
Django

#django

Table of Contents

About 1

Chapter 1: Getting started with Django 2

Remarks 2

Versions 2

Examples 3

Starting a Project 3

Django Concepts 5

A complete hello world example. 6

Virtual Environment 7

Python 3.3+ 7

Python 2 7

Activate (any version) 7

Alternatively: use virtualenvwrapper 8

Alternatively: use pyenv + pyenv-viritualenv 8

Set your Project Path 9

Single File Hello World Example 9

Deployment friendly Project with Docker support. 10

Project Structure 10

Dockerfile 11

Compose 11

Nginx 12

Usage 12

Chapter 2: Administration 14

Examples 14

Change list 14

Additional CSS styles and JS scripts for admin page 15

Dealing with foreign keys referencing large tables 16

views.py 17

urls.py 17

forms.py 17

admin.py 18

Chapter 3: ArrayField - a PostgreSQL-specific field 19

Syntax 19

Remarks 19

Examples 19

A basic ArrayField 19

Specifying the maximum size of an ArrayField 19

Querying for membership of ArrayField with contains 20

Nesting ArrayFields 20

Querying for all models who contain any item in a list with contained_by 20

Chapter 4: Async Tasks (Celery) 21

Remarks 21

Examples 21

Simple example to add 2 numbers 21

Chapter 5: Authentication Backends 23

Examples 23

Email Authentication Backend 23

Chapter 6: Class based views 24

Remarks 24

Examples 24

Class Based Views 24

views.py 24

urls.py 24

Context data 24

views.py 25

book.html 25

List and Details views 25

app/models.py 25

app/views.py 25

app/templates/app/pokemon_list.html 26

app/templates/app/pokemon_detail.html 26

app/urls.py 26

Form and object creation 27

app/views.py 27

app/templates/app/pokemon_form.html (extract) 27

app/templates/app/pokemon_confirm_delete.html (extract) 28

app/models.py 28

Minimal example 29

Django Class Based Views: Example of CreateView 29

One View, Multiple Forms 30

Chapter 7: Context Processors 32

Remarks 32

Examples 32

Use a context processor to access settings.DEBUG in templates 32

Using a context processor to access your most recent blog entries in all templates 32

Extending your templates 34

Chapter 8: Continuous Integration With Jenkins 35

Examples 35

Jenkins 2.0+ Pipeline Script 35

Jenkins 2.0+ Pipeline Script, Docker Containers 35

Chapter 9: CRUD in Django 37

Examples 37

Simplest CRUD example 37

Chapter 10: Custom Managers and Querysets 42

Examples 42

Defining a basic manager using Querysets and `as_manager` method 42

select_related for all queries 43

Define custom managers 43

Chapter 11: Database Routers 45

Examples 45

Adding a Database Routing file 45

Specifying different databases in code 46

Chapter 12: Database Setup 47

Examples 47

MySQL / MariaDB 47

PostgreSQL 48

sqlite 49

Fixtures 49

Django Cassandra Engine 50

Chapter 13: Database transactions 52

Examples 52

Atomic transactions 52

Problem 52

Solution 52

Chapter 14: Debugging 54

Remarks 54

Examples 54

Using Python Debugger (Pdb) 54

Using Django Debug Toolbar 55

Using "assert False" 57

Consider Writing More Documentation, Tests, Logging and Assertions Instead of Using a Debu 57

Chapter 15: Deployment 58

Examples 58

Running Django application with Gunicorn 58

Deploying with Heroku 58

Simple remote deploy fabfile.py 59

Using Heroku Django Starter Template. 60

Django deployment instructions. Nginx + Gunicorn + Supervisor on Linux (Ubuntu) 60

NGINX 61

GUNICORN 62

SUPERVISOR 62

Deploying locally without setting up apache/nginx 63

Chapter 16: Django and Social Networks 64

Parameters 64

Examples 65

Easy way: python-social-auth 65

Using Django Allauth 68

Chapter 17: Django from the command line. 71

Remarks 71

Examples 71

Django from the command line. 71

Chapter 18: Django Rest Framework 72

Examples 72

Simple barebones read-only API 72

Chapter 19: django-filter 74

Examples 74

Use django-filter with CBV 74

Chapter 20: Extending or Substituting User Model 75

Examples 75

Custom user model with email as primary login field. 75

Use the `email` as username and get rid of the `username` field 78

Extend Django User Model Easily 80

Specifing a custom User model 82

Referencing the User model 83

Chapter 21: F() expressions 85

Introduction 85

Syntax 85

Examples 85

Avoiding race conditions 85

Updating queryset in bulk 85

Execute Arithmetic operations between fields 86

Chapter 22: Form Widgets 88

Examples 88

Simple text input widget 88

Composite widget 88

Chapter 23: Forms 90

Examples 90

ModelForm Example 90

Defining a Django form from scratch (with widgets) 90

Removing a modelForm's field based on condition from views.py 90

File Uploads with Django Forms 92

Validation of fields and Commit to model (Change user e-mail) 93

Chapter 24: Formsets 96

Syntax 96

Examples 96

Formsets with Initialized and unitialized data 96

Chapter 25: Generic Views 98

Introduction 98

Remarks 98

Examples 98

Minimum Example: Functional vs. Generic Views 98

Customizing Generic Views 99

Generic Views with Mixins 100

Chapter 26: How to reset django migrations 101

Introduction 101

Examples 101

Resetting Django Migration: Deleting existing database and migrating as fresh 101

Chapter 27: How to use Django with Cookiecutter? 102

Examples 102

Installing and setting up django project using Cookiecutter 102

Chapter 28: Internationalization 104

Syntax 104

Examples 104

Introduction to Internationalization 104

Setting up 104

settings.py 104

Marking strings as translatable 104

Translating strings 105

Lazy vs Non-Lazy translation 105

Translation in templates 106

Translating strings 107

Noop use case 109

Common pitfalls 109

fuzzy translations 109

Multiline strings 109

Chapter 29: JSONField - a PostgreSQL specific field 111

Syntax 111

Remarks 111

Chaining queries 111

Examples 111

Creating a JSONField 111

Available in Django 1.9+ 111

Creating an object with data in a JSONField 111

Querying top-level data 112

Querying data nested in dictionaries 112

Querying data present in arrays 112

Ordering by JSONField values 112

Chapter 30: Logging 113

Examples 113

Logging to Syslog service 113

Django basic logging configuration 114

Chapter 31: Management Commands 116

Introduction 116

Remarks 116

Examples 116

Creating and Running a Management Command 116

Get list of existing commands 117

Using django-admin instead of manage.py 118

Builtin Management Commands 118

Chapter 32: Many-to-many relationships 120

Examples 120

With a through model 120

Simple Many To Many Relationship. 121

Using ManyToMany Fields 121

Chapter 33: Mapping strings to strings with HStoreField - a PostgreSQL specific field 122

Syntax 122

Remarks 122

Examples 122

Setting up HStoreField 122

Adding HStoreField to your model 122

Creating a new model instance 122

Performing key lookups 123

Using contains 123

Chapter 34: Meta: Documentation Guidelines 124

Remarks 124

Examples 124

Unsupported versions don't need special mention 124

Chapter 35: Middleware 125

Introduction 125

Remarks 125

Examples 125

Add data to requests 125

Middleware to filter by IP address 126

Globally handling exception 127

Understanding Django 1.10 middleware's new style 127

Chapter 36: Migrations 129

Parameters 129

Examples 129

Working with migrations 129

Manual migrations 130

Fake migrations 131

Custom names for migration files 132

Solving migration conflicts 132

Introduction 132

Merging migrations 133

Change a CharField to a ForeignKey 133

Chapter 37: Model Aggregations 135

Introduction 135

Examples 135

Average, Minimum, Maximum, Sum from Queryset 135

Count the number of foreign relations 135

GROUB BY ... COUNT/SUM Django ORM equivalent 136

Chapter 38: Model Field Reference 138

Parameters 138

Remarks 139

Examples 139

Number Fields 139

BinaryField 142

CharField 142

DateTimeField 142

ForeignKey 142

Chapter 39: Models 144

Introduction 144

Examples 144

Creating your first model 144

Applying the changes to the database (Migrations) 144

Creating a model with relationships 146

Basic Django DB queries 147

A basic unmanaged table. 148

Advanced models 149

Automatic primary key 149

Absolute url 149

String representation 150

Slug field 150

The Meta class 150

Computed Values 150

Adding a string representation of a model 151

Model mixins 152

UUID Primary key 153

Inheritance 153

Chapter 40: Project Structure 155

Examples 155

Repository > Project > Site/Conf 155

Namespacing static and templates files in django apps 156

Chapter 41: Querysets 157

Introduction 157

Examples 157

Simple queries on a standalone model 157

Advanced queries with Q objects 158

Reduce number of queries on ManyToManyField (n+1 issue) 158

Problem 158

Solution 159

Reduce number of queries on ForeignKey field (n+1 issue) 160

Problem 160

Solution 161

Get SQL for Django queryset 161

Get first and last record from QuerySet 162

Advanced queries with F objects 162

Chapter 42: RangeFields - a group of PostgreSQL specific fields 164

Syntax 164

Examples 164

Including numeric range fields in your model 164

Setting up for RangeField 164

Creating models with numeric range fields 164

Using contains 164

Using contained_by 165

Using overlap 165

Using None to signify no upper bound 165

Ranges operations 165

Chapter 43: Running Celery with Supervisor 166

Examples 166

Celery Configuration 166

CELERY 166

Running Supervisor 167

Celery + RabbitMQ with Supervisor 168

Chapter 44: Security 170

Examples 170

Cross Site Scripting (XSS) protection 170

Clickjacking protection 171

Cross-site Request Forgery (CSRF) protection 172

Chapter 45: Settings 174

Examples 174

Setting the timezone 174

Accessing settings 174

Using BASE_DIR to ensure app portability 174

Using Environment variables to manage Settings across servers 175

settings.py 175

Using multiple settings 176

Alternative #1 177

Alternative #2 177

Using multiple requirements files 177

Structure 177

Hiding secret data using a JSON file 178

Using a DATABASE_URL from the environment 179

Chapter 46: Signals 181

Parameters 181

Remarks 181

Examples 182

Extending User Profile Example 182

Different syntax to post/pre a signal 182

How to find if it's an insert or update in the pre_save signal 183

Inheriting Signals on Extended Models 183

Chapter 47: Template Tags and Filters 185

Examples 185

Custom Filters 185

Simple tags 185

Advanced custom tags using Node 186

Chapter 48: Templating 189

Examples 189

Variables 189

Templating in Class Based Views 190

Templating in Function Based Views 190

Template filters 191

Prevent sensitive methods from being called in templates 192

Use of {% extends %} , {% include %} and {% blocks %} 192

summary 192

Guide 193

Chapter 49: Timezones 195

Introduction 195

Examples 195

Enable Time Zone Support 195

Setting Session Timezones 195

Chapter 50: Unit Testing 197

Examples 197

Testing - a complete example 197

Testing Django Models Effectively 198

Testing Access Control in Django Views 199

The Database and Testing 201

Limit the number of tests executed 202

Chapter 51: URL routing 204

Examples 204

How Django handles a request 204

Set the URL namespace for a reusable app (Django 1.9+) 206

Chapter 52: Using Redis with Django - Caching Backend 208

Remarks 208

Examples 208

Using django-redis-cache 208

Using django-redis 208

Chapter 53: Views 210

Introduction 210

Examples 210

[Introductory] Simple View (Hello World Equivalent) 210

Credits 211

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: django

It is an unofficial and free Django ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official Django.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/django
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Django

Remarks

Django advertises itself as "the web framework for perfectionists with deadlines" and "Django
makes it easier to build better Web apps more quickly and with less code". It can be seen as an
MVC architecture. At it's core it has:

a lightweight and standalone web server for development and testing•
a form serialization and validation system that can translate between HTML forms and
values suitable for storage in the database

•

a template system that utilizes the concept of inheritance borrowed from object-oriented
programming

•

a caching framework that can use any of several cache methods support for middleware
classes that can intervene at various stages of request processing and carry out custom
functions

•

an internal dispatcher system that allows components of an application to communicate
events to each other via pre-defined signals

•

an internationalization system, including translations of Django's own components into a
variety of languages

•

a serialization system that can produce and read XML and/or JSON representations of
Django model instances

•

a system for extending the capabilities of the template engine•
an interface to Python's built in unit test framework•

Versions

Version Release Date

1.11 2017-04-04

1.10 2016-08-01

1.9 2015-12-01

1.8 2015-04-01

1.7 2014-09-02

1.6 2013-11-06

1.5 2013-02-26

1.4 2012-03-23

1.3 2011-03-23

https://riptutorial.com/ 2

https://docs.djangoproject.com/en/stable/releases/1.11/
https://docs.djangoproject.com/en/stable/releases/1.10/
https://docs.djangoproject.com/en/stable/releases/1.9/
https://docs.djangoproject.com/en/stable/releases/1.8/
https://docs.djangoproject.com/en/stable/releases/1.7/
https://docs.djangoproject.com/en/stable/releases/1.6/
https://docs.djangoproject.com/en/stable/releases/1.5/
https://docs.djangoproject.com/en/stable/releases/1.4/
https://docs.djangoproject.com/en/stable/releases/1.3/

Version Release Date

1.2 2010-05-17

1.1 2009-07-29

1.0 2008-09-03

Examples

Starting a Project

Django is a web development framework based on Python. Django 1.11 (the latest stable release)
requires Python 2.7, 3.4, 3.5 or 3.6 to be installed. Assuming pip is available, installation is as
simple as running the following command. Keep in mind, omitting the version as shown below will
install the latest version of django:

$ pip install django

For installing specific version of django, let's suppose the version is django 1.10.5 , run the
following command:

$ pip install django==1.10.5

Web applications built using Django must reside within a Django project. You can use the django-
admin command to start a new project in the current directory:

$ django-admin startproject myproject

where myproject is a name that uniquely identifies the project and can consist of numbers, letters,
and underscores.

This will create the following project structure:

myproject/
 manage.py
 myproject/
 __init__.py
 settings.py
 urls.py
 wsgi.py

To run the application, start the development server

$ cd myproject
$ python manage.py runserver

Now that the server’s running, visit http://127.0.0.1:8000/ with your web browser. You’ll see the

https://riptutorial.com/ 3

https://docs.djangoproject.com/en/stable/releases/1.2/
https://docs.djangoproject.com/en/stable/releases/1.1/
https://docs.djangoproject.com/en/stable/releases/1.0/

following page:

By default, the runserver command starts the development server on the internal IP at port 8000.
This server will automatically restart as you make changes to your code. But in case you add new
files, you’ll have to manually restart the server.

If you want to change the server’s port, pass it as a command-line argument.

$ python manage.py runserver 8080

If you want to change the server’s IP, pass it along with the port.

$ python manage.py runserver 0.0.0.0:8000

Note that runserver is only for debug builds and local testing. Specialised server programs (such
as Apache) should always be used in production.

Adding a Django App

A Django project usually contains multiple apps. This is simply a way to structure your project in
smaller, maintainable modules. To create an app, go to your projectfolder (where manage.py is),
and run the startapp command (change myapp to whatever you want):

python manage.py startapp myapp

This will generate the myapp folder and some necessary files for you, like models.py and views.py.

In order to make Django aware of myapp, add it to your settings.py:

myproject/settings.py

Application definition
INSTALLED_APPS = [
 ...
 'myapp',
]

The folder-structure of a Django project can be changed to fit your preference. Sometimes the

https://riptutorial.com/ 4

https://i.stack.imgur.com/sABAE.png

project folder is renamed to /src to avoid repeating folder names. A typical folder structure looks
like this:

Django Concepts

django-admin is a command line tool that ships with Django. It comes with several useful
commands for getting started with and managing a Django project. The command is the same as
./manage.py , with the difference that you don't need to be in the project directory. The
DJANGO_SETTINGS_MODULE environment variable needs to be set.

A Django project is a Python codebase that contains a Django settings file. A project can be
created by the Django admin through the command django-admin startproject NAME. The project
typically has a file called manage.py at the top level and a root URL file called urls.py. manage.py is a
project specific version of django-admin, and lets you run management commands on that project.
For example, to run your project locally, use python manage.py runserver. A project is made up of
Django apps.

A Django app is a Python package that contains a models file (models.py by default) and other
files such as app-specific urls and views. An app can be created through the command django-
admin startapp NAME (this command should be run from inside your project directory). For an app to
be part of a project, it must be included in the INSTALLED_APPS list in settings.py. If you used the
standard configuration, Django comes with several apps of it's own apps preinstalled which will
handle things like authentication for you. Apps can be used in multiple Django projects.

The Django ORM collects all of the database models defined in models.py and creates database
tables based on those model classes. To do this, first, setup your database by modifying the
DATABASES setting in settings.py. Then, once you have defined your database models, run python

https://riptutorial.com/ 5

https://i.stack.imgur.com/LRsRO.png
https://docs.djangoproject.com/en/stable/ref/django-admin/
https://docs.djangoproject.com/en/stable/ref/django-admin/
https://docs.djangoproject.com/en/stable/ref/django-admin/#startproject
https://docs.djangoproject.com/en/stable/ref/django-admin/#startapp
https://docs.djangoproject.com/en/stable/ref/django-admin/#startapp
https://docs.djangoproject.com/en/stable/ref/settings/#installed-apps
https://docs.djangoproject.com/en/stable/topics/auth/
https://docs.djangoproject.com/en/stable/ref/settings/#databases
https://docs.djangoproject.com/en/stable/topics/db/models/
https://docs.djangoproject.com/en/stable/ref/django-admin/#makemigrations

manage.py makemigrations followed by python manage.py migrate to create or update your database's
schema based on your models.

A complete hello world example.

Step 1 If you already have Django installed, you can skip this step.

pip install Django

Step 2 Create a new project

django-admin startproject hello

That will create a folder named hello which will contain the following files:

hello/
├── hello/
│ ├── __init__.py
│ ├── settings.py
│ ├── urls.py
│ └── wsgi.py
└── manage.py

Step 3 Inside the hello module (the folder containing the __init.py__) create a file called views.py:

hello/
├── hello/
│ ├── __init__.py
│ ├── settings.py
│ ├── urls.py
│ ├── views.py <- here
│ └── wsgi.py
└── manage.py

and put in the following content:

from django.http import HttpResponse

def hello(request):
 return HttpResponse('Hello, World')

This is called a view function.

Step 4 Edit hello/urls.py as follows:

from django.conf.urls import url
from django.contrib import admin
from hello import views

urlpatterns = [
 url(r'^admin/', admin.site.urls),
 url(r'^$', views.hello)

https://riptutorial.com/ 6

https://docs.djangoproject.com/en/stable/ref/django-admin/#makemigrations
https://docs.djangoproject.com/en/stable/ref/django-admin/#migrate

]

which links the view function hello() to a URL.

Step 5 Start the server.

python manage.py runserver

Step 6

Browse to http://localhost:8000/ in a browser and you will see:

Hello, World

Virtual Environment

Although not strictly required, it is highly recommended to start your project in a "virtual
environment." A virtual environment is a container (a directory) that holds a specific version of
Python and a set of modules (dependencies), and which does not interfere with the operating
system's native Python or other projects on the same computer.

By setting up a different virtual environment for each project you work on, various Django projects
can run on different versions of Python, and can maintain their own sets of dependencies, without
risk of conflict.

Python 3.3+

Python 3.3+ already includes a standard venv module, which you can usually call as pyvenv. In
environments where the pyvenv command is not available, you can access the same functionality
by directly invoking the module as python3 -m venv.

To create the Virtual environment:

$ pyvenv <env-folder>
Or, if pyvenv is not available
$ python3 -m venv <env-folder>

Python 2

If using Python 2, you can first install it as a separate module from pip:

$ pip install virtualenv

And then create the environment using the virtualenv command instead:

$ virtualenv <env-folder>

https://riptutorial.com/ 7

Activate (any version)

The virtual environment is now set up. In order to use it, it must be activated in the terminal you
want to use it.

To 'activate' the virtual environment (any Python version)

Linux like:

$ source <env-folder>/bin/activate

Windows like:

<env-folder>\Scripts\activate.bat

This changes your prompt to indicate the virtual environment is active. (<env-folder>) $

From now on, everything installed using pip will be installed to your virtual env folder, not system-
wide.

To leave the virtual environment use deactivate :

(<env-folder>) $ deactivate

Alternatively: use virtualenvwrapper

You may also consider using virtualenvwrapper which makes virtualenv creation and activation
very handy as well as separating it from your code:

Create a virtualenv
mkvirtualenv my_virtualenv

Activate a virtualenv
workon my_virtualenv

Deactivate the current virtualenv
deactivate

Alternatively: use pyenv + pyenv-viritualenv

In environments where you need to handle multiple Python versions you can benefit from
virtualenv together with pyenv-virtualenv:

Create a virtualenv for specific Python version
pyenv virtualenv 2.7.10 my-virtual-env-2.7.10

https://riptutorial.com/ 8

http://virtualenvwrapper.readthedocs.io/

Create a vritualenv for active python verion
pyenv virtualenv venv34

Activate, deactivate virtualenv
pyenv activate <name>
pyenv deactivate

When using virtualenvs, it is often useful to set your PYTHONPATH and DJANGO_SETTINGS_MODULE in the
postactivate script.

#!/bin/sh
This hook is sourced after this virtualenv is activated

Set PYTHONPATH to isolate the virtualenv so that only modules installed
in the virtualenv are available
export PYTHONPATH="/home/me/path/to/your/project_root:$VIRTUAL_ENV/lib/python3.4"

Set DJANGO_SETTINGS_MODULE if you don't use the default `myproject.settings`
or if you use `django-admin` rather than `manage.py`
export DJANGO_SETTINGS_MODULE="myproject.settings.dev"

Set your Project Path

It is often also helpful to set your project path inside a special .project file located in your base
<env-folder>. When doing this, everytime you activate your virtual environment, it will change the
active directory to the specified path.

Create a new file called <env-folder>/.project. The contents of the file should ONLY be the path of
the project directory.

/path/to/project/directory

Now, initiate your virtual environment (either using source <env-folder>/bin/activate or workon
my_virtualenv) and your terminal will change directories to /path/to/project/directory.

Single File Hello World Example

This example shows you a minimal way to create a Hello World page in Django. This will help you
realize that the django-admin startproject example command basically creates a bunch of folders
and files and that you don't necessarily need that structure to run your project.

Create a file called file.py.1.

Copy and paste the following code in that file.

 import sys

 from django.conf import settings

2.

https://riptutorial.com/ 9

http://virtualenvwrapper.readthedocs.io/en/latest/scripts.html#postactivate
http://virtualenvwrapper.readthedocs.io/en/latest/scripts.html#postactivate

 settings.configure(
 DEBUG=True,
 SECRET_KEY='thisisthesecretkey',
 ROOT_URLCONF=__name__,
 MIDDLEWARE_CLASSES=(
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
),
)

 from django.conf.urls import url
 from django.http import HttpResponse

 # Your code goes below this line.

 def index(request):
 return HttpResponse('Hello, World!')

 urlpatterns = [
 url(r'^$', index),
]

 # Your code goes above this line

 if __name__ == "__main__":
 from django.core.management import execute_from_command_line

 execute_from_command_line(sys.argv)

Go to the terminal and run the file with this command python file.py runserver.3.

Open your browser and go to 127.0.0.1:8000.4.

Deployment friendly Project with Docker support.

The default Django project template is fine but once you get to deploy your code and for example
devops put their hands on the project things get messy. What you can do is separate your source
code from the rest that is required to be in your repository.

You can find a usable Django project template on GitHub.

Project Structure

PROJECT_ROOT
├── devel.dockerfile
├── docker-compose.yml
├── nginx
│ └── project_name.conf
├── README.md
├── setup.py
└── src
 ├── manage.py
 └── project_name
 ├── __init__.py

https://riptutorial.com/ 10

http://127.0.0.1:8000
https://github.com/pkucmus/django-project-template

 └── service
 ├── __init__.py
 ├── settings
 │ ├── common.py
 │ ├── development.py
 │ ├── __init__.py
 │ └── staging.py
 ├── urls.py
 └── wsgi.py

I like to keep the service directory named service for every project thanks to that I can use the
same Dockerfile across all my projects. The split of requirements and settings are already well
documented here:
Using multiple requirements files
Using multiple settings

Dockerfile

With the assumption that only developers make use of Docker (not every dev ops trust it these
days). This could be a dev environment devel.dockerfile:

FROM python:2.7
ENV PYTHONUNBUFFERED 1

RUN mkdir /run/service
ADD . /run/service
WORKDIR /run/service

RUN pip install -U pip
RUN pip install -I -e .[develop] --process-dependency-links

WORKDIR /run/service/src
ENTRYPOINT ["python", "manage.py"]
CMD ["runserver", "0.0.0.0:8000"]

Adding only requirements will leverage Docker cache while building - you only need to rebuild on
requirements change.

Compose

Docker compose comes in handy - especially when you have multiple services to run locally.
docker-compose.yml:

version: '2'
services:
 web:
 build:
 context: .
 dockerfile: devel.dockerfile
 volumes:
 - "./src/{{ project_name }}:/run/service/src/{{ project_name }}"

https://riptutorial.com/ 11

http://www.riptutorial.com/django/example/8561/using-multiple-requirements-files
http://www.riptutorial.com/django/example/4567/using-multiple-settings

 - "./media:/run/service/media"
 ports:
 - "8000:8000"
 depends_on:
 - db
 db:
 image: mysql:5.6
 environment:
 - MYSQL_ROOT_PASSWORD=root
 - MYSQL_DATABASE={{ project_name }}
 nginx:
 image: nginx
 ports:
 - "80:80"
 volumes:
 - "./nginx:/etc/nginx/conf.d"
 - "./media:/var/media"
 depends_on:
 - web

Nginx

Your development environment should be as close to the prod environment as possible so I like
using Nginx from the start. Here is an example nginx configuration file:

server {
 listen 80;
 client_max_body_size 4G;
 keepalive_timeout 5;

 location /media/ {
 autoindex on;
 alias /var/media/;
 }

 location / {
 proxy_pass_header Server;
 proxy_set_header Host $http_host;
 proxy_redirect off;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Scheme $scheme;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Ssl on;
 proxy_connect_timeout 600;
 proxy_read_timeout 600;
 proxy_pass http://web:8000/;
 }
}

Usage

$ cd PROJECT_ROOT
$ docker-compose build web # build the image - first-time and after requirements change
$ docker-compose up # to run the project

https://riptutorial.com/ 12

$ docker-compose run --rm --service-ports --no-deps # to run the project - and be able to use
PDB
$ docker-compose run --rm --no-deps <management_command> # to use other than runserver
commands, like makemigrations
$ docker exec -ti web bash # For accessing django container shell, using it you will be
inside /run/service directory, where you can run ./manage shell, or other stuff
$ docker-compose start # Starting docker containers
$ docker-compose stop # Stopping docker containers

Read Getting started with Django online: https://riptutorial.com/django/topic/200/getting-started-
with-django

https://riptutorial.com/ 13

https://riptutorial.com/django/topic/200/getting-started-with-django
https://riptutorial.com/django/topic/200/getting-started-with-django

Chapter 2: Administration

Examples

Change list

Let's say you have a simple myblog app with the following model:

from django.conf import settings
from django.utils import timezone

class Article(models.Model):
 title = models.CharField(max_length=70)
 slug = models.SlugField(max_length=70, unique=True)
 author = models.ForeignKey(settings.AUTH_USER_MODEL, models.PROTECT)
 date_published = models.DateTimeField(default=timezone.now)
 is_draft = models.BooleanField(default=True)
 content = models.TextField()

Django Admin's "change list" is the page that lists all objects of a given model.

from django.contrib import admin
from myblog.models import Article

@admin.register(Article)
class ArticleAdmin(admin.ModelAdmin):
 pass

By default, it will use the __str__() method (or __unicode__() if you on python2) of your model to
display the object "name". This means that if you didn't override it, you will see a list of articles, all
named "Article object". To change this behavior, you can set the __str__() method:

class Article(models.Model):
 def __str__(self):
 return self.title

Now, all your articles should have a different name, and more explicit than "Article object".

However you may want to display other data in this list. For this, use list_display:

@admin.register(Article)
class ArticleAdmin(admin.ModelAdmin):
 list_display = ['__str__', 'author', 'date_published', 'is_draft']

list_display is not limited to the model fields and properties. it can also be a method of your
ModelAdmin:

from django.forms.utils import flatatt
from django.urls import reverse
from django.utils.html import format_html

https://riptutorial.com/ 14

@admin.register(Article)
class ArticleAdmin(admin.ModelAdmin):
 list_display = ['title', 'author_link', 'date_published', 'is_draft']

 def author_link(self, obj):
 author = obj.author
 opts = author._meta
 route = '{}_{}_change'.format(opts.app_label, opts.model_name)
 author_edit_url = reverse(route, args=[author.pk])
 return format_html(
 '<a{}>{}', flatatt({'href': author_edit_url}), author.first_name)

 # Set the column name in the change list
 author_link.short_description = "Author"
 # Set the field to use when ordering using this column
 author_link.admin_order_field = 'author__firstname'

Additional CSS styles and JS scripts for admin page

Suppose you have a simple Customer model:

class Customer(models.Model):
 first_name = models.CharField(max_length=255)
 last_name = models.CharField(max_length=255)
 is_premium = models.BooleanField(default=False)

You register it in the Django admin and add search field by first_name and last_name:

@admin.register(Customer)
class CustomerAdmin(admin.ModelAdmin):
 list_display = ['first_name', 'last_name', 'is_premium']
 search_fields = ['first_name', 'last_name']

After you do this, the search fields appear in the admin list page with the default placeholder: "
keyword". But what if you want to change that placeholder to "Search by name"?

You can do this by passing custom Javascript file into admin Media:

@admin.register(Customer)
class CustomerAdmin(admin.ModelAdmin):
 list_display = ['first_name', 'last_name', 'is_premium']
 search_fields = ['first_name', 'last_name']

 class Media:
 #this path may be any you want,
 #just put it in your static folder
 js = ('js/admin/placeholder.js',)

You can use browser debug toolbar to find what id or class Django set to this searchbar and then
write your js code:

$(function () {
 $('#searchbar').attr('placeholder', 'Search by name')

https://riptutorial.com/ 15

})

Also Media class allows you to add css files with dictionary object:

class Media:
 css = {
 'all': ('css/admin/styles.css',)
 }

For example we need to display each element of first_name column in specific color.
By default Django create table column for every item in list_display, all <td> tags will have css
class like field-'list_display_name', in our case it will field_first_name

.field_first_name {
 background-color: #e6f2ff;
 }

If you want to customize other behavior by adding JS or some css styles, you can always check
id`s and classes of elements in the browser debug tool.

Dealing with foreign keys referencing large tables

By default, Django renders ForeignKey fields as a <select> input. This can cause pages to be load
really slowly if you have thousands or tens of thousand entries in the referenced table. And even
if you have only hundreds of entries, it is quite uncomfortable to look for a particular entry among
all.

A very handy external module for this is django-autocomplete-light (DAL). This enables to use
autocomplete fields instead of <select> fields.

https://riptutorial.com/ 16

http://django-autocomplete-light.readthedocs.io/

views.py

from dal import autocomplete

class CityAutocomp(autocomplete.Select2QuerySetView):
 def get_queryset(self):
 qs = City.objects.all()
 if self.q:
 qs = qs.filter(name__istartswith=self.q)
 return qs

urls.py

urlpatterns = [
 url(r'^city-autocomp/$', CityAutocomp.as_view(), name='city-autocomp'),
]

forms.py

from dal import autocomplete

class PlaceForm(forms.ModelForm):
 city = forms.ModelChoiceField(
 queryset=City.objects.all(),
 widget=autocomplete.ModelSelect2(url='city-autocomp')
)

 class Meta:
 model = Place

https://riptutorial.com/ 17

http://i.stack.imgur.com/WcP7C.png

 fields = ['__all__']

admin.py

@admin.register(Place)
class PlaceAdmin(admin.ModelAdmin):
 form = PlaceForm

Read Administration online: https://riptutorial.com/django/topic/1219/administration

https://riptutorial.com/ 18

https://riptutorial.com/django/topic/1219/administration

Chapter 3: ArrayField - a PostgreSQL-specific
field

Syntax

from django.contrib.postgres.fields import ArrayField•
class ArrayField(base_field, size=None, **options)•
FooModel.objects.filter(array_field_name__contains=[objects, to, check])•
FooModel.objects.filter(array_field_name__contained_by=[objects, to, check])•

Remarks

Note that although the size parameter is passed to PostgreSQL, PostgreSQL will not enforce it.

When using ArrayFields one should keep in mind this word of warning from the Postgresql arrays
documentation.

Tip: Arrays are not sets; searching for specific array elements can be a sign of
database misdesign. Consider using a separate table with a row for each item that
would be an array element. This will be easier to search, and is likely to scale better for
a large number of elements.

Examples

A basic ArrayField

To create a PostgreSQL ArrayField, we should give ArrayField the type of data we want it to store
as a field as its first argument. Since we'll be storing book ratings, we will use FloatField.

 from django.db import models, FloatField
 from django.contrib.postgres.fields import ArrayField

 class Book(models.Model):
 ratings = ArrayField(FloatField())

Specifying the maximum size of an ArrayField

 from django.db import models, IntegerField
 from django.contrib.postgres.fields import ArrayField

 class IceCream(models.Model):
 scoops = ArrayField(IntegerField() # we'll use numbers to ID the scoops
 , size=6) # our parlor only lets you have 6 scoops

When you use the size parameter, it's passed through to postgresql, which accepts it and then

https://riptutorial.com/ 19

https://www.postgresql.org/docs/9.5/static/arrays.html
https://www.postgresql.org/docs/9.5/static/arrays.html

ignores it! Thus it's quite possible to add 7 integers to the scoops field above using the postgresql
console.

Querying for membership of ArrayField with contains

This query returns all cones with a chocolate scoop and a vanilla scoop.

VANILLA, CHOCOLATE, MINT, STRAWBERRY = 1, 2, 3, 4 # constants for flavors
choco_vanilla_cones = IceCream.objects.filter(scoops__contains=[CHOCOLATE, VANILLA])

Don't forget to import the IceCream model from your models.py file.

Also bear in mind that django will not create an index for ArrayFields. If you are going to search
them, you are going to need an index and it will need to be manually created with a call to
RunSQL in your migrations file.

Nesting ArrayFields

You can nest ArrayFields by passing another ArrayField as it's base_field.

from django.db import models, IntegerField
from django.contrib.postgres.fields import ArrayField

class SudokuBoard(models.Model):
 numbers = ArrayField(
 ArrayField(
 models.IntegerField(),
 size=9,
),
 size=9,
)

Querying for all models who contain any item in a list with contained_by

This query returns all cones with either a mint scoop or a vanilla scoop.

minty_vanilla_cones = IceCream.objects.filter(scoops__contained_by=[MINT, VANILLA])

Read ArrayField - a PostgreSQL-specific field online:
https://riptutorial.com/django/topic/1693/arrayfield---a-postgresql-specific-field

https://riptutorial.com/ 20

https://riptutorial.com/django/topic/1693/arrayfield---a-postgresql-specific-field

Chapter 4: Async Tasks (Celery)

Remarks

Celery is a task queue which can run background or scheduled jobs and integrates with Django
pretty well. Celery requires something known as message broker to pass messages from
invocation to the workers. This message broker can be redis, rabbitmq or even Django ORM/db
although that is not a recommended approach.

Before you get started with the example, You will have to configure celery. To configure celery,
create a celery_config.py file in the main app, parallel to the settings.py file.

from __future__ import absolute_import
import os
from celery import Celery
from django.conf import settings

broker url
BROKER_URL = 'redis://localhost:6379/0'

Indicate Celery to use the default Django settings module
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'config.settings')

app = Celery('config')
app.config_from_object('django.conf:settings')
if you do not need to keep track of results, this can be turned off
app.conf.update(
 CELERY_RESULT_BACKEND=BROKER_URL,
)

This line will tell Celery to autodiscover all your tasks.py that are in your app folders
app.autodiscover_tasks(lambda: settings.INSTALLED_APPS)

And in the main app's __init__.py file import the celery app. like this

-*- coding: utf-8 -*-
Not required for Python 3.
from __future__ import absolute_import

from .celery_config import app as celery_app # noqa

To run celery worker, use this command at the level where manage.py is.

pros is your django project,
celery -A proj worker -l info

Examples

Simple example to add 2 numbers

https://riptutorial.com/ 21

To get started:

Install celery pip install celery1.
configure celery (head to the remarks section)2.

from __future__ import absolute_import, unicode_literals

from celery.decorators import task

@task
def add_number(x, y):
 return x + y

You can run this asynchronously by using the .delay() method.

add_number.delay(5, 10), where 5 and 10 are the arguments for the function add_number

To check if the async function has finished the operation, you can use the .ready() function on the
async object returned by the delay method.

To fetch the result of the computation, you can use the .result attribute on the async object.

Example

async_result_object = add_number.delay(5, 10)
if async_result_object.ready():
 print(async_result_object.result)

Read Async Tasks (Celery) online: https://riptutorial.com/django/topic/5481/async-tasks--celery-

https://riptutorial.com/ 22

https://riptutorial.com/django/topic/5481/async-tasks--celery-

Chapter 5: Authentication Backends

Examples

Email Authentication Backend

Django's default authentication works on username and password fields. Email authentication
backend will authenticate users based on email and password.

from django.contrib.auth import get_user_model

class EmailBackend(object):
 """
 Custom Email Backend to perform authentication via email
 """
 def authenticate(self, username=None, password=None):
 user_model = get_user_model()
 try:
 user = user_model.objects.get(email=username)
 if user.check_password(password): # check valid password
 return user # return user to be authenticated
 except user_model.DoesNotExist: # no matching user exists
 return None

 def get_user(self, user_id):
 user_model = get_user_model()
 try:
 return user_model.objects.get(pk=user_id)
 except user_model.DoesNotExist:
 return None

Add this authentication backend to the AUTHENTICATION_BACKENDS setting.

settings.py
AUTHENTICATION_BACKENDS = (
 'my_app.backends.EmailBackend',
 ...
)

Read Authentication Backends online: https://riptutorial.com/django/topic/1282/authentication-
backends

https://riptutorial.com/ 23

https://riptutorial.com/django/topic/1282/authentication-backends
https://riptutorial.com/django/topic/1282/authentication-backends

Chapter 6: Class based views

Remarks

When using CBV we often need to know exactly what methods we can overwrite for each generic
class. This page of the django documentation lists all the generic classes with all of their methods
flattened and the class attributes we can use.

In addition, Classy Class Based View website provides the same information with a nice
interactive interface.

Examples

Class Based Views

Class based views let you focus on what make your views special.

A static about page might have nothing special, except the template used. Use a TemplateView!
All you have to do is set a template name. Job done. Next.

views.py

from django.views.generic import TemplateView

class AboutView(TemplateView):
 template_name = "about.html"

urls.py

from django.conf.urls import url
from . import views

urlpatterns = [
 url('^about/', views.AboutView.as_view(), name='about'),
]

Notice how we don't use directly AboutView in the url. That's because a callable is expected and
that's exactly what as_view() return.

Context data

Sometimes, your template need a bit more of information. For example, we would like to have the
user in the header of the page, with a link to their profile next to the logout link. In these cases, use

https://riptutorial.com/ 24

https://docs.djangoproject.com/en/1.9/ref/class-based-views/flattened-index/
https://ccbv.co.uk/
https://docs.djangoproject.com/en/1.9/ref/class-based-views/base/#templateview

the get_context_data method.

views.py

class BookView(DetailView):
 template_name = "book.html"

 def get_context_data(self, **kwargs)
 """ get_context_data let you fill the template context """
 context = super(BookView, self).get_context_data(**kwargs)
 # Get Related publishers
 context['publishers'] = self.object.publishers.filter(is_active=True)
 return context

You need to call get_context_data method on the super class and it will return the default context
instance. Any item that you add to this dictionary will be available to the template.

book.html

<h3>Active publishers</h3>

 {% for publisher in publishers %}
 {{ publisher.name }}
 {% endfor %}

List and Details views

Template views are fine for static page and you could use them for everything with
get_context_data but it would be barely better than using function as views.

