"APPRENEZ
Dapper.NET

eBook gratuit non affilie cree a partir des
contributeurs de Stack Overflow.

Table des matieres

A DIOPOS 1
Chapitre 1: Démarrer avec Dapper.NET 2
RO A UES . ..o 2
QU ESE CB UE DA Pl 2 . .o e e 2
CommeNnt PUIS-Je 10D eNIr 2. 2
TACNES COMMIUNES e e 2
Y42 55710 1 2
= 10] 0] [2
Installer Dapper @ partir de NUGET.ottt ettt e e e et e e e 2
ULISEr DaPPEr €N C . oottt e e e e ettt e e e 3
Utiliser Dapper dans LINQPAd. i e e e e e e e 3
Chapitre 2: Exécution des cCommandes. ... 5
= 0 1] 0] 5 5
Exécuter une commande qui ne renvoie auCun resultat. 5
PrOCEAUIES SOCKEES e e e e e 5
USAQE SIMIPIE. . .o 5
Parameétres d'entrée, de sortie et de retOUr. ... i 5
Parametres de latable.o 5
Chapitre 3: Gestionnaires de tyPeS 7
R M AN GUES . . . e e 7
e T 11] o [T 7
Conversion de varchar en THIMISIIING. o e e e 7
Installation d'un TypeHaANUIET e e 7
Chapitre 4: INSEIMS @N VIAC.o e 8
R A QUES . . . e e 8

E XM S . ..o 8
ASYNC BUIK GOy . . oottt e e e e e 8

(O70] o= =T o AV = Vo PP 8
Chapitre 5: Manipulation des NUIlS. ... 10

= 10] 0] (= 10

NUILVS DBNUIL. . 10

Chapitre 6: MURIMaPPING 11
S A . ..ttt 11

L 1 1 == 11

B XM S . ..o 12
Mappage multi-tables SiMPle. 12
Cartographie UN @ PIUSIEUISo e e e e e e e e e e e 13
Cartographie de PIUS e 7ty PES. . ..ot e 15
MappPages PEISONNALISES.ttt ettt e et e e e e e e e e 16
Chapitre 7: Parameétre Syntaxe Référence....................... 19
P A M I S . . . 19
RO A QUES . ..ot e 19
o= 10] 0] (= J 19
SQL Parameétré de Dase.o 19
Utiliser votre modele d'objet. ... 20
ProCeAUrES STOCKEES. e 20
ValEUE ININING . ettt e e e e e e 21
EXIENSIONS 0B LISt . . .ot 21
Effectuer des opérations contre plusieurs ensembles d'entrées. ... 22
Parametres pseudo-positionnels (pour les fournisseurs qui ne prennent pas en chargelespa................... 23
Chapitre 8: Parametres dynamiqUes. 25
E XM S . . oo 25
UtIlisation de Dase. o 25
Parametres dynamiques dans DapPer.ttt ettt e e e e 25
Utiliser un obJet MOEBIE. e ettt e e e 25
Chapitre 9: Requéte de base.......... ... 27
S B . . et 27

P A S 27

E XM S . ..o 27
Interrogation pour UN tYPe STALIQUE.t e e et e 27
Interrogation pour 1eS types AYNamMIQUES. ir ittt ettt et et e 28

Requéte avec parametres dyNamMIQUES. oo.i ittt ettt e e e e e e e e e 28

Chapitre 10: Résultats multiples. ... 29

S B . . .ottt 29

P A M B S 29
o= 10] 0] (2 T 29
Exemple de base de résultats MUltiplES.ot 29
Chapitre 11: Tables TemP. 30
E XM S . . e 30
Table temporaire qui existe tant que la conNNEXIoN reSte OUVEIE.ottt 30
Comment travailler avec des tables temporaires. i 30
Chapitre 12: TranSaCtONSo 32
)AL= (T 32
B S . .o 32
ULIlISEr UNE TraNSACHION.ttt et ettt ettt 32
ACCEIETEI B8 INSBITS . ..ttt e e e 33
Chapitre 13: UtiliSer ASYNC. 34
EX APl . .. 34
AppPeEler une pProCeAUIe STOCKEE. e e e e e e e 34
Appeler une procédure stockée etignorer le résultat. i 34
Chapitre 14: Utiliser DbGeography et DbGeometry....................oi i 35
e 1111 o] [T U 35
(07e] a1 To ¥ =1 u o] a TN =To [0 1F]= 35
Utiliser la géométrie et la géographie. o 35

PSSo 37

A_propos

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: dapper-net

It is an unofficial and free Dapper.NET ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official Dapper.NET.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/fr/lhome 1

http://riptutorial.com/ebook/dapper-net
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

C_hapitre 1. Démarrer avec Dapper.NET

Remarques

Qu'est ce que Dapper?

Dapper est un micro-ORM pour .Net qui étend votre rtpbconnection , Simplifiant la configuration,
I'exécution et la lecture des résultats.

Comment puis-je I'obtenir?

 github: https://github.com/StackExchange/dapper-dot-net
* NuGet: https://www.nuget.org/packages/Dapper

Taches communes

* Requéte de base
+ Exécution des commandes

Versions

1,50.0 core-clr / asp.net 5.0 contre RTM 2016-06-29

1,42.0 2015-05-06

1,40.0 2015-04-03

1,30.0 2014-08-14

1.20.0 2014-05-08

1.10.0 2012-06-27

1.0.0 2011-04-14
Examples

Installer Dapper a partir de Nuget

Soit la recherche dans l'interface graphique de Visual Studio:

https://riptutorial.com/fr/fhome

http://stackexchange.github.io/dapper-dot-net/
https://github.com/StackExchange/dapper-dot-net
https://www.nuget.org/packages/Dapper
http://www.riptutorial.com/dapper/topic/3/basic-querying
http://www.riptutorial.com/dapper/topic/5/executing-commands

Outils> Gestionnaire de packages NuGet> Gérer les packages pour solution ... (Visual Studio
2015)

Package source: nuget.org Filter: All B |nclude prerelease dapper

Dapper e Dapper

A high performance Micro-ORM
Action:

Install
Dapper.Mapper

Dapper.Mapper is an easy multi mapping extension for Dapper. Inctal
nsta

Ou exécutez cette commande dans une instance Nuget Power Shell pour installer la derniere
version stable

Install-Package Dapper

Ou pour une version spécifique

Install-Package Dapper -Version 1.42.0

Utiliser Dapper en C #

using System.Data;
using System.Ling;
using Dapper;

class Program

{

static void Main ()
{
using (IDbConnection db = new
SglConnection ("Server=myServer; Trusted_Connection=true"))
{
db.Open () ;
var result = db.Query<string> ("SELECT 'Hello World'") .Single();
Console.WriteLine (result);

Envelopper la connexion dans un bloc vsing va fermer la connexion
Utiliser Dapper dans LINQPad

LINQPad est idéal pour tester les requétes de base de données et inclut I' intégration de NuGet .
Pour utiliser Dapper dans LINQPad, appuyez sur F4 pour ouvrir les propriétés de la requéte, puis

https://riptutorial.com/fr/fhome

http://i.stack.imgur.com/sWn6V.png
http://www.riptutorial.com/csharp/example/157/using-statement-basics
http://www.riptutorial.com/csharp/example/157/using-statement-basics
http://www.linqpad.net/
http://www.linqpad.net/Purchase.aspx#NuGet

sélectionnez Ajouter NuGet . Recherchez dapper dot net et sélectionnez Ajouter a la requéte .
Vous souhaiterez également cliquer sur Ajouter des espaces de noms et mettre en surbrillance
Dapper pour inclure les méthodes d'extension dans votre requéte LINQPad.

