
Dapper.NET

#dapper



Table of Contents

About 1

Chapter 1: Getting started with Dapper.NET 2

Remarks 2

What is Dapper? 2

How do I get it? 2

Common Tasks 2

Versions 2

Examples 2

Install Dapper from Nuget 2

Using Dapper in C# 3

Using Dapper in LINQPad 3

Chapter 2: Basic Querying 5

Syntax 5

Parameters 5

Examples 5

Querying for a static type 5

Querying for dynamic types 6

Query with Dynamic Parameters 6

Chapter 3: Bulk inserts 7

Remarks 7

Examples 7

Async Bulk Copy 7

Bulk Copy 7

Chapter 4: Dynamic Parameters 9

Examples 9

Basic Usage 9

Dynamic Parameters in Dapper 9

Using a template object 9

Chapter 5: Executing Commands 11

Examples 11



Execute a command that returns no results 11

Stored Procedures 11

Simple usage 11

Input, Output and Return parameters 11

Table Valued Parameters 11

Chapter 6: Handling Nulls 13

Examples 13

null vs DBNull 13

Chapter 7: Multimapping 14

Syntax 14

Parameters 14

Examples 15

Simple multi-table mapping 15

One-to-many mapping 16

Mapping more than 7 types 18

Custom Mappings 19

Chapter 8: Multiple Results 21

Syntax 21

Parameters 21

Examples 21

Base Multiple Results Example 21

Chapter 9: Parameter Syntax Reference 22

Parameters 22

Remarks 22

Examples 22

Basic Parameterized SQL 22

Using your Object Model 23

Stored Procedures 23

Value Inlining 24

List Expansions 24

Performing Operations Against Multiple Sets of Input 25

Pseudo-Positional Parameters (for providers that don't support named parameters) 26



Chapter 10: Temp Tables 27

Examples 27

Temp Table that exists while the connection remains open 27

How to work with temp tables 27

Chapter 11: Transactions 29

Syntax 29

Examples 29

Using a Transaction 29

Speed up inserts 30

Chapter 12: Type Handlers 31

Remarks 31

Examples 31

Converting varchar to IHtmlString 31

Installing a TypeHandler 31

Chapter 13: Using Async 32

Examples 32

Calling a Stored Procedure 32

Calling a stored procedure and ignoring the result 32

Chapter 14: Using DbGeography and DbGeometry 33

Examples 33

Configuration required 33

Using geometry and geography 33

Credits 35



About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version 
from: dapper-net

It is an unofficial and free Dapper.NET ebook created for educational purposes. All the content is 
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at 
Stack Overflow. It is neither affiliated with Stack Overflow nor official Dapper.NET.

The content is released under Creative Commons BY-SA, and the list of contributors to each 
chapter are provided in the credits section at the end of this book. Images may be copyright of 
their respective owners unless otherwise specified. All trademarks and registered trademarks are 
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor 
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/dapper-net
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com


Chapter 1: Getting started with Dapper.NET

Remarks

What is Dapper?

Dapper is a micro-ORM for .Net that extends your IDbConnection, simplifying query setup, 
execution, and result-reading.

How do I get it?

github: https://github.com/StackExchange/dapper-dot-net•
NuGet: https://www.nuget.org/packages/Dapper•

Common Tasks

Basic Querying•
Executing Commands•

Versions

Version Notes Release Date

1.50.0 core-clr / asp.net 5.0 build against RTM 2016-06-29

1.42.0 2015-05-06

1.40.0 2015-04-03

1.30.0 2014-08-14

1.20.0 2014-05-08

1.10.0 2012-06-27

1.0.0 2011-04-14

Examples

Install Dapper from Nuget

Either search in the Visual Studio GUI:

https://riptutorial.com/ 2

http://stackexchange.github.io/dapper-dot-net/
https://github.com/StackExchange/dapper-dot-net
https://www.nuget.org/packages/Dapper
http://www.riptutorial.com/dapper/topic/3/basic-querying
http://www.riptutorial.com/dapper/topic/5/executing-commands


Tools > NuGet Package Manager > Manage Packages for Solution... (Visual Studio 2015)

Or run this command in a Nuget Power Shell instance to install the latest stable version

Install-Package Dapper

Or for a specific version

Install-Package Dapper -Version 1.42.0

Using Dapper in C#

using System.Data; 
using System.Linq; 
using Dapper; 
 
class Program 
{ 
    static void Main() 
    { 
        using (IDbConnection db = new 
SqlConnection("Server=myServer;Trusted_Connection=true")) 
        { 
            db.Open(); 
            var result = db.Query<string>("SELECT 'Hello World'").Single(); 
            Console.WriteLine(result); 
        } 
    } 
}

Wrapping the connection in a Using block will close the connection

Using Dapper in LINQPad

LINQPad is great for testing database queries and includes NuGet integration. To use Dapper in 
LINQPad press F4 to open the Query Properties and then select Add NuGet. Search for dapper 
dot net and select Add To Query. You will also want to click Add namespaces and highlight 
Dapper to include the Extension Methods in your LINQPad query.

https://riptutorial.com/ 3

http://i.stack.imgur.com/sWn6V.png
http://www.riptutorial.com/csharp/example/157/using-statement-basics
http://www.riptutorial.com/csharp/example/157/using-statement-basics
http://www.linqpad.net/
http://www.linqpad.net/Purchase.aspx#NuGet


Once Dapper is enabled you can change the Language drop down to C# Program, map query 
results to C# classes, and use the .Dump() method to inspect the results:

void Main() 
{ 
 using (IDbConnection db = new SqlConnection("Server=myServer;Trusted_Connection=true")){ 
  db.Open(); 
  var scalar = db.Query<string>("SELECT GETDATE()").SingleOrDefault(); 
  scalar.Dump("This is a string scalar result:"); 
 
  var results = db.Query<myobject>(@" 
  SELECT * FROM ( 
  VALUES (1,'one'), 
   (2,'two'), 
   (3,'three') 
  ) AS mytable(id,name)"); 
  results.Dump("This is a table mapped to a class:"); 
 } 
} 
 
// Define other methods and classes here 
class myobject { 
 public int id { get; set; } 
 public string name { get; set; } 
}

The results when executing the program would look like this:

Read Getting started with Dapper.NET online: https://riptutorial.com/dapper/topic/2/getting-started-
with-dapper-net

https://riptutorial.com/ 4

http://i.stack.imgur.com/swXB1.png
https://riptutorial.com/dapper/topic/2/getting-started-with-dapper-net
https://riptutorial.com/dapper/topic/2/getting-started-with-dapper-net


Chapter 2: Basic Querying

Syntax

public static IEnumerable<T> Query<T>(this IDbConnection cnn, string sql, object param = 
null, SqlTransaction transaction = null, bool buffered = true)

•

public static IEnumerable<dynamic> Query (this IDbConnection cnn, string sql, object param 
= null, SqlTransaction transaction = null, bool buffered = true)

•

Parameters

Parameter Details

cnn Your database connection, which must already be open.

sql Command to execute.

param Object to extract parameters from.

transaction Transaction which this query is a part of, if any.

buffered

Whether or not to buffer reading the results of the query. This is an optional 
parameter with the default being true. When buffered is true, the results are 
buffered into a List<T> and then returned as an IEnumerable<T> that is safe for 
multiple enumeration. When buffered is false, the sql connection is held open 
until you finish reading allowing you to process a single row at time in memory. 
Multiple enumerations will spawn additional connections to the database. While 
buffered false is highly efficient for reducing memory usage if you only maintain 
very small fragments of the records returned it has a sizeable performance 
overhead compared to eagerly materializing the result set. Lastly if you have 
numerous concurrent unbuffered sql connections you need to consider 
connection pool starvation causing requests to block until connections become 
available.