Enter ListView and DetailView

app/models.py

from django.db import models

class Pokemon(models.Model):
 name = models.CharField(max_length=24)
 species = models.CharField(max_length=48)
 slug = models.CharField(max_length=48)

app/views.py

from django.views.generic import ListView, DetailView

https://riptutorial.com/ 25

https://docs.djangoproject.com/en/1.9/ref/class-based-views/generic-display/#listview
https://docs.djangoproject.com/en/1.9/ref/class-based-views/generic-display/#detailview

from .models import Pokemon

class PokedexView(ListView):
 """ Provide a list of Pokemon objects """
 model = Pokemon
 paginate_by = 25

class PokemonView(DetailView):
 model = Pokemon

That's all you need to generate a view listing all your objects of a models and views of singular
item. The list is even paginated. You can provide template_name if you want something specific. By
default, it's generated from the model name.

app/templates/app/pokemon_list.html

<!DOCTYPE html>
<title>Pokedex</title>
{% for pokemon in pokemon_list %}
 {{ pokemon.name }}
 – {{ pokemon.species }}

The context is populated with the list of object under two name, object_list and a second one
build from the model name, here pokemon_list. If you have paginated the list, you have to take care
of next and previous link too. The Paginator object can help with that, it's available in the context
data too.

app/templates/app/pokemon_detail.html

<!DOCTYPE html>
<title>Pokemon {{ pokemon.name }}</title>
<h1>{{ pokemon.name }}</h1>
<h2>{{ pokemon.species }} </h2>

As before, the context is populated with your model object under the name object and pokemon, the
second one being derived from the model name.

app/urls.py

from django.conf.urls import url
from . import views

app_name = 'app'
urlpatterns = [
 url(r'^pokemon/$', views.PokedexView.as_view(), name='pokedex'),
 url(r'^pokemon/(?P<pk>\d+)/$', views.PokemonView.as_view(), name='pokemon'),

https://riptutorial.com/ 26

https://docs.djangoproject.com/en/1.9/topics/pagination/#django.core.paginator.Paginator

]

In this snippet, the url for the detail view is built using the primary key. It's also possible to use a
slug as argument. This gives a nicer looking url that's easier to remember. However it requires the
presence of a field named slug in your model.

url(r'^pokemon/(?P<slug>[A-Za-z0-9_-]+)/$', views.PokemonView.as_view(), name='pokemon'),

If a field called slug is not present, you can use the slug_field setting in DetailView to point to a
different field.

For pagination, use a page get parameters or put a page directly in the url.

Form and object creation

Writing a view to create object can be quite boring. You have to display a form, you have to
validate it, you have to save the item or return the form with an error. Unless you use one of the
generic editing views.

app/views.py

from django.core.urlresolvers import reverse_lazy
from django.views.generic.edit import CreateView, UpdateView, DeleteView
from .models import Pokemon

class PokemonCreate(CreateView):
 model = Pokemon
 fields = ['name', 'species']

class PokemonUpdate(UpdateView):
 model = Pokemon
 fields = ['name', 'species']

class PokemonDelete(DeleteView):
 model = Pokemon
 success_url = reverse_lazy('pokedex')

CreateView and UpdateView have two required attribute, model and fields. By default, both use a
template name based on the model name suffixed by '_form'. You can change only the suffix with
the attribute template_name_suffix. The DeleteView show a confirmation message before deleting
the object.

Both UpdateView and DeleteView need to fetch on object. They use the same method as DetailView,
extracting variable from the url and matching the object fields.

https://riptutorial.com/ 27

https://docs.djangoproject.com/en/1.9/ref/class-based-views/generic-editing/

app/templates/app/pokemon_form.html
(extract)

<form action="" method="post">
 {% csrf_token %}
 {{ form.as_p }}
 <input type="submit" value="Save" />
</form>

form contains the form with all needed fields. Here, it will be displayed with a paragraph for each
field because of as_p.

app/templates/app/pokemon_confirm_delete.html
(extract)

<form action="" method="post">
 {% csrf_token %}
 <p>Are you sure you want to delete "{{ object }}"?</p>
 <input type="submit" value="Confirm" />
</form>

The csrf_token tag is required because of django protection against request forgery. The attribute
action is left empty as the url displaying the form is the same as the one handling the
deletion/save.

Two issues remain with the model, if using the same as with the list and detail exemple. First,
create and update will complain about a missing redirection url. That can be solved by adding a
get_absolute_url to the pokemon model. Second issue is the deletion confirmation not displaying
meaningful information. To solve this, the easiest solution is to add a string representation.

app/models.py

from django.db import models
from django.urls import reverse
from django.utils.encoding import python_2_unicode_compatible

@python_2_unicode_compatible
class Pokemon(models.Model):
 name = models.CharField(max_length=24)
 species = models.CharField(max_length=48)

 def get_absolute_url(self):
 return reverse('app:pokemon', kwargs={'pk':self.pk})

 def __str__(self):

https://riptutorial.com/ 28

 return self.name

The class decorator will make sure everything work smoothly under python 2.

Minimal example

views.py:

from django.http import HttpResponse
from django.views.generic import View

class MyView(View):
 def get(self, request):
 # <view logic>
 return HttpResponse('result')

urls.py:

from django.conf.urls import url
from myapp.views import MyView

urlpatterns = [
 url(r'^about/$', MyView.as_view()),
]

Learn more on Django documentation »

Django Class Based Views: Example of CreateView

With the Class Based generic Views, it is very simple and easy to create the CRUD views from our
models. Often, the built in Django admin is not enough or not preferred and we need to roll our
own CRUD views. The CBVs can be very handy in such cases.

The CreateView class needs 3 things - a model, the fields to use and success url.

Example:

from django.views.generic import CreateView
from .models import Campaign

class CampaignCreateView(CreateView):
 model = Campaign
 fields = ('title', 'description')

 success_url = "/campaigns/list"

Once the creation success, the user is redirected to success_url. We can also define a method
get_success_url instead and use reverse or reverse_lazy to get the success url.

Now, we need to create a template for this view. The template should be named in the format <app
name>/<model name>_form.html. The model name must be in lower caps. For example, if my app

https://riptutorial.com/ 29

https://docs.djangoproject.com/en/1.9/topics/class-based-views/intro/

name is dashboard, then for the above create view, I need to create a template named
dashboard/campaign_form.html.

In the template, a form variable would contain the form. Here's a sample code for the template:

<form action="" method="post">
 {% csrf_token %}
 {{ form.as_p }}
 <input type="submit" value="Save" />
</form>

Now it's time to add the view to our url patterns.

url('^campaign/new/$', CampaignCreateView.as_view(), name='campaign_new'),

If we visit the URL, we should see a form with the fields we chose. When we submit, it will try to
create a new instance of the model with the data and save it. On success, the user will be
redirected to the success url. On errors, the form will be displayed again with the error messages.

One View, Multiple Forms

Here is a quick example of using multiple forms in one Django view.

from django.contrib import messages
from django.views.generic import TemplateView

from .forms import AddPostForm, AddCommentForm
from .models import Comment

class AddCommentView(TemplateView):

 post_form_class = AddPostForm
 comment_form_class = AddCommentForm
 template_name = 'blog/post.html'

 def post(self, request):
 post_data = request.POST or None
 post_form = self.post_form_class(post_data, prefix='post')
 comment_form = self.comment_form_class(post_data, prefix='comment')

 context = self.get_context_data(post_form=post_form,
 comment_form=comment_form)

 if post_form.is_valid():
 self.form_save(post_form)
 if comment_form.is_valid():
 self.form_save(comment_form)

 return self.render_to_response(context)

 def form_save(self, form):
 obj = form.save()
 messages.success(self.request, "{} saved successfully".format(obj))
 return obj

https://riptutorial.com/ 30

 def get(self, request, *args, **kwargs):
 return self.post(request, *args, **kwargs)

Read Class based views online: https://riptutorial.com/django/topic/1220/class-based-views

https://riptutorial.com/ 31

https://riptutorial.com/django/topic/1220/class-based-views

Chapter 7: Context Processors

Remarks

Use context processors to add variables that are accessible anywhere in your templates.

Specify a function, or functions that return dicts of the variables you want, then add those
functions to TEMPLATE_CONTEXT_PROCESSORS.

Examples

Use a context processor to access settings.DEBUG in templates

in myapp/context_processors.py:

from django.conf import settings

def debug(request):
 return {'DEBUG': settings.DEBUG}

in settings.py:

TEMPLATES = [
 {
 ...
 'OPTIONS': {
 'context_processors': [
 ...
 'myapp.context_processors.debug',
],
 },
 },
]

or, for versions < 1.9:

TEMPLATE_CONTEXT_PROCESSORS = (
 ...
 'myapp.context_processors.debug',
)

Then in my templates, simply:

 {% if DEBUG %} .header { background:#f00; } {% endif %}
 {{ DEBUG }}

Using a context processor to access your most recent blog entries in all
templates

https://riptutorial.com/ 32

Assuming you have a model called Post defined in your models.py file that contains blog posts, and
has a date_published field.

Step 1: Write the context processor

Create (or add to) a file in your app directory called context_processors.py:

from myapp.models import Post

def recent_blog_posts(request):
 return {'recent_posts':Post.objects.order_by('-date_published')[0:3],} # Can change
numbers for more/fewer posts

Step 2: Add the context processor to your settings file

Make sure that you add your new context processor to your settings.py file in the TEMPLATES
variable:

TEMPLATES = [
 {
 ...
 'OPTIONS': {
 'context_processors': [
 ...
 'myapp.context_processors.recent_blog_posts',
],
 },
 },
]

(In Django versions before 1.9, this was set directly in settings.py using a
TEMPLATE_CONTEXT_PROCESSORS variable.)

Step 3: Use the context processor in your templates

No need to pass recent blog entries through individual views anymore! Just use recent_blog_posts
in any template.

E.g., in home.html you could create a sidebar with links to recent posts:

<div class="blog_post_sidebar">
 {% for post in recent_blog_posts %}
 <div class="post">
 {{post.title}}
 </div>
 {% endfor %}
</div>

Or in blog.html you could create a more detailed display of each post:

https://riptutorial.com/ 33

https://docs.djangoproject.com/en/1.8/ref/settings/#template-context-processors

<div class="content">
 {% for post in recent_blog_posts %}
 <div class="post_detail">
 <h2>{{post.title}}</h2>
 <p>Published on {{post.date_published}}</p>
 <p class="author">Written by: {{post.author}}</p>
 <p>Permalink</p>
 <p class="post_body">{{post.body}}</p>
 </div>
 {% endfor %}
</div>

Extending your templates

Context processor to determine the template based on group membership(or any query/logic).
This allows our public/regular users to get one template and our special group to get a different
one.

myapp/context_processors.py

def template_selection(request):
 site_template = 'template_public.html'
 if request.user.is_authenticated():
 if request.user.groups.filter(name="some_group_name").exists():
 site_template = 'template_new.html'

 return {
 'site_template': site_template,
 }

Add the context processor to your settings.

In your templates, use the variable defined in the context processor.

{% extends site_template %}

Read Context Processors online: https://riptutorial.com/django/topic/491/context-processors

https://riptutorial.com/ 34

https://riptutorial.com/django/topic/491/context-processors

Chapter 8: Continuous Integration With
Jenkins

Examples

Jenkins 2.0+ Pipeline Script

Modern versions of Jenkins (version 2.x) come with a "Build Pipeline Plugin" that can be used to
orchestrate complex CI tasks without creating a multitude of interconnected jobs, and allow you to
easily version-control your build / test configuration.

You may install this manually in a "Pipeline" type job, or, if your project is hosted on Github, you
may use the "GitHub Organization Folder Plugin" to automatically set up jobs for you.

Here's a simple configuration for Django sites that require only the site's specified python modules
to be installed.

#!/usr/bin/groovy

node {
 // If you are having issues with your project not getting updated,
 // try uncommenting the following lines.
 //stage 'Checkout'
 //checkout scm
 //sh 'git submodule update --init --recursive'

 stage 'Update Python Modules'
 // Create a virtualenv in this folder, and install or upgrade packages
 // specified in requirements.txt; https://pip.readthedocs.io/en/1.1/requirements.html
 sh 'virtualenv env && source env/bin/activate && pip install --upgrade -r requirements.txt'

 stage 'Test'
 // Invoke Django's tests
 sh 'source env/bin/activate && python ./manage.py runtests'
}

Jenkins 2.0+ Pipeline Script, Docker Containers

Here is an example of a pipeline script that builds a Docker container, then runs the tests inside of
it. The entrypoint is assumed to be either manage.py or invoke/fabric with a runtests command
available.

#!/usr/bin/groovy

node {
 stage 'Checkout'
 checkout scm
 sh 'git submodule update --init --recursive'

 imageName = 'mycontainer:build'

https://riptutorial.com/ 35

 remotes = [
 'dockerhub-account',
]

 stage 'Build'
 def djangoImage = docker.build imageName

 stage 'Run Tests'
 djangoImage.run('', 'runtests')

 stage 'Push'
 for (int i = 0; i < remotes.size(); i++) {
 sh "docker tag ${imageName} ${remotes[i]}/${imageName}"
 sh "docker push ${remotes[i]}/${imageName}"
 }
}

Read Continuous Integration With Jenkins online:
https://riptutorial.com/django/topic/5873/continuous-integration-with-jenkins

https://riptutorial.com/ 36

https://riptutorial.com/django/topic/5873/continuous-integration-with-jenkins

Chapter 9: CRUD in Django

Examples

Simplest CRUD example

If you find these steps unfamiliar, consider starting here instead. Note these steps come from
Stack Overflow Documentation.

django-admin startproject myproject
cd myproject
python manage.py startapp myapp

myproject/settings.py Install the app

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'myapp',
]

Create a file called urls.py within the myapp directory and updated it with the following view.

from django.conf.urls import url
from myapp import views

urlpatterns = [
 url(r'^$', views.index, name='index'),
]

Update the other urls.py file with the following content.

from django.conf.urls import url
from django.contrib import admin
from django.conf.urls import include
from myapp import views

urlpatterns = [
 url(r'^$', views.index, name='index'),
 url(r'^myapp/', include('myapp.urls')),
 url(r'^admin/', admin.site.urls),
]

Create a folder named templates within the myapp directory. Then create a file named index.html
inside of the templates directory. Fill it with the following content.

https://riptutorial.com/ 37

http://www.riptutorial.com/django/topic/200/getting-started-with-django

<!DOCTYPE html>
<html>
<head>
 <title>myapp</title>
</head>
<body>
 <h2>Simplest Crud Example</h2>
 <p>This shows a list of names and lets you Create, Update and Delete them.</p>
 <h3>Add a Name</h3>
 <button>Create</button>
</body>
</html>

We also need a view to show index.html which we can create by editing the views.py file like so:

from django.shortcuts import render, redirect

Create your views here.
def index(request):
 return render(request, 'index.html', {})

You now have the base that you're going to work off of. The next step is create a Model. This is
the simplest example possible so in your models.py folder add the following code.

from __future__ import unicode_literals

from django.db import models

Create your models here.
class Name(models.Model):
 name_value = models.CharField(max_length=100)

 def __str__(self): # if Python 2 use __unicode__
 return self.name_value

This creates a model of a Name object which we'll add to the database with the following
commands from the command line.

python manage.py createsuperuser
python manage.py makemigrations
python manage.py migrate

You should see some operations performed by Django. These setup up the tables and create a
superuser that can access the admin database from a Django powered admin view. Speaking of
which, lets register our new model with the admin view. Go to admin.py and add the following
code.

from django.contrib import admin
from myapp.models import Name
Register your models here.

admin.site.register(Name)

Back at the command line you can now spin up the server with the python manage.py runserver

https://riptutorial.com/ 38

command. You should be able to visit http://localhost:8000/ and see your app. Please then
navigate to http://localhost:8000/admin so that you can add a name to your project. Log in and add
a Name under the MYAPP table, we kept it simple for the example so ensure it's less than 100
characters.

In order to access the name you need to display it somewhere. Edit the index function within
views.py to get all of the Name objects out of the database.

from django.shortcuts import render, redirect
from myapp.models import Name

Create your views here.
def index(request):
 names_from_db = Name.objects.all()
 context_dict = {'names_from_context': names_from_db}
 return render(request, 'index.html', context_dict)

Now edit the index.html file to the following.

<!DOCTYPE html>
<html>
<head>
 <title>myapp</title>
</head>
<body>
 <h2>Simplest Crud Example</h2>
 <p>This shows a list of names and lets you Create, Update and Delete them.</p>
 {% if names_from_context %}

 {% for name in names_from_context %}
 {{ name.name_value }} <button>Delete</button>
<button>Update</button>
 {% endfor %}

 {% else %}
 <h3>Please go to the admin and add a Name under 'MYAPP'</h3>
 {% endif %}
 <h3>Add a Name</h3>
 <button>Create</button>
</body>
</html>

That demonstrates the Read in CRUD. Within the myapp directory create a forms.py file. Add the
following code:

from django import forms
from myapp.models import Name

class NameForm(forms.ModelForm):
 name_value = forms.CharField(max_length=100, help_text = "Enter a name")

 class Meta:
 model = Name
 fields = ('name_value',)

https://riptutorial.com/ 39

http://localhost:8000/
http://localhost:8000/admin

Update the index.html in the following manner:

<!DOCTYPE html>
<html>
<head>
 <title>myapp</title>
</head>
<body>
 <h2>Simplest Crud Example</h2>
 <p>This shows a list of names and lets you Create, Update and Delete them.</p>
 {% if names_from_context %}

 {% for name in names_from_context %}
 {{ name.name_value }} <button>Delete</button>
<button>Update</button>
 {% endfor %}

 {% else %}
 <h3>Please go to the admin and add a Name under 'MYAPP'</h3>
 {% endif %}
 <h3>Add a Name</h3>
 <form id="name_form" method="post" action="/">
 {% csrf_token %}
 {% for field in form.visible_fields %}
 {{ field.errors }}
 {{ field.help_text }}
 {{ field }}
 {% endfor %}
 <input type="submit" name="submit" value="Create">
 </form>
</body>
</html>

Next update the views.py in the following manner:

from django.shortcuts import render, redirect
from myapp.models import Name
from myapp.forms import NameForm

Create your views here.
def index(request):
 names_from_db = Name.objects.all()

 form = NameForm()

 context_dict = {'names_from_context': names_from_db, 'form': form}

 if request.method == 'POST':
 form = NameForm(request.POST)

 if form.is_valid():
 form.save(commit=True)
 return render(request, 'index.html', context_dict)
 else:
 print(form.errors)

 return render(request, 'index.html', context_dict)

Restart your server and you should now have a working version of the app with the C in create

https://riptutorial.com/ 40

completed.

TODO add update and delete

Read CRUD in Django online: https://riptutorial.com/django/topic/7317/crud-in-django

https://riptutorial.com/ 41

https://riptutorial.com/django/topic/7317/crud-in-django

Chapter 10: Custom Managers and Querysets

Examples

Defining a basic manager using Querysets and `as_manager` method

Django manger is an interface through which the django model queries the database. The objects
field used in most django queries is actually the default manager created for us by django (this is
only created if we don't define custom managers).

Why would we define a custom manager/queryset?

To avoid writing common queries all over our codebase and instead referring them using an easier
to remember abstraction. Example: Decide for yourself which version is more readable :

Only get all the active users : User.objects.filter(is_active=True) vs User.manager.active()•
Get all active dermatologists on our plaform :
User.objects.filter(is_active=True).filter(is_doctor=True).filter(specialization='Dermatology')
vs User.manager.doctors.with_specialization('Dermatology')

•

Another benefit is that if tomorrow we decide all psychologists are also dermatologists, we can
easily modify the query in our Manager and be done with it.

Below is an example of creating a custom Manager defined by creating a QuerySet and using the
as_manager method.

from django.db.models.query import QuerySet

class ProfileQuerySet(QuerySet):
 def doctors(self):
 return self.filter(user_type="Doctor", user__is_active=True)

 def with_specializations(self, specialization):
 return self.filter(specializations=specialization)

 def users(self):
 return self.filter(user_type="Customer", user__is_active=True)

ProfileManager = ProfileQuerySet.as_manager

We will add it to our model as below:

class Profile(models.Model):
 ...
 manager = ProfileManager()

NOTE : Once we've defined a manager on our model, objects won't be defined for the model
anymore.

https://riptutorial.com/ 42

select_related for all queries

Model with ForeignKey

We will work with these models :

from django.db import models

class Book(models.Model):
 name= models.CharField(max_length=50)
 author = models.ForeignKey(Author)

class Author(models.Model):
 name = models.CharField(max_length=50)

Suppose we often (always) access book.author.name

In view

We could use the following, each time,

books = Book.objects.select_related('author').all()

But this is not DRY.

Custom Manager

class BookManager(models.Manager):

 def get_queryset(self):
 qs = super().get_queryset()
 return qs.select_related('author')

class Book(models.Model):
 ...
 objects = BookManager()

Note : the call to super must be changed for python 2.x

Now all we have to use in views is

books = Book.objects.all()

and no additional queries will be made in template/view.

Define custom managers

Very often it happens to deal with models which have something like a published field. Such kind of
fields are almost always used when retrieving objects, so that you will find yourself to write
something like:

https://riptutorial.com/ 43

my_news = News.objects.filter(published=True)

too many times. You can use custom managers to deal with these situations, so that you can then
write something like:

my_news = News.objects.published()

which is nicer and more easy to read by other developers too.

Create a file managers.py in your app directory, and define a new models.Manager class:

from django.db import models

class NewsManager(models.Manager):

 def published(self, **kwargs):
 # the method accepts **kwargs, so that it is possible to filter
 # published news
 # i.e: News.objects.published(insertion_date__gte=datetime.now)
 return self.filter(published=True, **kwargs)

use this class by redefining the objects property in the model class:

from django.db import models

import the created manager
from .managers import NewsManager

class News(models.Model):
 """ News model
 """
 insertion_date = models.DateTimeField('insertion date', auto_now_add=True)
 title = models.CharField('title', max_length=255)
 # some other fields here
 published = models.BooleanField('published')

 # assign the manager class to the objects property
 objects = NewsManager()

Now you can get your published news simply this way:

my_news = News.objects.published()

and you can also perform more filtering:

my_news = News.objects.published(title__icontains='meow')

Read Custom Managers and Querysets online: https://riptutorial.com/django/topic/1400/custom-
managers-and-querysets

https://riptutorial.com/ 44

https://riptutorial.com/django/topic/1400/custom-managers-and-querysets
https://riptutorial.com/django/topic/1400/custom-managers-and-querysets

Chapter 11: Database Routers

Examples

Adding a Database Routing file

To use multiple databases in Django, just specify each one in settings.py:

DATABASES = {
 'default': {
 'NAME': 'app_data',
 'ENGINE': 'django.db.backends.postgresql',
 'USER': 'django_db_user',
 'PASSWORD': os.environ['LOCAL_DB_PASSWORD']
 },
 'users': {
 'NAME': 'remote_data',
 'ENGINE': 'django.db.backends.mysql',
 'HOST': 'remote.host.db',
 'USER': 'remote_user',
 'PASSWORD': os.environ['REMOTE_DB_PASSWORD']
 }
}

Use a dbrouters.py file to specify which models should operate on which databases for each class
of database operation, e.g. for remote data stored in remote_data, you might want the following:

class DbRouter(object):
 """
 A router to control all database operations on models in the
 auth application.
 """
 def db_for_read(self, model, **hints):
 """
 Attempts to read remote models go to remote database.
 """
 if model._meta.app_label == 'remote':
 return 'remote_data'
 return 'app_data'

 def db_for_write(self, model, **hints):
 """
 Attempts to write remote models go to the remote database.
 """
 if model._meta.app_label == 'remote':
 return 'remote_data'
 return 'app_data'

 def allow_relation(self, obj1, obj2, **hints):
 """
 Do not allow relations involving the remote database
 """
 if obj1._meta.app_label == 'remote' or \
 obj2._meta.app_label == 'remote':
 return False

https://riptutorial.com/ 45

 return None

 def allow_migrate(self, db, app_label, model_name=None, **hints):
 """
 Do not allow migrations on the remote database
 """
 if model._meta.app_label == 'remote':
 return False
 return True

Finally, add your dbrouter.py to settings.py:

DATABASE_ROUTERS = ['path.to.DbRouter',]

Specifying different databases in code

The normal obj.save() method will use the default database, or if a database router is used, it will
use the database as specified in db_for_write. You can override it by using:

obj.save(using='other_db')
obj.delete(using='other_db')

Similarly, for reading:

MyModel.objects.using('other_db').all()

Read Database Routers online: https://riptutorial.com/django/topic/3395/database-routers

https://riptutorial.com/ 46

https://riptutorial.com/django/topic/3395/database-routers

Chapter 12: Database Setup

Examples

MySQL / MariaDB

Django supports MySQL 5.5 and higher.

Make sure to have some packages installed:

$ sudo apt-get install mysql-server libmysqlclient-dev
$ sudo apt-get install python-dev python-pip # for python 2
$ sudo apt-get install python3-dev python3-pip # for python 3

As well as one of the Python MySQL drivers (mysqlclient beeing the recommended choice for
Django):

$ pip install mysqlclient # python 2 and 3
$ pip install MySQL-python # python 2
$ pip install pymysql # python 2 and 3

The database encoding can not be set by Django, but needs to be configured on the
database level. Look for default-character-set in my.cnf (or
/etc/mysql/mariadb.conf/*.cnf) and set the encoding:

 [mysql]
 #default-character-set = latin1 #default on some systems.
 #default-character-set = utf8mb4 #default on some systems.
 default-character-set = utf8

 ...
 [mysqld]
 #character-set-server = utf8mb4
 #collation-server = utf8mb4_general_ci
 character-set-server = utf8
 collation-server = utf8_general_ci

Database configuration for MySQL or MariaDB

#myapp/settings/settings.py

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'NAME': 'DB_NAME',
 'USER': 'DB_USER',
 'PASSWORD': 'DB_PASSWORD',
 'HOST': 'localhost', # Or an IP Address that your database is hosted on
 'PORT': '3306',
 #optional:
 'OPTIONS': {

https://riptutorial.com/ 47

 'charset' : 'utf8',
 'use_unicode' : True,
 'init_command': 'SET '
 'storage_engine=INNODB,'
 'character_set_connection=utf8,'
 'collation_connection=utf8_bin'
 #'sql_mode=STRICT_TRANS_TABLES,' # see note below
 #'SESSION TRANSACTION ISOLATION LEVEL READ COMMITTED',
 },
 'TEST_CHARSET': 'utf8',
 'TEST_COLLATION': 'utf8_general_ci',
 }
}

If you are using Oracle's MySQL connector your ENGINE line should look like this:

'ENGINE': 'mysql.connector.django',

When you create a database, make sure that to specify the encoding and collation:

CREATE DATABASE mydatabase CHARACTER SET utf8 COLLATE utf8_bin

From MySQL 5.7 onwards and on fresh installs of MySQL 5.6, the default value of the
sql_mode option contains STRICT_TRANS_TABLES. That option escalates warnings
into errors when data is truncated upon insertion. Django highly recommends activating
a strict mode for MySQL to prevent data loss (either STRICT_TRANS_TABLES or
STRICT_ALL_TABLES). To enable add to /etc/my.cnf sql-mode = STRICT_TRANS_TABLES

PostgreSQL

Make sure to have some packages installed:

sudo apt-get install libpq-dev
pip install psycopg2

Database settings for PostgreSQL:

#myapp/settings/settings.py

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql',
 'NAME': 'myprojectDB',
 'USER': 'myprojectuser',
 'PASSWORD': 'password',
 'HOST': '127.0.0.1',
 'PORT': '5432',
 }
}

In older versions you can also use the alias django.db.backends.postgresql_psycopg2.

https://riptutorial.com/ 48

When using Postresql you'll have access to some extra features:

Modelfields:

ArrayField # A field for storing lists of data.
HStoreField # A field for storing mappings of strings to strings.
JSONField # A field for storing JSON encoded data.
IntegerRangeField # Stores a range of integers
BigIntegerRangeField # Stores a big range of integers
FloatRangeField # Stores a range of floating point values.
DateTimeRangeField # Stores a range of timestamps

sqlite

sqlite is the default for Django. It should not be used in production since it is usually slow.

#myapp/settings/settings.py

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': 'db/development.sqlite3',
 'USER': '',
 'PASSWORD': '',
 'HOST': '',
 'PORT': '',
 },
}

Fixtures

Fixtures are initial data for the database. The most straightforward way when you have some
existing data already is to use the command dumpdata

 ./manage.py dumpdata > databasedump.json # full database
 ./manage.py dumpdata myapp > databasedump.json # only 1 app
 ./manage.py dumpdata myapp.mymodel > databasedump.json # only 1 model (table)

This will create a json file which can be imported again by using

./manage.py loaddata databasedump.json

When using the loadddata without specifying a file, Django will look for a fixtures folder in your app
or the list of directories provided in the FIXTURE_DIRS in settings, and use its content instead.

/myapp
 /fixtures
 myfixtures.json
 morefixtures.xml

Possible file formats are: JSON, XML or YAML

https://riptutorial.com/ 49

Fixtures JSON example:

[
 {
 "model": "myapp.person",
 "pk": 1,
 "fields": {
 "first_name": "John",
 "last_name": "Lennon"
 }
 },
 {
 "model": "myapp.person",
 "pk": 2,
 "fields": {
 "first_name": "Paul",
 "last_name": "McCartney"
 }
 }
]

Fixtures YAML example:

- model: myapp.person
 pk: 1
 fields:
 first_name: John
 last_name: Lennon
- model: myapp.person
 pk: 2
 fields:
 first_name: Paul
 last_name: McCartney

Fixtures XML example:

<?xml version="1.0" encoding="utf-8"?>
<django-objects version="1.0">
 <object pk="1" model="myapp.person">
 <field type="CharField" name="first_name">John</field>
 <field type="CharField" name="last_name">Lennon</field>
 </object>
 <object pk="2" model="myapp.person">
 <field type="CharField" name="first_name">Paul</field>
 <field type="CharField" name="last_name">McCartney</field>
 </object>
</django-objects>

Django Cassandra Engine

Install pip : $ pip install django-cassandra-engine•
Add Getting Started to INSTALLED_APPS in your settings.py file: INSTALLED_APPS =
['django_cassandra_engine']

•

Cange DATABASES setting Standart:•

Standart

https://riptutorial.com/ 50

DATABASES = {
 'default': {
 'ENGINE': 'django_cassandra_engine',
 'NAME': 'db',
 'TEST_NAME': 'test_db',
 'HOST': 'db1.example.com,db2.example.com',
 'OPTIONS': {
 'replication': {
 'strategy_class': 'SimpleStrategy',
 'replication_factor': 1
 }
 }
 }
}

Cassandra create new user cqlsh :

DATABASES = {
'default': {
 'ENGINE': 'django_cassandra_engine',
 'NAME': 'db',
 'TEST_NAME': 'test_db',
 'USER_NAME'='cassandradb',
 'PASSWORD'= '123cassandra',
 'HOST': 'db1.example.com,db2.example.com',
 'OPTIONS': {
 'replication': {
 'strategy_class': 'SimpleStrategy',
 'replication_factor': 1
 }
 }
}

}

Read Database Setup online: https://riptutorial.com/django/topic/4933/database-setup

https://riptutorial.com/ 51

https://riptutorial.com/django/topic/4933/database-setup

Chapter 13: Database transactions

Examples

Atomic transactions

Problem

By default, Django immediately commits changes to the database. When exceptions occur during
a series of commits, this can leave your database in an unwanted state:

def create_category(name, products):
 category = Category.objects.create(name=name)
 product_api.add_products_to_category(category, products)
 activate_category(category)

In the following scenario:

>>> create_category('clothing', ['shirt', 'trousers', 'tie'])

ValueError: Product 'trousers' already exists

An exception occurs whilst trying to add the trousers product to the clothing category. By this
point, the category itself has already been added, and the shirt product has been added to it.

The incomplete category and containing product would have to be manually removed before fixing
the code and calling the create_category() method once more, as otherwise a duplicate category
would be created.

Solution

The django.db.transaction module allows you to combine multiple database changes into an
atomic transaction:

[a] series of database operations such that either all occur, or nothing occurs.

Applied to the above scenario, this can be applied as a decorator:

from django.db import transaction

@transaction.atomic
def create_category(name, products):
 category = Category.objects.create(name=name)
 product_api.add_products_to_category(category, products)
 activate_category(category)

https://riptutorial.com/ 52

https://en.wikipedia.org/wiki/Atomicity_(database_systems)
https://wiki.python.org/moin/PythonDecorators

Or by using a context manager:

def create_category(name, products):
 with transaction.atomic():
 category = Category.objects.create(name=name)
 product_api.add_products_to_category(category, products)
 activate_category(category)

Now, if an exception occurs at any stage within the transaction, no database changes will be
committed.

Read Database transactions online: https://riptutorial.com/django/topic/5555/database-
transactions

https://riptutorial.com/ 53

https://docs.python.org/2/reference/compound_stmts.html#with
https://riptutorial.com/django/topic/5555/database-transactions
https://riptutorial.com/django/topic/5555/database-transactions

Chapter 14: Debugging

Remarks

Pdb

Pdb can also print out all existing variables in global or local scope, by typing globals() or locals()
in (Pdb) prompt respectively.

Examples

Using Python Debugger (Pdb)

Most basic Django debugging tool is pdb, a part of Python standard library.

Init view script

Let's examine a simple views.py script:

from django.http import HttpResponse

def index(request):
 foo = 1
 bar = 0

 bug = foo/bar

 return HttpResponse("%d goes here." % bug)

Console command to run server:

python manage.py runserver

It's obvious that Django would throw a ZeroDivisionError when you try to load index page, but if
we'll pretend that the bug is very deep in the code, it could get really nasty.

Setting a breakpoint

Fortunately, we can set a breakpoint to trace down that bug:

from django.http import HttpResponse

Pdb import
import pdb

def index(request):
 foo = 1

https://riptutorial.com/ 54

https://docs.python.org/3.6/library/pdb.html

 bar = 0

 # This is our new breakpoint
 pdb.set_trace()

 bug = foo/bar

 return HttpResponse("%d goes here." % bug)

Console command to run server with pdb:

python -m pdb manage.py runserver

Now on page load breakpoint will trigger (Pdb) prompt in the shell, which will also hang your
browser in pending state.

Debugging with pdb shell

It's time to debug that view by interacting with script via shell:

> ../views.py(12)index()
-> bug = foo/bar
input 'foo/bar' expression to see division results:
(Pdb) foo/bar
*** ZeroDivisionError: division by zero
input variables names to check their values:
(Pdb) foo
1
(Pdb) bar
0
'bar' is a source of the problem, so if we set it's value > 0...
(Pdb) bar = 1
(Pdb) foo/bar
1.0
exception gone, ask pdb to continue execution by typing 'c':
(Pdb) c
[03/Aug/2016 10:50:45] "GET / HTTP/1.1" 200 111

In the last line we see that our view returned an OK response and executing as it should.

To stop pdb loop, just input q in a shell.

Using Django Debug Toolbar

First, you need to install django-debug-toolbar:

pip install django-debug-toolbar

settings.py:

Next, include it to project's installed apps, but be careful - it's always a good practice to use a
different settings.py file for such development-only apps and middlewares as debug toolbar:

https://riptutorial.com/ 55

https://github.com/jazzband/django-debug-toolbar

If environment is dev...
DEBUG = True

INSTALLED_APPS += [
 'debug_toolbar',
]

MIDDLEWARE += ['debug_toolbar.middleware.DebugToolbarMiddleware']

Debug toolbar also relies on static files, so appropriate app should be included as well:

INSTALLED_APPS = [
 # ...
 'django.contrib.staticfiles',
 # ...
]

STATIC_URL = '/static/'

If environment is dev...
DEBUG = True

INSTALLED_APPS += [
 'debug_toolbar',
]

In some cases, it's also required to set INTERNAL_IPS in settings.py:

INTERNAL_IPS = ('127.0.0.1',)

urls.py:

In urls.py, as official documentation suggests, the next snippet should enable debug toolbar
routing:

if settings.DEBUG and 'debug_toolbar' in settings.INSTALLED_APPS:
 import debug_toolbar
 urlpatterns += [
 url(r'^__debug__/', include(debug_toolbar.urls)),
]

Collect toolbar's static after installation:

python manage.py collectstatic

That's it, debug toolbar will appear on you project's pages, providing various useful information
about execution time, SQL, static files, signals, etc.

HTML:

Also, django-debug-toolbar requires a Content-type of text/html, <html> and <body> tags to render
properly.

https://riptutorial.com/ 56

In case if you sure you've configured everything right, but debug toolbar is still not
rendered: use this "nuclear" solution to try to figure it out.

Using "assert False"

While developing, inserting the following line to your code:

assert False, value

will cause django to raise an AssertionError with the value supplied as an error message when this
line is executed.

If this occurs in a view, or in any code called from a view, and DEBUG=True is set, a full and detailed
stacktrace with a lot of debugging information will be displayed in the browser.

Don't forget to remove the line when you are done!

Consider Writing More Documentation, Tests, Logging and Assertions Instead
of Using a Debugger

Debugging takes time and effort.

Instead of chasing bugs with a debugger, consider spending more time on making your code
better by:

Write and run Tests. Python and Django have great builtin testing frameworks - that can be
used to test your code much faster than manually with a debugger.

•

Writing proper documentation for your functions, classes and modules. PEP 257 and
Google's Python Style Guide supplies good practices for writing good docstrings.

•

Use Logging to produce output from your program - during development and after
deploying.

•

Add assertions to your code in important places: Reduce ambiguity, catch problems as they
are created.

•

Bonus: Write doctests for combining documentation and testing!

Read Debugging online: https://riptutorial.com/django/topic/5072/debugging

https://riptutorial.com/ 57

http://stackoverflow.com/questions/10517765/django-debug-toolbar-not-showing-up
https://docs.djangoproject.com/en/1.10/topics/testing/
https://www.python.org/dev/peps/pep-0257/
https://google.github.io/styleguide/pyguide.html?showone=Comments#Comments
https://docs.djangoproject.com/en/1.10/topics/logging/
https://docs.python.org/3/library/doctest.html
https://riptutorial.com/django/topic/5072/debugging

Chapter 15: Deployment

Examples

Running Django application with Gunicorn

Install gunicorn

pip install gunicorn

1.

From django project folder (same folder where manage.py resides), run the following
command to run current django project with gunicorn

gunicorn [projectname].wsgi:application -b 127.0.0.1:[port number]

You can use the --env option to set the path to load the settings

gunicorn --env DJANGO_SETTINGS_MODULE=[projectname].settings [projectname].wsgi

or run as daemon process using -D option

2.

Upon successful start of gunicorn, the following lines will appear in console

Starting gunicorn 19.5.0

Listening at: http://127.0.0.1:[port number] ([pid])

.... (other additional information about gunicorn server)

3.

Deploying with Heroku

Download Heroku Toolbelt.1.

Navigate to the root of the sources of your Django app. You'll need tk2.

Type heroku create [app_name]. If you don't give an app name, Heroku will randomly generate
one for you. Your app URL will be http://[app name].herokuapp.com

3.

Make a text file with the name Procfile. Don't put an extension at the end.

web: <bash command to start production server>

If you have a worker process, you can add it too. Add another line in the format:
worker-name: <bash command to start worker>

4.

Add a requirements.txt.5.

If you are using a virtual environment, execute pip freeze > requirements.txt•
Otherwise, get a virtual environment!. You can also manually list the Python packages you
need, but that won't be covered in this tutorial.

•

https://riptutorial.com/ 58

https://toolbelt.heroku.com/
http://www.riptutorial.com/django/example/3203/virtual-environment

It's deployment time!

git push heroku master1.

Heroku needs a git repository or a dropbox folder to do deploys. You can
alternatively set up automatic reloading from a GitHub repository at heroku.com,
but we won't cover that in this tutorial.

heroku ps:scale web=12.

This scales the number of web "dynos" to one. You can learn more about dynos
here.

heroku open or navigate to http://app-name.herokuapp.com3.

