
D Language

#d

Table of Contents

About 1

Chapter 1: Getting started with D Language 2

Remarks 2

Versions 2

Examples 2

Installation or Setup 2

Package Managers 2

Arch Linux 2

Chocolatey 2

Gentoo 2

OSX Homebrew 2

Debian/Ubuntu 3

Other compilers 3

IDEs 3

Hello World 3

Hello, World! 3

Explanation : 4

Compiling and Running the Program 5

Read values from a string 5

Chapter 2: Associative Arrays 6

Examples 6

Standard use 6

Literals 6

Add key-value pairs 6

Remove key-value pairs 6

Check if a key exist 7

Chapter 3: Classes 8

Syntax 8

Remarks 8

Examples 8

Inheritance 8

Instantiation 8

Chapter 4: Compile Time Function Evaluation (CTFE) 10

Remarks 10

Examples 10

Evaluate a function at compile-time 10

Chapter 5: Contracts 11

Remarks 11

Examples 11

Function contracts 11

Function contracts 11

Chapter 6: Dynamic Arrays & Slices 12

Syntax 12

Remarks 12

Examples 12

Declaration and initialization 12

Array operations 12

Slices 12

Chapter 7: Imports and modules 14

Syntax 14

Remarks 14

Examples 14

Global imports 14

Selective imports 15

Local imports 15

Public imports 15

Renamed imports 15

Renamed and selective imports 16

Module declaration 16

Chapter 8: Loops 17

Syntax 17

Remarks 17

Examples 17

For loop 17

While loop 17

do-while 18

Foreach 18

Break, continue & labels 19

Chapter 9: Memory & Pointers 20

Syntax 20

Examples 20

Pointers 20

Allocating on the heap 20

@safe D 20

Chapter 10: Ranges 22

Remarks 22

Examples 22

Strings and arrays are ranges 22

Making a new Input Range type 22

Chapter 11: Scope guards 24

Syntax 24

Remarks 24

Examples 24

Place allocation and cleanup code next to each other 24

Multiple, nested scopes 24

Chapter 12: Strings 26

Remarks 26

Examples 26

Reversing a string 26

Test for an empty or null string 26

Empty string 26

Null string 26

Test for empty or null 27

Test for null 27

References 27

Convert string to ubyte[] and vice versa 27

String to immutable ubyte[] 27

String to ubyte[] 28

ubyte[] to string 28

References 28

Chapter 13: Structs 29

Examples 29

Defining a new Struct 29

Struct Constructors 29

Chapter 14: Templates 30

Syntax 30

Examples 30

Function with one template 30

template 30

Chapter 15: Traits 32

Syntax 32

Examples 32

Iterating over the members of a struct 32

Iterating over members of a struct/class without their inherited members 32

Chapter 16: UFCS - Uniform Function Call Syntax 34

Syntax 34

Remarks 34

Examples 34

Checking if a Number is Prime 34

UFCS with ranges 34

UFCS with Durations from std.datetime 34

Chapter 17: Unittesting 36

Syntax 36

Examples 36

Unittest blocks 36

Executing unittest 36

Annotated unittest 37

Credits 38

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: d-language

It is an unofficial and free D Language ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official D Language.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/d-language
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with D Language

Remarks

D is a systems programming language with C-like syntax and static typing. It combines efficiency,
control and modeling power with safety and programmer productivity.

Versions

Version Changelog Release Date

D http://www.digitalmars.com/d/1.0/changelog.html 2007-01-23

D2 https://dlang.org/changelog/2.000.html 2007-06-17

Examples

Installation or Setup

The D programming language's standard compiler DMD can run on all major platforms. To install
DMD see here. To install by command line you may run the command (found on the D website):

curl -fsS https://dlang.org/install.sh | bash -s dmd

Package Managers

Arch Linux

pacman -S dlang

Chocolatey

choco install dmd

Gentoo

layman -f -a dlang

OSX Homebrew

https://riptutorial.com/ 2

http://www.digitalmars.com/d/1.0/changelog.html
https://dlang.org/changelog/2.000.html
http://dlang.org/download.html

brew install dmd

Debian/Ubuntu

Installation on Debian/Ubuntu distributions needs that the APT repository be added to the sources
list.

wget http://master.dl.sourceforge.net/project/d-apt/files/d-apt.list -O
/etc/apt/sources.list.d/d-apt.list
wget -qO - https://dlang.org/d-keyring.gpg | sudo apt-key add -
apt-get update
apt-get install dmd-bin

Other compilers

LDC is a D compiler thats uses the oficial DMD compiler frontend and LLVM as its backend.

GDC is a D compiler that uses the GCC backend to generate code.

IDEs

In order to make life easier you may also want to install an IDE (Integrated Development
Environment). The D-Language Wiki has a list of available IDEs and Plugins for all Platforms here.

Hello World

import std.stdio;

// Let's get going!
void main()
{
 writeln("Hello World!");
}

To compile and run, save this text as a file called main.d. From the command line run dmd main.d to
compile the program. Finally, run ./main to execute the program in a bash shell or you can click on
the executable on windows.

Hello, World!

