
data.table

#data.table

Table of Contents

About 1

Chapter 1: Getting started with data.table 2

Remarks 2

Versions 2

Examples 2

Installation and setup 2

Using the package 3

Getting started and finding help 3

Syntax and features 3

Basic syntax 3

Shortcuts, special functions and special symbols inside DT[...] 3

Joins inside DT[...] 4

Reshaping, stacking and splitting 4

Some other functions specialized for data.tables 5

Other features of the package 5

Chapter 2: Adding and modifying columns 6

Remarks 6

Examples 6

Editing values 6

Editing a column 6

Editing on a subset of rows 6

Removing a column 6

Editing multiple columns 7

Editing multiple sequentially-dependent columns 7

Editing columns by dynamically-determined names 7

Using set 7

Reordering columns 7

Renaming columns 8

Modifying factor levels and other column attributes 8

Chapter 3: Cleaning data 9

Examples 9

Handling duplicates 9

Keep one row per group 9

Keep only unique rows 9

Keep only nonunique rows 9

Chapter 4: Computing summary statistics 10

Remarks 10

Examples 10

Counting rows by group 10

Using .N 10

Handling missing groups 10

Custom summaries 11

Assigning summary statistics as new columns 11

Pitfalls 12

Untidy data 12

Rowwise summaries 12

The summary function 12

Applying a summarizing function to multiple variables 13

Multiple summarizing functions 13

Chapter 5: Creating a data.table 15

Remarks 15

Examples 15

Coerce a data.frame 15

Build with data.table() 15

Read in with fread() 15

Modify a data.frame with setDT() 16

Copy another data.table with copy() 16

Chapter 6: Joins and merges 18

Introduction 18

Syntax 18

Remarks 18

Working with keyed tables 18

Disambiguating column names in common 18

Grouping on subsets 18

Examples 18

Update values in a join 18

Advantages to using separate tables 19

Programmatically determining columns 20

Equi-join 20

Intuition 20

Handling multiply-matched rows 20

Handling unmatched rows 21

Counting matches returned 21

Chapter 7: Reshaping, stacking and splitting 22

Remarks 22

Examples 22

melt and cast with data.table 22

Reshape using `data.table` 23

Going from wide to long format using melt 24

Melting: The basics 24

Naming variables and values in the result 25

Setting types for measure variables in the result 26

Handling missing values 26

Going from long to wide format using dcast 27

Casting: The Basics 27

Casting a value 27

Formula 28

Aggregating our value.var 29

Naming columns in the result 30

Stacking multiple tables using rbindlist 31

Chapter 8: Subsetting rows by group 33

Remarks 33

Examples 33

Selecting rows within each group 33

Pitfalls 33

Selecting groups 34

Selecting groups by condition 34

Chapter 9: Using .SD and .SDcols for the subset of data 35

Introduction 35

Remarks 35

Examples 35

Using .SD and .SDcols 35

.SD 35

.SDcols 36

Chapter 10: Using keys and indices 37

Introduction 37

Remarks 37

Keys vs indices 37

Verification and updating 37

Examples 37

Improving performance for selecting subsets 38

Matching on one column 38

Matching on multiple columns 38

Chapter 11: Using list columns to store data 40

Introduction 40

Remarks 40

Examples 40

Reading in many related files 40

Example data 40

Identify files and file metadata 40

Read in files 41

Stack data 41

Extensions 42

Chapter 12: Why is my old code not working? 43

Introduction 43

Examples 43

unique and duplicated no longer works on keyed data.table 43

Fix 44

Details and stopgap fix 44

Credits 46

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: data-table

It is an unofficial and free data.table ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official data.table.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/data-table
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with data.table

Remarks

Data.table is a package for the R statistical computing environment. It extends the functionality of
data frames from base R, particularly improving on their performance and syntax. A number of
related tasks, including rolling and non-equi joins, are handled in a consistent concise syntax like
DT[where, select|update|do, by].

A number of complementary functions are also included in the package:

I/O: fread/fwrite•
Reshaping: melt/dcast/rbindlist/split•
Runs of values: rleid•

Versions

Version Notes
Release Date on
CRAN

1.9.4 2014-10-02

1.9.6 2015-09-19

1.9.8 2016-11-24

1.10.0
"With hindsight, the last release v1.9.8 should have been
named v1.10.0"

2016-12-03

1.10.1 In development 2016-12-03

Examples

Installation and setup

Install the stable release from CRAN:

install.packages("data.table")

Or the development version from github:

install.packages("data.table", type = "source",
 repos = "http://Rdatatable.github.io/data.table")

To revert from devel to CRAN, the current version must first be removed:

https://riptutorial.com/ 2

http://r-datatable.com
https://github.com/Rdatatable/data.table/blob/master/NEWS.md#changes-in-v194--on-cran-2-oct-2014
https://github.com/Rdatatable/data.table/blob/master/NEWS.md#changes-in-v196--on-cran-19-sep-2015
https://github.com/Rdatatable/data.table/blob/master/NEWS.md#changes-in-v198--on-cran-25-nov-2016
https://github.com/Rdatatable/data.table/blob/master/NEWS.md#changes-in-v1100--on-cran-3-dec-2016
https://github.com/Rdatatable/data.table/blob/master/NEWS.md#changes-in-v1101---in-development-on-github-

remove.packages("data.table")
install.packages("data.table")

Visit the website for full installation instructions and the latest version numbers.

Using the package

Usually you will want to load the package and all of its functions with a line like

library(data.table)

If you only need one or two functions, you can refer to them like data.table::fread instead.

Getting started and finding help

The package's official wiki has some essential materials:

As a new user, you will want to check out the vignettes, FAQ and cheat sheet.•

Before asking a question -- here on StackOverflow or anywhere else -- please read the
support page.

•

For help on individual functions, the syntax is help("fread") or ?fread. If the package has not been
loaded, use the full name like ?data.table::fread.

Syntax and features

Basic syntax

DT[where, select|update|do, by] syntax is used to work with columns of a data.table.

The "where" part is the i argument•
The "select|update|do" part is the j argument•

These two arguments are usually passed by position instead of by name.

A sequence of steps can be chained like DT[...][...].

Shortcuts, special functions and special
symbols inside DT[...]

Function or symbol Notes

.() in several arguments, replaces list()

https://riptutorial.com/ 3

https://github.com/Rdatatable/data.table/wiki/Installation
https://github.com/Rdatatable/data.table/wiki
https://github.com/Rdatatable/data.table/wiki/Getting-started
https://github.com/Rdatatable/data.table/wiki/Support
https://github.com/Rdatatable/data.table/wiki/Support

Function or symbol Notes

J() in i, replaces list()

:= in j, a function used to add or modify columns

.N
in i, the total number of rows
in j, the number of rows in a group

.I in j, the vector of row numbers in the table (filtered by i)

.SD
in j, the current subset of the data
selected by the .SDcols argument

.GRP in j, the current index of the subset of the data

.BY in j, the list of by values for the current subset of data

V1, V2, ... default names for unnamed columns created in j

Joins inside DT[...]

Notation Notes

DT1[DT2, on, j] join two tables

i.* special prefix on DT2's columns after the join

by=.EACHI special option available only with a join

DT1[!DT2, on, j] anti-join two tables

DT1[DT2, on, roll, j] join two tables, rolling on the last column in on=

Reshaping, stacking and splitting

Notation Notes

melt(DT, id.vars, measure.vars)
transform to long format
for multiple columns, use measure.vars = patterns(...)

dcast(DT, formula) transform to wide format

rbind(DT1, DT2, ...) stack enumerated data.tables

rbindlist(DT_list, idcol) stack a list of data.tables

https://riptutorial.com/ 4

Notation Notes

split(DT, by) split a data.table into a list

Some other functions specialized for
data.tables

Function(s) Notes

foverlaps overlap joins

merge another way of joining two tables

set another way of adding or modifying columns

fintersect, fsetdiff,
funion, fsetequal,
unique, duplicated,
anyDuplicated

set-theory operations with rows as elements

CJ the Cartesian product of vectors

uniqueN the number of distinct rows

rowidv(DT, cols) row ID (1 to .N) within each group determined by cols

rleidv(DT, cols)
group ID (1 to .GRP) within each group determined by runs
of cols

shift(DT, n) apply a shift operator to every column

setorder, setcolorder,
setnames, setkey, setindex,
setattr

modify attributes and order by reference

Other features of the package

Features Notes

IDate and ITime integer dates and times

Read Getting started with data.table online: https://riptutorial.com/data-table/topic/3389/getting-
started-with-data-table

https://riptutorial.com/ 5

https://riptutorial.com/data-table/topic/3389/getting-started-with-data-table
https://riptutorial.com/data-table/topic/3389/getting-started-with-data-table

Chapter 2: Adding and modifying columns

Remarks

The official vignette, "Reference semantics", is the best introduction to this topic.

