
django-forms

#django-

forms

Table of Contents

About 1

Chapter 1: Getting started with django-forms 2

Remarks 2

Examples 2

Installation or Setup 2

Chapter 2: Django Built-in forms 3

Introduction 3

Examples 3

Add custom CSS classes 3

Chapter 3: Testing 4

Introduction 4

Examples 4

Simple Test 4

Chapter 4: Using Model Form 5

Introduction 5

Examples 5

Using Django Model Form with Django Class Based View. 5

Making fields not editable 6

Credits 8

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: django-forms

It is an unofficial and free django-forms ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official django-forms.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/django-forms
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with django-forms

Remarks

This section provides an overview of what django-forms is, and why a developer might want to use
it.

It should also mention any large subjects within django-forms, and link out to the related topics.
Since the Documentation for django-forms is new, you may need to create initial versions of those
related topics.

Examples

Installation or Setup

Detailed instructions on getting django-forms set up or installed.

Read Getting started with django-forms online: https://riptutorial.com/django-
forms/topic/8924/getting-started-with-django-forms

https://riptutorial.com/ 2

https://riptutorial.com/django-forms/topic/8924/getting-started-with-django-forms
https://riptutorial.com/django-forms/topic/8924/getting-started-with-django-forms

Chapter 2: Django Built-in forms

Introduction

Django is shipped with several views that require forms. These forms are, naturally, built-in. A
good example are Authentication Built-in forms.

This topic intends to bring documentation on how to work with these forms.

Examples

Add custom CSS classes

Built-in forms are great but sometimes there is a need to customize them, adding new fields or
simply changing CSS attributes.

This example is applicable to several use cases but here it is presented regarding
PasswordChangeForm and its use in a Bootstrap website.

The solution is to create another Form that inerits PasswordChangeForm update the Widget:

class PasswordChangeCustomForm(PasswordChangeForm):
 def __init__(self, user, *args, **kwargs):
 super(PasswordChangeCustomForm, self).__init__(user,*args, **kwargs)
 for field in self.fields:
 self.fields[field].widget.attrs['class'] = 'form-control'

If you only pretend to change certain fields you may do:

class PasswordChangeCustomForm(PasswordChangeForm):
 def __init__(self, user, *args, **kwargs):
 super(PasswordChangeCustomForm, self).__init__(user, *args, **kwargs)
 self.fields['old_password'].widget.attrs.update({'class': 'form-control'})
 self.fields['new_password1'].widget.attrs.update({'class': 'form-control'})
 self.fields['new_password2'].widget.attrs.update({'class': 'form-control'})

Note: all bootstrap forms require the class form-control to keep the website look and feel.

Read Django Built-in forms online: https://riptutorial.com/django-forms/topic/8927/django-built-in-
forms

https://riptutorial.com/ 3

https://docs.djangoproject.com/en/dev/topics/auth/default/#module-django.contrib.auth.forms
https://docs.djangoproject.com/en/dev/topics/auth/default/#django.contrib.auth.forms.PasswordChangeForm
http://getbootstrap.com/
https://docs.djangoproject.com/en/dev/ref/forms/widgets/
https://riptutorial.com/django-forms/topic/8927/django-built-in-forms
https://riptutorial.com/django-forms/topic/8927/django-built-in-forms

Chapter 3: Testing

Introduction

One core feature of Django is unit tests.

This topic intends to bring a complete documentation on how to test forms.

Examples

Simple Test

from django.test import TestCase
from myapp.forms import MyForm

class MyAppTests(TestCase):
 def test_forms(self):
 form_data = {'field1': 'fieldvalue1'}
 form = MyForm(data=form_data)
 self.assertTrue(form.is_valid())

Read Testing online: https://riptutorial.com/django-forms/topic/8928/testing

https://riptutorial.com/ 4

https://riptutorial.com/django-forms/topic/8928/testing

Chapter 4: Using Model Form

Introduction

Django ModelForm enables the creation of a Form class from a Django model.

Examples

Using Django Model Form with Django Class Based View.

Django Model Form with Django Class Based view is a classic way of building pages to do
create/update operations in django application quickly. Within the form we can put methods to
execute tasks. Its a cleaner way to put tasks in forms rather than putting in views/models.

