
cucumber

#cucumber

Table of Contents

About 1

Chapter 1: Getting started with cucumber 2

Remarks 2

Examples 3

A Cucumber feature 3

Pure Ruby Installation 4

A Cucumber step definition in Ruby 4

Chapter 2: Features 6

Introduction 6

Remarks 6

Examples 6

A minimal Cucumber feature 6

Scenario Outline 6

Syntax Usage 6

Chapter 3: Gherkin Syntax 8

Introduction 8

Syntax 8

Examples 8

The Basics 8

Parameterized Steps 9

Feature Background 10

Scenario Outline 11

Tags 12

Gherkin Tips 13

Chapter 4: Install cucumber plugin in Intellij 14

Introduction 14

Remarks 14

Examples 14

Install Cucumber plugin 14

Install IntelliJ Cucumber for Java Plugin (Mac) 15

Chapter 5: pom.xml for Maven_ cucumber project. 21

Introduction 21

Examples 21

pom.xml 21

Chapter 6: Step definitions 23

Remarks 23

Examples 23

Some simple Ruby step definitions 23

Credits 25

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: cucumber

It is an unofficial and free cucumber ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official cucumber.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/cucumber
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with cucumber

Remarks

About Cucumber

Cucumber is a tool which runs executable specifications of software. Specifications, called
"features", are written in structured natural language. Cucumber executes a feature by mapping
each of its steps to a "step definition" written in the programming language supported by that
implementation of Cucumber. Cucumber is implemented in many programming languages
including Ruby (the original), Java and Javascript. It is also translated into many human
languages.

Cucumber was written to support the agile methodology called Behavior-Driven Development
(BDD). In BDD, one begins development outside-in by writing acceptance tests which describe the
software's functionality from the user's point of view (rather than from a programmer's point of view
such as in unit tests). Cucumber features serve as these acceptance tests.

In general, Cucumber features are human-readable documentation which is also an executable
test suite, meaning that documentation and tests always agree. Cucumber is useful in
communicating with non-programmer stakeholders about documentation and tests. It also allows
programmers to write tests at a conceptual level without irrelevant programming-language
concerns.

Cucumber is most often used to specify and test web applications, using a browser driver such as
Selenium or PhantomJS. However, it can be used with any software that can be executed and
whose state or results can be determined from the programming language that a Cucumber
implementation supports.

Other documentation

Official documentation is at https://cucumber.io/docs. Documentation generated from the
Cucumber features which describe Cucumber implementations is at

JavaScript: https://relishapp.com/cucumber/cucumber-js/docs•
Ruby: https://relishapp.com/cucumber/cucumber/docs•

https://relishapp.com/explore includes some other Cucumber-related tools and examples, although
not, unfortunately, Cucumber-JVM.

This topic

This topic should only give a few examples which introduce the reader to Cucumber concepts.
Other sections will give complete examples of installation, command-line and IDE usage, features,
step definitions, etc.

https://riptutorial.com/ 2

https://cucumber.io/docs#cucumber-implementations
https://cucumber.io/docs#cucumber-implementations
https://cucumber.io/docs
https://relishapp.com/cucumber/cucumber-js/docs
https://relishapp.com/cucumber/cucumber/docs
https://relishapp.com/explore

Examples

A Cucumber feature

Cucumber uses Gherkin syntax to describe your software's behaviors in structured natural
language.

As such Cucumber is not a test framework (a common misunderstanding), but a system
documentation framework, not very different from others like Use Case Scenario. The common
misunderstanding is due to the fact Cucumber documentation can be automated in order to
ensure it reflects the real system behavior.

A Cucumber documentation suite is composed of Features, each describing a feature of your
software, written in Gherkin and hosted in its own file. By organizing those files into a directory
structure you can group and organize features:

banking/
withdrawal.feature○

atm.feature○

personal-loan.feature○

•

trading/
portfolio.feature○

intraday.feature○

•

mortgage/
evaluation.feature○

accounting.feature○

•

Each Feature is a plain text file composed by an optional, unstructured, purely informational
introductory section and one or more Scenarios, each one representing a usage condition or use
case.