Une fois que Dapper est activé, vous pouvez modifier la liste déroulante Langue en Programme
C #, associer les résultats de la requéte aux classes C # et utiliser la méthode .Dump () pour
inspecter les résultats:

void Main ()

{

using (IDbConnection db = new SglConnection ("Server=myServer; Trusted_Connection=true")) {
db.Open () ;
var scalar = db.Query<string> ("SELECT GETDATE () ") .SingleOrDefault () ;
scalar.Dump ("This is a string scalar result:");

var results = db.Query<myobject> (Q"
SELECT * FROM (
VALUES (1, 'one'),
(2, 'two"),
(3, 'three')
) AS mytable (id,name)");
results.Dump ("This is a table mapped to a class:");

}

// Define other methods and classes here
class myobject {

public int id { get; set; }

public string name { get; set; }

Les résultats lors de I'exécution du programme ressembleraient a ceci:

-

= 1 - - }

w Results x 50L IL Format = Export = ':'::5 p 4
™

This is a string scalar result:
11/06/2015 03:24:57

LR

This is a table mapped to a class:

:

- |id \name

1 one

2 two

3 three v
Cuery successful (00:00.526) fo-

Lire Démarrer avec Dapper.NET en ligne: https://riptutorial.com/fr/dapper/topic/2/demarrer-avec-
dapper-net

https://riptutorial.com/fr/fhome

http://i.stack.imgur.com/swXB1.png
https://riptutorial.com/fr/dapper/topic/2/demarrer-avec-dapper-net
https://riptutorial.com/fr/dapper/topic/2/demarrer-avec-dapper-net

C_hapitre 2. Exécution des commandes

Examples

Exécuter une commande qui ne renvoie aucun résultat

IDBConnection db = /* ... */
var id = /* ... */
db.Execute (@"update dbo.Dogs set Name = 'Beowoof' where Id = @id",

new { id });
Procédures stockées

Usage simple
Dapper prend entierement en charge les processus stockés:

var user = conn.Query<User> ("spGetUser", new { Id = 1 },
commandType: CommandType.StoredProcedure)
.SingleOrDefault () ;

Parametres d'entrée, de sortie et de retour

Si vous voulez quelque chose de plus chic, vous pouvez faire:

var p = new DynamicParameters () ;
p.Add("@a", 11);
p.Add ("@b",
dbType: DbType.Int32,
direction: ParameterDirection.Output) ;
p.Add("@c",
dbType: DbType.Int32,
direction: ParameterDirection.ReturnValue);

conn.Execute ("spMagicProc", p,
commandType: CommandType.StoredProcedure) ;

var b = p.Get<int> ("@b");
var ¢ = p.Get<int>("@c");

Parametres de la table

Si vous avez une procédure stockée qui accepte un paramétre de valeur de table, vous devez
transmettre un DataTable qui a la méme structure que le type de tableau dans SQL Server. Voici
une définition pour un type de tableau et une procédure I'utilisant:

https://riptutorial.com/fr/fhome

CREATE TYPE [dbo].[myUDTT] AS TABLE([il] [int] NOT NULL) ;
GO

CREATE PROCEDURE myProc (@data dbo.myUDTT readonly) AS
SELECT il FROM (@data;

GO

/*
—— optionally grant permissions as needed, depending on the user you execute this with.

—— Especially the GRANT EXECUTE ON TYPE is often overlooked and can cause problems if omitted.
GRANT EXECUTE ON TYPE:: [dbo].[myUDTT] TO [user];

GRANT EXECUTE ON dbo.myProc TO [user];

GO

=)

Pour appeler cette procédure depuis ¢ #, vous devez procéder comme sulit:

// Build a DataTable with one int column
DataTable data = new DataTable () ;
data.Columns.Add ("i1l", typeof (int));

// Add two rows

data.Rows.Add (1) ;

data.Rows.Add (2) ;

var g = conn.Query ("myProc", new {data}, commandType: CommandType.StoredProcedure) ;

Lire Exécution des commandes en ligne: https://riptutorial.com/fr/dapper/topic/5/execution-des-
commandes

https://riptutorial.com/fr/fhome

https://riptutorial.com/fr/dapper/topic/5/execution-des-commandes
https://riptutorial.com/fr/dapper/topic/5/execution-des-commandes

C_hapitre 3. Gestionnaires de types

Remarques

Les gestionnaires de type permettent aux types de base de données d'étre convertis en types
personnalisés .Net.

Examples
Conversion de varchar en IHtmIString

public class IHtmlStringTypeHandler : SglMapper.TypeHandler<IHtmlString>
{

public override void SetValue (
IDbDataParameter parameter,
IHtmlString value)

parameter.DbType = DbType.String;
parameter.Value = value?.ToHtmlString();

public override IHtmlString Parse (object wvalue)

{

return MvcHtmlString.Create (value?.ToString());

Installation d'un TypeHandler

Le gestionnaire de type ci-dessus peut étre installé dans sqimapper a l'aide de la méthode

AddTypeHandler .
SqlMapper.AddTypeHandler<IHtmlString> (new IHtmlStringTypeHandler ());

L'inférence de type vous permet d'omettre le paramétre de type générique:
SglMapper.AddTypeHandler (new IHtmlStringTypeHandler());

Il y a aussi une surcharge a deux arguments qui prend un argument de type explicite:
SglMapper.AddTypeHandler (typeof (IHtmlString), new IHtmlStringTypeHandler());

Lire Gestionnaires de types en ligne: https://riptutorial.com/fr/dapper/topic/6/gestionnaires-de-
types

https://riptutorial.com/fr/fhome

https://riptutorial.com/fr/dapper/topic/6/gestionnaires-de-types
https://riptutorial.com/fr/dapper/topic/6/gestionnaires-de-types

C_hapitre 4: Inserts en vrac

Remarques

WriteToServer €t WriteToserverasync ONt des surcharges qui acceptent les tableaux IDataReader
(vus dans les exemples), DataTable et DataRow (patarow(]) COMmMe source des données pour la
copie en bloc.

Examples

Async Bulk Copy

Cet exemple utilise une méthode topatareader décrite ici Creation d'un DataReader de liste
générique pour SqlBulkCopy .

Cela peut également étre fait en utilisant des méthodes non asynchrones.

public class Widget

{
public int WidgetId {get;set;}
public string Name {get;set;}
public int Quantity {get;set;}

public async Task AddWidgets (IEnumerable<Widget> widgets)
{

using(var conn = new SqglConnection (" {connection string}")) {
await conn.OpenAsync () ;

using (var bulkCopy = new SglBulkCopy (conn)) {
bulkCopy.BulkCopyTimeout = SglTimeoutSeconds;
bulkCopy.BatchSize = 500;
bulkCopy.DestinationTableName = "Widgets";
bulkCopy.EnableStreaming = true;

using(var dataReader = widgets.ToDataReader ())
{
await bulkCopy.WriteToServerAsync (dataReader);

Copie en vrac

Cet exemple utilise une méthode topatareader décrite ici Creation d'un DataReader de liste
générique pour SqlBulkCopy .

Cela peut également étre fait en utilisant des méthodes asynchrones.

https://riptutorial.com/fr/fhome

https://www.csvreader.com/posts/generic_list_datareader.php
https://www.csvreader.com/posts/generic_list_datareader.php
https://www.csvreader.com/posts/generic_list_datareader.php
https://www.csvreader.com/posts/generic_list_datareader.php

public class Widget

{
public int WidgetId {get;set;}
public string Name {get;set;}
public int Quantity {get;set;}

public void AddWidgets (IEnumerable<Widget> widgets)
{

using (var conn = new SglConnection ("{connection string}")) {
conn.Open () ;

using (var bulkCopy = new SglBulkCopy (conn)) {
bulkCopy.BulkCopyTimeout = SglTimeoutSeconds;
bulkCopy.BatchSize = 500;
bulkCopy.DestinationTableName = "Widgets";
bulkCopy.EnableStreaming = true;

using (var dataReader = widgets.ToDataReader())

{
bulkCopy.WriteToServer (dataReader) ;

Lire Inserts en vrac en ligne: https://riptutorial.com/fr/dapper/topic/6279/inserts-en-vrac

https://riptutorial.com/fr/fhome

https://riptutorial.com/fr/dapper/topic/6279/inserts-en-vrac

C_hapitre 5: Manipulation des Nulls

Examples

null vs DBNull

Dans ADO.NET, la gestion correcte de nu11 est une source constante de confusion. Le point clé
de Dapper est que vous n'avez pas a le faire ; il traite de tout en interne.