Examples

Querying for a static type

For types known at compile-time, use a generic parameter with Query<T>.

public class Dog 
{ 
    public int? Age { get; set; } 
    public Guid Id { get; set; } 
    public string Name { get; set; } 

https://riptutorial.com/ 5

http://stackoverflow.com/a/30493725/37055
http://stackoverflow.com/a/30493725/37055


    public float? Weight { get; set; } 
 
    public int IgnoredProperty { get { return 1; } } 
} 
 
// 
IDBConnection db = /* ... */; 
 
var @params = new { age = 3 }; 
var sql = "SELECT * FROM dbo.Dogs WHERE Age = @age"; 
 
IEnumerable<Dog> dogs = db.Query<Dog>(sql, @params);

Querying for dynamic types

You can also query dynamically if you leave off the generic type.

IDBConnection db = /* ... */; 
IEnumerable<dynamic> result = db.Query("SELECT 1 as A, 2 as B"); 
 
var first = result.First(); 
int a = (int)first.A; // 1 
int b = (int)first.B; // 2

Query with Dynamic Parameters

var color = "Black"; 
var age = 4; 
 
var query = "Select * from Cats where Color = :Color and Age > :Age"; 
var dynamicParameters = new DynamicParameters(); 
dynamicParameters.Add("Color", color); 
dynamicParameters.Add("Age", age); 
 
using (var connection = new SqlConnection(/* Your Connection String Here */)) 
{ 
    IEnumerable<dynamic> results = connection.Query(query, dynamicParameters); 
}

Read Basic Querying online: https://riptutorial.com/dapper/topic/3/basic-querying

https://riptutorial.com/ 6

https://riptutorial.com/dapper/topic/3/basic-querying


Chapter 3: Bulk inserts

Remarks

The WriteToServer and WriteToServerAsync have overloads that accept IDataReader (seen in the 
examples), DataTable, and DataRow arrays (DataRow[]) as the source of the data for the Bulk 
Copy.

Examples

Async Bulk Copy

This sample uses a ToDataReader method described here Creating a Generic List DataReader for 
SqlBulkCopy.

This can also be done using non-async methods.

public class Widget 
{ 
    public int WidgetId {get;set;} 
    public string Name {get;set;} 
    public int Quantity {get;set;} 
} 
 
public async Task AddWidgets(IEnumerable<Widget> widgets) 
{ 
    using(var conn = new SqlConnection("{connection string}")) { 
        await conn.OpenAsync(); 
 
        using(var bulkCopy = new SqlBulkCopy(conn)) { 
            bulkCopy.BulkCopyTimeout = SqlTimeoutSeconds; 
            bulkCopy.BatchSize = 500; 
            bulkCopy.DestinationTableName = "Widgets"; 
            bulkCopy.EnableStreaming = true; 
 
            using(var dataReader = widgets.ToDataReader()) 
            { 
                await bulkCopy.WriteToServerAsync(dataReader); 
            } 
        } 
    } 
}

Bulk Copy

This sample uses a ToDataReader method described here Creating a Generic List DataReader for 
SqlBulkCopy.

This can also be done using async methods.

https://riptutorial.com/ 7

https://www.csvreader.com/posts/generic_list_datareader.php
https://www.csvreader.com/posts/generic_list_datareader.php
https://www.csvreader.com/posts/generic_list_datareader.php
https://www.csvreader.com/posts/generic_list_datareader.php


public class Widget 
{ 
    public int WidgetId {get;set;} 
    public string Name {get;set;} 
    public int Quantity {get;set;} 
} 
 
public void AddWidgets(IEnumerable<Widget> widgets) 
{ 
    using(var conn = new SqlConnection("{connection string}")) { 
        conn.Open(); 
 
        using(var bulkCopy = new SqlBulkCopy(conn)) { 
            bulkCopy.BulkCopyTimeout = SqlTimeoutSeconds; 
            bulkCopy.BatchSize = 500; 
            bulkCopy.DestinationTableName = "Widgets"; 
            bulkCopy.EnableStreaming = true; 
 
            using(var dataReader = widgets.ToDataReader()) 
            { 
                bulkCopy.WriteToServer(dataReader); 
            } 
        } 
    } 
}

Read Bulk inserts online: https://riptutorial.com/dapper/topic/6279/bulk-inserts

https://riptutorial.com/ 8

https://riptutorial.com/dapper/topic/6279/bulk-inserts


Chapter 4: Dynamic Parameters

Examples

Basic Usage

It isn't always possible to neatly package all the parameters up in a single object / call. To help 
with more complicated scenarios, dapper allows the param parameter to be an IDynamicParameters 
instance. If you do this, your custom AddParameters method is called at the appropriate time and 
handed the command to append to. In most cases, however, it is sufficient to use the pre-existing 
DynamicParameters type:

var p = new DynamicParameters(new { a = 1, b = 2 }); 
p.Add("c", dbType: DbType.Int32, direction: ParameterDirection.Output); 
connection.Execute(@"set @c = @a + @b", p); 
int updatedValue = p.Get<int>("@c");

This shows:

(optional) population from an existing object•
(optional) adding additional parameters on the fly•
passing the parameters to the command•
retrieving any updated value after the command has finished•

Note that due to how RDBMS protocols work, it is usually only reliable to obtain updated 
parameter values after any data (from a Query or QueryMultiple` operation) has been fully 
consumed (for example, on SQL Server, updated parameter values are at the end of the TDS 
stream).

