
DOM

#dom

Table of Contents

About 1

Chapter 1: Getting started with DOM 2

Remarks 2

Versions 2

W3C DOM 2

Selectors API Level 2

Examples 2

Retrieving existing html elements 2

Retrieve by id 3

Retrieve by tag name 3

Retrieve by class 3

Retrieve by name 4

Getting started 4

Wait for DOM to be loaded 5

Alternative to DOMContentLoaded 5

Use innerHTML 5

HTML markup 5

DOM element output: 6

Chapter 2: Events 7

Parameters 7

Remarks 7

Origin of events 7

Instead 8

Capturing & Bubbling 8

Examples 9

Introduction 9

Basic Event Listener 10

Removing event listeners 10

.bind with removeListener 11

listen to an event only once 11

Waiting for the document to load 11

Event Object 12

e.stopPropagation(); 12

e.preventDefault(); 13

e.target vs e.currentTarget 13

Event Bubbling and Capturing 14

Real-world use cases 15

Event Delegation 17

Triggering custom events 17

Chapter 3: Manipulating a list of CSS classes 19

Examples 19

Adding a class 19

Removing a class 19

Testing for a class 20

Chapter 4: Manipulating Attributes 23

Remarks 23

Examples 23

Getting an attribute 23

Setting an attribute 23

Removing an attribute 24

Chapter 5: Manipulating Elements 25

Examples 25

Cloning elements 25

Adding an element 25

Replacing an element 25

Removing an element 26

Append and Prepend methods 26

Chapter 6: Retrieving Elements 28

Examples 28

By ID 28

By Class Name 28

By Tag Name 28

By CSS Selector 29

Query Selectors 30

querySelector 30

querySelectorAll 30

Chapter 7: Traversal 31

Examples 31

Tree walking 31

Iterating over nodes 31

Chapter 8: Using CSS styles 33

Remarks 33

Examples 33

Reading and changing inline styles 33

Inline style 33

Reading and changing styles from a stylesheet 33

Credits 35

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: dom

It is an unofficial and free DOM ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official DOM.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/dom
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with DOM

Remarks

The DOM, or Document Object Model, is the API used by web browsers and other applications to
access the contents of an HTML document.

The DOM represents the structure as a tree, nodes can contain child-nodes, nodes with no
children are said leaf nodes.

With it, one can manipulate the structure and properties of the document and its constituent parts.

Major topics include finding elements, accessing style information, and animation.

Most work with the DOM is done using the JavaScript language, but the API is open to any
language.

Versions

W3C DOM

Version Release Date

1 1998-10-01

2 (Core) 2000-11-13

3 (Core) 2004-04-07

4 2013-11-07

Selectors API Level

Version Release Date

1 2013-02-21

Examples

Retrieving existing html elements

One of the most common tasks is retrieving an existing element from the DOM to manipulate.
Most commonly these methods are executed on document, because it is the root node, but all these

https://riptutorial.com/ 2

http://www.riptutorial.com/javascript/topic/185/getting-started-with-javascript
https://www.w3.org/TR/REC-DOM-Level-1/
https://www.w3.org/TR/DOM-Level-2-Core/
https://www.w3.org/TR/DOM-Level-3-Core/
https://www.w3.org/TR/dom/
https://www.w3.org/TR/selectors-api/

methods work on any HTML element in the tree. They will only return children from the node it is
executed on.

Retrieve by id

var element = document.getElementById("logo");

element will contain the (only) element that has its id attribute set to "logo", or contains null if no
such element exists. If multiple elements with this id exist, the document is invalid, and anything
can happen.

Retrieve by tag name

var elements = document.getElementsByTagName("a");

elements will contain a live HTMLCollection (an array-like object) of all link tags in the document. This
collection is in sync with the DOM, so any changes made to the DOM are reflected in this
collection. The collection provides random access and has a length.

var element = elements[0];
//Alternative
element = elements.item(0);

element contains the first encountered HTML link element, or null if the index is out of
bounds

var length = elements.length;

length is equal to the number of HTML link elements currently in the list. This number
can change when the DOM is changed.

Retrieve by class

var elements = document.getElementsByClassName("recipe");

elements will contain a live HTMLCollection (an array-like object) of all elements where their class
attribute includes "recipe". This collection is in sync with the DOM, so any changes made to the
DOM are reflected in this collection. The collection provides random access and has a length.

var element = elements[0];
//Alternative
element = elements.item(0);

element contains the first encountered HTML element with this class. If there are no
such elements, element has the value undefined in the first example and null in the

https://riptutorial.com/ 3

second example.

var length = elements.length;

length is equal to the number of HTML elements that currently have the class "recipe".
This number can change when the DOM is changed.

Retrieve by name

var elements = document.getElementsByName("zipcode");

elements will contain a live NodeList (an array-like object) of all elements with their name attribute set
to "zipcode". This collection is in sync with the DOM, so any changes made to the DOM are
reflected in this collection. The collection provides random access and has a length.

var element = elements[0];
//Alternative
element = elements.item(0);

element contains the first encountered HTML element with this name.

var length = elements.length;

length is equal to the number of HTML elements that currently have "zipcode" as their
name attribute. This number can change when the DOM is changed.

