
Dapper.NET

#dapper

Table des matières

À propos 1

Chapitre 1: Démarrer avec Dapper.NET 2

Remarques 2

Qu'est ce que Dapper? 2

Comment puis-je l'obtenir? 2

Tâches communes 2

Versions 2

Examples 2

Installer Dapper à partir de Nuget 2

Utiliser Dapper en C # 3

Utiliser Dapper dans LINQPad 3

Chapitre 2: Exécution des commandes 5

Examples 5

Exécuter une commande qui ne renvoie aucun résultat 5

Procédures stockées 5

Usage simple 5

Paramètres d'entrée, de sortie et de retour 5

Paramètres de la table 5

Chapitre 3: Gestionnaires de types 7

Remarques 7

Examples 7

Conversion de varchar en IHtmlString 7

Installation d'un TypeHandler 7

Chapitre 4: Inserts en vrac 8

Remarques 8

Examples 8

Async Bulk Copy 8

Copie en vrac 8

Chapitre 5: Manipulation des Nulls 10

Examples 10

null vs DBNull 10

Chapitre 6: Multimapping 11

Syntaxe 11

Paramètres 11

Examples 12

Mappage multi-tables simple 12

Cartographie un à plusieurs 13

Cartographie de plus de 7 types 15

Mappages personnalisés 16

Chapitre 7: Paramètre Syntaxe Référence 19

Paramètres 19

Remarques 19

Examples 19

SQL paramétré de base 19

Utiliser votre modèle d'objet 20

Procédures stockées 20

Valeur Inlining 21

Extensions de liste 21

Effectuer des opérations contre plusieurs ensembles d'entrées 22

Paramètres pseudo-positionnels (pour les fournisseurs qui ne prennent pas en charge les pa 23

Chapitre 8: Paramètres dynamiques 25

Examples 25

Utilisation de base 25

Paramètres dynamiques dans Dapper 25

Utiliser un objet modèle 25

Chapitre 9: Requête de base 27

Syntaxe 27

Paramètres 27

Examples 27

Interrogation pour un type statique 27

Interrogation pour les types dynamiques 28

Requête avec paramètres dynamiques 28

Chapitre 10: Résultats multiples 29

Syntaxe 29

Paramètres 29

Examples 29

Exemple de base de résultats multiples 29

Chapitre 11: Tables Temp 30

Examples 30

Table temporaire qui existe tant que la connexion reste ouverte 30

Comment travailler avec des tables temporaires 30

Chapitre 12: Transactions 32

Syntaxe 32

Examples 32

Utiliser une transaction 32

Accélérer les inserts 33

Chapitre 13: Utiliser Async 34

Examples 34

Appeler une procédure stockée 34

Appeler une procédure stockée et ignorer le résultat 34

Chapitre 14: Utiliser DbGeography et DbGeometry 35

Examples 35

Configuration requise 35

Utiliser la géométrie et la géographie 35

Crédits 37

À propos

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: dapper-net

It is an unofficial and free Dapper.NET ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official Dapper.NET.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/fr/home 1

http://riptutorial.com/ebook/dapper-net
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapitre 1: Démarrer avec Dapper.NET

Remarques

Qu'est ce que Dapper?

Dapper est un micro-ORM pour .Net qui étend votre IDbConnection , simplifiant la configuration,
l'exécution et la lecture des résultats.

Comment puis-je l'obtenir?

github: https://github.com/StackExchange/dapper-dot-net•
NuGet: https://www.nuget.org/packages/Dapper•

Tâches communes

Requête de base•
Exécution des commandes•

Versions

Version Remarques Date de sortie

1,50.0 core-clr / asp.net 5.0 contre RTM 2016-06-29

1,42.0 2015-05-06

1,40.0 2015-04-03

1,30.0 2014-08-14

1.20.0 2014-05-08

1.10.0 2012-06-27

1.0.0 2011-04-14

Examples

Installer Dapper à partir de Nuget

Soit la recherche dans l'interface graphique de Visual Studio:

https://riptutorial.com/fr/home 2

http://stackexchange.github.io/dapper-dot-net/
https://github.com/StackExchange/dapper-dot-net
https://www.nuget.org/packages/Dapper
http://www.riptutorial.com/dapper/topic/3/basic-querying
http://www.riptutorial.com/dapper/topic/5/executing-commands

Outils> Gestionnaire de packages NuGet> Gérer les packages pour solution ... (Visual Studio
2015)

Ou exécutez cette commande dans une instance Nuget Power Shell pour installer la dernière
version stable

Install-Package Dapper

Ou pour une version spécifique

Install-Package Dapper -Version 1.42.0

Utiliser Dapper en C #

using System.Data;
using System.Linq;
using Dapper;

class Program
{
 static void Main()
 {
 using (IDbConnection db = new
SqlConnection("Server=myServer;Trusted_Connection=true"))
 {
 db.Open();
 var result = db.Query<string>("SELECT 'Hello World'").Single();
 Console.WriteLine(result);
 }
 }
}

Envelopper la connexion dans un bloc Using va fermer la connexion

Utiliser Dapper dans LINQPad

LINQPad est idéal pour tester les requêtes de base de données et inclut l' intégration de NuGet .
Pour utiliser Dapper dans LINQPad, appuyez sur F4 pour ouvrir les propriétés de la requête, puis

https://riptutorial.com/fr/home 3

http://i.stack.imgur.com/sWn6V.png
http://www.riptutorial.com/csharp/example/157/using-statement-basics
http://www.riptutorial.com/csharp/example/157/using-statement-basics
http://www.linqpad.net/
http://www.linqpad.net/Purchase.aspx#NuGet

sélectionnez Ajouter NuGet . Recherchez dapper dot net et sélectionnez Ajouter à la requête .
Vous souhaiterez également cliquer sur Ajouter des espaces de noms et mettre en surbrillance
Dapper pour inclure les méthodes d'extension dans votre requête LINQPad.

Une fois que Dapper est activé, vous pouvez modifier la liste déroulante Langue en Programme
C #, associer les résultats de la requête aux classes C # et utiliser la méthode .Dump () pour
inspecter les résultats:

void Main()
{
 using (IDbConnection db = new SqlConnection("Server=myServer;Trusted_Connection=true")){
 db.Open();
 var scalar = db.Query<string>("SELECT GETDATE()").SingleOrDefault();
 scalar.Dump("This is a string scalar result:");

 var results = db.Query<myobject>(@"
 SELECT * FROM (
 VALUES (1,'one'),
 (2,'two'),
 (3,'three')
) AS mytable(id,name)");
 results.Dump("This is a table mapped to a class:");
 }
}

// Define other methods and classes here
class myobject {
 public int id { get; set; }
 public string name { get; set; }
}

Les résultats lors de l'exécution du programme ressembleraient à ceci:

Lire Démarrer avec Dapper.NET en ligne: https://riptutorial.com/fr/dapper/topic/2/demarrer-avec-
dapper-net

https://riptutorial.com/fr/home 4

http://i.stack.imgur.com/swXB1.png
https://riptutorial.com/fr/dapper/topic/2/demarrer-avec-dapper-net
https://riptutorial.com/fr/dapper/topic/2/demarrer-avec-dapper-net

Chapitre 2: Exécution des commandes

Examples

Exécuter une commande qui ne renvoie aucun résultat

IDBConnection db = /* ... */
var id = /* ... */

db.Execute(@"update dbo.Dogs set Name = 'Beowoof' where Id = @id",
 new { id });

Procédures stockées

Usage simple

Dapper prend entièrement en charge les processus stockés:

var user = conn.Query<User>("spGetUser", new { Id = 1 },
 commandType: CommandType.StoredProcedure)
 .SingleOrDefault();

Paramètres d'entrée, de sortie et de retour

Si vous voulez quelque chose de plus chic, vous pouvez faire:

var p = new DynamicParameters();
p.Add("@a", 11);
p.Add("@b",
 dbType: DbType.Int32,
 direction: ParameterDirection.Output);
p.Add("@c",
 dbType: DbType.Int32,
 direction: ParameterDirection.ReturnValue);

conn.Execute("spMagicProc", p,
 commandType: CommandType.StoredProcedure);

var b = p.Get<int>("@b");
var c = p.Get<int>("@c");