To create the classic "Hello, world" printing program, create a file called hello.d with a text editor
containing the following code :

import std.stdio;

void main() {

https://riptutorial.com/ 3

http://d-apt.sourceforge.net/
https://wiki.dlang.org/LDC
http://gdcproject.org/
https://wiki.dlang.org/IDEs

 writeln("Hello, World!"); //writeln() automatically adds a newline (\n) to the output
}

Explanation :

import std.stdio

This line tells the compiler that functions defined in the Standard Library module std.stdio will be
used. Any module may be imported, as long as the compiler knows where to look for them. Many
functions are provided as part of D's massive Standard Library.

void main() {

This line declares the function main, returning void. Note that unlike C and C++, D allows main to
be of type void. The function main is special as it is the entry point of the program, i.e., this is where
the execution of the program begins. A few notes about functions in general :

A function's name can be anything that starts with a letter and is composed of letters, digits
and underscores.

•

Expected parameters will be a comma-separated list of variable names and their data types.•

The value that the function is expected to return can be any existing data type, and it must
match the type of expression used in the return statement within the function.

•

The curly braces { … } are used in pairs to indicate where a block of code begins and ends. They
can be used in a lot of ways, but in this case they indicate where the function begins and ends.

writeln("Hello, World!");

writeln is a function declared in std.stdio that writes its agruments to stdout. In this case, its
argument is "Hello, World", which will be written to the console. Various format characters, similar
to the ones used by C's printf may be used, like \n, \r, etc.

Every statement needs to be terminated by a semi-colon.

Comments are used to indicate something to the person reading the code and are treated like a
blank by the compiler. In the code above, this is a comment:

//writeln() automatically adds a newline (\n) to the output

These are pieces of code that are ignored by the compiler. There are three different ways to
comment in D :

// - Comment all text in the same line, after the //1.
/* comment text */ - These are useful for multiline comments2.
/+ comment text + - These are also multiline comments3.

https://riptutorial.com/ 4

They are very useful to convey what a function / piece of code is doing to a fellow developer.

Compiling and Running the Program

To run this program, the code must fist be compiled into an executable. This can be done with the
help of the compiler.

To compile using DMD, the reference D compiler, open a terminal, navigate to the the location of
the file hello.d that you created and then run :

dmd hello.d

If no errors are found, the compiler will output an executable named after your source file. This can
now be run by typing

./hello

Upon execution, the program will print out Hello, World!, followed by a newline.

Read values from a string

import std.format;

void main() {
 string s = "Name Surname 18";
 string name, surname;
 int age;
 formattedRead(s, "%s %s %s", &name, &surname, &age);
 // %s selects a format based on the corresponding argument's type
}

Official documentation for the format strings can be found at:
https://dlang.org/phobos/std_format.html#std.format

Read Getting started with D Language online: https://riptutorial.com/d/topic/1036/getting-started-
with-d-language

https://riptutorial.com/ 5

https://dlang.org/phobos/std_format.html#std.format
https://riptutorial.com/d/topic/1036/getting-started-with-d-language
https://riptutorial.com/d/topic/1036/getting-started-with-d-language

Chapter 2: Associative Arrays

Examples

Standard use

int[string] wordCount(string[] wordList) {
 int[string] words;
 foreach (word; wordList) {
 words[word]++;
 }
 return words;
}

void main() {
 int[string] count = wordCount(["hello", "world", "I", "say", "hello"]);
 foreach (key; count.keys) {
 writefln("%s: %s", key, count[key]);
 }
 // hello: 2
 // world: 1
 // I: 1
 // say: 1

 // note: the order in the foreach is unspecified
}

Literals

int[string] aa0 = ["x": 5, "y": 6]; //int values, string keys
auto aa1 = ["x": 5.0, "y": 6.0]; // double values, string keys
string[int] aa2 = [10: "A", 11: "B"]; //string values, int keys

Add key-value pairs

int[string] aa = ["x": 5, "y": 6];
// The value can be set by its key:
aa["x"] = 7;
assert(aa["x"] == 7);
// if the key does not exist will be added
aa["z"] = 8;
assert(aa["z"] == 8);

Remove key-value pairs

Let's assume an associative array aa:

int[string] aa = ["x": 5, "y": 6];

Items can be removed by using .remove(), if key exits will be removed and remove returns true:

https://riptutorial.com/ 6

assert(aa.remove("x"));

if the given key does not exist remove does nothing and returns false:

assert(!aa.remove("z"));

Check if a key exist

int[string] numbers = ["a" : 10, "b" : 20];

assert("a" in numbers);
assert("b" in numbers);
assert("c" in numbers);

Read Associative Arrays online: https://riptutorial.com/d/topic/3159/associative-arrays

https://riptutorial.com/ 7

https://riptutorial.com/d/topic/3159/associative-arrays

Chapter 3: Classes

Syntax

class Foo { } // inherits from Object•
class Bar: Foo { } // Bar is a Foo too•
Foo f = new Foo(); // instantiate new objects on the heap•

Remarks

See the specification, browse a book chapter on classes, inheritance and play interactively.

Examples

Inheritance

class Animal
{
 abstract int maxSize(); // must be implemented by sub-class
 final float maxSizeInMeters() // can't be overridden by base class
 {
 return maxSize() / 100.0;
 }
}

class Lion: Animal
{
 override int maxSize() { return 350; }
}

void main()
{
 import std.stdio : writeln;
 auto l = new Lion();
 assert(l.maxSizeInMeters() == 3.5);

 writeln(l.maxSizeInMeters()); // 3.5
}

Instantiation

class Lion
{
 private double weight; // only accessible with-in class

 this(double weight)
 {
 this.weight = weight;
 }

https://riptutorial.com/ 8

https://dlang.org/spec/class.html
http://ddili.org/ders/d.en/class.html
http://ddili.org/ders/d.en/inheritance.html
http://tour.dlang.io/tour/en/basics/classes

 double weightInPounds() const @property // const guarantees no modifications
 // @property functions are treated as fields
 {
 return weight * 2.204;
 }
}

void main()
{
 import std.stdio : writeln;
 auto l = new Lion(100);
 assert(l.weightInPounds == 220.4);

 writeln(l.weightInPounds); // 220.4
}

Read Classes online: https://riptutorial.com/d/topic/4695/classes

https://riptutorial.com/ 9

https://riptutorial.com/d/topic/4695/classes

Chapter 4: Compile Time Function Evaluation
(CTFE)

Remarks

CTFE is a mechanism which allows the compiler to execute functions at compile time. There is no
special set of the D language necessary to use this feature - whenever a function just depends on
compile time known values the D compiler might decide to interpret it during compilation.