Example:

Feature: Documentation
As a StackOverflow user or visitor
I want to access the documentation section

 Scenario: search documentation on Stack Overflow
 Given I am on StackOverflow
 And I go to the Documentation section
 When I search for "cucumber"
 And I follow the link to "cucumber"
 Then I should see documentation for "cucumber"

Each line beginning with Given, When, And, But or Then is called a Step. Any step can begin with
any of those words regardless of order, but it is conventional to use them in the most natural way
possible.

Features can also be organized via Tags, annotations the editor can put on a Feature or a Scenario

https://riptutorial.com/ 3

https://cucumber.io/docs/reference#gherkin

to further categorize it.

Executability of a Feature is achieved via glue code which can be written in many different
languages (Java, Ruby, Scala, C/C++): each Step is matched against the glue code in order to
identify Step Definitions (commonly abbreviated to StepDef) via regular expressions.

Every Step can have only one associated Step Definition.

When a Feature is executed each composing Scenario is executed, meaning each StepDef
matching the Steps in every Scenario gets executed.

Pure Ruby Installation

To install Cucumber for use with Ruby simply use the command

gem install cucumber

Alternatively, if you are using bundler, you can add the following line to your Gemfile

gem 'cucumber'

And then run bundler

bundle install

[I think this belongs in its own topic, Installation. I created that topic and copied this example there.
When that topic is approved I'll move this there and delete the copy.]

A Cucumber step definition in Ruby

In features/step_definitions/documentation.rb:

When /^I go to the "([^"]+)" documentation$/ do |section|
 path_part =
 case section
 when "Documentation"
 "documentation"
 else
 raise "Unknown documentation section: #{section}"
 end
 visit "/documentation/#{path_part}/topics"
end

Then /^I should see the "([^"]+) documentation"$/ do |section|
 expect(page).to have_css('h2.doctag_title a', text: section)
end

These steps exercise a web application. They are about as simple as they can be while still being
practical.

Each step begins with a Gherkin keyword, which in a step definition file is a method which

https://riptutorial.com/ 4

registers a step with Cucumber. The step-defining method takes a regular expression, which
matches a line in a scenario, and a block, which is executed when the scenario gets to a matching
line. Capture groups in the regular expression are passed to the block as block parameters.

The When step has a simple, in-line example of going from a human-readable reference to a page
("Documentation") to a URL. Real Cucumber suites usually put this logic in a separate method.
The visit method is provided by Capybara. Capybara is not required to use Cucumber, although it
is very commonly used with it. visit tells the browser controlled by Capybara to visit the given
URL.

The Then step shows how the content of a page can be tested. expect/to is provided by RSpec
(again, not required by Cucumber but very commonly used with it). have_css is provided by
Capybara. The expectation is that the given CSS selector matches an element on the page which
contains the given text. Note that this expectation would fail if the browser request had failed.

For more examples, see the "Step definition" topic.

Read Getting started with cucumber online: https://riptutorial.com/cucumber/topic/4875/getting-
started-with-cucumber

https://riptutorial.com/ 5

http://www.riptutorial.com/cucumber/topic/5681/step-definitions
https://riptutorial.com/cucumber/topic/4875/getting-started-with-cucumber
https://riptutorial.com/cucumber/topic/4875/getting-started-with-cucumber

Chapter 2: Features

Introduction

You can use cucumber as a plugin in QTP and Selenium. The steps in the cucumber scenario are
global variables. You can implement once and call many times. Hence reduces the code
maintenance, and can reuse the same code when required.

Remarks

Cucumber features are written in the Gherkin language and stored in files with the suffix .feature.
This topic gives examples of each feature of Gherkin.

Examples

A minimal Cucumber feature

In features/documentation.feature:

Feature: Documentation

 Scenario: User views documentation
 When I go to the "Cucumber" documentation
 Then I should see the "Cucumber" documentation

A minimal feature has a Feature line and a Scenario with one or more steps beginning with When,
Then or another Gherkin keyword.

A sensible scenario would probably have more than one step.