A reminder: DT[where, select|update|do, by] syntax is used to work with columns of a data.table.

The "where" part is the i argument•
The "select|update|do" part is the j argument•

These two arguments are usually passed by position instead of by name.

All modifications to columns can be done in j. Additionally, the set function is available for this
use.

Examples

Editing values

example data
DT = as.data.table(mtcars, keep.rownames = TRUE)

Editing a column

Use the := operator inside j to create new columns or modify existing ones:

DT[, mpg_sq := mpg^2]

Editing on a subset of rows

Use the i argument to subset to rows "where" edits should be made:

DT[1:3, newvar := "Hello"]

As in a data.frame, we can subset using row numbers or logical tests. It is also possible to use [a
"join" in i when modifying][need_a_link].

Removing a column

Remove columns by setting to NULL:

https://riptutorial.com/ 6

https://rawgit.com/wiki/Rdatatable/data.table/vignettes/datatable-reference-semantics.html

DT[, mpg_sq := NULL]

Note that we do not <- assign the result, since DT has been modified in-place.

Editing multiple columns

Add multiple columns by using the := operator's multivariate format:

DT[, `:=`(mpg_sq = mpg^2, wt_sqrt = sqrt(wt))]
or
DT[, c("mpg_sq", "wt_sqrt") := .(mpg^2, sqrt(wt))]

The .() syntax is used when the right-hand side of LHS := RHS is a list of columns.

Editing multiple sequentially-dependent
columns

If the columns are dependent and must be defined in sequence, some ways to do that are:

DT[, c("mpg_sq", "mpg2_hp") := .(temp1 <- mpg^2, temp1/hp)]
or
DT[, c("mpg_sq", "mpg2_hp") := {temp1 = mpg^2; .(temp1, temp1/hp)}]

Editing columns by dynamically-determined
names

For dynamically-determined column names, use parentheses:

vn = "mpg_sq"
DT[, (vn) := mpg^2]

Using set

Columns can also be modified with set for a small reduction in overhead, though this is rarely
necessary:

set(DT, j = "hp_over_wt", v = mtcars$hp/mtcars$wt)

Reordering columns

https://riptutorial.com/ 7

example data
DT = as.data.table(mtcars, keep.rownames = TRUE)

To rearrange the order of columns, use setcolorder. For example, to reverse them

setcolorder(DT, rev(names(DT)))

This costs almost nothing in terms of performance, since it is just permuting the list of column
pointers in the data.table.

Renaming columns

example data
DT = as.data.table(mtcars, keep.rownames = TRUE)

To rename a column (while keeping its data the same), there is no need to copy the data to a
column with a new name and delete the old one. Instead, we can use

setnames(DT, "mpg_sq", "mpq_squared")

to modify the original column by reference.

Modifying factor levels and other column attributes

example data
DT = data.table(iris)

To modify factor levels by reference, use setattr:

setattr(DT$Species, "levels", c("set", "ver", "vir")
or
DT[, setattr(Species, "levels", c("set", "ver", "vir"))]

The second option might print the result to the screen.

With setattr, we avoid the copy usually incurred when doing levels(x) <- lvls, but it will also skip
some checks, so it is important to be careful to assign a valid vector of levels.

Read Adding and modifying columns online: https://riptutorial.com/data-table/topic/3781/adding-
and-modifying-columns

https://riptutorial.com/ 8

https://riptutorial.com/data-table/topic/3781/adding-and-modifying-columns
https://riptutorial.com/data-table/topic/3781/adding-and-modifying-columns

Chapter 3: Cleaning data

Examples

Handling duplicates

example data
DT = data.table(id = c(1,2,2,3,3,3))[, v := LETTERS[.I]][]

To deal with "duplicates," combine counting rows in a group and subsetting rows by group.

Keep one row per group

Aka "drop duplicates" aka "deduplicate" aka "uniquify."

unique(DT, by="id")
or
DT[, .SD[1L], by=id]
id v
1: 1 A
2: 2 B
3: 3 D

This keeps the first row. To select a different row, one can fiddle with the 1L part or use order in i.

Keep only unique rows

DT[, if (.N == 1L) .SD, by=id]
id v
1: 1 A

Keep only nonunique rows

DT[, if (.N > 1L) .SD, by=id]
id v
1: 2 B
2: 2 C
3: 3 D
4: 3 E
5: 3 F

Read Cleaning data online: https://riptutorial.com/data-table/topic/5206/cleaning-data

https://riptutorial.com/ 9

http://www.riptutorial.com/data-table/example/13079/counting-rows-by-group
http://www.riptutorial.com/data-table/topic/3784/subsetting-rows-by-group
https://riptutorial.com/data-table/topic/5206/cleaning-data

Chapter 4: Computing summary statistics

Remarks

A reminder: DT[where, select|update|do, by] syntax is used to work with columns of a data.table.

The "where" part is the i argument•
The "select|update|do" part is the j argument•

These two arguments are usually passed by position instead of by name.

Examples

Counting rows by group

example data
DT = data.table(iris)
DT[, Bin := cut(Sepal.Length, c(4,6,8))]

Using .N

.N in j stores the number of rows in a subset. When exploring data, .N is handy to...

count rows in a group,

DT[Species == "setosa", .N]

50

1.

or count rows in all groups,

DT[, .N, by=.(Species, Bin)]

Species Bin N
1: setosa (4,6] 50
2: versicolor (6,8] 20
3: versicolor (4,6] 30
4: virginica (6,8] 41
5: virginica (4,6] 9

2.

or find groups that have a certain number of rows.

DT[, .N, by=.(Species, Bin)][N < 25]

Species Bin N
1: versicolor (6,8] 20
2: virginica (4,6] 9

3.

https://riptutorial.com/ 10

Handling missing groups

However, we are missing groups with a count of zero above. If they matter, we can use table from
base:

DT[, data.table(table(Species, Bin))][N < 25]

Species Bin N
1: virginica (4,6] 9
2: setosa (6,8] 0
3: versicolor (6,8] 20

Alternately, we can join on all groups:

DT[CJ(Species=Species, Bin=Bin, unique=TRUE), on=c("Species","Bin"), .N, by=.EACHI][N < 25]

Species Bin N
1: setosa (6,8] 0
2: versicolor (6,8] 20
3: virginica (4,6] 9

A note on .N:

This example uses .N in j, where it refers to size of a subset.•
In i, it refers to the total number of rows.•

Custom summaries

example data
DT = data.table(iris)
DT[, Bin := cut(Sepal.Length, c(4,6,8))]

Suppose we want the summary function output for Sepal.Length along with the number of
observations:

DT[, c(
 as.list(summary(Sepal.Length)),
 N = .N
), by=.(Species, Bin)]

Species Bin Min. 1st Qu. Median Mean 3rd Qu. Max. N
1: setosa (4,6] 4.3 4.8 5.0 5.006 5.2 5.8 50
2: versicolor (6,8] 6.1 6.2 6.4 6.450 6.7 7.0 20
3: versicolor (4,6] 4.9 5.5 5.6 5.593 5.8 6.0 30
4: virginica (6,8] 6.1 6.4 6.7 6.778 7.2 7.9 41
5: virginica (4,6] 4.9 5.7 5.8 5.722 5.9 6.0 9

We have to make j a list of columns. Usually, some playing around with c, as.list and . is enough
to figure out the correct way to proceed.

https://riptutorial.com/ 11

Assigning summary statistics as new
columns

Instead of making a summary table, we may want to store a summary statistic in a new column.
We can use := as usual. For example,

DT[, is_big := .N >= 25, by=.(Species, Bin)]

Pitfalls

Untidy data

If you find yourself wanting to parse column names, like

Take the mean of x.Length/x.Width where x takes ten different values.

then you are probably looking at data embedded in column names, which is a bad idea. Read
about tidy data and then reshape to long format.

Rowwise summaries

Data frames and data.tables are well-designed for tabular data, where rows correspond to
observations and columns to variables. If you find yourself wanting to summarize over rows, like

Find the standard deviation across columns for each row.

then you should probably be using a matrix or some other data format entirely.