Paramètres de la table

Si vous avez une procédure stockée qui accepte un paramètre de valeur de table, vous devez
transmettre un DataTable qui a la même structure que le type de tableau dans SQL Server. Voici
une définition pour un type de tableau et une procédure l'utilisant:

https://riptutorial.com/fr/home 5

CREATE TYPE [dbo].[myUDTT] AS TABLE([i1] [int] NOT NULL);
GO
CREATE PROCEDURE myProc(@data dbo.myUDTT readonly) AS
SELECT i1 FROM @data;
GO
/*
-- optionally grant permissions as needed, depending on the user you execute this with.
-- Especially the GRANT EXECUTE ON TYPE is often overlooked and can cause problems if omitted.
GRANT EXECUTE ON TYPE::[dbo].[myUDTT] TO [user];
GRANT EXECUTE ON dbo.myProc TO [user];
GO
*/

Pour appeler cette procédure depuis c #, vous devez procéder comme suit:

// Build a DataTable with one int column
DataTable data = new DataTable();
data.Columns.Add("i1", typeof(int));
// Add two rows
data.Rows.Add(1);
data.Rows.Add(2);

var q = conn.Query("myProc", new {data}, commandType: CommandType.StoredProcedure);

Lire Exécution des commandes en ligne: https://riptutorial.com/fr/dapper/topic/5/execution-des-
commandes

https://riptutorial.com/fr/home 6

https://riptutorial.com/fr/dapper/topic/5/execution-des-commandes
https://riptutorial.com/fr/dapper/topic/5/execution-des-commandes

Chapitre 3: Gestionnaires de types

Remarques

Les gestionnaires de type permettent aux types de base de données d'être convertis en types
personnalisés .Net.

Examples

Conversion de varchar en IHtmlString

public class IHtmlStringTypeHandler : SqlMapper.TypeHandler<IHtmlString>
{
 public override void SetValue(
 IDbDataParameter parameter,
 IHtmlString value)
 {
 parameter.DbType = DbType.String;
 parameter.Value = value?.ToHtmlString();
 }

 public override IHtmlString Parse(object value)
 {
 return MvcHtmlString.Create(value?.ToString());
 }
}

Installation d'un TypeHandler

Le gestionnaire de type ci-dessus peut être installé dans SqlMapper à l'aide de la méthode
AddTypeHandler .

SqlMapper.AddTypeHandler<IHtmlString>(new IHtmlStringTypeHandler());

L'inférence de type vous permet d'omettre le paramètre de type générique:

SqlMapper.AddTypeHandler(new IHtmlStringTypeHandler());

Il y a aussi une surcharge à deux arguments qui prend un argument de Type explicite:

SqlMapper.AddTypeHandler(typeof(IHtmlString), new IHtmlStringTypeHandler());

Lire Gestionnaires de types en ligne: https://riptutorial.com/fr/dapper/topic/6/gestionnaires-de-
types

https://riptutorial.com/fr/home 7

https://riptutorial.com/fr/dapper/topic/6/gestionnaires-de-types
https://riptutorial.com/fr/dapper/topic/6/gestionnaires-de-types

Chapitre 4: Inserts en vrac

Remarques

WriteToServer et WriteToServerAsync ont des surcharges qui acceptent les tableaux IDataReader
(vus dans les exemples), DataTable et DataRow (DataRow[]) comme source des données pour la
copie en bloc.

Examples

Async Bulk Copy

Cet exemple utilise une méthode ToDataReader décrite ici Création d'un DataReader de liste
générique pour SqlBulkCopy .

Cela peut également être fait en utilisant des méthodes non asynchrones.

public class Widget
{
 public int WidgetId {get;set;}
 public string Name {get;set;}
 public int Quantity {get;set;}
}

public async Task AddWidgets(IEnumerable<Widget> widgets)
{
 using(var conn = new SqlConnection("{connection string}")) {
 await conn.OpenAsync();

 using(var bulkCopy = new SqlBulkCopy(conn)) {
 bulkCopy.BulkCopyTimeout = SqlTimeoutSeconds;
 bulkCopy.BatchSize = 500;
 bulkCopy.DestinationTableName = "Widgets";
 bulkCopy.EnableStreaming = true;

 using(var dataReader = widgets.ToDataReader())
 {
 await bulkCopy.WriteToServerAsync(dataReader);
 }
 }
 }
}

Copie en vrac

Cet exemple utilise une méthode ToDataReader décrite ici Création d'un DataReader de liste
générique pour SqlBulkCopy .

Cela peut également être fait en utilisant des méthodes asynchrones.

https://riptutorial.com/fr/home 8

https://www.csvreader.com/posts/generic_list_datareader.php
https://www.csvreader.com/posts/generic_list_datareader.php
https://www.csvreader.com/posts/generic_list_datareader.php
https://www.csvreader.com/posts/generic_list_datareader.php

public class Widget
{
 public int WidgetId {get;set;}
 public string Name {get;set;}
 public int Quantity {get;set;}
}

public void AddWidgets(IEnumerable<Widget> widgets)
{
 using(var conn = new SqlConnection("{connection string}")) {
 conn.Open();

 using(var bulkCopy = new SqlBulkCopy(conn)) {
 bulkCopy.BulkCopyTimeout = SqlTimeoutSeconds;
 bulkCopy.BatchSize = 500;
 bulkCopy.DestinationTableName = "Widgets";
 bulkCopy.EnableStreaming = true;

 using(var dataReader = widgets.ToDataReader())
 {
 bulkCopy.WriteToServer(dataReader);
 }
 }
 }
}

Lire Inserts en vrac en ligne: https://riptutorial.com/fr/dapper/topic/6279/inserts-en-vrac

https://riptutorial.com/fr/home 9

https://riptutorial.com/fr/dapper/topic/6279/inserts-en-vrac

Chapitre 5: Manipulation des Nulls

Examples

null vs DBNull

Dans ADO.NET, la gestion correcte de null est une source constante de confusion. Le point clé
de Dapper est que vous n'avez pas à le faire ; il traite de tout en interne.

les valeurs de paramètre qui sont null sont correctement envoyées en tant que DBNull.Value•
les valeurs lues qui sont null sont présentées comme null ou (dans le cas d'un mappage
sur un type connu) simplement ignorées (laissant leur type par défaut)

•

Ça marche:

string name = null;
int id = 123;
connection.Execute("update Customer set Name=@name where Id=@id",
 new {id, name});

Lire Manipulation des Nulls en ligne: https://riptutorial.com/fr/dapper/topic/13/manipulation-des-
nulls

https://riptutorial.com/fr/home 10

https://riptutorial.com/fr/dapper/topic/13/manipulation-des-nulls
https://riptutorial.com/fr/dapper/topic/13/manipulation-des-nulls

Chapitre 6: Multimapping

Syntaxe

public static IEnumerable<TReturn> Query<TFirst, TSecond, TReturn>(this IDbConnection cnn,
string sql, Func<TFirst, TSecond, TReturn> map, object param = null, IDbTransaction
transaction = null, bool buffered = true, string splitOn = "Id", int? commandTimeout =
null, CommandType? commandType = null)

•

public static IEnumerable<TReturn> Query<TFirst, TSecond, TThird, TFourth, TFifth, TSixth,
TSeventh, TReturn>(this IDbConnection cnn, string sql, Func<TFirst, TSecond, TThird,
TFourth, TFifth, TSixth, TSeventh, TReturn> map, object param = null, IDbTransaction
transaction = null, bool buffered = true, string splitOn = "Id", int? commandTimeout =
null, CommandType? commandType = null)

•

public static IEnumerable<TReturn> Query<TReturn>(this IDbConnection cnn, string sql,
Type[] types, Func<object[], TReturn> map, object param = null, IDbTransaction transaction
= null, bool buffered = true, string splitOn = "Id", int? commandTimeout = null,
CommandType? commandType = null)

•

Paramètres

Paramètre Détails

CNN Votre connexion à la base de données, qui doit déjà être ouverte.

sql Commande à exécuter.

les types Tableau de types dans le jeu d'enregistrements.

carte Func<> qui gère la construction du résultat de retour.

param Objet pour extraire les paramètres de.

transaction Transaction dont cette requête fait partie, le cas échéant.