Scenario Outline

Template as below

Scenario Outline: As a homemaker i want to buy and pay for the below product
 Given I purchase <a product>
 And I require a carry bag to take things to home
 When I pay bill using <payment method> to successfully checkout
 Then I should have a receipt

Examples:
a product	payment method
Cake	Visa
Coke	Paypal

Syntax Usage

https://riptutorial.com/ 6

Feature: Some terse yet descriptive text of what is desired
 Textual description of the business value of this feature
 Business rules that govern the scope of the feature
 Any additional information that will make the feature easier to understand

Background:
 Given some precondition needed for all scenarios in this file
 And another precondition

Scenario: Some determinable business situation
 Textual description of the business value of this scenario
 Business rules that govern the scope of the scenario
 Any additional information that will make the scenario easier to understand
 Given some precondition
 And some other precondition
 When some action by the actor
 And some other action
 And yet another action
 Then some testable outcome is achieved
 And something else we can check happens too
 But something else we can check does not happen

Scenario Outline: Some determinable business situation
 Given I am <precondition>
 And some other precondition
 When some action by the actor
 Then I have <outcome> rights

Examples:
 | precondition | outcome |
 | username1 | customer |
 | username2 | admin |

The following keywords are interchangable, but depending on context, may be better to use:

Feature: | Ability: | Business Need:•
Scenario Outline: | Scenario Template:•
Examples: | Scenarios:•
Given | When | Then | And | But | * |•

Read Features online: https://riptutorial.com/cucumber/topic/6023/features

https://riptutorial.com/ 7

https://riptutorial.com/cucumber/topic/6023/features

Chapter 3: Gherkin Syntax

Introduction

Gherkin is a business readable language for test automation and test documentation. It is
understood by Cucumber and together exists as a Behavior Driven Development tool.

Syntax

Feature: this keyword signifies that what follows is a basic description or name of the feature
being tested or documented.

•

Background: this keyword signifies steps that will be ran before every scenario in the feature.•
Scenario: this keyword represents the name or basic description of a particular scenario
testing the feature.

•

Scenario Outline: This keyword signifies that the scenario will run N times for every
argument listed in examples explicitly passed by column name wrapped in angled brackets.

•

Examples: this keyword notes the list of static arguments that will be passed into a scenario
outline.

•

Given: this keyword represents a given step, or precondition that is assumed before
continuing. In the Arrange, Act, Assert paradigm, given represents "Arrange".

•

When: this keyword represents a when step, or the behavior that is to be asserted against. In
the Arrange, Act, Assert paradigm, given represents "Act".

•

Then: this keyword represents a then step, or in other words, the step in which a behavior's
result is validated. In the Arrange, Act, Assert paradigm, given represents "Assert".

•

And: This keyword is used in conjunction with any of the keywords above. If you have two
given statements, instead of explicitly calling Given twice, you can say, " Given A And B".

•

Examples

The Basics

This example will go over the basic structure of a Cucumber feature file in Gherkin. Feature files
use several keywords in the basic syntax.

Lets look at the basic keywords:

Feature: this keyword signifies that what follows is a basic description or name of the feature
being tested or documented.

•

Scenario: this keyword represents the name or basic description of a particular scenario
testing the feature.

•

Given this keyword represents a given step, or precondition that is assumed before
continuing. In the Arrange, Act, Assert paradigm, given represents "Arrange".

•

When this keyword represents a when step, or the behavior that is to be asserted against. In
the Arrange, Act, Assert paradigm, given represents "Act".

•

https://riptutorial.com/ 8

Then this keyword represents a then step, or in other words, the step in which a behavior's
result is validated. In the Arrange, Act, Assert paradigm, given represents "Assert".

•

And This keyword is used in conjunction with any of the keywords above. If you have two
given statements, instead of explicitly calling Given twice, you can say, " Given A And B".

•

But This keyword is used in conjunction Given, When and Then to signify that something
should not happen. Then A But not B.

•

All keywords must be on a new line and must be the first word on a new line in order to be
recognized by the Gherkin parser. The Feature and Scenario keywords must have a colon
immediately after, as expressed in the example below. Given, When, Then, and And do not
require a colon.