* les valeurs de parametre qui sont nu11 sont correctement envoyées en tant que pexull.value
* les valeurs lues qui sont nu11 sont présentées comme nui1 ou (dans le cas d'un mappage
sur un type connu) simplement ignorées (laissant leur type par défaut)

Ca marche:

string name = null;

int id = 123;

connection.Execute ("update Customer set Name=@name where Id=@id",
new {id, name});

Lire Manipulation des Nulls en ligne: https://riptutorial.com/fr/dapper/topic/13/manipulation-des-
nulls

https://riptutorial.com/fr/fhome 10

https://riptutorial.com/fr/dapper/topic/13/manipulation-des-nulls
https://riptutorial.com/fr/dapper/topic/13/manipulation-des-nulls

Syntaxe

® public static IEnumerable<TReturn> Query<TFirst, TSecond, TReturn>(this IDbConnection cnn,

string sqgl, Func<TFirst, TSecond, TReturn> map, object param = null, IDbTransaction
transaction null, bool buffered = true, string splitOn = "Id", int? commandTimeout =
null, CommandType? commandType = null)

® public static IEnumerable<TReturn> Query<TFirst, TSecond, TThird, TFourth, TFifth, TSixth,

TSeventh,
TFourth,
transaction

TReturn> (this IDbConnection cnn, string sgl, Func<TFirst, TSecond, TThird,

TSixth, TSeventh, TReturn> map, object param = null, IDbTransaction

null, bool buffered = true, string splitOn = "Id", int? commandTimeout =

null, CommandType? commandType = null)

® public static IEnumerable<TReturn> Query<TReturn> (this IDbConnection cnn, string sql,

Type[] types, Func<object[], TReturn> map, object param = null, IDbTransaction transaction
= null, bool buffered = true, string splitOn = "Id", int? commandTimeout = null,
CommandType? commandType = null)

Parametres

CNN

sql

les types
carte
param

transaction

tamponné

Votre connexion a la base de données, qui doit déja étre ouverte.
Commande a exécuter.

Tableau de types dans le jeu d'enregistrements.

Func<> (Ui gere la construction du résultat de retour.

Objet pour extraire les parametres de.

Transaction dont cette requéte fait partie, le cas échéant.

S'il faut ou non mettre en mémoire tampon les résultats de la requéte.
Ceci est un paramétre facultatif avec la valeur par défaut étant true.
Lorsque la mise en mémoire tampon est vraie, les résultats sont mis en
mémoire tampon dans une rist<t> , PUiS renvoyés sous la forme d'un
IEnumerable<T> SUr pour une énumération multiple. Lorsque la mise en
mémoire tampon est fausse, la connexion SQL est maintenue ouverte
jusqu'a ce que vous ayez fini de lire, ce qui vous permet de traiter une
seule ligne a la fois en mémoire. Plusieurs énumérations engendreront
des connexions supplémentaires a la base de données. Bien que false
mis en mémoire tampon soit trés efficace pour réduire l'utilisation de la
meémoire si vous ne gérez que de tres petits fragments
d’enregistrements renvoyes, il se caracterise par une surcharge de
performances considerable par rapport a la matérialisation rapide du
jeu de résultats. Enfin, si vous avez de nombreuses connexions SQL
non tamponnées simultanées, vous devez tenir compte de la famine du

https://riptutorial.com/fr/lhome 11

http://stackoverflow.com/a/30493725/37055
http://stackoverflow.com/a/30493725/37055
http://stackoverflow.com/a/30493725/37055

Parameétre DEEES

pool de connexions, ce qui entraine le blocage des requétes jusqu'a ce
gue les connexions soient disponibles.

Le champ que nous devons diviser et lire le second objet (par défaut:
splitOn id). Cela peut étre une liste délimitée par des virgules lorsque plus d'un
type est contenu dans un enregistrement.

Nombre de secondes avant I'expiration du délai d'exécution de la

commandeTimeout
commande.

type de commande Est-ce un processus stocké ou un lot?

Examples

Mappage multi-tables simple

Disons que nous avons une interrogation des cavaliers restants qui doivent remplir une classe de
personnes.

prénom Résidence

Daniel Dennett 1942 les Etats-Unis d'Amérique
Sam Harris 1967 les Etats-Unis d'Amérique

Richard dawkins 1941 Royaume-Uni

public class Person
{
public string Name { get; set; }
public int Born { get; set; }
public Country Residience { get; set; }

public class Country

{

public string Residence { get; set; }

Nous pouvons remplir la classe de personne ainsi que la propriété Residence avec une instance
de Country a l'aide d'une ouery<> surcharge ouery<> qui prend un runc<> pouvant étre utilisé pour
composer l'instance renvoyée. Le runc<> peut prendre jusqu'a 7 types d'entrées, I'argument
générique final étant toujours le type de retour.

var sgl = Q@"SELECT 'Daniel Dennett' AS Name, 1942 AS Born, 'United States of America' AS
Residence

UNION ALL SELECT 'Sam Harris' AS Name, 1967 AS Born, 'United States of America' AS Residence
UNION ALL SELECT 'Richard Dawkins' AS Name, 1941 AS Born, 'United Kingdom' AS Residence";

https://riptutorial.com/fr/lhome 12

var result =

Cartographie un a plusieurs

if (country == null)

{

country = new Country { Residence = "" };

}

person.Residience = country;

return person;

by
splitOn:

connection.Query<Person,

"Residence") ;

Country, Person>(sql,

(person, country) => {

Notez l'utilisation de |' sp1iton: "residence" qui €st la 1ere colonne du prochain type de
classe a renseigner (dans ce cas, country). Dapper recherchera automatiquement une
colonne appelée Id a diviser mais si elle n'en trouve pas et que sp1iton N'est pas fourni,
une system.ArgumentException SE€ra lancée avec un message utile. Donc, bien que ce
soit facultatif, vous devrez généralement fournir une valeur spiiton .

Regardons un exemple plus complexe qui contient une relation un-a-plusieurs. Notre requéte
contiendra désormais plusieurs lignes contenant des données en double et nous devrons gérer

cela. Nous faisons cela avec une recherche dans une fermeture.

La requéte change légerement comme le font les exemples de classes.

e N N) e)

1

Daniel
Dennett

Daniel
Dennett

Sam
Harris

Sam
Harris

Richard
dawkins

Richard
dawkins

1942

1942

1967

1967

1941

1941

public class Person

{

public int Id { get; set;

1

les Etats-Unis
d'Amérique

les Etats-Unis
d'’Amérique

les Etats-Unis
d'Amérique
les Etats-Unis

d'Amérique

Royaume-Uni

Royaume-Uni

Brainstorms

Espace vital

Le paysage moral

Se réveiller: Guide de
spiritualité sans religion

La magie de la réalité:
comment nous savons ce
qui est vraiment vrai

Un appétit pour merveille:
la fabrication d'un
scientifique

https://riptutorial.com/fr/lhome

13

public string Name { get; set; }

public int Born { get; set; }

public Country Residience { get; set; }
public ICollection<Book> Books { get; set; }

public class Country

{
public int CountryId { get; set; }
public string CountryName { get; set; }

public class Book

{
public int BookId { get; set; }
public string BookName { get; set; }

Les dictionnaires remainingiorsemen S€ront remplis d'instances entierement matérialisées des
objets de la personne. Pour chaque ligne du résultat de la requéte, les valeurs mappées des
instances des types définis dans les arguments lambda sont transmises et il vous appartient de
gérer cela.

var sgl = Q"SELECT 1 AS Id, 'Daniel Dennett' AS Name, 1942 AS Born, 1 AS
CountryId, 'United States of America' AS CountryName, 1 AS BookId, 'Brainstorms' AS BookName
UNION ALL SELECT 1 AS Id, 'Daniel Dennett' AS Name, 1942 AS Born, 1 AS CountryId, 'United
States of America' AS CountryName, 2 AS BookId, 'Elbow Room' AS BookName
UNION ALL SELECT 2 AS Id, 'Sam Harris' AS Name, 1967 AS Born, 1 AS CountryId, 'United States
of America' AS CountryName, 3 AS BookId, 'The Moral Landscape' AS BookName
UNION ALL SELECT 2 AS Id, 'Sam Harris' AS Name, 1967 AS Born, 1 AS CountryId, 'United States
of America' AS CountryName, 4 AS BookId, 'Waking Up: A Guide to Spirituality Without Religion'
AS BookName
UNION ALL SELECT 3 AS Id, 'Richard Dawkins' AS Name, 1941 AS Born, 2 AS Countryld, 'United
Kingdom' AS CountryName, 5 AS BookId, 'The Magic of Reality: How We Know What s Really True'
AS BookName
UNION ALL SELECT 3 AS Id, 'Richard Dawkins' AS Name, 1941 AS Born, 2 AS Countryld, 'United
Kingdom' AS CountryName, 6 AS BookId, 'An Appetite for Wonder: The Making of a Scientist' AS
BookName";

var remainingHorsemen = new Dictionary<int, Person>();
connection.Query<Person, Country, Book, Person>(sgl, (person, country, book) => {
//person
Person personEntity;
//trip
if (!remainingHorsemen.TryGetValue (person.Id, out personEntity))
{

remainingHorsemen.Add (person.Id, personEntity = person);

//country
if (personEntity.Residience == null)
{
if (country == null)
{
country = new Country { CountryName = "" };
}
personEntity.Residience = country;

https://riptutorial.com/fr/lhome

14

//books

if (personEntity.Books == null)
{
personEntity.Books = new List<Book>();
}
if (book != null)
{
if (!personEntity.Books.Any(x => x.BookId == book.BookId))

{
personEntity.Books.Add (book) ;

return personEntity;

by
splitOn: "CountryId,BookId");

Notez comment l'argument sp1iton €st une liste délimitée par des virgules des
premieres colonnes du type suivant.