Dynamic Parameters in Dapper

connection.Execute(@"some Query with @a,@b,@c", new 
{a=somevalueOfa,b=somevalueOfb,c=somevalueOfc});

Using a template object

You can use an instance of an object to form your parameters

public class SearchParameters { 
  public string SearchString { get; set; } 
  public int Page { get; set; } 
} 
 
var template= new SearchParameters { 
  SearchString = "Dapper", 
  Page = 1 
}; 
 

https://riptutorial.com/ 9



var p = new DynamicParameters(template);

You can also use an anonymous object or a Dictionary

Read Dynamic Parameters online: https://riptutorial.com/dapper/topic/12/dynamic-parameters

https://riptutorial.com/ 10

https://riptutorial.com/dapper/topic/12/dynamic-parameters


Chapter 5: Executing Commands

Examples

Execute a command that returns no results

IDBConnection db = /* ... */ 
var id = /* ... */ 
 
db.Execute(@"update dbo.Dogs set Name = 'Beowoof' where Id = @id", 
   new { id });

Stored Procedures

Simple usage

Dapper fully supports stored procs:

var user = conn.Query<User>("spGetUser", new { Id = 1 }, 
                            commandType: CommandType.StoredProcedure) 
           .SingleOrDefault();

Input, Output and Return parameters

If you want something more fancy, you can do:

var p = new DynamicParameters(); 
p.Add("@a", 11); 
p.Add("@b", 
      dbType: DbType.Int32, 
      direction: ParameterDirection.Output); 
p.Add("@c", 
      dbType: DbType.Int32, 
      direction: ParameterDirection.ReturnValue); 
 
conn.Execute("spMagicProc", p, 
             commandType: CommandType.StoredProcedure); 
 
var b = p.Get<int>("@b"); 
var c = p.Get<int>("@c"); 

Table Valued Parameters

If you have a stored procedure that accepts a Table Valued Parameter, you need to pass a 
DataTable which has the same structure as the table type in SQL Server has. Here's a definition 
for a table type and procedure utilizing it:

https://riptutorial.com/ 11



CREATE TYPE [dbo].[myUDTT] AS TABLE([i1] [int] NOT NULL); 
GO 
CREATE PROCEDURE myProc(@data dbo.myUDTT readonly) AS 
SELECT i1 FROM @data; 
GO 
/* 
-- optionally grant permissions as needed, depending on the user you execute this with. 
-- Especially the GRANT EXECUTE ON TYPE is often overlooked and can cause problems if omitted. 
GRANT EXECUTE ON TYPE::[dbo].[myUDTT] TO [user]; 
GRANT EXECUTE ON dbo.myProc TO [user]; 
GO 
*/

To call that procedure from within c#, you need to do the following:

// Build a DataTable with one int column 
DataTable data = new DataTable(); 
data.Columns.Add("i1", typeof(int)); 
// Add two rows 
data.Rows.Add(1); 
data.Rows.Add(2); 
 
var q = conn.Query("myProc", new {data}, commandType: CommandType.StoredProcedure);

Read Executing Commands online: https://riptutorial.com/dapper/topic/5/executing-commands

https://riptutorial.com/ 12

https://riptutorial.com/dapper/topic/5/executing-commands


Chapter 6: Handling Nulls

Examples

null vs DBNull

In ADO.NET, correctly handling null is a constant source of confusion. The key point in dapper is 
that you don't have to; it deals with it all internally.

parameter values that are null are correctly sent as DBNull.Value•
values read that are null are presented as null, or (in the case of mapping to a known type) 
simply ignored (leaving their type-based default)

•

It just works:

string name = null; 
int id = 123; 
connection.Execute("update Customer set Name=@name where Id=@id", 
    new {id, name});

Read Handling Nulls online: https://riptutorial.com/dapper/topic/13/handling-nulls

https://riptutorial.com/ 13

https://riptutorial.com/dapper/topic/13/handling-nulls


Chapter 7: Multimapping

Syntax

public static IEnumerable<TReturn> Query<TFirst, TSecond, TReturn>( this IDbConnection cnn, 
string sql, Func<TFirst, TSecond, TReturn> map, object param = null, IDbTransaction 
transaction = null, bool buffered = true, string splitOn = "Id", int? commandTimeout = 
null, CommandType? commandType = null)

•

public static IEnumerable<TReturn> Query<TFirst, TSecond, TThird, TFourth, TFifth, TSixth, 
TSeventh, TReturn>(this IDbConnection cnn, string sql, Func<TFirst, TSecond, TThird, 
TFourth, TFifth, TSixth, TSeventh, TReturn> map, object param = null, IDbTransaction 
transaction = null, bool buffered = true, string splitOn = "Id", int? commandTimeout = 
null, CommandType? commandType = null)

•

public static IEnumerable<TReturn> Query<TReturn>(this IDbConnection cnn, string sql, 
Type[] types, Func<object[], TReturn> map, object param = null, IDbTransaction transaction 
= null, bool buffered = true, string splitOn = "Id", int? commandTimeout = null, 
CommandType? commandType = null)

•

Parameters

Parameter Details

cnn Your database connection, which must already be open.

sql Command to execute.

types Array of types in the record set.

map Func<> that handles construction of the return result.

param Object to extract parameters from.

transaction Transaction which this query is a part of, if any.

buffered

Whether or not to buffer reading the results of the query. This is an 
optional parameter with the default being true. When buffered is true, the 
results are buffered into a List<T> and then returned as an IEnumerable<T> 
that is safe for multiple enumeration. When buffered is false, the sql 
connection is held open until you finish reading allowing you to process a 
single row at time in memory. Multiple enumerations will spawn 
additional connections to the database. While buffered false is highly 
efficient for reducing memory usage if you only maintain very small 
fragments of the records returned it has a sizeable performance 
overhead compared to eagerly materializing the result set. Lastly if you 
have numerous concurrent unbuffered sql connections you need to 
consider connection pool starvation causing requests to block until 
connections become available.

The Field we should split and read the second object from (default: id). 
This can be a comma delimited list when more than 1 type is contained 

splitOn

https://riptutorial.com/ 14

http://stackoverflow.com/a/30493725/37055
http://stackoverflow.com/a/30493725/37055


Parameter Details

in a record.

commandTimeout Number of seconds before command execution timeout.

commandType Is it a stored proc or a batch?

Examples

Simple multi-table mapping

Let's say we have a query of the remaining horsemen that needs to populate a Person class.

Name Born Residence

Daniel Dennett 1942 United States of America

Sam Harris 1967 United States of America

Richard Dawkins 1941 United Kingdom

public class Person 
{ 
    public string Name { get; set; } 
    public int Born { get; set; } 
    public Country Residience { get; set; } 
} 
 
public class Country 
{ 
    public string Residence { get; set; } 
}

We can populate the person class as well as the Residence property with an instance of Country 
using an overload Query<> that takes a Func<> that can be used to compose the returned instance. 
The Func<> can take up to 7 input types with the final generic argument always being the return 
type.

var sql = @"SELECT 'Daniel Dennett' AS Name, 1942 AS Born, 'United States of America' AS 
Residence 
UNION ALL SELECT 'Sam Harris' AS Name, 1967 AS Born, 'United States of America' AS Residence 
UNION ALL SELECT 'Richard Dawkins' AS Name, 1941 AS Born, 'United Kingdom' AS Residence"; 
 
var result = connection.Query<Person, Country, Person>(sql, (person, country) => { 
        if(country == null) 
        { 
            country = new Country { Residence = "" }; 
        } 
        person.Residience = country; 
        return person; 
    }, 

https://riptutorial.com/ 15



    splitOn: "Residence");

Note the use of the splitOn: "Residence" argument which is the 1st column of the next 
class type to be populated (in this case Country). Dapper will automatically look for a 
column called Id to split on but if it does not find one and splitOn is not provided a 
System.ArgumentException will be thrown with a helpful message. So although it is 
optional you will usually have to supply a splitOn value.

One-to-many mapping

Let's look at a more complex example that contains a one-to-many relationship. Our query will 
now contain multiple rows containing duplicate data and we will need to handle this. We do this 
with a lookup in a closure.