You can also play interactively with CTFE.

Examples

Evaluate a function at compile-time

long fib(long n)
{
 return n < 2 ? n : fib(n - 1) + fib(n - 2);
}

struct FibStruct(int n) { // Remarks: n is a template
 ubyte[fib(n)] data;
}

void main()
{
 import std.stdio : writeln;
 enum f10 = fib(10); // execute the function at compile-time
 pragma(msg, f10); // will print 55 during compile-time
 writeln(f10); // print 55 during runtime
 pragma(msg, FibStruct!11.sizeof); // The size of the struct is 89
}

Read Compile Time Function Evaluation (CTFE) online:
https://riptutorial.com/d/topic/4694/compile-time-function-evaluation--ctfe-

https://riptutorial.com/ 10

http://tour.dlang.io/tour/en/gems/compile-time-function-evaluation-ctfe
https://riptutorial.com/d/topic/4694/compile-time-function-evaluation--ctfe-

Chapter 5: Contracts

Remarks

The assertions will be optimized away in an release build.

Examples

Function contracts

Function contracts allow the programer to check for inconsistencies. Inconsistencies include
invalid parameters, checks for the correct return value or an invalid state of the object.

The checks can happen before and after the body of the function or method is executed.

void printNotGreaterThan42(uint number)
in {
 assert(number < 42);
}
body {
 import std.stdio : writeln;
 writeln(number);
}

The assertions will be optimized away in an release build.

Function contracts

For example if an method is invoked the state of the object may not allow that a method is called
with specific parameters or not at all.

class OlderThanEighteen {
 uint age;

 final void driveCar()
 in {
 assert(age >= 18); // variable must be in range
 }
 body {
 // step on the gas
 }
}

Read Contracts online: https://riptutorial.com/d/topic/6830/contracts

https://riptutorial.com/ 11

https://riptutorial.com/d/topic/6830/contracts

Chapter 6: Dynamic Arrays & Slices

Syntax

<type>[] <name>;•

Remarks

Slices generate a new view on existing memory. They don't create a new copy. If no slice holds a
reference to that memory anymore - or a sliced part of it - it will be freed by the garbage collector.

Using slices it's possible to write very efficient code for e.g. parsers that just operate on one
memory block and just slice the parts they really need to work on - no need allocating new
memory blocks.

Examples

Declaration and initialization

import std.stdio;

void main() {
 int[] arr = [1, 2, 3, 4];

 writeln(arr.length); // 4
 writeln(arr[2]); // 3

 // type inference still works
 auto arr2 = [1, 2, 3, 4];
 writeln(typeof(arr2).stringof); // int[]
}

Array operations

import std.stdio;

void main() {
 int[] arr = [1, 2, 3];

 // concatenate
 arr ~= 4;
 writeln(arr); // [1, 2, 3, 4]

 // per element operations
 arr[] += 10
 writeln(arr); // [11, 12, 13, 14]
}

Slices

https://riptutorial.com/ 12

import std.stdio;

void main() {
 int[] arr = [1, 2, 3, 4, 5];

 auto arr2 = arr[1..$ - 1]; // .. is the slice syntax, $ represents the length of the array
 writeln(arr2); // [2, 3, 4]

 arr2[0] = 42;
 writeln(arr[1]); // 42
}

Read Dynamic Arrays & Slices online: https://riptutorial.com/d/topic/2445/dynamic-arrays---slices

https://riptutorial.com/ 13

https://riptutorial.com/d/topic/2445/dynamic-arrays---slices

Chapter 7: Imports and modules

Syntax

module my.package;•
import my.package;•
import my.package : function;•
import fancyName = mypackage;•
import my.package : fancyFunctionName = function;•

Remarks

Modules automatically provide a namespace scope for their contents. Modules superficially
resemble classes, but differ in that:

There's only one instance of each module, and it is statically allocated.•
There is no virtual table.•
Modules do not inherit, they have no super modules, etc.•
Only one module per file.•
Module symbols can be imported.•
Modules are always compiled at global scope, and are unaffected by surrounding attributes
or other modifiers.

•

Modules can be grouped together in hierarchies called packages.•

Modules offer several guarantees:

The order in which modules are imported does not affect the semantics.•
The semantics of a module are not affected by what imports it.•
If a module C imports modules A and B, any modifications to B will not silently change code
in C that is dependent on A.