S'il faut ou non mettre en mémoire tampon les résultats de la requête.
Ceci est un paramètre facultatif avec la valeur par défaut étant true.
Lorsque la mise en mémoire tampon est vraie, les résultats sont mis en
mémoire tampon dans une List<T> , puis renvoyés sous la forme d'un
IEnumerable<T> sûr pour une énumération multiple. Lorsque la mise en
mémoire tampon est fausse, la connexion SQL est maintenue ouverte
jusqu'à ce que vous ayez fini de lire, ce qui vous permet de traiter une
seule ligne à la fois en mémoire. Plusieurs énumérations engendreront
des connexions supplémentaires à la base de données. Bien que false
mis en mémoire tampon soit très efficace pour réduire l’utilisation de la
mémoire si vous ne gérez que de très petits fragments
d’enregistrements renvoyés, il se caractérise par une surcharge de
performances considérable par rapport à la matérialisation rapide du
jeu de résultats. Enfin, si vous avez de nombreuses connexions SQL
non tamponnées simultanées, vous devez tenir compte de la famine du

tamponné

https://riptutorial.com/fr/home 11

http://stackoverflow.com/a/30493725/37055
http://stackoverflow.com/a/30493725/37055
http://stackoverflow.com/a/30493725/37055

Paramètre Détails

pool de connexions, ce qui entraîne le blocage des requêtes jusqu'à ce
que les connexions soient disponibles.

splitOn
Le champ que nous devons diviser et lire le second objet (par défaut:
id). Cela peut être une liste délimitée par des virgules lorsque plus d'un
type est contenu dans un enregistrement.

commandeTimeout
Nombre de secondes avant l'expiration du délai d'exécution de la
commande.

type de commande Est-ce un processus stocké ou un lot?

Examples

Mappage multi-tables simple

Disons que nous avons une interrogation des cavaliers restants qui doivent remplir une classe de
personnes.

prénom Née Résidence

Daniel Dennett 1942 les États-Unis d'Amérique

Sam Harris 1967 les États-Unis d'Amérique

Richard dawkins 1941 Royaume-Uni

public class Person
{
 public string Name { get; set; }
 public int Born { get; set; }
 public Country Residience { get; set; }
}

public class Country
{
 public string Residence { get; set; }
}

Nous pouvons remplir la classe de personne ainsi que la propriété Residence avec une instance
de Country à l'aide d'une Query<> surcharge Query<> qui prend un Func<> pouvant être utilisé pour
composer l'instance renvoyée. Le Func<> peut prendre jusqu'à 7 types d'entrées, l'argument
générique final étant toujours le type de retour.

var sql = @"SELECT 'Daniel Dennett' AS Name, 1942 AS Born, 'United States of America' AS
Residence
UNION ALL SELECT 'Sam Harris' AS Name, 1967 AS Born, 'United States of America' AS Residence
UNION ALL SELECT 'Richard Dawkins' AS Name, 1941 AS Born, 'United Kingdom' AS Residence";

https://riptutorial.com/fr/home 12

var result = connection.Query<Person, Country, Person>(sql, (person, country) => {
 if(country == null)
 {
 country = new Country { Residence = "" };
 }
 person.Residience = country;
 return person;
 },
 splitOn: "Residence");

Notez l'utilisation de l' splitOn: "Residence" qui est la 1ère colonne du prochain type de
classe à renseigner (dans ce cas, Country). Dapper recherchera automatiquement une
colonne appelée Id à diviser mais si elle n'en trouve pas et que splitOn n'est pas fourni,
une System.ArgumentException sera lancée avec un message utile. Donc, bien que ce
soit facultatif, vous devrez généralement fournir une valeur splitOn .

Cartographie un à plusieurs

Regardons un exemple plus complexe qui contient une relation un-à-plusieurs. Notre requête
contiendra désormais plusieurs lignes contenant des données en double et nous devrons gérer
cela. Nous faisons cela avec une recherche dans une fermeture.

La requête change légèrement comme le font les exemples de classes.

Id prénom Née CountryId Nom du pays BookId Nom du livre

1
Daniel
Dennett

1942 1
les États-Unis
d'Amérique

1 Brainstorms

1
Daniel
Dennett

1942 1
les États-Unis
d'Amérique

2 Espace vital

2
Sam
Harris

1967 1
les États-Unis
d'Amérique

3 Le paysage moral

2
Sam
Harris

1967 1
les États-Unis
d'Amérique

4
Se réveiller: Guide de
spiritualité sans religion

3
Richard
dawkins

1941 2 Royaume-Uni 5
La magie de la réalité:
comment nous savons ce
qui est vraiment vrai

3
Richard
dawkins

1941 2 Royaume-Uni 6
Un appétit pour merveille:
la fabrication d'un
scientifique

public class Person
{
 public int Id { get; set; }

https://riptutorial.com/fr/home 13

 public string Name { get; set; }
 public int Born { get; set; }
 public Country Residience { get; set; }
 public ICollection<Book> Books { get; set; }
}

public class Country
{
 public int CountryId { get; set; }
 public string CountryName { get; set; }
}

public class Book
{
 public int BookId { get; set; }
 public string BookName { get; set; }
}

Les dictionnaires remainingHorsemen seront remplis d'instances entièrement matérialisées des
objets de la personne. Pour chaque ligne du résultat de la requête, les valeurs mappées des
instances des types définis dans les arguments lambda sont transmises et il vous appartient de
gérer cela.

 var sql = @"SELECT 1 AS Id, 'Daniel Dennett' AS Name, 1942 AS Born, 1 AS
CountryId, 'United States of America' AS CountryName, 1 AS BookId, 'Brainstorms' AS BookName
UNION ALL SELECT 1 AS Id, 'Daniel Dennett' AS Name, 1942 AS Born, 1 AS CountryId, 'United
States of America' AS CountryName, 2 AS BookId, 'Elbow Room' AS BookName
UNION ALL SELECT 2 AS Id, 'Sam Harris' AS Name, 1967 AS Born, 1 AS CountryId, 'United States
of America' AS CountryName, 3 AS BookId, 'The Moral Landscape' AS BookName
UNION ALL SELECT 2 AS Id, 'Sam Harris' AS Name, 1967 AS Born, 1 AS CountryId, 'United States
of America' AS CountryName, 4 AS BookId, 'Waking Up: A Guide to Spirituality Without Religion'
AS BookName
UNION ALL SELECT 3 AS Id, 'Richard Dawkins' AS Name, 1941 AS Born, 2 AS CountryId, 'United
Kingdom' AS CountryName, 5 AS BookId, 'The Magic of Reality: How We Know What`s Really True'
AS BookName
UNION ALL SELECT 3 AS Id, 'Richard Dawkins' AS Name, 1941 AS Born, 2 AS CountryId, 'United
Kingdom' AS CountryName, 6 AS BookId, 'An Appetite for Wonder: The Making of a Scientist' AS
BookName";

var remainingHorsemen = new Dictionary<int, Person>();
connection.Query<Person, Country, Book, Person>(sql, (person, country, book) => {
 //person
 Person personEntity;
 //trip
 if (!remainingHorsemen.TryGetValue(person.Id, out personEntity))
 {
 remainingHorsemen.Add(person.Id, personEntity = person);
 }

 //country
 if(personEntity.Residience == null)
 {
 if (country == null)
 {
 country = new Country { CountryName = "" };
 }
 personEntity.Residience = country;
 }

https://riptutorial.com/fr/home 14

 //books
 if(personEntity.Books == null)
 {
 personEntity.Books = new List<Book>();
 }

 if (book != null)
 {
 if (!personEntity.Books.Any(x => x.BookId == book.BookId))
 {
 personEntity.Books.Add(book);
 }
 }

 return personEntity;
},
splitOn: "CountryId,BookId");

Notez comment l'argument splitOn est une liste délimitée par des virgules des
premières colonnes du type suivant.