Tip: heroku open opens the URL to your heroku app in the default browser.

6.

Add add-ons. You'll need to configure your Django app to bind with databases provided in
Heroku as "add-ons". This example doesn't cover this, but another example is in the pipeline
on deploying databases in Heroku.

7.

Simple remote deploy fabfile.py

Fabric is a Python (2.5-2.7) library and command-line tool for streamlining the use of SSH for
application deployment or systems administration tasks. It lets you execute arbitrary Python
functions via the command line.

Install fabric via pip install fabric
Create fabfile.py in your root directory:

#myproject/fabfile.py
from fabric.api import *

@task
def dev():
 # details of development server
 env.user = # your ssh user
 env.password = #your ssh password
 env.hosts = # your ssh hosts (list instance, with comma-separated hosts)
 env.key_filename = # pass to ssh key for github in your local keyfile

@task
def release():
 # details of release server
 env.user = # your ssh user
 env.password = #your ssh password
 env.hosts = # your ssh hosts (list instance, with comma-separated hosts)
 env.key_filename = # pass to ssh key for github in your local keyfile

@task
def run():
 with cd('path/to/your_project/'):
 with prefix('source ../env/bin/activate'):
 # activate venv, suppose it appear in one level higher
 # pass commands one by one

https://riptutorial.com/ 59

http://heroku.com
https://devcenter.heroku.com/articles/dynos

 run('git pull')
 run('pip install -r requirements.txt')
 run('python manage.py migrate --noinput')
 run('python manage.py collectstatic --noinput')
 run('touch reload.txt')

To execute the file, simply use the fab command:

$ fab dev run # for release server, `fab release run`

Note: you can not configure ssh keys for github and just type login and password manually, while
fabfile runs, the same with keys.

Using Heroku Django Starter Template.

If you plan to host your Django website on Heroku, you can start your project using the Heroku
Django Starter Template :

django-admin.py startproject --template=https://github.com/heroku/heroku-django-
template/archive/master.zip --name=Procfile YourProjectName

It has Production-ready configuration for Static Files, Database Settings, Gunicorn, etc and
Enhancements to Django's static file serving functionality via WhiteNoise. This will save your time,
it's All-Ready for hosting on Heroku, Just build your website on the top of this template

To deploy this template on Heroku:

git init
git add -A
git commit -m "Initial commit"

heroku create
git push heroku master

heroku run python manage.py migrate

That's it!

Django deployment instructions. Nginx + Gunicorn + Supervisor on Linux
(Ubuntu)

Three basic tools.

nginx - free, open-source, high-performance HTTP server and reverse proxy, with high
performance;

1.

gunicorn - 'Green Unicorn' is a Python WSGI HTTP Server for UNIX (needed to manage
your server);

2.

supervisor - a client/server system that allows its users to monitor and control a number of
processes on UNIX-like operating systems. Used when you app or system crashes, restarts
your django / celery / celery cam, etc;

3.

https://riptutorial.com/ 60

In order ot make it simple, let's assume your app is located in this directory: /home/root/app/src/
and we're gonna use root user (but you should create separate user for your app). Also our
virtualenvironment will be located in /home/root/app/env/ path.

NGINX

Let's start with nginx. If nginx is not already on machine, install it with sudo apt-get install nginx.
Later on you have to create a new config file in your nginx directory /etc/nginx/sites-
enabled/yourapp.conf. If there is a file named default.conf - remove it.

Bellow code to a nginx conf file, which will try to run your service with using socket file; Later on
there will be a configuration of gunicorn. Socket file is used here to communicate between nginx
and gunicorn. It can also be done with using ports.

your application name; can be whatever you want
upstream yourappname {
 server unix:/home/root/app/src/gunicorn.sock fail_timeout=0;
}

server {
 # root folder of your application
 root /home/root/app/src/;

 listen 80;
 # server name, your main domain, all subdomains and specific subdomains
 server_name yourdomain.com *.yourdomain.com somesubdomain.yourdomain.com

 charset utf-8;

 client_max_body_size 100m;

 # place where logs will be stored;
 # folder and files have to be already located there, nginx will not create
 access_log /home/root/app/src/logs/nginx-access.log;
 error_log /home/root/app/src/logs/nginx-error.log;

 # this is where your app is served (gunicorn upstream above)
 location / {
 uwsgi_pass yourappname;
 include uwsgi_params;
 }

 # static files folder, I assume they will be used
 location /static/ {
 alias /home/root/app/src/static/;
 }

 # media files folder
 location /media/ {
 alias /home/root/app/src/media/;
 }

}

https://riptutorial.com/ 61

GUNICORN

Now our GUNICORN script, which will be responsible for running django application on server.
First thing is to install gunicorn in virtual environment with pip install gunicorn.

#!/bin/bash

ME="root"
DJANGODIR=/home/root/app/src # django app dir
SOCKFILE=/home/root/app/src/gunicorn.sock # your sock file - do not create it manually
USER=root
GROUP=webapps
NUM_WORKERS=3
DJANGO_SETTINGS_MODULE=yourapp.yoursettings
DJANGO_WSGI_MODULE=yourapp.wsgi
echo "Starting $NAME as `whoami`"

Activate the virtual environment
cd $DJANGODIR

source /home/root/app/env/bin/activate
export DJANGO_SETTINGS_MODULE=$DJANGO_SETTINGS_MODULE
export PYTHONPATH=$DJANGODIR:$PYTHONPATH

Create the run directory if it doesn't exist
RUNDIR=$(dirname $SOCKFILE)
test -d $RUNDIR || mkdir -p $RUNDIR

Start your Django Gunicorn
Programs meant to be run under supervisor should not daemonize themselves (do not use --
daemon)
exec /home/root/app/env/bin/gunicorn ${DJANGO_WSGI_MODULE}:application \
 --name root \
 --workers $NUM_WORKERS \
 --user=$USER --group=$GROUP \
 --bind=unix:$SOCKFILE \
 --log-level=debug \
 --log-file=-

in order to be able to run gunicorn start script it has to have execution mode enabled so

sudo chmod u+x /home/root/app/src/gunicorn_start

now you will be able to start your gunicorn server with just using ./gunicorn_start

SUPERVISOR

As said in the beginning, we want our application to be restarted when fails by a supervisor. If
supervisor not yet on server install with sudo apt-get install supervisor.

At first install supervisor. Then create a .conf file in your main directory
/etc/supervisor/conf.d/your_conf_file.conf

configuration file content:

https://riptutorial.com/ 62

[program:yourappname]
command = /home/root/app/src/gunicorn_start
user = root
stdout_logfile = /home/root/app/src/logs/gunicorn_supervisor.log
redirect_stderr = true

Quick brief, [program:youappname] is required at the beginning, it will be our identifier. also
stdout_logfile is a file where logs will be stored, both access and errors.

Having that done we have to tell our supervisor that we have just added new configuration file. To
do it, there is different process for different Ubuntu version.

For Ubuntu version 14.04 or lesser than it, simply run those commands:

sudo supervisorctl reread -> rereads all config files inside supervisor catalog this should print out:
yourappname: available

sudo supervisorctl update -> updates supervisor to newly added config files; should print out
yourappname: added process group

For Ubuntu 16.04 Run:

sudo service supervisor restart

and in order to check if your app is running correctly just run

sudo supervisorctl status yourappname

This should display :

yourappname RUNNING pid 18020, uptime 0:00:50

To get live demonstration of this procedure, surf this video.

Deploying locally without setting up apache/nginx

Recommended way of production deployment calls for using Apache/Nginx for serving the static
content. Thus, when DEBUG is false static and media contents fail to load. However, we can load the
static content in deployment without having to setup Apache/Nginx server for our app using:

python manage.py runserver --insecure

This is only intended for local deployment(e.g LAN) and should never be used in production and is
only available if the staticfiles app is in your project’s INSTALLED_APPS setting.

Read Deployment online: https://riptutorial.com/django/topic/2792/deployment

https://riptutorial.com/ 63

https://www.youtube.com/watch?v=jN9iPaQzZbQ
https://riptutorial.com/django/topic/2792/deployment

Chapter 16: Django and Social Networks

Parameters

Setting Does

Some Configurations

Handy basic settings that go with Django-
Allauth (that I use most of the time). For
more configuration options, see
Configurations

ACCOUNT_AUTHENTICATION_METHOD
(=”username” or “email” or “username_email”)

Specifies the login method to use – whether
the user logs in by entering their username,
e-mail address, or either one of both.
Setting this to “email” requires
ACCOUNT_EMAIL_REQUIRED=True

ACCOUNT_EMAIL_CONFIRMATION_EXPIRE_DAYS
(=3)

Determines the expiration date of email
confirmation mails (# of days).

ACCOUNT_EMAIL_REQUIRED (=False)

The user is required to hand over an e-mail
address when signing up. This goes in
tandem with the
ACCOUNT_AUTHENTICATION_METHOD setting

ACCOUNT_EMAIL_VERIFICATION (=”optional”)

Determines the e-mail verification method
during signup – choose one of "mandatory",
"optional", or "none". When set to
“mandatory” the user is blocked from
logging in until the email address is verified.
Choose “optional” or “none” to allow logins
with an unverified e-mail address. In case of
“optional”, the e-mail verification mail is still
sent, whereas in case of “none” no e-mail
verification mails are sent.

ACCOUNT_LOGIN_ATTEMPTS_LIMIT (=5)

Number of failed login attempts. When this
number is exceeded, the user is prohibited
from logging in for the specified
ACCOUNT_LOGIN_ATTEMPTS_TIMEOUT
seconds. While this protects the allauth
login view, it does not protect Django’s
admin login from being brute forced.

Determines whether or not the user is
automatically logged out after changing or

ACCOUNT_LOGOUT_ON_PASSWORD_CHANGE
(=False)

https://riptutorial.com/ 64

https://django-allauth.readthedocs.io/en/latest/configuration.html

Setting Does

setting their password.

SOCIALACCOUNT_PROVIDERS (= dict)
Dictionary containing provider specific
settings.

Examples

Easy way: python-social-auth

python-social-auth is a framework that simplifies the social authentication and
authorization mechanism. It contains many social backends (Facebook, Twitter, Github,
LinkedIn, etc.)

INSTALL

First we need to install the python-social-auth package with

pip install python-social-auth

or download the code from github. Now is a good time to add this to your requirements.txt file.

CONFIGURING settings.py

In the settings.py add:

INSTALLED_APPS = (
 ...
 'social.apps.django_app.default',
 ...
)

CONFIGURING BACKENDS

AUTHENTICATION_BACKENDS contains the backends that we will use, and we only have to put
what's we need.

AUTHENTICATION_BACKENDS = (
 'social.backends.open_id.OpenIdAuth',
 'social.backends.google.GoogleOpenId',
 'social.backends.google.GoogleOAuth2',
 'social.backends.google.GoogleOAuth',
 'social.backends.twitter.TwitterOAuth',
 'social.backends.yahoo.YahooOpenId',
 ...
 'django.contrib.auth.backends.ModelBackend',
)

Your project settings.py may not yet have an AUTHENTICATION_BACKENDS field. If that is the case add
the field. Be sure not to miss 'django.contrib.auth.backends.ModelBackend', as it handles login by

https://riptutorial.com/ 65

https://github.com/omab/python-social-auth

username/password.

If we use for example Facebook and Linkedin Backends we need to add the API keys

SOCIAL_AUTH_FACEBOOK_KEY = 'YOURFACEBOOKKEY'
SOCIAL_AUTH_FACEBOOK_SECRET = 'YOURFACEBOOKSECRET'

and

SOCIAL_AUTH_LINKEDIN_KEY = 'YOURLINKEDINKEY'
SOCIAL_AUTH_LINKEDIN_SECRET = 'YOURLINKEDINSECRET'

Note: You can Obtain the nedded keys in Facebook developers and Linkedin developers and here
you can see the full list and his respective way to especify the API key and the key Secret.

Note on Secret Keys: Secret keys should be kept secret. Here is a Stack Overflow explanation
that is helpful. This tutorial is helpful for learning about enviromental variables.

TEMPLATE_CONTEXT_PROCESSORS will help to redirections, backends and other things, but
at beginning we only need these:

TEMPLATE_CONTEXT_PROCESSORS = (
 ...
 'social.apps.django_app.context_processors.backends',
 'social.apps.django_app.context_processors.login_redirect',
 ...
)

In Django 1.8 setting up TEMPLATE_CONTEXT_PREPROCESSORS as shown above was deprecated. If this is
the case for you you'll add it inside of the TEMPLATES dict. Yours should look something similar to
this:

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [os.path.join(BASE_DIR, "templates")],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
 'social.apps.django_app.context_processors.backends',
 'social.apps.django_app.context_processors.login_redirect',
],
 },
 },
]

USING A CUSTOM USER

If you are using a custom User Model and want to asociate with it, just add the following line (still

https://riptutorial.com/ 66

http://developers.facebook.com/
https://developer.linkedin.com/
http://psa.matiasaguirre.net/docs/backends/index.html
http://stackoverflow.com/questions/14786072/keep-secret-keys-out-with-environment-variables/14786138#14786138
http://www.marinamele.com/taskbuster-django-tutorial/settings-different-environments-version-control

in settings.py)

SOCIAL_AUTH_USER_MODEL = 'somepackage.models.CustomUser'

CustomUser is a model which inherit or Abstract from default User.

CONFIGURING urls.py

if you haven't imported inlcude make sure you do so at the top of your file
from django.conf.urls import url, include

urlpatterns = patterns('',
 ...
 url('', include('social.apps.django_app.urls', namespace='social'))
 ...
)

Next need to sync database to create needed models:

./manage.py migrate

Finally we can play!

in some template you need to add something like this:

 Login with
Facebook
 Login with
Linkedin

if you use another backend just change 'facebook' by the backend name.

Logging users out

Once you have logged users in you'll likely want to create the functionality to log them back out. In
some template, likely near where the log in template was shown, add the following tag:

Logout

or

Logout

You'll want to edit your urls.py file with code similar to:

url(r'^logout/$', views.logout, name='logout'),

Lastly edit your views.py file with code similar to:

def logout(request):

https://riptutorial.com/ 67

 auth_logout(request)
 return redirect('/')

Using Django Allauth

For all my projects, Django-Allauth remained one that is easy to setup, and comes out of the box
with many features including but not limited to:

Some 50+ social networks authentications•
Mix signup of both local and social accounts•
Multiple social accounts•
Optional instant-signup for social accounts – no questions asked•
E-mail address management (multiple e-mail addresses, setting a primary)•
Password forgotten flow E-mail address verification flow•

If you're interested in getting your hands dirty, Django-Allauth gets out of the way, with additional
configurations to tweak the process and use of your authentication system.

The steps below assume you're using Django 1.10+

Setup steps:

pip install django-allauth

In your settings.py file, make the following changes:

Specify the context processors as follows:
TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 # Already defined Django-related contexts here

 # `allauth` needs this from django. It is there by default,
 # unless you've devilishly taken it away.
 'django.template.context_processors.request',
],
 },
 },
]

AUTHENTICATION_BACKENDS = (
 # Needed to login by username in Django admin, regardless of `allauth`
 'django.contrib.auth.backends.ModelBackend',

 # `allauth` specific authentication methods, such as login by e-mail
 'allauth.account.auth_backends.AuthenticationBackend',
)

INSTALLED_APPS = (
Up here is all your default installed apps from Django

https://riptutorial.com/ 68

The following apps are required:
'django.contrib.auth',
'django.contrib.sites',

'allauth',
'allauth.account',
'allauth.socialaccount',

include the providers you want to enable:
'allauth.socialaccount.providers.google',
'allauth.socialaccount.providers.facebook',
)

Don't forget this little dude.
SITE_ID = 1

Done with the changes in settings.py file above, move onto the urls.py file. It can be your
yourapp/urls.py or your ProjectName/urls.py. Normally, I prefer the ProjectName/urls.py.

urlpatterns = [
 # other urls here
 url(r'^accounts/', include('allauth.urls')),
 # other urls here
]

Simply adding the include('allauth.urls'), gives you these urls for free:

^accounts/ ^ ^signup/$ [name='account_signup']
^accounts/ ^ ^login/$ [name='account_login']
^accounts/ ^ ^logout/$ [name='account_logout']
^accounts/ ^ ^password/change/$ [name='account_change_password']
^accounts/ ^ ^password/set/$ [name='account_set_password']
^accounts/ ^ ^inactive/$ [name='account_inactive']
^accounts/ ^ ^email/$ [name='account_email']
^accounts/ ^ ^confirm-email/$ [name='account_email_verification_sent']
^accounts/ ^ ^confirm-email/(?P<key>[-:\w]+)/$ [name='account_confirm_email']
^accounts/ ^ ^password/reset/$ [name='account_reset_password']
^accounts/ ^ ^password/reset/done/$ [name='account_reset_password_done']
^accounts/ ^ ^password/reset/key/(?P<uidb36>[0-9A-Za-z]+)-(?P<key>.+)/$
[name='account_reset_password_from_key']
^accounts/ ^ ^password/reset/key/done/$ [name='account_reset_password_from_key_done']
^accounts/ ^social/
^accounts/ ^google/
^accounts/ ^twitter/
^accounts/ ^facebook/
^accounts/ ^facebook/login/token/$ [name='facebook_login_by_token']

Finally, do python ./manage.py migrate to commit the migrates of Django-allauth into Database.

As usual, to be able to log into your app using any social network you've added, you'll have to add
the social account details of the network.

Login to the Django Admin (localhost:8000/admin) and under Social Applications in the add your
social account details.

You might need accounts at each auth provider in order to obtain details to fill in at the Social

https://riptutorial.com/ 69

Applications sections.

For detailed configurations of what you can have and tweak, see the Configurations page.

Read Django and Social Networks online: https://riptutorial.com/django/topic/4743/django-and-
social-networks

https://riptutorial.com/ 70

https://django-allauth.readthedocs.io/en/latest/configuration.html
https://riptutorial.com/django/topic/4743/django-and-social-networks
https://riptutorial.com/django/topic/4743/django-and-social-networks

Chapter 17: Django from the command line.

Remarks

While Django is primarily for web apps it has a powerful and easy to use ORM that can be used
for command line apps and scripts too. There are two different approaches that can be used. The
first being to create a custom management command and the second to initialize the Django
environment at the start of your script.

Examples

Django from the command line.

Supposing you have setup a django project, and the settings file is in an app named main, this is
how you initialize your code

import os, sys

Setup environ
sys.path.append(os.getcwd())
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "main.settings")

Setup django
import django
django.setup()

rest of your imports go here

from main.models import MyModel

normal python code that makes use of Django models go here

for obj in MyModel.objects.all():
 print obj

The above can be executed as

python main/cli.py

Read Django from the command line. online: https://riptutorial.com/django/topic/5848/django-from-
the-command-line-

https://riptutorial.com/ 71

https://riptutorial.com/django/topic/5848/django-from-the-command-line-
https://riptutorial.com/django/topic/5848/django-from-the-command-line-

Chapter 18: Django Rest Framework

Examples

Simple barebones read-only API

Assuming you have a model that looks like the following, we will get up an running with a simple
barebones read-only API driven by Django REST Framework ("DRF").

models.py

class FeedItem(models.Model):
 title = models.CharField(max_length=100, blank=True)
 url = models.URLField(blank=True)
 style = models.CharField(max_length=100, blank=True)
 description = models.TextField(blank=True)

The serializer is the component that will take all of the information from the Django model (in this
case the FeedItem) and turn it into JSON. It is very similar to creating form classes in Django. If you
have any experience in that, this will be very comfortable for you.

serializers.py

from rest_framework import serializers
from . import models

class FeedItemSerializer(serializers.ModelSerializer):
 class Meta:
 model = models.FeedItem
 fields = ('title', 'url', 'description', 'style')

views.py

DRF offers many view classes to handle a variety of use cases. In this example, we are only going
to have a read-only API, so, rather than using a more comprehensive viewset, or a bunch of
related generic views, we will use a single subclass of DRF's ListAPIView.

The purpose of this class is to link the data with the serializer, and wrap it all together for a
response object.

from rest_framework import generics
from . import serializers, models

class FeedItemList(generics.ListAPIView):
 serializer_class = serializers.FeedItemSerializer
 queryset = models.FeedItem.objects.all()

urls.py

https://riptutorial.com/ 72

http://www.django-rest-framework.org/api-guide/generic-views/
http://www.django-rest-framework.org/api-guide/viewsets/

Make sure you point your route to your DRF view.

from django.conf.urls import url
from . import views

urlpatterns = [
 ...
 url(r'path/to/api', views.FeedItemList.as_view()),
]

Read Django Rest Framework online: https://riptutorial.com/django/topic/7341/django-rest-
framework

https://riptutorial.com/ 73

https://riptutorial.com/django/topic/7341/django-rest-framework
https://riptutorial.com/django/topic/7341/django-rest-framework

Chapter 19: django-filter

Examples

Use django-filter with CBV

django-filter is generic system for filtering Django QuerySets based on user selections. The
documentation uses it in a function-based view as a product model:

from django.db import models

class Product(models.Model):
 name = models.CharField(max_length=255)
 price = models.DecimalField()
 description = models.TextField()
 release_date = models.DateField()
 manufacturer = models.ForeignKey(Manufacturer)

The filter will be as follows:

import django_filters

class ProductFilter(django_filters.FilterSet):
 name = django_filters.CharFilter(lookup_expr='iexact')

 class Meta:
 model = Product
 fields = ['price', 'release_date']

To use this in a CBV, override get_queryset() of the ListView, then return the filtered querset:

from django.views.generic import ListView
from .filters import ProductFilter

class ArticleListView(ListView):
 model = Product

 def get_queryset(self):
 qs = self.model.objects.all()
 product_filtered_list = ProductFilter(self.request.GET, queryset=qs)
 return product_filtered_list.qs

It is possible to access the filtered objects in your views, such as with pagination, in f.qs. This will
paginate the filtered objects list.

Read django-filter online: https://riptutorial.com/django/topic/6101/django-filter

https://riptutorial.com/ 74

https://django-filter.readthedocs.io/en/latest/
https://django-filter.readthedocs.io/en/latest/
https://riptutorial.com/django/topic/6101/django-filter

Chapter 20: Extending or Substituting User
Model

Examples

Custom user model with email as primary login field.

models.py :

from __future__ import unicode_literals
from django.db import models
from django.contrib.auth.models import (
 AbstractBaseUser, BaseUserManager, PermissionsMixin)
from django.utils import timezone
from django.utils.translation import ugettext_lazy as _

class UserManager(BaseUserManager):
 def _create_user(self, email,password, is_staff, is_superuser, **extra_fields):
 now = timezone.now()
 if not email:
 raise ValueError('users must have an email address')
 email = self.normalize_email(email)
 user = self.model(email = email,
 is_staff = is_staff,
 is_superuser = is_superuser,
 last_login = now,
 date_joined = now,
 **extra_fields)
 user.set_password(password)
 user.save(using = self._db)
 return user

 def create_user(self, email, password=None, **extra_fields):
 user = self._create_user(email, password, False, False, **extra_fields)
 return user

 def create_superuser(self, email, password, **extra_fields):
 user = self._create_user(email, password, True, True, **extra_fields)
 return user

class User(AbstractBaseUser,PermissionsMixin):
 """My own custom user class"""

 email = models.EmailField(max_length=255, unique=True, db_index=True,
verbose_name=_('email address'))
 date_joined = models.DateTimeField(auto_now_add=True)
 is_active = models.BooleanField(default=True)
 is_staff = models.BooleanField(default=False)

 objects = UserManager()

 USERNAME_FIELD = 'email'
 REQUIRED_FIELDS = []

https://riptutorial.com/ 75

 class Meta:
 verbose_name = _('user')
 verbose_name_plural = _('users')

 def get_full_name(self):
 """Return the email."""
 return self.email

 def get_short_name(self):
 """Return the email."""
 return self.email

forms.py :

from django import forms
from django.contrib.auth.forms import UserCreationForm
from .models import User

class RegistrationForm(UserCreationForm):
 email = forms.EmailField(widget=forms.TextInput(
 attrs={'class': 'form-control','type':'text','name': 'email'}),
 label="Email")
 password1 = forms.CharField(widget=forms.PasswordInput(
 attrs={'class':'form-control','type':'password', 'name':'password1'}),
 label="Password")
 password2 = forms.CharField(widget=forms.PasswordInput(
 attrs={'class':'form-control','type':'password', 'name': 'password2'}),
 label="Password (again)")

 '''added attributes so as to customise for styling, like bootstrap'''
 class Meta:
 model = User
 fields = ['email','password1','password2']
 field_order = ['email','password1','password2']

 def clean(self):
 """
 Verifies that the values entered into the password fields match
 NOTE : errors here will appear in 'non_field_errors()'
 """
 cleaned_data = super(RegistrationForm, self).clean()
 if 'password1' in self.cleaned_data and 'password2' in self.cleaned_data:
 if self.cleaned_data['password1'] != self.cleaned_data['password2']:
 raise forms.ValidationError("Passwords don't match. Please try again!")
 return self.cleaned_data

 def save(self, commit=True):
 user = super(RegistrationForm,self).save(commit=False)
 user.set_password(self.cleaned_data['password1'])
 if commit:
 user.save()
 return user

#The save(commit=False) tells Django to save the new record, but dont commit it to the
database yet

class AuthenticationForm(forms.Form): # Note: forms.Form NOT forms.ModelForm
 email = forms.EmailField(widget=forms.TextInput(
 attrs={'class': 'form-control','type':'text','name': 'email','placeholder':'Email'}),

https://riptutorial.com/ 76

 label='Email')
 password = forms.CharField(widget=forms.PasswordInput(
 attrs={'class':'form-control','type':'password', 'name':
'password','placeholder':'Password'}),
 label='Password')

 class Meta:
 fields = ['email', 'password']

views.py :

from django.shortcuts import redirect, render, HttpResponse
from django.contrib.auth import login as django_login, logout as django_logout, authenticate
as django_authenticate
#importing as such so that it doesn't create a confusion with our methods and django's default
methods

from django.contrib.auth.decorators import login_required
from .forms import AuthenticationForm, RegistrationForm

def login(request):
 if request.method == 'POST':
 form = AuthenticationForm(data = request.POST)
 if form.is_valid():
 email = request.POST['email']
 password = request.POST['password']
 user = django_authenticate(email=email, password=password)
 if user is not None:
 if user.is_active:
 django_login(request,user)
 return redirect('/dashboard') #user is redirected to dashboard
 else:
 form = AuthenticationForm()

 return render(request,'login.html',{'form':form,})

def register(request):
 if request.method == 'POST':
 form = RegistrationForm(data = request.POST)
 if form.is_valid():
 user = form.save()
 u = django_authenticate(user.email = user, user.password = password)
 django_login(request,u)
 return redirect('/dashboard')
 else:
 form = RegistrationForm()

 return render(request,'register.html',{'form':form,})

def logout(request):
 django_logout(request)
 return redirect('/')

@login_required(login_url ="/")
def dashboard(request):
 return render(request, 'dashboard.html',{})

settings.py :

https://riptutorial.com/ 77

AUTH_USER_MODEL = 'myapp.User'

admin.py

from django.contrib import admin
from django.contrib.auth.admin import UserAdmin as BaseUserAdmin
from django.contrib.auth.models import Group
from .models import User

class UserAdmin(BaseUserAdmin):
 list_display = ('email','is_staff')
 list_filter = ('is_staff',)
 fieldsets = ((None,
 {'fields':('email','password')}), ('Permissions',{'fields':('is_staff',)}),)
 add_fieldsets = ((None, {'classes': ('wide',), 'fields': ('email', 'password1',
'password2')}),)
 search_fields =('email',)
 ordering = ('email',)
 filter_horizontal = ()

admin.site.register(User, UserAdmin)
admin.site.unregister(Group)

Use the `email` as username and get rid of the `username` field

If you want to get rid of the username field and use email as unique user identifier, you will have to
create a custom User model extending AbstractBaseUser instead of AbstractUser. Indeed, username
and email are defined in AbstractUser and you can't override them. This means you will also have
to redefine all fields you want that are defined in AbstractUser.

from django.contrib.auth.models import (
 AbstractBaseUser, PermissionsMixin, BaseUserManager,
)
from django.db import models
from django.utils import timezone
from django.utils.translation import ugettext_lazy as _

class UserManager(BaseUserManager):

 use_in_migrations = True

 def _create_user(self, email, password, **extra_fields):
 if not email:
 raise ValueError('The given email must be set')
 email = self.normalize_email(email)
 user = self.model(email=email, **extra_fields)
 user.set_password(password)
 user.save(using=self._db)
 return user

 def create_user(self, email, password=None, **extra_fields):
 extra_fields.setdefault('is_staff', False)
 extra_fields.setdefault('is_superuser', False)
 return self._create_user(email, password, **extra_fields)

 def create_superuser(self, email, password, **extra_fields):

https://riptutorial.com/ 78

 extra_fields.setdefault('is_staff', True)
 extra_fields.setdefault('is_superuser', True)

 if extra_fields.get('is_staff') is not True:
 raise ValueError('Superuser must have is_staff=True.')
 if extra_fields.get('is_superuser') is not True:
 raise ValueError('Superuser must have is_superuser=True.')

 return self._create_user(email, password, **extra_fields)

class User(AbstractBaseUser, PermissionsMixin):
 """PermissionsMixin contains the following fields:
 - `is_superuser`
 - `groups`
 - `user_permissions`
 You can omit this mix-in if you don't want to use permissions or
 if you want to implement your own permissions logic.
 """

 class Meta:
 verbose_name = _("user")
 verbose_name_plural = _("users")
 db_table = 'auth_user'
 # `db_table` is only needed if you move from the existing default
 # User model to a custom one. This enables to keep the existing data.

 USERNAME_FIELD = 'email'
 """Use the email as unique username."""

 REQUIRED_FIELDS = ['first_name', 'last_name']

 GENDER_MALE = 'M'
 GENDER_FEMALE = 'F'
 GENDER_CHOICES = [
 (GENDER_MALE, _("Male")),
 (GENDER_FEMALE, _("Female")),
]

 email = models.EmailField(
 verbose_name=_("email address"), unique=True,
 error_messages={
 'unique': _(
 "A user is already registered with this email address"),
 },
)
 gender = models.CharField(
 max_length=1, blank=True, choices=GENDER_CHOICES,
 verbose_name=_("gender"),
)
 first_name = models.CharField(
 max_length=30, verbose_name=_("first name"),
)
 last_name = models.CharField(
 max_length=30, verbose_name=_("last name"),
)
 is_staff = models.BooleanField(
 verbose_name=_("staff status"),
 default=False,
 help_text=_(
 "Designates whether the user can log into this admin site."

https://riptutorial.com/ 79

),
)
 is_active = models.BooleanField(
 verbose_name=_("active"),
 default=True,
 help_text=_(
 "Designates whether this user should be treated as active. "
 "Unselect this instead of deleting accounts."
),
)
 date_joined = models.DateTimeField(
 verbose_name=_("date joined"), default=timezone.now,
)

 objects = UserManager()

Extend Django User Model Easily

Our UserProfile class

Create a UserProfile model class with the relationship of OneToOne to the default User model:

from django.db import models
from django.contrib.auth.models import User
from django.db.models.signals import post_save

class UserProfile(models.Model):
 user = models.OneToOneField(User, related_name='user')
 photo = FileField(verbose_name=_("Profile Picture"),
 upload_to=upload_to("main.UserProfile.photo", "profiles"),
 format="Image", max_length=255, null=True, blank=True)
 website = models.URLField(default='', blank=True)
 bio = models.TextField(default='', blank=True)
 phone = models.CharField(max_length=20, blank=True, default='')
 city = models.CharField(max_length=100, default='', blank=True)
 country = models.CharField(max_length=100, default='', blank=True)
 organization = models.CharField(max_length=100, default='', blank=True)

Django Signals at work

Using Django Signals, create a new UserProfile immediately a User object is created. This function
can be tucked beneath the UserProfile model class in the same file, or place it wherever you like. I
don't care, as along as you reference it properly.

def create_profile(sender, **kwargs):
 user = kwargs["instance"]
 if kwargs["created"]:
 user_profile = UserProfile(user=user)
 user_profile.save()
post_save.connect(create_profile, sender=User)

inlineformset_factory to the rescue

Now for your views.py, you might have something like this:

https://riptutorial.com/ 80

from django.shortcuts import render, HttpResponseRedirect
from django.contrib.auth.decorators import login_required
from django.contrib.auth.models import User
from .models import UserProfile
from .forms import UserForm
from django.forms.models import inlineformset_factory
from django.core.exceptions import PermissionDenied
@login_required() # only logged in users should access this
def edit_user(request, pk):
 # querying the User object with pk from url
 user = User.objects.get(pk=pk)

 # prepopulate UserProfileForm with retrieved user values from above.
 user_form = UserForm(instance=user)

 # The sorcery begins from here, see explanation https://blog.khophi.co/extending-django-
user-model-userprofile-like-a-pro/
 ProfileInlineFormset = inlineformset_factory(User, UserProfile, fields=('website', 'bio',
'phone', 'city', 'country', 'organization'))
 formset = ProfileInlineFormset(instance=user)

 if request.user.is_authenticated() and request.user.id == user.id:
 if request.method == "POST":
 user_form = UserForm(request.POST, request.FILES, instance=user)
 formset = ProfileInlineFormset(request.POST, request.FILES, instance=user)

 if user_form.is_valid():
 created_user = user_form.save(commit=False)
 formset = ProfileInlineFormset(request.POST, request.FILES,
instance=created_user)

 if formset.is_valid():
 created_user.save()
 formset.save()
 return HttpResponseRedirect('/accounts/profile/')

 return render(request, "account/account_update.html", {
 "noodle": pk,
 "noodle_form": user_form,
 "formset": formset,
 })
 else:
 raise PermissionDenied

Our Template

Then spit everything to your template account_update.html as so:

{% load material_form %}
<!-- Material form is just a materialize thing for django forms -->
<div class="col s12 m8 offset-m2">
 <div class="card">
 <div class="card-content">
 <h2 class="flow-text">Update your information</h2>
 <form action="." method="POST" class="padding">
 {% csrf_token %} {{ noodle_form.as_p }}
 <div class="divider"></div>
 {{ formset.management_form }}
 {{ formset.as_p }}
 <button type="submit" class="btn-floating btn-large waves-light waves-effect"><i

https://riptutorial.com/ 81

class="large material-icons">done</i></button>
 <a href="#" onclick="window.history.back(); return false;" title="Cancel"
class="btn-floating waves-effect waves-light red"><i class="material-icons">history</i>

 </form>
 </div>
 </div>
</div>

Above snippet taken from Extending Django UserProfile like a Pro

Specifing a custom User model

Django's built-in User model is not always appropiate for some kinds of projects. On some sites it
might make more sense to use an email address instead of a username for instance.

You can override the default User model adding your customized User model to the AUTH_USER_MODEL
setting, in your projects settings file:

AUTH_USER_MODEL = 'myapp.MyUser'

Note that it's highly adviced to create the AUTH_USER_MODEL before creating any migrations or
running manage.py migrate for the first time. Due to limitations of Django's synamic dependecy
feature.

For example on your blog you might want other authors to be able to sign-in with an email address
instead of the regular username, so we create a custom User model with an email address as
USERNAME_FIELD:

from django.contrib.auth.models import AbstractBaseUser

class CustomUser(AbstractBaseUser):
 email = models.EmailField(unique=True)

 USERNAME_FIELD = 'email'

By inherinting the AbstractBaseUser we can construct a compliant User model. AbstractBaseUser
provides the core implementation of a User model.

In order to let the Django manage.py createsuperuser command know which other fields al required
we can specify a REQUIRED_FIELDS. This value has no effect in other parts of Django!

class CustomUser(AbstractBaseUser):
 ...
 first_name = models.CharField(max_length=254)
 last_name = models.CharField(max_length=254)
 ...
 REQUIRED_FIELDS = ['first_name', 'last_name']

To be compliant with other part of Django we still have to specify the value is_active, the functions
get_full_name() and get_short_name():

https://riptutorial.com/ 82

https://blog.khophi.co/extending-django-user-model-userprofile-like-a-pro/

class CustomUser(AbstractBaseUser):
 ...
 is_active = models.BooleanField(default=False)
 ...
 def get_full_name(self):
 full_name = "{0} {1}".format(self.first_name, self.last_name)
 return full_name.strip()

 def get_short_name(self):
 return self.first_name

You should also create a custom UserManager for your User model, which allows Django to use the
create_user() and create_superuser() functions:

from django.contrib.auth.models import BaseUserManager

class CustomUserManager(BaseUserManager):
 def create_user(self, email, first_name, last_name, password=None):
 if not email:
 raise ValueError('Users must have an email address')

 user = self.model(
 email=self.normalize_email(email),
)

 user.set_password(password)
 user.first_name = first_name
 user.last_name = last_name
 user.save(using=self._db)
 return user

 def create_superuser(self, email, first_name, last_name, password):
 user = self.create_user(
 email=email,
 first_name=first_name,
 last_name=last_name,
 password=password,
)

 user.is_admin = True
 user.is_active = True
 user.save(using=self.db)
 return user

Referencing the User model

Your code will not work in projects where you reference the User model (and where the
AUTH_USER_MODEL setting has been changed) directly.

For example: if you want to create Post model for a blog with a customized User model, you should
specify the custom User model like this:

from django.conf import settings
from django.db import models

class Post(models.Model):

https://riptutorial.com/ 83

 author = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE)

Read Extending or Substituting User Model online:
https://riptutorial.com/django/topic/1209/extending-or-substituting-user-model

https://riptutorial.com/ 84

https://riptutorial.com/django/topic/1209/extending-or-substituting-user-model

Chapter 21: F() expressions

Introduction

An F() expression is a way for Django to use a Python object to refer to the value of model field or
annotated column in the database without having to pull the value into Python memory. This
allows developers to avoid certain race conditions and also filtering results based on model field
values.

Syntax

from django.db.models import F•

Examples

Avoiding race conditions

See this Q&A question if you don't know what race conditions are.

The following code may be subject to race conditions :

article = Article.objects.get(pk=69)
article.views_count += 1
article.save()

If views_count is equal to 1337, this will result in such query:

UPDATE app_article SET views_count = 1338 WHERE id=69

If two clients access this article at the same time, what may happen is that the second HTTP
request executes Article.objects.get(pk=69) before the first executes article.save(). Thus, both
requests will have views_count = 1337, increment it, and save views_count = 1338 to the database,
while it should actually be 1339.

To fix this, use an F() expression:

article = Article.objects.get(pk=69)
article.views_count = F('views_count') + 1
article.save()

This, on the other hand, will result in such query:

UPDATE app_article SET views_count = views_count + 1 WHERE id=69

Updating queryset in bulk

https://riptutorial.com/ 85

http://stackoverflow.com/q/34510/1529346

Let's assume that we want to remove 2 upvotes from all the articles of the author with id 51.
Doing this only with Python would execute N queries (N being the number of articles in the
queryset):

for article in Article.objects.filter(author_id=51):
 article.upvotes -= 2
 article.save()
 # Note that there is a race condition here but this is not the focus
 # of this example.

What if instead of pulling all the articles into Python, looping over them, decreasing the upvotes,
and saving each updated one back to the database, there was another way?
Using an F() expression, can do it in one query:

Article.objects.filter(author_id=51).update(upvotes=F('upvotes') - 2)

Which can be translated in the following SQL query:

UPDATE app_article SET upvotes = upvotes - 2 WHERE author_id = 51

Why is this better?

Instead of Python doing the work, we pass the load into the database which is fine tuned to
make such queries.

•

Effectively cuts down on the number of database queries needed to achieve the wanted
result.

•

Execute Arithmetic operations between fields

F() expressions can be used to execute arithmetic operations (+, -, * etc.) among model fields, in
order to define an algebraic lookup/connection between them.

Let model be:

class MyModel(models.Model):
 int_1 = models.IntegerField()
 int_2 = models.IntegerField()

•

Now lets assume that we want to retrieve all the objects of MyModel table who's int_1 and
int_2 fields satisfy this equation: int_1 + int_2 >= 5. Utilizing annotate() and filter() we get:

result = MyModel.objects.annotate(
 diff=F(int_1) + F(int_2)
).filter(diff__gte=5)

result now contains all of the aforementioned objects.