Getting started

The DOM (Document Object Model) is the programming interface for HTML and XML documents,
it defines the logical structure of documents and the way a document is accessed and
manipulated.

The main implementers of the DOM API are web browsers. Specifications are standardized by the
W3C and the WHATWG groups, and the object model specifies the logical model for the
programming interface.

The representation of DOM structure resembles a tree-like view, where each node is an object
representing a part of the markup, depending on the type each element also inherits specific and
shared functionalities.

The name "Document Object Model" was chosen because it is an "object model" in the traditional
object oriented design sense: documents are modeled using objects, and the model encompasses
not only the structure of a document, but also the behavior of a document and the objects of which
it is composed. In other words, taking the example HTML diagram, the nodes do not represent a
data structure, they represent objects, which have functions and identity. As an object model, the
Document Object Model identifies:

https://riptutorial.com/ 4

https://www.w3.org/DOM/
https://dom.spec.whatwg.org/

the interfaces and objects used to represent and manipulate a document•
semantics of these interfaces and objects - including both behavior and attributes•
the relationships and collaborations among these interfaces and objects•

Wait for DOM to be loaded

Use DOMContentLoaded when the <script> code interacting with DOM is included in the <head>
section. If not wrapped inside the DOMContentLoaded callback, the code will throw errors like

Cannot read something of null

document.addEventListener('DOMContentLoaded', function(event) {
 // Code that interacts with DOM
});

https://html.spec.whatwg.org/multipage/syntax.html#the-end

Alternative to DOMContentLoaded

An alternative (suitable for IE8)

// Alternative to DOMContentLoaded
document.onreadystatechange = function() {
 if (document.readyState === "interactive") {
 // initialize your DOM manipulation code here
 }
}

https://developer.mozilla.org/en/docs/Web/API/Document/readyState

Use innerHTML

HTML

<div id="app"></div>

JS

document.getElementById('app').innerHTML = '<p>Some text</p>'

and now HTML looks like this

<div id="app">
 <p>Some text</p>
</div>

HTML markup

example input:

https://riptutorial.com/ 5

https://html.spec.whatwg.org/multipage/syntax.html#the-end
https://developer.mozilla.org/en/docs/Web/API/Document/readyState

<html>
 <head>
 <title>the title</title>
 <link href='css/app.css' type='text/css' rel='stylesheet'>
 <script src='js/app.js'></script>
 </head>
 <body>
 <h1>header</h1>
 <div>
 <p>hello!</p>
 </div>
 </body>
</html>

DOM element output:

 | document | <--- DOM root object.

 |
 |

 | html | <--- document.documentElement

 ______________|______________
 | |
 ------------ ------------
 | head | | body |
 ------------ ------------
 ______________|______________ |______________
 | | | | |
 ------------ ------------ ------------ ------------ ------------
 | title | | link | | script | | h1 | | div |
 ------------ ------------ ------------ ------------ ------------
 |
 |

 | p |

All the above elements inherit from HTMLElement interface and get customized depending on
specific tag

Read Getting started with DOM online: https://riptutorial.com/dom/topic/2584/getting-started-with-
dom

https://riptutorial.com/ 6

https://riptutorial.com/dom/topic/2584/getting-started-with-dom
https://riptutorial.com/dom/topic/2584/getting-started-with-dom

Chapter 2: Events

Parameters

Parameter Description

type String defines the name of the event to listen to.

listener Function triggers when the event occurs.

options
Boolean to set capture, if Object you can set the following properties on it, notice
that the object option is weakly supported.

1. capture
A Boolean that indicates that events of this type will be dispatched to the
registered listener before being dispatched to any EventTarget beneath it in the
DOM tree.

2. once
A Boolean indicating that the listener should be invoked at most once after
being added. If it is true, the listener would be removed automatically when it is
invoked.

3. passive
A Boolean indicating that the listener will never call preventDefault(). If it does,
the user agent should ignore it and generate a console warning.

Remarks

Origin of events

https://riptutorial.com/ 7

Events dont start at the thing you trigger the event on (a button for example).

Instead

It touches every element in its path and it inform every element that an event is happening. Events
also go back up after they reach their destination, informing the elements again of its occurrence.

Capturing & Bubbling

As we learned, events start from the top of DOM tree, informs every node in its path down to its
destination, then goes back up when it reaches its destination, also informing every element it
touches on its way up about its occurrence.

Events going down the DOM tree are in the capturing phase, events going up the

https://riptutorial.com/ 8

http://i.stack.imgur.com/GGaLx.png

DOM tree are in the bubbling phase.

By default events are listened to in the bubbling phase. To change this you can specify which
phase the event gets listened to by specifying the third parameter in the addEventListener
function. (code example in the capture section)

Examples

Introduction

Definition:

In computing, an event is an action or occurrence recognized by software that may be
handled by the software. Computer events can be generated or triggered by the
system, by the user or in other ways. Definition Source

https://riptutorial.com/ 9

https://en.wikipedia.org/wiki/Event_(computing)

HTML events are "things" that happen to HTML elements. JavaScript can "react" on these events.
via Event Listeners. Additionally, custom events can be triggered using dispatchEvent. But this is
only an introduction, so lets get started!