Cartographie de plus de 7 types

Parfois, le nombre de types que vous mappez dépasse les 7 fournis par le Func <> qui effectue la
construction.

Au lieu d'utiliser la Query<> avec les entrées d'argument de type générique, nous allons fournir les
types à mapper en tant que tableau, suivis de la fonction de mappage. Outre le réglage manuel
initial et la conversion des valeurs, le reste de la fonction ne change pas.

 var sql = @"SELECT 1 AS Id, 'Daniel Dennett' AS Name, 1942 AS Born, 1 AS
CountryId, 'United States of America' AS CountryName, 1 AS BookId, 'Brainstorms' AS BookName
UNION ALL SELECT 1 AS Id, 'Daniel Dennett' AS Name, 1942 AS Born, 1 AS CountryId, 'United
States of America' AS CountryName, 2 AS BookId, 'Elbow Room' AS BookName
UNION ALL SELECT 2 AS Id, 'Sam Harris' AS Name, 1967 AS Born, 1 AS CountryId, 'United States
of America' AS CountryName, 3 AS BookId, 'The Moral Landscape' AS BookName
UNION ALL SELECT 2 AS Id, 'Sam Harris' AS Name, 1967 AS Born, 1 AS CountryId, 'United States
of America' AS CountryName, 4 AS BookId, 'Waking Up: A Guide to Spirituality Without Religion'
AS BookName
UNION ALL SELECT 3 AS Id, 'Richard Dawkins' AS Name, 1941 AS Born, 2 AS CountryId, 'United
Kingdom' AS CountryName, 5 AS BookId, 'The Magic of Reality: How We Know What`s Really True'
AS BookName
UNION ALL SELECT 3 AS Id, 'Richard Dawkins' AS Name, 1941 AS Born, 2 AS CountryId, 'United
Kingdom' AS CountryName, 6 AS BookId, 'An Appetite for Wonder: The Making of a Scientist' AS
BookName";

var remainingHorsemen = new Dictionary<int, Person>();
connection.Query<Person>(sql,
 new[]
 {
 typeof(Person),
 typeof(Country),
 typeof(Book)
 }
 , obj => {

 Person person = obj[0] as Person;

https://riptutorial.com/fr/home 15

 Country country = obj[1] as Country;
 Book book = obj[2] as Book;

 //person
 Person personEntity;
 //trip
 if (!remainingHorsemen.TryGetValue(person.Id, out personEntity))
 {
 remainingHorsemen.Add(person.Id, personEntity = person);
 }

 //country
 if(personEntity.Residience == null)
 {
 if (country == null)
 {
 country = new Country { CountryName = "" };
 }
 personEntity.Residience = country;
 }

 //books
 if(personEntity.Books == null)
 {
 personEntity.Books = new List<Book>();
 }

 if (book != null)
 {
 if (!personEntity.Books.Any(x => x.BookId == book.BookId))
 {
 personEntity.Books.Add(book);
 }
 }

 return personEntity;
},
splitOn: "CountryId,BookId");

Mappages personnalisés

Si les noms des colonnes de requête ne correspondent pas à vos classes, vous pouvez configurer
des mappages pour les types. Cet exemple illustre le mappage à l'aide de
System.Data.Linq.Mapping.ColumnAttribute ainsi qu'un mappage personnalisé.

Les mappages ne doivent être configurés qu'une seule fois par type, donc définissez-
les au démarrage de l'application ou ailleurs pour qu'ils ne soient initialisés qu'une
seule fois.

En supposant la même requête que l'exemple One-to-many et les classes remaniées vers de
meilleurs noms comme ceux-ci:

public class Person
{
 public int Id { get; set; }
 public string Name { get; set; }
 public int Born { get; set; }

https://riptutorial.com/fr/home 16

 public Country Residience { get; set; }
 public ICollection<Book> Books { get; set; }
}

public class Country
{
 [System.Data.Linq.Mapping.Column(Name = "CountryId")]
 public int Id { get; set; }

 [System.Data.Linq.Mapping.Column(Name = "CountryName")]
 public string Name { get; set; }
}

public class Book
{
 public int Id { get; set; }

 public string Name { get; set; }
}

Notez que Book ne repose pas sur ColumnAttribute mais que nous devons conserver
l'instruction if

Placez maintenant ce code de mappage quelque part dans votre application où il n'est exécuté
qu'une seule fois:

Dapper.SqlMapper.SetTypeMap(
 typeof(Country),
 new CustomPropertyTypeMap(
 typeof(Country),
 (type, columnName) =>
 type.GetProperties().FirstOrDefault(prop =>
 prop.GetCustomAttributes(false)
 .OfType<System.Data.Linq.Mapping.ColumnAttribute>()
 .Any(attr => attr.Name == columnName)))
);

var bookMap = new CustomPropertyTypeMap(
 typeof(Book),
 (type, columnName) =>
 {
 if(columnName == "BookId")
 {
 return type.GetProperty("Id");
 }

 if (columnName == "BookName")
 {
 return type.GetProperty("Name");
 }

 throw new InvalidOperationException($"No matching mapping for {columnName}");
 }
);
Dapper.SqlMapper.SetTypeMap(typeof(Book), bookMap);

La requête est ensuite exécutée à l'aide de l'un des exemples de Query<> précédents Query<> .

https://riptutorial.com/fr/home 17

Une manière plus simple d'ajouter les mappages est montrée dans cette réponse .

Lire Multimapping en ligne: https://riptutorial.com/fr/dapper/topic/351/multimapping

https://riptutorial.com/fr/home 18

http://stackoverflow.com/a/12615036/2613363
https://riptutorial.com/fr/dapper/topic/351/multimapping

Chapitre 7: Paramètre Syntaxe Référence

Paramètres

Paramètre Détails

this cnn
La connexion à la base de données sous-jacente - this indique une méthode
d’extension; la connexion n'a pas besoin d'être ouverte - si elle n'est pas
ouverte, elle est ouverte et fermée automatiquement.

<T> / Type

(facultatif) Type d'objet à renvoyer; Si l'API non-générique / non- Type est
utilisée, un objet dynamic est renvoyé par ligne, simulant une propriété
nommée par nom de colonne renvoyée par la requête (cet objet dynamic
implémente également IDicionary<string,object>).

sql Le SQL à exécuter

param (facultatif) Les paramètres à inclure.

transaction (facultatif) La transaction de base de données à associer à la commande

buffered
(facultatif) Indique s'il faut pré-consommer les données dans une liste (valeur
par défaut) plutôt que d'exposer un IEnumerable ouvert sur le lecteur actif

commandTimeout
(facultatif) Le délai à utiliser sur la commande;
SqlMapper.Settings.CommandTimeout n’est pas spécifié,
SqlMapper.Settings.CommandTimeout est supposé (si spécifié)

commandType Le type de commande en cours d'exécution; par défaut à CommandText

Remarques

La syntaxe pour exprimer les paramètres varie entre les SGBDR. Tous les exemples ci-dessus
utilisent la syntaxe SQL Server, à savoir @foo ; Cependant ?foo et :foo devraient également
fonctionner correctement.

Examples

SQL paramétré de base

Dapper facilite le suivi des meilleures pratiques grâce à un SQL entièrement paramétré.

https://riptutorial.com/fr/home 19

Les paramètres sont importants, donc dapper facilite la tâche. Vous venez d'exprimer vos
paramètres de la manière habituelle pour votre SGBDR (généralement @foo ?foo ou :foo) et
donnez à dapper un objet qui a un membre appelé foo . La méthode la plus courante consiste à
utiliser un type anonyme:

int id = 123;
string name = "abc";
connection.Execute("insert [KeyLookup](Id, Name) values(@id, @name)",
 new { id, name });

Et c'est tout. Dapper ajoutera les paramètres requis et tout devrait fonctionner.