Cartographie de plus de 7 types

Parfois, le nombre de types que vous mappez dépasse les 7 fournis par le Func <> qui effectue la
construction.

Au lieu d'utiliser la cuery<> avec les entrées d'argument de type géneérique, nous allons fournir les
types & mapper en tant que tableau, suivis de la fonction de mappage. Outre le réglage manuel
initial et la conversion des valeurs, le reste de la fonction ne change pas.

var sgl = Q"SELECT 1 AS Id, 'Daniel Dennett' AS Name, 1942 AS Born, 1 AS
CountryId, 'United States of America' AS CountryName, 1 AS BookId, 'Brainstorms' AS BookName
UNION ALL SELECT 1 AS Id, 'Daniel Dennett' AS Name, 1942 AS Born, 1 AS CountryId, 'United
States of America' AS CountryName, 2 AS BookId, 'Elbow Room' AS BookName
UNION ALL SELECT 2 AS Id, 'Sam Harris' AS Name, 1967 AS Born, 1 AS CountryId, 'United States
of America' AS CountryName, 3 AS BookId, 'The Moral Landscape' AS BookName
UNION ALL SELECT 2 AS Id, 'Sam Harris' AS Name, 1967 AS Born, 1 AS CountryId, 'United States
of America' AS CountryName, 4 AS BookId, 'Waking Up: A Guide to Spirituality Without Religion'
AS BookName
UNION ALL SELECT 3 AS Id, 'Richard Dawkins' AS Name, 1941 AS Born, 2 AS CountryId, 'United
Kingdom' AS CountryName, 5 AS BookId, 'The Magic of Reality: How We Know What s Really True'
AS BookName
UNION ALL SELECT 3 AS Id, 'Richard Dawkins' AS Name, 1941 AS Born, 2 AS CountryId, 'United
Kingdom' AS CountryName, 6 AS BookId, 'An Appetite for Wonder: The Making of a Scientist' AS
BookName";

var remainingHorsemen = new Dictionary<int, Person>();
connection.Query<Person> (sql,
new /]
{
typeof (Person),
typeof (Country),
typeof (Book)
}
, 0bj => {

Person person = obj[0] as Person;

https://riptutorial.com/fr/lhome 15

Country country = obj[l] as Country;
Book book = obj[2] as Book;

//person

Person personEntity;

//trip

if (!remainingHorsemen.TryGetValue (person.Id, out personEntity))
{

remainingHorsemen.Add (person.Id, personEntity = person);

//country
if (personEntity.Residience == null)
{
if (country == null)
{
country = new Country { CountryName = "" };
}
personEntity.Residience = country;
}
//books
if (personEntity.Books == null)
{
personEntity.Books = new List<Book>();
}
if (book != null)
{
if (!personEntity.Books.Any(x => x.BookId == book.BookId))

{
personEntity.Books.Add (book) ;

return personkEntity;
by
splitOn: "CountryId, BookId");

Mappages personnalisés

Si les noms des colonnes de requéte ne correspondent pas a vos classes, vous pouvez configurer
des mappages pour les types. Cet exemple illustre le mappage a l'aide de
System.Data.Ling.Mapping.Columnattribute &iNSI qU'UN Mappage personnalisé.

Les mappages ne doivent étre configurés qu'une seule fois par type, donc définissez-
les au démarrage de I'application ou ailleurs pour qu'ils ne soient initialisés qu'une
seule fois.

En supposant la méme requéte que I'exemple One-to-many et les classes remaniées vers de
meilleurs noms comme ceux-ci:

public class Person

{
public int Id { get; set; }
public string Name { get; set; }
public int Born { get; set; }

https://riptutorial.com/fr/lhome 16

public Country Residience { get; set; }
public ICollection<Book> Books { get; set; }

public class Country

{
[System.Data.Ling.Mapping.Column (Name = "CountryId")]
public int Id { get; set; }

[System.Data.Ling.Mapping.Column (Name = "CountryName")]
public string Name { get; set; }

public class Book

{
public int Id { get; set; }

public string Name { get; set; }

Notez que sook NE repose pas SuUr columnattribute MaiS que NOus devons conserver
l'instruction it

Placez maintenant ce code de mappage quelque part dans votre application ou il n'est exécuté
gu'une seule fois:

Dapper.SglMapper.SetTypeMap (
typeof (Country),
new CustomPropertyTypeMap (
typeof (Country),
(type, columnName) =>
type.GetProperties () .FirstOrDefault (prop =>
prop.GetCustomAttributes (false)
.0fType<System.Data.Ling.Mapping.ColumnAttribute> ()
.Any (attr => attr.Name == columnName)))

var bookMap = new CustomPropertyTypeMap (
typeof (Book),
(type, columnName) =>
{
if (columnName == "BookId")
{
return type.GetProperty ("Id");

1if (columnName == "BookName")
{
return type.GetProperty ("Name") ;

throw new InvalidOperationException ($"No matching mapping for {columnName}") ;

)i
Dapper.SglMapper.SetTypeMap (typeof (Book), bookMap) ;

La requéte est ensuite exécutée a l'aide de I'un des exemples de query<> précédents guery<> .

https://riptutorial.com/fr/lhome 17

Une maniere plus simple d'ajouter les mappages est montrée dans cette reponse .

Lire Multimapping en ligne: https://riptutorial.com/fr/dapper/topic/351/multimapping

https://riptutorial.com/fr/fhome

18

http://stackoverflow.com/a/12615036/2613363
https://riptutorial.com/fr/dapper/topic/351/multimapping

Parametres

Parameétre Détails

La connexion a la base de données sous-jacente - this indiqgue une méthode
this cnn d’extension; la connexion n'a pas besoin d'étre ouverte - si elle n'est pas
ouverte, elle est ouverte et fermée automatiquement.

(facultatif) Type d'objet a renvoyer; Si I'API non-générique / non- Type st
utilisée, un objet aynamic €st renvoyé par ligne, simulant une propriété

<T> / Type . z A .
nommeée par nom de colonne renvoyée par la requéte (cet objet dynamic
implémente également 1picionary<string, object>).
sql Le SQL a exécuter
param (facultatif) Les parametres a inclure.
transaction (facultatif) La transaction de base de données a associer a la commande
utfered (facultatif) Indique s'il faut pré-consommer les données dans une liste (valeur
u ere

par défaut) plutdt que d'exposer un 1enumerable OUVert sur le lecteur actif

(facultatif) Le délai a utiliser sur la commande;
commandTimeout SqglMapper.Settings.CommandTimeout N'€St pas Spélelé,
SqlMapper.Settings.CommandTimeout €St SUppOSé (Sl SpéCIfIé)

commandType Le type de commande en cours d'exécution; par défaut a commandrext

Remarques

La syntaxe pour exprimer les parameétres varie entre les SGBDR. Tous les exemples ci-dessus
utilisent la syntaxe SQL Server, a savoir efoo ; Cependant 2too €t : foo devraient également
fonctionner correctement.

Examples

SQL paramétré de base

Dapper facilite le suivi des meilleures pratiques grace a un SQL entierement paramétré.

https://riptutorial.com/fr/lhome 19

HI, THIS 1S OH. DEAR - DID HE | DID YOU REALLY WELL, WEVE LOST THIS
YOUR SONG SCHOOL. | BREAK SOMETHING? | MAME YOUR SON YEAR'S STUDENT RECORDS.
WERE HAVING SOME IN A WAY = Robert'); DROP T HOPE YOURE HAPPY.
COMPUTER TROUBLE. TABLE Studers: -~ 7 ‘I’
AND I HOPE
~OH.YES LTTLE “~ YOUVE LEARNED

\ \ /
; m | BOBBY TABLES, L 70 SANTIZE YOUR
WE CALL HIM. DATABASE INPUTS.