Basic Event Listener

To listen to events, you call target.addEventListener(type, listener);

function loadImage() {
 console.log('image code here!');
}
var myButton = document.querySelector('#my-button');
myButton.addEventListener('click', loadImage);

This will trigger loadImage every time my-button is clicked.

Event listeners can be attached to any node in the DOM tree. to see a full list of all the events
natively triggered in the browser: go here MDN link for full event list

Removing event listeners

The removeEventListener() method removes event handlers that have been attached with the

https://riptutorial.com/ 10

http://i.stack.imgur.com/59MvU.png
https://developer.mozilla.org/en-US/docs/Web/Events

addEventListener() method:

element.removeEventListener("mousemove", myFunction);

Everything (eventname, function, and options) in the removeEventListener must match the one set
when adding the event listener to the element.

.bind with removeListener

using .bind on the function when adding an event listener will prevent the function from being
removed, to actually remove the eventListener you can write:

function onEvent() {
 console.log(this.name);
}

var bindingOnEvent = onEvent.bind(this);

document.addEventListener('click', bindingOnEvent);

...

document.removeEventListener('click', bindingOnEvent);

listen to an event only once

Until once option is widely supported, we have to manually remove the even listener once the
event is triggered for the first time.

This small helper will help us achieve this:

Object.prototype.listenOnce = Object.prototype.listenOnce ||
 function listenOnce(eventName, eventHandler, options) {
 var target = this;
 target.addEventListener(eventName, function(e) {
 eventHandler(e);
 target.removeEventListener(eventName, eventHandler, options);
 }, options);
 }

var target = document.querySelector('#parent');
target.listenOnce("click", clickFunction, false);

*It is not a best practice to attach functions to the Object prototype, hence you can remove the first
line of this code and add a target to it as a first param.

Waiting for the document to load

One of the most commonly used events is waiting for the document to have loaded, including both

https://riptutorial.com/ 11

script files and images. The load event on document is used for this.

document.addEventListener('load', function() {
 console.log("Everything has now loaded!");
});

Sometimes you try to access a DOM object before it is loaded, causing null pointers. These are
really tough to debug. To avoid this use document's DOMContentLoaded event instead. DOMContentLoaded
ensures that the HTML content has been loaded and initialized without waiting for other external
resources.

document.addEventListener('DOMContentLoaded', function() {
 console.log("The document contents are now available!");
});

Event Object

To access the event object, include an event parameter in the event listener callback function:

var foo = document.getElementById("foo");
foo.addEventListener("click", onClick);

function onClick(event) {
 // the `event` parameter is the event object
 // e.g. `event.type` would be "click" in this case
};

e.stopPropagation();

HTML:

<div id="parent">
 <div id="child"></div>
</div>

Javascript:

var parent = document.querySelector('#parent');
var child = document.querySelector('#child');

child.addEventListener('click', function(e) {
 e.stopPropagation();
 alert('child clicked!');
});

parent.addEventListener('click', function(e) {
 alert('parent clicked!');
});

since the child stops the event propagation, and the events are listened to during bubbling phase,

https://riptutorial.com/ 12

clicking on the child will only trigger the child. without stopping the propagation both events will be
triggered.

e.preventDefault();

The event.preventDefault() method stops the default action of an element from happening.

For example:

Prevent a submit button from submitting a form•
Prevent a link from following the URL•

var allAnchorTags = document.querySelector('a');

allAnchorTags.addEventListener('click', function(e){
 e.preventDefault();
 console.log('anchor tags are useless now! *evil laugh*');
});

e.target vs e.currentTarget

e.currentTarget Identifies the current target for the event, as the event traverses the
DOM. It always refers to the element the event handler has been attached to as
opposed to event.target which identifies the element on which the event occurred.

in other words

e.target will return what triggers the event dispatcher to trigger

e.currentTarget will return what you assigned your listener to.

HTML:

<body>
 <button id="my-button"></button>
</body>

Javascript:

var body = document.body;
body.addEventListener('click', function(e) {
 console.log('e.target', e.target);
 console.log('e.currentTarget', e.currentTarget);
});

if you click my-button,

https://riptutorial.com/ 13

e.target will be my-button•
e.currentTarget will be body•

Event Bubbling and Capturing

Events fired on DOM elements don't just affect the element they're targeting. Any of the target's
ancestors in the DOM may also have a chance to react to the event. Consider the following
document:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
</head>
<body>
 <p id="paragraph">
 Hello World
 </p>
</body>
</html>

If we just add listeners to each element without any options, then trigger a click on the span...

document.body.addEventListener('click', function(event) {
 console.log("Body clicked!");
});
window.paragraph.addEventListener('click', function(event) {
 console.log("Paragraph clicked!");
});
window.text.addEventListener('click', function(event) {
 console.log("Text clicked!");
});

window.text.click();

...then the event will bubble up through each ancestor, triggering each click handler on the way:

Text clicked!
Paragraph clicked!
Body clicked!

