuntimeSerializer
	Calling It
	Collect all fields of JSON object

	Chapter 157: Using SQLite in C#
	Examples
	Creating simple CRUD using SQLite in C#
	Executing Query

	Chapter 158: Using Statement
	Introduction
	Syntax
	Remarks
	Examples
	Using Statement Basics

	Returning from using block
	Multiple using statements with one block
	Gotcha: returning the resource which you are disposing
	Using statements are null-safe
	Gotcha: Exception in Dispose method masking other errors in Using blocks
	Using Statements and Database Connections

	Common IDisposable Data Classes
	Common Access Pattern for ADO.NET Connections
	Using Statements with DataContexts
	Using Dispose Syntax to define custom scope
	Executing code in constraint context

	Chapter 159: Value type vs Reference type
	Syntax
	Remarks
	Introduction
	Value types
	Reference types

	Major Differences
	Value types exist on the stack, reference types exist on the heap
	Value types don't change when you change them in a method, reference types do
	Value types cannot be null, reference types can

	Examples
	Changing values elsewhere
	Passing by reference
	Passing by reference using ref keyword.
	Assignment
	Difference with method parameters ref and out
	ref vs out parameters

	Chapter 160: Verbatim Strings
	Syntax
	Remarks
	Examples
	Multiline Strings
	Escaping Double Quotes
	Interpolated Verbatim Strings
	Verbatim strings instruct the compiler to not use character escapes

	Chapter 161: Windows Communication Foundation
	Introduction
	Examples
	Getting started sample

	Chapter 162: XDocument and the System.Xml.Linq namespace
	Examples
	Generate an XML document
	Modify XML File
	Generate an XML document using fluent syntax

	Chapter 163: XML Documentation Comments
	Remarks
	Examples
	Simple method annotation
	Interface and class documentation comments
	Method documentation comment with param and returns elements
	Generating XML from documentation comments
	Referencing another class in documentation

	Chapter 164: XmlDocument and the System.Xml namespace
	Examples
	Basic XML document interaction
	Reading from XML document
	XmlDocument vs XDocument (Example and comparison)

	Chapter 165: Yield Keyword
	Introduction
	Syntax
	Remarks
	Examples
	Simple Usage
	More Pertinent Usage
	Early Termination
	Correctly checking arguments
	Return another Enumerable within a method returning Enumerable
	Lazy Evaluation
	Try...finally
	Using yield to create an IEnumerator when implementing IEnumerable
	Eager evaluation
	Lazy Evaluation Example: Fibonacci Numbers
	The difference between break and yield break

	Credits