•

Although the example utilizes Integer fields, this method will work on every field on which an
arithmetic operation can be applied.

https://riptutorial.com/ 86

http://www.riptutorial.com/django/topic/3775/model-aggregations

Read F() expressions online: https://riptutorial.com/django/topic/2765/f---expressions

https://riptutorial.com/ 87

https://riptutorial.com/django/topic/2765/f---expressions

Chapter 22: Form Widgets

Examples

Simple text input widget

The most simple example of widget is custom text input. For instance, to create an <input
type="tel">, you have to subclass TextInput and set input_type to 'tel'.

from django.forms.widgets import TextInput

class PhoneInput(TextInput):
 input_type = 'tel'

Composite widget

You can create widgets composed of multiple widgets using MultiWidget.

from datetime import date

from django.forms.widgets import MultiWidget, Select
from django.utils.dates import MONTHS

class SelectMonthDateWidget(MultiWidget):
 """This widget allows the user to fill in a month and a year.

 This represents the first day of this month or, if `last_day=True`, the
 last day of this month.
 """

 default_nb_years = 10

 def __init__(self, attrs=None, years=None, months=None, last_day=False):
 self.last_day = last_day

 if not years:
 this_year = date.today().year
 years = range(this_year, this_year + self.default_nb_years)
 if not months:
 months = MONTHS

 # Here we will use two `Select` widgets, one for months and one for years
 widgets = (Select(attrs=attrs, choices=months.items()),
 Select(attrs=attrs, choices=((y, y) for y in years)))
 super().__init__(widgets, attrs)

 def format_output(self, rendered_widgets):
 """Concatenates rendered sub-widgets as HTML"""
 return (
 '<div class="row">'
 '<div class="col-xs-6">{}</div>'
 '<div class="col-xs-6">{}</div>'
 '</div>'
).format(*rendered_widgets)

https://riptutorial.com/ 88

 def decompress(self, value):
 """Split the widget value into subwidgets values.
 We expect value to be a valid date formated as `%Y-%m-%d`.
 We extract month and year parts from this string.
 """
 if value:
 value = date(*map(int, value.split('-')))
 return [value.month, value.year]
 return [None, None]

 def value_from_datadict(self, data, files, name):
 """Get the value according to provided `data` (often from `request.POST`)
 and `files` (often from `request.FILES`, not used here)
 `name` is the name of the form field.

 As this is a composite widget, we will grab multiple keys from `data`.
 Namely: `field_name_0` (the month) and `field_name_1` (the year).
 """
 datalist = [
 widget.value_from_datadict(data, files, '{}_{}'.format(name, i))
 for i, widget in enumerate(self.widgets)]
 try:
 # Try to convert it as the first day of a month.
 d = date(day=1, month=int(datelist[0]), year=int(datelist[1]))
 if self.last_day:
 # Transform it to the last day of the month if needed
 if d.month == 12:
 d = d.replace(day=31)
 else:
 d = d.replace(month=d.month+1) - timedelta(days=1)
 except (ValueError, TypeError):
 # If we failed to recognize a valid date
 return ''
 else:
 # Convert it back to a string with format `%Y-%m-%d`
 return str(d)

Read Form Widgets online: https://riptutorial.com/django/topic/1230/form-widgets

https://riptutorial.com/ 89

https://riptutorial.com/django/topic/1230/form-widgets

Chapter 23: Forms

Examples

ModelForm Example

Create a ModelForm from an existing Model class, by subclassing ModelForm:

from django import forms

class OrderForm(forms.ModelForm):
 class Meta:
 model = Order
 fields = ['item', 'order_date', 'customer', 'status']

Defining a Django form from scratch (with widgets)

Forms can be defined, in a similar manner to models, by subclassing django.forms.Form.
Various field input options are available such as CharField, URLField, IntegerField, etc.

Defining a simple contact form can be seen below:

from django import forms

class ContactForm(forms.Form):
 contact_name = forms.CharField(
 label="Your name", required=True,
 widget=forms.TextInput(attrs={'class': 'form-control'}))
 contact_email = forms.EmailField(
 label="Your Email Address", required=True,
 widget=forms.TextInput(attrs={'class': 'form-control'}))
 content = forms.CharField(
 label="Your Message", required=True,
 widget=forms.Textarea(attrs={'class': 'form-control'}))

Widget is Django's representation of HTML user-input tags and can be used to render custom html
for form fields (eg: as a text box is rendered for the content input here)

attrs are attributes that will be copied over as is to the rendered html for the form.

Eg: content.render("name", "Your Name") gives

<input title="Your name" type="text" name="name" value="Your Name" class="form-control" />

Removing a modelForm's field based on condition from views.py

If we have a Model as following,

from django.db import models

https://riptutorial.com/ 90

from django.contrib.auth.models import User

class UserModuleProfile(models.Model):
 user = models.OneToOneField(User)
 expired = models.DateTimeField()
 admin = models.BooleanField(default=False)
 employee_id = models.CharField(max_length=50)
 organisation_name = models.ForeignKey('Organizations', on_delete=models.PROTECT)
 country = models.CharField(max_length=100)
 position = models.CharField(max_length=100)

 def __str__(self):
 return self.user

And a model form which uses this model as following,

from .models import UserModuleProfile, from django.contrib.auth.models import User
from django import forms

class UserProfileForm(forms.ModelForm):
 admin = forms.BooleanField(label="Make this User
Admin",widget=forms.CheckboxInput(),required=False)
 employee_id = forms.CharField(label="Employee Id ")
 organisation_name = forms.ModelChoiceField(label='Organisation
Name',required=True,queryset=Organizations.objects.all(),empty_label="Select an Organization")
 country = forms.CharField(label="Country")
 position = forms.CharField(label="Position")

 class Meta:
 model = UserModuleProfile
 fields = ('admin','employee_id','organisation_name','country','position',)

 def __init__(self, *args, **kwargs):
 admin_check = kwargs.pop('admin_check', False)
 super(UserProfileForm, self).__init__(*args, **kwargs)
 if not admin_check:
 del self.fields['admin']

Notice that below the Meta class in form I added a init function which we can use while initializing
the form from views.py to delete a form field (or some other actions). I will explain this later.

So This form can be used by for user registration purposes and we want all the fields defined in
the Meta class of the form. But what if we want to use the same form when we edit the user but
when we do we don't want to show the admin field of the form?

We can simply send an additional argument when we initialize the form based on some logic and
delete the admin field from backend.

def edit_profile(request,user_id):
 context = RequestContext(request)
 user = get_object_or_404(User, id=user_id)
 profile = get_object_or_404(UserModuleProfile, user_id=user_id)
 admin_check = False
 if request.user.is_superuser:
 admin_check = True
 # If it's a HTTP POST, we're interested in processing form data.
 if request.method == 'POST':

https://riptutorial.com/ 91

 # Attempt to grab information from the raw form information.
 profile_form =
UserProfileForm(data=request.POST,instance=profile,admin_check=admin_check)
 # If the form is valid...
 if profile_form.is_valid():
 form_bool = request.POST.get("admin", "xxx")
 if form_bool == "xxx":
 form_bool_value = False
 else:
 form_bool_value = True
 profile = profile_form.save(commit=False)
 profile.user = user
 profile.admin = form_bool_value
 profile.save()
 edited = True
 else:
 print profile_form.errors

 # Not a HTTP POST, so we render our form using ModelForm instance.
 # These forms will be blank, ready for user input.
 else:
 profile_form = UserProfileForm(instance = profile,admin_check=admin_check)

 return render_to_response(
 'usermodule/edit_user.html',
 {'id':user_id, 'profile_form': profile_form, 'edited': edited, 'user':user},
 context)

As you can see I have shown here a simple edit example using the form we created earlier. Notice
when I initialized the form i passed an additional admin_check variable which contains either True or
False.

profile_form = UserProfileForm(instance = profile,admin_check=admin_check)

Now If you notice the form we wrote earlier you can see that in the init we try to catch the
admin_check param that we pass from here. If the value is False we simply delete the admin Field
from the form and use it. And Since this is a model form admin field could not be null in the model
we simply check if the form post had admin field in the form post, if not we set it to False in the
view code in following code of the view.

form_bool = request.POST.get("admin", "xxx")
if form_bool == "xxx":
 form_bool_value = False
else:
 form_bool_value = True

File Uploads with Django Forms

First of all we need to add MEDIA_ROOT and MEDIA_URL to our settings.py file

MEDIA_ROOT = os.path.join(BASE_DIR, 'media')
MEDIA_URL = '/media/'

Also here you will work with ImageField, so remember in such cases install Pillow library (pip

https://riptutorial.com/ 92

install pillow). Otherwise, you will have such error:

ImportError: No module named PIL

Pillow is a fork of PIL, the Python Imaging Library, which is no longer maintained. Pillow is
backwards compatible with PIL.

Django comes with two form fields to upload files to the server, FileField and ImageField, the
following is an example of using these two fields in our form

forms.py:

from django import forms

class UploadDocumentForm(forms.Form):
 file = forms.FileField()
 image = forms.ImageField()

views.py:

from django.shortcuts import render
from .forms import UploadDocumentForm

def upload_doc(request):
 form = UploadDocumentForm()
 if request.method == 'POST':
 form = UploadDocumentForm(request.POST, request.FILES) # Do not forget to add:
request.FILES
 if form.is_valid():
 # Do something with our files or simply save them
 # if saved, our files would be located in media/ folder under the project's base
folder
 form.save()
 return render(request, 'upload_doc.html', locals())

upload_doc.html:

<html>
 <head>File Uploads</head>
 <body>
 <form enctype="multipart/form-data" action="" method="post"> <!-- Do not forget to
add: enctype="multipart/form-data" -->
 {% csrf_token %}
 {{ form }}
 <input type="submit" value="Save">
 </form>
 </body>
</html>

Validation of fields and Commit to model (Change user e-mail)

There are already implemented forms within Django to change the user password, one example

https://riptutorial.com/ 93

being SetPasswordForm.

There aren't, however, forms to modify the user e-mail and I think the following example is
important to understand how to use a form correctly.

The following example performs the following checks:

E-mail have in fact changed - very useful if you need to validate the e-mail or update mail
chimp;

•

Both e-mail and confirmation e-mail are the same - the form has two fields for e-mail, so the
update is less error prone.

•

And in the end, it saves the new e-mail in the user object (updates the user e-mail). Notice that the
__init__() method requires a user object.

class EmailChangeForm(forms.Form):
 """
 A form that lets a user change set their email while checking for a change in the
 e-mail.
 """
 error_messages = {
 'email_mismatch': _("The two email addresses fields didn't match."),
 'not_changed': _("The email address is the same as the one already defined."),
 }

 new_email1 = forms.EmailField(
 label=_("New email address"),
 widget=forms.EmailInput,
)

 new_email2 = forms.EmailField(
 label=_("New email address confirmation"),
 widget=forms.EmailInput,
)

 def __init__(self, user, *args, **kwargs):
 self.user = user
 super(EmailChangeForm, self).__init__(*args, **kwargs)

 def clean_new_email1(self):
 old_email = self.user.email
 new_email1 = self.cleaned_data.get('new_email1')
 if new_email1 and old_email:
 if new_email1 == old_email:
 raise forms.ValidationError(
 self.error_messages['not_changed'],
 code='not_changed',
)
 return new_email1

 def clean_new_email2(self):
 new_email1 = self.cleaned_data.get('new_email1')
 new_email2 = self.cleaned_data.get('new_email2')
 if new_email1 and new_email2:
 if new_email1 != new_email2:
 raise forms.ValidationError(
 self.error_messages['email_mismatch'],
 code='email_mismatch',

https://riptutorial.com/ 94

https://docs.djangoproject.com/en/dev/topics/auth/default/#django.contrib.auth.forms.SetPasswordForm

)
 return new_email2

 def save(self, commit=True):
 email = self.cleaned_data["new_email1"]
 self.user.email = email
 if commit:
 self.user.save()
 return self.user

def email_change(request):
 form = EmailChangeForm()
 if request.method=='POST':
 form = Email_Change_Form(user,request.POST)
 if form.is_valid():
 if request.user.is_authenticated:
 if form.cleaned_data['email1'] == form.cleaned_data['email2']:
 user = request.user
 u = User.objects.get(username=user)
 # get the proper user
 u.email = form.cleaned_data['email1']
 u.save()
 return HttpResponseRedirect("/accounts/profile/")
 else:
 return render_to_response("email_change.html", {'form':form},
 context_instance=RequestContext(request))

Read Forms online: https://riptutorial.com/django/topic/1217/forms

https://riptutorial.com/ 95

https://riptutorial.com/django/topic/1217/forms

Chapter 24: Formsets

Syntax

NewFormSet = formset_factory(SomeForm, extra=2)•
formset = NewFormSet(initial = [{'some_field': 'Field Value', 'other_field': 'Other Field
Value',}])

•

Examples

Formsets with Initialized and unitialized data

Formset is a way to render multiple forms in one page, like a grid of data. Ex: This ChoiceForm might
be associated with some question of sort. like, Kids are most Intelligent between which age?.

appname/forms.py

from django import forms
class ChoiceForm(forms.Form):
 choice = forms.CharField()
 pub_date = forms.DateField()

In your views you can use formset_factory constructor which takes takes Form as a parameter its
ChoiceForm in this case and extra which describes how many extra forms other than initialized
form/forms needs to be rendered, and you can loop over the formset object just like any other
iterable.

If the formset is not initialized with data it prints the number of forms equal to extra + 1 and if the
formset is initialized it prints initialized + extra where extra number of empty forms other than
initialized ones.

appname/views.py

import datetime
from django.forms import formset_factory
from appname.forms import ChoiceForm
 ChoiceFormSet = formset_factory(ChoiceForm, extra=2)
 formset = ChoiceFormSet(initial=[
 {'choice': 'Between 5-15 ?',
 'pub_date': datetime.date.today(),}
])

if you loop over formset object like this for form in formset: print(form.as_table())

Output in rendered template

<tr>
<th><label for="id_form-0-choice">Choice:</label></th>
<td><input type="text" name="form-0-choice" value="Between 5-15 ?" id="id_form-0-choice"

https://riptutorial.com/ 96

/></td>
</tr>
<tr>
<th><label for="id_form-0-pub_date">Pub date:</label></th>
<td><input type="text" name="form-0-pub_date" value="2008-05-12" id="id_form-0-pub_date"
/></td>
</tr>
<tr>
<th><label for="id_form-1-choice">Choice:</label></th>
<td><input type="text" name="form-1-choice" id="id_form-1-choice" /></td>
</tr>
<tr>
<th><label for="id_form-1-pub_date">Pub date:</label></th>
<td><input type="text" name="form-1-pub_date" id="id_form-1-pub_date" /></td
</tr>
<tr>
<th><label for="id_form-2-choice">Choice:</label></th>
<td><input type="text" name="form-2-choice" id="id_form-2-choice" /></td>
</tr>
<tr>
<th><label for="id_form-2-pub_date">Pub date:</label></th>
<td><input type="text" name="form-2-pub_date" id="id_form-2-pub_date" /></td>
</tr>

Read Formsets online: https://riptutorial.com/django/topic/6082/formsets

https://riptutorial.com/ 97

https://riptutorial.com/django/topic/6082/formsets

Chapter 25: Generic Views

Introduction

Generic views are views that perform a certain pre-defined action, like creating, editing or deleting
objects, or simply showing a template.

Generic views have to be distinguished from functional views, which are always hand-written to
perform the required tasks. In a nutshell, it can be said that generic views need to be configured,
while functional views need to be programmed.

Generic views may save a lot of time, especially when you have many standardized tasks to
perform.

Remarks

These examples show that generic views generally make standardized tasks much simpler.
Instead of programming everything from scratch, you configure what other people have already
programmed for you. This makes sense in many situations, as it allows you concentrate more on
the design of your projects rather than the processes in the background.

So, should you always use them? No. They only make sense as long as your tasks are fairly
standardizes (loading, editig, deleting objects) and the more repetitive your tasks are. Using one
specific generic view only once and then override all its methods to perform very speficic tasks
may not make sense. You may be better off with a functional view here.

However, if you have plenty of views that require this functionality or if your tasks match excatly
the defined tasks of a specific generic view, then generic views are exactly what you need in order
to make your life simpler.

Examples

Minimum Example: Functional vs. Generic Views

Example for a functional view to create an object. Excluding comments and blank lines, we need
15 lines of code:

imports
from django.shortcuts import render_to_response
from django.http import HttpResponseRedirect

from .models import SampleObject
from .forms import SampleObjectForm

view functioon
def create_object(request):

https://riptutorial.com/ 98

 # when request method is 'GET', show the template
 if request.method == GET:
 # perform actions, such as loading a model form
 form = SampleObjectForm()
 return render_to_response('template.html', locals())

 # if request method is 'POST', create the object and redirect
 if request.method == POST:
 form = SampleObjectForm(request.POST)

 # save object and redirect to success page if form is valid
 if form.is_valid:
 form.save()
 return HttpResponseRedirect('url_to_redirect_to')

 # load template with form and show errors
 else:
 return render_to_response('template.html', locals())

Example for a 'Class-Based Generic View' to perform the same task. We only need 7 lines of code
to achieve the same task:

from django.views.generic import CreateView

from .models import SampleObject
from .forms import SampleObjectForm

class CreateObject(CreateView):
 model = SampleObject
 form_class = SampleObjectForm
 success_url = 'url_to_redirect_to'

Customizing Generic Views

The above example only works if your tasks are entirely standard tasks. You do not add extra
context here, for example.

Let's make a more realistic example. Assume we want to add a page title to the template. In the
functional view, this would work like this - with just one additional line:

def create_object(request):
 page_title = 'My Page Title'

 # ...

 return render_to_response('template.html', locals())

This is more difficult (or: counter-intutitive) to achieve with generic views. As they are class-based,
you need to override one or several of the class's method to achieve the desired outcome. In our
example, we need to override the class's get_context_data method like so:

class CreateObject(CreateView):
 model = SampleObject
 form_class = SampleObjectForm

https://riptutorial.com/ 99

 success_url = 'url_to_redirect_to'

 def get_context_data(self, **kwargs):

 # Call class's get_context_data method to retrieve context
 context = super().get_context_data(**kwargs)

 context['page_title'] = 'My page title'
 return context

Here, we need four additional lines to code instead of just one - at least for the first additional
context variable we want to add.

Generic Views with Mixins

The true power of generic views unfolds when you combine them with Mixins. A mixin is a just
another class defined by you whose methods can be inherited by your view class.

Assume you want every view to show the additional variable 'page_title' in the template. Instead of
overriding the get_context_data method each time you define the view, you create a mixin with
this method and let your views inherit from this mixin. Sounds more complicated than it actually is:

Your Mixin
class CustomMixin(object):

 def get_context_data(self, **kwargs):

 # Call class's get_context_data method to retrieve context
 context = super().get_context_data(**kwargs)

 context['page_title'] = 'My page title'
 return context

Your view function now inherits from the Mixin
class CreateObject(CustomMixin, CreateView):
 model = SampleObject
 form_class = SampleObjectForm
 success_url = 'url_to_redirect_to'

As all other view functions which need these methods
class EditObject(CustomMixin, EditView):
 model = SampleObject
 # ...

The beauty of this is that your code becomes much more structured than it is mostly the case with
functional views. Your entire logic behind specific tasks sits in one place and one place only. Also,
you will save tremendous amounts of time especially when you have many views that always
perform the same tasks, except with different objects

Read Generic Views online: https://riptutorial.com/django/topic/9452/generic-views

https://riptutorial.com/ 100

https://riptutorial.com/django/topic/9452/generic-views

Chapter 26: How to reset django migrations

Introduction

As you develop a Django app, there might be situations where you can save a lot of time by just
cleaning up and resetting your migrations.

Examples

Resetting Django Migration: Deleting existing database and migrating as fresh

Drop/Delete your database If you are using SQLite for your database, just delete this file. If you
are using MySQL/Postgres or any other database system, you will have to drop the database and
then recreate a fresh database.

You will now need to delete all the migrations file except "init.py" file located inside the migrations
folder under your app folder.

Usually the migrations folder is located at

/your_django_project/your_app/migrations

Now that you have deleted the database and the migrations file, just run the following commands
as you would migrate the first time you setup django project.

python manage.py makemigrations
python manage.py migrate

Read How to reset django migrations online: https://riptutorial.com/django/topic/9513/how-to-reset-
django-migrations

https://riptutorial.com/ 101

https://riptutorial.com/django/topic/9513/how-to-reset-django-migrations
https://riptutorial.com/django/topic/9513/how-to-reset-django-migrations

Chapter 27: How to use Django with
Cookiecutter?

Examples

Installing and setting up django project using Cookiecutter

Following are the Prerequisites for installing Cookiecutter:

pip•
virtualenv•
PostgreSQL•

Create a virtualenv for your project and activate it:

$ mkvirtualenv <virtualenv name>
$ workon <virtualenv name>

Now install Cookiecutter using:

$ pip install cookiecutter

Change directories into the folder where you want your project to live. Now execute the following
command to generate a django project:

$ cookiecutter https://github.com/pydanny/cookiecutter-django.git

This command runs cookiecutter with the cookiecutter-django repo, asking us to enter project-
specific details. Press “enter” without typing anything to use the default values, which are shown in
[brackets] after the question.

project_name [project_name]: example_project
repo_name [example_project]:
author_name [Your Name]: Atul Mishra
email [Your email]: abc@gmail.com
description [A short description of the project.]: Demo Project
domain_name [example.com]: example.com
version [0.1.0]: 0.1.0
timezone [UTC]: UTC
now [2016/03/08]: 2016/03/08
year [2016]: 2016
use_whitenoise [y]: y
use_celery [n]: n
use_mailhog [n]: n
use_sentry [n]: n
use_newrelic [n]: n
use_opbeat [n]: n
windows [n]: n

https://riptutorial.com/ 102

use_python2 [n]: n

More details about the project generation options can be found in the offical documentation. The
project is now setup.

Read How to use Django with Cookiecutter? online: https://riptutorial.com/django/topic/5385/how-
to-use-django-with-cookiecutter-

https://riptutorial.com/ 103

https://cookiecutter-django.readthedocs.io/en/latest/project-generation-options.html
https://riptutorial.com/django/topic/5385/how-to-use-django-with-cookiecutter-
https://riptutorial.com/django/topic/5385/how-to-use-django-with-cookiecutter-

Chapter 28: Internationalization

Syntax

gettext(message)•
ngettext(singular, plural, number)•
ugettext(message)•
ungettext(singular, plural, number)•
pgettext(context, message)•
npgettext(context, singular, plural, number)•
gettext_lazy(message)•
ngettext_lazy(singular, plural, number=None)•
ugettext_lazy(message)•
ungettext_lazy(singular, plural, number=None)•
pgettext_lazy(context, message)•
npgettext_lazy(context, singular, plural, number=None)•
gettext_noop(message)•
ugettext_noop(message)•

Examples

Introduction to Internationalization

Setting up

settings.py

from django.utils.translation import ugettext_lazy as _

USE_I18N = True # Enable Internationalization
LANGUAGE_CODE = 'en' # Language in which original texts are written
LANGUAGES = [# Available languages
 ('en', _("English")),
 ('de', _("German")),
 ('fr', _("French")),
]

Make sure the LocaleMiddleware is included, AFTER SessionMiddleware
and BEFORE middlewares using internationalization (such as CommonMiddleware)
MIDDLEWARE_CLASSES = [
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.locale.LocaleMiddleware',
 'django.middleware.common.CommonMiddleware',
]

https://riptutorial.com/ 104

Marking strings as translatable

The first step in translation is is to mark strings as translatable. This is passing them through one
of the gettext functions (See the Syntax section). For instance, here is an example model
definition:

from django.utils.translation import ugettext_lazy as _
It is common to import gettext as the shortcut `_` as it is often used
several times in the same file.

class Child(models.Model):

 class Meta:
 verbose_name = _("child")
 verbose_name_plural = _("children")

 first_name = models.CharField(max_length=30, verbose_name=_("first name"))
 last_name = models.CharField(max_length=30, verbose_name=_("last name"))
 age = models.PositiveSmallIntegerField(verbose_name=_("age"))

All strings encapsulated in _() are now marked as translatable. When printed, they will always be
displayed as the encapsulated string, whatever the chosen language (since no translation is
available yet).

Translating strings

This example is sufficient to get started with translation. Most of the time you will only want to mark
strings as translatable to anticipate prospective internationalization of your project. Thus, this
is covered in another example.

Lazy vs Non-Lazy translation

When using non-lazy translation, strings are translated immediately.

>>> from django.utils.translation import activate, ugettext as _
>>> month = _("June")
>>> month
'June'
>>> activate('fr')
>>> _("June")
'juin'
>>> activate('de')
>>> _("June")
'Juni'
>>> month
'June'

When using laziness, translation only occurs when actually used.

>>> from django.utils.translation import activate, ugettext_lazy as _

https://riptutorial.com/ 105

http://www.riptutorial.com/django/topic/2579/internationalization
http://www.riptutorial.com/django/example/11494/translating-strings

>>> month = _("June")
>>> month
<django.utils.functional.lazy.<locals>.__proxy__ object at 0x7f61cb805780>
>>> str(month)
'June'
>>> activate('fr')
>>> month
<django.utils.functional.lazy.<locals>.__proxy__ object at 0x7f61cb805780>
>>> "month: {}".format(month)
'month: juin'
>>> "month: %s" % month
'month: Juni'

You have to use lazy translation in cases where:

Translation may not be activated (language not selected) when _("some string") is evaluated•
Some strings may be evaluated only at startup (eg. in class attributes such as model and
form fields definitions)

•

Translation in templates

To enable translation in templates you must load the i18n library.

{% load i18n %}

Basic translation is made with the trans template tag.

{% trans "Some translatable text" %}
{# equivalent to python `ugettext("Some translatable text")` #}

The trans template tag supports context:

{% trans "May" context "month" %}
{# equivalent to python `pgettext("May", "month")` #}

To include placeholders in your translation string, as in:

_("My name is {first_name} {last_name}").format(first_name="John", last_name="Doe")

You will have to use the blocktrans template tag:

{% blocktrans with first_name="John" last_name="Doe" %}
 My name is {{ first_name }} {{ last_name }}
{% endblocktrans %}

Of course instead of "John" and "Doe" you can have variables and filters:

{% blocktrans with first_name=user.first_name last_name=user.last_name|title %}
 My name is {{ first_name }} {{ last_name }}
{% endblocktrans %}

https://riptutorial.com/ 106

If first_name and last_name are already in your context, you can even omit the with clause:

{% blocktrans %}My name is {{ first_name }} {{ last_name }}{% endblocktrans %}

However, only "top-level" context variables can be use. This will NOT work:

{% blocktrans %}
 My name is {{ user.first_name }} {{ user.last_name }}
{% endblocktrans %}

This is mainly because the variable name is used as placeholder in translation files.

The blocktrans template tag also accepts pluralization.

{% blocktrans count nb=users|length }}
 There is {{ nb }} user.
{% plural %}
 There are {{ nb }} users.
{% endblocktrans %}

Finally, regardless of the i18n library, you can pass translatable strings to template tags using the
_("") syntax.

{{ site_name|default:_("It works!") }}
{% firstof var1 var2 _("translatable fallback") %}

This is some magic built-in django template system to mimic a function call syntax but this ain't a
function call. _("It works!") passed to the default template tag as a string '_("It works!")' which
is then parsed a translatable string, just as name would be parsed as a variable and "name" would be
parsed as a string.

Translating strings

To translate strings, you will have to create translation files. To do so, django ships with the
management command makemessages.

$ django-admin makemessages -l fr
processing locale fr

The above command will discover all strings marked as translatable within your installed apps and
create one language file for each app for french translation. For instance, if you have only one app
myapp containing translatable strings, this will create a file myapp/locale/fr/LC_MESSAGES/django.po.
This file may look like the following:

SOME DESCRIPTIVE TITLE
Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR

#, fuzzy

https://riptutorial.com/ 107

msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2016-07-24 14:01+0200\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"Language: \n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"

#: myapp/models.py:22
msgid "user"
msgstr ""

#: myapp/models.py:39
msgid "A user already exists with this email address."
msgstr ""

#: myapp/templates/myapp/register.html:155
#, python-format
msgid ""
"By signing up, you accept our <a href=\"%(terms_url)s\" "
"target=_blank>Terms of services."
msgstr ""

You will first have to fill in the placeholders (emphasized with uppercases). Then translate the
strings. msgid is the string marked as translatable in your code. msgstr is where you have to write
the translation of the string right above.

When a string contains placeholders, you will have to include them in your translation as well. For
instance, you will translate the latest message as the following:

#: myapp/templates/myapp/register.html:155
#, python-format
msgid ""
"By signing up, you accept our <a href=\"%(terms_url)s\" "
"target=_blank>Terms of services."
msgstr ""
"En vous inscrivant, vous acceptez nos <a href=\"%(terms_url)s\" "
"target=_blank>Conditions d'utilisation"

Once your translation file is completed, you will have to compile the .po files into .mo files. This is
done by calling the compilemessages management command:

$ django-admin compilemessages

That's it, now translations are available.

To update your translation files when you make changes to your code, you can rerun django-admin
makemessages -l fr. This will update .po files, keeping your existing translations and adding the new
ones. Deleted strings will still be available in comments. To update .po files for all languages, run
django-admin makemessages -a. Once your .po files are updated, don't forget to run django-admin

https://riptutorial.com/ 108

compilemessages again to generate .mo files.

Noop use case

(u)gettext_noop allows you to mark a string as translatable without actually translating it.

A typical use case is when you want to log a message for developers (in English) but also want to
display it to the client (in the requested language). You can pass a variable to gettext, but its
content won't be discovered as a translatable string because it is, per definition, variable..

THIS WILL NOT WORK AS EXPECTED
import logging
from django.contrib import messages

logger = logging.getLogger(__name__)

error_message = "Oops, something went wrong!"
logger.error(error_message)
messages.error(request, _(error_message))

The error message won't appear in the .po file and you will have to remember it exists to add it
manually. To fix this, you can use gettext_noop.

error_message = ugettext_noop("Oops, something went wrong!")
logger.error(error_message)
messages.error(request, _(error_message))

Now the string "Oops, something went wrong!" will be discovered and available in the .po file when
generated. And the error will still be logged in English for developers.

Common pitfalls

fuzzy translations

Sometimes makemessages may think that the string it found for translation is somewhat similar to
already existing translation. It will when mark it in the .po file with a special fuzzy comment like this:

#: templates/randa/map.html:91
#, fuzzy
msgid "Country"
msgstr "Länderinfo"

Even if translation is correct or you updated it to correct one it will not be used to translate your
project unless you remove fuzzy comment line.

Multiline strings

makemessages parses files in various formats, from plain text to python code and it is not designed to
follow every possible rule for having multi-line strings in those formats. Most of the time it will work

https://riptutorial.com/ 109

just fine with single line strings but if you have construction like this:

translation = _("firstline"
"secondline"
"thirdline")

It will only pick up firstline for translation. Solution for this is to avoid using multiline strings when
possible.

Read Internationalization online: https://riptutorial.com/django/topic/2579/internationalization

https://riptutorial.com/ 110

https://riptutorial.com/django/topic/2579/internationalization

Chapter 29: JSONField - a PostgreSQL
specific field

Syntax

JSONField(**options)•

Remarks

Django's JSONField actually stores the data in a Postgres JSONB column, which is only
available in Postgres 9.4 and later.

•

JSONField is great when you want a more flexible schema. For example if you want to change
the keys without having to do any data migrations, or if not all your objects have the same
structure.

•

If you're storing data with static keys, consider using multiple normal fields instead of
JSONFields instead, as querying JSONField can get quite tedious sometimes.

•

Chaining queries

You can chain queries together. For example, if a dictionary exists inside a list, add two
underscores and your dictionary query.

Don't forget to separate queries with double underscores.

Examples

Creating a JSONField

Available in Django 1.9+

from django.contrib.postgres.fields import JSONField
from django.db import models

class IceCream(models.Model):
 metadata = JSONField()

You can add the normal **options if you wish.

! Note that you must put 'django.contrib.postgres' in INSTALLED_APPS in your settings.py

Creating an object with data in a JSONField

https://riptutorial.com/ 111

Pass data in native Python form, for example list, dict, str, None, bool, etc.

IceCream.objects.create(metadata={
 'date': '1/1/2016',
 'ordered by': 'Jon Skeet',
 'buyer': {
 'favorite flavor': 'vanilla',
 'known for': ['his rep on SO', 'writing a book']
 },
 'special requests': ['hot sauce'],
})

See the note in the "Remarks" section about using JSONField in practice.

Querying top-level data

IceCream.objects.filter(metadata__ordered_by='Guido Van Rossum')

Querying data nested in dictionaries

Get all ice cream cones that were ordered by people liking chocolate:

IceCream.objects.filter(metadata__buyer__favorite_flavor='chocolate')

See the note in the "Remarks" section about chaining queries.

Querying data present in arrays

An integer will be interpreted as an index lookup.

IceCream.objects.filter(metadata__buyer__known_for__0='creating stack overflow')

See the note in the "Remarks" section about chaining queries.

Ordering by JSONField values

Ordering directly on JSONField is not yet supported in Django. But it's possible via RawSQL using
PostgreSQL functions for jsonb:

from django.db.models.expressions import RawSQL
RatebookDataEntry.objects.all().order_by(RawSQL("data->>%s", ("json_objects_key",)))

This example orders by data['json_objects_key'] inside JSONField named data:

data = JSONField()

Read JSONField - a PostgreSQL specific field online:
https://riptutorial.com/django/topic/1759/jsonfield---a-postgresql-specific-field

https://riptutorial.com/ 112

https://riptutorial.com/django/topic/1759/jsonfield---a-postgresql-specific-field

Chapter 30: Logging

Examples

Logging to Syslog service

It is possible to configure Django to output log to a local or remote syslog service. This
configuration uses the python builtin SysLogHandler.

from logging.handlers import SysLogHandler
LOGGING = {
 'version': 1,
 'disable_existing_loggers': True,
 'formatters': {
 'standard': {
 'format' : "[YOUR PROJECT NAME] [%(asctime)s] %(levelname)s [%(name)s:%(lineno)s]
%(message)s",
 'datefmt' : "%d/%b/%Y %H:%M:%S"
 }
 },
 'handlers': {
 'console': {
 'class': 'logging.StreamHandler',
 },
 'syslog': {
 'class': 'logging.handlers.SysLogHandler',
 'formatter': 'standard',
 'facility': 'user',
 # uncomment next line if rsyslog works with unix socket only (UDP reception
disabled)
 #'address': '/dev/log'
 }
 },
 'loggers': {
 'django':{
 'handlers': ['syslog'],
 'level': 'INFO',
 'disabled': False,
 'propagate': True
 }
 }
}

loggers for my apps, uses INSTALLED_APPS in settings
each app must have a configured logger
level can be changed as desired: DEBUG, INFO, WARNING...
MY_LOGGERS = {}
for app in INSTALLED_APPS:
 MY_LOGGERS[app] = {
 'handlers': ['syslog'],
 'level': 'DEBUG',
 'propagate': True,
 }
LOGGING['loggers'].update(MY_LOGGERS)

https://riptutorial.com/ 113

https://docs.python.org/3.6/library/logging.handlers.html#sysloghandler

Django basic logging configuration

Internally, Django uses the Python logging system. There is many way to configure the logging of
a project. Here is a base:

LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'formatters': {
 'default': {
 'format': "[%(asctime)s] %(levelname)s [%(name)s:%(lineno)s] %(message)s",
 'datefmt': "%Y-%m-%d %H:%M:%S"
 },
 },
 'handlers': {
 'console': {
 'level': 'INFO',
 'class': 'logging.StreamHandler',
 'formatter': 'default'
 },
 },
 'loggers': {
 'django': {
 'handlers': ['console'],
 'propagate': True,
 'level': 'INFO',
 },
 }
}

Formatters

It can be used to configure logs appearence when they are printed to output. You can define many
formatters by setting a key string to each different formatter. A formatter is then used when
declaring a handler.

Handlers

Can be used to configure where the logs will be printed. In the example above, they are sent to
stdout and stderr. There is various handler classes:

'rotated_logs': {
 'class': 'logging.handlers.RotatingFileHandler',
 'filename': '/var/log/my_project.log',
 'maxBytes': 1024 * 1024 * 5, # 5 MB
 'backupCount': 5,
 'formatter': 'default'
 'level': 'DEBUG',
},

This will produce logs in file tergeted by filename. In this example, a new log file will be created
when the current reach the size of 5 MB (the old one is renamed to my_project.log.1) and the
latest 5 files will be kept for archive.

https://riptutorial.com/ 114

'mail_admins': {
 'level': 'ERROR',
 'class': 'django.utils.log.AdminEmailHandler'
},

This will send each log by eamil to users specified in ADMINS setting variable. The level is set to
ERROR, so only logs with level ERROR will be sent by e-mail. This is extremely useful to stay informed
on potential errors 50x on a production server.

Other handlers can be used with Django. For a full list, please read the corresponding
documentation. Like formatters, you can define many handlers in a same project, setting for each
a different key string. Each handler can be used in a specific logger.

Loggers

In LOGGING, the last part configure for each module the minimal logging level, the handlers(s) to
use, etc.

Read Logging online: https://riptutorial.com/django/topic/1231/logging

https://riptutorial.com/ 115

https://docs.python.org/3.6/library/logging.handlers.html
https://riptutorial.com/django/topic/1231/logging

Chapter 31: Management Commands

Introduction

Management commands are powerful and flexible scripts that can perform actions on your Django
project or the underlying database. In addition to various default commands, it's possible to write
your own!

Compared to regular Python scripts, using the management command framework means that
some tedious setup work is automatically done for you behind the scenes.

Remarks

Management commands can be called either from:

django-admin <command> [options]•
python -m django <command> [options]•
python manage.py <command> [options]•
./manage.py <command> [options] if manage.py has execution permissions (chmod +x manage.py)•

To use management commands with Cron:

*/10 * * * * pythonuser /var/www/dev/env/bin/python /var/www/dev/manage.py <command> [options]
> /dev/null

Examples

Creating and Running a Management Command

To perform actions in Django using commandline or other services (where the user/request is not
used), you can use the management commands.

Django modules can be imported as needed.

For each command a separate file needs to be created: myapp/management/commands/my_command.py
(The management and commands directories must have an empty __init__.py file)

from django.core.management.base import BaseCommand, CommandError

import additional classes/modules as needed
from myapp.models import Book

class Command(BaseCommand):
 help = 'My custom django management command'

 def add_arguments(self, parser):
 parser.add_argument('book_id', nargs='+', type=int)
 parser.add_argument('author' , nargs='+', type=str)

https://riptutorial.com/ 116

 def handle(self, *args, **options):
 bookid = options['book_id']
 author = options['author']
 # Your code goes here

 # For example:
 # books = Book.objects.filter(author="bob")
 # for book in books:
 # book.name = "Bob"
 # book.save()

Here class name Command is mandatory which extends BaseCommand or one of its
subclasses.

The name of the management command is the name of the file containing it. To run the command
in the example above, use the following in your project directory:

python manage.py my_command

Note that starting a command can take a few second (because of the import of the
modules). So in some cases it is advised to create daemon processes instead of
management commands.

More on management commands

Get list of existing commands

You can get list of available commands by following way:

>>> python manage.py help

If you don't understand any command or looking for optional arguments then you can use -h
argument like this

>>> python manage.py command_name -h

Here command_name will be your desire command name, this will show you help text from the
command.