If you want one of your handlers to stop the event from triggering any more handlers, it can call the
event.stopPropagation() method. For example, if we replace our second event handler with this:

window.paragraph.addEventListener('click', function(event) {
 console.log("Paragraph clicked, and that's it!");
 event.stopPropagation();
});

We would see the following output, with body's click handler never triggered:

Text clicked!
Paragraph clicked, and that's it!

https://riptutorial.com/ 14

Finally, we have the option to add event listeners that trigger during "capture" instead of bubbling.
Before an event bubbles up from an element through its ancestors, it's first "captured" down to the
element through its ancestors. A capturing listener is added by specifying true or {capture: true}
as the optional third argument to addEventListener. If we add the following listeners to our first
example above:

document.body.addEventListener('click', function(event) {
 console.log("Body click captured!");
}, true);
window.paragraph.addEventListener('click', function(event) {
 console.log("Paragraph click captured!");
}, true);
window.text.addEventListener('click', function(event) {
 console.log("Text click captured!");
}, true);

We'll get the following output:

Body click captured!
Paragraph click captured!
Text click captured!
Text clicked!
Paragraph clicked!
Body clicked!

By default events are listened to in the bubbling phase. To change this you can specify which
phase the event gets listened to by specifying the third parameter in the addEventListener
function. (To learn about capturing and bubbling, check remarks)

element.addEventListener(eventName, eventHandler, useCapture)

useCapture: true means listen to event when its going down the DOM tree. false means listen to
the event while its going up the DOM tree.

window.addEventListener("click", function(){alert('1: on bubble')}, false);
window.addEventListener("click", function(){alert('2: on capture')}, true);

The alert boxes will pop up in this order:

2: on capture•
1: on bubble•

Real-world use cases

Capture Event will be dispatch before Bubble Event, hence you can ensure than an event is
listened to first if you listen to it in its capture phase.

if you are listening to a click event on a parent element, and another on its child, you can listen to
the child first or the parent first, depending on how you change the useCapture parameter.

https://riptutorial.com/ 15

in bubbling, child event gets called first, in capture, parent first

HTML:

<div id="parent">
 <div id="child"></div>
</div>

Javascript:

child.addEventListener('click', function(e) {
 alert('child clicked!');
});

parent.addEventListener('click', function(e) {
 alert('parent clicked!');
}, true);

Setting true to the parent eventListener will trigger the parent listener first.

Combined with e.stopPropagation() you can prevent the event from triggering the child event
listener / or the parent. (more about that in the next example)

https://riptutorial.com/ 16

http://i.stack.imgur.com/nabvw.png

Event Delegation

Event delegation is a process which allow us to avoid adding event listeners to specific nodes;
instead, the event listener is added to parent node. This mechanism utilizes the event
propagation/bubbling to handle an event at a higher level element/node in the DOM instead of
using the element on which the event was originated. For example, think we need to add events
for the following list elements:

<ul id="container">
 <li id="item-1" class="new">Item 1
 <li id="item-2">Item 2
 <li id="item-3">Item 3

We need to add click handlers and basically, we can add listeners to each element using a loop
but imagine that, we want to add elements dynamically. So, we register all the event handlers
when the DOM is loaded and after the DOM initializes and registers all the event handlers for each
element, the newly inserted element into the above UL will not respond on click because that
element was not present in the DOM when we've registered the click event listeners.

So, to overcome this problem, we may leverage the event delegation. Which means, instead of
registering the listeners to each li elements themselves, we can bind the event listener to it's
parent UL element for example:

document.getElementById("container").addEventListener("click", function(e) {
 console.log("List item " e.target.id, " was clicked!");
});

Since, the event propagates (bubbles upwards) by default, then clicking on any LI element will
make the UL element to fire the same event as well. In this case, we can use the e parameter in the
function, which is actually the event object and it carries helpful information about the event
including the original element, which initiated the event. So, for example, we can use something
like the following:

document.getElementById("container").addEventListener("click", function(e) {

 // If UL itself then no action is require
 if(e.target.nodeName == 'UL') return false;

 if(e.target.classList.contains('new')) {
 console.log("List item " e.target.id, " was clicked and it's new!");
 }
});

So, it's obvious that, e (Event Object) allow us to examine the source element (e.target) and we
can easily inject new elements to the UL after DOM is loaded and the only one delegated event
handler will handle all the click events within the parent UL which is also less memory consuming
because we declared only one function for all the elements.

Triggering custom events

https://riptutorial.com/ 17

The CustomEvent API allows developers to create custom events and trigger them on DOM
nodes, passing data along the way.

event = new CustomEvent(typeArg, customEventInit);

typeArg - DOMString representing the name of the event.

customEventInit - is optional parameters (that will be passed as e in following example).

You can attach eventListeners to document or any HTML element.