The summary function

example data
DT = data.table(iris)
DT[, Bin := cut(Sepal.Length, c(4,6,8))]

summary is handy for browsing summary statistics. Besides direct usage like summary(DT), it can also
be applied per-group conveniently with split:

lapply(split(DT, by=c("Species", "Bin"), drop=TRUE, keep.by=FALSE), summary)

$`setosa.(4,6]`
Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. :4.300 Min. :2.300 Min. :1.000 Min. :0.100
1st Qu.:4.800 1st Qu.:3.200 1st Qu.:1.400 1st Qu.:0.200
Median :5.000 Median :3.400 Median :1.500 Median :0.200
Mean :5.006 Mean :3.428 Mean :1.462 Mean :0.246

https://riptutorial.com/ 12

https://www.jstatsoft.org/article/view/v059i10/

3rd Qu.:5.200 3rd Qu.:3.675 3rd Qu.:1.575 3rd Qu.:0.300
Max. :5.800 Max. :4.400 Max. :1.900 Max. :0.600

$`versicolor.(6,8]`
Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. :6.10 Min. :2.20 Min. :4.000 Min. :1.20
1st Qu.:6.20 1st Qu.:2.80 1st Qu.:4.400 1st Qu.:1.30
Median :6.40 Median :2.90 Median :4.600 Median :1.40
Mean :6.45 Mean :2.89 Mean :4.585 Mean :1.42
3rd Qu.:6.70 3rd Qu.:3.10 3rd Qu.:4.700 3rd Qu.:1.50
Max. :7.00 Max. :3.30 Max. :5.000 Max. :1.70

[...results truncated...]

To include zero-count groups, set drop=FALSE in split.

Applying a summarizing function to multiple variables

example data
DT = data.table(iris)
DT[, Bin := cut(Sepal.Length, c(4,6,8))]

To apply the same summarizing function to every column by group, we can use lapply and .SD

DT[, lapply(.SD, median), by=.(Species, Bin)]

Species Bin Sepal.Length Sepal.Width Petal.Length Petal.Width
1: setosa (4,6] 5.0 3.4 1.50 0.2
2: versicolor (6,8] 6.4 2.9 4.60 1.4
3: versicolor (4,6] 5.6 2.7 4.05 1.3
4: virginica (6,8] 6.7 3.0 5.60 2.1
5: virginica (4,6] 5.8 2.7 5.00 1.9

We can filter the columns in .SD with the .SDcols argument:

DT[, lapply(.SD, median), by=.(Species, Bin), .SDcols="Petal.Length"]

Species Bin Petal.Length
1: setosa (4,6] 1.50
2: versicolor (6,8] 4.60
3: versicolor (4,6] 4.05
4: virginica (6,8] 5.60
5: virginica (4,6] 5.00

Multiple summarizing functions

Currently, the simplest extension to multiple functions is perhaps:

DT[, unlist(recursive=FALSE, lapply(
 .(med = median, iqr = IQR),
 function(f) lapply(.SD, f)
)), by=.(Species, Bin), .SDcols=Petal.Length:Petal.Width]

https://riptutorial.com/ 13

Species Bin med.Petal.Length med.Petal.Width iqr.Petal.Length iqr.Petal.Width
1: setosa (4,6] 1.50 0.2 0.175 0.100
2: versicolor (6,8] 4.60 1.4 0.300 0.200
3: versicolor (4,6] 4.05 1.3 0.525 0.275
4: virginica (6,8] 5.60 2.1 0.700 0.500
5: virginica (4,6] 5.00 1.9 0.200 0.200

If you want the names to be like Petal.Length.med instead of med.Petal.Length, change the order:

DT[, unlist(recursive=FALSE, lapply(
 .SD,
 function(x) lapply(.(med = median, iqr = IQR), function(f) f(x))
)), by=.(Species, Bin), .SDcols=Petal.Length:Petal.Width]

Species Bin Petal.Length.med Petal.Length.iqr Petal.Width.med Petal.Width.iqr
1: setosa (4,6] 1.50 0.175 0.2 0.100
2: versicolor (6,8] 4.60 0.300 1.4 0.200
3: versicolor (4,6] 4.05 0.525 1.3 0.275
4: virginica (6,8] 5.60 0.700 2.1 0.500
5: virginica (4,6] 5.00 0.200 1.9 0.200

Read Computing summary statistics online: https://riptutorial.com/data-
table/topic/3785/computing-summary-statistics

https://riptutorial.com/ 14

https://riptutorial.com/data-table/topic/3785/computing-summary-statistics
https://riptutorial.com/data-table/topic/3785/computing-summary-statistics

Chapter 5: Creating a data.table

Remarks

A data.table is an enhanced version of the data.frame class from base R. As such, its class()
attribute is the vector "data.table" "data.frame" and functions that work on a data.frame will also
work with a data.table. There are many ways to create, load or coerce to a data.table, as seen
here.

Examples

Coerce a data.frame

To copy a data.frame as a data.table, use as.data.table or data.table:

DF = data.frame(x = letters[1:5], y = 1:5, z = (1:5) > 3)

DT <- as.data.table(DF)
or
DT <- data.table(DF)

This is rarely necessary. One exception is when using built-in datasets like mtcars, which must be
copied since they cannot be modified in-place.

Build with data.table()

There is a constructor of the same name:

DT <- data.table(
 x = letters[1:5],
 y = 1:5,
 z = (1:5) > 3
)
x y z
1: a 1 FALSE
2: b 2 FALSE
3: c 3 FALSE
4: d 4 TRUE
5: e 5 TRUE

Unlike data.frame, data.table will not coerce strings to factors by default:

sapply(DT, class)
x y z
"character" "integer" "logical"

Read in with fread()

https://riptutorial.com/ 15

We can read from a text file:

dt <- fread("my_file.csv")

Unlike read.csv, fread will read strings as strings, not as factors by default.

See the [topic on fread][need_a_link] for more examples.

Modify a data.frame with setDT()

For efficiency, data.table offers a way of altering a data.frame or list to make a data.table in-place:

example data.frame
DF = data.frame(x = letters[1:5], y = 1:5, z = (1:5) > 3)

modification
setDT(DF)

Note that we do not <- assign the result, since the object DF has been modified in-place.

The class attributes of the data.frame will be retained:

sapply(DF, class)
x y z
"factor" "integer" "logical"

Copy another data.table with copy()

example data
DT1 = data.table(x = letters[1:2], y = 1:2, z = (1:2) > 3)

Due to the way data.tables are manipulated, DT2 <- DT1 will not make a copy. That is, later
modifications to the columns or other attributes of DT2 will affect DT1 as well. When you want a real
copy, use

DT2 = copy(DT1)

To see the difference, here's what happens without a copy:

DT2 <- DT1
DT2[, w := 1:2]

DT1
x y z w
1: a 1 FALSE 1
2: b 2 FALSE 2
DT2
x y z w
1: a 1 FALSE 1
2: b 2 FALSE 2

https://riptutorial.com/ 16

And with a copy:

DT2 <- copy(DT1)
DT2[, w := 1:2]

DT1
x y z
1: a 1 FALSE
2: b 2 FALSE
DT2
x y z w
1: a 1 FALSE 1
2: b 2 FALSE 2

So the changes do not propagate in the latter case.

Read Creating a data.table online: https://riptutorial.com/data-table/topic/3782/creating-a-data-
table

https://riptutorial.com/ 17

https://riptutorial.com/data-table/topic/3782/creating-a-data-table
https://riptutorial.com/data-table/topic/3782/creating-a-data-table

Chapter 6: Joins and merges

Introduction

A join combines two tables containing related columns. The term covers a wide range of
operations, essentially everything except appending the two tables. "Merge" is a synonym. Type
?`[.data.table` for the official docs.

Syntax

x[i, on, j]
join: data.table x & data.table or list i

•

x[!i, on, j]
anti-join

•

Remarks

Working with keyed tables

If x & i have a key or x is keyed to match i's first few columns, then the on can be skipped like x[i]
.

Disambiguating column names in common

In j of x[i, on, j], columns of i can be referred with i.* prefixes.

Grouping on subsets

In j of x[i, on, j, by=.EACHI], j is computed for each row of i.

This is the only value of by worth using. For any other value, columns of i are not available.

Examples

Update values in a join

When data is "tidy," it is often organized into several tables. To combine the data for analysis, we
need to "update" one table with values from another.

For example, we might have sales data for performances, where attributes of the performer (their
budget) and of the location (its population) are stored in separate tables:

https://riptutorial.com/ 18

http://www.riptutorial.com/data-table/example/15087/stacking-multiple-tables-using-rbindlist
http://www.riptutorial.com/data-table/topic/4977/using-keys-and-indices
https://www.jstatsoft.org/article/view/v059i10

set.seed(1)
mainDT = data.table(
 p_id = rep(LETTERS[1:2], c(2,4)),
 geo_id = sample(rep(state.abb[c(1,25,50)], 3:1)),
 sales = sample(100, 6)
)
pDT = data.table(id = LETTERS[1:2], budget = c(60, 75))
geoDT = data.table(id = state.abb[c(1,50)], pop = c(100, 200))

mainDT # sales data
p_id geo_id sales
1: A AL 95
2: A WY 66
3: B AL 62
4: B MO 6
5: B AL 20
6: B MO 17

pDT # performer attributes
id budget
1: A 60
2: B 75

geoDT # location attributes
id pop
1: AL 100
2: WY 200

When we are ready to do some analysis, we need to grab variables from these other tables:

DT = copy(mainDT)

DT[pDT, on=.(p_id = id), budget := i.budget]
DT[geoDT, on=.(geo_id = id), pop := i.pop]

p_id geo_id sales budget pop
1: A AL 95 60 100
2: A WY 66 60 200
3: B AL 62 75 100
4: B MO 6 75 NA
5: B AL 20 75 100
6: B MO 17 75 NA

A copy is taken to avoid contaminating the raw data, but we could work directly on mainDT instead.