•

Examples

Global imports

import std.stdio;
void main()
{
 writeln("Hello World!");
}

Multiple imports can either be specified in the same line, separated with a comma or in a new line.

import std.stdio, std.math;
import std.datetime;
void main()

https://riptutorial.com/ 14

{
 writeln("2^4: ", pow(2, 4));
 writeln("Current time: ", Clock.currTime());
}

Selective imports

Selective imports can help to cleanup the namespace and speed-up the compile-time even more,
because the compiler only needs to parse the specific, selected functions.

import std.stdio: writeln;
void main()
{
 writeln("Hello world");
}

Local imports

You can also import symbols in any scope, the import will only be looked up when the scope is
needed (i.e. compiled) and the imported names will only be exposed in the imported scope. Most
commonly the scope for local imports are functions, structs and classes.

void main()
{
 import std.stdio: writeln;
 writeln("Hello world");
}
// writeln isn't defined here

Public imports

Modules can be exposed to other modules with public imports.

public import std.math;
// only exports the symbol 'pow'
public import std.math : pow;

Renamed imports

A local name for an import can be given, through which all references to the module's symbols
must be qualified with:

import io = std.stdio;
void main()
{
 io.writeln("Hello world");
 std.stdio.writeln("hello!"); // error, std is undefined
 writeln("hello!"); // error, writeln is undefined
}

https://riptutorial.com/ 15

Renamed imports are handy when dealing with very long import names.

Renamed and selective imports

Selective imports may also be renamed.

void main()
{
 import std.stdio : fooln = writeln;
 fooln("Hello world");
}

Module declaration

Modules have a one-to-one correspondence with source files. The module name is, by default, the
file name with the path and extension stripped off, and can be set explicitly with the module
declaration. The ModuleDeclaration sets the name of the module and what package it belongs to. If
absent, the module name is taken to be the same name (stripped of path and extension) of the
source file name.

module my.fancy.module;

Read Imports and modules online: https://riptutorial.com/d/topic/4344/imports-and-modules

https://riptutorial.com/ 16

https://riptutorial.com/d/topic/4344/imports-and-modules

Chapter 8: Loops

Syntax

for (<initializer>; <loop condition>; <loop statement>) { <statements> }•
while (<condition>) { <statements> }•
do { <statements> } while (<condition>);•
foreach (<el>, <collection>)•
foreach_reverse (<el>, <collection>)•

Remarks

for loop in Programming in D, specification•
while loop in Programming in D, specification•
do while loop in Programming in D, specification•
foreach in Programming in D, opApply, specification•

You can play with loops and foreach online.

Examples

For loop

void main()
{
 import std.stdio : writeln;
 int[] arr = [1, 3, 4];
 for (int i = 0; i < arr.length; i++)
 {
 arr[i] *= 2;
 }
 writeln(arr); // [2, 6, 8]
}

While loop

void main()
{
 import std.stdio : writeln;
 int[] arr = [1, 3, 4];
 int i = 0;
 while (i < arr.length)
 {
 arr[i++] *= 2;
 }
 writeln(arr); // [2, 6, 8]
}

https://riptutorial.com/ 17

http://ddili.org/ders/d.en/for.html
https://dlang.org/spec/statement.html#ForStatement
http://ddili.org/ders/d.en/while.html
https://dlang.org/spec/statement.html#WhileStatement
http://ddili.org/ders/d.en/do_while.html
https://dlang.org/spec/statement.html#do-statement
http://ddili.org/ders/d.en/foreach.html
http://ddili.org/ders/d.en/foreach_opapply.html
https://dlang.org/spec/statement.html#ForeachStatement
http://tour.dlang.io/tour/en/basics/loops
http://tour.dlang.io/tour/en/basics/foreach

do-while

void main()
{
 import std.stdio : writeln;
 int[] arr = [1, 3, 4];
 int i = 0;
 assert(arr.length > 0, "Array must contain at least one element");
 do
 {
 arr[i++] *= 2;
 } while (i < arr.length);
 writeln(arr); // [2, 6, 8]
}

Foreach

Foreach allows a less error-prone and better readable way to iterate collections. The attribute ref
can be used if we want to directly modify the iterated element.

void main()
{
 import std.stdio : writeln;
 int[] arr = [1, 3, 4];
 foreach (ref el; arr)
 {
 el *= 2;
 }
 writeln(arr); // [2, 6, 8]
}

The index of the iteration can be accessed too:

void main()
{
 import std.stdio : writeln;
 int[] arr = [1, 3, 4];
 foreach (i, el; arr)
 {
 arr[i] = el * 2;
 }
 writeln(arr); // [2, 6, 8]
}

Iteration in reverse order is possible too:

void main()
{
 import std.stdio : writeln;
 int[] arr = [1, 3, 4];
 int i = 0;
 foreach_reverse (ref el; arr)
 {
 el += i++; // 4 is incremented by 0, 3 by 1, and 1 by 2
 }

https://riptutorial.com/ 18

 writeln(arr); // [3, 4, 4]
}

Break, continue & labels

void main()
{
 import std.stdio : writeln;
 int[] arr = [1, 3, 4, 5];
 foreach (i, el; arr)
 {
 if (i == 0)
 continue; // continue with the next iteration
 arr[i] *= 2;
 if (i == 2)
 break; // stop the loop iteration
 }
 writeln(arr); // [1, 6, 8, 5]
}

Labels can also be used to break or continue within nested loops.

void main()
{
 import std.stdio : writeln;
 int[] arr = [1, 3, 4];
 outer: foreach (j; 0..10) // iterates with j=0 and j=1
 foreach (i, el; arr)
 {
 arr[i] *= 2;
 if (j == 1)
 break outer; // stop the loop iteration
 }
 writeln(arr); // [4, 6, 8] (only 1 reaches the second iteration)
}

Read Loops online: https://riptutorial.com/d/topic/4696/loops

https://riptutorial.com/ 19

https://riptutorial.com/d/topic/4696/loops

Chapter 9: Memory & Pointers

Syntax

&<variable> - access by reference (=gets the pointer to the data of the variable)•
*<variable> - deference operator (=gets the data object from a pointer)•
<type>* - data type that points to <type> (e.g. `int*)•

Examples

Pointers

D is a system programming language and thus allows you to manually manage and mess up your
memory. Nevertheless, D uses a garbage collector per default to free unused memory.