Utiliser votre modèle d'objet

Vous pouvez également utiliser votre modèle d'objet existant en tant que paramètre:

KeyLookup lookup = ... // some existing instance
connection.Execute("insert [KeyLookup](Id, Name) values(@Id, @Name)", lookup);

Dapper utilise le texte de commande pour déterminer les membres de l'objet à ajouter - il
n'ajoutera généralement pas de choses inutiles telles que Description , IsActive , CreationDate car
la commande que nous avons publiée ne les implique pas - bien qu'il y ait des cas où pourrait le
faire, par exemple si votre commande contient:

// TODO - removed for now; include the @Description in the insert

Il ne tente pas de comprendre que ce qui précède n'est qu'un commentaire.

Procédures stockées

Les paramètres des procédures stockées fonctionnent exactement de la même manière, sauf que
Dapper ne peut pas tenter de déterminer ce qui doit / ne doit pas être inclus - tout ce qui est
disponible est traité comme un paramètre. Pour cette raison, les types anonymes sont
généralement préférés:

connection.Execute("KeyLookupInsert", new { id, name },

https://riptutorial.com/fr/home 20

 commandType: CommandType.StoredProcedure);

Valeur Inlining

Parfois, la commodité d'un paramètre (en termes de maintenance et d'expressivité) peut être
compensée par son coût en termes de performances pour le traiter en tant que paramètre. Par
exemple, lorsque la taille de la page est fixée par un paramètre de configuration. Ou une valeur de
statut correspond à une valeur enum . Considérer:

var orders = connection.Query<Order>(@"
select top (@count) * -- these brackets are an oddity of SQL Server
from Orders
where CustomerId = @customerId
and Status = @open", new { customerId, count = PageSize, open = OrderStatus.Open });

Le seul paramètre réel ici est customerId - les deux autres sont des pseudo-paramètres qui ne
changeront pas réellement. Souvent, le SGBDR peut faire un meilleur travail s'il les détecte
comme des constantes. Dapper a une syntaxe spéciale pour ceci - {=name} au lieu de @name - qui
ne s'applique qu'aux types numériques. (Cela minimise toute surface d'attaque de l'injection SQL).
Voici un exemple:

var orders = connection.Query<Order>(@"
select top {=count} *
from Orders
where CustomerId = @customerId
and Status = {=open}", new { customerId, count = PageSize, open = OrderStatus.Open });

Dapper remplace les valeurs par des littéraux avant d’émettre le code SQL. Le SGBDR voit donc
quelque chose comme:

select top 10 *
from Orders
where CustomerId = @customerId
and Status = 3

Ceci est particulièrement utile lorsque vous autorisez les systèmes SGBDR non seulement à
prendre de meilleures décisions, mais aussi à ouvrir des plans de requête que les paramètres
réels empêchent. Par exemple, si un prédicat de colonne est associé à un paramètre, un index
filtré avec des valeurs spécifiques sur ces colonnes ne peut pas être utilisé. Cela est dû au fait
que la requête suivante peut avoir un paramètre différent de l'une de ces valeurs spécifiées.

Avec des valeurs littérales, l'optimiseur de requête peut utiliser les index filtrés car il sait que la
valeur ne peut pas être modifiée dans les requêtes futures.

Extensions de liste

Un scénario courant dans les requêtes de base de données est IN (...) où la liste est générée au
moment de l'exécution. La plupart des SGBDR ne possèdent pas une bonne métaphore pour cela
- et il n’existe pas de solution universelle de RDBMS pour cela. Au lieu de cela, Dapper fournit une

https://riptutorial.com/fr/home 21

extension automatique des commandes en douceur. Tout ce qui est nécessaire est une valeur de
paramètre fournie qui est IEnumerable . Une commande impliquant @foo est étendue à
(@foo0,@foo1,@foo2,@foo3) (pour une séquence de 4 éléments). L'utilisation la plus courante serait
IN :

int[] orderIds = ...
var orders = connection.Query<Order>(@"
select *
from Orders
where Id in @orderIds", new { orderIds });

Cela se développe ensuite automatiquement pour émettre le code SQL approprié pour l'extraction
à plusieurs lignes:

select *
from Orders
where Id in (@orderIds0, @orderIds1, @orderIds2, @orderIds3)

les paramètres @orderIds0 etc. étant ajoutés en tant que valeurs extraites de l'array. Notez que le
fait qu'il ne soit pas valide à l'origine est intentionnel, pour garantir que cette fonctionnalité n'est
pas utilisée par erreur. Cette fonctionnalité fonctionne également correctement avec l'indicateur de
requête OPTIMIZE FOR / UNKNOWN dans SQL Server; si tu utilises:

option (optimize for
 (@orderIds unknown))

il étendra ceci correctement à:

option (optimize for
 (@orderIds0 unknown, @orderIds1 unknown, @orderIds2 unknown, @orderIds3 unknown))

Effectuer des opérations contre plusieurs ensembles d'entrées

Parfois, vous voulez faire la même chose plusieurs fois. Dapper prend cela en charge sur la
méthode Execute si le paramètre le plus à l' extérieur (qui est généralement un seul type anonyme
ou une instance de modèle de domaine) est réellement fourni sous la forme d'une séquence
IEnumerable . Par exemple:

Order[] orders = ...
// update the totals
connection.Execute("update Orders set Total=@Total where Id=@Id", orders);

Ici, dapper ne fait qu'une simple boucle sur nos données, essentiellement comme si nous l'avions
fait:

Order[] orders = ...
// update the totals
foreach(Order order in orders) {
 connection.Execute("update Orders set Total=@Total where Id=@Id", order);

https://riptutorial.com/fr/home 22

}

Cette utilisation devient particulièrement intéressante lorsqu'elle est associée à l'API async sur une
connexion explicitement configurée pour tous les "multiples ensembles de résultats actifs". Dans
cette utilisation, dapper va automatiquement canaliser les opérations, vous ne payez donc pas le
coût de latence par ligne. Cela nécessite une utilisation légèrement plus compliquée,

await connection.ExecuteAsync(
 new CommandDefinition(
 "update Orders set Total=@Total where Id=@Id",
 orders, flags: CommandFlags.Pipelined))

Notez, cependant, que vous pourriez également vouloir examiner des paramètres de valeur de
table.

Paramètres pseudo-positionnels (pour les fournisseurs qui ne prennent pas
en charge les paramètres nommés)

Certains fournisseurs ADO.NET (notamment: OleDB) ne prennent pas en charge les paramètres
nommés ; les paramètres sont plutôt spécifiés uniquement par la position , avec le ? placeplace.
Dapper ne saurait pas quel membre utiliser, Dapper permet donc une syntaxe alternative, ?foo? ;
ce serait la même chose que @foo ou :foo dans d'autres variantes SQL, sauf que dapper
remplacera complètement le jeton de paramètre par ? avant d'exécuter la requête.

Cela fonctionne en combinaison avec d'autres fonctionnalités telles que l'extension de la liste, de
sorte que ce qui suit est valide:

string region = "North";
int[] users = ...
var docs = conn.Query<Document>(@"
 select * from Documents
 where Region = ?region?
 and OwnerId in ?users?", new { region, users }).AsList();

Les membres .region et .users sont utilisés en conséquence et le .users SQL émis est (par
exemple, avec 3 utilisateurs):

 select * from Documents
 where Region = ?
 and OwnerId in (?,?,?)