>>> python manage.py runserver -h
>>> usage: manage.py runserver [-h] [--version] [-v {0,1,2,3}]
 [--settings SETTINGS] [--pythonpath PYTHONPATH]
 [--traceback] [--no-color] [--ipv6] [--nothreading]
 [--noreload] [--nostatic] [--insecure]
 [addrport]

Starts a lightweight Web server for development and also serves static files.

positional arguments:
 addrport Optional port number, or ipaddr:port

https://riptutorial.com/ 117

https://docs.djangoproject.com/en/dev/howto/custom-management-commands/

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 -v {0,1,2,3}, --verbosity {0,1,2,3}
 Verbosity level; 0=minimal output, 1=normal output,
 2=verbose output, 3=very verbose output
 --settings SETTINGS The Python path to a settings module, e.g.
 "myproject.settings.main". If this isn't provided, the
 DJANGO_SETTINGS_MODULE environment variable will be
 used.
 --pythonpath PYTHONPATH
 A directory to add to the Python path, e.g.
 "/home/djangoprojects/myproject".
 --traceback Raise on CommandError exceptions
 --no-color Don't colorize the command output.
 --ipv6, -6 Tells Django to use an IPv6 address.
 --nothreading Tells Django to NOT use threading.
 --noreload Tells Django to NOT use the auto-reloader.
 --nostatic Tells Django to NOT automatically serve static files
 at STATIC_URL.
 --insecure Allows serving static files even if DEBUG is False.

List of available command

Using django-admin instead of manage.py

You can get rid of manage.py and use the django-admin command instead. To do so, you will have to
manually do what manage.py does:

Add your project path to your PYTHONPATH•
Set the DJANGO_SETTINGS_MODULE•

export PYTHONPATH="/home/me/path/to/your_project"
export DJANGO_SETTINGS_MODULE="your_project.settings"

This is especially useful in a virtualenv where you can set these environment variables in the
postactivate script.

django-admin command has the advantage of being available wherever you are on your filesystem.

Builtin Management Commands

Django comes with a number of builtin management commands, using python manage.py [command]
or, when manage.py has +x (executable) rights simply ./manage.py [command] . The following are
some of the most frequently used:

Get a list of all available commands

./manage.py help

Run your Django server on localhost:8000; essential for local testing

https://riptutorial.com/ 118

https://docs.djangoproject.com/en/1.9/ref/django-admin/#available-commands.
http://www.riptutorial.com/django/example/3203/virtual-environment

./manage.py runserver

Run a python (or ipython if installed) console with the Django settings of your project preloaded
(attempting to access parts of your project in a python terminal without doing this will fail).

./manage.py shell

Create a new database migration file based on the changes you have made to your models. See
Migrations

./manage.py makemigrations

Apply any unapplied migrations to the current database.

./manage.py migrate

Run your project's test suite. See Unit Testing

./manage.py test

Take all of the static files of your project and puts them in the folder specified in STATIC_ROOT so
they can be served in production.

./manage.py collectstatic

Allow to create superuser.

./manage.py createsuperuser

Change the password of a specified user.

./manage.py changepassword username

Full list of available commands

Read Management Commands online: https://riptutorial.com/django/topic/1661/management-
commands

https://riptutorial.com/ 119

http://www.riptutorial.com/django/topic/1200/migrations
http://www.riptutorial.com/django/topic/1232/unit-testing
https://docs.djangoproject.com/en/stable/ref/django-admin/#available-commands.
https://riptutorial.com/django/topic/1661/management-commands
https://riptutorial.com/django/topic/1661/management-commands

Chapter 32: Many-to-many relationships

Examples

With a through model

class Skill(models.Model):
 name = models.CharField(max_length=50)
 description = models.TextField()

class Developer(models.Model):
 name = models.CharField(max_length=50)
 skills = models.ManyToManyField(Skill, through='DeveloperSkill')

class DeveloperSkill(models.Model):
 """Developer skills with respective ability and experience."""

 class Meta:
 order_with_respect_to = 'developer'
 """Sort skills per developer so that he can choose which
 skills to display on top for instance.
 """
 unique_together = [
 ('developer', 'skill'),
]
 """It's recommended that a together unique index be created on
 `(developer,skill)`. This is especially useful if your database is
 being access/modified from outside django. You will find that such an
 index is created by django when an explicit through model is not
 being used.
 """

 ABILITY_CHOICES = [
 (1, "Beginner"),
 (2, "Accustomed"),
 (3, "Intermediate"),
 (4, "Strong knowledge"),
 (5, "Expert"),
]

 developer = models.ForeignKey(Developer, models.CASCADE)
 skill = models.ForeignKey(Skill, models.CASCADE)
 """The many-to-many relation between both models is made by the
 above two foreign keys.

 Other fields (below) store information about the relation itself.
 """

 ability = models.PositiveSmallIntegerField(choices=ABILITY_CHOICES)
 experience = models.PositiveSmallIntegerField(help_text="Years of experience.")

It's recommended that a together unique index be created on (developer,skill). This is especially
useful if your database is being access/modified from outside django. You will find that such an
index is created by django when an explicit through model is not being used.

https://riptutorial.com/ 120

Simple Many To Many Relationship.

class Person(models.Model):
 name = models.CharField(max_length=50)
 description = models.TextField()

class Club(models.Model):
 name = models.CharField(max_length=50)
 members = models.ManyToManyField(Person)

Here we define a relationship where a club has many Persons and members and a Person can be
a member of several different Clubs.

Though we define only two models, django actually creates three tables in the database for us.
These are myapp_person, myapp_club and myapp_club_members. Django automatically creates a
unique index on myapp_club_members(club_id,person_id) columns.

Using ManyToMany Fields

We use this model from the first example:

class Person(models.Model):
 name = models.CharField(max_length=50)
 description = models.TextField()

class Club(models.Model):
 name = models.CharField(max_length=50)
 members = models.ManyToManyField(Person)

Add Tom and Bill to the Nightclub:

tom = Person.objects.create(name="Tom", description="A nice guy")
bill = Person.objects.create(name="Bill", description="Good dancer")

nightclub = Club.objects.create(name="The Saturday Night Club")
nightclub.members.add(tom, bill)

Who is in the club?

for person in nightclub.members.all():
 print(person.name)

Will give you

Tom
Bill

Read Many-to-many relationships online: https://riptutorial.com/django/topic/2379/many-to-many-
relationships

https://riptutorial.com/ 121

https://riptutorial.com/django/topic/2379/many-to-many-relationships
https://riptutorial.com/django/topic/2379/many-to-many-relationships

Chapter 33: Mapping strings to strings with
HStoreField - a PostgreSQL specific field

Syntax

FooModel.objects.filter(field_name__key_name='value to query')•

Remarks

Examples

Setting up HStoreField

First, we'll need to do some setup to get HStoreField working.

make sure django.contrib.postgres is in your `INSTALLED_APPS1.
Add HStoreExtension to your migrations. Remember to put HStoreExtension before any
CreateModel or AddField migrations.

2.

from django.contrib.postgres.operations import HStoreExtension
from django.db import migrations

class FooMigration(migrations.Migration):
 # put your other migration stuff here
 operations = [
 HStoreExtension(),
 ...
]

Adding HStoreField to your model

-> Note: make sure you set up HStoreField first before going on with this example.
(above)

No parameters are required for initializing a HStoreField.

from django.contrib.postgres.fields import HStoreField
from django.db import models

class Catalog(models.model):
 name = models.CharField(max_length=200)
 titles_to_authors = HStoreField()

Creating a new model instance

Pass a native python dictionary mapping strings to strings to create().

https://riptutorial.com/ 122

Catalog.objects.create(name='Library of Congress', titles_to_authors={
 'Using HStoreField with Django': 'CrazyPython and la communidad',
 'Flabbergeists and thingamajigs': 'La Artista Fooista',
 'Pro Git': 'Scott Chacon and Ben Straub',
})

Performing key lookups

Catalog.objects.filter(titles__Pro_Git='Scott Chacon and Ben Straub')

Using contains

Pass a dict object to field_name__contains as a keyword argument.

Catalog.objects.filter(titles__contains={
 'Pro Git': 'Scott Chacon and Ben Straub'})

Equivalent to the SQL operator `@>`.

Read Mapping strings to strings with HStoreField - a PostgreSQL specific field online:
https://riptutorial.com/django/topic/2670/mapping-strings-to-strings-with-hstorefield---a-postgresql-
specific-field

https://riptutorial.com/ 123

https://riptutorial.com/django/topic/2670/mapping-strings-to-strings-with-hstorefield---a-postgresql-specific-field
https://riptutorial.com/django/topic/2670/mapping-strings-to-strings-with-hstorefield---a-postgresql-specific-field

Chapter 34: Meta: Documentation Guidelines

Remarks

This is an extension of Python's "Meta: Documentation Guidelines" for Django.

These are just proposals, not recommendations. Feel free to edit anything here if you disagree or
have something else to mention.

Examples

Unsupported versions don't need special mention

It is unlikely that someone uses an unsupported version of Django, and at his own risks. If ever
someone does, it must be his concern to know if a feature exists in the given version.

Considering the above, it is useless to mention specificities of an unsupported version.

1.6

This kind of block is useless because no sane person uses Django < 1.6.

1.8

This kind of block is useless because no sane person uses Django < 1.8.

This also goes for topics. At the time of writing this example, Class based views states supported
versions are 1.3-1.9. We can safely assume this is actually equivalent to All versions. This also
avoids upgrading all topics supported versions every time a new version is released.

Current supported versions are: 1.81 1.92 1.101

Security fixes, data loss bugs, crashing bugs, major functionality bugs in newly-introduced
features, and regressions from older versions of Django.

1.

Security fixes and data loss bugs.2.

Read Meta: Documentation Guidelines online: https://riptutorial.com/django/topic/5243/meta--
documentation-guidelines

https://riptutorial.com/ 124

http://stackoverflow.com/documentation/python/394/meta-documentation-guidelines#t=201608050906453043496
http://www.riptutorial.com/django/topic/1220/class-based-views
https://riptutorial.com/django/topic/5243/meta--documentation-guidelines
https://riptutorial.com/django/topic/5243/meta--documentation-guidelines

Chapter 35: Middleware

Introduction

Middleware in Django is a framework that allows code to hook into the response / request
processing and alter the input or output of Django.

Remarks

Middleware needs to be added to your settings.py MIDDLEWARE_CLASSES list before it will be included
in execution. The default list that Django provides when creating a new project is as follows:

MIDDLEWARE_CLASSES = [
 'django.middleware.security.SecurityMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.auth.middleware.SessionAuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
]

These are all functions that will run in order on every request (once before it reaches your view
code in views.py and once in reverse order for process_response callback, before version 1.10).
They do a variety of things such as injecting the Cross Site Request Forgery (csrf) token.

The order matters because if some middleware does a redirect, then the all the subsequent
middleware will never run. Or if a middleware expects the csrf token to be there, it has to run after
the CsrfViewMiddleware.

Examples

Add data to requests

Django makes it really easy to add additional data onto requests for use within the view. For
example, we can parse out the subdomain on the request's META and attach it as a separate
property on the request by using middleware.

class SubdomainMiddleware:
 def process_request(self, request):
 """
 Parse out the subdomain from the request
 """
 host = request.META.get('HTTP_HOST', '')
 host_s = host.replace('www.', '').split('.')
 request.subdomain = None
 if len(host_s) > 2:

https://riptutorial.com/ 125

https://docs.djangoproject.com/en/1.9/ref/csrf/

 request.subdomain = host_s[0]

If you add data with middleware to your request, you can access that newly added data further
down the line. Here we'll use the parsed subdomain to determine something like what organization
is accessing your application. This approach is useful for apps that are deployed with a DNS setup
with wildcard subdomains that all point to a single instance and the person accessing the app
wants a skinned version dependent on the access point.

class OrganizationMiddleware:
 def process_request(self, request):
 """
 Determine the organization based on the subdomain
 """
 try:
 request.org = Organization.objects.get(domain=request.subdomain)
 except Organization.DoesNotExist:
 request.org = None

Remember that order matters when having middleware depend on one another. For requests,
you'll want the dependent middleware to be placed after the dependency.

MIDDLEWARE_CLASSES = [
 ...
 'myapp.middleware.SubdomainMiddleware',
 'myapp.middleware.OrganizationMiddleware',
 ...
]

Middleware to filter by IP address

First: The path structure

If you don't have it you need to create the middleware folder within your app following the
structure:

yourproject/yourapp/middleware

The folder middleware should be placed in the same folder as settings.py, urls, templates...

Important: Don't forget to create the init.py empty file inside the middleware folder so your
app recognizes this folder

Instead of having a separate folder containing your middleware classes, it is also possible to put
your functions in a single file, yourproject/yourapp/middleware.py.

Second: Create the middleware

Now we should create a file for our custom middleware. In this example let's suppose we want a
middleware that filter the users based on their IP address, we create a file called
filter_ip_middleware.py:

https://riptutorial.com/ 126

#yourproject/yourapp/middleware/filter_ip_middleware.py
from django.core.exceptions import PermissionDenied

class FilterIPMiddleware(object):
 # Check if client IP address is allowed
 def process_request(self, request):
 allowed_ips = ['192.168.1.1', '123.123.123.123', etc...] # Authorized ip's
 ip = request.META.get('REMOTE_ADDR') # Get client IP address
 if ip not in allowed_ips:
 raise PermissionDenied # If user is not allowed raise Error

 # If IP address is allowed we don't do anything
 return None

Third: Add the middleware in our 'settings.py'

We need to look for the MIDDLEWARE_CLASSES inside the settings.py and there we need to add our
middleware (Add it in the last position). It should be like:

MIDDLEWARE_CLASSES = (
 'django.middleware.common.CommonMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 # Above are Django standard middlewares

 # Now we add here our custom middleware
 'yourapp.middleware.filter_ip_middleware.FilterIPMiddleware'
)

Done! Now every request from every client will call your custom middleware and process your
custom code!

Globally handling exception

Say you have implemented some logic to detect attempts to modify an object in the database
while the client that submitted changes didn't have the latest modifications. If such case happens,
you raise a custom exception ConfictError(detailed_message).

Now you want to return an HTTP 409 (Confict) status code when this error occurs. You may
typically use as middleware for this instead of handling it in each view that might raise this
exception.

class ConfictErrorHandlingMiddleware:
 def process_exception(self, request, exception):
 if not isinstance(exception, ConflictError):
 return # Propagate other exceptions, we only handle ConflictError
 context = dict(confict_details=str(exception))
 return TemplateResponse(request, '409.html', context, status=409)

Understanding Django 1.10 middleware's new style

https://riptutorial.com/ 127

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10

Django 1.10 introduced a new middleware style where process_request and process_response are
merged together.

In this new style, a middleware is a callable that returns another callable. Well, actually the former
is a middleware factory and the latter is the actual middleware.

The middleware factory takes as single argument the next middleware in the middlewares stack,
or the view itself when the bottom of the stack is reached.

The middleware takes the request as single argument and always returns an HttpResponse.

The best example to illustrate how new-style middleware works is probably to show how to make a
backward-compatible middleware:

class MyMiddleware:

 def __init__(self, next_layer=None):
 """We allow next_layer to be None because old-style middlewares
 won't accept any argument.
 """
 self.get_response = next_layer

 def process_request(self, request):
 """Let's handle old-style request processing here, as usual."""
 # Do something with request
 # Probably return None
 # Or return an HttpResponse in some cases

 def process_response(self, request, response):
 """Let's handle old-style response processing here, as usual."""
 # Do something with response, possibly using request.
 return response

 def __call__(self, request):
 """Handle new-style middleware here."""
 response = self.process_request(request)
 if response is None:
 # If process_request returned None, we must call the next middleware or
 # the view. Note that here, we are sure that self.get_response is not
 # None because this method is executed only in new-style middlewares.
 response = self.get_response(request)
 response = self.process_response(request, response)
 return response

Read Middleware online: https://riptutorial.com/django/topic/1721/middleware

https://riptutorial.com/ 128

https://riptutorial.com/django/topic/1721/middleware

Chapter 36: Migrations

Parameters

django-admin command Details

makemigrations <my_app> Generate migrations for my_app

makemigrations Generate migrations for all apps

makemigrations --merge Resolve migration conflicts for all apps

makemigrations --merge <my_app> Resolve migration conflicts for my_app

makemigrations --name <migration_name>
<my_app>

Generate a migration for my_app with the name
migration_name

migrate <my_app>
Apply pending migrations of my_app to the
database

migrate Apply all pending migrations to the database

migrate <my_app> <migration_name> Apply or unapply up to migration_name

migrate <my_app> zero Unapply all migrations in my_app

sqlmigrate <my_app> <migration_name> Prints the SQL for the named migration

showmigrations Shows all migrations for all apps

showmigrations <my_app> Shows all migrations in my_app

Examples

Working with migrations

Django uses migrations to propagate changes you make to your models to your database. Most of
the time django can generate them for you.

To create a migration, run:

$ django-admin makemigrations <app_name>

This will create a migration file in the migration submodule of app_name. The first migration will be
named 0001_initial.py, the other will start with 0002_, then 0003, ...

https://riptutorial.com/ 129

If you omit <app_name> this will create migrations for all your INSTALLED_APPS.

To propagate migrations to your database, run:

$ django-admin migrate <app_name>

To show all your migrations, run:

$ django-admin showmigrations app_name
app_name
 [X] 0001_initial
 [X] 0002_auto_20160115_1027
 [X] 0003_somemodel
 [] 0004_auto_20160323_1826

[X] means that the migration was propagated to your database•
[] means that the migration was not propagated to your database. Use django-admin migrate
to propagate it

•

You call also revert migrations, this can be done by passing the migration name to the migrate
command. Given the above list of migrations (shown by django-admin showmigrations):

$ django-admin migrate app_name 0002 # Roll back to migration 0002
$ django-admin showmigrations app_name
app_name
 [X] 0001_initial
 [X] 0002_auto_20160115_1027
 [] 0003_somemodel
 [] 0004_auto_20160323_1826

Manual migrations

Sometimes, migrations generated by Django are not sufficient. This is especially true when you
want to make data migrations.

For instance, let's you have such model:

class Article(models.Model):
 title = models.CharField(max_length=70)

This model already have existing data and now you want to add a SlugField:

class Article(models.Model):
 title = models.CharField(max_length=70)
 slug = models.SlugField(max_length=70)

You created the migrations to add the field, but now you would like to set the slug for all existing
article, according to their title.

Of course, you could just do something like this in the terminal:

https://riptutorial.com/ 130

$ django-admin shell
>>> from my_app.models import Article
>>> from django.utils.text import slugify
>>> for article in Article.objects.all():
... article.slug = slugify(article.title)
... article.save()
...
>>>

But you will have to do this in all your environments (ie. your office desktop, your laptop, ...), all
your coworkers will have to do so as well, and you will have to think about it on staging and when
pushing live.

To make it once and for all, we will do it in a migration. First create an empty migration:

$ django-admin makemigrations --empty app_name

This will create an empty migration file. Open it, it contains an base skeleton. Let's say your
previous migration was named 0023_article_slug and this one is named 0024_auto_20160719_1734.
Here is what we will write in our migration file:

-*- coding: utf-8 -*-
Generated by Django 1.9.7 on 2016-07-19 15:34
from __future__ import unicode_literals

from django.db import migrations
from django.utils.text import slugify

def gen_slug(apps, schema_editor):
 # We can't import the Article model directly as it may be a newer
 # version than this migration expects. We use the historical version.
 Article = apps.get_model('app_name', 'Article')
 for row in Article.objects.all():
 row.slug = slugify(row.name)
 row.save()

class Migration(migrations.Migration):

 dependencies = [
 ('hosting', '0023_article_slug'),
]

 operations = [
 migrations.RunPython(gen_slug, reverse_code=migrations.RunPython.noop),
 # We set `reverse_code` to `noop` because we cannot revert the migration
 # to get it back in the previous state.
 # If `reverse_code` is not given, the migration will not be reversible,
 # which is not the behaviour we expect here.
]

Fake migrations

When a migration is run, Django stores the name of the migration in a django_migrations table.

https://riptutorial.com/ 131

Create and Fake initial migrations for existing schema

If your app already has models and database tables, and doesn’t have migrations. First create
initial migrations for you app.

python manage.py makemigrations your_app_label

Now fake initial migrations as applied

python manage.py migrate --fake-initial

Fake all migrations in all apps

python manage.py migrate --fake

Fake single app migrations

python manage.py migrate --fake core

Fake single migration file

python manage.py migrate myapp migration_name

Custom names for migration files

Use the makemigrations --name <your_migration_name> option to allow naming the migrations(s)
instead of using a generated name.

python manage.py makemigrations --name <your_migration_name> <app_name>

Solving migration conflicts

Introduction

Sometimes migrations conflict, resulting in making the migration unsuccesful. This can happen in
a lot of scenerio's, however it can occur on a regular basis when developing one app with a team.

Common migration conflicts happen while using source control, especially when the feature-per-
branch method is used. For this scenario we will use a model called Reporter with the attributes
name and address.

Two developers at this point are going to develop a feature, thus they both get this initial copy of
the Reporter model. Developer A adds an age which results in the file 0002_reporter_age.py file.
Developer B adds a bank_account field which resulsts in 0002_reporter_bank_account. Once these
developers merge their code together and attempt to migrate the migrations, a migration conflict
occurred.

https://riptutorial.com/ 132

This conflict occurs because these migrations both alter the same model, Reporter. On top of that,
the new files both start with 0002.

Merging migrations

There are several ways of doing it. The following is in the recommended order:

The most simple fix for this is by running the makemigrations command with a --merge flag.

python manage.py makemigrations --merge <my_app>

This will create a new migration solving the previous conflict.

1.

When this extra file is not welcome in the development environment for personal reasons, an
option is to delete the conflicting migrations. Then, a new migration can be made using the
regular makemigrations command. When custom migrations are written, such as
migrations.RunPython, need to be accounted for using this method.

2.

Change a CharField to a ForeignKey

First off, let's assume this is your initial model, inside an application called discography:

from django.db import models

class Album(models.Model):
 name = models.CharField(max_length=255)
 artist = models.CharField(max_length=255)

Now, you realize that you want to use a ForeignKey for the artist instead. This is a somewhat
complex process, which has to be done in several steps.

Step 1, add a new field for the ForeignKey, making sure to mark it as null (note that the model we
are linking to is also now included):

from django.db import models

class Album(models.Model):
 name = models.CharField(max_length=255)
 artist = models.CharField(max_length=255)
 artist_link = models.ForeignKey('Artist', null=True)

class Artist(models.Model):
 name = models.CharField(max_length=255)

...and create a migration for this change.

./manage.py makemigrations discography

Step 2, populate your new field. In order to do this, you have to create an empty migration.

https://riptutorial.com/ 133

./manage.py makemigrations --empty --name transfer_artists discography

Once you have this empty migration, you want to add a single RunPython operation to it in order to
link your records. In this case, it could look something like this:

def link_artists(apps, schema_editor):
 Album = apps.get_model('discography', 'Album')
 Artist = apps.get_model('discography', 'Artist')
 for album in Album.objects.all():
 artist, created = Artist.objects.get_or_create(name=album.artist)
 album.artist_link = artist
 album.save()

Now that your data is transferred to the new field, you could actually be done and leave everything
as is, using the new artist_link field for everything. Or, if you want to do a bit of cleanup, you want
to create two more migrations.

For your first migration, you will want to delete your original field, artist. For your second
migration, rename the new field artist_link to artist.

This is done in multiple steps to ensure that Django recognizes the operations properly.

Read Migrations online: https://riptutorial.com/django/topic/1200/migrations

https://riptutorial.com/ 134

https://riptutorial.com/django/topic/1200/migrations

Chapter 37: Model Aggregations

Introduction

Aggregations are methods allowing the execution of operations on (individual and/or groups of)
rows of objects derived from a Model.

Examples

Average, Minimum, Maximum, Sum from Queryset

class Product(models.Model):
 name = models.CharField(max_length=20)
 price = models.FloatField()

To Get average price of all products:

>>> from django.db.models import Avg, Max, Min, Sum
>>> Product.objects.all().aggregate(Avg('price'))
{'price__avg': 124.0}

To Get Minimum price of all products:

>>> Product.objects.all().aggregate(Min('price'))
{'price__min': 9}

To Get Maximum price of all products:

>>> Product.objects.all().aggregate(Max('price'))
{'price__max':599 }

To Get SUM of prices of all products:

>>> Product.objects.all().aggregate(Sum('price'))
{'price__sum':92456 }

Count the number of foreign relations

class Category(models.Model):
 name = models.CharField(max_length=20)

class Product(models.Model):
 name = models.CharField(max_length=64)
 category = models.ForeignKey(Category, on_delete=models.PROTECT)

To get the number products for each category:

https://riptutorial.com/ 135

>>> categories = Category.objects.annotate(Count('product'))

This adds the <field_name>__count attribute to each instance returned:

>>> categories.values_list('name', 'product__count')
[('Clothing', 42), ('Footwear', 12), ...]

You can provide a custom name for your attribute by using a keyword argument:

>>> categories = Category.objects.annotate(num_products=Count('product'))

You can use the annotated field in querysets:

>>> categories.order_by('num_products')
[<Category: Footwear>, <Category: Clothing>]

>>> categories.filter(num_products__gt=20)
[<Category: Clothing>]

GROUB BY ... COUNT/SUM Django ORM equivalent

We can perform a GROUP BY ... COUNT or a GROUP BY ... SUM SQL equivalent queries on Django
ORM, with the use of annotate(), values(), order_by() and the django.db.models's Count and Sum
methods respectfully:

Let our model be:

 class Books(models.Model):
 title = models.CharField()
 author = models.CharField()
 price = models.FloatField()

GROUP BY ... COUNT:

Lets assume that we want to count how many book objects per distinct author exist in our
Books table:

result = Books.objects.values('author')
 .order_by('author')
 .annotate(count=Count('author'))

•

Now result contains a queryset with two columns: author and count:

author	count
 OneAuthor | 5
OtherAuthor | 2
 ... | ...

•

https://riptutorial.com/ 136

GROUB BY ... SUM:

Lets assume that we want to sum the price of all the books per distinct author that exist in
our Books table:

 result = Books.objects.values('author')
 .order_by('author')
 .annotate(total_price=Sum('price'))

•

Now result contains a queryset with two columns: author and total_price:

author	total_price
 OneAuthor | 100.35
OtherAuthor | 50.00
 ... | ...

•

Read Model Aggregations online: https://riptutorial.com/django/topic/3775/model-aggregations

https://riptutorial.com/ 137

https://riptutorial.com/django/topic/3775/model-aggregations

Chapter 38: Model Field Reference

Parameters

Parameter Details

null If true, empty values may be stored as null in the database

blank
If true, then the field will not be required in forms. If fields are left blank,
Django will use the default field value.

choices

An iterable of 2-element iterables to be used as choices for this field. If
set, field is rendered as a drop-down in the admin. [('m',
'Male'),('f','Female'),('z','Prefer Not to Disclose')]. To group
options, simply nest the values: [('Video
Source',((1,'YouTube'),(2,'Facebook')),('Audio Source',((3,
'Soundcloud'),(4, 'Spotify'))]

db_column
By default, django uses the field name for the database column. Use this
to provide a custom name

db_index If True, an index will be created on this field in the database

db_tablespace
The tablespace to use for this field's index. This field is only used if the
database engine supports it, otherwise its ignored.

default
The default value for this field. Can be a value, or a callable object. For
mutable defaults (a list, a set, a dictionary) you must use a callable. Due
to compatibility with migrations, you cannot use lambdas.

editable
If False, the field is not shown in the model admin or any ModelForm.
Default is True.

error_messages

Used to customize the default error messages shown for this field. The
value is a dictionary, with the keys representing the error and the value
being the message. Default keys (for error messages) are null, blank,
invalid, invalid_choice, unique and unique_for_date; additional error
messages may be defined by custom fields.

help_text Text to be displayed with the field, to assist users. HTML is allowed.

on_delete

When an object referenced by a ForeignKey is deleted, Django will
emulate the behavior of the SQL constraint specified by the on_delete
argument. This is the second positional argument for both ForeignKey and
OneToOneField fields. Other fields do not have this argument.

If True, this field will be the primary key. Django automatically adds a primary_key

https://riptutorial.com/ 138

Parameter Details

primary key; so this is only required if you wish to create a custom
primary key. You can only have one primary key per model.

unique
If True, errors are raised if duplicate values are entered for this field. This
is a database-level restriction, and not simply a user-interface block.

unique_for_date
Set the value to a DateField or DateTimeField, and errors will be raised if
there are duplicate values for the same date or date time.

unique_for_month Similar to unique_for_date, except checks are limited for the month.

unique_for_year Similar to unique_for_date, except checks are limited to the year.

verbose_name
A friendly name for the field, used by django in various places (such as
creating labels in the admin and model forms).

validators A list of validators for this field.

Remarks

You can write your own fields if you find it necessary•
You can override functions of the base model class, most commonly the save() function•

Examples

Number Fields

Examples of numeric fields are given:

AutoField

An auto-incrementing integer generally used for primary keys.

from django.db import models

class MyModel(models.Model):
 pk = models.AutoField()

Each model gets a primary key field (called id) by default. Therefore, it is not
necessary to duplicate an id field in the model for the purposes of a primary key.

BigIntegerField

An integer fitting numbers from -9223372036854775808 to 9223372036854775807(8 Bytes).

from django.db import models

https://riptutorial.com/ 139

https://docs.djangoproject.com/en/1.9/ref/validators/

class MyModel(models.Model):
 number_of_seconds = models.BigIntegerField()

IntegerField

The IntegerField is used to store integer values from -2147483648 to 2147483647 (4 Bytes).

from django.db import models

class Food(models.Model):
 name = models.CharField(max_length=255)
 calorie = models.IntegerField(default=0)

default parameter is not mandatory. But it's useful to set a default value.

PositiveIntegerField

Like an IntegerField, but must be either positive or zero (0). The PositiveIntegerField is used to
store integer values from 0 to 2147483647 (4 Bytes). This can be useful at field which should be
semantically positive. For example if you are recording foods with its calories, it should not be
negative. This field will prevent negative values via its validations.

from django.db import models

class Food(models.Model):
 name = models.CharField(max_length=255)
 calorie = models.PositiveIntegerField(default=0)

default parameter is not mandatory. But it's useful to set a default value.

SmallIntegerField

The SmallIntegerField is used to store integer values from -32768 to 32767 (2 Bytes). This field is
useful for values not are not extremes.

from django.db import models

class Place(models.Model):
 name = models.CharField(max_length=255)
 temperature = models.SmallIntegerField(null=True)

PositiveSmallIntegerField

The SmallIntegerField is used to store integer values from 0to 32767 (2 Bytes). Just like
SmallIntegerField this field is useful for values not going so high and should be semantically
positive. For example it can store age which cannot be negative.

https://riptutorial.com/ 140

from django.db import models

class Staff(models.Model):
 first_name = models.CharField(max_length=255)
 last_name = models.CharField(max_length=255)
 age = models.PositiveSmallIntegerField(null=True)

Besides PositiveSmallIntegerField is useful for choices, this is the Djangoic way of implementing
Enum:

from django.db import models
from django.utils.translation import gettext as _

APPLICATION_NEW = 1
APPLICATION_RECEIVED = 2
APPLICATION_APPROVED = 3
APPLICATION_REJECTED = 4

APLICATION_CHOICES = (
 (APPLICATION_NEW, _('New')),
 (APPLICATION_RECEIVED, _('Received')),
 (APPLICATION_APPROVED, _('Approved')),
 (APPLICATION_REJECTED, _('Rejected')),
)

class JobApplication(models.Model):
 first_name = models.CharField(max_length=255)
 last_name = models.CharField(max_length=255)
 status = models.PositiveSmallIntegerField(
 choices=APLICATION_CHOICES,
 default=APPLICATION_NEW
)
 ...

Definition of the choices as class variables or module variables according to the
situation is a good way to use them. If choices are passed to field without friendly
names than it will create confusion.

DecimalField

A fixed-precision decimal number, represented in Python by a Decimal instance. Unlike
IntegerField and its derivatives this field has 2 required arguments:

DecimalField.max_digits: The maximum number of digits allowed in the number. Note that
this number must be greater than or equal to decimal_places.

1.

DecimalField.decimal_places: The number of decimal places to store with the number.2.

If you want to store numbers up to 99 with 3 decimal places you need use max_digits=5 and
decimal_places=3:

class Place(models.Model):
 name = models.CharField(max_length=255)
 atmospheric_pressure = models.DecimalField(max_digits=5, decimal_places=3)

https://riptutorial.com/ 141

BinaryField

This is a specialized field, used to store binary data. It only accepts bytes. Data is base64
serialized upon storage.

As this is storing binary data, this field cannot be used in a filter.

from django.db import models

class MyModel(models.Model):
 my_binary_data = models.BinaryField()

CharField

The CharField is used for storing defined lengths of text. In the example below up to 128
characters of text can be stored in the field. Entering a string longer than this will result in a
validation error being raised.

from django.db import models

class MyModel(models.Model):
 name = models.CharField(max_length=128, blank=True)

DateTimeField

DateTimeField is used to store date time values.

class MyModel(models.Model):
 start_time = models.DateFimeField(null=True, blank=True)
 created_on = models.DateTimeField(auto_now_add=True)
 updated_on = models.DateTimeField(auto_now=True)

A DateTimeField has two optional parameters:

auto_now_add sets the value of the field to current datetime when the object is created.•

auto_now sets the value of the field to current datetime every time the field is saved.•

These options and the default parameter are mutually exclusive.

ForeignKey

ForeignKey field is used to create a many-to-one relationship between models. Not like the most of
other fields requires positional arguments. The following example demonstrates the car and owner
relation:

from django.db import models

class Person(models.Model):
 GENDER_FEMALE = 'F'

https://riptutorial.com/ 142

 GENDER_MALE = 'M'

 GENDER_CHOICES = (
 (GENDER_FEMALE, 'Female'),
 (GENDER_MALE, 'Male'),
)

 first_name = models.CharField(max_length=100)
 last_name = models.CharField(max_length=100)
 gender = models.CharField(max_length=1, choices=GENDER_CHOICES)
 age = models.SmallIntegerField()

class Car(model.Model)
 owner = models.ForeignKey('Person')
 plate = models.CharField(max_length=15)
 brand = models.CharField(max_length=50)
 model = models.CharField(max_length=50)
 color = models.CharField(max_length=50)

The first argument of the field is the class to which the model is related. The second positional
argument is on_delete argument. In the current versions this argument is not required, but it will be
required in Django 2.0. The default functionality of the argument is shown as following:

class Car(model.Model)
 owner = models.ForeignKey('Person', on_delete=models.CASCADE)
 ...

This will cause Car objects to be deleted from the model when its owner deleted from
Person model. This is the default functionality.

class Car(model.Model)
 owner = models.ForeignKey('Person', on_delete=models.PROTECT)
 ...

This will prevents Person objects to be deleted if they are related to at least one Car
object. All of the Car objects which reference a Person object should be deleted first.
And then the Person Object can be deleted.

Read Model Field Reference online: https://riptutorial.com/django/topic/3686/model-field-reference

https://riptutorial.com/ 143

https://riptutorial.com/django/topic/3686/model-field-reference

Chapter 39: Models

Introduction

In the basic case, a model is Python class that maps to a single database table. The attributes of
the class map to columns in the table and an instance of the class represents a row in database
table. The models inherit from django.db.models.Model which provides a rich API for adding and
filtering results from the database.

Create Your First Model

Examples

Creating your first model

Models are typically defined in the models.py file under your application subdirectory. The Model
class of django.db.models module is a good starting class to extend your models from. For
example:

from django.db import models

class Book(models.Model):
 title = models.CharField(max_length=100)
 author = models.ForeignKey('Author', on_delete=models.CASCADE,
related_name='authored_books')
 publish_date = models.DateField(null=True, blank=True)

 def __str__(self): # __unicode__ in python 2.*
 return self.title

Each attribute in a model represents a column in the database.

title is a text with a maximum length of 100 characters•
author is a ForeignKey which represents a relationship to another model/table, in this case
Author (used only for example purposes). on_delete tells the database what to do with the
object should the related object (an Author) be deleted. (It should be noted that since django
1.9 on_delete can be used as the second positional argument. In django 2 it is a required
argument and it is advisable to treat it as such immediately. In older versions it will default to
CASCADE.)

•

publish_date stores a date. Both null and blank are set to True to indicate that it is not a
required field (i.e. you may add it at a later date or leave it empty.)

•

Along with the attributes we define a method __str__ this returns the title of the book which will be
used as its string representation where necessary, rather than the default.

Applying the changes to the database (Migrations)

https://riptutorial.com/ 144

http://www.riptutorial.com/django/example/2975/creating-your-first-model
https://docs.djangoproject.com/en/1.10/ref/models/fields/#django.db.models.ForeignKey.on_delete
https://docs.djangoproject.com/en/1.10/ref/models/fields/#django.db.models.ForeignKey.on_delete
https://docs.djangoproject.com/en/1.10/ref/models/fields/#django.db.models.ForeignKey.on_delete
https://docs.djangoproject.com/en/1.10/ref/models/fields/#django.db.models.ForeignKey.on_delete

After creating a new model or modifying existing models, you will need to generate migrations for
your changes and then apply the migrations to the specified database. This can be done by using
the Django's built-in migrations system. Using the manage.py utility when in the project root
directory:

python manage.py makemigrations <appname>

The above command will create the migration scripts that are necessary under migrations
subdirectory of your application. If you omit the <appname> parameter, all the applications defined in
the INSTALLED_APPS argument of settings.py will be processed. If you find it necessary, you can edit
the migrations.

You can check what migrations are required without actually creating the migration use the --dry-
run option, eg:

python manage.py makemigrations --dry-run

To apply the migrations:

python manage.py migrate <appname>

The above command will execute the migration scripts generated in the first step and physically
update the database.

If the model of existing database is changed then following command is needed for making
necessary changes.

python manage.py migrate --run-syncdb

Django will create the table with name <appname>_<classname> by default. Sometime you don't want
to use it. If you want to change the default name, you can announce the table name by setting the
db_table in the class Meta:

from django.db import models

class YourModel(models.Model):
 parms = models.CharField()
 class Meta:
 db_table = "custom_table_name"

If you want to see what SQL code will be executed by a certain migration just run this command:

python manage.py sqlmigrate <app_label> <migration_number>

Django >1.10
The new makemigrations --check option makes the command exit with a non-zero status when
model changes without migrations are detected.

https://riptutorial.com/ 145

See Migrations for more details on migrations.

Creating a model with relationships

Many-to-One Relationship

from django.db import models

class Author(models.Model):
 name = models.CharField(max_length=50)

#Book has a foreignkey (many to one) relationship with author
class Book(models.Model):
 author = models.ForeignKey(Author, on_delete=models.CASCADE)
 publish_date = models.DateField()

Most generic option. Can be used anywhere you would like to represent a relationship

Many-to-Many Relationship

class Topping(models.Model):
 name = models.CharField(max_length=50)

One pizza can have many toppings and same topping can be on many pizzas
class Pizza(models.Model):
 name = models.CharField(max_length=50)
 toppings = models.ManyToManyField(Topping)

Internally this is represented via another table. And ManyToManyField should be put on models that
will be edited on a form. Eg: Appointment will have a ManyToManyField called Customer, Pizza has
Toppings and so on.

Many-to-Many Relationship using Through classes

class Service(models.Model):
 name = models.CharField(max_length=35)

class Client(models.Model):
 name = models.CharField(max_length=35)
 age = models.IntegerField()
 services = models.ManyToManyField(Service, through='Subscription')

class Subscription(models.Model):
 client = models.ForeignKey(Client)
 service = models.ForeignKey(Service)
 subscription_type = models.CharField(max_length=1, choices=SUBSCRIPTION_TYPES)
 created_at = models.DateTimeField(default=timezone.now)

This way, we can actually keep more metadata about a relationship between two entities. As can
be seen, a client can be subscribed to several services via several subscription types. The only
difference in this case is that to add new instances to the M2M relation, one cannot use the
shortcut method pizza.toppings.add(topping), instead, a new object of the through class should be
created, Subscription.objects.create(client=client, service=service, subscription_type='p')

https://riptutorial.com/ 146

http://www.riptutorial.com/django/topic/1200/migrations

In other languages through tables are also known as a JoinColumn , Intersection table
or mapping table

One-to-One Relationship

class Employee(models.Model):
 name = models.CharField(max_length=50)
 age = models.IntegerField()
 spouse = models.OneToOneField(Spouse)

class Spouse(models.Model):
 name = models.CharField(max_length=50)

Use these fields when you will only ever have a composition relationship between the two models.