Once custom event has been added and bound to element (or document) one might want to
manually fire it from javascript.

document.addEventListener("event-name", function(e) {
 console.log(e.detail); // logs custom object passed from the event.
});

var event = new CustomEvent("event-name", { "param-name": "param-value" });
document.dispatchEvent(event);

Read Events online: https://riptutorial.com/dom/topic/5388/events

https://riptutorial.com/ 18

https://riptutorial.com/dom/topic/5388/events

Chapter 3: Manipulating a list of CSS classes

Examples

Adding a class

Modern browsers provide a classList object to ease manipulation of the element's class attribute.
Older browsers require direct manipulation of the element's className property.

W3C DOM4

A simple method to add a class to an element is to append it to the end of the className property.
This will not prevent duplicate class names, and spaces must be included between class names.

document.getElementById("link1").className += " foo";
document.getElementById("link2").className += " foo bar";

For multiple elements, you'll need to add the class names inside of a loop

var els = document.getElementsByClassName("foo"),
 indx = els.length;
while (indx--) {
 els[indx].className += " bar baz";
}

W3C DOM4

A single class name may be added as a string. To add multiple class names, use ES6's spread
operator:

document.querySelector("#link1").classList.add("foo");
document.querySelector("#link2").classList.add(...['foo', 'bar']);

For multiple elements, you'll need to add the class names inside of a loop

document.querySelectorAll(".foo").forEach(el => {
 el.classList.add(...['bar', 'baz']);
});

Removing a class

Modern browsers provide a classList object to ease manipulation of the element's class attribute.
Older browsers require direct manipulation of the element's className property.

* Note class names are not stored in the element's property in any particular order

W3C DOM4

https://riptutorial.com/ 19

Removing one class from an element requires a bit of manipulation of the className property.

var toRemove = "bar",
 el = document.getElementById("link1");
el.className = el.className.replace(new RegExp("\\b" + toRemove + "\\b", "g"), "").trim();

Removing multiple class names would require a loop. The remaining examples will use a function
to isolate the work

function removeClass(el, name) {
 name = name.split(/\s+/);
 var index = name.length,
 classes = el.className;
 while (index--) {
 classes = classes.replace(new RegExp("\\b" + name[index] + "\\b", "g"), "").trim();
 }
 el.className = classes;
}
var el = document.getElementById("link1");
removeClass(el, "bar baz");

Multiple elements with multiple class names to remove would require two loops

function removeClass(els, name) {
 name = name.split(/\s+/);
 var regex, len,
 index = name.length;
 while (index--) {
 regex = new RegExp("\\b" + name[index] + "\\b", "g");
 len = els.length;
 while (len--) {
 els[len].className = els[len].className.replace(regex, "").trim();
 }
 }
}
var els = document.getElementsByTagName("a");
removeClass(els, "bar baz");

W3C DOM4

A single class name may be removed as a string. To remove multiple class names, use ES6's
spread operator:

document.querySelector("#link1").classList.remove("foo");
document.querySelector("#link2").classList.remove(...['foo', 'bar']);

For multiple elements, you'll need to remove the class names inside of a loop

document.querySelectorAll(".foo").forEach(el => {
 el.classList.remove(...['bar', 'baz']);
});

Testing for a class

https://riptutorial.com/ 20

Modern browsers provide a classList object to ease manipulation of the element's class attribute.
Older browsers require direct manipulation of the element's className property.

* Note class names are not stored in the element's property in any particular order

W3C DOM4

Testing if an element contains a class requires a bit of manipulation of the className property. This
example is using an array method to test for the class.

function hasClass(el, name) {
 var classes = (el && el.className || "").split(/\s+/);
 return classes.indexOf(name) > -1;
}
var el = document.getElementById("link1");
console.log(hasClass(el, "foo"));

Testing for multiple class names would require a loop.

function hasClass(el, name) {
 name = name.split(/[\s.]+/);
 var hasClass = true,
 classes = (el && el.className || "").split(/\s+/),
 index = name.length;
 while (index--) {
 hasClass = hasClass && classes.indexOf(name[index]) > -1;
 }
 return hasClass;
}
var el = document.getElementById("link1");
console.log(hasClass(el, "foo"));

Instead of using .indexOf(), you may also consider using a regular expression.

function hasClass(el, name) {
 return new RegExp("\\b" + name+ "\\b").test(el.className);
}
var el = document.getElementById("link1");
console.log(hasClass(el, "foo"));

W3C DOM4

Testing for a single class name is done as follows:

var hasClass = document.querySelector("#link1").classList.contains("foo");

For multiple class names, it is easier to use matches. Note the use of the class selector; The
selector can be any valid string selector (id, attribute, pseudo-classes, etc).

var hasClass = document.querySelector("#link1").matches('.foo.bar');
var hasClass = document.querySelector("#link2").matches('a.bar[href]');

Read Manipulating a list of CSS classes online:

https://riptutorial.com/ 21

https://riptutorial.com/dom/topic/5865/manipulating-a-list-of-css-classes

https://riptutorial.com/ 22

https://riptutorial.com/dom/topic/5865/manipulating-a-list-of-css-classes

Chapter 4: Manipulating Attributes

Remarks

Attributes are a specific type of object in the DOM API. In earlier versions of the DOM API, they
inherited from the Node type, but this was changed in version 4.