The query changes slightly as do the example classes.

Id Name Born CountryId CountryName BookId BookName

1
Daniel 
Dennett

1942 1
United States of 
America

1 Brainstorms

1
Daniel 
Dennett

1942 1
United States of 
America

2 Elbow Room

2
Sam 
Harris

1967 1
United States of 
America

3 The Moral Landscape

2
Sam 
Harris

1967 1
United States of 
America

4
Waking Up: A Guide to 
Spirituality Without 
Religion

3
Richard 
Dawkins

1941 2 United Kingdom 5
The Magic of Reality: 
How We Know What`s 
Really True

3
Richard 
Dawkins

1941 2 United Kingdom 6
An Appetite for Wonder: 
The Making of a 
Scientist

public class Person 
{ 
    public int Id { get; set; } 
    public string Name { get; set; } 
    public int Born { get; set; } 
    public Country Residience { get; set; } 
    public ICollection<Book> Books { get; set; } 
} 
 
public class Country 
{ 

https://riptutorial.com/ 16



    public int CountryId { get; set; } 
    public string CountryName { get; set; } 
} 
 
public class Book 
{ 
    public int BookId { get; set; } 
    public string BookName { get; set; } 
}

The dictionaryremainingHorsemen will be populated with fully materialized instances of the person 
objects. For each row of the query result the mapped values of instances of the types defined in 
the lambda arguments are passed in and it is up to you how to handle this.

            var sql = @"SELECT 1 AS Id, 'Daniel Dennett' AS Name, 1942 AS Born, 1 AS 
CountryId, 'United States of America' AS CountryName, 1 AS BookId, 'Brainstorms' AS BookName 
UNION ALL SELECT 1 AS Id, 'Daniel Dennett' AS Name, 1942 AS Born, 1 AS CountryId, 'United 
States of America' AS CountryName, 2 AS BookId, 'Elbow Room' AS BookName 
UNION ALL SELECT 2 AS Id, 'Sam Harris' AS Name, 1967 AS Born, 1 AS CountryId,  'United States 
of America' AS CountryName, 3 AS BookId, 'The Moral Landscape' AS BookName 
UNION ALL SELECT 2 AS Id, 'Sam Harris' AS Name, 1967 AS Born, 1 AS CountryId,  'United States 
of America' AS CountryName, 4 AS BookId, 'Waking Up: A Guide to Spirituality Without Religion' 
AS BookName 
UNION ALL SELECT 3 AS Id, 'Richard Dawkins' AS Name, 1941 AS Born, 2 AS CountryId,  'United 
Kingdom' AS CountryName, 5 AS BookId, 'The Magic of Reality: How We Know What`s Really True' 
AS BookName 
UNION ALL SELECT 3 AS Id, 'Richard Dawkins' AS Name, 1941 AS Born, 2 AS CountryId,  'United 
Kingdom' AS CountryName, 6 AS BookId, 'An Appetite for Wonder: The Making of a Scientist' AS 
BookName"; 
 
var remainingHorsemen = new Dictionary<int, Person>(); 
connection.Query<Person, Country, Book, Person>(sql, (person, country, book) => { 
    //person 
    Person personEntity; 
    //trip 
    if (!remainingHorsemen.TryGetValue(person.Id, out personEntity)) 
    { 
        remainingHorsemen.Add(person.Id, personEntity = person); 
    } 
 
    //country 
    if(personEntity.Residience == null) 
    { 
        if (country == null) 
        { 
            country = new Country { CountryName = "" }; 
        } 
        personEntity.Residience = country; 
    } 
 
    //books 
    if(personEntity.Books == null) 
    { 
        personEntity.Books = new List<Book>(); 
    } 
 
    if (book != null) 
    { 
        if (!personEntity.Books.Any(x => x.BookId == book.BookId)) 

https://riptutorial.com/ 17



        { 
            personEntity.Books.Add(book); 
        } 
    } 
 
    return personEntity; 
}, 
splitOn: "CountryId,BookId");

Note how the splitOn argument is a comma delimited list of the first columns of the 
next type.

Mapping more than 7 types

Sometimes the number of types you are mapping exceeds the 7 provided by the Func<> that does 
the construction.

Instead of using the Query<> with the generic type argument inputs, we will provide the types to 
map to as an array, followed by the mapping function. Other than the initial manual setting and 
casting of the values, the rest of the function does not change.

            var sql = @"SELECT 1 AS Id, 'Daniel Dennett' AS Name, 1942 AS Born, 1 AS 
CountryId, 'United States of America' AS CountryName, 1 AS BookId, 'Brainstorms' AS BookName 
UNION ALL SELECT 1 AS Id, 'Daniel Dennett' AS Name, 1942 AS Born, 1 AS CountryId, 'United 
States of America' AS CountryName, 2 AS BookId, 'Elbow Room' AS BookName 
UNION ALL SELECT 2 AS Id, 'Sam Harris' AS Name, 1967 AS Born, 1 AS CountryId,  'United States 
of America' AS CountryName, 3 AS BookId, 'The Moral Landscape' AS BookName 
UNION ALL SELECT 2 AS Id, 'Sam Harris' AS Name, 1967 AS Born, 1 AS CountryId,  'United States 
of America' AS CountryName, 4 AS BookId, 'Waking Up: A Guide to Spirituality Without Religion' 
AS BookName 
UNION ALL SELECT 3 AS Id, 'Richard Dawkins' AS Name, 1941 AS Born, 2 AS CountryId,  'United 
Kingdom' AS CountryName, 5 AS BookId, 'The Magic of Reality: How We Know What`s Really True' 
AS BookName 
UNION ALL SELECT 3 AS Id, 'Richard Dawkins' AS Name, 1941 AS Born, 2 AS CountryId,  'United 
Kingdom' AS CountryName, 6 AS BookId, 'An Appetite for Wonder: The Making of a Scientist' AS 
BookName"; 
 
var remainingHorsemen = new Dictionary<int, Person>(); 
connection.Query<Person>(sql, 
    new[] 
    { 
        typeof(Person), 
        typeof(Country), 
        typeof(Book) 
    } 
    , obj => { 
 
        Person person = obj[0] as Person; 
        Country country = obj[1] as Country; 
        Book book = obj[2] as Book; 
 
        //person 
        Person personEntity; 
        //trip 
        if (!remainingHorsemen.TryGetValue(person.Id, out personEntity)) 
        { 
            remainingHorsemen.Add(person.Id, personEntity = person); 

https://riptutorial.com/ 18



        } 
 
        //country 
        if(personEntity.Residience == null) 
        { 
            if (country == null) 
            { 
                country = new Country { CountryName = "" }; 
            } 
            personEntity.Residience = country; 
        } 
 
        //books 
        if(personEntity.Books == null) 
        { 
            personEntity.Books = new List<Book>(); 
        } 
 
        if (book != null) 
        { 
            if (!personEntity.Books.Any(x => x.BookId == book.BookId)) 
            { 
                personEntity.Books.Add(book); 
            } 
        } 
 
        return personEntity; 
}, 
splitOn: "CountryId,BookId");

Custom Mappings

If the query column names do not match your classes you can setup mappings for types. This 
example demonstrates mapping using System.Data.Linq.Mapping.ColumnAttributeas well as a 
custom mapping.