To give an example using Django Model Form, first we need to define our Model.

class MyModel(models.Model):
 name = models.CharField(
 verbose_name = 'Name',
 max_length = 255)

Now let us make a form using this model:

class MyModelForm(forms.ModelForm):

 class Meta:
 model = MyModel
 fields = '__all__'

Lets add a method to print hello world in it.

class MyModelForm(forms.ModelForm):
 class Meta:
 model = MyModel
 fields = '__all__'

 def print_hello_world(self):
 print('Hello World')

Lets make a template to display the form:

<form method="post" action="">
 {% csrf_token %}

 {{ form.as_p }}

<input type="submit" value="Submit Form"/>
</form>

https://riptutorial.com/ 5

https://docs.djangoproject.com/en/1.10/topics/forms/modelforms/#modelform
https://docs.djangoproject.com/en/1.10/topics/class-based-views/

Now we will use this form in three different views which will respectively Create and Update tasks.

from django.views.generic.edit import CreateView, UpdateView
from myapp.models import MyModel

class MyModelCreate(CreateView):
 model = MyModel
 fields = ['name']
 form_class = MyModelForm
 template_name = 'my_template.html'

 def form_valid(self, form):
 # This method is called when valid form data has been POSTed.
 # It should return an HttpResponse.
 form.print_hello_world() # This method will print hello world in console
 return super(MyModelCreate, self).form_valid(form)

class MyModelUpdate(UpdateView):
 model = MyModel
 fields = ['name']
 form_class = MyModelForm
 template_name = 'my_template.html'

Now lets create a urls for accessing those views.

from django.conf.urls import url
from myapp.views import MyModelCreate, MyModelUpdate

urlpatterns = [
 # ...
 url(r'mymodel/add/$', MyModelCreate.as_view(), name='author-add'),
 url(r'mymodel/(?P<pk>[0-9]+)/$', MyModelUpdate.as_view(), name='author-update')
]

Okay, our work has been done. We can access url: localhost:8000/mymodel/add for creating entry in
the model. Also access localhost:8000/mymodel/1 to update that entry.

Making fields not editable

Django 1.9 added the Field.disabled attribute:

The disabled boolean argument, when set to True, disables a form field using the
disabled HTML attribute so that it won’t be editable by users. Even if a user tampers
with the field’s value submitted to the server, it will be ignored in favor of the value from
the form’s initial data.

And so you only need to do:

MyChangeForm(ModelForm):

 def __init__(self, *args, **kwargs):
 super(MyChangeForm, self).__init__(*args, **kwargs)
 self.fields['<field_to_disable>'].disabled = True

https://riptutorial.com/ 6

https://docs.djangoproject.com/en/1.9/ref/forms/fields/#disabled

And creating the form you need:

MyChangeForm(initial={'<field_to_disable>': "something"})

Before version 1.9 you had to:

class MyChangeForm(ModelForm):
 def __init__(self, *args, **kwargs):
 super(ItemForm, self).__init__(*args, **kwargs)
 instance = getattr(self, 'instance', None)
 if instance and instance.id:
 self.fields['<field_to_disable>'].required = False
 self.fields['<field_to_disable>'].widget.attrs['disabled'] = True

def clean_<field_to_disable>(self):
 # As shown in the above answer.
 instance = getattr(self, 'instance', None)
 if instance:
 return instance.<field_to_disable>
 else:
 return self.cleaned_data.get('<field_to_disable>', None)

And creating the form you need:

MyChangeForm(instance=MyChange.objects.get_or_create(<field_to_disable>="something"))

This example was based on this question.

Read Using Model Form online: https://riptutorial.com/django-forms/topic/8926/using-model-form

https://riptutorial.com/ 7

http://stackoverflow.com/questions/324477/in-a-django-form-how-do-i-make-a-field-readonly-or-disabled-so-that-it-cannot
https://riptutorial.com/django-forms/topic/8926/using-model-form

Credits

S.
No

Chapters Contributors

1
Getting started with
django-forms

Community

2 Django Built-in forms NBajanca

3 Testing NBajanca

4 Using Model Form NBajanca, ruddra

https://riptutorial.com/ 8

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/4470542/nbajanca
https://riptutorial.com/contributor/4470542/nbajanca
https://riptutorial.com/contributor/4470542/nbajanca
https://riptutorial.com/contributor/2696165/ruddra

	About
	Chapter 1: Getting started with django-forms
	Remarks
	Examples
	Installation or Setup

	Chapter 2: Django Built-in forms
	Introduction
	Examples
	Add custom CSS classes

	Chapter 3: Testing
	Introduction
	Examples
	Simple Test

	Chapter 4: Using Model Form
	Introduction
	Examples
	Using Django Model Form with Django Class Based View.
	Making fields not editable

	Credits