Notez cependant que dapper ne permet pas d' utiliser le même paramètre plusieurs fois lors de
l'utilisation de cette fonctionnalité. Cela permet d'éviter d'avoir à ajouter plusieurs fois la même
valeur de paramètre (qui pourrait être importante). Si vous devez vous référer à la même valeur
plusieurs fois, envisagez de déclarer une variable, par exemple:

declare @id int = ?id?; // now we can use @id multiple times in the SQL

Si des variables ne sont pas disponibles, vous pouvez utiliser des noms de membres en double

https://riptutorial.com/fr/home 23

dans les paramètres - cela rendra également évident que la valeur est envoyée plusieurs fois:

int id = 42;
connection.Execute("... where ParentId = $id0$... SomethingElse = $id1$...",
 new { id0 = id, id1 = id });

Lire Paramètre Syntaxe Référence en ligne: https://riptutorial.com/fr/dapper/topic/10/parametre-
syntaxe-reference

https://riptutorial.com/fr/home 24

https://riptutorial.com/fr/dapper/topic/10/parametre-syntaxe-reference
https://riptutorial.com/fr/dapper/topic/10/parametre-syntaxe-reference

Chapitre 8: Paramètres dynamiques

Examples

Utilisation de base

Il n'est pas toujours possible de regrouper soigneusement tous les paramètres dans un seul objet
/ appel. Pour vous aider avec des scénarios plus complexes, dapper permet au paramètre param
d'être une instance IDynamicParameters . Si vous faites cela, votre méthode AddParameters
personnalisée est appelée au moment approprié et a transmis la commande à ajouter. Dans la
plupart des cas, cependant, il suffit d'utiliser le type DynamicParameters préexistant:

var p = new DynamicParameters(new { a = 1, b = 2 });
p.Add("c", dbType: DbType.Int32, direction: ParameterDirection.Output);
connection.Execute(@"set @c = @a + @b", p);
int updatedValue = p.Get<int>("@c");

Ceci montre:

(optionnel) population d'un objet existant•
(facultatif) ajouter des paramètres supplémentaires à la volée•
passer les paramètres à la commande•
récupérer toute valeur mise à jour une fois la commande terminée•

Notez qu'en raison de la façon dont les protocoles de SGBDR fonctionnent, il est généralement
fiable pour obtenir des valeurs de paramètres mis à jour après des données (à partir d' une Query
opération ou QueryMultiple`) a été entièrement consommée (par exemple, sur SQL Server, les
valeurs des paramètres mises à jour sont à la fin du flux TDS).

Paramètres dynamiques dans Dapper

connection.Execute(@"some Query with @a,@b,@c", new
{a=somevalueOfa,b=somevalueOfb,c=somevalueOfc});

Utiliser un objet modèle

Vous pouvez utiliser une instance d'objet pour former vos paramètres

public class SearchParameters {
 public string SearchString { get; set; }
 public int Page { get; set; }
}

var template= new SearchParameters {
 SearchString = "Dapper",
 Page = 1
};

https://riptutorial.com/fr/home 25

var p = new DynamicParameters(template);

Vous pouvez également utiliser un objet anonyme ou un Dictionary

Lire Paramètres dynamiques en ligne: https://riptutorial.com/fr/dapper/topic/12/parametres-
dynamiques

https://riptutorial.com/fr/home 26

https://riptutorial.com/fr/dapper/topic/12/parametres-dynamiques
https://riptutorial.com/fr/dapper/topic/12/parametres-dynamiques

Chapitre 9: Requête de base

Syntaxe

public static IEnumerable <T> Query <T> (cet IDbConnection cnn, chaîne sql, objet param =
null, SqlTransaction transaction = null, bool buffered = true)

•

public statique IEnumerable <dynamique> Query (cet IDbConnection cnn, chaîne sql, objet
param = null, SqlTransaction transaction = null, bool buffered = true)

•

Paramètres

Paramètre Détails

CNN Votre connexion à la base de données, qui doit déjà être ouverte.

sql Commande à exécuter.

param Objet pour extraire les paramètres de.

transaction Transaction dont cette requête fait partie, le cas échéant.

tamponné

S'il faut ou non mettre en mémoire tampon les résultats de la requête. Ceci est
un paramètre facultatif avec la valeur par défaut étant true. Lorsque la mise en
mémoire tampon est vraie, les résultats sont mis en mémoire tampon dans une
List<T> , puis renvoyés sous la forme d'un IEnumerable<T> sûr pour une
énumération multiple. Lorsque la mise en mémoire tampon est fausse, la
connexion SQL est maintenue ouverte jusqu'à ce que vous ayez fini de lire, ce
qui vous permet de traiter une seule ligne à la fois en mémoire. Plusieurs
énumérations engendreront des connexions supplémentaires à la base de
données. Bien que false mis en mémoire tampon soit très efficace pour réduire
l’utilisation de la mémoire si vous ne gérez que de très petits fragments
d’enregistrements renvoyés, il se caractérise par une surcharge de
performances considérable par rapport à la matérialisation rapide du jeu de
résultats. Enfin, si vous avez de nombreuses connexions SQL non tamponnées
simultanées, vous devez tenir compte de la famine du pool de connexions, ce
qui entraîne le blocage des requêtes jusqu'à ce que les connexions soient
disponibles.

Examples

Interrogation pour un type statique

Pour les types connus à la compilation, utilisez un paramètre générique avec Query<T> .

https://riptutorial.com/fr/home 27

http://stackoverflow.com/a/30493725/37055
http://stackoverflow.com/a/30493725/37055
http://stackoverflow.com/a/30493725/37055

public class Dog
{
 public int? Age { get; set; }
 public Guid Id { get; set; }
 public string Name { get; set; }
 public float? Weight { get; set; }

 public int IgnoredProperty { get { return 1; } }
}

//
IDBConnection db = /* ... */;

var @params = new { age = 3 };
var sql = "SELECT * FROM dbo.Dogs WHERE Age = @age";

IEnumerable<Dog> dogs = db.Query<Dog>(sql, @params);

Interrogation pour les types dynamiques

Vous pouvez également interroger dynamiquement si vous omettez le type générique.

IDBConnection db = /* ... */;
IEnumerable<dynamic> result = db.Query("SELECT 1 as A, 2 as B");

var first = result.First();
int a = (int)first.A; // 1
int b = (int)first.B; // 2

Requête avec paramètres dynamiques

var color = "Black";
var age = 4;

var query = "Select * from Cats where Color = :Color and Age > :Age";
var dynamicParameters = new DynamicParameters();
dynamicParameters.Add("Color", color);
dynamicParameters.Add("Age", age);

using (var connection = new SqlConnection(/* Your Connection String Here */))
{
 IEnumerable<dynamic> results = connection.Query(query, dynamicParameters);
}

Lire Requête de base en ligne: https://riptutorial.com/fr/dapper/topic/3/requete-de-base

https://riptutorial.com/fr/home 28

https://riptutorial.com/fr/dapper/topic/3/requete-de-base

Chapitre 10: Résultats multiples

Syntaxe

public static SqlMapper.GridReader QueryMultiple (ce cnn IDbConnection, chaîne SQL,
objet param = null, transaction IDbTransaction = null, int? commandTimeout = null,
CommandType? commandType = null)

•

public static SqlMapper.GridReader QueryMultiple (cette commande IDbConnection cnn,
CommandDefinition)

•

Paramètres

Paramètre Détails

CNN Votre connexion à la base de données doit déjà être ouverte

sql La chaîne sql à traiter contient plusieurs requêtes

param Objet pour extraire les paramètres de

SqlMapper.GridReader
Fournit des interfaces pour lire plusieurs ensembles de résultats à
partir d'une requête Dapper

Examples

Exemple de base de résultats multiples

Pour extraire plusieurs grilles en une seule requête, la méthode QueryMultiple est utilisée. Cela
vous permet ensuite de récupérer chaque grille de manière séquentielle via des appels successifs
sur le GridReader renvoyé.

var sql = @"select * from Customers where CustomerId = @id
 select * from Orders where CustomerId = @id
 select * from Returns where CustomerId = @id";

using (var multi = connection.QueryMultiple(sql, new {id=selectedId}))
{
 var customer = multi.Read<Customer>().Single();
 var orders = multi.Read<Order>().ToList();
 var returns = multi.Read<Return>().ToList();
}

Lire Résultats multiples en ligne: https://riptutorial.com/fr/dapper/topic/8/resultats-multiples

https://riptutorial.com/fr/home 29

https://riptutorial.com/fr/dapper/topic/8/resultats-multiples

Chapitre 11: Tables Temp

Examples

Table temporaire qui existe tant que la connexion reste ouverte

Lorsque la table temporaire est créée par elle-même, elle restera pendant que la connexion est
ouverte.