In the examples referring to dataset, "modern browsers" specifically excludes versions of Internet
Explorer less than 11. See caniuse.com for more up to date information.

Examples

Getting an attribute

Some attributes are directly accessible as properties of the element (e.g. alt, href, id, title and
value).

var a = document.querySelector("a"),
 url = a.href;

Other attributes, including data-attributes can be accessed as follows:

var a = document.querySelector("a"),
 tooltip = a.getAttribute("aria-label");

Data attributes can also be accessed using dataset (modern browsers)

// Widget
var a = document.querySelector("a"),
 tracker = a.dataset.trackingNumber;

Setting an attribute

Some attributes are directly accessible as properties of the element (e.g. alt, href, id, title and
value).

document.querySelector("a").href = "#top";

Other attributes, including data-attributes can be set as follows:

document.querySelector("a").setAttribute("aria-label", "I like turtles");

Data attributes can also be set using dataset (modern browsers)

var a = document.querySelector("a");

https://riptutorial.com/ 23

http://caniuse.com/#search=dataset

a.dataset.test = "123";
a.dataset['test-2'] = "456";

results in

Widget

Removing an attribute

To remove an attribute, including directly accessible properties

document.querySelector("a").removeAttribute("title");

Data attributes can also be removed as follows (modern browsers):

// remove "data-foo" attribute
delete document.querySelector("a").dataset.foo;

Read Manipulating Attributes online: https://riptutorial.com/dom/topic/5236/manipulating-attributes

https://riptutorial.com/ 24

https://riptutorial.com/dom/topic/5236/manipulating-attributes

Chapter 5: Manipulating Elements

Examples

Cloning elements

An element can be cloned by invoking the cloneNode method on it. If the first parameter passed to
cloneNode is true, the children of the original will also be cloned.

var original = document.getElementsByTagName("li")[0];
var clone = original.cloneNode(true);

Adding an element

In this example we create a new list element with the text "new text", and select the first unordered
list, and its first list element.

let newElement = document.createElement("li");
newElement.innerHTML = "new text";

let parentElement = document.querySelector("ul");
let nextSibling = parentElement.querySelector("li");

When inserting an element, we do it under the parent element, and just before a particular child
element of that parent element.

parentElement.insertBefore(newElement, nextSibling);

The new element is inserted under parentElement and just before nextSibling.

When one wants to insert an element as the last child element of parentElement, the second
argument can be null.

parentElement.insertBefore(newElement, null);

The new element is inserted under parentElement as the last child.

Instead, appendChild() may be used to simply append the child to the children of the parent node.

parentElement.appendChild(newElement);

The new element is inserted under parentElement as the last child.

Replacing an element

In this example we create a new list element with the text "new text", and select the first unordered

https://riptutorial.com/ 25

https://developer.mozilla.org/en-US/docs/Web/API/Node/cloneNode

list, and its first list element.

let newElement = document.createElement("li");
newElement.innerHTML = "new text";

let parentElement = document.querySelector("ul");
let nextSibling = parentElement.querySelector("li");

To replace an element, we use replaceChild:

parentElement.replaceChild(newElement, nextSibling);

nextSibling is removed from the DOM. In its place is now newElement.

Removing an element

An element can be removed by calling remove() on it. Alternatively, one can call removeChild() on
its parent. removeChild() has better browser support than remove().

element.remove();

element, and all its childnodes, are removed from the DOM.

parentElement.removeChild(element);

element, and all its childnodes, are removed from the DOM.

In any case, one can insert this node in the DOM at a later point in time as long as there are still
references to this node.

Append and Prepend methods

JavaScript now have the Append and Prepend methods which was present in jQuery

The main advantage of append and prepend is unlike appendChild and insertBefore, it can take any
number of arguments either HTML element or plain text(which will be converted to text nodes).

To append say 1 div, 1 text node and 1 span

document.body.append(document.createElement('div'),"Hello
world",document.createElement('span'))

This will change the page to the following structure

<body>
 (other elements)
 <div></div>
 "Hello World"

</body>

https://riptutorial.com/ 26

To prepend the same in body

Use

document.body.prepend(document.createElement('div'),"Hello
world",document.createElement('span'))

This will change the page to the following structure

<body>
 <div></div>
 "Hello World"

 (other elements)
</body>

Note that browser supports are

Chrome 54+
Firefox 49+
Opera 39+

Read more at MDN

Append

Prepend

Read Manipulating Elements online: https://riptutorial.com/dom/topic/5200/manipulating-elements

https://riptutorial.com/ 27

https://developer.mozilla.org/en-US/docs/Web/API/ParentNode/append
https://developer.mozilla.org/en-US/docs/Web/API/ParentNode/prepend
https://riptutorial.com/dom/topic/5200/manipulating-elements

Chapter 6: Retrieving Elements

Examples

By ID

document.getElementById('uniqueID')

will retrieve

<div id="uniqueID"></div>

As long as an element with the given ID exists, document.getElementById will return only that
element. Otherwise, it will return null.