The mappings only need to be setup once per type so set them on application startup 
or somewhere else that they are only initialized once.

Assuming the same query as the One-to-many example again and the classes refactored toward 
better names like so:

public class Person 
{ 
    public int Id { get; set; } 
    public string Name { get; set; } 
    public int Born { get; set; } 
    public Country Residience { get; set; } 
    public ICollection<Book> Books { get; set; } 
} 
 
public class Country 
{ 
    [System.Data.Linq.Mapping.Column(Name = "CountryId")] 
    public int Id { get; set; } 
 
    [System.Data.Linq.Mapping.Column(Name = "CountryName")] 

https://riptutorial.com/ 19



    public string Name { get; set; } 
} 
 
public class Book 
{ 
    public int Id { get; set; } 
 
    public string Name { get; set; } 
}

Note how Book doesn't rely on ColumnAttribute but we would need to maintain the if 
statement

Now place this mapping code somewhere in your application where it is only executed once:

Dapper.SqlMapper.SetTypeMap( 
    typeof(Country), 
    new CustomPropertyTypeMap( 
        typeof(Country), 
        (type, columnName) => 
            type.GetProperties().FirstOrDefault(prop => 
                prop.GetCustomAttributes(false) 
                    .OfType<System.Data.Linq.Mapping.ColumnAttribute>() 
                    .Any(attr => attr.Name == columnName))) 
); 
 
 
var bookMap = new CustomPropertyTypeMap( 
    typeof(Book), 
    (type, columnName) => 
    { 
        if(columnName == "BookId") 
        { 
            return type.GetProperty("Id"); 
        } 
 
        if (columnName == "BookName") 
        { 
            return type.GetProperty("Name"); 
        } 
 
        throw new InvalidOperationException($"No matching mapping for {columnName}"); 
    } 
); 
Dapper.SqlMapper.SetTypeMap(typeof(Book), bookMap);

Then the query is executed using any of the previous Query<> examples.

A simpler way of adding the mappings is shown in this answer.

Read Multimapping online: https://riptutorial.com/dapper/topic/351/multimapping

https://riptutorial.com/ 20

http://stackoverflow.com/a/12615036/2613363
https://riptutorial.com/dapper/topic/351/multimapping


Chapter 8: Multiple Results

Syntax

public static SqlMapper.GridReader QueryMultiple(this IDbConnection cnn, string sql, object 
param = null, IDbTransaction transaction = null, int? commandTimeout = null, 
CommandType? commandType = null)

•

public static SqlMapper.GridReader QueryMultiple(this IDbConnection cnn, 
CommandDefinition command)

•

Parameters

Parameter Details

cnn Your database connection, must already be open

sql The sql string to process, contains multiple queries

param Object to extract parameters from

SqlMapper.GridReader
Provides interfaces for reading multiple result sets from a Dapper 
query

Examples

Base Multiple Results Example

To fetch multiple grids in a single query, the QueryMultiple method is used. This then allows you to 
retrieve each grid sequentially through successive calls against the GridReader returned.

var sql = @"select * from Customers where CustomerId = @id 
            select * from Orders where CustomerId = @id 
            select * from Returns where CustomerId = @id"; 
 
using (var multi = connection.QueryMultiple(sql, new {id=selectedId})) 
{ 
   var customer = multi.Read<Customer>().Single(); 
   var orders = multi.Read<Order>().ToList(); 
   var returns = multi.Read<Return>().ToList(); 
} 

Read Multiple Results online: https://riptutorial.com/dapper/topic/8/multiple-results

https://riptutorial.com/ 21

https://riptutorial.com/dapper/topic/8/multiple-results


Chapter 9: Parameter Syntax Reference

Parameters

Parameter Details

this cnn
The underlying database connection - the this denotes an extension 
method; the connection does not need to be open - if it is not open, it is 
opened and closed automatically.

<T> / Type

(optional) The type of object to return; if the non-generic / non-Type API is 
used, a dynamic object is returned per row, simulating a property named per 
column name returned from the query (this dynamic object also implements 
IDicionary<string,object>).

sql The SQL to execute

param (optional) The parameters to include.

transaction (optional) The database transaction to associate with the command

buffered
(optional) Whether to pre-consume the data into a list (the default), versus 
exposing an open IEnumerable over the live reader

commandTimeout
(optional) The timeout to use on the command; if not specified, 
SqlMapper.Settings.CommandTimeout is assumed (if specified)

commandType The type of command being performed; defaults to CommandText

Remarks

The syntax for expressing parameters varies between RDBMS. All the examples above use SQL 
Server syntax, i.e. @foo; however, ?foo and :foo should also work fine.

Examples

Basic Parameterized SQL

Dapper makes it easy to follow best practice by way of fully parameterized SQL.

https://riptutorial.com/ 22



Parameters are important, so dapper makes it easy to get it right. You just express your 
parameters in the normal way for your RDBMS (usually @foo, ?foo or :foo) and give dapper an 
object that has a member called foo. The most common way of doing this is with an anonymous 
type:

int id = 123; 
string name = "abc"; 
connection.Execute("insert [KeyLookup](Id, Name) values(@id, @name)", 
    new { id, name });

And... that's it. Dapper will add the required parameters and everything should work.

Using your Object Model

You can also use your existing object model as a parameter:

KeyLookup lookup = ... // some existing instance 
connection.Execute("insert [KeyLookup](Id, Name) values(@Id, @Name)", lookup);

Dapper uses the command-text to determine which members of the object to add - it won't usually 
add unnecessary things like Description, IsActive, CreationDate because the command we've 
issued clearly doesn't involve them - although there are cases when it might do that, for example if 
your command contains:

// TODO - removed for now; include the @Description in the insert

It doesn't attempt to figure out that the above is just a comment.

Stored Procedures

Parameters to stored procedures work exactly the same, except that dapper cannot attempt to 
determine what should/should-not be included - everything available is treated as a parameter. For 
that reason, anonymous types are usually preferred:

connection.Execute("KeyLookupInsert", new { id, name }, 
    commandType: CommandType.StoredProcedure);

https://riptutorial.com/ 23



Value Inlining

Sometimes the convenience of a parameter (in terms of maintenance and expressiveness), may 
be outweighed by its cost in performance to treat it as a parameter. For example, when page size 
is fixed by a configuration setting. Or a status value is matched to an enum value. Consider:

var orders = connection.Query<Order>(@" 
select top (@count) * -- these brackets are an oddity of SQL Server 
from Orders 
where CustomerId = @customerId 
and Status = @open", new { customerId, count = PageSize, open = OrderStatus.Open });

The only real parameter here is customerId - the other two are pseudo-parameters that won't 
actually change. Often the RDBMS can do a better job if it detects these as constants. Dapper has 
a special syntax for this - {=name} instead of @name - which only applies to numeric types. (This 
minimizes any attack surface from SQL injection). An example is as follows:

var orders = connection.Query<Order>(@" 
select top {=count} * 
from Orders 
where CustomerId = @customerId 
and Status = {=open}", new { customerId, count = PageSize, open = OrderStatus.Open });

Dapper replaces values with literals before issuing the SQL, so the RDBMS actually sees 
something like:

select top 10 * 
from Orders 
where CustomerId = @customerId 
and Status = 3

This is particularly useful when allowing RDBMS systems to not just make better decisions, but to 
open up query plans that actual parameters prevent. For example, if a column predicate is against 
a parameter, then a filtered index with specific values on that columns cannot be used. This is 
because the next query may have a parameter apart from one of those specified values.