Basic Django DB queries

Django ORM is a powerful abstraction that lets you store and retrieve data from the database
without writing sql queries yourself.

Let's assume the following models:

class Author(models.Model):
 name = models.CharField(max_length=50)

class Book(models.Model):
 name = models.CharField(max_length=50)
 author = models.ForeignKey(Author)

Assuming you've added the above code to a django application and run the migrate command (so
that your database is created). Start the Django shell by

python manage.py shell

This starts the standard python shell but with relevant Django libraries imported, so that you can
directly focus on the important parts.

Start by importing the models we just defined (I am assuming this is done in a file models.py)

from .models import Book, Author

Run your first select query:

>>> Author.objects.all()
[]
>>> Book.objects.all()
[]

Lets create an author and book object:

https://riptutorial.com/ 147

>>> hawking = Author(name="Stephen hawking")
>>> hawking.save()
>>> history_of_time = Book(name="history of time", author=hawking)
>>> history_of_time.save()

or use create function to create model objects and save in one line code

>>> wings_of_fire = Book.objects.create(name="Wings of Fire", author="APJ Abdul Kalam")

Now lets run the query

>>> Book.objects.all()
[<Book: Book object>]
>>> book = Book.objects.first() #getting the first book object
>>> book.name
u'history of time'

Let's add a where clause to our select query

>>> Book.objects.filter(name='nothing')
[]
>>> Author.objects.filter(name__startswith='Ste')
[<Author: Author object>]

To get the details about the author of a given book

>>> book = Book.objects.first() #getting the first book object
>>> book.author.name # lookup on related model
u'Stephen hawking'

To get all the books published by Stephen Hawking (Lookup book by its author)

>>> hawking.book_set.all()
[<Book: Book object>]

_set is the notation used for "Reverse lookups" i.e. while the lookup field is on the Book model, we
can use book_set on an author object to get all his/her books.

A basic unmanaged table.

At some point in your use of Django, you may find yourself wanting to interact with tables which
have already been created, or with database views. In these cases, you would not want Django to
manage the tables through its migrations. To set this up, you need to add only one variable to your
model's Meta class: managed = False.

Here is an example of how you might create an unmanaged model to interact with a database
view:

class Dummy(models.Model):
 something = models.IntegerField()

https://riptutorial.com/ 148

https://docs.djangoproject.com/en/1.10/ref/models/querysets/#django.db.models.query.QuerySet.create

 class Meta:
 managed = False

This may be mapped to a view defined in SQL as follows.

CREATE VIEW myapp_dummy AS
SELECT id, something FROM complicated_table
WHERE some_complicated_condition = True

Once you have this model created, you can use it as you would any other model:

>>> Dummy.objects.all()
[<Dummy: Dummy object>, <Dummy: Dummy object>, <Dummy: Dummy object>]
>>> Dummy.objects.filter(something=42)
[<Dummy: Dummy object>]

Advanced models

A model can provide a lot more information than just the data about an object. Let's see an
example and break it down into what it is useful for:

from django.db import models
from django.urls import reverse
from django.utils.encoding import python_2_unicode_compatible

@python_2_unicode_compatible
class Book(models.Model):
 slug = models.SlugField()
 title = models.CharField(max_length=128)
 publish_date = models.DateField()

 def get_absolute_url(self):
 return reverse('library:book', kwargs={'pk':self.pk})

 def __str__(self):
 return self.title

 class Meta:
 ordering = ['publish_date', 'title']

Automatic primary key

You might notice the use of self.pk in the get_absolute_url method. The pkfield is an alias to the
primary key of a model. Also, django will automatically add a primary key if it's missing. That's one
less thing to worry and let you set foreign key to any models and get them easily.

Absolute url

The first function that is defined is get_absolute_url. This way, if you have an book, you can get a
link to it without fiddling with the url tag, resolve, attribute and the like. Simply call

https://riptutorial.com/ 149

book.get_absolute_url and you get the right link. As a bonus, your object in the django admin will
gain a button "view on site".

String representation

Have a __str__ method let you use the object when you need to display it. For example, with the
previous method, adding a link to the book in a template is as simple as <a href="{{
book.get_absolute_url }}">{{ book }}. Straight to the point. This method also control what is
displayed in the admin drop-down, for foreign key for example.

The class decorator let you define the method once for both __str__ and __unicode__ on python 2
while causing no issue on python 3. If you expect your app to run on both version, that's the way
to go.

Slug field

The slug field is similar to a char field but accept less symbols. By default, only letters, numbers,
underscores or hyphens. It is useful if you want to identify an object using a nice representation, in
url for example.

The Meta class

The Meta class let us define a lot more of information on the whole collection of item. Here, only the
default ordering is set. It is useful with the ListView object for example. It take an ideally short list
of field to use for sorting. Here, book will be sorted first by publication date then by title if the date
is the same.

Other frequents attributes are verbose_name and verbose_name_plural. By default, they are generated
from the name of the model and should be fine. But the plural form is naive, simply appending an
's' to the singular so you might want to set it explicitly in some case.

Computed Values

Once a model object has been fetched, it becomes a fully realized instance of the class. As such,
any additional methods can be accessed in forms and serializers (like Django Rest Framework).

Using python properties is an elegant way to represent additional values that are not stored in the
database due to varying circumstances.

def expire():
 return timezone.now() + timezone.timedelta(days=7)

class Coupon(models.Model):
 expiration_date = models.DateField(default=expire)

 @property
 def is_expired(self):
 return timezone.now() > self.expiration_date

https://riptutorial.com/ 150

While most cases you can supplement data with annotations on your querysets, computed values
as model properties are ideal for computations that can not be evaluated simply within the scope
of a query.

Additionally, properties, since they are declared on the python class and not as part of the
schema, are not available for querying against.

Adding a string representation of a model

To create a human-readable presentation of a model object you need to implement
Model.__str__() method (or Model.__unicode__() on python2). This method will be called whenever
you call str() on a instance of your model (including, for instance, when the model is used in a
template). Here's an example:

Create a book model.

your_app/models.py

from django.db import models

class Book(models.Model):
 name = models.CharField(max_length=50)
 author = models.CharField(max_length=50)

1.

Create an instance of the model, and save it in the database:

>>> himu_book = Book(name='Himu Mama', author='Humayun Ahmed')
>>> himu_book.save()

2.

Execute print() on the instance:

>>> print(himu_book)
<Book: Book object>

3.

<Book: Book object>, the default output, is of no help to us. To fix this, let's add a __str__
method.

from django.utils.encoding import python_2_unicode_compatible

@python_2_unicode_compatible
class Book(models.Model):
 name = models.CharField(max_length=50)
 author = models.CharField(max_length=50)

 def __str__(self):
 return '{} by {}'.format(self.name, self.author)

Note the python_2_unicode_compatible decorator is needed only if you want your code to be
compatible with python 2. This decorator copies the __str__ method to create a __unicode__
method. Import it from django.utils.encoding.

https://riptutorial.com/ 151

Now if we call the print function the book instance again:

>>> print(himu_book)
Himu Mama by Humayun Ahmed

Much better!

The string representation is also used when the model is used in a ModelForm for ForeignKeyField
and ManyToManyField fields.

Model mixins

In same cases different models could have same fields and same procedures in the product life
cycle. To handle these similarities without having code repetition inheritance could be used.
Instead of inheriting a whole class, mixin design pattern offers us to inherit (or some says include)
some methods and attributes. Let's see an example:

class PostableMixin(models.Model):
 class Meta:
 abstract=True

 sender_name = models.CharField(max_length=128)
 sender_address = models.CharField(max_length=255)
 receiver_name = models.CharField(max_length=128)
 receiver_address = models.CharField(max_length=255)
 post_datetime = models.DateTimeField(auto_now_add=True)
 delivery_datetime = models.DateTimeField(null=True)
 notes = models.TextField(max_length=500)

class Envelope(PostableMixin):
 ENVELOPE_COMMERCIAL = 1
 ENVELOPE_BOOKLET = 2
 ENVELOPE_CATALOG = 3

 ENVELOPE_TYPES = (
 (ENVELOPE_COMMERCIAL, 'Commercial'),
 (ENVELOPE_BOOKLET, 'Booklet'),
 (ENVELOPE_CATALOG, 'Catalog'),
)

 envelope_type = models.PositiveSmallIntegerField(choices=ENVELOPE_TYPES)

class Package(PostableMixin):
 weight = models.DecimalField(max_digits=6, decimal_places=2)
 width = models.DecimalField(max_digits=5, decimal_places=2)
 height = models.DecimalField(max_digits=5, decimal_places=2)
 depth = models.DecimalField(max_digits=5, decimal_places=2)

To turn a model into an abstract class, you will need to mention abstract=True in its inner Meta
class. Django does not create any tables for abstract models in the database. However for the
models Envelope and Package, corresponding tables would be created in the database.

Furthermore the fields some model methods will be needed at more than one models. Thus these
methods could be added to mixins to prevent code repetition. For example if we create a method

https://riptutorial.com/ 152

to set delivery date to PostableMixin it will be accesible from both of its children:

class PostableMixin(models.Model):
 class Meta:
 abstract=True

 ...
 ...

 def set_delivery_datetime(self, dt=None):
 if dt is None:
 from django.utils.timezone import now
 dt = now()

 self.delivery_datetime = dt
 self.save()

This method could be used as following on the children:

>> envelope = Envelope.objects.get(pk=1)
>> envelope.set_delivery_datetime()

>> pack = Package.objects.get(pk=1)
>> pack.set_delivery_datetime()

UUID Primary key

A model by default will use an auto incrementing (integer) primary key. This will give you a
sequence of keys 1, 2, 3.

Different primary key types can be set on a model with a small alterations to the model.

A UUID is a universally unique identifier, this is 32 character random identifier which can be used
as an ID. This is a good option to use when you do not want sequential ID's assigned to records in
your database.When used on PostgreSQL, this stores in a uuid datatype, otherwise in a char(32).

import uuid
from django.db import models

class ModelUsingUUID(models.Model):
 id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False)

The generated key will be in the format 7778c552-73fc-4bc4-8bf9-5a2f6f7b7f47

Inheritance

Inheritance among models can be done in two ways:

a common abstract class (see the "Model mixins" example)•
a common model with multiple tables•

The multi tables inheritance will create one table for the common fields and one per child model

https://riptutorial.com/ 153

https://docs.djangoproject.com/en/1.9/ref/models/fields/#uuidfield

example:

from django.db import models

class Place(models.Model):
 name = models.CharField(max_length=50)
 address = models.CharField(max_length=80)

class Restaurant(Place):
 serves_hot_dogs = models.BooleanField(default=False)
 serves_pizza = models.BooleanField(default=False)

will create 2 tables, one for Place and one for Restaurant with a hidden OneToOne field to Place for the
common fields.

note that this will need an extra query to the places tables every time you fetch an Restaurant
Object.

Read Models online: https://riptutorial.com/django/topic/888/models

https://riptutorial.com/ 154

https://riptutorial.com/django/topic/888/models

Chapter 40: Project Structure

Examples

Repository > Project > Site/Conf

For a Django project with requirements and deployment tools under source control. This example
builds upon concepts from the Two Scoops of Django. They have published a template:

repository/
 docs/
 .gitignore
 project/
 apps/
 blog/
 migrations/
 static/ #(optional)
 blog/
 some.css
 templates/ #(optional)
 blog/
 some.html
 models.py
 tests.py
 admin.py
 apps.py #(django 1.9 and later)
 views.py
 accounts/
 #... (same as blog)
 search/
 #... (same as blog)
 conf/
 settings/
 local.py
 development.py
 production.py
 wsgi
 urls.py
 static/
 templates/
 deploy/
 fabfile.py
 requirements/
 base.txt
 local.txt
 README
 AUTHORS
 LICENSE

Here apps and conf folders contain user created applications and core configuration folder for the
project respectively.

static and templates folders in project directory contains static files and html markup files
respectively that are being used globally throughout the project.

https://riptutorial.com/ 155

https://www.twoscoopspress.com/
https://github.com/twoscoops/django-twoscoops-project

And all app folders blog, accounts and search may also (mostly) contain static and templates
folders.

Namespacing static and templates files in django apps

static and templates folder in the apps may should also contain a folder with the name of app ex.
blog this is a convention used to prevent namespace pollution, so we reference the files like
/blog/base.html rather than /base.html which provides more clarity about the file we are referencing
and preserves namespace.

Example: templates folder inside blog and search applications contains a file with name base.html,
and when referencing the file in views your application gets confused in which file to render.

(Project Structure)
.../project/
 apps/
 blog/
 templates/
 base.html
 search/
 templates/
 base.html

(blog/views.py)
def some_func(request):
 return render(request, "/base.html")

(search/views.py)
def some_func(request):
 return render(request, "/base.html")

After creating a folder inside /blog/templates/(blog) ##

(Project Structure)
.../project/
 apps/
 blog/
 templates/
 blog/
 base.html
 search/
 templates/
 search/
 base.html

(blog/views.py)
def some_func(request):
 return render(request, "/blog/base.html")

(search/views.py)
def some_func(request):
 return render(request, "/search/base.html")

Read Project Structure online: https://riptutorial.com/django/topic/4299/project-structure

https://riptutorial.com/ 156

https://riptutorial.com/django/topic/4299/project-structure

Chapter 41: Querysets

Introduction

A Queryset is fundamentally a list of objects derived from a Model, by a compilation of database
queries.

Examples

Simple queries on a standalone model

Here is a simple model that we will use to run a few test queries:

class MyModel(models.Model):
 name = models.CharField(max_length=10)
 model_num = models.IntegerField()
 flag = models.NullBooleanField(default=False)

Get a single model object where the id/pk is 4:
(If there are no items with the id of 4 or there are more than one, this will throw an exception.)

MyModel.objects.get(pk=4)

All model objects:

MyModel.objects.all()

Model objects that have flag set to True:

MyModel.objects.filter(flag=True)

Model objects with a model_num greater than 25:

MyModel.objects.filter(model_num__gt=25)

Model objects with the name of "Cheap Item" and flag set to False:

MyModel.objects.filter(name="Cheap Item", flag=False)

Models simple search name for specific string(Case-sensitive):

MyModel.objects.filter(name__contains="ch")

Models simple search name for specific string(Case-insensitive):

https://riptutorial.com/ 157

MyModel.objects.filter(name__icontains="ch")

Advanced queries with Q objects

Given the model:

class MyModel(models.Model):
 name = models.CharField(max_length=10)
 model_num = models.IntegerField()
 flag = models.NullBooleanField(default=False)

We can use Q objects to create AND , OR conditions in your lookup query. For example, say we want
all objects that have flag=True OR model_num>15.

from django.db.models import Q
MyModel.objects.filter(Q(flag=True) | Q(model_num__gt=15))

The above translates to WHERE flag=True OR model_num > 15 similarly for an AND you would do.

MyModel.objects.filter(Q(flag=True) & Q(model_num__gt=15))

Q objects also allow us to make NOT queries with the use of ~. Let's say we wanted to get all
objects that have flag=False AND model_num!=15, we would do:

MyModel.objects.filter(Q(flag=True) & ~Q(model_num=15))

If using Q objects and "normal" parameters in filter(), then the Q objects must come first. The
following query searches for models with (flag set to True or a model number greater than 15) and
a name that starts with "H".

from django.db.models import Q
MyModel.objects.filter(Q(flag=True) | Q(model_num__gt=15), name__startswith="H")

Note: Q objects can be used with any lookup function that takes keyword arguments such as
filter, exclude, get. Make sure that when you use with get that you will only return one object or
the MultipleObjectsReturned exception will be raised.

Reduce number of queries on ManyToManyField (n+1 issue)

Problem

models.py:
class Library(models.Model):
 name = models.CharField(max_length=100)
 books = models.ManyToManyField(Book)

class Book(models.Model):

https://riptutorial.com/ 158

 title = models.CharField(max_length=100)

views.py
def myview(request):
 # Query the database.
 libraries = Library.objects.all()

 # Query the database on each iteration (len(author) times)
 # if there is 100 librairies, there will have 100 queries plus the initial query
 for library in libraries:
 books = library.books.all()
 books[0].title
 # ...

 # total : 101 queries

Solution

Use prefetch_related on ManyToManyField if you know that you will need to access later a field which
is a ManyToManyField field.

views.py
def myview(request):
 # Query the database.
 libraries = Library.objects.prefetch_related('books').all()

 # Does not query the database again, since `books` is pre-populated
 for library in libraries:
 books = library.books.all()
 books[0].title
 # ...

 # total : 2 queries - 1 for libraries, 1 for books

prefetch_related can also be used on lookup fields :

models.py:
class User(models.Model):
 name = models.CharField(max_length=100)

class Library(models.Model):
 name = models.CharField(max_length=100)
 books = models.ManyToManyField(Book)

class Book(models.Model):
 title = models.CharField(max_length=100)
 readers = models.ManyToManyField(User)

 # views.py
def myview(request):
 # Query the database.
 libraries = Library.objects.prefetch_related('books', 'books__readers').all()

 # Does not query the database again, since `books` and `readers` is pre-populated

https://riptutorial.com/ 159

 for library in libraries:
 for book in library.books.all():
 for user in book.readers.all():
 user.name
 # ...

 # total : 3 queries - 1 for libraries, 1 for books, 1 for readers

However, once the queryset has been executed, the data fetched can't be altered without hitting
again the database. The following would execute extra queries for example:

 # views.py
def myview(request):
 # Query the database.
 libraries = Library.objects.prefetch_related('books').all()
 for library in libraries:
 for book in library.books.filter(title__contains="Django"):
 print(book.name)

The following can be optimized using a Prefetch object, introduced in Django 1.7:

from django.db.models import Prefetch
views.py
def myview(request):
 # Query the database.
 libraries = Library.objects.prefetch_related(
 Prefetch('books', queryset=Book.objects.filter(title__contains="Django")
).all()
 for library in libraries:
 for book in library.books.all():
 print(book.name) # Will print only books containing Django for each library

Reduce number of queries on ForeignKey field (n+1 issue)

Problem

Django querysets are evaluated in a lazy fashion. For example:

models.py:
class Author(models.Model):
 name = models.CharField(max_length=100)

class Book(models.Model):
 author = models.ForeignKey(Author, related_name='books')
 title = models.CharField(max_length=100)

views.py
def myview(request):
 # Query the database
 books = Book.objects.all()

 for book in books:
 # Query the database on each iteration to get author (len(books) times)

https://riptutorial.com/ 160

 # if there is 100 books, there will have 100 queries plus the initial query
 book.author
 # ...

 # total : 101 queries

The code above causes django to query the database for the author of each book. This is
inefficient, and it is better to only have a single query.

Solution

Use select_related on ForeignKey if you know that you will need to later access a ForeignKey field.

views.py
def myview(request):
 # Query the database.
 books = Books.objects.select_related('author').all()

 for book in books:
 # Does not query the database again, since `author` is pre-populated
 book.author
 # ...

 # total : 1 query

select_related can also be used on lookup fields:

models.py:
class AuthorProfile(models.Model):
 city = models.CharField(max_length=100)

class Author(models.Model):
 name = models.CharField(max_length=100)
 profile = models.OneToOneField(AuthorProfile)

class Book(models.Model):
 author = models.ForeignKey(Author, related_name='books')
 title = models.CharField(max_length=100)

views.py
def myview(request):
 books = Book.objects.select_related('author')\
 .select_related('author__profile').all()

 for book in books:
 # Does not query database
 book.author.name
 # or
 book.author.profile.city
 # ...

 # total : 1 query

Get SQL for Django queryset

https://riptutorial.com/ 161

The query attribute on queryset gives you SQL equivalent syntax for your query.

>>> queryset = MyModel.objects.all()
>>> print(queryset.query)
SELECT "myapp_mymodel"."id", ... FROM "myapp_mymodel"

Warning:

This output should only be used for debugging purposes. The generated query is not
backend-specific. As such, the parameters aren't quoted properly, leaving it vulnerable
to SQL injection, and the query may not even be executable on your database
backend.

Get first and last record from QuerySet

To get First object:

MyModel.objects.first()

To get last objects:

MyModel.objects.last()

Using Filter First object:

MyModel.objects.filter(name='simple').first()

Using Filter Last object:

MyModel.objects.filter(name='simple').last()

Advanced queries with F objects

An F() object represents the value of a model field or annotated column. It makes it
possible to refer to model field values and perform database operations using them
without actually having to pull them out of the database into Python memory. - F()
expressions

It is appropriate to use F() objects whenever you need to reference another field's value in your
query. By itself, F() objects do not mean anything, and they cannot and should not be called
outside of a queryset. They are used to reference a field's value on the same queryset.

For example, given a model ...

SomeModel(models.Model):
 ...
 some_field = models.IntegerField()

https://riptutorial.com/ 162

https://docs.djangoproject.com/en/1.10/ref/models/expressions/#f-expressions
https://docs.djangoproject.com/en/1.10/ref/models/expressions/#f-expressions

... a user can query objects where the some_field value is twice its id by referencing the id field's
value while filtering using F() like this:

SomeModel.objects.filter(some_field=F('id') * 2)

F('id') simply references the id value for that same instance. Django uses it to create
corresponding SQL statement. In this case something closely resembling this:

SELECT * FROM some_app_some_model
WHERE some_field = ((id * 2))

Without F() expressions this would be accomplished with either raw SQL or filtering in Python
(which reduces the performance especially when there are lots of objects).

References:

Filters can reference fields on model•
F expressions•
Answer from TinyInstance•

From F() class definition:

An object capable of resolving references to existing query objects. - F source

Note: This example posted came from the answer listed above with consent from TinyInstance.

Read Querysets online: https://riptutorial.com/django/topic/1235/querysets

https://riptutorial.com/ 163

https://docs.djangoproject.com/en/1.10/topics/db/queries/#filters-can-reference-fields-on-the-model
https://docs.djangoproject.com/en/1.10/topics/db/queries/#filters-can-reference-fields-on-the-model
https://docs.djangoproject.com/en/1.10/topics/db/queries/#filters-can-reference-fields-on-the-model
https://docs.djangoproject.com/en/1.10/topics/db/queries/#filters-can-reference-fields-on-the-model
https://docs.djangoproject.com/en/1.10/topics/db/queries/#filters-can-reference-fields-on-the-model
https://docs.djangoproject.com/en/1.10/ref/models/expressions/#django.db.models.F
http://stackoverflow.com/a/39403426/1036843
http://stackoverflow.com/users/3659874/tiny-instance
https://docs.djangoproject.com/en/1.10/_modules/django/db/models/expressions/#F
https://riptutorial.com/django/topic/1235/querysets

Chapter 42: RangeFields - a group of
PostgreSQL specific fields

Syntax

from django.contrib.postgres.fields import *RangeField•
IntegerRangeField(**options)•
BigIntegerRangeField(**options)•
FloatRangeField(**options)•
DateTimeRangeField(**options)•
DateRangeField(**options)•

Examples

Including numeric range fields in your model

There are three kinds of numeric RangeFields in Python. IntegerField, BigIntegerField, and
FloatField. They convert to psycopg2 NumericRanges, but accept input as native Python tuples. The
lower bound is included and the upper bound is excluded.

class Book(models.Model):
 name = CharField(max_length=200)
 ratings_range = IntegerRange()

Setting up for RangeField

add 'django.contrib.postgres' to your INSTALLED_APPS1.
install psycopg22.

Creating models with numeric range fields

It's simpler and easier to input values as a Python tuple instead of a NumericRange.

Book.objects.create(name='Pro Git', ratings_range=(5, 5))

Alternative method with NumericRange:

Book.objects.create(name='Pro Git', ratings_range=NumericRange(5, 5))

Using contains

This query selects all books with any rating less than three.

https://riptutorial.com/ 164

http://initd.org/psycopg/docs/extras.html#psycopg2.extras.NumericRange

bad_books = Books.objects.filter(ratings_range__contains=(1, 3))

Using contained_by

This query gets all books with ratings greater than or equal to zero and less than six.

all_books = Book.objects.filter(ratings_range_contained_by=(0, 6))

Using overlap

This query gets all overlapping appointments from six to ten.

Appointment.objects.filter(time_span__overlap=(6, 10))

Using None to signify no upper bound

This query selects all books with any rating greater than or equal to four.

maybe_good_books = Books.objects.filter(ratings_range__contains=(4, None))

Ranges operations

from datetime import timedelta

from django.utils import timezone
from psycopg2.extras import DateTimeTZRange

To create a "period" object we will use psycopg2's DateTimeTZRange
which takes the two datetime bounds as arguments
period_start = timezone.now()
period_end = period_start + timedelta(days=1, hours=3)
period = DateTimeTZRange(start, end)

Say Event.timeslot is a DateTimeRangeField

Events which cover at least the whole selected period,
Event.objects.filter(timeslot__contains=period)

Events which start and end within selected period,
Event.objects.filter(timeslot__contained_by=period)

Events which, at least partially, take place during the selected period.
Event.objects.filter(timeslot__overlap=period)

Read RangeFields - a group of PostgreSQL specific fields online:
https://riptutorial.com/django/topic/2630/rangefields---a-group-of-postgresql-specific-fields

https://riptutorial.com/ 165

https://riptutorial.com/django/topic/2630/rangefields---a-group-of-postgresql-specific-fields

Chapter 43: Running Celery with Supervisor

Examples

Celery Configuration

CELERY

Installation - pip install django-celery1.

Add2.

Basic project structure.

 - src/
 - bin/celery_worker_start # will be explained later on
 - logs/celery_worker.log
 - stack/__init __.py
 - stack/celery.py
 - stack/settings.py
 - stack/urls.py
 - manage.py

3.

Add celery.py file to your stack/stack/ folder.

 from __future__ import absolute_import
 import os
 from celery import Celery
 os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'stack.settings')
 from django.conf import settings # noqa
 app = Celery('stack')
 app.config_from_object('django.conf:settings')
 app.autodiscover_tasks(lambda: settings.INSTALLED_APPS)

4.

to your stack/stack/__init__.py add following code:

 from __future__ import absolute_import
 from .celery import app as celery_app # noqa

5.

Create a task and mark it for example as @shared_task()

 @shared_task()
 def add(x, y):
 print("x*y={}".format(x*y))

6.

Running celery worker "by hand":

celery -A stack worker -l info if you also want to add

7.

https://riptutorial.com/ 166

Running Supervisor

Create a script to start celery worker. Insert your script within your app. For example:
stack/bin/celery_worker_start

 #!/bin/bash

 NAME="StackOverflow Project - celery_worker_start"

 PROJECT_DIR=/home/stackoverflow/apps/proj/proj/
 ENV_DIR=/home/stackoverflow/apps/proj/env/

 echo "Starting $NAME as `whoami`"

 # Activate the virtual environment
 cd "${PROJECT_DIR}"

 if [-d "${ENV_DIR}"]
 then
 . "${ENV_DIR}bin/activate"
 fi

 celery -A stack --loglevel='INFO'

1.

Add execution rights to your newly created script:

chmod u+x bin/celery_worker_start

2.

Install supervisor (skip this test if supervisor already installed)

apt-get install supervisor

3.

Add config file for your supervisor in order to start you celery. Place it in
/etc/supervisor/conf.d/stack_supervisor.conf

 [program:stack-celery-worker]
 command = /home/stackoverflow/apps/stack/src/bin/celery_worker_start
 user = polsha
 stdout_logfile = /home/stackoverflow/apps/stack/src/logs/celery_worker.log
 redirect_stderr = true
 environment = LANG = en_US.UTF-8,LC_ALL = en_US.UTF-8
 numprocs = 1
 autostart = true
 autorestart = true
 startsecs = 10
 stopwaitsecs = 600
 priority = 998

4.

Reread and update supervisor

 sudo supervisorctl reread
 stack-celery-worker: available
 sudo supervisorctl update
 stack-celery-worker: added process group

5.

Basic commands6.

https://riptutorial.com/ 167

 sudo supervisorctl status stack-celery-worker
 stack-celery-worker RUNNING pid 18020, uptime 0:00:50
 sudo supervisorctl stop stack-celery-worker
 stack-celery-worker: stopped
 sudo supervisorctl start stack-celery-worker
 stack-celery-worker: started
 sudo supervisorctl restart stack-celery-worker
 stack-celery-worker: stopped
 stack-celery-worker: started

Celery + RabbitMQ with Supervisor

Celery requires a broker to handle message-passing. We use RabbitMQ because it’s easy to
setup and it is well supported.

Install rabbitmq using the following command

sudo apt-get install rabbitmq-server

Once the installation is complete, create user, add a virtual host and set permissions.

sudo rabbitmqctl add_user myuser mypassword
sudo rabbitmqctl add_vhost myvhost
sudo rabbitmqctl set_user_tags myuser mytag
sudo rabbitmqctl set_permissions -p myvhost myuser ".*" ".*" ".*"

To start the server:

sudo rabbitmq-server

We can install celery with pip:

pip install celery

In your Django settings.py file, your broker URL would then look something like

BROKER_URL = 'amqp://myuser:mypassword@localhost:5672/myvhost'

Now start the celery worker

celery -A your_app worker -l info

This command start a Celery worker to run any tasks defined in your django app.

Supervisor is a Python program that allows you to control and keep running any unix processes. It
can also restart crashed processes. We use it to make sure Celery workers are always running.

First, Install supervisor

https://riptutorial.com/ 168

sudo apt-get install supervisor

Create your_proj.conf file in your supervisor conf.d (/etc/supervisor/conf.d/your_proj.conf):

[program:your_proj_celery]
command=/home/your_user/your_proj/.venv/bin/celery --app=your_proj.celery:app worker -l info
directory=/home/your_user/your_proj
numprocs=1
stdout_logfile=/home/your_user/your_proj/logs/celery-worker.log
stderr_logfile=/home/your_user/your_proj/logs/low-worker.log
autostart=true
autorestart=true
startsecs=10

Once our configuration file is created and saved, we can inform Supervisor of our new program
through the supervisorctl command. First we tell Supervisor to look for any new or changed
program configurations in the /etc/supervisor/conf.d directory with:

sudo supervisorctl reread

Followed by telling it to enact any changes with:

sudo supervisorctl update

Once our programs are running, there will undoubtedly be a time when we want to stop, restart, or
see their status.

sudo supervisorctl status

For restart your celery instance:

sudo supervisorctl restart your_proj_celery

Read Running Celery with Supervisor online: https://riptutorial.com/django/topic/7091/running-
celery-with-supervisor

https://riptutorial.com/ 169

https://riptutorial.com/django/topic/7091/running-celery-with-supervisor
https://riptutorial.com/django/topic/7091/running-celery-with-supervisor

Chapter 44: Security

Examples

Cross Site Scripting (XSS) protection

XSS attacks consist in injecting HTML (or JS) code in a page. See What is cross site scripting for
more information.

To prevent from this attack, by default, Django escapes strings passed through a template
variable.

Given the following context:

context = {
 'class_name': 'large" style="font-size:4000px',
 'paragraph': (
 "<script type=\"text/javascript\">alert('hello world!');</script>"),
}

<p class="{{ class_name }}">{{ paragraph }}</p>
<!-- Will be rendered as: -->
<p class="large" style="font-size: 4000px"><script>alert('hello
world!');</script></p>

If you have variables containing HTML that you trust and actually want to render, you must
explicitly say it is safe:

<p class="{{ class_name|safe }}">{{ paragraph }}</p>
<!-- Will be rendered as: -->
<p class="large" style="font-size: 4000px"><script>alert('hello
world!');</script></p>

If you have a block containing multiple variables that are all safe, you can locally disable auto
escaping:

{% autoescape off %}
<p class="{{ class_name }}">{{ paragraph }}</p>
{% endautoescape %}
<!-- Will be rendered as: -->
<p class="large" style="font-size: 4000px"><script>alert('hello world!');</script></p>

You can also mark a string as safe outside of the template:

from django.utils.safestring import mark_safe

context = {
 'class_name': 'large" style="font-size:4000px',
 'paragraph': mark_safe(
 "<script type=\"text/javascript\">alert('hello world!');</script>"),

https://riptutorial.com/ 170

http://stackoverflow.com/questions/15755323/what-is-cross-site-scripting

}

<p class="{{ class_name }}">{{ paragraph }}</p>
<!-- Will be rendered as: -->
<p class="large" style="font-size: 4000px"><script>alert('hello
world!');</script></p>

Some Django utilities such as format_html already return strings marked as safe:

from django.utils.html import format_html

context = {
 'var': format_html('{} {}', 'hello', '<i>world!</i>'),
}

<p>{{ var }}</p>
<!-- Will be rendered as -->
<p>hello <i>world!</i></p>

Clickjacking protection

Clickjacking is a malicious technique of tricking a Web user into clicking on something
different from what the user perceives they are clicking on. Learn more

To enable clickjacking protection, add the XFrameOptionsMiddleware to your middleware classes.
This should already be there if you didn't remove it.

settings.py
MIDDLEWARE_CLASSES = [
 ...
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
 ...
]

This middleware sets the 'X-Frame-Options' header to your all your responses, unless explicitly
exempted or already set (not overridden if already set in the response). By default it is set to
"SAMEORIGIN". To change this, use the X_FRAME_OPTIONS setting:

X_FRAME_OPTIONS = 'DENY'

You can override the default behaviour on a per-view basis.

from django.utils.decorators import method_decorator
from django.views.decorators.clickjacking import (
 xframe_options_exempt, xframe_options_deny, xframe_options_sameorigin,
)

xframe_options_exempt_m = method_decorator(xframe_options_exempt, name='dispatch')

@xframe_options_sameorigin
def my_view(request, *args, **kwargs):
 """Forces 'X-Frame-Options: SAMEORIGIN'."""

https://riptutorial.com/ 171

https://en.wikipedia.org/wiki/Clickjacking

 return HttpResponse(...)

@method_decorator(xframe_options_deny, name='dispatch')
class MyView(View):
 """Forces 'X-Frame-Options: DENY'."""

@xframe_options_exempt_m
class MyView(View):
 """Does not set 'X-Frame-Options' header when passing through the
 XFrameOptionsMiddleware.
 """

Cross-site Request Forgery (CSRF) protection

Cross-site request forgery, also known as one-click attack or session riding and
abbreviated as CSRF or XSRF, is a type of malicious exploit of a website where
unauthorized commands are transmitted from a user that the website trusts. Learn
more

To enable CSRF protection, add the CsrfViewMiddleware to your middleware classes. This
middleware is enabled by default.

settings.py
MIDDLEWARE_CLASSES = [
 ...
 'django.middleware.csrf.CsrfViewMiddleware',
 ...
]

This middleware will set a token in a cookie on the outgoing response. Whenever an incoming
request uses an unsafe method (any method except GET, HEAD, OPTIONS and TRACE), the cookie must
match a token that is send as the csrfmiddlewaretoken form data or as the X-CsrfToken header. This
ensures that the client initiating the request is also the owner of the cookie and, by extension, the
(authenticated) session.

If a request is made over HTTPS, strict referrer checking is enabled. If the HTTP_REFERER header does
not match the host of the current request or a host in CSRF_TRUSTED_ORIGINS (new in 1.9), the request
is denied.

Forms that use the POST method should include the CSRF token in the template. The {% csrf_token
%} template tag will output a hidden field, and will ensure that the cookie is set on the response:

<form method='POST'>
{% csrf_token %}
...
</form>

Individual views that are not vulnerable to CSRF attacks can be made exempt using the
@csrf_exempt decorator:

from django.views.decorators.csrf import csrf_exempt

https://riptutorial.com/ 172

https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-CSRF_TRUSTED_ORIGINS

@csrf_exempt
def my_view(request, *args, **kwargs):
 """Allows unsafe methods without CSRF protection"""
 return HttpResponse(...)

Although not recommended, you can disable the CsrfViewMiddleware if many of your views are not
vulnerable to CSRF attacks. In this case you can use the @csrf_protect decorator to protect
individual views:

from django.views.decorators.csrf import csrf_protect

@csrf_protect
def my_view(request, *args, **kwargs):
 """This view is protected against CSRF attacks if the middleware is disabled"""
 return HttpResponse(...)

Read Security online: https://riptutorial.com/django/topic/2957/security

https://riptutorial.com/ 173

https://riptutorial.com/django/topic/2957/security

Chapter 45: Settings

Examples

Setting the timezone

You can set the timezone that will be used by Django in the settings.py file. Examples:

TIME_ZONE = 'UTC' # use this, whenever possible
TIME_ZONE = 'Europe/Berlin'
TIME_ZONE = 'Etc/GMT+1'

Here is the list of valid timezones

When running in a Windows environment this must be set to the same as your system time zone
.

If you do not want Django to use timezone-aware datetimes:

USE_TZ = False

Django best practices call for using UTC for storing information in the database:

Even if your website is available in only one time zone, it’s still good practice to store
data in UTC in your database. The main reason is Daylight Saving Time (DST). Many
countries have a system of DST, where clocks are moved forward in spring and
backward in autumn. If you’re working in local time, you’re likely to encounter errors
twice a year, when the transitions happen.

https://docs.djangoproject.com/en/stable/topics/i18n/timezones/

Accessing settings

Once you've got all your settings, you'll want to use them in your code. To do so, add the following
import to your file:

from django.conf import settings

You may then access your settings as attributes of the settings module, for example:

if not settings.DEBUG:
 email_user(user, message)

Using BASE_DIR to ensure app portability

It's a bad idea to hard code paths in your application. One should always use relative urls so that

https://riptutorial.com/ 174

http://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://docs.djangoproject.com/en/stable/topics/i18n/timezones/

your code can work seamlessly across different machines. The best way to set this up is to define
a variable like this

import os
BASE_DIR = os.path.dirname(os.path.dirname(__file__))

Then use this BASE_DIR variable to define all your other settings.

TEMPLATE_PATH = os.path.join(BASE_DIR, "templates")
STATICFILES_DIRS = [
 os.path.join(BASE_DIR, "static"),

]

And so on. This ensures that you can port your code across different machines without any
worries.

However, os.path is a bit verbose. For instance if your settings module is project.settings.dev, you
will have to write:

BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(__file__)))

An alternative is to use the unipath module (which you can install with pip install unipath).

from unipath import Path

BASE_DIR = Path(__file__).ancestor(2) # or ancestor(3) if using a submodule

TEMPLATE_PATH = BASE_DIR.child('templates')
STATICFILES_DIRS = [
 BASE_DIR.child('static'),
]

Using Environment variables to manage Settings across servers

Using environment variables is a widely used way to setting an app's config depending on it
environment, as stated in The Twelve-Factor App.

As configurations are likely to change between deployment environments, this is a very interesting
way to modify the configuration without having to dig in the app's source code, as well as keeping
secrets outside the application files and source code repository.

In Django, the main settings are located as settings.py in your project's folder. As it is a simple
Python file, you can use Python's os module from the standard library to access the environment
(and even have appropriate defaults).

settings.py

import os

https://riptutorial.com/ 175

http://12factor.net/config

SECRET_KEY = os.environ.get('APP_SECRET_KEY', 'unsafe-secret-key')

DEBUG = bool(os.environ.get('DJANGO_DEBUG', True) == 'False')

ALLOWED_HOSTS = os.environ.get('DJANGO_ALLOWED_HOSTS', '').split()

DATABASES = {
 'default': {
 'ENGINE': os.environ.get('APP_DB_ENGINE', 'django.db.backends.sqlite3'),
 'NAME': os.environ.get('DB_NAME', 'db.sqlite'),
 'USER': os.environ.get('DB_USER', ''),
 'PASSWORD': os.environ.get('DB_PASSWORD', ''),
 'HOST': os.environ.get('DB_HOST', None),
 'PORT': os.environ.get('DB_PORT', None),
 'CONN_MAX_AGE': 600,
 }
}

With Django you can change your database technology, so that you can use sqlite3 on your
development machine (and that should be a sane default for committing to a source control
system). Although this is possible it is not advisable:

Backing services, such as the app’s database, queueing system, or cache, is one area
where dev/prod parity is important. (The Twelve-Factor App - Dev/prod parity)

For using a DATABASE_URL parameter for database connection, please take a look at the
related example.

Using multiple settings

Django default project layout creates a single settings.py. This is often useful to split it like this:

myprojectroot/
 myproject/
 __init__.py
 settings/
 __init__.py
 base.py
 dev.py
 prod.py
 tests.py

This enables you to work with different settings according to whether you are in development,
production, tests or whatever.