// Widget has WidgetId, Name, and Quantity properties
public async Task PurchaseWidgets(IEnumerable<Widget> widgets)
{
 using(var conn = new SqlConnection("{connection string}")) {
 await conn.OpenAsync();

 await conn.ExecuteAsync("CREATE TABLE #tmpWidget(WidgetId int, Quantity int)");

 // populate the temp table
 using(var bulkCopy = new SqlBulkCopy(conn)) {
 bulkCopy.BulkCopyTimeout = SqlTimeoutSeconds;
 bulkCopy.BatchSize = 500;
 bulkCopy.DestinationTableName = "#tmpWidget";
 bulkCopy.EnableStreaming = true;

 using(var dataReader = widgets.ToDataReader())
 {
 await bulkCopy.WriteToServerAsync(dataReader);
 }
 }

 await conn.ExecuteAsync(@"
 update w
 set Quantity = w.Quantity - tw.Quantity
 from Widgets w
 join #tmpWidget tw on w.WidgetId = tw.WidgetId");
 }
}

Comment travailler avec des tables temporaires

Le point concernant les tables temporaires est qu'elles sont limitées à la portée de la connexion.
Dapper ouvrira et fermera automatiquement une connexion si elle n'est pas déjà ouverte. Cela
signifie que toute table temporaire sera perdue directement après sa création, si la connexion
passée à Dapper n'a pas été ouverte.

Cela ne fonctionnera pas:

private async Task<IEnumerable<int>> SelectWidgetsError()
{
 using (var conn = new SqlConnection(connectionString))
 {
 await conn.ExecuteAsync(@"CREATE TABLE #tmpWidget(widgetId int);");

https://riptutorial.com/fr/home 30

 // this will throw an error because the #tmpWidget table no longer exists
 await conn.ExecuteAsync(@"insert into #tmpWidget(WidgetId) VALUES (1);");

 return await conn.QueryAsync<int>(@"SELECT * FROM #tmpWidget;");
 }
}

En revanche, ces deux versions fonctionneront:

private async Task<IEnumerable<int>> SelectWidgets()
{
 using (var conn = new SqlConnection(connectionString))
 {
 // Here, everything is done in one statement, therefore the temp table
 // always stays within the scope of the connection
 return await conn.QueryAsync<int>(
 @"CREATE TABLE #tmpWidget(widgetId int);
 insert into #tmpWidget(WidgetId) VALUES (1);
 SELECT * FROM #tmpWidget;");
 }
}

private async Task<IEnumerable<int>> SelectWidgetsII()
{
 using (var conn = new SqlConnection(connectionString))
 {
 // Here, everything is done in separate statements. To not loose the
 // connection scope, we have to explicitly open it
 await conn.OpenAsync();

 await conn.ExecuteAsync(@"CREATE TABLE #tmpWidget(widgetId int);");
 await conn.ExecuteAsync(@"insert into #tmpWidget(WidgetId) VALUES (1);");
 return await conn.QueryAsync<int>(@"SELECT * FROM #tmpWidget;");
 }
}

Lire Tables Temp en ligne: https://riptutorial.com/fr/dapper/topic/6594/tables-temp

https://riptutorial.com/fr/home 31

https://riptutorial.com/fr/dapper/topic/6594/tables-temp

Chapitre 12: Transactions

Syntaxe

conn.Execute (sql, transaction: tran); // spécifie le paramètre par nom•
conn.Execute (sql, paramètres, tran);•
conn.Query (sql, transaction: tran);•
conn.Query (sql, paramètres, tran);•
attend conn.ExecuteAsync (sql, transaction: tran); // Async•
attendez conn.ExecuteAsync (sql, paramètres, tran);•
attendez conn.QueryAsync (sql, transaction: tran);•
attendez conn.QueryAsync (sql, paramètres, tran);•

Examples

Utiliser une transaction

Cet exemple utilise SqlConnection, mais toute IDbConnection est prise en charge.

De plus, toute IDbTransaction est prise en charge à partir de la IDbConnection associée.

public void UpdateWidgetQuantity(int widgetId, int quantity)
{
 using(var conn = new SqlConnection("{connection string}")) {
 conn.Open();

 // create the transaction
 // You could use `var` instead of `SqlTransaction`
 using(SqlTransaction tran = conn.BeginTransaction()) {
 try
 {
 var sql = "update Widget set Quantity = @quantity where WidgetId = @id";
 var parameters = new { id = widgetId, quantity };

 // pass the transaction along to the Query, Execute, or the related Async
methods.
 conn.Execute(sql, parameters, tran);

 // if it was successful, commit the transaction
 tran.Commit();
 }
 catch(Exception ex)
 {
 // roll the transaction back
 tran.Rollback();

 // handle the error however you need to.
 throw;
 }
 }
 }
}

https://riptutorial.com/fr/home 32

Accélérer les inserts

Enrouler un groupe d'insertions dans une transaction les accélérera en fonction de cette question /
réponse StackOverflow .

Vous pouvez utiliser cette technique ou vous pouvez utiliser Bulk Copy pour accélérer une série
d'opérations connexes à effectuer.

// Widget has WidgetId, Name, and Quantity properties
public void InsertWidgets(IEnumerable<Widget> widgets)
{
 using(var conn = new SqlConnection("{connection string}")) {
 conn.Open();

 using(var tran = conn.BeginTransaction()) {
 try
 {
 var sql = "insert Widget (WidgetId,Name,Quantity) Values(@WidgetId, @Name,
@Quantity)";
 conn.Execute(sql, widgets, tran);
 tran.Commit();
 }
 catch(Exception ex)
 {
 tran.Rollback();
 // handle the error however you need to.
 throw;
 }
 }
 }
}

Lire Transactions en ligne: https://riptutorial.com/fr/dapper/topic/6601/transactions

https://riptutorial.com/fr/home 33

http://stackoverflow.com/questions/10689779/bulk-inserts-taking-longer-than-expected-using-dapper
http://stackoverflow.com/questions/10689779/bulk-inserts-taking-longer-than-expected-using-dapper
https://riptutorial.com/fr/dapper/topic/6601/transactions

Chapitre 13: Utiliser Async

Examples

Appeler une procédure stockée

public async Task<Product> GetProductAsync(string productId)
{
 using (_db)
 {
 return await _db.QueryFirstOrDefaultAsync<Product>("usp_GetProduct", new { id =
productId },
 commandType: CommandType.StoredProcedure);
 }
}

Appeler une procédure stockée et ignorer le résultat

public async Task SetProductInactiveAsync(int productId)
{
 using (IDbConnection con = new SqlConnection("myConnectionString"))
 {
 await con.ExecuteAsync("SetProductInactive", new { id = productId },
 commandType: CommandType.StoredProcedure);
 }
}

Lire Utiliser Async en ligne: https://riptutorial.com/fr/dapper/topic/1353/utiliser-async

https://riptutorial.com/fr/home 34

https://riptutorial.com/fr/dapper/topic/1353/utiliser-async

Chapitre 14: Utiliser DbGeography et
DbGeometry

Examples

Configuration requise

installez l'assembly Microsoft.SqlServer.Types requis; ils ne sont pas installés par défaut et
sont disponibles auprès de Microsoft ici en tant que "Types de CLR Microsoft® System pour
Microsoft® SQL Server® 2012" - notez qu'il existe des programmes d'installation distincts
pour x86 et x64.

1.

installez Dapper.EntityFramework (ou son équivalent nommé fort); Cela peut se faire via
l'interface utilisateur "Manage NuGet Packages ..." de l'EDI ou (dans la console du
gestionnaire de packages):

install-package Dapper.EntityFramework

2.

ajouter les redirections de liaison d'assembly requises; En effet, Microsoft est livré avec les
assemblys v11, mais Entity Framework demande la version 10; Vous pouvez ajouter ce qui
suit à app.config ou web.config sous l'élément <configuration> :

<runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="Microsoft.SqlServer.Types"
 publicKeyToken="89845dcd8080cc91" />
 <bindingRedirect oldVersion="10.0.0.0" newVersion="11.0.0.0" />
 </dependentAssembly>
 </assemblyBinding>
</runtime>

3.

Dites "dapper" à propos des nouveaux gestionnaires de types disponibles, en ajoutant
(quelque part dans votre démarrage, avant d'essayer d'utiliser la base de données):

Dapper.EntityFramework.Handlers.Register();

4.