With literal values, the query optimizer is able to make use of the filtered indexes since it knows 
the value cannot change in future queries.

List Expansions

A common scenario in database queries is IN (...) where the list here is generated at runtime. 
Most RDBMS lack a good metaphor for this - and there is no universal cross-RDBMS solution for 
this. Instead, dapper provides some gentle automatic command expansion. All that is requires is a 
supplied parameter value that is IEnumerable. A command involving @foo is expanded to 
(@foo0,@foo1,@foo2,@foo3) (for a sequence of 4 items). The most common usage of this would be 
IN:

int[] orderIds = ... 

https://riptutorial.com/ 24



var orders = connection.Query<Order>(@" 
select * 
from Orders 
where Id in @orderIds", new { orderIds });

This then automatically expands to issue appropriate SQL for the multi-row fetch:

select * 
from Orders 
where Id in (@orderIds0, @orderIds1, @orderIds2, @orderIds3)

with the parameters @orderIds0 etc being added as values taken from the arrray. Note that the fact 
that it isn't valid SQL originally is intentional, to ensure that this feature is not used mistakenly. 
This feature also works correctly with the OPTIMIZE FOR / UNKNOWN query-hint in SQL Server; if you 
use:

option (optimize for 
    (@orderIds unknown))

it will expand this correctly to:

option (optimize for 
    (@orderIds0 unknown, @orderIds1 unknown, @orderIds2 unknown, @orderIds3 unknown))

Performing Operations Against Multiple Sets of Input

Sometimes, you want to do the same thing multiple times. Dapper supports this on the Execute 
method if the outermost parameter (which is usually a single anonymous type, or a domain model 
instance) is actually provided as an IEnumerable sequence. For example:

Order[] orders = ... 
// update the totals 
connection.Execute("update Orders set Total=@Total where Id=@Id", orders);

Here, dapper is just doing a simple loop on our data, essentially the same as if we had done:

Order[] orders = ... 
// update the totals 
foreach(Order order in orders) { 
    connection.Execute("update Orders set Total=@Total where Id=@Id", order); 
}

This usage becomes particularly interesting when combined with the async API on a connection 
that is explicitly configured to all "Multiple Active Result Sets" - in this usage, dapper will 
automatically pipeline the operations, so you aren't paying the latency cost per row. This requires 
a slightly more complicated usage,

await connection.ExecuteAsync( 
    new CommandDefinition( 
        "update Orders set Total=@Total where Id=@Id", 

https://riptutorial.com/ 25



         orders, flags: CommandFlags.Pipelined))

Note, however, that you might also wish to investigate table valued parameters.

Pseudo-Positional Parameters (for providers that don't support named 
parameters)

Some ADO.NET providers (most notably: OleDB) do not support named parameters; parameters 
are instead specified only by position, with the ? place-holder. Dapper would not know what 
member to use for these, so dapper allows an alternative syntax, ?foo?; this would be the same as 
@foo or :foo in other SQL variants, except that dapper will replace the parameter token completely 
with ? before executing the query.

This works in combination with other features such as list expansion, so the following is valid:

string region = "North"; 
int[] users = ... 
var docs = conn.Query<Document>(@" 
     select * from Documents 
     where Region = ?region? 
     and OwnerId in ?users?", new { region, users }).AsList();

The .region and .users members are used accordingly, and the SQL issued is (for example, with 3 
users):

     select * from Documents 
     where Region = ? 
     and OwnerId in (?,?,?)

Note, however, that dapper does not allow the same parameter to be used multiple times when 
using this feature; this is to prevent having to add the same parameter value (which could be 
large) multiple times. If you need to refer to the same value multiple times, consider declaring a 
variable, for example:

declare @id int = ?id?; // now we can use @id multiple times in the SQL

If variables are not available, you can use duplicate member names in the parameters - this will 
also make it obvious that the value is being sent multiple times:

int id = 42; 
connection.Execute("... where ParentId = $id0$ ... SomethingElse = $id1$ ...", 
      new { id0 = id, id1 = id });

Read Parameter Syntax Reference online: https://riptutorial.com/dapper/topic/10/parameter-
syntax-reference

https://riptutorial.com/ 26

https://riptutorial.com/dapper/topic/10/parameter-syntax-reference
https://riptutorial.com/dapper/topic/10/parameter-syntax-reference


Chapter 10: Temp Tables

Examples

Temp Table that exists while the connection remains open

When the temp table is created by itself, it will remain while the connection is open.

// Widget has WidgetId, Name, and Quantity properties 
public async Task PurchaseWidgets(IEnumerable<Widget> widgets) 
{ 
    using(var conn = new SqlConnection("{connection string}")) { 
        await conn.OpenAsync(); 
 
        await conn.ExecuteAsync("CREATE TABLE #tmpWidget(WidgetId int, Quantity int)"); 
 
        // populate the temp table 
        using(var bulkCopy = new SqlBulkCopy(conn)) { 
            bulkCopy.BulkCopyTimeout = SqlTimeoutSeconds; 
            bulkCopy.BatchSize = 500; 
            bulkCopy.DestinationTableName = "#tmpWidget"; 
            bulkCopy.EnableStreaming = true; 
 
            using(var dataReader = widgets.ToDataReader()) 
            { 
                await bulkCopy.WriteToServerAsync(dataReader); 
            } 
        } 
 
        await conn.ExecuteAsync(@" 
            update w 
            set Quantity = w.Quantity - tw.Quantity 
            from Widgets w 
                join #tmpWidget tw on w.WidgetId = tw.WidgetId"); 
    } 
}

How to work with temp tables

The point about temporary tables is that they're limited to the scope of the connection. Dapper will 
automatically open and close a connection if it's not already opened. That means that any temp 
table will be lost directly after creating it, if the connection passed to Dapper has not been opened.