Les parametres sont importants, donc dapper facilite la tache. Vous venez d'exprimer vos
parameétres de la maniere habituelle pour votre SGBDR (généralement efoo 2fo0 OU :foo) €t
donnez a dapper un objet qui a un membre appelé roo . La méthode la plus courante consiste a
utiliser un type anonyme:

int id = 123;
string name = "abc";
connection.Execute ("insert [KeyLookup] (Id, Name) values(@id, @name)",

new { id, name });

Et c'est tout. Dapper ajoutera les paramétres requis et tout devrait fonctionner.

Utiliser votre modele d'objet

Vous pouvez également utiliser votre modéle d'objet existant en tant que parametre:

KeyLookup lookup = ... // some existing instance
connection.Execute ("insert [KeyLookup] (Id, Name) values (@Id, @Name)", lookup);

Dapper utilise le texte de commande pour déterminer les membres de I'objet a ajouter - il
n‘ajoutera généralement pas de choses inutiles telles que pescription , Isactive , CreationbDate Car
la commande que nous avons publiée ne les implique pas - bien qu'il y ait des cas ou pourrait le
faire, par exemple si votre commande contient:

// TODO - removed for now; include the @Description in the insert

Il ne tente pas de comprendre que ce qui précede n'est qu'un commentaire.

Procédures stockées

Les parametres des procédures stockées fonctionnent exactement de la méme maniere, sauf que
Dapper ne peut pas tenter de déterminer ce qui doit / ne doit pas étre inclus - tout ce qui est
disponible est traité comme un parametre. Pour cette raison, les types anonymes sont
généralement préféres:

connection.Execute ("KeyLookupInsert", new { id, name },

https://riptutorial.com/fr/lhome 20

commandType: CommandType.StoredProcedure) ;

Valeur Inlining

Parfois, la commodité d'un paramétre (en termes de maintenance et d'expressivité) peut étre
compensée par son colt en termes de performances pour le traiter en tant que paramétre. Par
exemple, lorsque la taille de la page est fixée par un paramétre de configuration. Ou une valeur de
statut correspond a une valeur enun . Considérer:

var orders = connection.Query<Order> (@"

select top (Q@count) * —-- these brackets are an oddity of SQL Server

from Orders

where CustomerId = @customerId

and Status = @open", new { customerId, count = PageSize, open = OrderStatus.Open });

Le seul paramétre réel ici est customer1d - l€es deux autres sont des pseudo-parametres qui ne
changeront pas réellement. Souvent, le SGBDR peut faire un meilleur travail s'il les détecte
comme des constantes. Dapper a une syntaxe spéciale pour cecCi - {=name} au lieu de ename - qui
ne s'applique qu'aux types numériques. (Cela minimise toute surface d'attaque de l'injection SQL).
Voici un exemple:

var orders = connection.Query<Order> (@"

select top {=count} *

from Orders

where CustomerId = @customerId

and Status = {=open}", new { customerId, count = PageSize, open = OrderStatus.Open });

Dapper remplace les valeurs par des littéraux avant d’émettre le code SQL. Le SGBDR voit donc
guelgue chose comme:

select top 10 *

from Orders

where CustomerId = @customerId
and Status = 3

Ceci est particulierement utile lorsque vous autorisez les systémes SGBDR non seulement a
prendre de meilleures décisions, mais aussi a ouvrir des plans de requéte que les parametres
réels empéchent. Par exemple, si un prédicat de colonne est associé a un parametre, un index
filtré avec des valeurs spécifiques sur ces colonnes ne peut pas étre utilisé. Cela est di au fait
gue la requéte suivante peut avoir un parameétre différent de I'une de ces valeurs spécifiées.

Avec des valeurs littérales, I'optimiseur de requéte peut utiliser les index filtrés car il sait que la
valeur ne peut pas étre modifiée dans les requétes futures.

Extensions de liste
Un scénario courant dans les requétes de base de données est v (...) ou la liste est générée au

moment de I'exécution. La plupart des SGBDR ne possedent pas une bonne métaphore pour cela
- et il n’existe pas de solution universelle de RDBMS pour cela. Au lieu de cela, Dapper fournit une

https://riptutorial.com/fr/lhome 21

extension automatique des commandes en douceur. Tout ce qui est nécessaire est une valeur de
paramétre fournie qui est tenumerabie . Une commande impliquant eroo est étendue a

(6fo00, @fool, Efoo2, @foo3) (POUr une séquence de 4 éléments). L'utilisation la plus courante serait
IN .

int[] orderIds = ...
var orders = connection.Query<Order> (Q"
select *

from Orders
where Id in @orderIds", new { orderIds });

Cela se développe ensuite automatiquement pour émettre le code SQL approprié pour I'extraction
a plusieurs lignes:

select *
from Orders
where Id in (QorderIdsO, @orderIdsl, QorderIds2, @orderIds3)

les parameétres eordertdso etc. étant ajoutés en tant que valeurs extraites de l'array. Notez que le
fait qu'il ne soit pas valide a l'origine est intentionnel, pour garantir que cette fonctionnalité n'est
pas utilisée par erreur. Cette fonctionnalité fonctionne eégalement correctement avec l'indicateur de
requéte orrrMizE For / unknown dans SQL Server; si tu utilises:

option (optimize for
(RQorderIds unknown))

il étendra ceci correctement a:

option (optimize for
(QorderIdsO0 unknown, @QorderIdsl unknown, QorderIds2 unknown, QorderIds3 unknown))

Effectuer des opérations contre plusieurs ensembles d'entrées

Parfois, vous voulez faire la méme chose plusieurs fois. Dapper prend cela en charge sur la
meéthode execute Si le parametre le plus a I' extérieur (qui est généralement un seul type anonyme
ou une instance de modele de domaine) est réellement fourni sous la forme d'une séquence
IEnumerable . Par exemple:

Order[] orders = ...
// update the totals
connection.Execute ("update Orders set Total=@Total where Id=@Id", orders);

Ici, dapper ne fait qu'une simple boucle sur nos données, essentiellement comme si nous l'avions
fait:

Order[] orders = ...
// update the totals
foreach (Order order in orders) {
connection.Execute ("update Orders set Total=@Total where Id=@Id", order);

https://riptutorial.com/fr/lhome 22

Cette utilisation devient particulierement intéressante lorsqu'elle est associée a I'API async Sur une
connexion explicitement configurée pour tous les "multiples ensembles de résultats actifs". Dans
cette utilisation, dapper va automatiquement canaliser les opérations, vous ne payez donc pas le
codt de latence par ligne. Cela nécessite une utilisation Iégérement plus compliquée,

await connection.ExecuteAsync (
new CommandDefinition (
"update Orders set Total=Q@Total where Id=Q@Id",
orders, flags: CommandFlags.Pipelined))

Notez, cependant, que vous pourriez également vouloir examiner des paramétres de valeur de
table.

Parametres pseudo-positionnels (pour les fournisseurs qui ne prennent pas
en charge les parametres nommeés)

Certains fournisseurs ADO.NET (notamment: OleDB) ne prennent pas en charge les parametres
nommeés ; les parameétres sont plutét spécifiés uniguement par la position , avec le » placeplace.
Dapper ne saurait pas quel membre utiliser, Dapper permet donc une syntaxe alternative, 2foo? ;
ce serait la méme chose que eroo OU : foo dans d'autres variantes SQL, sauf que dapper
remplacera complétement le jeton de parameétre par » avant d'exécuter la requéte.

Cela fonctionne en combinaison avec d'autres fonctionnalités telles que I'extension de la liste, de
sorte que ce qui suit est valide:

string region = "North";
int[] users = ...
var docs = conn.Query<Document> (@"
select * from Documents
where Region = ?region?
and OwnerId in ?users?", new { region, users }).AsList();

Les membres .region €t .users Sont utilisés en conséquence et le .users SQL émis est (par
exemple, avec 3 utilisateurs):

select * from Documents
where Region = ?
and OwnerId in (?2,7?,7?)