D provides pointer types T* like in C:

void main()
{
 int a;
 int* b = &a; // b contains address of a
 auto c = &a; // c is int* and contains address of a

 import std.stdio : writeln;
 writeln("a ", a);
 writeln("b ", b);
 writeln("c ", c);
}

Allocating on the heap

A new memory block on the heap is allocated using the new expression, which returns a pointer to
the managed memory:

void main()
{
 int* a = new int;
 *a = 42; // dereferencing
 import std.stdio : writeln;
 writeln("a: ", *a);
}

@safe D

As soon as the memory referenced by a isn't referenced anymore through any variable in the
program, the garbage collector will free its memory.

D also allows pointer arithmetic, except in code that is marked as @safe.

https://riptutorial.com/ 20

void safeFun() @safe
{
 writeln("Hello World");
 // allocating memory with the GC is safe too
 int* p = new int;
}

void unsafeFun()
{
 int* p = new int;
 int* fiddling = p + 5;
}

void main()
{
 safeFun();
 unsafeFun();
}

For more information about SafeD see the article from the D design team.

Read Memory & Pointers online: https://riptutorial.com/d/topic/6374/memory---pointers

https://riptutorial.com/ 21

https://dlang.org/safed.html
https://riptutorial.com/d/topic/6374/memory---pointers

Chapter 10: Ranges

Remarks

If a foreach is encountered by the compiler

foreach (element; range) {

it's internally rewritten similar to the following:

for (auto it = range; !it.empty; it.popFront()) {
 auto element = it.front;
 ...
}

Any object which fulfills the above interface is called an input range and is thus a type that can be
iterated over:

struct InputRange {
 @property bool empty();
 @property T front();
 void popFront();
}

Examples

Strings and arrays are ranges

import std.stdio;

void main() {
 auto s = "hello world";
 auto a = [1, 2, 3, 4];

 foreach (c; s) {
 write(c, "!"); // h!e!l!l!o! !w!o!r!l!d!
 }
 writeln();

 foreach (x; a) {
 write(x * x, ", "); // 1, 4, 9, 16,
 }
}

Making a new Input Range type

The InputRange concept has three functions, example:

struct InputRange(T) {

https://riptutorial.com/ 22

 @property bool empty();
 @property T front();
 void popFront();
}

In short, a way to

check if the range is empty1.
get the current element2.
move to the next element3.

To make our own type a InputRange, we must implement these three functions. Let's take a look at
the infinite sequence of squares.

struct SquaresRange {
 int cur = 1;

 @property bool empty() {
 return false;
 }

 @property int front() {
 return cur^^2;
 }

 void popFront() {
 cur++;
 }
}

See the D tour for an example with Fibonacci.

Read Ranges online: https://riptutorial.com/d/topic/3106/ranges

https://riptutorial.com/ 23

http://tour.dlang.io/tour/en/basics/ranges
https://riptutorial.com/d/topic/3106/ranges

Chapter 11: Scope guards

Syntax

scope(exit) - statements are called no matter how the current block was exited•
scope(success) - statements are called when the current block was exited normally•
scope(failure) - statements are called when the current block was exited through exception
throwing

•

Remarks

Using scope guards makes code much cleaner and allows to place resource allocation and clean
up code next to each other. These little helpers also improve safety because they make sure
certain cleanup code is always called independent of which paths are actually taken at runtime.

The D scope feature effectively replaces the RAII idiom used in C++ which often leads to special
scope guards objects for special resources.

Scope guards are called in the reverse order they are defined.

Play with scope guards or see an extensive tutorial.

Examples

Place allocation and cleanup code next to each other

Scope guards allow executing statements at certain conditions if the current block is left.

import core.stdc.stdlib;

void main() {
 int* p = cast(int*)malloc(int.sizeof);
 scope(exit) free(p);
}

Multiple, nested scopes

import std.stdio;

void main() {
 writeln("<html>");
 scope(exit) writeln("</html>");
 {
 writeln("\t<head>");
 scope(exit) writeln("\t</head>");
 "\t\t<title>%s</title>".writefln("Hello");
 } // the scope(exit) on the previous line is executed here

https://riptutorial.com/ 24

http://tour.dlang.io/tour/en/gems/scope-guards
http://ddili.org/ders/d.en/scope.html

 writeln("\t<body>");
 scope(exit) writeln("\t</body>");

 writeln("\t\t<h1>Hello World!</h1>");
}

prints

<html>
 <head>
 <title>Hello</title>
 </head>
 <body>
 <h1>Hello World!</h1>
 </body>
</html>

Read Scope guards online: https://riptutorial.com/d/topic/4343/scope-guards

https://riptutorial.com/ 25

https://riptutorial.com/d/topic/4343/scope-guards

Chapter 12: Strings

Remarks

Strings in D are immutable; use .dup to make a mutable char array if you want to edit in-
place.