Advantages to using separate tables

The advantages of this structure are covered in the paper on tidy data, but in this context:

Tracing missing data. Only rows that match up in the merge receive an assignment. We
have no data for geo_id == "MO" above, so its variables are NA in our final table. If we see
missing data like this unexpectedly, we can trace it back to the missing observation in the
geoDT table and investigate from there whether we have a data problem that can be
addressed.

1.

https://riptutorial.com/ 19

Comprehensibility. In building our statistical model, it might be important to keep in mind that
budget is constant for each performer. In general, understanding the structure of the data
pays dividends.

2.

Memory size. There might be a large number of performer and location attributes that don't
end up in the statistical model. This way, we don't need to include them in the (possibly
massive) table used for analysis.

3.

Programmatically determining columns

If there are many columns in pDT, but we only want to select a few, we can use

p_cols = "budget"
DT[pDT, on=.(p_id = id), (p_cols) := mget(sprintf("i.%s", p_cols))]

The parentheses around (p_cols) := are essential, as noted in the doc on creating columns.

Equi-join

example data
a = data.table(id = c(1L, 1L, 2L, 3L, NA_integer_), x = 11:15)
id x
1: 1 11
2: 1 12
3: 2 13
4: 3 14
5: NA 15

b = data.table(id = 1:2, y = -(1:2))
id y
1: 1 -1
2: 2 -2

Intuition

Think of x[i] as selecting a subset of x for each row of i. This syntax mirrors matrix subsetting in
base R and is consistent with the first argument meaning "where", in DT[where, select|update|do,
by].

One might wonder why this new syntax is worth learning, since merge(x,i) still works with
data.tables. The short answer is that it we usually wants to merge and then do something further.
The x[i] syntax concisely captures this pattern of use and also allows for more efficient
computation. For a more detailed explanation, read FAQs 1.12 and 2.14.

Handling multiply-matched rows

https://riptutorial.com/ 20

http://www.riptutorial.com/data-table/topic/3781/adding-and-modifying-columns
http://www.riptutorial.com/data-table/example/13077/syntax-and-features
http://www.riptutorial.com/data-table/example/13077/syntax-and-features
https://rawgit.com/wiki/Rdatatable/data.table/vignettes/datatable-faq.html#MergeDiff
https://rawgit.com/wiki/Rdatatable/data.table/vignettes/datatable-faq.html#can-you-explain-further-why-data.table-is-inspired-by-ab-syntax-in-base

By default, every row of a matching each row of b is returned:

a[b, on="id"]
id x y
1: 1 11 -1
2: 1 12 -1
3: 2 13 -2

This can be tweaked with mult:

a[b, on="id", mult="first"]
id x y
1: 1 11 -1
2: 2 13 -2

Handling unmatched rows

By default, unmatched rows of a still show up in the result:

b[a, on="id"]
id y x
1: 1 -1 11
2: 1 -1 12
3: 2 -2 13
4: 3 NA 14
5: NA NA 15

To hide these, use nomatch:

b[a, on="id", nomatch=0]
id y x
1: 1 -1 11
2: 1 -1 12
3: 2 -2 13

Note that x[i] will attempt to match NAs in i.

Counting matches returned

To count the number of matches for each row of i, use .N and by=.EACHI.

b[a, on="id", .N, by=.EACHI]
id N
1: 1 1
2: 1 1
3: 2 1
4: 3 0
5: NA 0

Read Joins and merges online: https://riptutorial.com/data-table/topic/4976/joins-and-merges

https://riptutorial.com/ 21

https://riptutorial.com/data-table/topic/4976/joins-and-merges

Chapter 7: Reshaping, stacking and splitting

Remarks

The official vignette, "Efficient reshaping using data.tables", is the best introduction to this topic.

Many reshaping tasks require moving between long and wide formats:

Wide data is data with each column representing a seperate variable, and rows representing
seperate observations

•

Long data is data with the form ID | variable | value, where each row representing a
observation-variable pair

•

Examples

melt and cast with data.table

data.table offers a wide range of possibilities to reshape your data both efficiently and easily

For instance, while reshaping from long to wide you can both pass several variables into the
value.var and into the fun.aggregate parameters at the same time

library(data.table) #v>=1.9.6
DT <- data.table(mtcars)

Long to wide

dcast(DT, gear ~ cyl, value.var = c("disp", "hp"), fun = list(mean, sum))
 gear disp_mean_4 disp_mean_6 disp_mean_8 hp_mean_4 hp_mean_6 hp_mean_8 disp_sum_4
disp_sum_6 disp_sum_8 hp_sum_4 hp_sum_6 hp_sum_8
1: 3 120.100 241.5 357.6167 97 107.5 194.1667 120.1
483.0 4291.4 97 215 2330
2: 4 102.625 163.8 NaN 76 116.5 NaN 821.0
655.2 0.0 608 466 0
3: 5 107.700 145.0 326.0000 102 175.0 299.5000 215.4
145.0 652.0 204 175 599

This will set gear as the index column, while mean and sum will be calculated for disp and hp for every
gear and cyl combination. In case some combinations don't exist you could specify additional
parameters such as na.rm = TRUE (which will be passed to mean and sum functions) or specify the
builtin fill argument. You can also add margins, drop missing combinations and subset the data.
See more in ?data.table::dcast

Wide to long

While reshaping from wide to long, you can pass columns to the measure.vars parameter using
regular expressions, for instance

https://riptutorial.com/ 22

https://rawgit.com/wiki/Rdatatable/data.table/vignettes/datatable-reshape.html

print(melt(DT, c("cyl", "gear"), measure = patterns("^d", "e")), n = 10)
 cyl gear variable value1 value2
 1: 6 4 1 160.00 16.46
 2: 6 4 1 160.00 17.02
 3: 4 4 1 108.00 18.61
 4: 6 3 1 258.00 19.44
 5: 8 3 1 360.00 17.02

60: 4 5 2 3.77 5.00
61: 8 5 2 4.22 5.00
62: 6 5 2 3.62 5.00
63: 8 5 2 3.54 5.00
64: 4 4 2 4.11 4.00

This will melt the data by cyl and gear as the index columns, while all the values for the variables
that begin with d (disp & drat) will be present in value1 and the values for the variables that contain
the letter e in them (qsec and gear) will be present in the value2 column.

You can also rename all the column names in the result while specifying variable.name and
value.name arguments or decide if you want the character columns to be automatically converted to
factors or not while specifying variable.factor and value.factor arguments. See more in
?data.table::melt

Reshape using `data.table`

data.table extends reshape2's melt & dcast functions

(Reference: Efficient reshaping using data.tables)

library(data.table)

generate some data
dt <- data.table(
 name = rep(c("firstName", "secondName"), each=4),
 numbers = rep(1:4, 2),
 value = rnorm(8)
)
dt
name numbers value
1: firstName 1 -0.8551881
2: firstName 2 -1.0561946
3: firstName 3 0.2671833
4: firstName 4 1.0662379
5: secondName 1 -0.4771341
6: secondName 2 1.2830651
7: secondName 3 -0.6989682
8: secondName 4 -0.6592184

Long to Wide

dcast(data = dt,
 formula = name ~ numbers,
 value.var = "value")

name 1 2 3 4

https://riptutorial.com/ 23

https://cran.r-project.org/web/packages/data.table/vignettes/datatable-reshape.html

1: firstName 0.1836433 -0.8356286 1.5952808 0.3295078
2: secondName -0.8204684 0.4874291 0.7383247 0.5757814

On multiple columns (as of data.table 1.9.6)

add an extra column
dt[, value2 := value * 2]

cast multiple value columns
dcast(data = dt,
 formula = name ~ numbers,
 value.var = c("value", "value2"))

name value_1 value_2 value_3 value_4 value2_1 value2_2 value2_3
value2_4
1: firstName 0.1836433 -0.8356286 1.5952808 0.3295078 0.3672866 -1.6712572 3.190562
0.6590155
2: secondName -0.8204684 0.4874291 0.7383247 0.5757814 -1.6409368 0.9748581 1.476649
1.1515627

Wide to Long

use a wide data.table
dt <- fread("name 1 2 3 4
firstName 0.1836433 -0.8356286 1.5952808 0.3295078
secondName -0.8204684 0.4874291 0.7383247 0.5757814", header = T)
dt
name 1 2 3 4
1: firstName 0.1836433 -0.8356286 1.5952808 0.3295078
2: secondName -0.8204684 0.4874291 0.7383247 0.5757814

melt to long, specifying the id column, and the name of the columns
in the resulting long data.table
melt(dt,
 id.vars = "name",
 variable.name = "numbers",
 value.name = "myValue")
name numbers myValue
1: firstName 1 0.1836433
2: secondName 1 -0.8204684
3: firstName 2 -0.8356286
4: secondName 2 0.4874291
5: firstName 3 1.5952808
6: secondName 3 0.7383247
7: firstName 4 0.3295078
8: secondName 4 0.5757814

Going from wide to long format using melt

Melting: The basics

Melting is used to transform data from wide to long format.