In addition to keywords, you can write descriptions and comments. Descriptions occur after the
keyword but on the same line, where as comments occur on lines underneath the keywords.
When writing Feature comments, it is customary to provided explicit rules outlining edges and
conditions that lead to different outcomes of behaviors.

Feature: Product Login
 As a user, I would like to be able to use my credentials to successfully
 login.

 Rules:
 - The user must have a valid username
 - The user must have a valid password
 - The user must have an active subscription
 - User is locked out after 3 invalid attempts
 - User will get a generic error message following
 login attempt with invalid credentials

 Scenario: The user successfully logs in with valid credentials
 This scenario tests that a user is able to successfully login
 provided they enter a valid username, valid password, and
 currently have an active subscription on their account.

 Given the user is on the login page
 When the user signs in with valid credentials
 Then the user should be logged in

Parameterized Steps

When writing Gherkin, there may be times in which you want to parameterize your steps for
reusability by the engineer who is implementing the test plans. Steps receive parameters through
regular expression capturing groups. (Engineering Note: If you do not have matching parameters
for each capturing group in your regular expression you can expect an "CucumberException: Arity
mismatch" to be thrown) In the below example, we have decided to wrap arguments in double
quotes, as well as accept integers as arguments.

 Feature: Product Login
 As a user, I would like to be able to use my credentials to successfully
 login.

 Rules:

https://riptutorial.com/ 9

 - The user must have a valid username
 - The user must have a valid password
 - The user must have an active subscription
 - User is locked out after 3 invalid attempts
 - User will get a generic error message following
 login attempt with invalid credentials

 Scenario: The user successfully logs in with valid credentials
 This scenario tests that a user is able to successfully login
 provided they enter a valid username, valid password, and
 currently have an active subscription on their account.

 Given the user is on the login page
 When the user signs in with "valid" credentials
 Then the user should be logged in

 Scenario: The user attempts to log in with invalid credentials
 This scenario tests that a user is not able to log in when
 they enter invalid credentials

 Given the user is on the login page
 When the user signs in with "invalid" credentials
 Then the user should be logged in

 Scenario: The user is locked out after too many failed attempts
 This scenario validates that the user is locked out
 of their account after failing three consecutive
 attempts to log in

 Given the user is on the login page
 When the user fails to log in 3 times
 Then the user should be locked out of their account

Feature Background

As you may have noticed in the example above, we are rewriting the same step multiple times:

Given the user is on the login page

This can be exceptionally tedious, especially if we have more than one given step that is reused.
Gherkin provides a solution for this by giving us another keyword to work with: Background:.

The background keyword serves to run the steps declared underneath it before every scenario in
the Feature. Be sure not to add background step unless you are positive it is necessary for every
scenario. Like the other keywords, Background is followed by a description or name and can have
comments listed below it. Much like Feature and Scenario, Background must be proceeded by a
colon.

Feature: Product Login
 As a user, I would like to be able to use my credentials to successfully
 login.

 Rules:
 - The user must have a valid username
 - The user must have a valid password
 - The user must have an active subscription

https://riptutorial.com/ 10

 - User is locked out after 3 invalid attempts
 - User will get a generic error message following
 login attempt with invalid credentials

 Background: The user starts out on the login page
 Given the user is on the login page

 Scenario: The user successfully logs in with valid credentials
 This scenario tests that a user is able to successfully login
 provided they enter a valid username, valid password, and
 currently have an active subscription on their account.

 When the user signs in with "valid" credentials
 Then the user should be logged in

 Scenario: The user attempts to log in with invalid credentials
 This scenario tests that a user is not able to log in when
 they enter invalid credentials

 When the user signs in with "invalid" credentials
 Then the user should be logged in

 Scenario: The user is locked out after too many failed attempts
 This scenario validates that the user is locked out
 of their account after failing three consecutive
 attempts to log in

 When the user fails to log in 3 times
 Then the user should be locked out of their account

Scenario Outline

In some cases you may want to rerun the same scenario over and over, substituting out the
arguments. In this case, Gherkin provides several new keywords to accommodate this situation,
Scenario Outline: and Example:. The Scenario Outline keyword tells Cucumber that the scenario
is going to run multiple times substituting out arguments from a list. The Examples keyword is
called before the list is explicitly notated. Arguments for Scenario Outlines should be wrapped in
angled brackets. In the example below, note that the argument names wrapped in the angled
brackets correspond to the column names listed under Examples. Each column is separated by
vertical bars, with column names on the first row.