•

Examples

Reversing a string

string is defined as alias string = immutable(char)[];: so need to use dup to make a mutable char
array, before it can be reversed:

import std.stdio;
import std.string;

int main() {

 string x = "Hello world!";
 char[] x_rev = x.dup.reverse;

 writeln(x_rev); // !dlrow olleH

 return 0;

}

Test for an empty or null string

Empty string

Empty string is not null but has zero length:

string emptyString = "";
// an empty string is not null...
assert(emptyString !is null);

// ... but it has zero lenght
assert(emptyString.length == 0);

Null string

string nullString = null;

https://riptutorial.com/ 26

a null string is null (De Lapalisse)

assert(nullString is null);

but, unlike C#, read the length of a null string does not generate error:

assert(nullString.length == 0);
assert(nullString.empty);

Test for empty or null

if (emptyOrNullString.length == 0) {
}

// or
if (emptyOrNullString.length) {
}

// or
import std.array;
if (emptyOrNullString.empty) {
}

Test for null

if (nullString is null) {
}

References

What is the correct way to test for an empty string?•
Does D has C#'s string.Empty?•

Convert string to ubyte[] and vice versa

String to immutable ubyte[]

string s = "unogatto";
immutable(ubyte[]) ustr = cast(immutable(ubyte)[])s;

assert(typeof(ustr).stringof == "immutable(ubyte[])");
assert(ustr.length == 8);
assert(ustr[0] == 0x75); //u
assert(ustr[1] == 0x6e); //n

https://riptutorial.com/ 27

http://forum.dlang.org/thread/airencixtruqcagfyvgu@forum.dlang.org#post-mailman.118.1374090368.22075.digitalmars-d-learn:40puremagic.com
http://forum.dlang.org/post/ruwzspnunatpmhoqglns@forum.dlang.org

assert(ustr[2] == 0x6f); //o
assert(ustr[3] == 0x67); //g
assert(ustr[7] == 0x6f); //o

String to ubyte[]

string s = "unogatto";
ubyte[] mustr = cast(ubyte[])s;

assert(typeof(mustr).stringof == "ubyte[]");

assert(mustr.length == 8);
assert(mustr[0] == 0x75);
assert(mustr[1] == 0x6e);
assert(mustr[2] == 0x6f);
assert(mustr[3] == 0x67);
assert(mustr[7] == 0x6f);

ubyte[] to string

ubyte[] stream = [0x75, 0x6e, 0x6f, 0x67];
string us = cast(string)stream;
assert(us == "unog");

References

DLang forum•

Read Strings online: https://riptutorial.com/d/topic/5760/strings

https://riptutorial.com/ 28

http://forum.dlang.org/thread/k806qm$2eci$1@digitalmars.com
https://riptutorial.com/d/topic/5760/strings

Chapter 13: Structs

Examples

Defining a new Struct

To define the struct called Person with an integer type variable age, integer type variable height
and float type variable ageXHeight:

struct Person {
 int age;
 int height;
 float ageXHeight;
}

Generally:

struct structName {
 /+ values go here +/
}

Struct Constructors

In D we can use constructors to initialize structs just like a class. To define a construct for the
struct declared in the previous example we can type:

struct Person {
 this(int age, int height) {
 this.age = age;
 this.height = height;
 this.ageXHeight = cast(float)age * height;
 }
}

auto person = Person(18, 180);

Read Structs online: https://riptutorial.com/d/topic/4075/structs

https://riptutorial.com/ 29

https://riptutorial.com/d/topic/4075/structs

Chapter 14: Templates

Syntax

template identifier (TemplateParameterList) { ... }•
struct identifier (TemplateParameterList) { ... }•
class identifier (TemplateParameterList) { ... }•
ReturnType identifier (TemplateParameterList)(ParameterList) { ... }•
identifier!(TemplateInvocationList)•

Examples

Function with one template

import std.stdio;

T min(T)(in T arg1, in T arg2) {
 return arg1 < arg2 ? arg1 : arg2;
}

void main() {
 //Automatic type inference
 writeln(min(1, 2));

 //Explicit type
 writeln(min!(ubyte)(1, 2));

 //With single type, the parenthesis might be ommited
 writeln(min!ubyte(1, 2));
}

template

An template can be introduced with template. It can contain functions and classes and other
constructs.

template StaticArray(Type, size_t Length) {
 class StaticArray {
 Type content[Length];

 size_t myLength() {
 return getLength(this);
 }
 }

 private size_t getLength(StaticArray arr) {
 return Length;
 }
}

void main() {

https://riptutorial.com/ 30

 StaticArray!(int, 5) arr5 = new StaticArray!(int, 5);
 import std.stdio;
 writeln(arr5.myLength());
}

Read Templates online: https://riptutorial.com/d/topic/3892/templates

https://riptutorial.com/ 31

https://riptutorial.com/d/topic/3892/templates

Chapter 15: Traits

Syntax

__traits (TraitsKeyword, TraitsArguments...)•

Examples

Iterating over the members of a struct

import std.stdio;

struct A {
 int b;
 void c();
 string d;
};

void main() {
 // The following foreach is unrolled in compile time
 foreach(name; __traits(allMembers, A)) {
 pragma(msg, name);
 }
}

The allMembers traits returns a tuple of string containing the names of the members of the given
type. These strings are known at compile time.

Iterating over members of a struct/class without their inherited members

module main;

auto getMemberNames(T)() @safe pure {
 string[] members;

 foreach (derived; __traits(derivedMembers, T)) {
 members ~= derived;
 }

 return members;
}

class Foo {
 int a;
 int b;
}

class Bar : Foo {
 int c;
 int d;
 int e;
}

https://riptutorial.com/ 32

void main() {
 import std.stdio;

 foreach (member; getMemberNames!Bar) {
 writeln(member);
 }
}

derivedMembers returns a tuple of string literals, where each string is the member name.