Starting with a wide data set:

https://riptutorial.com/ 24

DT = data.table(ID = letters[1:3], Age = 20:22, OB_A = 1:3, OB_B = 4:6, OB_C = 7:9)

We can melt our data using the melt function in data.table. This returns another data.table in long
format:

melt(DT, id.vars = c("ID","Age"))
1: a 20 OB_A 1
2: b 21 OB_A 2
3: c 22 OB_A 3
4: a 20 OB_B 4
5: b 21 OB_B 5
6: c 22 OB_B 6
7: a 20 OB_C 7
8: b 21 OB_C 8
9: c 22 OB_C 9

class(melt(DT, id.vars = c("ID","Age")))
"data.table" "data.frame"

Any columns not set in the id.vars parameter are assumed to be variables. Alternatively, we can
set these explicitly using the measure.vars argument:

melt(DT, measure.vars = c("OB_A","OB_B","OB_C"))
 ID Age variable value
1: a 20 OB_A 1
2: b 21 OB_A 2
3: c 22 OB_A 3
4: a 20 OB_B 4
5: b 21 OB_B 5
6: c 22 OB_B 6
7: a 20 OB_C 7
8: b 21 OB_C 8
9: c 22 OB_C 9

In this case, any columns not set in measure.vars are assumed to be IDs.

If we set both explicitly, it will only return the columns selected:

melt(DT, id.vars = "ID", measure.vars = c("OB_C"))
 ID variable value
1: a OB_C 7
2: b OB_C 8
3: c OB_C 9

Naming variables and values in the result

We can manipulate the column names of the returned table using variable.name and value.name

melt(DT,
 id.vars = c("ID"),
 measure.vars = c("OB_C"),
 variable.name = "Test",
 value.name = "Result"

https://riptutorial.com/ 25

)
 ID Test Result
1: a OB_C 7
2: b OB_C 8
3: c OB_C 9

Setting types for measure variables in the
result

By default, melting a data.table converts all measure.vars to factors:

M_DT <- melt(DT,id.vars = c("ID"), measure.vars = c("OB_C"))
class(M_DT[, variable])
"factor"

To set as character instead, use the variable.factor argument:

M_DT <- melt(DT,id.vars = c("ID"), measure.vars = c("OB_C"), variable.factor = FALSE)
class(M_DT[, variable])
"character"

Values generally inherit from the data type of the originating column:

class(DT[, value])
"integer"
class(M_DT[, value])
"integer"

If there is a conflict, data types will be coerced. For example:

M_DT <- melt(DT,id.vars = c("Age"), measure.vars = c("ID","OB_C"))
class(M_DT[, value])
"character"

When melting, any factor variables will be coerced to character type:

DT[, OB_C := factor(OB_C)]
M_DT <- melt(DT,id.vars = c("ID"), measure.vars = c("OB_C"))
class(M_DT)
"character"

To avoid this and preserve the initial typing, use the value.factor argument:

M_DT <- melt(DT,id.vars = c("ID"), measure.vars = c("OB_C"), value.factor = TRUE)
class(M_DT)
"factor"

https://riptutorial.com/ 26

Handling missing values

By default, any NA values are preserved in the molten data

DT = data.table(ID = letters[1:3], Age = 20:22, OB_A = 1:3, OB_B = 4:6, OB_C = c(7:8,NA))
melt(DT,id.vars = c("ID"), measure.vars = c("OB_C"))
 ID variable value
1: a OB_C 7
2: b OB_C 8
3: c OB_C NA

If these should be removed from your data, set na.rm = TRUE

melt(DT,id.vars = c("ID"), measure.vars = c("OB_C"), na.rm = TRUE)
 ID variable value
1: a OB_C 7
2: b OB_C 8

Going from long to wide format using dcast

Casting: The Basics

Casting is used to transform data from long to wide format.

Starting with a long data set:

DT = data.table(ID = rep(letters[1:3],3), Age = rep(20:22,3), Test =
rep(c("OB_A","OB_B","OB_C"), each = 3), Result = 1:9)

We can cast our data using the dcast function in data.table. This returns another data.table in wide
format:

dcast(DT, formula = ID ~ Test, value.var = "Result")
 ID OB_A OB_B OB_C
1: a 1 4 7
2: b 2 5 8
3: c 3 6 9

class(dcast(DT, formula = ID ~ Test, value.var = "Result"))
[1] "data.table" "data.frame"

Casting a value

A value.var argument is necessary for a proper cast - if not provided dcast will make an
assumption based on your data.

dcast(DT, formula = ID ~ Test, value.var = "Result")

https://riptutorial.com/ 27

 ID OB_A OB_B OB_C
1: a 1 4 7
2: b 2 5 8
3: c 3 6 9

 ID OB_A OB_B OB_C
1: a 20 20 20
2: b 21 21 21
3: c 22 22 22

Multiple value.vars can be provided in a list

dcast(DT, formula = ID ~ Test, value.var = list("Result","Age"))
 ID Result_OB_A Result_OB_B Result_OB_C Age_OB_A Age_OB_B Age_OB_C
1: a 1 4 7 20 20 20
2: b 2 5 8 21 21 21
3: c 3 6 9 22 22 22

Formula

Casting is controlled using the formula argument in dcast. This is of the form ROWS ~ COLUMNS

dcast(DT, formula = ID ~ Test, value.var = "Result")
 ID OB_A OB_B OB_C
1: a 1 4 7
2: b 2 5 8
3: c 3 6 9

dcast(DT, formula = Test ~ ID, value.var = "Result")
 Test a b c
1: OB_A 1 2 3
2: OB_B 4 5 6
3: OB_C 7 8 9

Both rows and columns can be expanded with further variables using +

dcast(DT, formula = ID + Age ~ Test, value.var = "Result")
 ID Age OB_A OB_B OB_C
1: a 20 1 4 7
2: b 21 2 5 8
3: c 22 3 6 9

dcast(DT, formula = ID ~ Age + Test, value.var = "Result")
 ID 20_OB_A 20_OB_B 20_OB_C 21_OB_A 21_OB_B 21_OB_C 22_OB_A 22_OB_B 22_OB_C
1: a 1 4 7 NA NA NA NA NA NA
2: b NA NA NA 2 5 8 NA NA NA
3: c NA NA NA NA NA NA 3 6 9

#order is important

dcast(DT, formula = ID ~ Test + Age, value.var = "Result")
 ID OB_A_20 OB_A_21 OB_A_22 OB_B_20 OB_B_21 OB_B_22 OB_C_20 OB_C_21 OB_C_22
1: a 1 NA NA 4 NA NA 7 NA NA
2: b NA 2 NA NA 5 NA NA 8 NA
3: c NA NA 3 NA NA 6 NA NA 9

https://riptutorial.com/ 28

Casting can often create cells where no observation exists in the data. By default this is denoted
by NA, as above. We can override this with the fill= argument.

dcast(DT, formula = ID ~ Test + Age, value.var = "Result", fill = 0)
 ID OB_A_20 OB_A_21 OB_A_22 OB_B_20 OB_B_21 OB_B_22 OB_C_20 OB_C_21 OB_C_22
1: a 1 0 0 4 0 0 7 0 0
2: b 0 2 0 0 5 0 0 8 0
3: c 0 0 3 0 0 6 0 0 9

You can also use two special variables in the formula object

. represents no other variables•

... represents all other variables•

dcast(DT, formula = Age ~ ., value.var = "Result")
 Age .
1: 20 3
2: 21 3
3: 22 3

dcast(DT, formula = ID + Age ~ ..., value.var = "Result")
 ID Age OB_A OB_B OB_C
1: a 20 1 4 7
2: b 21 2 5 8
3: c 22 3 6 9

Aggregating our value.var

We can also cast and aggregate values in one step. In this case, we have three observations in
each of the intersections of Age and ID. To set what aggregation we want, we use the
fun.aggregate argument:

#length
dcast(DT, formula = ID ~ Age, value.var = "Result", fun.aggregate = length)
 ID 20 21 22
1: a 3 0 0
2: b 0 3 0
3: c 0 0 3