Utiliser la géométrie et la géographie

Une fois les gestionnaires de types enregistrés, tout devrait fonctionner automatiquement et vous
devriez pouvoir utiliser ces types comme paramètres ou valeurs de retour:

string redmond = "POINT (122.1215 47.6740)";
DbGeography point = DbGeography.PointFromText(redmond,
 DbGeography.DefaultCoordinateSystemId);
DbGeography orig = point.Buffer(20); // create a circle around a point

https://riptutorial.com/fr/home 35

https://www.microsoft.com/en-gb/download/details.aspx?id=29065
https://www.nuget.org/packages/dapper.entityframework

var fromDb = connection.QuerySingle<DbGeography>(
 "declare @geos table(geo geography); insert @geos(geo) values(@val); select * from @geos",
 new { val = orig });

Console.WriteLine($"Original area: {orig.Area}");
Console.WriteLine($"From DB area: {fromDb.Area}");

Lire Utiliser DbGeography et DbGeometry en ligne:
https://riptutorial.com/fr/dapper/topic/3984/utiliser-dbgeography-et-dbgeometry

https://riptutorial.com/fr/home 36

https://riptutorial.com/fr/dapper/topic/3984/utiliser-dbgeography-et-dbgeometry

Crédits

S.
No

Chapitres Contributeurs

1
Démarrer avec
Dapper.NET

Adam Lear, balpha, Community, Eliza, Greg Bray, Jarrod Dixon,
Kevin Montrose, Matt McCabe, Nick, Rob, Shog9

2
Exécution des
commandes

Adam Lear, Jarrod Dixon, Sklivvz, takrl

3
Gestionnaires de
types

Benjamin Hodgson, Community, Marc Gravell

4 Inserts en vrac jhamm

5
Manipulation des
Nulls

Marc Gravell

6 Multimapping Devon Burriss

7
Paramètre Syntaxe
Référence

4444, Marc Gravell, Nick Craver

8
Paramètres
dynamiques

Marc Gravell, Matt McCabe, Meer

9 Requête de base
Adam Lear, Chris Marisic, Cigano Morrison Mendez,
Community, cubrr, Jarrod Dixon, jrummell, Kevin Montrose, Matt
McCabe

10 Résultats multiples Marc Gravell, Yaakov Ellis

11 Tables Temp jhamm, Rob, takrl

12 Transactions jhamm

13 Utiliser Async Dean Ward, Matt McCabe, Nick, Woodchipper

14
Utiliser
DbGeography et
DbGeometry

Marc Gravell

https://riptutorial.com/fr/home 37

https://riptutorial.com/fr/contributor/105971/adam-lear
https://riptutorial.com/fr/contributor/115866/balpha
https://riptutorial.com/fr/contributor/-1/community
https://riptutorial.com/fr/contributor/2625750/eliza
https://riptutorial.com/fr/contributor/17373/greg-bray
https://riptutorial.com/fr/contributor/3/jarrod-dixon
https://riptutorial.com/fr/contributor/80572/kevin-montrose
https://riptutorial.com/fr/contributor/2193900/matt-mccabe
https://riptutorial.com/fr/contributor/2195393/nick
https://riptutorial.com/fr/contributor/563532/rob
https://riptutorial.com/fr/contributor/811/shog9
https://riptutorial.com/fr/contributor/105971/adam-lear
https://riptutorial.com/fr/contributor/3/jarrod-dixon
https://riptutorial.com/fr/contributor/7028/sklivvz
https://riptutorial.com/fr/contributor/520044/takrl
https://riptutorial.com/fr/contributor/1523776/benjamin-hodgson
https://riptutorial.com/fr/contributor/-1/community
https://riptutorial.com/fr/contributor/23354/marc-gravell
https://riptutorial.com/fr/contributor/103927/jhamm
https://riptutorial.com/fr/contributor/23354/marc-gravell
https://riptutorial.com/fr/contributor/2613363/devon-burriss
https://riptutorial.com/fr/contributor/1464444/4444
https://riptutorial.com/fr/contributor/23354/marc-gravell
https://riptutorial.com/fr/contributor/13249/nick-craver
https://riptutorial.com/fr/contributor/23354/marc-gravell
https://riptutorial.com/fr/contributor/2193900/matt-mccabe
https://riptutorial.com/fr/contributor/3736442/meer
https://riptutorial.com/fr/contributor/105971/adam-lear
https://riptutorial.com/fr/contributor/37055/chris-marisic
https://riptutorial.com/fr/contributor/1314276/cigano-morrison-mendez
https://riptutorial.com/fr/contributor/-1/community
https://riptutorial.com/fr/contributor/996081/cubrr
https://riptutorial.com/fr/contributor/3/jarrod-dixon
https://riptutorial.com/fr/contributor/26226/jrummell
https://riptutorial.com/fr/contributor/80572/kevin-montrose
https://riptutorial.com/fr/contributor/2193900/matt-mccabe
https://riptutorial.com/fr/contributor/2193900/matt-mccabe
https://riptutorial.com/fr/contributor/23354/marc-gravell
https://riptutorial.com/fr/contributor/51/yaakov-ellis
https://riptutorial.com/fr/contributor/103927/jhamm
https://riptutorial.com/fr/contributor/563532/rob
https://riptutorial.com/fr/contributor/520044/takrl
https://riptutorial.com/fr/contributor/103927/jhamm
https://riptutorial.com/fr/contributor/871146/dean-ward
https://riptutorial.com/fr/contributor/2193900/matt-mccabe
https://riptutorial.com/fr/contributor/2195393/nick
https://riptutorial.com/fr/contributor/1988163/woodchipper
https://riptutorial.com/fr/contributor/23354/marc-gravell

	À propos
	Chapitre 1: Démarrer avec Dapper.NET
	Remarques
	Qu'est ce que Dapper?
	Comment puis-je l'obtenir?
	Tâches communes
	Versions
	Examples
	Installer Dapper à partir de Nuget
	Utiliser Dapper en C #
	Utiliser Dapper dans LINQPad

	Chapitre 2: Exécution des commandes
	Examples
	Exécuter une commande qui ne renvoie aucun résultat
	Procédures stockées

	Usage simple
	Paramètres d'entrée, de sortie et de retour
	Paramètres de la table

	Chapitre 3: Gestionnaires de types
	Remarques
	Examples
	Conversion de varchar en IHtmlString
	Installation d'un TypeHandler

	Chapitre 4: Inserts en vrac
	Remarques
	Examples
	Async Bulk Copy
	Copie en vrac

	Chapitre 5: Manipulation des Nulls
	Examples
	null vs DBNull

	Chapitre 6: Multimapping
	Syntaxe
	Paramètres
	Examples
	Mappage multi-tables simple
	Cartographie un à plusieurs
	Cartographie de plus de 7 types
	Mappages personnalisés

	Chapitre 7: Paramètre Syntaxe Référence
	Paramètres
	Remarques
	Examples
	SQL paramétré de base

	Utiliser votre modèle d'objet
	Procédures stockées
	Valeur Inlining
	Extensions de liste
	Effectuer des opérations contre plusieurs ensembles d'entrées
	Paramètres pseudo-positionnels (pour les fournisseurs qui ne prennent pas en charge les paramètres nommés)

	Chapitre 8: Paramètres dynamiques
	Examples
	Utilisation de base
	Paramètres dynamiques dans Dapper
	Utiliser un objet modèle

	Chapitre 9: Requête de base
	Syntaxe
	Paramètres
	Examples
	Interrogation pour un type statique
	Interrogation pour les types dynamiques
	Requête avec paramètres dynamiques

	Chapitre 10: Résultats multiples
	Syntaxe
	Paramètres
	Examples
	Exemple de base de résultats multiples

	Chapitre 11: Tables Temp
	Examples
	Table temporaire qui existe tant que la connexion reste ouverte
	Comment travailler avec des tables temporaires

	Chapitre 12: Transactions
	Syntaxe
	Examples
	Utiliser une transaction
	Accélérer les inserts

	Chapitre 13: Utiliser Async
	Examples
	Appeler une procédure stockée
	Appeler une procédure stockée et ignorer le résultat

	Chapitre 14: Utiliser DbGeography et DbGeometry
	Examples
	Configuration requise
	Utiliser la géométrie et la géographie

	Crédits