Feature: Product Login
 As a user, I would like to be able to use my credentials to successfully
 login.

 Rules:
 - The user must have a valid username
 - The user must have a valid password
 - The user must have an active subscription
 - User is locked out after 3 invalid attempts
 - User will get a generic error message following
 login attempt with invalid credentials

 Background: The user starts out on the login page
 Given the user is on the login page

 Scenario Outline: The user successfully logs in with their account

https://riptutorial.com/ 11

 This scenario outlines tests in which various users attempt
 to sign in successfully

 When the user enters their <username>
 And the user enters their <password>
 Then the user should be successfully logged on

 Examples:
 | username | password |
 | frank | 1234 |
 | jack | 4321 |

Tags

For the purposes of documentation, you may want to filter test plans or scenarios by categories.
Developers may want to run tests based on those same categories. Gherkin allows you to
categorize Features as well as individual Scenarios via the user of Tags. In the example below,
notice the above the Feature keyword is the Tag "@Automation". Gherkin recognizes this as a tag
by the user of the "@" symbol. In this example, the engineer wants to make it clear that these tests
are used for automation, where not every test is automate-able, some tests must be done by
manual QA.

Notice as well that the tag @Production has been added to the scenario testing user lock out. In
this example, this is because this scenario is only active in the production environment of the
application. The developers don't want their sandbox accounts locked out during development.
This tags allows them to enforce that this test will only be ran against the production environment.

Lastly, the Scenario Outline has the tag @Staging. For the purposes of this example, this is
because the accounts being used are staging accounts and will not working in the other
environments. Like the @Production tag, this ensures that these tests will only be ran in the
Staging environment.

These are just a few examples of where, how, and why you might use tags. Ultimately these tags
are going to have meaning to you and the developers and can be anything and used to categorize
however you see fit.

@Automation
Feature: Product Login
 As a user, I would like to be able to use my credentials to successfully
 login.

 Rules:
 - The user must have a valid username
 - The user must have a valid password
 - The user must have an active subscription
 - User is locked out after 3 invalid attempts
 - User will get a generic error message following
 login attempt with invalid credentials

 Background: The user starts out on the login page
 Given the user is on the login page

 Scenario: The user successfully logs in with valid credentials

https://riptutorial.com/ 12

 This scenario tests that a user is able to successfully login
 provided they enter a valid username, valid password, and
 currently have an active subscription on their account.

 When the user signs in with "valid" credentials
 Then the user should be logged in

 Scenario: The user attempts to log in with invalid credentials
 This scenario tests that a user is not able to log in when
 they enter invalid credentials

 When the user signs in with "invalid" credentials
 Then the user should be logged in

 @Production
 Scenario: The user is locked out after too many failed attempts
 This scenario validates that the user is locked out
 of their account after failing three consecutive
 attempts to log in

 When the fails to log in 3 times
 Then the user should be locked out of their account

 @Staging
 Scenario Outline: The user successfully logs in with their account
 This scenario outlines tests in which various users attempt
 to sign in successfully

 When the user enters their <username>
 And the user enters their <password>
 Then the user should be successfully logged on

 Examples:
 | username | password |
 | frank | 1234 |
 | jack | 4321 |

Gherkin Tips

Each scenario tests one behaviour•
Scenarios are written in a declarative way•
Avoid incidental details inside the scenario•
Omit the obvious•
Avoid conjunctive steps•
Keep your scenarios short•
Don’t have to many scenarios in the same feature•
Use descriptive scenario names•
Have only one When step•
Use the “should” in Then steps•

Read Gherkin Syntax online: https://riptutorial.com/cucumber/topic/9296/gherkin-syntax

https://riptutorial.com/ 13

https://riptutorial.com/cucumber/topic/9296/gherkin-syntax

Chapter 4: Install cucumber plugin in Intellij

Introduction

The Cucumber plugins for IntelliJ IDEA offer convenient IDE features for working with Gherkin
feature files in an IntelliJ project using the Cucumber framework. Plugins are available for Java,
Scala, or Groovy languages.