This will not work:

private async Task<IEnumerable<int>> SelectWidgetsError() 
{ 
  using (var conn = new SqlConnection(connectionString)) 
  { 
    await conn.ExecuteAsync(@"CREATE TABLE #tmpWidget(widgetId int);"); 
 
    // this will throw an error because the #tmpWidget table no longer exists 
    await conn.ExecuteAsync(@"insert into #tmpWidget(WidgetId) VALUES (1);"); 

https://riptutorial.com/ 27



 
    return await conn.QueryAsync<int>(@"SELECT * FROM #tmpWidget;"); 
  } 
}

On the other hand, these two versions will work:

private async Task<IEnumerable<int>> SelectWidgets() 
{ 
  using (var conn = new SqlConnection(connectionString)) 
  { 
    // Here, everything is done in one statement, therefore the temp table 
    // always stays within the scope of the connection 
    return await conn.QueryAsync<int>( 
      @"CREATE TABLE #tmpWidget(widgetId int); 
        insert into #tmpWidget(WidgetId) VALUES (1); 
        SELECT * FROM #tmpWidget;"); 
  } 
} 
 
private async Task<IEnumerable<int>> SelectWidgetsII() 
{ 
  using (var conn = new SqlConnection(connectionString)) 
  { 
    // Here, everything is done in separate statements. To not loose the 
    // connection scope, we have to explicitly open it 
    await conn.OpenAsync(); 
 
    await conn.ExecuteAsync(@"CREATE TABLE #tmpWidget(widgetId int);"); 
    await conn.ExecuteAsync(@"insert into #tmpWidget(WidgetId) VALUES (1);"); 
    return await conn.QueryAsync<int>(@"SELECT * FROM #tmpWidget;"); 
  } 
}

Read Temp Tables online: https://riptutorial.com/dapper/topic/6594/temp-tables

https://riptutorial.com/ 28

https://riptutorial.com/dapper/topic/6594/temp-tables


Chapter 11: Transactions

Syntax

conn.Execute(sql, transaction: tran); // specify the parameter by name•
conn.Execute(sql, parameters, tran);•
conn.Query(sql, transaction: tran);•
conn.Query(sql, parameters, tran);•
await conn.ExecuteAsync(sql, transaction: tran); // Async•
await conn.ExecuteAsync(sql, parameters, tran);•
await conn.QueryAsync(sql, transaction: tran);•
await conn.QueryAsync(sql, parameters, tran);•

Examples

Using a Transaction

This example uses SqlConnection, but any IDbConnection is supported.

Also any IDbTransaction is supported from the related IDbConnection.

public void UpdateWidgetQuantity(int widgetId, int quantity) 
{ 
    using(var conn = new SqlConnection("{connection string}")) { 
        conn.Open(); 
 
        // create the transaction 
        // You could use `var` instead of `SqlTransaction` 
        using(SqlTransaction tran = conn.BeginTransaction()) { 
            try 
            { 
                var sql = "update Widget set Quantity = @quantity where WidgetId = @id"; 
                var parameters = new { id = widgetId, quantity }; 
 
                // pass the transaction along to the Query, Execute, or the related Async 
methods. 
                conn.Execute(sql, parameters, tran); 
 
                // if it was successful, commit the transaction 
                tran.Commit(); 
            } 
            catch(Exception ex) 
            { 
                // roll the transaction back 
                tran.Rollback(); 
 
                // handle the error however you need to. 
                throw; 
            } 
        } 
    } 
}

https://riptutorial.com/ 29



Speed up inserts

Wrapping a group of inserts in a transaction will speed them up according to this StackOverflow 
Question/Answer.

You can use this technique, or you can use Bulk Copy to speed up a series of related operations 
to perform.

// Widget has WidgetId, Name, and Quantity properties 
public void InsertWidgets(IEnumerable<Widget> widgets) 
{ 
    using(var conn = new SqlConnection("{connection string}")) { 
        conn.Open(); 
 
        using(var tran = conn.BeginTransaction()) { 
            try 
            { 
                var sql = "insert Widget (WidgetId,Name,Quantity) Values(@WidgetId, @Name, 
@Quantity)"; 
                conn.Execute(sql, widgets, tran); 
                tran.Commit(); 
            } 
            catch(Exception ex) 
            { 
                tran.Rollback(); 
                // handle the error however you need to. 
                throw; 
            } 
        } 
    } 
}

Read Transactions online: https://riptutorial.com/dapper/topic/6601/transactions

https://riptutorial.com/ 30

http://stackoverflow.com/questions/10689779/bulk-inserts-taking-longer-than-expected-using-dapper
http://stackoverflow.com/questions/10689779/bulk-inserts-taking-longer-than-expected-using-dapper
https://riptutorial.com/dapper/topic/6601/transactions


Chapter 12: Type Handlers

Remarks

Type Handlers allow database types to be converted to .Net custom types.

Examples

Converting varchar to IHtmlString

public class IHtmlStringTypeHandler : SqlMapper.TypeHandler<IHtmlString> 
{ 
    public override void SetValue( 
        IDbDataParameter parameter, 
        IHtmlString value) 
    { 
        parameter.DbType = DbType.String; 
        parameter.Value = value?.ToHtmlString(); 
    } 
 
    public override IHtmlString Parse(object value) 
    { 
        return MvcHtmlString.Create(value?.ToString()); 
    } 
}

Installing a TypeHandler

The above type handler can be installed into SqlMapper using the AddTypeHandler method.

SqlMapper.AddTypeHandler<IHtmlString>(new IHtmlStringTypeHandler());

Type inference allows you to omit the generic type parameter:

SqlMapper.AddTypeHandler(new IHtmlStringTypeHandler());

There's also a two-argument overload which takes an explicit Type argument:

SqlMapper.AddTypeHandler(typeof(IHtmlString), new IHtmlStringTypeHandler());

Read Type Handlers online: https://riptutorial.com/dapper/topic/6/type-handlers

https://riptutorial.com/ 31

https://riptutorial.com/dapper/topic/6/type-handlers


Chapter 13: Using Async

Examples

Calling a Stored Procedure

public async Task<Product> GetProductAsync(string productId) 
{ 
    using (_db) 
    { 
        return await _db.QueryFirstOrDefaultAsync<Product>("usp_GetProduct", new { id = 
productId }, 
            commandType: CommandType.StoredProcedure); 
    } 
}

Calling a stored procedure and ignoring the result

public async Task SetProductInactiveAsync(int productId) 
{ 
    using (IDbConnection con = new SqlConnection("myConnectionString")) 
    { 
        await con.ExecuteAsync("SetProductInactive", new { id = productId }, 
            commandType: CommandType.StoredProcedure); 
    } 
}

Read Using Async online: https://riptutorial.com/dapper/topic/1353/using-async

https://riptutorial.com/ 32

https://riptutorial.com/dapper/topic/1353/using-async


Chapter 14: Using DbGeography and 
DbGeometry

Examples

Configuration required

install the required Microsoft.SqlServer.Types assembly; they are not installed by default, and 
are available from Microsoft here as "Microsoft® System CLR Types for Microsoft® SQL 
Server® 2012" - note that there are separate installers for x86 and x64.

1. 

install Dapper.EntityFramework (or the strong-named equivalent); this could be done via the 
IDE's "Manage NuGet Packages..." UI, or (at the Package Manager Console):

install-package Dapper.EntityFramework

2. 

add the required assembly binding redirects; this is because Microsoft ships v11 of the 
assemblies, but Entity Framework asks for v10; you can add the following to app.config or 
web.config under the <configuration> element:

<runtime> 
  <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1"> 
    <dependentAssembly> 
      <assemblyIdentity name="Microsoft.SqlServer.Types" 
          publicKeyToken="89845dcd8080cc91" /> 
      <bindingRedirect oldVersion="10.0.0.0" newVersion="11.0.0.0" /> 
    </dependentAssembly> 
  </assemblyBinding> 
</runtime>

3. 

tell "dapper" about the new type handlers available, by adding (somewhere in your startup, 
before it tries using the database):

Dapper.EntityFramework.Handlers.Register();

4. 