Notez cependant que dapper ne permet pas d' utiliser le méme paramétre plusieurs fois lors de
l'utilisation de cette fonctionnalité. Cela permet d'éviter d'avoir a ajouter plusieurs fois la méme
valeur de paramétre (qui pourrait étre importante). Si vous devez vous référer a la méme valeur
plusieurs fois, envisagez de déclarer une variable, par exemple:

declare Qid int = ?id?; // now we can use @id multiple times in the SQL

Si des variables ne sont pas disponibles, vous pouvez utiliser des noms de membres en double

https://riptutorial.com/fr/lhome 23

dans les paramétres - cela rendra également évident que la valeur est envoyée plusieurs fois:

int id = 42;
connection.Execute ("... where ParentId = $id0$... SomethingElse = idl ...",
new { id0 = id, idl = id });

Lire Parametre Syntaxe Référence en ligne: https://riptutorial.com/fr/dapper/topic/10/parametre-
syntaxe-reference

https://riptutorial.com/fr/home

24

https://riptutorial.com/fr/dapper/topic/10/parametre-syntaxe-reference
https://riptutorial.com/fr/dapper/topic/10/parametre-syntaxe-reference

C_hapitre 8. Parametres dynamiques

Examples

Utilisation de base

Il n'est pas toujours possible de regrouper soigneusement tous les paramétres dans un seul objet
/ appel. Pour vous aider avec des scénarios plus complexes, dapper permet au paramétre param
d'étre une instance IDynamicParameters . Si vous faites Cela, votre méthode addrarameters
personnalisée est appelée au moment approprié et a transmis la commande a ajouter. Dans la
plupart des cas, cependant, il suffit d'utiliser le type pynamicrarameters préexistant:

var p = new DynamicParameters(new { a = 1, b = 2 });

p.Add("c", dbType: DbType.Int32, direction: ParameterDirection.Output) ;
connection.Execute (@"set @c = @a + @b", p);

int updatedvValue = p.Get<int>("@c");

Ceci montre:

(optionnel) population d'un objet existant

(facultatif) ajouter des parametres supplémentaires a la volée
passer les parametres a la commande

récupérer toute valeur mise a jour une fois la commande terminée

Notez qu'en raison de la fagcon dont les protocoles de SGBDR fonctionnent, il est généralement
fiable pour obtenir des valeurs de parameétres mis a jour apres des données (a partir d' une ouery
opération ou QueryMultiple’) a été entierement consommeée (par exemple, sur SQL Server, les
valeurs des parameétres mises a jour sont a la fin du flux TDS).

Parametres dynamiques dans Dapper

connection.Execute (@"some Query with @a, @b, @c", new
{a=somevalueOfa, b=somevalueOfb, c=somevalueOfc}) ;

Utiliser un objet modele
Vous pouvez utiliser une instance d'objet pour former vos parametres

public class SearchParameters {
public string SearchString { get; set; }
public int Page { get; set; }

var template= new SearchParameters ({
SearchString = "Dapper",
Page =1

bi

https://riptutorial.com/fr/fhome 25

var p = new DynamicParameters (template);

Vous pouvez également utiliser un objet anonyme ou un pictionary

Lire Parametres dynamiques en ligne: https://riptutorial.com/fr/dapper/topic/12/parametres-
dynamiques

https://riptutorial.com/fr/fhome

26

https://riptutorial.com/fr/dapper/topic/12/parametres-dynamiques
https://riptutorial.com/fr/dapper/topic/12/parametres-dynamiques

Syntaxe

* public static IEnumerable <T> Query <T> (cet IDbConnection cnn, chaine sql, objet param
null, SglTransaction transaction = null, bool buffered = true)

» public statique IEnumerable <dynamique> Query (cet IDbConnection cnn, chaine sql, objet

param = null, SqglTransaction transaction = null, bool buffered = true)

Parametres
CNN Votre connexion a la base de données, qui doit déja étre ouverte.
sql Commande a exécuter.
param Objet pour extraire les paramétres de.

transaction Transaction dont cette requéte fait partie, le cas échéant.

S'il faut ou non mettre en mémoire tampon les résultats de la requéte. Ceci est
un parametre facultatif avec la valeur par défaut étant true. Lorsque la mise en
mémoire tampon est vraie, les résultats sont mis en mémoire tampon dans une
List<T> , PUiS renvoyés sous la forme d'un renumerable<t> SAr pour une
énumeération multiple. Lorsque la mise en mémoire tampon est fausse, la
connexion SQL est maintenue ouverte jusqu'a ce que vous ayez fini de lire, ce
qui vous permet de traiter une seule ligne a la fois en mémoire. Plusieurs
énumeérations engendreront des connexions supplémentaires a la base de
données. Bien que false mis en mémoire tampon soit tres efficace pour réduire
I'utilisation de la mémoire si vous ne gérez que de tres petits fragments
d’enregistrements renvoyes, il se caracierise par une surcharge de
performances considerable par rapport a la matérialisation rapide du jeu de
résultats. Enfin, si vous avez de nombreuses connexions SQL non tamponnées
simultanées, vous devez tenir compte de la famine du pool de connexions, ce
qui entraine le blocage des requétes jusqu'a ce que les connexions soient
disponibles.

tamponné

Examples

Interrogation pour un type statique

Pour les types connus a la compilation, utilisez un parametre générique avec ouery<t> .

https://riptutorial.com/fr/lhome

27

http://stackoverflow.com/a/30493725/37055
http://stackoverflow.com/a/30493725/37055
http://stackoverflow.com/a/30493725/37055

public class Dog

{
public int? Age { get; set; }
public Guid Id { get; set; }
public string Name { get; set; }
public float? Weight { get; set; }

public int IgnoredProperty { get { return 1; } }

//

IDBConnection db = /* ... */;

var @params = new { age = 3 };

var sgl = "SELECT * FROM dbo.Dogs WHERE Age = Qage";

IEnumerable<Dog> dogs = db.Query<Dog> (sqgl, @params);

Interrogation pour les types dynamiques

Vous pouvez également interroger dynamiquement si vous omettez le type générique.

IDBConnection db = /* ... */;
IEnumerable<dynamic> result = db.Query ("SELECT 1 as A, 2 as B");

var first = result.First();
int a = (int)first.a; // 1
int b = (int)first.B; // 2

Requéte avec parametres dynamiques

var color = "Black";

var age = 4;

var query = "Select * from Cats where Color = :Color and Age > :Age";
var dynamicParameters = new DynamicParameters();

dynamicParameters.Add ("Color", color);
dynamicParameters.Add ("Age", age);

using (var connection = new SglConnection (/* Your Connection String Here */))

{

IEnumerable<dynamic> results = connection.Query (query, dynamicParameters);

Lire Requéte de base en ligne: https://riptutorial.com/fr/dapper/topic/3/requete-de-base

https://riptutorial.com/fr/fhome

28

https://riptutorial.com/fr/dapper/topic/3/requete-de-base

C_hapitre 10: Reésultats multiples

Syntaxe

* public static SqlMapper.GridReader QueryMultiple (ce cnn IDbConnection, chaine SQL,
objet param = null, transaction IDbTransaction = null, int? commandTimeout = null,
CommandType? commandType = null)

* public static SqlMapper.GridReader QueryMultiple (cette commande IDbConnection cnn,
CommandDefinition)

Parametres
CNN Votre connexion & la base de données doit déja étre ouverte
sql La chaine sqgl a traiter contient plusieurs requétes
param Objet pour extraire les parametres de

Fournit des interfaces pour lire plusieurs ensembles de résultats a

SqglMapper.GridReader partir d'une requéte Dapper

Examples

Exemple de base de résultats multiples

Pour extraire plusieurs grilles en une seule requéte, la méthode ouerymuitipie est utilisée. Cela
vous permet ensuite de récupérer chaque grille de maniere séquentielle via des appels successifs
Sur le Gridreader renvoye.

var sgl = @"select * from Customers where CustomerId = @id
select * from Orders where CustomerId = @id
select * from Returns where CustomerId = @id";

using (var multi = connection.QueryMultiple(sgl, new {id=selectedId}))
{

var customer = multi.Read<Customer>().Single();

var orders = multi.Read<Order> () .ToList ();

var returns = multi.Read<Return>().ToList ();

Lire Résultats multiples en ligne: https://riptutorial.com/fr/dapper/topic/8/resultats-multiples

https://riptutorial.com/fr/lhome 29

https://riptutorial.com/fr/dapper/topic/8/resultats-multiples

C_hapitre 11: Tables Temp

Examples

Table temporaire qui existe tant que la connexion reste ouverte

Lorsque la table temporaire est créée par elle-méme, elle restera pendant que la connexion est
ouverte.