Remarks

The Cucumber for Java IntelliJ plugin offers IDE features for conveniently developing with
Cucumber, including

Gherkin step glue generation for unimplemented steps•
Gherkin step code completion•
Step-to-glue method code jumping•
Gherkin syntax highlighting in ".feature" files matching step regex•

and other convenient features.

Examples

Install Cucumber plugin

Go to File --> Settings --> click plugins in left hand pane --> Search for cucumber --> Install plugin

https://riptutorial.com/ 14

Install IntelliJ Cucumber for Java Plugin (Mac)

To install the Cucumber for Java plugin for IntelliJ on a Mac,

Start IntelliJ IDEA.1.
Click on the "IntelliJ IDEA" tab in the top bar. 2.

https://riptutorial.com/ 15

https://i.stack.imgur.com/qJ5QP.png

Click on "Preferences".3.
In Preferences/Settings, click "Plugins" in the left-hand pane.4.
Click the "Browse Repositories" button, which brings up a new window.5.
Search for "Cucumber" in the search bar. 6.

https://riptutorial.com/ 16

https://i.stack.imgur.com/lF1z8.png

https://riptutorial.com/ 17

https://i.stack.imgur.com/whUnM.png

Install the "Cucumber for Java" plugin.7.
Restart the IDE for the plugin to take effect. The Cucumber for Java is now installed. 8.

https://riptutorial.com/ 18

Read Install cucumber plugin in Intellij online:

https://riptutorial.com/ 19

https://i.stack.imgur.com/whUnM.png

https://riptutorial.com/cucumber/topic/8356/install-cucumber-plugin-in-intellij

https://riptutorial.com/ 20

https://riptutorial.com/cucumber/topic/8356/install-cucumber-plugin-in-intellij

Chapter 5: pom.xml for Maven_ cucumber
project.

Introduction

The below project object model is the template pom.xml. If you want to create a maven with
cucumber project, you can use the below example as template

Examples

pom.xml

<?xml version="1.0" encoding="UTF-8"?>

4.0.0

<groupId>Project name</groupId>
<artifactId>MulitClients</artifactId>
<version>1.0-SNAPSHOT</version>

<dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>info.cukes</groupId>
 <artifactId>cucumber-core</artifactId>
 <version>1.2.0</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>info.cukes</groupId>
 <artifactId>cucumber-testng</artifactId>
 <version>1.2.0</version>
 </dependency>
 <dependency>
 <groupId>info.cukes</groupId>
 <artifactId>cucumber-junit</artifactId>
 <version>1.2.0</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>info.cukes</groupId>
 <artifactId>cucumber-java</artifactId>
 <version>1.2.0</version>
 <scope>test</scope>
 </dependency>

https://riptutorial.com/ 21

 <dependency>
 <groupId>info.cukes</groupId>
 <artifactId>gherkin</artifactId>
 <version>2.12.2</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-java</artifactId>
 <version>2.53.0</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-firefox-driver</artifactId>
 <version>2.53.0</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-htmlunit-driver</artifactId>
 <version>2.53.0</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.yaml</groupId>
 <artifactId>snakeyaml</artifactId>
 <version>1.13</version>
 </dependency>
 <dependency>
 <groupId>com.esotericsoftware.yamlbeans</groupId>
 <artifactId>yamlbeans</artifactId>
 <version>1.06</version>
 </dependency>

</dependencies>

Read pom.xml for Maven_ cucumber project. online:
https://riptutorial.com/cucumber/topic/8331/pom-xml-for-maven--cucumber-project-

https://riptutorial.com/ 22

https://riptutorial.com/cucumber/topic/8331/pom-xml-for-maven--cucumber-project-

Chapter 6: Step definitions

Remarks

Step definitions are in the programming language supported by a given implementation of
Cucumber. This topic gives examples of step definitions in each supported programming language
and examples of using Cucumber API calls in step definitions.