When moving from the default layout to this layout, the original settings.py becomes
settings/base.py. When every other submodule will "subclass" settings/base.py by starting with
from .base import *. For instance, here is what settings/dev.py may look like:

-*- coding: utf-8 -*-
from .base import * # noqa

DEBUG = True

https://riptutorial.com/ 176

https://12factor.net/dev-prod-parity
http://www.riptutorial.com/django/example/10056/using-a-database-url-from-the-environment

INSTALLED_APPS.extend([
 'debug_toolbar',
])
EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'
INTERNAL_IPS = ['192.168.0.51', '192.168.0.69']

Alternative #1

For django-admin commands to work properly, you will have to set DJANGO_SETTINGS_MODULE
environment variable (which defaults to myproject.settings). In development, you will set it to
myproject.settings.dev. In production, you will set it to myproject.settings.prod. If you use a
virtualenv, best is to set it in your postactivate script:

#!/bin/sh
export PYTHONPATH="/home/me/django_projects/myproject:$VIRTUAL_ENV/lib/python3.4"
export DJANGO_SETTINGS_MODULE="myproject.settings.dev"

If you want to use a settings module that is not pointed by DJANGO_SETTINGS_MODULE for one time, you
can use the --settings option of django-admin:

django-admin test --settings=myproject.settings.tests

Alternative #2

If you want to leave DJANGO_SETTINGS_MODULE at its default configuration (myproject.settings), you can
simply tell the settings module which configuration to load by placing the import in your
__init__.py file.

In the above example, the same result could be achieved by having an __init__.py set to:

from .dev import *

Using multiple requirements files

Each requirements files should match the name of a settings files. Read Using multiple settings for
more information.

Structure

djangoproject
├── config
│ ├── __init__.py
│ ├── requirements
│ │ ├── base.txt
│ │ ├── dev.txt

https://riptutorial.com/ 177

http://www.riptutorial.com/django/example/4567/using-multiple-settings

│ │ ├── test.txt
│ │ └── prod.txt
│ └── settings
└── manage.py

In base.txt file, place dependencies used in all environments.

base.txt
Django==1.8.0
psycopg2==2.6.1
jinja2==2.8

And in all other files, include base dependencies with -r base.txt, and add specific dependencies
needed for the current environment.

dev.txt
-r base.txt # includes all dependencies in `base.txt`

specific dependencies only used in dev env
django-queryinspect==0.1.0

test.txt
-r base.txt # includes all dependencies in `base.txt`

specific dependencies only used in test env
nose==1.3.7
django-nose==1.4

prod.txt
-r base.txt # includes all dependencies in `base.txt`

specific dependencies only used in production env
django-queryinspect==0.1.0
gunicorn==19.3.0
django-storages-redux==1.3
boto==2.38.0

Finally, to install dependencies. Example, on dev env : pip install -r config/requirements/dev.txt

Hiding secret data using a JSON file

When using a VCS such as Git or SVN, there are some secret data that must never be versioned
(whether the repository is public or private).

Among those data, you find the SECRET_KEY setting and the database password.

A common practice to hide these settings from version control is to create a file secrets.json at the
root of your project (thanks "Two Scoops of Django" for the idea):

{
 "SECRET_KEY": "N4HE:AMk:.Ader5354DR453TH8SHTQr",
 "DB_PASSWORD": "v3ry53cr3t"
}

https://riptutorial.com/ 178

https://github.com/twoscoops/two-scoops-of-django-1.8/blob/master/code/chapter_05_example_19.py
https://github.com/twoscoops/two-scoops-of-django-1.8/blob/master/code/chapter_05_example_19.py
https://github.com/twoscoops/two-scoops-of-django-1.8/blob/master/code/chapter_05_example_19.py

And add it to your ignore list (.gitignore for git):

*.py[co]
*.sw[po]
*~
/secrets.json

Then add the following function to your settings module:

import json
import os
from django.core.exceptions import ImproperlyConfigured

with open(os.path.join(BASE_DIR, 'secrets.json')) as secrets_file:
 secrets = json.load(secrets_file)

def get_secret(setting, secrets=secrets):
 """Get secret setting or fail with ImproperlyConfigured"""
 try:
 return secrets[setting]
 except KeyError:
 raise ImproperlyConfigured("Set the {} setting".format(setting))

Then fill the settings this way:

SECRET_KEY = get_secret('SECRET_KEY')
DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgres',
 'NAME': 'db_name',
 'USER': 'username',
 'PASSWORD': get_secret('DB_PASSWORD'),
 },
}

Credits: Two Scoops of Django: Best Practices for Django 1.8, by Daniel Roy Greenfeld and
Audrey RoyGreenfeld. Copyright 2015 Two Scoops Press (ISBN 978-0981467344)

Using a DATABASE_URL from the environment

In PaaS sites such as Heroku, it is usual to receive the database information as a single URL
environment variable, instead of several parameters (host, port, user, password...).

There is a module, dj_database_url which automatically extracts the DATABASE_URL
environment variable to a Python dictionary appropriate for injecting the database settings in
Django.

Usage:

import dj_database_url

if os.environ.get('DATABASE_URL'):
 DATABASES['default'] =

https://riptutorial.com/ 179

https://www.twoscoopspress.com/
https://www.twoscoopspress.com/
https://github.com/kennethreitz/dj-database-url

 dj_database_url.config(default=os.environ['DATABASE_URL'])

Read Settings online: https://riptutorial.com/django/topic/942/settings

https://riptutorial.com/ 180

https://riptutorial.com/django/topic/942/settings

Chapter 46: Signals

Parameters

Class/Method The Why

UserProfile() Class The UserProfile class extends the Django default User Model.

create_profile()
method

The create_profile() method is executed, whenever a Django User
model post_save signal is released.

Remarks

Now, the details.

Django signals is a way to inform your app of certain tasks (such as a model pre- or post-save or
delete) when it takes place.

These signals allow you to perform actions of your choice immediately that signal is released.

For instance, anytime a new Django User is created, the User Model releases a signal, with
associating params such as sender=User allowing you to specifically target your listening of signals
to a specific activity that happens, in this case, a new user creation.

In the above example, the intention is to have a UserProfile object created, immediately after a
User object is created. Therefore, by listening to a post_save signal from the User model (the
default Django User Model) specifically, we create a UserProfile object just after a new User is
created.

The Django Documentation provides extensive documentation on all the possible signals available
.

However, the above example is to explain in practical terms a typical use case when using Signals
can be a useful addition.

"With great power, comes great responsibility". It can be tempting to having signals scattered
across your entire app or project just because they're awesome. Well, Don't. Because they're cool
doesn't make them the go-to solution for every simple situation that comes to mind.

Signals are great for, as usual, not everything. Login/Logouts, signals are great. Key models
releasing signs, like the User Model, if fine.

Creating signals for each and every model in your app can get overwhelming at a point, and
defeat the whole idea of the sparring use of Django Signals.

Do not use signals when (based on Two Scoops of Django book):

https://riptutorial.com/ 181

https://docs.djangoproject.com/en/1.9/topics/auth/customizing/
https://docs.djangoproject.com/en/1.9/ref/signals/#post-save
https://docs.djangoproject.com/en/1.9/ref/signals/#post-save
https://docs.djangoproject.com/en/1.9/ref/signals/#
https://www.twoscoopspress.com/products/two-scoops-of-django-1-8

The signal relates to one particular model and can be moved into one of that model’s
methods, possibly called by save().

•

The signal can be replaced with a custom model manager method.•
The signal relates to a particular view and can be moved into that view•

It might be okay to use signals when:

Your signal receiver needs to make changes to more than one model.•
You want to dispatch the same signal from multiple apps and have them handled the same
way by a common receiver.

•

You want to invalidate a cache after a model save.•
You have an unusual scenario that needs a callback, and there’s no other way to handle it
besides using a signal. For example, you want to trigger something based on the save() or
init() of a third-party app's model. You can't modify the third-party code and extending it
might be impossible, so a signal provides a trigger for a callback.

•

Examples

Extending User Profile Example

This example is a snippet taken from the Extending Django User Profile like a Pro

from django.db import models
from django.contrib.auth.models import User
from django.db.models.signals import post_save

class UserProfile(models.Model):
 user = models.OneToOneField(User, related_name='user')
 website = models.URLField(default='', blank=True)
 bio = models.TextField(default='', blank=True)

def create_profile(sender, **kwargs):
 user = kwargs["instance"]
 if kwargs["created"]:
 user_profile = UserProfile(user=user)
 user_profile.save()
post_save.connect(create_profile, sender=User)

Different syntax to post/pre a signal

from django.db import models
from django.contrib.auth.models import User
from django.db.models.signals import post_save
from django.dispatch import receiver

class UserProfile(models.Model):
 user = models.OneToOneField(User, related_name='user')
 website = models.URLField(default='', blank=True)
 bio = models.TextField(default='', blank=True)

@receiver(post_save, sender=UserProfile)
def post_save_user(sender, **kwargs):

https://riptutorial.com/ 182

https://blog.khophi.co/extending-django-user-model-userprofile-like-a-pro/

 user = kwargs.get('instance')
 if kwargs.get('created'):
 ...

How to find if it's an insert or update in the pre_save signal

By utilizing the pre_save we can determine if a save action on our database was about updating an
existing object or creating a new one.

In order to achieve this you can check the state of the model object:

 @receiver(pre_save, sender=User)
 def pre_save_user(sender, instance, **kwargs):
 if not instance._state.adding:
 print ('this is an update')
 else:
 print ('this is an insert')

Now every time a save action takes place, the pre_save signal will run and will print:

this is an update if the action derived from an update action.•
this is an insert if the action derived from an insert action.•

Note that this method does not require any additional database queries.

Inheriting Signals on Extended Models

Django's signals are restricted to precise class signatures upon registration, and thus subclassed
models are not immediately registered onto the same signal.

Take this model and signal for example

class Event(models.Model):
 user = models.ForeignKey(User)

class StatusChange(Event):
 ...

class Comment(Event):
 ...

def send_activity_notification(sender, instance: Event, raw: bool, **kwargs):
 """
 Fire a notification upon saving an event
 """

 if not raw:
 msg_factory = MessageFactory(instance.id)
 msg_factory.on_activity(str(instance))
post_save.connect(send_activity_notification, Event)

https://riptutorial.com/ 183

With extended models, you must manually attach the signal onto each subclass else they won't be
effected.

post_save.connect(send_activity_notification, StatusChange)
post_save.connect(send_activity_notification, Comment)

With Python 3.6, you can leverage some additional class methods build into classes to automate
this binding.

class Event(models.Model):

 @classmethod
 def __init_subclass__(cls, **kwargs):
 super().__init_subclass__(**kwargs)
 post_save.connect(send_activity_notification, cls)

Read Signals online: https://riptutorial.com/django/topic/2555/signals

https://riptutorial.com/ 184

https://riptutorial.com/django/topic/2555/signals

Chapter 47: Template Tags and Filters

Examples

Custom Filters

Filters allows you to apply a function to a variable. This function may take 0 or 1 argument. Here is
the syntax:

{{ variable|filter_name }}
{{ variable|filter_name:argument }}

Filters can be chained so this is perfectly valid:

{{ variable|filter_name:argument|another_filter }}

If translated to python the above line would give something like this:

print(another_filter(filter_name(variable, argument)))

In this example, we will write a custom filter verbose_name that applies to a Model (instance or class)
or a QuerySet. It will return the verbose name of a model, or its verbose name plural if the
argument is set to True.

@register.filter
def verbose_name(model, plural=False):
 """Return the verbose name of a model.
 `model` can be either:
 - a Model class
 - a Model instance
 - a QuerySet
 - any object refering to a model through a `model` attribute.

 Usage:
 - Get the verbose name of an object
 {{ object|verbose_name }}
 - Get the plural verbose name of an object from a QuerySet
 {{ objects_list|verbose_name:True }}
 """
 if not hasattr(model, '_meta'):
 # handle the case of a QuerySet (among others)
 model = model.model
 opts = model._meta
 if plural:
 return opts.verbose_name_plural
 else:
 return opts.verbose_name

Simple tags

https://riptutorial.com/ 185

The simplest way of defining a custom template tag is to use a simple_tag. These are very
straightforward to setup. The function name will be the tag name (though you can override it), and
arguments will be tokens ("words" separated by spaces, except spaces enclosed between
quotes). It even supports keyword arguments.

Here is a useless tag that will illustrate our example:

{% useless 3 foo 'hello world' foo=True bar=baz.hello|capfirst %}

Let foo and baz be context variables like the following:

{'foo': "HELLO", 'baz': {'hello': "world"}}

Say we want this very useless tag to render like this:

HELLO;hello world;bar:World;foo:True

HELLO;hello world;bar:World;foo:True

HELLO;hello world;bar:World;foo:True

Kind of arguments concatenation repeated 3 times (3 being the first argument).

Here is what the tag implementation may look like:

from django.utils.html import format_html_join

@register.simple_tag
def useless(repeat, *args, **kwargs):
 output = ';'.join(args + ['{}:{}'.format(*item) for item in kwargs.items()])
 outputs = [output] * repeat
 return format_html_join('\n', '{}
', ((e,) for e in outputs))

format_html_join allows to mark
 as safe HTML, but not the content of outputs.

Advanced custom tags using Node

Sometimes what you want to do is just too complex for a filter or a simple_tag. Fow this you will
need to create a compilation function and a renderer.

In this example we will create a template tag verbose_name with the following syntax:

Example Description

{% verbose_name obj %} Verbose name of a model

{% verbose_name obj 'status' %} Verbose name of the field "status"

{% verbose_name obj plural %} Verbose name plural of a model

{% verbose_name obj plural capfirst %} Capitalized verbose name plural of a model

https://riptutorial.com/ 186

Example Description

{% verbose_name obj 'foo' capfirst %} Capitalized verbose name of a field

{% verbose_name obj field_name %} Verbose name of a field from a variable

{% verbose_name obj 'foo'|add:'_bar' %} Verbose name of a field "foo_bar"

The reason why we can't do this with a simple tag is that plural and capfirst are neither variables
nor strings, they are "keywords". We could obviously decide to pass them as strings 'plural' and
'capfirst', but it may conflict with fields with these names. Would {% verbose_name obj 'plural' %}
mean "verbose name plural of obj" or "verbose name of obj.plural"?

First let's create the compilation function:

@register.tag(name='verbose_name')
def do_verbose_name(parser, token):
 """
 - parser: the Parser object. We will use it to parse tokens into
 nodes such as variables, strings, ...
 - token: the Token object. We will use it to iterate each token
 of the template tag.
 """
 # Split tokens within spaces (except spaces inside quotes)
 tokens = token.split_contents()
 tag_name = tokens[0]
 try:
 # each token is a string so we need to parse it to get the actual
 # variable instead of the variable name as a string.
 model = parser.compile_filter(tokens[1])
 except IndexError:
 raise TemplateSyntaxError(
 "'{}' tag requires at least 1 argument.".format(tag_name))

 field_name = None
 flags = {
 'plural': False,
 'capfirst': False,
 }

 bits = tokens[2:]
 for bit in bits:
 if bit in flags.keys():
 # here we don't need `parser.compile_filter` because we expect
 # 'plural' and 'capfirst' flags to be actual strings.
 if flags[bit]:
 raise TemplateSyntaxError(
 "'{}' tag only accept one occurrence of '{}' flag".format(
 tag_name, bit)
)
 flags[bit] = True
 continue
 if field_name:
 raise TemplateSyntaxError((
 "'{}' tag only accept one field name at most. {} is the second "
 "field name encountered."
).format(tag_name, bit)
 field_name = parser.compile_filter(bit)

https://riptutorial.com/ 187

 # VerboseNameNode is our renderer which code is given right below
 return VerboseNameNode(model, field_name, **flags)

And now the renderer:

class VerboseNameNode(Node):

 def __init__(self, model, field_name=None, **flags):
 self.model = model
 self.field_name = field_name
 self.plural = flags.get('plural', False)
 self.capfirst = flags.get('capfirst', False)

 def get_field_verbose_name(self):
 if self.plural:
 raise ValueError("Plural is not supported for fields verbose name.")
 return self.model._meta.get_field(self.field_name).verbose_name

 def get_model_verbose_name(self):
 if self.plural:
 return self.model._meta.verbose_name_plural
 else:
 return self.model._meta.verbose_name

 def render(self, context):
 """This is the main function, it will be called to render the tag.
 As you can see it takes context, but we don't need it here.
 For instance, an advanced version of this template tag could look for an
 `object` or `object_list` in the context if `self.model` is not provided.
 """
 if self.field_name:
 verbose_name = self.get_field_verbose_name()
 else:
 verbose_name = self.get_model_verbose_name()
 if self.capfirst:
 verbose_name = verbose_name.capitalize()
 return verbose_name

Read Template Tags and Filters online: https://riptutorial.com/django/topic/1305/template-tags-
and-filters

https://riptutorial.com/ 188

https://riptutorial.com/django/topic/1305/template-tags-and-filters
https://riptutorial.com/django/topic/1305/template-tags-and-filters

Chapter 48: Templating

Examples

Variables

Variables you have provided in your view context can be accessed using double-brace notation:

In your views.py:

class UserView(TemplateView):
 """ Supply the request user object to the template """

 template_name = "user.html"

 def get_context_data(self, **kwargs):
 context = super(UserView, self).get_context_data(**kwargs)
 context.update(user=self.request.user)
 return context

In user.html:

<h1>{{ user.username }}</h1>

<div class="email">{{ user.email }}</div>

The dot notation will access:

properties of the object, e.g. user.username will be {{ user.username }}•
dictionary lookups, e.g. request.GET["search"] will be {{ request.GET.search }}•
methods with no arguments, e.g. users.count() will be {{ user.count }}•

Template variables cannot access methods that take arguments.

Variables can also be tested and looped over:

{% if user.is_authenticated %}
 {% for item in menu %}
 {{ item.name }}
 {% endfor %}
{% else %}
 Login
{% endif %}

URLs are accessed using {% url 'name' %} format, where the names correspond to names in your
urls.py.

{% url 'login' %} - Will probably render as /accounts/login/
{% url 'user_profile' user.id %} - Arguments for URLs are supplied in order
{% url next %} - URLs can be variables

https://riptutorial.com/ 189

Templating in Class Based Views

You can pass data to a template in a custom variable.

In your views.py:

from django.views.generic import TemplateView
from MyProject.myapp.models import Item

class ItemView(TemplateView):
 template_name = "item.html"

 def items(self):
 """ Get all Items """
 return Item.objects.all()

 def certain_items(self):
 """ Get certain Items """
 return Item.objects.filter(model_field="certain")

 def categories(self):
 """ Get categories related to this Item """
 return Item.objects.get(slug=self.kwargs['slug']).categories.all()

A simple list in your item.html:

{% for item in view.items %}

 {{ item }}

{% endfor %}

You can also retrieve additional properties of the data.

Assuming your model Item has a name field:

{% for item in view.certain_items %}

 {{ item.name }}

{% endfor %}

Templating in Function Based Views

You can use a template in a function based view as follows:

from django.shortcuts import render

def view(request):
 return render(request, "template.html")

If you want to use template variables, you can do so as follows:

https://riptutorial.com/ 190

from django.shortcuts import render

def view(request):
 context = {"var1": True, "var2": "foo"}
 return render(request, "template.html", context=context)

Then, in template.html, you can refer to your variables like so:

<html>
{% if var1 %}
 <h1>{{ var2 }}</h1>
{% endif %}
</html>

Template filters

The Django template system has built-in tags and filters, which are functions inside template to
render content in a specific way. Multiple filters can be specified with pipes and filters can have
arguments, just as in variable syntax.

{{ "MAINROAD 3222"|lower }} # mainroad 3222
{{ 10|add:15}} # 25
{{ "super"|add:"glue" }} # superglue
{{ "A7"|add:"00" }} # A700
{{ myDate | date:"D d M Y"}} # Wed 20 Jul 2016

A list of available built-in filters can be found at
https://docs.djangoproject.com/en/dev/ref/templates/builtins/#ref-templates-builtins-filters .

Creating custom filters

To add your own template filters, create a folder named templatetags inside your app folder. Then
add a __init__.py, and the file your file that will contain the filters:

#/myapp/templatetags/filters.py
from django import template

register = template.Library()

@register.filter(name='tostring')
def to_string(value):
 return str(value)

To actually use the filter you need to load it in your template:

#templates/mytemplate.html
{% load filters %}
{% if customer_id|tostring = customer %} Welcome back {% endif%}

Tricks

Even though the filters seem simple at first, it allows to do some nifty things:

https://riptutorial.com/ 191

https://docs.djangoproject.com/en/dev/ref/templates/builtins/#ref-templates-builtins-filters

{% for x in ""|ljust:"20" %}Hello World!{% endfor %} # Hello World!Hello World!Hel...
{{ user.name.split|join:"_" }} ## replaces whitespace with '_'

See also template tags for more information.

Prevent sensitive methods from being called in templates

When an object is exposed to the template context, its arguments-less methods are available. This
is useful when these functions are "getters". But it can be hazardeous if these methods alter some
data or have some side effects. Eventhough you likely trust the template writer, he may not be
aware of a function's side effects or think call the wrong attribute by mistake.

Given the following model:

class Foobar(models.Model):
 points_credit = models.IntegerField()

 def credit_points(self, nb_points=1):
 """Credit points and return the new points credit value."""
 self.points_credit = F('points_credit') + nb_points
 self.save(update_fields=['points_credit'])
 return self.points_credit

If you write this, by mistake, in a template:

 You have {{ foobar.credit_points }} points!

This will increment the number of points each time the template is called. And you may not even
notice it.

To prevent this, you must set the alters_data attribute to True to methods that have side effects.
This will make it impossible to call them from a template.

def credit_points(self, nb_points=1):
 """Credit points and return the new points credit value."""
 self.points_credit = F('points_credit') + nb_points
 self.save(update_fields=['points_credit'])
 return self.points_credit
credit_points.alters_data = True

Use of {% extends %} , {% include %} and {% blocks %}

summary

{% extends %}: this declares the template given as an argument as the current template's
parent. Usage: {% extends 'parent_template.html' %}.

•

{% block %}{% endblock %}: This is used to define sections in your templates, so that if
another template extends this one, it'll be able to replace whatever html code has been

•

https://riptutorial.com/ 192

http://www.riptutorial.com/django/topic/1305/template-tags-and-filters

written inside of it. Blocks are identified by their name. Usage: {% block content %}
<html_code> {% endblock %}.

{% include %}: this will insert a template within the current one. Be aware that the included
template will receive the request's context, and you can give it custom variables too. Basic
usage: {% include 'template_name.html' %}, usage with variables: {% include
'template_name.html' with variable='value' variable2=8 %}

•

Guide

Suppose you are building up your front end side code with having common layouts for all code
and you do not want to repeat the code for every template. Django gives you in built tags for doing
so.
Suppose we have one blog website having 3 templates which share the same layout:

project_directory
 ..
 templates
 front-page.html
 blogs.html
 blog-detail.html

1) Define base.html file,

<html>
 <head>
 </head>

 <body>
 {% block content %}
 {% endblock %}
 </body>
</html>

2) Extend it in blog.html like,

{% extends 'base.html' %}

{% block content %}
 # write your blog related code here
{% endblock %}

None of the code written here will be added to the template

Here we extended the base layout so its HTML layout is now available in the blog.html file.The
concept of { % block %} is template inheritance which allows you to build a base “skeleton”
template that contains all the common elements of your site and defines blocks that child
templates can override.

3) Now suppose all of your 3 templates also having same HTML div which defines some popular
posts.Instead of being written the 3 times create one new template posts.html.

https://riptutorial.com/ 193

blog.html

{% extends 'base.html' %}

{% block content %}
 # write your blog related code here
 {% include 'posts.html' %} # includes posts.html in blog.html file without passing any
data
 <!-- or -->
 {% include 'posts.html' with posts=postdata %} # includes posts.html in blog.html file
with passing posts data which is context of view function returns.
{% endblock %}

Read Templating online: https://riptutorial.com/django/topic/588/templating

https://riptutorial.com/ 194

https://riptutorial.com/django/topic/588/templating

Chapter 49: Timezones

Introduction

Timezones are often a hassle for developers. Django offers some great utilities at your disposal to
make timezones easy to work with.

Even if your project is operating in a single time zone, it is still good practice to store data as UTC
in your database to handle cases of daylight savings. If you are operating on multiple timezones
then storing time data as UTC is a must.

Examples

Enable Time Zone Support

First is first, ensure that USE_TZ = True in your settings.py file. Also set a default time zone value to
TIME_ZONE such as TIME_ZONE='UTC'. View a complete list of timezones here.

If USE_TZ is False, TIME_ZONE will be the time zone that Django will use to store all datetimes. When
USE_TZ is enabled, TIME_ZONE is the default time zone that Django will use to display datetimes in
templates and to interpret datetimes entered in forms.

With time zone support enabled, django will store datetime data in the database as the time zone
UTC

Setting Session Timezones

Python's datetime.datetime objects have a tzinfo attribute that is used to store time zone
information. When the attribute is set the object is considered Aware, when the attribute is not set
it is considered a Naive.

To ensure that a timezone is naive or aware, you can use .is_naive() and .is_aware()

If you have USE_TZ enabled in your settings.py file, a datetime will have time zone information
attached to it as long as your default TIME_ZONE is set in settings.py

While this default time zone may be good in some cases it is likely not enough especially if you are
handling users in multiple time zones. In order to accomplish this, middleware must be used.

import pytz

from django.utils import timezone

make sure you add `TimezoneMiddleware` appropriately in settings.py
class TimezoneMiddleware(object):
 """
 Middleware to properly handle the users timezone
 """

https://riptutorial.com/ 195

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://docs.djangoproject.com/en/1.11/ref/utils/#django.utils.timezone.is_naive
https://docs.djangoproject.com/en/1.11/ref/utils/#django.utils.timezone.is_aware

 def __init__(self, get_response):
 self.get_response = get_response

 def __call__(self, request):
 # make sure they are authenticated so we know we have their tz info.
 if request.user.is_authenticated():
 # we are getting the users timezone that in this case is stored in
 # a user's profile
 tz_str = request.user.profile.timezone
 timezone.activate(pytz.timezone(tz_str))
 # otherwise deactivate and the default time zone will be used anyway
 else:
 timezone.deactivate()

 response = self.get_response(request)
 return response

There are a few new things going on. To learn more about middleware and what it does check out
that part of the documentation. In __call__ we are handling the setting of the timezone data. At first
we make sure the user is authenticated, to make sure that we have timezone data for this user.
Once we know we do, we active the timezone for the users session using timezone.activate(). In
order to convert the time zone string we have to something usable by datetime, we use
pytz.timezone(str).

Now, when datetime objects are accessed in templates they will automatically be converted from
the 'UTC' format of the database to whatever time zone the user is in. Just access the datetime
object and its timezone will be set assuming the previous middleware is set up properly.

{{ my_datetime_value }}

If you desire a fine grained control of whether the user's timezone is used take a look at the
following:

{% load tz %}
{% localtime on %}
 {# this time will be respect the users time zone #}
 {{ your_date_time }}
{% endlocaltime %}

{% localtime off %}
 {# this will not respect the users time zone #}
 {{ your_date_time }}
{% endlocaltime %}

Note, this method described only works in Django 1.10 and on. To support django from prior to
1.10 look into MiddlewareMixin

Read Timezones online: https://riptutorial.com/django/topic/10566/timezones

https://riptutorial.com/ 196

http://www.riptutorial.com/django/topic/1721/middleware
https://docs.djangoproject.com/en/1.11/topics/http/middleware/#upgrading-pre-django-1-10-style-middleware
https://riptutorial.com/django/topic/10566/timezones

Chapter 50: Unit Testing

Examples

Testing - a complete example

This assumes that you have read the documentation about starting a new Django project. Let us
assume that the main app in your project is named td (short for test driven). To create your first
test, create a file named test_view.py and copy paste the following content into it.

from django.test import Client, TestCase

class ViewTest(TestCase):

 def test_hello(self):
 c = Client()
 resp = c.get('/hello/')
 self.assertEqual(resp.status_code, 200)

You can run this test by

 ./manage.py test

and it will most naturally fail! You will see an error similar to the following.

Traceback (most recent call last):
 File "/home/me/workspace/td/tests_view.py", line 9, in test_hello
 self.assertEqual(resp.status_code, 200)
AssertionError: 200 != 404

Why does that happen? Because we haven't defined a view for that! So let's do it. Create a file
called views.py and place in it the following code

from django.http import HttpResponse
def hello(request):
 return HttpResponse('hello')

Next map it to the /hello/ by editing urls py as follows:

from td import views

urlpatterns = [
 url(r'^admin/', include(admin.site.urls)),
 url(r'^hello/', views.hello),

]

Now run the test again ./manage.py test again and viola!!

https://riptutorial.com/ 197

Creating test database for alias 'default'...
.
--
Ran 1 test in 0.004s

OK

Testing Django Models Effectively

Assuming a class

from django.db import models

class Author(models.Model):
 name = models.CharField(max_length=50)

 def __str__(self):
 return self.name

 def get_absolute_url(self):
 return reverse('view_author', args=[str(self.id)])

class Book(models.Model):
 author = models.ForeignKey(Manufacturer, on_delete=models.CASCADE)
 private = models.BooleanField(default=false)
 publish_date = models.DateField()

 def get_absolute_url(self):
 return reverse('view_book', args=[str(self.id)])

 def __str__(self):
 return self.name

Testing examples

from django.test import TestCase
from .models import Book, Author

class BaseModelTestCase(TestCase):

 @classmethod
 def setUpClass(cls):
 super(BaseModelTestCase, cls).setUpClass()
 cls.author = Author(name='hawking')
 cls.author.save()
 cls.first_book = Book(author=cls.author, name="short_history_of_time")
 cls.first_book.save()
 cls.second_book = Book(author=cls.author, name="long_history_of_time")
 cls.second_book.save()

class AuthorModelTestCase(BaseModelTestCase):
 def test_created_properly(self):
 self.assertEqual(self.author.name, 'hawking')
 self.assertEqual(True, self.first_book in self.author.book_set.all())

 def test_absolute_url(self):

https://riptutorial.com/ 198

 self.assertEqual(self.author.get_absolute_url(), reverse('view_author',
args=[str(self.author.id)]))

class BookModelTestCase(BaseModelTestCase):

 def test_created_properly(self:
 ...
 self.assertEqual(1, len(Book.objects.filter(name__startswith='long'))

 def test_absolute_url(self):
 ...

Some points

created_properly tests are used to verify the state properties of django models. They help
catch sitautions where we've changed default values, file_upload_paths etc.

•

absolute_url might seem trivial but I've found that it's helped me prevent some bugs when
changing url paths

•

I similarly write test cases for all the methods implemented inside a model (using mock
objects etc)

•

By defining a common BaseModelTestCase we can setup the necessary relationships between
models to ensure proper testing.

•

Finally, when in doubt, write a test. Trivial behavior changes are caught by paying attention to
detail and long forgotten pieces of code don't end up causing unnecessary trouble.

Testing Access Control in Django Views

tl;dr : Create a base class that defines two user objects (say user and another_user). Create your
other models and define three Client instances.

self.client : Representing user logged in browser•
self.another_client : Representing another_user 's client•
self.unlogged_client : Representing unlogged person•

Now access all your public and private urls from these three client objects and dictact the
response you expect. Below I've showcased the strategy for a Book object that can either be
private (owned by a few privileged users) or public (visible to everyone).

from django.test import TestCase, RequestFactory, Client
from django.core.urlresolvers import reverse

class BaseViewTestCase(TestCase):

 @classmethod
 def setUpClass(cls):
 super(BaseViewTestCase, cls).setUpClass()
 cls.client = Client()
 cls.another_client = Client()
 cls.unlogged_client = Client()
 cls.user = User.objects.create_user(
 'dummy',password='dummy'
)

https://riptutorial.com/ 199

 cls.user.save()
 cls.another_user = User.objects.create_user(
 'dummy2', password='dummy2'
)
 cls.another_user.save()
 cls.first_book = Book.objects.create(
 name='first',
 private = true
)
 cls.first_book.readers.add(cls.user)
 cls.first_book.save()
 cls.public_book = Template.objects.create(
 name='public',
 private=False
)
 cls.public_book.save()

 def setUp(self):
 self.client.login(username=self.user.username, password=self.user.username)
 self.another_client.login(username=self.another_user.username,
password=self.another_user.username)

"""
 Only cls.user owns the first_book and thus only he should be able to see it.
 Others get 403(Forbidden) error
"""
class PrivateBookAccessTestCase(BaseViewTestCase):

 def setUp(self):
 super(PrivateBookAccessTestCase, self).setUp()
 self.url = reverse('view_book',kwargs={'book_id':str(self.first_book.id)})

 def test_user_sees_own_book(self):
 response = self.client.get(self.url)
 self.assertEqual(200, response.status_code)
 self.assertEqual(self.first_book.name,response.context['book'].name)
 self.assertTemplateUsed('myapp/book/view_template.html')

 def test_user_cant_see_others_books(self):
 response = self.another_client.get(self.url)
 self.assertEqual(403, response.status_code)

 def test_unlogged_user_cant_see_private_books(self):
 response = self.unlogged_client.get(self.url)
 self.assertEqual(403, response.status_code)

"""
 Since book is public all three clients should be able to see the book
"""
 class PublicBookAccessTestCase(BaseViewTestCase):

 def setUp(self):
 super(PublicBookAccessTestCase, self).setUp()
 self.url = reverse('view_book',kwargs={'book_id':str(self.public_book.id)})

 def test_user_sees_book(self):
 response = self.client.get(self.url)
 self.assertEqual(200, response.status_code)
 self.assertEqual(self.public_book.name,response.context['book'].name)

https://riptutorial.com/ 200

 self.assertTemplateUsed('myapp/book/view_template.html')

 def test_another_user_sees_public_books(self):
 response = self.another_client.get(self.url)
 self.assertEqual(200, response.status_code)

 def test_unlogged_user_sees_public_books(self):
 response = self.unlogged_client.get(self.url)
 self.assertEqual(200, response.status_code)

The Database and Testing

Django uses special database settings when testing so that tests can use the database normally
but by default run on an empty database. Database changes in one test will not be seen by
another. For example, both of the following tests will pass:

from django.test import TestCase
from myapp.models import Thing

class MyTest(TestCase):

 def test_1(self):
 self.assertEqual(Thing.objects.count(), 0)
 Thing.objects.create()
 self.assertEqual(Thing.objects.count(), 1)

 def test_2(self):
 self.assertEqual(Thing.objects.count(), 0)
 Thing.objects.create(attr1="value")
 self.assertEqual(Thing.objects.count(), 1)

Fixtures

If you want to have database objects used by multiple tests, either create them in the setUp
method of the test case. Additionally, if you have defined fixtures in your django project, they can
be included like so:

class MyTest(TestCase):
 fixtures = ["fixture1.json", "fixture2.json"]

By default, django is looking for fixtures in the fixtures directory in each app. Further directories
can be set using the FIXTURE_DIRS setting:

myapp/settings.py
FIXTURE_DIRS = [
 os.path.join(BASE_DIR, 'path', 'to', 'directory'),
]

Let's assume you have created a model as follows:

models.py
from django.db import models

https://riptutorial.com/ 201

class Person(models.Model):
 """A person defined by his/her first- and lastname."""
 firstname = models.CharField(max_length=255)
 lastname = models.CharField(max_length=255)

Then your .json fixtures could look like that:

fixture1.json
[
 { "model": "myapp.person",
 "pk": 1,
 "fields": {
 "firstname": "Peter",
 "lastname": "Griffin"
 }
 },
 { "model": "myapp.person",
 "pk": 2,
 "fields": {
 "firstname": "Louis",
 "lastname": "Griffin"
 }
 },
]

Reuse the test-database

To speed up your test-runs you can tell the management-command to reuse the test-database
(and to prevent it from being created before and deleted after every test-run). This can be done
using the keepdb (or shorthand -k) flag like so:

Reuse the test-database (since django version 1.8)
$ python manage.py test --keepdb

Limit the number of tests executed

It is possible to limit the tests executed by manage.py test by specifying which modules should be
discovered by the test runner:

Run only tests for the app names "app1"
$ python manage.py test app1

If you split the tests file into a module with several tests files for an app
$ python manage.py test app1.tests.test_models

it's possible to dig down to individual test methods.
$ python manage.py test app1.tests.test_models.MyTestCase.test_something

If you want to run a bunch of tests you can pass a pattern of filenames. For example, you may
want to run only tests that involving of your models:

$ python manage.py test -p test_models*

https://riptutorial.com/ 202

Creating test database for alias 'default'...
...
--
Ran 115 tests in 3.869s

OK

Finally, it is possible to stop the test suite at the first fail, using --failfast. This argument allows to
get quickly the potential error encountered in the suite:

$ python manage.py test app1
...F..
--
Ran 6 tests in 0.977s

FAILED (failures=1)

$ python manage.py test app1 --failfast
...F
==
[Traceback of the failing test]
--
Ran 4 tests in 0.372s

FAILED (failures=1)

Read Unit Testing online: https://riptutorial.com/django/topic/1232/unit-testing

https://riptutorial.com/ 203

https://riptutorial.com/django/topic/1232/unit-testing

Chapter 51: URL routing

Examples

How Django handles a request

Django handles a request by routing the incoming URL path to a view function. The view function
is responsible for returning a response back to the client making the request. Different URLs are
usually handled by different view functions. To route the request to a specific view function,
Django looks at your URL configuration (or URLconf for short). The default project template
defines the URLconf in <myproject>/urls.py.

Your URLconf should be a python module that defines an attribute named urlpatterns, which is a
list of django.conf.urls.url() instances. Each url() instance must at minimum define a regular
expression (a regex) to match against the URL, and a target, which is either a view function or a
different URLconf. If a URL pattern targets a view function, it is a good idea to give it a name to
easily reference the pattern later on.

Let's take a look at a basic example:

In <myproject>/urls.py

from django.conf.urls import url

from myapp.views import home, about, blog_detail

urlpatterns = [
 url(r'^$', home, name='home'),
 url(r'^about/$', about, name='about'),
 url(r'^blog/(?P<id>\d+)/$', blog_detail, name='blog-detail'),
]

This URLconf defines three URL patterns, all targeting a view: home, about and blog-detail.

url(r'^$', home, name='home'),•

The regex contains a start anchor '^', immediately followed by an end anchor '$'. This pattern will
match requests where the URL path is an empty string, and route them to the home view defined in
myapp.views.

url(r'^about/$', about, name='about'),•

This regex contains a start anchor, followed by the literal string about/, and the end anchor. This
will match the URL /about/ and route it to the about view. Since every non-empty URL start with a /
, Django conveniently cuts of the first slash for you.

url(r'^blog/(?P<id>\d+)/$', blog_detail, name='blog-detail'),•

This regex is a bit more complex. It defines the start anchor and the literal string blog/, like the

https://riptutorial.com/ 204

https://docs.djangoproject.com/en/1.9/ref/urls/#django.conf.urls.url
http://www.riptutorial.com/python/topic/632/regular-expressions--regex-
http://www.riptutorial.com/python/topic/632/regular-expressions--regex-

previous pattern. The next part, (?P<id>\d+), is called a capturing group. A capturing group, like its
name suggest, captures a part of the string, and Django passes the captured string as an
argument to the view function.

The syntax of a capturing group is (?P<name>pattern). name defines the name of the group, which is
also the name that Django uses to pass the argument to the view. The pattern defines which
characters are matched by the group.

In this case, the name is id, so the function blog_detail must accept a parameter named id. The
pattern is \d+. \d signifies that the pattern only matches number characters. + signifies that the
pattern must match one or more characters.

Some common patterns:

Pattern Used for Matches

\d+ id One or more numerical characters

[\w-]+ slug One or more alphanumerical characters, underscores or dashes

[0-9]{4} year (long) Four numbers, zero through nine

[0-9]{2}
year (short)
month
day of month

Two numbers, zero through nine

[^/]+ path segment Anything except a slash

The capturing group in the blog-detail pattern is followed by a literal /, and the end anchor.