Note: IDs must be unique. Multiple elements cannot have the same ID.

By Class Name

document.getElementsByClassName('class-name')

will retrieve

Any
<b class="class-name">tag
<div class="class-name an-extra-class">with that class.</div>

If no existing elements contain the given class, an empty collection will be returned.

Example:

<p class="my-class">I will be matched</p>
<p class="my-class another-class">So will I</p>
<p class="something-else">I won't</p>

var myClassElements = document.getElementByClassName('my-class');
console.log(myClassElements.length); // 2
var nonExistentClassElements = document.getElementByClassName('nope');
console.log(nonExistentClassElements.length); // 0

By Tag Name

document.getElementsByTagName('b')

will retrieve

https://riptutorial.com/ 28

All
of
the b elements.

If no elements with the given tag name exist, an empty collection will be returned.

By CSS Selector

Consider following html code

 <li id=“one” class=“main”>Item 1
 <li id=“two” class=“main”>Item 2
 <li id=“three” class=“main”>Item 3
 <li id=“four”>Item 4

Following dom tree will be constructed based on above html code

 ul

 |

 | | | |

 li li li li
 | | | |
Item 1 Item 2 Item 3 Item 4

We can select elements from DOM tree with the help of CSS selectors. This is possible by means
of two javascript methods viz querySelector() and querySelectorAll().

querySelector() method returns the first element that matches the given css selector from the
DOM.

document.querySelector('li.main')

returns the first li element who's class is main

document.querySelector('#two')

returns the element with id two

NOTE: If no element is found null is returned. If the selector string contains a CSS pseudo-
element, the return will be null.

querySelectorAll() method returns all the elements that matches the given css selector from the
DOM.

document.querySelectorAll('li.main')

https://riptutorial.com/ 29

returns a node list containing all the li elements who's class is main.

NOTE: If no element is found an empty node list is returned. If the selectors string contains a CSS
pseudo-element, the returned elementList will be empty

Query Selectors

In modern browsers [1], it is possible to use CSS-like selector to query for elements in a document
-- the same way as sizzle.js (used by jQuery).

querySelector

Returns the first Element in the document that matches the query. If there is no match, returns null.

// gets the element whose id="some-id"
var el1 = document.querySelector('#some-id');

// gets the first element in the document containing "class-name" in attribute class
var el2 = document.querySelector('.class-name');

// gets the first anchor element in the document
var el2 = document.querySelector('a');

// gets the first anchor element inside a section element in the document
var el2 = document.querySelector('section a');

querySelectorAll

Returns a NodeList containing all the elements in the document that match the query. If none
match, returns an empty NodeList.

// gets all elements in the document containing "class-name" in attribute class
var el2 = document.querySelectorAll('.class-name');

// gets all anchor elements in the document
var el2 = document.querySelectorAll('a');

// gets all anchor elements inside any section element in the document
var el2 = document.querySelectorAll('section a');

Read Retrieving Elements online: https://riptutorial.com/dom/topic/2658/retrieving-elements

https://riptutorial.com/ 30

//caniuse.com/#search=querySelector
//sizzlejs.com/
https://developer.mozilla.org/en-US/docs/Web/API/element
https://developer.mozilla.org/en-US/docs/Web/API/NodeList
https://riptutorial.com/dom/topic/2658/retrieving-elements

Chapter 7: Traversal

Examples

Tree walking

TreeWalker is a generator-like interface that makes recursively filtering nodes in a DOM tree easy
and efficient.

The following code concatenates the value of all Text nodes in the page, and prints the result.

let parentNode = document.body;
let treeWalker = document.createTreeWalker(parentNode, NodeFilter.SHOW_TEXT);

let text = "";
while (treeWalker.nextNode())
 text += treeWalker.currentNode.nodeValue;

console.log(text); // all text in the page, concatenated

The .createTreeWalker function has a signature of

createTreeWalker(root, whatToShow, filter, entityReferenceExpansion)

Parameter Details

root The 'root' node who's subtree is to be traveresed

whatToShow
Optional, unsigned long designating what types of nodes to
show. See NodeFilter for more information.

filter
Optional, An object with an acceptNode method to determine
whether a node, after passing the whatToShow check should be
considered

entityReferenceExpansion
Obsolete and optional, Is a Boolean flag indicating if when
discarding an EntityReference its whole sub-tree must be
discarded at the same time.

Iterating over nodes

The NodeIterator interface provides methods for iterating over nodes in a DOM tree.