Examples

Some simple Ruby step definitions

In features/step_definitions/documentation.rb:

When /^I go to the "([^"]+)" documentation$/ do |section|
 path_part =
 case section
 when "Documentation"
 "documentation"
 else
 raise "Unknown documentation section: #{section}"
 end
 visit "/documentation/#{path_part}/topics"
end

Then /^I should see the "([^"]+) documentation"$/ do |section|
 expect(page).to have_css('h2.doctag_title a', text: section)
end

These steps exercise a web application. They are about as simple as they can be while still being
practical.

Each step begins with a Gherkin keyword, which in a step definition file is a method which
registers a step with Cucumber. The step-defining method takes a regular expression, which
matches a line in a scenario, and a block, which is executed when the scenario gets to a matching
line. Capture groups in the regular expression are passed to the block as block parameters.

The When step has a simple, in-line example of going from a human-readable reference to a page
("Documentation") to a URL. Real Cucumber suites usually put this logic in a separate method.
The visit method is provided by Capybara. Capybara is not required to use Cucumber, although it
is very commonly used with it. visit tells the browser controlled by Capybara to visit the given
URL.

The Then step shows how the content of a page can be tested. expect/to is provided by RSpec
(again, not required by Cucumber but very commonly used with it). have_css is provided by
Capybara. The expectation is that the given CSS selector matches an element on the page which
contains the given text. Note that this expectation would fail if the browser request had failed.

https://riptutorial.com/ 23

Read Step definitions online: https://riptutorial.com/cucumber/topic/5681/step-definitions

https://riptutorial.com/ 24

https://riptutorial.com/cucumber/topic/5681/step-definitions

Credits

S.
No

Chapters Contributors

1
Getting started with
cucumber

Community, Dave Schweisguth, Mo H., Roberto Lo Giacco,
SirLenz0rlot, user3554664

2 Features Dave Schweisguth, Kyle Fairns, Priya

3 Gherkin Syntax jordiPons, tramstheman, user3554664

4
Install cucumber
plugin in Intellij

George Pantazes, Priya

5
pom.xml for Maven_
cucumber project.

user

6 Step definitions Dave Schweisguth

https://riptutorial.com/ 25

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/634576/dave-schweisguth
https://riptutorial.com/contributor/2694638/mo-h-
https://riptutorial.com/contributor/312629/roberto-lo-giacco
https://riptutorial.com/contributor/317275/sirlenz0rlot
https://riptutorial.com/contributor/3554664/user3554664
https://riptutorial.com/contributor/634576/dave-schweisguth
https://riptutorial.com/contributor/5114911/kyle-fairns
https://riptutorial.com/contributor/4990460/priya
https://riptutorial.com/contributor/3438319/jordipons
https://riptutorial.com/contributor/5813151/tramstheman
https://riptutorial.com/contributor/3554664/user3554664
https://riptutorial.com/contributor/2291928/george-pantazes
https://riptutorial.com/contributor/4990460/priya
https://riptutorial.com/contributor/7326104/user
https://riptutorial.com/contributor/634576/dave-schweisguth

	About
	Chapter 1: Getting started with cucumber
	Remarks
	Examples
	A Cucumber feature
	Pure Ruby Installation
	A Cucumber step definition in Ruby

	Chapter 2: Features
	Introduction
	Remarks
	Examples
	A minimal Cucumber feature
	Scenario Outline
	Syntax Usage

	Chapter 3: Gherkin Syntax
	Introduction
	Syntax
	Examples
	The Basics
	Parameterized Steps
	Feature Background
	Scenario Outline
	Tags
	Gherkin Tips

	Chapter 4: Install cucumber plugin in Intellij
	Introduction
	Remarks
	Examples
	Install Cucumber plugin
	Install IntelliJ Cucumber for Java Plugin (Mac)

	Chapter 5: pom.xml for Maven_ cucumber project.
	Introduction
	Examples
	pom.xml

	Chapter 6: Step definitions
	Remarks
	Examples
	Some simple Ruby step definitions

	Credits