Valid URLs include:

/blog/1/ # passes id='1'•
/blog/42/ # passes id='42'•

Invalid URLs are for example:

/blog/a/ # 'a' does not match '\d'•
/blog// # no characters in the capturing group does not match '+'•

Django processes each URL pattern in the same order they are defined in urlpatterns. This is
important if multiple patterns can match the same URL. For example:

urlpatterns = [
 url(r'blog/(?P<slug>[\w-]+)/$', blog_detail, name='blog-detail'),
 url(r'blog/overview/$', blog_overview, name='blog-overview'),
]

In the above URLconf, the second pattern is not reachable. The pattern would match the URL

https://riptutorial.com/ 205

/blog/overview/, but instead of calling the blog_overview view, the URL will first match the blog-
detail pattern and call the blog_detail view with an argument slug='overview'.

To make sure that the URL /blog/overview/ is routed to the blog_overview view, the pattern should
be put above the blog-detail pattern:

urlpatterns = [
 url(r'blog/overview/$', blog_overview, name='blog-overview'),
 url(r'blog/(?P<slug>[\w-]+)/$', blog_detail, name='blog-detail'),
]

Set the URL namespace for a reusable app (Django 1.9+)

Configure your app's URLconf to automatically use a URL namespace by setting the app_name
attribute:

In <myapp>/urls.py
from django.conf.urls import url

from .views import overview

app_name = 'myapp'
urlpatterns = [
 url(r'^$', overview, name='overview'),
]

This will set the application namespace to 'myapp' when it is included in the root URLconf>. The
user of your reusable app does not need to do any configuration other than including your URLs:

In <myproject>/urls.py
from django.conf.urls import include, url

urlpatterns = [
 url(r'^myapp/', include('myapp.urls')),
]

Your reusable app can now reverse URLs using the application namespace:

>>> from django.urls import reverse
>>> reverse('myapp:overview')
'/myapp/overview/'

The root URLconf can still set an instance namespace with the namespace parameter:

In <myproject>/urls.py
urlpatterns = [
 url(r'^myapp/', include('myapp.urls', namespace='mynamespace')),
]

Both the application namespace and instance namespace can be used to reverse the URLs:

https://riptutorial.com/ 206

https://docs.djangoproject.com/en/stable/topics/http/urls/#term-application-namespace

>>> from django.urls import reverse
>>> reverse('myapp:overview')
'/myapp/overview/'
>>> reverse('mynamespace:overview')
'/myapp/overview/'

The instance namespace defaults to the application namespace if it is not explicitly set.

Read URL routing online: https://riptutorial.com/django/topic/3299/url-routing

https://riptutorial.com/ 207

https://riptutorial.com/django/topic/3299/url-routing

Chapter 52: Using Redis with Django -
Caching Backend

Remarks

Using django-redis-cache or django-redis are both effective solutions for storing all cached items.
While it is certainly possible for Redis to be setup directly as a SESSION_ENGINE, one effective
strategy is to setup the caching (as above) and declare your default cache as a SESSION_ENGINE.
While this is really the topic for another documentaiton article, its relevance leads to inclusion.

Simply add the following to settings.py:

SESSION_ENGINE = "django.contrib.sessions.backends.cache"

Examples

Using django-redis-cache

One potential implementation of Redis as a backend caching utility is the django-redis-cache
package.

This example assumes you already have a Redis server operating.

$ pip install django-redis-cache

Edit your settings.py to include a CACHES object (see Django documentation on caching).

CACHES = {
 'default': {
 'BACKEND': 'redis_cache.RedisCache',
 'LOCATION': 'localhost:6379',
 'OPTIONS': {
 'DB': 0,
 }
 }
}

Using django-redis

One potential implementation of Redis as a backend caching utility is the django-redis package.

This example assumes you already have a Redis server operating.

$ pip install django-redis

https://riptutorial.com/ 208

http://django-redis-cache.readthedocs.io/en/latest/intro_quick_start.html#
http://www.riptutorial.com/redis/example/10865/redis--hello-world-
https://docs.djangoproject.com/en/1.9/topics/cache/
http://niwinz.github.io/django-redis/latest/
http://www.riptutorial.com/redis/example/10865/redis--hello-world-

Edit your settings.py to include a CACHES object (see Django documentation on caching).

CACHES = {
 'default': {
 'BACKEND': 'django_redis.cache.RedisCache',
 'LOCATION': 'redis://127.0.0.1:6379/1',
 'OPTIONS': {
 'CLIENT_CLASS': 'django_redis.client.DefaultClient',
 }
 }
}

Read Using Redis with Django - Caching Backend online:
https://riptutorial.com/django/topic/4085/using-redis-with-django---caching-backend

https://riptutorial.com/ 209

https://docs.djangoproject.com/en/1.10/topics/cache/
https://riptutorial.com/django/topic/4085/using-redis-with-django---caching-backend

Chapter 53: Views

Introduction

A view function, or view for short, is simply a Python function that takes a Web request and returns
a Web response. -Django Documentation-

Examples

[Introductory] Simple View (Hello World Equivalent)

Let's create a very simple view to respond a "Hello World" template in html format.

To do that go to my_project/my_app/views.py (Here we are housing our view functions) and
add the following view:

from django.http import HttpResponse

def hello_world(request):
 html = "<html><title>Hello World!</title><body>Hello World!</body></html>"
 return HttpResponse(html)

1.

To call this view, we need to configure a url pattern in my_project/my_app/urls.py:

from django.conf.urls import url

from . import views

urlpatterns = [
 url(r'^hello_world/$', views.hello_world, name='hello_world'),
]

2.

Start the server: python manage.py runserver

Now if we hit http://localhost:8000/hello_world/, our template (the html string) will be
rendered in our browser.

3.

Read Views online: https://riptutorial.com/django/topic/7490/views

https://riptutorial.com/ 210

https://docs.djangoproject.com/en/1.11/topics/http/views/#writing-views
https://riptutorial.com/django/topic/7490/views

Credits

S.
No

Chapters Contributors

1
Getting started with
Django

A. Raza, Abhishek Jain, Aidas Bendoraitis, Alexander Tyapkov,
Ankur Gupta, Anthony Pham, Antoine Pinsard, arifin4web,
Community, e4c5, elbear, ericdwang, ettanany, Franck
Dernoncourt, greatwolf, ilse2005, Ivan Semochkin, J F, Jared
Hooper, John, John Moutafis, JRodDynamite, Kid Binary, knbk,
Louis, Luis Alberto Santana, lxer, maciek, McAbra, MiniGunnR,
mnoronha, Nathan Osman, naveen.panwar, nhydock, Nikita
Davidenko, noɥʇʎԀʎzɐɹƆ, Rahul Gupta, rajarshig, Ron, ruddra,
sarvajeetsuman, shacker, ssice, Stryker, techydesigner, The
Brewmaster, Thereissoupinmyfly, Tom, WesleyJohnson, Zags

2 Administration
Antoine Pinsard, coffee-grinder, George H., Ivan Semochkin, no
ɥʇʎԀʎzɐɹƆ, ssice

3
ArrayField - a
PostgreSQL-specific
field

Antoine Pinsard, e4c5, noɥʇʎԀʎzɐɹƆ

4
Async Tasks
(Celery)

iankit, Mevin Babu

5
Authentication
Backends

knbk, Rahul Gupta

6 Class based views
Antoine Pinsard, Antwane, coffee-grinder, e4c5, gkr, knbk,
maciek, masnun, Maxime Lorant, nicorellius, pleasedontbelong,
Pureferret

7 Context Processors
Antoine Pinsard, Brian Artschwager, Dan Russell, Daniil
Ryzhkov, fredley

8
Continuous
Integration With
Jenkins

pnovotnak

9 CRUD in Django aisflat439, George H.

10
Custom Managers
and Querysets

abidibo, knbk, sudshekhar, Trivial

11 Database Routers fredley, knbk

https://riptutorial.com/ 211

https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/3857465/abhishek-jain
https://riptutorial.com/contributor/322818/aidas-bendoraitis
https://riptutorial.com/contributor/709897/alexander-tyapkov
https://riptutorial.com/contributor/2801699/ankur-gupta
https://riptutorial.com/contributor/4052384/anthony-pham
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/3739532/arifin4web
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/449541/elbear
https://riptutorial.com/contributor/1944947/ericdwang
https://riptutorial.com/contributor/4575071/ettanany
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/1762988/ilse2005
https://riptutorial.com/contributor/5231877/ivan-semochkin
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/3872894/jared-hooper
https://riptutorial.com/contributor/3872894/jared-hooper
https://riptutorial.com/contributor/390388/john
https://riptutorial.com/contributor/7414939/john-moutafis
https://riptutorial.com/contributor/2932244/jroddynamite
https://riptutorial.com/contributor/3042856/kid-binary
https://riptutorial.com/contributor/2615075/knbk
https://riptutorial.com/contributor/1906307/louis
https://riptutorial.com/contributor/1170195/luis-alberto-santana
https://riptutorial.com/contributor/2595183/lxer
https://riptutorial.com/contributor/1161025/maciek
https://riptutorial.com/contributor/1325185/mcabra
https://riptutorial.com/contributor/3127653/minigunnr
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/193619/nathan-osman
https://riptutorial.com/contributor/1729636/naveen-panwar
https://riptutorial.com/contributor/1968689/nhydock
https://riptutorial.com/contributor/7419878/nikita-davidenko
https://riptutorial.com/contributor/7419878/nikita-davidenko
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/4921103/rahul-gupta
https://riptutorial.com/contributor/4203686/rajarshig
https://riptutorial.com/contributor/6543395/ron
https://riptutorial.com/contributor/2696165/ruddra
https://riptutorial.com/contributor/3416469/sarvajeetsuman
https://riptutorial.com/contributor/8438/shacker
https://riptutorial.com/contributor/488191/ssice
https://riptutorial.com/contributor/1406420/stryker
https://riptutorial.com/contributor/6309608/techydesigner
https://riptutorial.com/contributor/1036843/the-brewmaster
https://riptutorial.com/contributor/1036843/the-brewmaster
https://riptutorial.com/contributor/3480346/thereissoupinmyfly
https://riptutorial.com/contributor/7376/tom
https://riptutorial.com/contributor/187538/wesleyjohnson
https://riptutorial.com/contributor/2800876/zags
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/271697/coffee-grinder
https://riptutorial.com/contributor/7334515/george-h-
https://riptutorial.com/contributor/5231877/ivan-semochkin
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/488191/ssice
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1620792/iankit
https://riptutorial.com/contributor/1774657/mevin-babu
https://riptutorial.com/contributor/2615075/knbk
https://riptutorial.com/contributor/4921103/rahul-gupta
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/1887976/antwane
https://riptutorial.com/contributor/271697/coffee-grinder
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/1618174/gkr
https://riptutorial.com/contributor/2615075/knbk
https://riptutorial.com/contributor/1161025/maciek
https://riptutorial.com/contributor/301107/masnun
https://riptutorial.com/contributor/1433392/maxime-lorant
https://riptutorial.com/contributor/311168/nicorellius
https://riptutorial.com/contributor/361427/pleasedontbelong
https://riptutorial.com/contributor/1075247/pureferret
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/3482194/brian-artschwager
https://riptutorial.com/contributor/1623026/dan-russell
https://riptutorial.com/contributor/1241619/daniil-ryzhkov
https://riptutorial.com/contributor/1241619/daniil-ryzhkov
https://riptutorial.com/contributor/319618/fredley
https://riptutorial.com/contributor/1342445/pnovotnak
https://riptutorial.com/contributor/2049247/aisflat439
https://riptutorial.com/contributor/7334515/george-h-
https://riptutorial.com/contributor/863063/abidibo
https://riptutorial.com/contributor/2615075/knbk
https://riptutorial.com/contributor/1819007/sudshekhar
https://riptutorial.com/contributor/1265129/trivial
https://riptutorial.com/contributor/319618/fredley
https://riptutorial.com/contributor/2615075/knbk

12 Database Setup
Ahmad Anwar, Antoine Pinsard, Evans Murithi, Kid Binary, knbk
, lxer, Majid, Peter Mortensen

13
Database
transactions

Ian Clark

14 Debugging Antoine Pinsard, Ashutosh, e4c5, Kid Binary, knbk, Sayse, Udi

15 Deployment

Antoine Pinsard, Arpit Solanki, CodeFanatic23, I Am Batman,
Ivan Semochkin, knbk, lxer, Maxime S., MaxLunar, Meska, no

ɥʇʎԀʎzɐɹƆ, rajarshig, Rishabh Agrahari, Roald Nefs, Rohini
Choudhary, sebb

16
Django and Social
Networks

Aidas Bendoraitis, aisflat439, Carlos Rojas, Ivan Semochkin,
Rexford, Simplans

17
Django from the
command line.

e4c5, OliPro007

18
Django Rest
Framework

The Brewmaster

19 django-filter 4444, Ahmed Atalla

20
Extending or
Substituting User
Model

Antoine Pinsard, Jon Clements, mnoronha, Raito, Rexford,
rigdonmr, Rishabh Agrahari, Roald Nefs, techydesigner,
The_Cthulhu_Kid

21 F() expressions
Antoine Pinsard, John Moutafis, Linville, Omar Shehata,
RamenChef, Roald Nefs

22 Form Widgets Antoine Pinsard, ettanany

23 Forms
Aidas Bendoraitis, Antoine Pinsard, Daniel Rucci, ettanany,
George H., knbk, NBajanca, nicorellius, RamenChef,
rumman0786, sudshekhar, trpt4him

24 Formsets naveen.panwar

25 Generic Views nikolas-berlin

26
How to reset django
migrations

Cristus Cleetus

27
How to use Django
with Cookiecutter?

Atul Mishra, noɥʇʎԀʎzɐɹƆ, OliPro007, RamenChef

28 Internationalization Antoine Pinsard, dmvrtx

JSONField - a Antoine Pinsard, Daniil Ryzhkov, Matthew Schinckel, noɥʇʎԀ29

https://riptutorial.com/ 212

https://riptutorial.com/contributor/7584514/ahmad-anwar
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/3300963/evans-murithi
https://riptutorial.com/contributor/3042856/kid-binary
https://riptutorial.com/contributor/2615075/knbk
https://riptutorial.com/contributor/2595183/lxer
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/63550/peter-mortensen
https://riptutorial.com/contributor/1773904/ian-clark
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/3024480/ashutosh
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/3042856/kid-binary
https://riptutorial.com/contributor/2615075/knbk
https://riptutorial.com/contributor/1324033/sayse
https://riptutorial.com/contributor/57952/udi
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/5250746/arpit-solanki
https://riptutorial.com/contributor/5802408/codefanatic23
https://riptutorial.com/contributor/3872951/i-am-batman
https://riptutorial.com/contributor/5231877/ivan-semochkin
https://riptutorial.com/contributor/2615075/knbk
https://riptutorial.com/contributor/2595183/lxer
https://riptutorial.com/contributor/7373716/maxime-s-
https://riptutorial.com/contributor/6901259/maxlunar
https://riptutorial.com/contributor/236368/meska
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/4203686/rajarshig
https://riptutorial.com/contributor/6300703/rishabh-agrahari
https://riptutorial.com/contributor/4779556/roald-nefs
https://riptutorial.com/contributor/4419357/rohini-choudhary
https://riptutorial.com/contributor/4419357/rohini-choudhary
https://riptutorial.com/contributor/4563194/sebb
https://riptutorial.com/contributor/322818/aidas-bendoraitis
https://riptutorial.com/contributor/2049247/aisflat439
https://riptutorial.com/contributor/6495199/carlos-rojas
https://riptutorial.com/contributor/5231877/ivan-semochkin
https://riptutorial.com/contributor/1757321/rexford
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/5487099/olipro007
https://riptutorial.com/contributor/1036843/the-brewmaster
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/2248297/ahmed-atalla
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/1252759/jon-clements
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/3050140/raito
https://riptutorial.com/contributor/1757321/rexford
https://riptutorial.com/contributor/3063560/rigdonmr
https://riptutorial.com/contributor/6300703/rishabh-agrahari
https://riptutorial.com/contributor/4779556/roald-nefs
https://riptutorial.com/contributor/6309608/techydesigner
https://riptutorial.com/contributor/1091551/the-cthulhu-kid
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/7414939/john-moutafis
https://riptutorial.com/contributor/2167797/linville
https://riptutorial.com/contributor/1278023/omar-shehata
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4779556/roald-nefs
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/4575071/ettanany
https://riptutorial.com/contributor/322818/aidas-bendoraitis
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/27604/daniel-rucci
https://riptutorial.com/contributor/4575071/ettanany
https://riptutorial.com/contributor/7334515/george-h-
https://riptutorial.com/contributor/2615075/knbk
https://riptutorial.com/contributor/4470542/nbajanca
https://riptutorial.com/contributor/311168/nicorellius
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1260908/rumman0786
https://riptutorial.com/contributor/1819007/sudshekhar
https://riptutorial.com/contributor/877175/trpt4him
https://riptutorial.com/contributor/1729636/naveen-panwar
https://riptutorial.com/contributor/4310946/nikolas-berlin
https://riptutorial.com/contributor/1275824/cristus-cleetus
https://riptutorial.com/contributor/4446217/atul-mishra
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/5487099/olipro007
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/957457/dmvrtx
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/1241619/daniil-ryzhkov
https://riptutorial.com/contributor/188/matthew-schinckel
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---

PostgreSQL specific
field

ʎzɐɹƆ, Omar Shehata, techydesigner

30 Logging Antwane, Brian Artschwager, RamenChef

31
Management
Commands

Antoine Pinsard, aquasan, Brian Artschwager, HorsePunchKid,
Ivan Semochkin, John Moutafis, knbk, lxer, MarZab, Nikolay
Fominyh, pbaranay, ptim, Rana Ahmed, techydesigner, Zags

32
Many-to-many
relationships

Antoine Pinsard, e4c5, knbk, Kostronor

33

Mapping strings to
strings with
HStoreField - a
PostgreSQL specific
field

noɥʇʎԀʎzɐɹƆ

34
Meta:
Documentation
Guidelines

Antoine Pinsard

35 Middleware
AlvaroAV, Antoine Pinsard, George H., knbk, lxer, nhydock,
Omar Shehata, Peter Mortensen, Trivial, William Reed

36 Migrations
Antoine Pinsard, engineercoding, Joey Wilhelm, knbk,
MicroPyramid, ravigadila, Roald Nefs

37 Model Aggregations Ian Clark, John Moutafis, ravigadila

38
Model Field
Reference

Burhan Khalid, Husain Basrawala, knbk, Matt Seymour, Rod
Xavier, scriptmonster, techydesigner, The_Cthulhu_Kid

39 Models

Aidas Bendoraitis, Alireza Aghamohammadi, alonisser, Antoine
Pinsard, aquasan, Arpit Solanki, atomh33ls, coffee-grinder,
DataSwede, ettanany, Gahan, George H., gkr, Ivan Semochkin,
Jamie Cockburn, Joey Wilhelm, kcrk, knbk, Linville, lxer,
maazza, Matt Seymour, MuYi, Navid777, nhydock, noɥʇʎԀʎzɐɹƆ
, pbaranay, PhoebeB, Rana Ahmed, Saksow, Sanyam Khurana,
scriptmonster, Selcuk, SpiXel, sudshekhar, techydesigner,
The_Cthulhu_Kid, Utsav T, waterproof, zurfyx

40 Project Structure Antoine Pinsard, naveen.panwar, nicorellius

41 Querysets

Antoine Pinsard, Brian Artschwager, Chalist, coffee-grinder,
DataSwede, e4c5, Evans Murithi, George H., John Moutafis,
Justin, knbk, Louis Barranqueiro, Maxime Lorant, MicroPyramid,
nima, ravigadila, Sanyam Khurana, The Brewmaster

https://riptutorial.com/ 213

https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1278023/omar-shehata
https://riptutorial.com/contributor/6309608/techydesigner
https://riptutorial.com/contributor/1887976/antwane
https://riptutorial.com/contributor/3482194/brian-artschwager
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/1071736/aquasan
https://riptutorial.com/contributor/3482194/brian-artschwager
https://riptutorial.com/contributor/1959278/horsepunchkid
https://riptutorial.com/contributor/5231877/ivan-semochkin
https://riptutorial.com/contributor/7414939/john-moutafis
https://riptutorial.com/contributor/2615075/knbk
https://riptutorial.com/contributor/2595183/lxer
https://riptutorial.com/contributor/2358707/marzab
https://riptutorial.com/contributor/656804/nikolay-fominyh
https://riptutorial.com/contributor/656804/nikolay-fominyh
https://riptutorial.com/contributor/7411622/pbaranay
https://riptutorial.com/contributor/2586761/ptim
https://riptutorial.com/contributor/2731607/rana-ahmed
https://riptutorial.com/contributor/6309608/techydesigner
https://riptutorial.com/contributor/2800876/zags
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/2615075/knbk
https://riptutorial.com/contributor/1275025/kostronor
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/2815099/alvaroav
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/7334515/george-h-
https://riptutorial.com/contributor/2615075/knbk
https://riptutorial.com/contributor/2595183/lxer
https://riptutorial.com/contributor/1968689/nhydock
https://riptutorial.com/contributor/1278023/omar-shehata
https://riptutorial.com/contributor/63550/peter-mortensen
https://riptutorial.com/contributor/1265129/trivial
https://riptutorial.com/contributor/1572848/william-reed
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/3554071/engineercoding
https://riptutorial.com/contributor/1971587/joey-wilhelm
https://riptutorial.com/contributor/2615075/knbk
https://riptutorial.com/contributor/782196/micropyramid
https://riptutorial.com/contributor/4201963/ravigadila
https://riptutorial.com/contributor/4779556/roald-nefs
https://riptutorial.com/contributor/1773904/ian-clark
https://riptutorial.com/contributor/7414939/john-moutafis
https://riptutorial.com/contributor/4201963/ravigadila
https://riptutorial.com/contributor/790387/burhan-khalid
https://riptutorial.com/contributor/966314/husain-basrawala
https://riptutorial.com/contributor/2615075/knbk
https://riptutorial.com/contributor/601245/matt-seymour
https://riptutorial.com/contributor/1134851/rod-xavier
https://riptutorial.com/contributor/1134851/rod-xavier
https://riptutorial.com/contributor/171927/scriptmonster
https://riptutorial.com/contributor/6309608/techydesigner
https://riptutorial.com/contributor/1091551/the-cthulhu-kid
https://riptutorial.com/contributor/322818/aidas-bendoraitis
https://riptutorial.com/contributor/6645875/alireza-aghamohammadi
https://riptutorial.com/contributor/690204/alonisser
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/1071736/aquasan
https://riptutorial.com/contributor/5250746/arpit-solanki
https://riptutorial.com/contributor/1461850/atomh33ls
https://riptutorial.com/contributor/271697/coffee-grinder
https://riptutorial.com/contributor/3325052/dataswede
https://riptutorial.com/contributor/4575071/ettanany
https://riptutorial.com/contributor/7664524/gahan
https://riptutorial.com/contributor/7334515/george-h-
https://riptutorial.com/contributor/1618174/gkr
https://riptutorial.com/contributor/5231877/ivan-semochkin
https://riptutorial.com/contributor/3283790/jamie-cockburn
https://riptutorial.com/contributor/1971587/joey-wilhelm
https://riptutorial.com/contributor/4309017/kcrk
https://riptutorial.com/contributor/2615075/knbk
https://riptutorial.com/contributor/2167797/linville
https://riptutorial.com/contributor/2595183/lxer
https://riptutorial.com/contributor/1342402/maazza
https://riptutorial.com/contributor/601245/matt-seymour
https://riptutorial.com/contributor/4275033/muyi
https://riptutorial.com/contributor/1858970/navid777
https://riptutorial.com/contributor/1968689/nhydock
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/7411622/pbaranay
https://riptutorial.com/contributor/126795/phoebeb
https://riptutorial.com/contributor/2731607/rana-ahmed
https://riptutorial.com/contributor/1587534/saksow
https://riptutorial.com/contributor/3535547/sanyam-khurana
https://riptutorial.com/contributor/171927/scriptmonster
https://riptutorial.com/contributor/2011147/selcuk
https://riptutorial.com/contributor/1597771/spixel
https://riptutorial.com/contributor/1819007/sudshekhar
https://riptutorial.com/contributor/6309608/techydesigner
https://riptutorial.com/contributor/1091551/the-cthulhu-kid
https://riptutorial.com/contributor/2233336/utsav-t
https://riptutorial.com/contributor/1701416/waterproof
https://riptutorial.com/contributor/2013580/zurfyx
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/1729636/naveen-panwar
https://riptutorial.com/contributor/311168/nicorellius
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/3482194/brian-artschwager
https://riptutorial.com/contributor/254553/chalist
https://riptutorial.com/contributor/271697/coffee-grinder
https://riptutorial.com/contributor/3325052/dataswede
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/3300963/evans-murithi
https://riptutorial.com/contributor/7334515/george-h-
https://riptutorial.com/contributor/7414939/john-moutafis
https://riptutorial.com/contributor/6412179/justin
https://riptutorial.com/contributor/2615075/knbk
https://riptutorial.com/contributor/3755845/louis-barranqueiro
https://riptutorial.com/contributor/1433392/maxime-lorant
https://riptutorial.com/contributor/782196/micropyramid
https://riptutorial.com/contributor/536226/nima
https://riptutorial.com/contributor/4201963/ravigadila
https://riptutorial.com/contributor/3535547/sanyam-khurana
https://riptutorial.com/contributor/1036843/the-brewmaster

42
RangeFields - a
group of PostgreSQL
specific fields

Antoine Pinsard, noɥʇʎԀʎzɐɹƆ

43
Running Celery with
Supervisor

RéÑjïth, sebb

44 Security Antoine Pinsard, knbk

45 Settings

allo, Antoine Pinsard, Brian Artschwager, fredley, J F, knbk,
Louis, Louis Barranqueiro, lxer, Maxime Lorant, NBajanca, Nils
Werner, ProfSmiles, RamenChef, Sanyam Khurana, Sayse,
Selcuk, SpiXel, ssice, sudshekhar, Tema, The Brewmaster

46 Signals
Antoine Pinsard, e4c5, Hetdev, John Moutafis, Majid, nhydock,
Rexford

47
Template Tags and
Filters

Antoine Pinsard, irakli khitarishvili, knbk, Medorator,
naveen.panwar, The_Cthulhu_Kid

48 Templating
Adam Starrh, Alasdair, Aniket, Antoine Pinsard, Brian H.,
coffee-grinder, doctorsherlock, fredley, George H., gkr, lxer,
Stephen Leppik, Zags

49 Timezones William Reed

50 Unit Testing
Adrian17, Antoine Pinsard, e4c5, Kim, Matthew Schinckel,
Maxime Lorant, Patrik Stenmark, SandroM, sudshekhar, Zags

51 URL routing knbk

52
Using Redis with
Django - Caching
Backend

Majid, The Brewmaster

53 Views ettanany, HorsePunchKid, John Moutafis

https://riptutorial.com/ 214

https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/2742987/renjith
https://riptutorial.com/contributor/4563194/sebb
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/2615075/knbk
https://riptutorial.com/contributor/893159/allo
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/3482194/brian-artschwager
https://riptutorial.com/contributor/319618/fredley
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/2615075/knbk
https://riptutorial.com/contributor/1906307/louis
https://riptutorial.com/contributor/3755845/louis-barranqueiro
https://riptutorial.com/contributor/2595183/lxer
https://riptutorial.com/contributor/1433392/maxime-lorant
https://riptutorial.com/contributor/4470542/nbajanca
https://riptutorial.com/contributor/636626/nils-werner
https://riptutorial.com/contributor/636626/nils-werner
https://riptutorial.com/contributor/584026/profsmiles
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3535547/sanyam-khurana
https://riptutorial.com/contributor/1324033/sayse
https://riptutorial.com/contributor/2011147/selcuk
https://riptutorial.com/contributor/1597771/spixel
https://riptutorial.com/contributor/488191/ssice
https://riptutorial.com/contributor/1819007/sudshekhar
https://riptutorial.com/contributor/1015031/tema
https://riptutorial.com/contributor/1036843/the-brewmaster
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/4767208/hetdev
https://riptutorial.com/contributor/7414939/john-moutafis
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/1968689/nhydock
https://riptutorial.com/contributor/1757321/rexford
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/5606083/irakli-khitarishvili
https://riptutorial.com/contributor/2615075/knbk
https://riptutorial.com/contributor/781695/medorator
https://riptutorial.com/contributor/1729636/naveen-panwar
https://riptutorial.com/contributor/1091551/the-cthulhu-kid
https://riptutorial.com/contributor/4928578/adam-starrh
https://riptutorial.com/contributor/113962/alasdair
https://riptutorial.com/contributor/5518973/aniket
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/5576477/brian-h-
https://riptutorial.com/contributor/271697/coffee-grinder
https://riptutorial.com/contributor/5128879/doctorsherlock
https://riptutorial.com/contributor/319618/fredley
https://riptutorial.com/contributor/7334515/george-h-
https://riptutorial.com/contributor/1618174/gkr
https://riptutorial.com/contributor/2595183/lxer
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/2800876/zags
https://riptutorial.com/contributor/1572848/william-reed
https://riptutorial.com/contributor/2468469/adrian17
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/4362878/kim
https://riptutorial.com/contributor/188/matthew-schinckel
https://riptutorial.com/contributor/1433392/maxime-lorant
https://riptutorial.com/contributor/6677737/patrik-stenmark
https://riptutorial.com/contributor/8258487/sandrom
https://riptutorial.com/contributor/1819007/sudshekhar
https://riptutorial.com/contributor/2800876/zags
https://riptutorial.com/contributor/2615075/knbk
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/1036843/the-brewmaster
https://riptutorial.com/contributor/4575071/ettanany
https://riptutorial.com/contributor/1959278/horsepunchkid
https://riptutorial.com/contributor/7414939/john-moutafis

	About
	Chapter 1: Getting started with Django
	Remarks
	Versions
	Examples
	Starting a Project
	Django Concepts
	A complete hello world example.
	Virtual Environment

	Python 3.3+
	Python 2
	Activate (any version)
	Alternatively: use virtualenvwrapper
	Alternatively: use pyenv + pyenv-viritualenv
	Set your Project Path
	Single File Hello World Example
	Deployment friendly Project with Docker support.

	Project Structure
	Dockerfile
	Compose
	Nginx
	Usage
	Chapter 2: Administration
	Examples
	Change list
	Additional CSS styles and JS scripts for admin page
	Dealing with foreign keys referencing large tables

	views.py
	urls.py
	forms.py
	admin.py

	Chapter 3: ArrayField - a PostgreSQL-specific field
	Syntax
	Remarks
	Examples
	A basic ArrayField
	Specifying the maximum size of an ArrayField
	Querying for membership of ArrayField with contains
	Nesting ArrayFields
	Querying for all models who contain any item in a list with contained_by

	Chapter 4: Async Tasks (Celery)
	Remarks
	Examples
	Simple example to add 2 numbers

	Chapter 5: Authentication Backends
	Examples
	Email Authentication Backend

	Chapter 6: Class based views
	Remarks
	Examples
	Class Based Views

	views.py
	urls.py
	Context data

	views.py
	book.html
	List and Details views

	app/models.py
	app/views.py
	app/templates/app/pokemon_list.html
	app/templates/app/pokemon_detail.html
	app/urls.py
	Form and object creation

	app/views.py
	app/templates/app/pokemon_form.html (extract)
	app/templates/app/pokemon_confirm_delete.html (extract)
	app/models.py
	Minimal example
	Django Class Based Views: Example of CreateView
	One View, Multiple Forms

	Chapter 7: Context Processors
	Remarks
	Examples
	Use a context processor to access settings.DEBUG in templates
	Using a context processor to access your most recent blog entries in all templates
	Extending your templates

	Chapter 8: Continuous Integration With Jenkins
	Examples
	Jenkins 2.0+ Pipeline Script
	Jenkins 2.0+ Pipeline Script, Docker Containers

	Chapter 9: CRUD in Django
	Examples
	Simplest CRUD example

	Chapter 10: Custom Managers and Querysets
	Examples
	Defining a basic manager using Querysets and `as_manager` method
	select_related for all queries
	Define custom managers

	Chapter 11: Database Routers
	Examples
	Adding a Database Routing file
	Specifying different databases in code

	Chapter 12: Database Setup
	Examples
	MySQL / MariaDB
	PostgreSQL
	sqlite
	Fixtures
	Django Cassandra Engine

	Chapter 13: Database transactions
	Examples
	Atomic transactions

	Problem
	Solution
	Chapter 14: Debugging
	Remarks
	Examples
	Using Python Debugger (Pdb)
	Using Django Debug Toolbar
	Using "assert False"
	Consider Writing More Documentation, Tests, Logging and Assertions Instead of Using a Debugger

	Chapter 15: Deployment
	Examples
	Running Django application with Gunicorn
	Deploying with Heroku
	Simple remote deploy fabfile.py
	Using Heroku Django Starter Template.
	Django deployment instructions. Nginx + Gunicorn + Supervisor on Linux (Ubuntu)

	NGINX
	GUNICORN
	SUPERVISOR
	Deploying locally without setting up apache/nginx

	Chapter 16: Django and Social Networks
	Parameters
	Examples
	Easy way: python-social-auth
	Using Django Allauth

	Chapter 17: Django from the command line.
	Remarks
	Examples
	Django from the command line.

	Chapter 18: Django Rest Framework
	Examples
	Simple barebones read-only API

	Chapter 19: django-filter
	Examples
	Use django-filter with CBV

	Chapter 20: Extending or Substituting User Model
	Examples
	Custom user model with email as primary login field.
	Use the `email` as username and get rid of the `username` field
	Extend Django User Model Easily
	Specifing a custom User model
	Referencing the User model

	Chapter 21: F() expressions
	Introduction
	Syntax
	Examples
	Avoiding race conditions
	Updating queryset in bulk
	Execute Arithmetic operations between fields

	Chapter 22: Form Widgets
	Examples
	Simple text input widget
	Composite widget

	Chapter 23: Forms
	Examples
	ModelForm Example
	Defining a Django form from scratch (with widgets)
	Removing a modelForm's field based on condition from views.py
	File Uploads with Django Forms
	Validation of fields and Commit to model (Change user e-mail)

	Chapter 24: Formsets
	Syntax
	Examples
	Formsets with Initialized and unitialized data

	Chapter 25: Generic Views
	Introduction
	Remarks
	Examples
	Minimum Example: Functional vs. Generic Views
	Customizing Generic Views
	Generic Views with Mixins

	Chapter 26: How to reset django migrations
	Introduction
	Examples
	Resetting Django Migration: Deleting existing database and migrating as fresh

	Chapter 27: How to use Django with Cookiecutter?
	Examples
	Installing and setting up django project using Cookiecutter

	Chapter 28: Internationalization
	Syntax
	Examples
	Introduction to Internationalization

	Setting up
	settings.py

	Marking strings as translatable
	Translating strings
	Lazy vs Non-Lazy translation
	Translation in templates
	Translating strings
	Noop use case
	Common pitfalls
	fuzzy translations
	Multiline strings

	Chapter 29: JSONField - a PostgreSQL specific field
	Syntax
	Remarks

	Chaining queries
	Examples
	Creating a JSONField

	Available in Django 1.9+
	Creating an object with data in a JSONField
	Querying top-level data
	Querying data nested in dictionaries
	Querying data present in arrays
	Ordering by JSONField values

	Chapter 30: Logging
	Examples
	Logging to Syslog service
	Django basic logging configuration

	Chapter 31: Management Commands
	Introduction
	Remarks
	Examples
	Creating and Running a Management Command
	Get list of existing commands
	Using django-admin instead of manage.py
	Builtin Management Commands

	Chapter 32: Many-to-many relationships
	Examples
	With a through model
	Simple Many To Many Relationship.
	Using ManyToMany Fields

	Chapter 33: Mapping strings to strings with HStoreField - a PostgreSQL specific field
	Syntax
	Remarks
	Examples
	Setting up HStoreField
	Adding HStoreField to your model
	Creating a new model instance
	Performing key lookups
	Using contains

	Chapter 34: Meta: Documentation Guidelines
	Remarks
	Examples
	Unsupported versions don't need special mention

	Chapter 35: Middleware
	Introduction
	Remarks
	Examples
	Add data to requests
	Middleware to filter by IP address
	Globally handling exception
	Understanding Django 1.10 middleware's new style

	Chapter 36: Migrations
	Parameters
	Examples
	Working with migrations
	Manual migrations
	Fake migrations
	Custom names for migration files
	Solving migration conflicts

	Introduction
	Merging migrations
	Change a CharField to a ForeignKey

	Chapter 37: Model Aggregations
	Introduction
	Examples
	Average, Minimum, Maximum, Sum from Queryset
	Count the number of foreign relations
	GROUB BY ... COUNT/SUM Django ORM equivalent

	Chapter 38: Model Field Reference
	Parameters
	Remarks
	Examples
	Number Fields
	BinaryField
	CharField
	DateTimeField
	ForeignKey

	Chapter 39: Models
	Introduction
	Examples
	Creating your first model
	Applying the changes to the database (Migrations)
	Creating a model with relationships
	Basic Django DB queries
	A basic unmanaged table.
	Advanced models

	Automatic primary key
	Absolute url
	String representation
	Slug field
	The Meta class
	Computed Values
	Adding a string representation of a model
	Model mixins
	UUID Primary key
	Inheritance

	Chapter 40: Project Structure
	Examples
	Repository > Project > Site/Conf
	Namespacing static and templates files in django apps

	Chapter 41: Querysets
	Introduction
	Examples
	Simple queries on a standalone model
	Advanced queries with Q objects
	Reduce number of queries on ManyToManyField (n+1 issue)

	Problem
	Solution
	Reduce number of queries on ForeignKey field (n+1 issue)

	Problem
	Solution
	Get SQL for Django queryset
	Get first and last record from QuerySet
	Advanced queries with F objects

	Chapter 42: RangeFields - a group of PostgreSQL specific fields
	Syntax
	Examples
	Including numeric range fields in your model
	Setting up for RangeField
	Creating models with numeric range fields
	Using contains
	Using contained_by
	Using overlap
	Using None to signify no upper bound
	Ranges operations

	Chapter 43: Running Celery with Supervisor
	Examples
	Celery Configuration

	CELERY
	Running Supervisor
	Celery + RabbitMQ with Supervisor

	Chapter 44: Security
	Examples
	Cross Site Scripting (XSS) protection
	Clickjacking protection
	Cross-site Request Forgery (CSRF) protection

	Chapter 45: Settings
	Examples
	Setting the timezone
	Accessing settings
	Using BASE_DIR to ensure app portability
	Using Environment variables to manage Settings across servers

	settings.py
	Using multiple settings

	Alternative #1
	Alternative #2
	Using multiple requirements files

	Structure
	Hiding secret data using a JSON file
	Using a DATABASE_URL from the environment

	Chapter 46: Signals
	Parameters
	Remarks
	Examples
	Extending User Profile Example
	Different syntax to post/pre a signal
	How to find if it's an insert or update in the pre_save signal
	Inheriting Signals on Extended Models

	Chapter 47: Template Tags and Filters
	Examples
	Custom Filters
	Simple tags
	Advanced custom tags using Node

	Chapter 48: Templating
	Examples
	Variables
	Templating in Class Based Views
	Templating in Function Based Views
	Template filters
	Prevent sensitive methods from being called in templates
	Use of {% extends %} , {% include %} and {% blocks %}

	summary
	Guide
	Chapter 49: Timezones
	Introduction
	Examples
	Enable Time Zone Support
	Setting Session Timezones

	Chapter 50: Unit Testing
	Examples
	Testing - a complete example
	Testing Django Models Effectively
	Testing Access Control in Django Views
	The Database and Testing
	Limit the number of tests executed

	Chapter 51: URL routing
	Examples
	How Django handles a request
	Set the URL namespace for a reusable app (Django 1.9+)

	Chapter 52: Using Redis with Django - Caching Backend
	Remarks
	Examples
	Using django-redis-cache
	Using django-redis

	Chapter 53: Views
	Introduction
	Examples
	[Introductory] Simple View (Hello World Equivalent)

	Credits