// Widget has WidgetId, Name, and Quantity properties
public async Task PurchaseWidgets (IEnumerable<Widget> widgets)
{
using(var conn = new SqglConnection (" {connection string}")) {
await conn.OpenAsync () ;

await conn.ExecuteAsync ("CREATE TABLE #tmpWidget (WidgetId int, Quantity int)");

// populate the temp table

using(var bulkCopy = new SglBulkCopy (conn)) {
bulkCopy.BulkCopyTimeout = SglTimeoutSeconds;
bulkCopy.BatchSize = 500;
bulkCopy.DestinationTableName = "#tmpWidget";
bulkCopy.EnableStreaming = true;

using (var dataReader = widgets.ToDataReader ())
{
await bulkCopy.WriteToServerAsync (dataReader) ;

await conn.ExecuteAsync (Q"
update w
set Quantity = w.Quantity - tw.Quantity
from Widgets w
join #tmpWidget tw on w.WidgetId = tw.WidgetId");

Comment travailler avec des tables temporaires

Le point concernant les tables temporaires est qu'elles sont limitées a la portée de la connexion.
Dapper ouvrira et fermera automatiquement une connexion si elle n'est pas déja ouverte. Cela
signifie que toute table temporaire sera perdue directement aprés sa création, si la connexion
passée a Dapper n'a pas été ouverte.

Cela ne fonctionnera pas:

private async Task<IEnumerable<int>> SelectWidgetsError ()
{
using (var conn = new SglConnection (connectionString))
{
await conn.ExecuteAsync (@"CREATE TABLE #tmpWidget (widgetId int);");

https://riptutorial.com/fr/fhome

// this will throw an error because the #tmpWidget table no longer exists
await conn.ExecuteAsync(@"insert into #tmpWidget (WidgetId) VALUES (1);");

return await conn.QueryAsync<int> (@"SELECT * FROM #tmpWidget;");

En revanche, ces deux versions fonctionneront:

private async Task<IEnumerable<int>> SelectWidgets ()

{

using (var conn = new SglConnection (connectionString))

{

// Here, everything is done in one statement, therefore the temp table
// always stays within the scope of the connection
return await conn.QueryAsync<int> (
@"CREATE TABLE #tmpWidget (widgetId int);
insert into #tmpWidget (WidgetId) VALUES (1);
SELECT * FROM #tmpWidget;");

private async Task<IEnumerable<int>> SelectWidgetsII ()

{

using (var conn = new SglConnection (connectionString))

{

// Here, everything is done in separate statements. To not loose the
// connection scope, we have to explicitly open it
await conn.OpenAsync () ;

await conn.ExecuteAsync (@"CREATE TABLE #tmpWidget (widgetId int);");
await conn.ExecuteAsync(@"insert into #tmpWidget (WidgetId) VALUES (1);");
return await conn.QueryAsync<int> (@"SELECT * FROM #tmpWidget;");

Lire Tables Temp en ligne: https://riptutorial.com/fr/dapper/topic/6594/tables-temp

https://riptutorial.com/fr/fhome

31

https://riptutorial.com/fr/dapper/topic/6594/tables-temp

C_hapitre 12: Transactions

Syntaxe

» conn.Execute (sql, transaction: tran); // spécifie le parametre par nom
» conn.Execute (sql, paramétres, tran);

» conn.Query (sql, transaction: tran);

» conn.Query (sql, parametres, tran);

 attend conn.ExecuteAsync (sql, transaction: tran); // Async
 attendez conn.ExecuteAsync (sql, parametres, tran);

 attendez conn.QueryAsync (sql, transaction: tran);

 attendez conn.QueryAsync (sql, parametres, tran);

Examples

Utiliser une transaction

Cet exemple utilise SqlConnection, mais toute IDbConnection est prise en charge.

De plus, toute IDbTransaction est prise en charge a partir de la IDbConnection associée.

public void UpdateWidgetQuantity (int widgetId, int quantity)
{
using(var conn = new SglConnection ("{connection string}")) {
conn.Open () ;

// create the transaction
// You could use “var instead of 'SglTransaction’
using (SglTransaction tran = conn.BeginTransaction()) {
try
{
var sgl = "update Widget set Quantity = @quantity where WidgetId = @id";

var parameters = new { id = widgetId, quantity };

// pass the transaction along to the Query, Execute, or the related Async
methods.

conn.Execute (sql, parameters, tran);

// 1f it was successful, commit the transaction
tran.Commit () ;
}
catch (Exception ex)
{
// roll the transaction back
tran.Rollback () ;

// handle the error however you need to.
throw;

https://riptutorial.com/fr/fhome 32

Accélérer les inserts

Enrouler un groupe d'insertions dans une transaction les accélérera en fonction de cette question /
réponse StackOverflow .

Vous pouvez utiliser cette technique ou vous pouvez utiliser Bulk Copy pour accélérer une série
d'opérations connexes a effectuer.

// Widget has WidgetId, Name, and Quantity properties
public void InsertWidgets (IEnumerable<Widget> widgets)
{
using (var conn = new SglConnection ("{connection string}")) {
conn.Open () ;

using (var tran = conn.BeginTransaction()) {

try

{
var sgl = "insert Widget (WidgetId,Name,Quantity) Values (@WidgetId, @Name,

@Quantity)";

conn.Execute (sql, widgets, tran);
tran.Commit () ;

}

catch (Exception ex)

{
tran.Rollback () ;
// handle the error however you need to.
throw;

Lire Transactions en ligne: https://riptutorial.com/fr/dapper/topic/6601/transactions

https://riptutorial.com/fr/home 33

http://stackoverflow.com/questions/10689779/bulk-inserts-taking-longer-than-expected-using-dapper
http://stackoverflow.com/questions/10689779/bulk-inserts-taking-longer-than-expected-using-dapper
https://riptutorial.com/fr/dapper/topic/6601/transactions

C_hapitre 13: Utiliser Async

Examples
Appeler une procédure stockée

public async Task<Product> GetProductAsync (string productId)
{
using (_db)
{
return await _db.QueryFirstOrDefaultAsync<Product> ("usp_GetProduct", new { id =
productId },
commandType: CommandType.StoredProcedure) ;

}

Appeler une procédure stockeée et ignorer le résultat

public async Task SetProductInactiveAsync (int productId)
{
using (IDbConnection con = new SglConnection ("myConnectionString"))
{
await con.ExecuteAsync ("SetProductInactive", new { id = productId },
commandType: CommandType.StoredProcedure) ;

Lire Utiliser Async en ligne: https://riptutorial.com/fr/dapper/topic/1353/utiliser-async

https://riptutorial.com/fr/fhome

https://riptutorial.com/fr/dapper/topic/1353/utiliser-async

C_hapitre 14: Utiliser DbGeography et
DbGeometry

Examples

Configuration requise

1. installez I'assembly vicrosoft.sqlserver.Types requis; ils ne sont pas installés par défaut et
sont disponibles aupres de Microsoft ici en tant que "Types de CLR Microsoft® System pour
Microsoft® SQL Server® 2012" - notez qu'il existe des programmes d'installation distincts
pour x86 et x64.