Using geometry and geography

Once the type handlers are registered, everything should work automatically, and you should be 
able to use these types as either parameters or return values:

string redmond = "POINT (122.1215 47.6740)"; 
DbGeography point = DbGeography.PointFromText(redmond, 
    DbGeography.DefaultCoordinateSystemId); 
DbGeography orig = point.Buffer(20); // create a circle around a point 
 
 
var fromDb = connection.QuerySingle<DbGeography>( 

https://riptutorial.com/ 33

https://www.microsoft.com/en-gb/download/details.aspx?id=29065
https://www.nuget.org/packages/dapper.entityframework


  "declare @geos table(geo geography); insert @geos(geo) values(@val); select * from @geos", 
  new { val = orig }); 
 
Console.WriteLine($"Original area: {orig.Area}"); 
Console.WriteLine($"From DB area: {fromDb.Area}");

Read Using DbGeography and DbGeometry online: 
https://riptutorial.com/dapper/topic/3984/using-dbgeography-and-dbgeometry

https://riptutorial.com/ 34

https://riptutorial.com/dapper/topic/3984/using-dbgeography-and-dbgeometry


Credits

S. 
No

Chapters Contributors

1
Getting started with 
Dapper.NET

Adam Lear, balpha, Community, Eliza, Greg Bray, Jarrod Dixon, 
Kevin Montrose, Matt McCabe, Nick, Rob, Shog9

2 Basic Querying
Adam Lear, Chris Marisic, Cigano Morrison Mendez, 
Community, cubrr, Jarrod Dixon, jrummell, Kevin Montrose, Matt 
McCabe

3 Bulk inserts jhamm

4 Dynamic Parameters Marc Gravell, Matt McCabe, Meer

5
Executing 
Commands

Adam Lear, Jarrod Dixon, Sklivvz, takrl

6 Handling Nulls Marc Gravell

7 Multimapping Devon Burriss

8 Multiple Results Marc Gravell, Yaakov Ellis

9
Parameter Syntax 
Reference

4444, Marc Gravell, Nick Craver

10 Temp Tables jhamm, Rob, takrl

11 Transactions jhamm

12 Type Handlers Benjamin Hodgson, Community, Marc Gravell

13 Using Async Dean Ward, Matt McCabe, Nick, Woodchipper

14
Using DbGeography 
and DbGeometry

Marc Gravell

https://riptutorial.com/ 35

https://riptutorial.com/contributor/105971/adam-lear
https://riptutorial.com/contributor/115866/balpha
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2625750/eliza
https://riptutorial.com/contributor/17373/greg-bray
https://riptutorial.com/contributor/3/jarrod-dixon
https://riptutorial.com/contributor/80572/kevin-montrose
https://riptutorial.com/contributor/2193900/matt-mccabe
https://riptutorial.com/contributor/2195393/nick
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/811/shog9
https://riptutorial.com/contributor/105971/adam-lear
https://riptutorial.com/contributor/37055/chris-marisic
https://riptutorial.com/contributor/1314276/cigano-morrison-mendez
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/996081/cubrr
https://riptutorial.com/contributor/3/jarrod-dixon
https://riptutorial.com/contributor/26226/jrummell
https://riptutorial.com/contributor/80572/kevin-montrose
https://riptutorial.com/contributor/2193900/matt-mccabe
https://riptutorial.com/contributor/2193900/matt-mccabe
https://riptutorial.com/contributor/103927/jhamm
https://riptutorial.com/contributor/23354/marc-gravell
https://riptutorial.com/contributor/2193900/matt-mccabe
https://riptutorial.com/contributor/3736442/meer
https://riptutorial.com/contributor/105971/adam-lear
https://riptutorial.com/contributor/3/jarrod-dixon
https://riptutorial.com/contributor/7028/sklivvz
https://riptutorial.com/contributor/520044/takrl
https://riptutorial.com/contributor/23354/marc-gravell
https://riptutorial.com/contributor/2613363/devon-burriss
https://riptutorial.com/contributor/23354/marc-gravell
https://riptutorial.com/contributor/51/yaakov-ellis
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/23354/marc-gravell
https://riptutorial.com/contributor/13249/nick-craver
https://riptutorial.com/contributor/103927/jhamm
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/520044/takrl
https://riptutorial.com/contributor/103927/jhamm
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/23354/marc-gravell
https://riptutorial.com/contributor/871146/dean-ward
https://riptutorial.com/contributor/2193900/matt-mccabe
https://riptutorial.com/contributor/2195393/nick
https://riptutorial.com/contributor/1988163/woodchipper
https://riptutorial.com/contributor/23354/marc-gravell

	About
	Chapter 1: Getting started with Dapper.NET
	Remarks
	What is Dapper?
	How do I get it?
	Common Tasks
	Versions
	Examples
	Install Dapper from Nuget
	Using Dapper in C#
	Using Dapper in LINQPad


	Chapter 2: Basic Querying
	Syntax
	Parameters
	Examples
	Querying for a static type
	Querying for dynamic types
	Query with Dynamic Parameters


	Chapter 3: Bulk inserts
	Remarks
	Examples
	Async Bulk Copy
	Bulk Copy


	Chapter 4: Dynamic Parameters
	Examples
	Basic Usage
	Dynamic Parameters in Dapper
	Using a template object


	Chapter 5: Executing Commands
	Examples
	Execute a command that returns no results
	Stored Procedures

	Simple usage
	Input, Output and Return parameters
	Table Valued Parameters

	Chapter 6: Handling Nulls
	Examples
	null vs DBNull


	Chapter 7: Multimapping
	Syntax
	Parameters
	Examples
	Simple multi-table mapping
	One-to-many mapping
	Mapping more than 7 types
	Custom Mappings


	Chapter 8: Multiple Results
	Syntax
	Parameters
	Examples
	Base Multiple Results Example


	Chapter 9: Parameter Syntax Reference
	Parameters
	Remarks
	Examples
	Basic Parameterized SQL

	Using your Object Model
	Stored Procedures
	Value Inlining
	List Expansions
	Performing Operations Against Multiple Sets of Input
	Pseudo-Positional Parameters (for providers that don't support named parameters)


	Chapter 10: Temp Tables
	Examples
	Temp Table that exists while the connection remains open
	How to work with temp tables


	Chapter 11: Transactions
	Syntax
	Examples
	Using a Transaction
	Speed up inserts


	Chapter 12: Type Handlers
	Remarks
	Examples
	Converting varchar to IHtmlString
	Installing a TypeHandler


	Chapter 13: Using Async
	Examples
	Calling a Stored Procedure
	Calling a stored procedure and ignoring the result


	Chapter 14: Using DbGeography and DbGeometry
	Examples
	Configuration required
	Using geometry and geography


	Credits