The example outputs:

c
d
e

Read Traits online: https://riptutorial.com/d/topic/3416/traits

https://riptutorial.com/ 33

https://riptutorial.com/d/topic/3416/traits

Chapter 16: UFCS - Uniform Function Call
Syntax

Syntax

aThirdFun(anotherFun(myFun(), 42); // common notation (also valid)•
myFun().anotherFun(42).aThirdFun(); // UFCS•
myFun.anotherFun(42).aThirdFun; // empty braces can be removed•

Remarks

In a call a.b(args...), if the type a does not have a method named b, then the compiler will try to
rewrite the call as b(a, args...).

Examples

Checking if a Number is Prime

import std.stdio;

bool isPrime(int number) {
 foreach(i; 2..number) {
 if (number % i == 0) {
 return false;
 }
 }

 return true;
}

void main() {
 writeln(2.isPrime);
 writeln(3.isPrime);
 writeln(4.isPrime);
 5.isPrime.writeln;
}

UFCS with ranges

void main() {
 import std.algorithm : group;
 import std.range;
 [1, 2].chain([3, 4]).retro; // [4, 3, 2, 1]
 [1, 1, 2, 2, 2].group.dropOne.front; // tuple(2, 3u)
}

UFCS with Durations from std.datetime

https://riptutorial.com/ 34

import core.thread, std.stdio, std.datetime;

void some_operation() {
 // Sleep for two sixtieths (2/60) of a second.
 Thread.sleep(2.seconds / 60);
 // Sleep for 100 microseconds.
 Thread.sleep(100.usecs);
}

void main() {
 MonoTime t0 = MonoTime.currTime();
 some_operation();
 MonoTime t1 = MonoTime.currTime();
 Duration time_taken = t1 - t0;

 writeln("You can do some_operation() this many times per second: ",
 1.seconds / time_taken);
}

Read UFCS - Uniform Function Call Syntax online: https://riptutorial.com/d/topic/4155/ufcs---
uniform-function-call-syntax

https://riptutorial.com/ 35

https://riptutorial.com/d/topic/4155/ufcs---uniform-function-call-syntax
https://riptutorial.com/d/topic/4155/ufcs---uniform-function-call-syntax

Chapter 17: Unittesting

Syntax

unittest { ... } - a block that is only run in "unittesting" mode•
assert(<expression that evaluates to a boolean>, <optional error message>)•

Examples

Unittest blocks

Tests are an excellent way to ensure stable, bug-free applications. They serve as an interactive
documentation and allow to modify code without fear to break functionality. D provides a
convenient and native syntax for unittest block as part of the D language. Anywhere in a D
module unittest blocks can be used to test functionality of the source code.

/**
Yields the sign of a number.
Params:
 n = number which should be used to check the sign
Returns:
 1 for positive n, -1 for negative and 0 for 0.
*/
T sgn(T)(T n)
{
 if (n == 0)
 return 0;
 return (n > 0) ? 1 : -1;
}

// this block will only be executed with -unittest
// it will be removed from the executable otherwise
unittest
{
 // go ahead and make assumptions about your function
 assert(sgn(10) == 1);
 assert(sgn(1) == 1);
 assert(sgn(-1) == -1);
 assert(sgn(-10) == -1);
}

Executing unittest

If -unittest flag is passed to the D compiler, it will run all unittest blocks. Often it is useful to let the
compiler generate a stubbed main function. Using the compile & run wrapper rdmd, testing your D
program gets as easy as:

rdmd -main -unittest yourcode.d

Of course you can also split this process into two steps if you want:

https://riptutorial.com/ 36

dmd -main -unittest yourcode.d
./yourcode

For dub projects compiling all files and executing their unittest blocks can be done conveniently
with

dub test

Pro tip: define `tdmd` as shell alias to save tipping.

alias tdmd="rdmd -main -unittest"

and then test your files with:

tdmd yourcode.d

Annotated unittest

For templated code it is often useful to verify that for function attributes (e.g. @nogc are inferred
correctly. To ensure this for a specific test and thus type the entire unittest can be annotated

@safe @nogc pure nothrow unittest
{
 import std.math;
 assert(exp(0) == 1);
 assert(log(1) == 0);
}

Note that of course in D every block can be annotated with attributes and the compilers, of course,
verifies that they are correct. So for example the following would be similar to the example above:

unittest
{
 import std.math;
 @safe {
 assert(exp(0) == 1);
 assert(log(1) == 0);
 }
}

Read Unittesting online: https://riptutorial.com/d/topic/6201/unittesting

https://riptutorial.com/ 37

https://riptutorial.com/d/topic/6201/unittesting

Credits

S.
No

Chapters Contributors

1
Getting started with
D Language

Alessio Sacco, André Puel, Bauss, Bennet Leff, Cauterite,
Community, EsmaeelE, Gassa, Sirsireesh Kodali, Some coder,
T.Furholzer, TuxCopter