#sum
dcast(DT, formula = ID ~ Age, value.var = "Result", fun.aggregate = sum)
 ID 20 21 22
1: a 12 0 0
2: b 0 15 0
3: c 0 0 18

#concatenate
dcast(DT, formula = ID ~ Age, value.var = "Result", fun.aggregate =
function(x){paste(x,collapse = "_")})
ID 20 21 22
1: a 1_4_7
2: b 2_5_8
3: c 3_6_9

https://riptutorial.com/ 29

We can also pass a list to fun.aggregate to use multiple functions

dcast(DT, formula = ID ~ Age, value.var = "Result", fun.aggregate = list(sum,length))
 ID Result_sum_20 Result_sum_21 Result_sum_22 Result_length_20 Result_length_21
Result_length_22
1: a 12 0 0 3 0
0
2: b 0 15 0 0 3
0
3: c 0 0 18 0 0
3

If we pass more than one function and more than one value, we can calculate all combinations by
passing a vector of value.vars

dcast(DT, formula = ID ~ Age, value.var = c("Result","Test"), fun.aggregate =
list(function(x){paste0(x,collapse = "_")},length))
 ID Result_function_20 Result_function_21 Result_function_22 Test_function_20
Test_function_21 Test_function_22 Result_length_20 Result_length_21
1: a 1_4_7 OB_A_OB_B_OB_C
3 0
2: b 2_5_8
OB_A_OB_B_OB_C 0 3
3: c 3_6_9
OB_A_OB_B_OB_C 0 0
 Result_length_22 Test_length_20 Test_length_21 Test_length_22
1: 0 3 0 0
2: 0 0 3 0
3: 3 0 0 3

where each pair is calculated in the order value1_formula1, value1_formula2, ... ,
valueN_formula(N-1), valueN_formulaN.

Alternatively, we can evaluate our values and functions one-to-one by passing 'value.var' as a list:

dcast(DT, formula = ID ~ Age, value.var = list("Result","Test"), fun.aggregate =
list(function(x){paste0(x,collapse = "_")},length))
 ID Result_function_20 Result_function_21 Result_function_22 Test_length_20 Test_length_21
Test_length_22
1: a 1_4_7 3 0
0
2: b 2_5_8 0 3
0
3: c 3_6_9 0 0
3

Naming columns in the result

By default, column name components are seperated by an underscore _. This can be manually
overridden using the sep= argument:

dcast(DT, formula = Test ~ ID + Age, value.var = "Result")
Test a_20 b_21 c_22

https://riptutorial.com/ 30

1: OB_A 1 2 3
2: OB_B 4 5 6
3: OB_C 7 8 9

dcast(DT, formula = Test ~ ID + Age, value.var = "Result", sep = ",")
 Test a,20 b,21 c,22
1: OB_A 1 2 3
2: OB_B 4 5 6
3: OB_C 7 8 9

This will seperate any fun.aggregate or value.var we use:

dcast(DT, formula = Test ~ ID + Age, value.var = "Result", fun.aggregate = c(sum,length), sep
= ",")
 Test Result,sum,a,20 Result,sum,b,21 Result,sum,c,22 Result,length,a,20 Result,length,b,21
Result,length,c,22
1: OB_A 1 2 3 1 1
1
2: OB_B 4 5 6 1 1
1
3: OB_C 7 8 9 1 1
1

Stacking multiple tables using rbindlist

A common refrain in R goes along these lines:

You should not have a bunch of related tables with names like DT1, DT2, ..., DT11.
Iteratively reading and assigning to objects by name is messy. The solution is a list of
tables of data!

Such a list looks like

set.seed(1)
DT_list = lapply(setNames(1:3, paste0("D", 1:3)), function(i)
 data.table(id = 1:2, v = sample(letters, 2)))

$D1
 id v
1: 1 g
2: 2 j

$D2
 id v
1: 1 o
2: 2 w

$D3
 id v
1: 1 f
2: 2 w

Another perspective is that you should store these tables together as one table, by stacking them.
This is straightforward to do using rbindlist:

https://riptutorial.com/ 31

DT = rbindlist(DT_list, id="src")

 src id v
1: D1 1 g
2: D1 2 j
3: D2 1 o
4: D2 2 w
5: D3 1 f
6: D3 2 w

This format makes a lot more sense with data.table syntax, where "by group" operations are
common and straightforward.

For a deeper look, Gregor's answer might be a good place to start. Also check out ?rbindlist, of
course. There's a separate example covering reading in a bunch of tables from CSV and then
stacking them.

Read Reshaping, stacking and splitting online: https://riptutorial.com/data-
table/topic/4117/reshaping--stacking-and-splitting

https://riptutorial.com/ 32

http://stackoverflow.com/a/24376207/
http://www.riptutorial.com/data-table/example/15561/reading-in-many-related-files
http://www.riptutorial.com/data-table/example/15561/reading-in-many-related-files
https://riptutorial.com/data-table/topic/4117/reshaping--stacking-and-splitting
https://riptutorial.com/data-table/topic/4117/reshaping--stacking-and-splitting

Chapter 8: Subsetting rows by group

Remarks

A reminder: DT[where, select|update|do, by] syntax is used to work with columns of a data.table.

The "where" part is the i argument•
The "select|update|do" part is the j argument•

These two arguments are usually passed by position instead of by name.

Examples

Selecting rows within each group

example data
DT <- data.table(Titanic)

Suppose that, for each sex, we want the rows with the highest survival numbers:

DT[Survived == "Yes", .SD[N == max(N)], by=Sex]

Class Sex Age Survived N
1: Crew Male Adult Yes 192
2: 1st Female Adult Yes 140

.SD is the subset of data associated with each Sex; and we are subsetting this further, to the rows
that meet our condition. If speed is important, instead use an approach suggested by eddi on SO:

DT[DT[Survived == "Yes", .I[N == max(N)], by=Sex]$V1]

Class Sex Age Survived N
1: Crew Male Adult Yes 192
2: 1st Female Adult Yes 140

Pitfalls

In the last line of code, .I refers to the row numbers of the full data.table. However, this is not true
when there is no by:

DT[Survived == "Yes", .I]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DT[Survived == "Yes", .I, by=Sex]$I

17 18 19 20 25 26 27 28 21 22 23 24 29 30 31 32

https://riptutorial.com/ 33

http://stackoverflow.com/a/16574176/
https://github.com/Rdatatable/data.table/issues/1494
https://github.com/Rdatatable/data.table/issues/1494
https://github.com/Rdatatable/data.table/issues/1494

Selecting groups

example data
DT = data.table(Titanic)

Suppose we only want to see second class:

DT[Class == "2nd"]

Class Sex Age Survived N
1: 2nd Male Child No 0
2: 2nd Female Child No 0
3: 2nd Male Adult No 154
4: 2nd Female Adult No 13
5: 2nd Male Child Yes 11
6: 2nd Female Child Yes 13
7: 2nd Male Adult Yes 14
8: 2nd Female Adult Yes 80

Here, we simply subset the data using i, the "where" clause.

Selecting groups by condition

example data
DT = data.table(Titanic)

Suppose we want to see each class only if a majority survived:

DT[, if (sum(N[Survived=="Yes"]) > sum(N[Survived=="No"])) .SD, by=Class]

Class Sex Age Survived N
1: 1st Male Child No 0
2: 1st Female Child No 0
3: 1st Male Adult No 118
4: 1st Female Adult No 4
5: 1st Male Child Yes 5
6: 1st Female Child Yes 1
7: 1st Male Adult Yes 57
8: 1st Female Adult Yes 140

Here, we return the subset of data .SD only if our condition is met. An alternative is

DT[, .SD[sum(N[Survived=="Yes"]) > sum(N[Survived=="No"]))], by=Class]

but this has sometimes proven slower.

Read Subsetting rows by group online: https://riptutorial.com/data-table/topic/3784/subsetting-
rows-by-group

https://riptutorial.com/ 34

https://riptutorial.com/data-table/topic/3784/subsetting-rows-by-group
https://riptutorial.com/data-table/topic/3784/subsetting-rows-by-group

Chapter 9: Using .SD and .SDcols for the
subset of data

Introduction

The special symbol .SD is available in j of DT[i,j,by], capturing the Subset of Data for each by
group surviving the filter, i. .SDcols is a helper. Type ?`special-symbols` for the official docs.

Remarks

A reminder: DT[where, select|update|do, by] syntax is used to work with columns of a data.table.

The "where" part is the i argument•
The "select|update|do" part is the j argument•

These two arguments are usually passed by position instead of by name.

Examples

Using .SD and .SDcols

.SD

.SD refers to the subset of the data.table for each group, excluding all columns used in by.