2. installez papper.enticyrranework (OU SON équivalent nommeé fort); Cela peut se faire via
I'interface utilisateur "Manage NuGet Packages ..." de I'EDI ou (dans la console du
gestionnaire de packages):

install-package Dapper.EntityFramework

3. ajouter les redirections de liaison d'assembly requises; En effet, Microsoft est livré avec les
assemblys v11, mais Entity Framework demande la version 10; Vous pouvez ajouter ce qui
suit a app.config OU web.config SOUS I'élément <configuration>

<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<dependentAssembly>
<assemblyIdentity name="Microsoft.SglServer.Types"
publicKeyToken="89845dcd8080cc91l" />
<bindingRedirect oldVersion="10.0.0.0" newVersion="11.0.0.0" />
</dependentAssembly>
</assemblyBinding>
</runtime>

4. Dites "dapper" a propos des nouveaux gestionnaires de types disponibles, en ajoutant
(quelque part dans votre démarrage, avant d'essayer d'utiliser la base de données):

Dapper.EntityFramework.Handlers.Register () ;

Utiliser la géométrie et la géographie

Une fois les gestionnaires de types enregistrés, tout devrait fonctionner automatiquement et vous
devriez pouvoir utiliser ces types comme parametres ou valeurs de retour:

string redmond = "POINT (122.1215 47.6740)";

DbGeography point = DbGeography.PointFromText (redmond,
DbGeography.DefaultCoordinateSystemId) ;

DbGeography orig = point.Buffer (20); // create a circle around a point

https://riptutorial.com/fr/fhome 35

https://www.microsoft.com/en-gb/download/details.aspx?id=29065
https://www.nuget.org/packages/dapper.entityframework

var fromDb = connection.QuerySingle<DbGeography> (
"declare (@geos table(geo geography); insert @geos(geo) values(@val); select * from @geos",
new { val = orig });

Console.WriteLine ($"Original area: {orig.Area}l");
Console.WriteLine ($"From DB area: {fromDb.Area}l");

Lire Utiliser DbGeography et DbGeometry en ligne:
https://riptutorial.com/fr/dapper/topic/3984/utiliser-dbgeography-et-dbgeometry

https://riptutorial.com/fr/fhome

36

https://riptutorial.com/fr/dapper/topic/3984/utiliser-dbgeography-et-dbgeometry

Crédits

10

11

12

13

14

Chapitres

Démarrer avec
Dapper.NET

Exécution des
commandes

Gestionnaires de
types

Inserts en vrac

Manipulation des
Nulls

Multimapping

Paramétre Syntaxe
Référence

Parametres
dynamiques

Requéte de base

Résultats multiples
Tables Temp
Transactions
Utiliser Async

Utiliser
DbGeography et
DbGeometry

Contributeurs

Adam Lear, balpha, Community, Eliza, Greg Bray, Jarrod Dixon,
Kevin Montrose, Matt McCabe, Nick, Rob, Shog9

Adam Lear, Jarrod Dixon, Sklivvz, takrl

Benjamin Hodgson, Community, Marc Gravell

jhamm

Marc Gravell

Devon Burriss

4444, Marc Gravell, Nick Craver

Marc Gravell, Matt McCabe, Meer

Adam Lear, Chris Marisic, Cigano Morrison Mendez,
Community, cubrr, Jarrod Dixon, jrummell, Kevin Montrose, Matt
McCabe

Marc Gravell, Yaakov Ellis
jhamm, Rob, takrl
jhamm

Dean Ward, Matt McCabe, Nick, Woodchipper

Marc Gravell

https://riptutorial.com/fr/lhome

37

https://riptutorial.com/fr/contributor/105971/adam-lear
https://riptutorial.com/fr/contributor/115866/balpha
https://riptutorial.com/fr/contributor/-1/community
https://riptutorial.com/fr/contributor/2625750/eliza
https://riptutorial.com/fr/contributor/17373/greg-bray
https://riptutorial.com/fr/contributor/3/jarrod-dixon
https://riptutorial.com/fr/contributor/80572/kevin-montrose
https://riptutorial.com/fr/contributor/2193900/matt-mccabe
https://riptutorial.com/fr/contributor/2195393/nick
https://riptutorial.com/fr/contributor/563532/rob
https://riptutorial.com/fr/contributor/811/shog9
https://riptutorial.com/fr/contributor/105971/adam-lear
https://riptutorial.com/fr/contributor/3/jarrod-dixon
https://riptutorial.com/fr/contributor/7028/sklivvz
https://riptutorial.com/fr/contributor/520044/takrl
https://riptutorial.com/fr/contributor/1523776/benjamin-hodgson
https://riptutorial.com/fr/contributor/-1/community
https://riptutorial.com/fr/contributor/23354/marc-gravell
https://riptutorial.com/fr/contributor/103927/jhamm
https://riptutorial.com/fr/contributor/23354/marc-gravell
https://riptutorial.com/fr/contributor/2613363/devon-burriss
https://riptutorial.com/fr/contributor/1464444/4444
https://riptutorial.com/fr/contributor/23354/marc-gravell
https://riptutorial.com/fr/contributor/13249/nick-craver
https://riptutorial.com/fr/contributor/23354/marc-gravell
https://riptutorial.com/fr/contributor/2193900/matt-mccabe
https://riptutorial.com/fr/contributor/3736442/meer
https://riptutorial.com/fr/contributor/105971/adam-lear
https://riptutorial.com/fr/contributor/37055/chris-marisic
https://riptutorial.com/fr/contributor/1314276/cigano-morrison-mendez
https://riptutorial.com/fr/contributor/-1/community
https://riptutorial.com/fr/contributor/996081/cubrr
https://riptutorial.com/fr/contributor/3/jarrod-dixon
https://riptutorial.com/fr/contributor/26226/jrummell
https://riptutorial.com/fr/contributor/80572/kevin-montrose
https://riptutorial.com/fr/contributor/2193900/matt-mccabe
https://riptutorial.com/fr/contributor/2193900/matt-mccabe
https://riptutorial.com/fr/contributor/23354/marc-gravell
https://riptutorial.com/fr/contributor/51/yaakov-ellis
https://riptutorial.com/fr/contributor/103927/jhamm
https://riptutorial.com/fr/contributor/563532/rob
https://riptutorial.com/fr/contributor/520044/takrl
https://riptutorial.com/fr/contributor/103927/jhamm
https://riptutorial.com/fr/contributor/871146/dean-ward
https://riptutorial.com/fr/contributor/2193900/matt-mccabe
https://riptutorial.com/fr/contributor/2195393/nick
https://riptutorial.com/fr/contributor/1988163/woodchipper
https://riptutorial.com/fr/contributor/23354/marc-gravell

	À propos
	Chapitre 1: Démarrer avec Dapper.NET
	Remarques
	Qu'est ce que Dapper?
	Comment puis-je l'obtenir?
	Tâches communes
	Versions
	Examples
	Installer Dapper à partir de Nuget
	Utiliser Dapper en C #
	Utiliser Dapper dans LINQPad

	Chapitre 2: Exécution des commandes
	Examples
	Exécuter une commande qui ne renvoie aucun résultat
	Procédures stockées

	Usage simple
	Paramètres d'entrée, de sortie et de retour
	Paramètres de la table

	Chapitre 3: Gestionnaires de types
	Remarques
	Examples
	Conversion de varchar en IHtmlString
	Installation d'un TypeHandler

	Chapitre 4: Inserts en vrac
	Remarques
	Examples
	Async Bulk Copy
	Copie en vrac

	Chapitre 5: Manipulation des Nulls
	Examples
	null vs DBNull

	Chapitre 6: Multimapping
	Syntaxe
	Paramètres
	Examples
	Mappage multi-tables simple
	Cartographie un à plusieurs
	Cartographie de plus de 7 types
	Mappages personnalisés

	Chapitre 7: Paramètre Syntaxe Référence
	Paramètres
	Remarques
	Examples
	SQL paramétré de base

	Utiliser votre modèle d'objet
	Procédures stockées
	Valeur Inlining
	Extensions de liste
	Effectuer des opérations contre plusieurs ensembles d'entrées
	Paramètres pseudo-positionnels (pour les fournisseurs qui ne prennent pas en charge les paramètres nommés)

	Chapitre 8: Paramètres dynamiques
	Examples
	Utilisation de base
	Paramètres dynamiques dans Dapper
	Utiliser un objet modèle

	Chapitre 9: Requête de base
	Syntaxe
	Paramètres
	Examples
	Interrogation pour un type statique
	Interrogation pour les types dynamiques
	Requête avec paramètres dynamiques

	Chapitre 10: Résultats multiples
	Syntaxe
	Paramètres
	Examples
	Exemple de base de résultats multiples

	Chapitre 11: Tables Temp
	Examples
	Table temporaire qui existe tant que la connexion reste ouverte
	Comment travailler avec des tables temporaires

	Chapitre 12: Transactions
	Syntaxe
	Examples
	Utiliser une transaction
	Accélérer les inserts

	Chapitre 13: Utiliser Async
	Examples
	Appeler une procédure stockée
	Appeler une procédure stockée et ignorer le résultat

	Chapitre 14: Utiliser DbGeography et DbGeometry
	Examples
	Configuration requise
	Utiliser la géométrie et la géographie

	Crédits