2 Associative Arrays Bauss, greenify, o3o, Shriken

3 Classes greenify, o3o

4
Compile Time
Function Evaluation
(CTFE)

André Puel, greenify

5 Contracts Quonux

6
Dynamic Arrays &
Slices

André Puel, Bauss, greenify, Harry, Shriken

7 Imports and modules greenify

8 Loops greenify, o3o

9 Memory & Pointers greenify

10 Ranges André Puel, Cauterite, Shriken

11 Scope guards André Puel, greenify

12 Strings Harry, o3o, RamenChef

13 Structs Bennet Leff

14 Templates André Puel, Bauss, Quonux

15 Traits André Puel, Bauss

16
UFCS - Uniform
Function Call Syntax

André Puel, greenify, tre0n

17 Unittesting greenify

https://riptutorial.com/ 38

https://riptutorial.com/contributor/6622374/alessio-sacco
https://riptutorial.com/contributor/809384/andre-puel
https://riptutorial.com/contributor/2026276/bauss
https://riptutorial.com/contributor/2391980/bennet-leff
https://riptutorial.com/contributor/1288130/cauterite
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/7508077/esmaeele
https://riptutorial.com/contributor/1488799/gassa
https://riptutorial.com/contributor/6688041/sirsireesh-kodali
https://riptutorial.com/contributor/3873641/some-coder
https://riptutorial.com/contributor/7490556/t-furholzer
https://riptutorial.com/contributor/5257938/tuxcopter
https://riptutorial.com/contributor/2026276/bauss
https://riptutorial.com/contributor/3026245/greenify
https://riptutorial.com/contributor/94198/o3o
https://riptutorial.com/contributor/1899502/shriken
https://riptutorial.com/contributor/3026245/greenify
https://riptutorial.com/contributor/94198/o3o
https://riptutorial.com/contributor/809384/andre-puel
https://riptutorial.com/contributor/3026245/greenify
https://riptutorial.com/contributor/388614/quonux
https://riptutorial.com/contributor/809384/andre-puel
https://riptutorial.com/contributor/2026276/bauss
https://riptutorial.com/contributor/3026245/greenify
https://riptutorial.com/contributor/1108828/harry
https://riptutorial.com/contributor/1899502/shriken
https://riptutorial.com/contributor/3026245/greenify
https://riptutorial.com/contributor/3026245/greenify
https://riptutorial.com/contributor/94198/o3o
https://riptutorial.com/contributor/3026245/greenify
https://riptutorial.com/contributor/809384/andre-puel
https://riptutorial.com/contributor/1288130/cauterite
https://riptutorial.com/contributor/1899502/shriken
https://riptutorial.com/contributor/809384/andre-puel
https://riptutorial.com/contributor/3026245/greenify
https://riptutorial.com/contributor/1108828/harry
https://riptutorial.com/contributor/94198/o3o
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2391980/bennet-leff
https://riptutorial.com/contributor/809384/andre-puel
https://riptutorial.com/contributor/2026276/bauss
https://riptutorial.com/contributor/388614/quonux
https://riptutorial.com/contributor/809384/andre-puel
https://riptutorial.com/contributor/2026276/bauss
https://riptutorial.com/contributor/809384/andre-puel
https://riptutorial.com/contributor/3026245/greenify
https://riptutorial.com/contributor/4516013/tre0n
https://riptutorial.com/contributor/3026245/greenify

	About
	Chapter 1: Getting started with D Language
	Remarks
	Versions
	Examples
	Installation or Setup

	Package Managers
	Arch Linux
	Chocolatey
	Gentoo
	OSX Homebrew
	Debian/Ubuntu

	Other compilers
	IDEs
	Hello World
	Hello, World!

	Explanation :
	Compiling and Running the Program
	Read values from a string

	Chapter 2: Associative Arrays
	Examples
	Standard use
	Literals
	Add key-value pairs
	Remove key-value pairs
	Check if a key exist

	Chapter 3: Classes
	Syntax
	Remarks
	Examples
	Inheritance
	Instantiation

	Chapter 4: Compile Time Function Evaluation (CTFE)
	Remarks
	Examples
	Evaluate a function at compile-time

	Chapter 5: Contracts
	Remarks
	Examples
	Function contracts
	Function contracts

	Chapter 6: Dynamic Arrays & Slices
	Syntax
	Remarks
	Examples
	Declaration and initialization
	Array operations
	Slices

	Chapter 7: Imports and modules
	Syntax
	Remarks
	Examples
	Global imports
	Selective imports
	Local imports
	Public imports
	Renamed imports
	Renamed and selective imports
	Module declaration

	Chapter 8: Loops
	Syntax
	Remarks
	Examples
	For loop
	While loop
	do-while
	Foreach
	Break, continue & labels

	Chapter 9: Memory & Pointers
	Syntax
	Examples
	Pointers
	Allocating on the heap
	@safe D

	Chapter 10: Ranges
	Remarks
	Examples
	Strings and arrays are ranges
	Making a new Input Range type

	Chapter 11: Scope guards
	Syntax
	Remarks
	Examples
	Place allocation and cleanup code next to each other
	Multiple, nested scopes

	Chapter 12: Strings
	Remarks
	Examples
	Reversing a string
	Test for an empty or null string

	Empty string
	Null string
	Test for empty or null
	Test for null
	References
	Convert string to ubyte[] and vice versa

	String to immutable ubyte[]
	String to ubyte[]
	ubyte[] to string
	References
	Chapter 13: Structs
	Examples
	Defining a new Struct
	Struct Constructors

	Chapter 14: Templates
	Syntax
	Examples
	Function with one template
	template

	Chapter 15: Traits
	Syntax
	Examples
	Iterating over the members of a struct
	Iterating over members of a struct/class without their inherited members

	Chapter 16: UFCS - Uniform Function Call Syntax
	Syntax
	Remarks
	Examples
	Checking if a Number is Prime
	UFCS with ranges
	UFCS with Durations from std.datetime

	Chapter 17: Unittesting
	Syntax
	Examples
	Unittest blocks
	Executing unittest
	Annotated unittest

	Credits