.SD along with lapply can be used to apply any function to multiple columns by group in a
data.table

We will continue using the same built-in dataset, mtcars:

mtcars = data.table(mtcars) # Let's not include rownames to keep things simpler

Mean of all columns in the dataset by number of cylinders, cyl:

mtcars[, lapply(.SD, mean), by = cyl]

cyl mpg disp hp drat wt qsec vs am gear
carb
#1: 6 19.74286 183.3143 122.28571 3.585714 3.117143 17.97714 0.5714286 0.4285714 3.857143
3.428571
#2: 4 26.66364 105.1364 82.63636 4.070909 2.285727 19.13727 0.9090909 0.7272727 4.090909
1.545455
#3: 8 15.10000 353.1000 209.21429 3.229286 3.999214 16.77214 0.0000000 0.1428571 3.285714
3.500000

https://riptutorial.com/ 35

Apart from cyl, there are other categorical columns in the dataset such as vs, am, gear and carb. It
doesn't really make sense to take the mean of these columns. So let's exclude these columns. This
is where .SDcols comes into the picture.

.SDcols

.SDcols specifies the columns of the data.table that are included in .SD.

Mean of all columns (continuous columns) in the dataset by number of gears gear, and number of
cylinders, cyl, arranged by gear and cyl:

All the continuous variables in the dataset
cols_chosen <- c("mpg", "disp", "hp", "drat", "wt", "qsec")

mtcars[order(gear, cyl), lapply(.SD, mean), by = .(gear, cyl), .SDcols = cols_chosen]

gear cyl mpg disp hp drat wt qsec
#1: 3 4 21.500 120.1000 97.0000 3.700000 2.465000 20.0100
#2: 3 6 19.750 241.5000 107.5000 2.920000 3.337500 19.8300
#3: 3 8 15.050 357.6167 194.1667 3.120833 4.104083 17.1425
#4: 4 4 26.925 102.6250 76.0000 4.110000 2.378125 19.6125
#5: 4 6 19.750 163.8000 116.5000 3.910000 3.093750 17.6700
#6: 5 4 28.200 107.7000 102.0000 4.100000 1.826500 16.8000
#7: 5 6 19.700 145.0000 175.0000 3.620000 2.770000 15.5000
#8: 5 8 15.400 326.0000 299.5000 3.880000 3.370000 14.5500

Maybe we don't want to calculate the mean by groups. To calculate the mean for all the cars in the
dataset, we don't specify the by variable.

mtcars[, lapply(.SD, mean), .SDcols = cols_chosen]

mpg disp hp drat wt qsec
#1: 20.09062 230.7219 146.6875 3.596563 3.21725 17.84875

Note: It is not necessary to define cols_chosen beforehand. .SDcols can directly take column names

Read Using .SD and .SDcols for the subset of data online: https://riptutorial.com/data-
table/topic/3787/using--sd-and--sdcols-for-the-subset-of-data

https://riptutorial.com/ 36

https://riptutorial.com/data-table/topic/3787/using--sd-and--sdcols-for-the-subset-of-data
https://riptutorial.com/data-table/topic/3787/using--sd-and--sdcols-for-the-subset-of-data

Chapter 10: Using keys and indices

Introduction

The key and indices of a data.table allow certain computations to run faster, mostly related to joins
and subsetting. The key describes the table's current sort order; while each index stores
information about the order of the table with respect a sequence of columns. See the "Remarks"
section below for links to the official vignettes on the topic.

Remarks

The official vignettes are the best introduction to this topic:

"Keys and fast binary search based subset"•
"Secondary indices and auto indexing"•

Keys vs indices

A data.table can be "keyed" by a sequence of columns, telling interested functions that the data is
sorted by those columns. To get or set the key, use the functions documented at ?key.

Similarly, functions can take advantage of a data.table's "indices." Each index -- and a table can
have more than one -- stores information about the order of the data with respect a sequence of
columns. Like a key, an index can speed up certain tasks. To get or set indices, use the functions
documented at ?indices.

Indices may also be set automatically (currently only for a single column at a time). See
?datatable.optimize for details on how this works and how to disable it if necessary.

Verification and updating

Missing values are allowed in a key column.

Keys and indices are stored as attributes and may, by accident, not correspond to the actual order
of data in the table. Many functions check the validity of the key or index before using it, but it's
worth keeping in mind.

Keys and indices are removed after updates where it's not obvious that sort order is preserved.
For example, starting from DT = data.table(a=c(1,2,4), key="a"), if we update like DT[2, a := 3],
the key is broken.

Examples

https://riptutorial.com/ 37

https://rawgit.com/wiki/Rdatatable/data.table/vignettes/datatable-keys-fast-subset.html
https://rawgit.com/wiki/Rdatatable/data.table/vignettes/datatable-secondary-indices-and-auto-indexing.html

Improving performance for selecting subsets

example data
set.seed(1)
n = 1e7
ng = 1e4
DT = data.table(
 g1 = sample(ng, n, replace=TRUE),
 g2 = sample(ng, n, replace=TRUE),
 v = rnorm(n)
)

Matching on one column

After the first run of a subsetting operation with == or %in%...

system.time(
 DT[g1 %in% 1:100]
)
user system elapsed
0.12 0.03 0.16

An index has been created automatically for g1. Subsequent subsetting operations run almost
instantly:

system.time(
 DT[g1 %in% 1:100]
)
user system elapsed
0 0 0

To monitor when an index is created or used, add the verbose=TRUE option or change the global
setting options(datatable.verbose=TRUE).

Matching on multiple columns

Currently, matching on two columns does not automatically create an index:

system.time(
 DT[g1 %in% 1:100 & g2 %in% 1:100]
)
user system elapsed
0.57 0.00 0.57

Re-run this and it will remain slow. Even if we manually add the index with setindex(DT, g1, g2), it
will remain slow because this query is not yet optimized by the package.

Fortunately, if we can enumerate the combinations of values we want to search for and an index is
available, we can quickly equi-join:

https://riptutorial.com/ 38

system.time(
 DT[CJ(g1 = 1:100, g2 = 1:100, unique=TRUE), on=.(g1, g2), nomatch=0]
)
user system elapsed
0.53 0.00 0.54
setindex(DT, g1, g2)
system.time(
 DT[CJ(g1 = 1:100, g2 = 1:100, unique=TRUE), on=.(g1, g2), nomatch=0]
)
user system elapsed
0 0 0

With CJ, it's important to watch out for the number of combinations becoming too large.

Read Using keys and indices online: https://riptutorial.com/data-table/topic/4977/using-keys-and-
indices

https://riptutorial.com/ 39

https://riptutorial.com/data-table/topic/4977/using-keys-and-indices
https://riptutorial.com/data-table/topic/4977/using-keys-and-indices

Chapter 11: Using list columns to store data

Introduction

Data.table supports column vectors belonging to R's list class.

Remarks

In case it looks weird that we're talking about lists without using that word in the code, note that .()
is an alias for list() when used inside a DT[...] call.

Examples

Reading in many related files

Suppose we want to read and stack a bunch of similarly-formatted files. The quick solution is:

rbindlist(lapply(list.files(patt="csv$"), fread), id=TRUE)

We might not be satisfied with this for a couple reasons:

It might run into errors when reading with fread or when stacking with rbindlist due to
inconsistent or buggy data formatting.

•

We may want to keep track of metadata for each file, grabbed from the file name or perhaps
from some header rows within the (not quite tabular) files.

•

One way to handle this is to make a "files table" and store the contents of each file as a list-column
entry on the row associated with it.

Example data

Before making the example data below, make sure you're in an empty folder you can write to. Run
getwd() and read ?setwd if you need to change folders.

example data
set.seed(1)
for (i in 1:3)
 fwrite(data.table(id = 1:2, v = sample(letters, 2)), file = sprintf("file201%s.csv", i))

Identify files and file metadata

This part is fairly straightforward:

https://riptutorial.com/ 40

First, identify the files you want:
fileDT = data.table(fn = list.files(pattern="csv$"))

Next, optionally parse the names for metadata using regex:
fileDT[, year := type.convert(sub(".*([0-9]{4}).*", "\\1", fn))]

Finally construct a string file-ID column:
fileDT[, id := as.character(.I)]

fn year id
1: file2011.csv 2011 1
2: file2012.csv 2012 2
3: file2013.csv 2013 3

Read in files

Read in the files as a list column:

fileDT[, contents := .(lapply(fn, fread))]

fn year id contents
1: file2011.csv 2011 1 <data.table>
2: file2012.csv 2012 2 <data.table>
3: file2013.csv 2013 3 <data.table>

If there's a snag in reading one of the files or you need to change the arguments to fread
depending on the file's attributes, this step can easily be extended, looking like:

fileDT[, contents := {
 cat(fn, "\n")

 dat = if (year %in% 2011:2012){
 fread(fn, some_args)
 } else {
 fread(fn)
 }

 .(.(dat))
}, by=fn]

For details on options for reading in CSVs and similar files, see ?fread.

Stack data

From here, we want to stack the data:

fileDT[, rbindlist(setNames(contents, id), idcol="file_id")]

file_id id v
1: 1 1 g
2: 1 2 j
3: 2 1 o

https://riptutorial.com/ 41

4: 2 2 w
5: 3 1 f
6: 3 2 w

If some problem occurs in stacking (like column names or classes not matching), we can go back
to the individual tables in fileDT to inspect where the problem originated. For example,

fileDT[id == "2", contents[[1]]]
id v
1: 1 o
2: 2 w

Extensions

If the files are not in your current working dir, use

my_dir = "whatever"
fileDT = data.table(fn = list.files(my_dir, pattern="*.csv"))

and when reading
fileDT[, contents := .(lapply(fn, function(n) fread(file.path(my_dir, n))))]

Read Using list columns to store data online: https://riptutorial.com/data-table/topic/4456/using-list-
columns-to-store-data

https://riptutorial.com/ 42

https://riptutorial.com/data-table/topic/4456/using-list-columns-to-store-data
https://riptutorial.com/data-table/topic/4456/using-list-columns-to-store-data

Chapter 12: Why is my old code not working?

Introduction

The data.table package has undergone a number of changes and innovations over time. Here are
some potential pitfalls that can help users looking at legacy code or reviewing old blog posts.

Examples

unique and duplicated no longer works on keyed data.table

This is for those moving to data.table >= 1.9.8

You have a data set of pet owners and names, but you suspect some repeated data has been
captured.

library(data.table)
DT <- data.table(pet = c("dog","dog","cat","dog"),
 owner = c("Alice","Bob","Charlie","Alice"),
 entry.date = c("31/12/2015","31/12/2015","14/2/2016","14/2/2016"),
 key = "owner")

> tables()
 NAME NROW NCOL MB COLS KEY
[1,] DT 4 3 1 pet,owner,entry.date owner
Total: 1MB

Recall keying a table will sort it. Alice has been entered twice.

> DT
 pet owner entry.date
1: dog Alice 31/12/2015
2: dog Alice 14/2/2016
3: dog Bob 31/12/2015
4: cat Charlie 14/2/2016

Say you used unique to get rid of duplicates in your data based on the key, using the most recent
data capture date by setting fromLast to TRUE.

1.9.8

clean.DT <- unique(DT, fromLast = TRUE)

> tables()
 NAME NROW NCOL MB COLS KEY
[1,] clean.DT 3 3 1 pet,owner,entry.date owner
[2,] DT 4 3 1 pet,owner,entry.date owner
Total: 2MB

https://riptutorial.com/ 43

Alice duplicate been removed.

1.9.8

clean.DT <- unique(DT, fromLast = TRUE)

> tables()
 NAME NROW NCOL MB COLS KEY
[1,] clean.DT 4 3 1 pet,owner,entry.date owner
[2,] DT 4 3 1 pet,owner,entry.date owner

This does not work. Still 4 rows!

Fix

Use the by= parameter which no longer defaults to your key but to all columns.

clean.DT <- unique(DT, by = key(DT), fromLast = TRUE)

Now all is well.

> clean.DT
 pet owner entry.date
1: dog Alice 14/2/2016
2: dog Bob 31/12/2015
3: cat Charlie 14/2/2016

Details and stopgap fix

See item 1 in the NEWS release notes for details:

Changes in v1.9.8 (on CRAN 25 Nov 2016)

POTENTIALLY BREAKING CHANGES

By default all columns are now used by unique(), duplicated() and uniqueN()
data.table methods, #1284 and #1841. To restore old behaviour:
options(datatable.old.unique.by.key=TRUE). In 1 year this option to restore the old
default will be deprecated with warning. In 2 years the option will be removed.
Please explicitly pass by=key(DT) for clarity. Only code that relies on the default is
affected. 266 CRAN and Bioconductor packages using data.table were checked
before release. 9 needed to change and were notified. Any lines of code without
test coverage will have been missed by these checks. Any packages not on
CRAN or Bioconductor were not checked.

1.

So you can use the options as a temporary workaround until your code is fixed.

https://riptutorial.com/ 44

https://github.com/Rdatatable/data.table/blob/master/NEWS.md#changes-in-v198--on-cran-25-nov-2016

options(datatable.old.unique.by.key=TRUE)

Read Why is my old code not working? online: https://riptutorial.com/data-table/topic/8196/why-is-
my-old-code-not-working-

https://riptutorial.com/ 45

https://riptutorial.com/data-table/topic/8196/why-is-my-old-code-not-working-
https://riptutorial.com/data-table/topic/8196/why-is-my-old-code-not-working-

Credits

S.
No

Chapters Contributors

1
Getting started with
data.table

Community, Frank, micstr

2
Adding and
modifying columns

eddi, Frank, jangorecki, micstr

3 Cleaning data Frank

4
Computing summary
statistics

Frank

5 Creating a data.table Chris, Frank

6 Joins and merges Chris, Frank

7
Reshaping, stacking
and splitting

Chris, David Arenburg, Frank, SymbolixAU

8
Subsetting rows by
group

Frank, micstr

9
Using .SD and
.SDcols for the
subset of data

Frank

10
Using keys and
indices

Frank

11
Using list columns to
store data

Frank

12
Why is my old code
not working?

Frank, micstr

https://riptutorial.com/ 46

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/4606130/micstr
https://riptutorial.com/contributor/817778/eddi
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/2490497/jangorecki
https://riptutorial.com/contributor/4606130/micstr
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/4266453/chris
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/4266453/chris
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/4266453/chris
https://riptutorial.com/contributor/3001626/david-arenburg
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/5977215/symbolixau
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/4606130/micstr
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/4606130/micstr

	About
	Chapter 1: Getting started with data.table
	Remarks
	Versions
	Examples
	Installation and setup

	Using the package
	Getting started and finding help
	Syntax and features

	Basic syntax
	Shortcuts, special functions and special symbols inside DT[...]
	Joins inside DT[...]
	Reshaping, stacking and splitting
	Some other functions specialized for data.tables
	Other features of the package
	Chapter 2: Adding and modifying columns
	Remarks
	Examples
	Editing values

	Editing a column
	Editing on a subset of rows
	Removing a column
	Editing multiple columns
	Editing multiple sequentially-dependent columns
	Editing columns by dynamically-determined names
	Using set
	Reordering columns
	Renaming columns
	Modifying factor levels and other column attributes

	Chapter 3: Cleaning data
	Examples
	Handling duplicates

	Keep one row per group
	Keep only unique rows
	Keep only nonunique rows
	Chapter 4: Computing summary statistics
	Remarks
	Examples
	Counting rows by group

	Using .N
	Handling missing groups
	Custom summaries

	Assigning summary statistics as new columns
	Pitfalls
	Untidy data
	Rowwise summaries
	The summary function
	Applying a summarizing function to multiple variables

	Multiple summarizing functions
	Chapter 5: Creating a data.table
	Remarks
	Examples
	Coerce a data.frame
	Build with data.table()
	Read in with fread()
	Modify a data.frame with setDT()
	Copy another data.table with copy()

	Chapter 6: Joins and merges
	Introduction
	Syntax
	Remarks

	Working with keyed tables
	Disambiguating column names in common
	Grouping on subsets
	Examples
	Update values in a join

	Advantages to using separate tables
	Programmatically determining columns
	Equi-join

	Intuition
	Handling multiply-matched rows
	Handling unmatched rows
	Counting matches returned
	Chapter 7: Reshaping, stacking and splitting
	Remarks
	Examples
	melt and cast with data.table
	Reshape using `data.table`
	Going from wide to long format using melt

	Melting: The basics
	Naming variables and values in the result
	Setting types for measure variables in the result
	Handling missing values
	Going from long to wide format using dcast

	Casting: The Basics
	Casting a value
	Formula
	Aggregating our value.var
	Naming columns in the result
	Stacking multiple tables using rbindlist

	Chapter 8: Subsetting rows by group
	Remarks
	Examples
	Selecting rows within each group

	Pitfalls
	Selecting groups
	Selecting groups by condition

	Chapter 9: Using .SD and .SDcols for the subset of data
	Introduction
	Remarks
	Examples
	Using .SD and .SDcols

	.SD
	.SDcols
	Chapter 10: Using keys and indices
	Introduction
	Remarks

	Keys vs indices
	Verification and updating
	Examples
	Improving performance for selecting subsets

	Matching on one column
	Matching on multiple columns
	Chapter 11: Using list columns to store data
	Introduction
	Remarks
	Examples
	Reading in many related files

	Example data
	Identify files and file metadata
	Read in files
	Stack data
	Extensions
	Chapter 12: Why is my old code not working?
	Introduction
	Examples
	unique and duplicated no longer works on keyed data.table

	Fix
	Details and stopgap fix
	Credits