Given a document like this one:

<html>
<body>

https://riptutorial.com/ 31

https://developer.mozilla.org/en-US/docs/Web/API/Document/createTreeWalker
https://developer.mozilla.org/en-US/docs/Web/API/NodeIterator

 <section class="main">

 List Item
 List Item
 List Item
 List Item

 </section>
</body>
</html>

One could imagine an iterator to get the elements:

let root = document.body;
let whatToShow = NodeFilter.SHOW_ELEMENT | NodeFilter.SHOW_TEXT;
let filter = (node) => node.nodeName.toLowerCase() === 'li' ?
 NodeFilter.FILTER_ACCEPT :
 NodeFilter.FILTER_REJECT;
let iterator = document.createNodeIterator(root, whatToShow, filter);
var node;
while (node = iterator.nextNode()) {
 console.log(node);
}

Example adapted from the example provided by the Mozilla Contributors from the
document.createNodeIterator() documentation on the Mozilla Developer Network, licensed under
CC-by-SA 2.5.

This will log something like:

List Item
List Item
List Item
List Item

Note that this is similar to the TreeWalker iterface, but provides only nextNode() and previousNode()
functionality.

Read Traversal online: https://riptutorial.com/dom/topic/5261/traversal

https://riptutorial.com/ 32

https://developer.mozilla.org/en-US/docs/Web/API/Document/createNodeIterator$history
https://developer.mozilla.org/en-US/docs/Web/API/Document/createNodeIterator
http://creativecommons.org/licenses/by-sa/2.5/
http://stackoverflow.com/documentation/dom/drafts/74478
https://riptutorial.com/dom/topic/5261/traversal

Chapter 8: Using CSS styles

Remarks

The interfaces detailed herein were introduced in DOM Level 2 Style, which came out at
approximately the same time as DOM Level 2 Core and is thus considered "part of DOM version
2".

Examples

Reading and changing inline styles

Inline style

You can manipulate the inline CSS style of an HTML element by simply reading or editing its style
property.

Assume the following element:

<div id="element_id" style="color:blue;width:200px;">abc</div>

With this JavaScript applied:

var element = document.getElementById('element_id');

// read the color
console.log(element.style.color); // blue

//Set the color to red
element.style.color = 'red';

//To remove a property, set it to null
element.style.width = null;
element.style.height = null;

However, if width: 200px; were set in an external CSS stylesheet, element.style.width = null
would have no effect. In this case, to reset the style, you would have to set it to initial:
element.style.width = 'initial'.

Reading and changing styles from a stylesheet

element.style only reads CSS properties set inline, as an element attribute. However, styles are
often set in an external stylesheet. The actual style of an element can be accessed with
window.getComputedStyle(element). This function returns an object containing the actual computed
value of all the styles.

Similar to the Reading and changing inline styles example, but now the styles are in a stylesheet:

https://riptutorial.com/ 33

https://www.w3.org/TR/DOM-Level-2-Style/
https://www.w3.org/TR/DOM-Level-2-Core/

<div id="element_id">abc</div>
<style type="text/css">
 #element_id {
 color:blue;
 width:200px;
 }
</style>

JavaScript:

var element = document.getElementById('element_id');

// read the color
console.log(element.style.color); // '' -- empty string
console.log(window.getComputedStyle(element).color); // rgb(0, 0, 255)

// read the width, reset it, then read it again
console.log(window.getComputedStyle(element).width); // 200px
element.style.width = 'initial';
console.log(window.getComputedStyle(element).width); // 885px (for example)

Read Using CSS styles online: https://riptutorial.com/dom/topic/5595/using-css-styles

https://riptutorial.com/ 34

https://riptutorial.com/dom/topic/5595/using-css-styles

Credits

S.
No

Chapters Contributors

1
Getting started with
DOM

Blackus, Community, D.J., Dr. J. Testington, Henrique Barcelos,
Jonas S, Leon Byford, maioman, Mike McCaughan, Mikhail,
mnoronha, Mottie, Noushad PP, Roko C. Buljan, rvighne,
Scimonster, Shog9, Sumurai8, Tushar

2 Events
Bamieh, Ian, Jeremy Banks, kamoroso94, Matas Vaitkevicius,
Mike McCaughan, Mottie, Rap, The Alpha, Thriggle, zer00ne

3
Manipulating a list of
CSS classes

Mike McCaughan, Mottie, Shog9

4
Manipulating
Attributes

Mike McCaughan, Mottie

5
Manipulating
Elements

Mike McCaughan, mnoronha, Sagar V, Sumurai8

6 Retrieving Elements
geeksal, Henrique Barcelos, maioman, Mike C, Mike
McCaughan

7 Traversal Jonas S, Mike McCaughan, rvighne

8 Using CSS styles Blackus, Mike McCaughan, Scimonster

https://riptutorial.com/ 35

https://riptutorial.com/contributor/1919388/blackus
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1630329/d-j-
https://riptutorial.com/contributor/6594854/dr--j--testington
https://riptutorial.com/contributor/1798341/henrique-barcelos
https://riptutorial.com/contributor/1492826/jonas-s
https://riptutorial.com/contributor/3205259/leon-byford
https://riptutorial.com/contributor/2417031/maioman
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/145346/mottie
https://riptutorial.com/contributor/5466933/noushad-pp
https://riptutorial.com/contributor/383904/roko-c--buljan
https://riptutorial.com/contributor/1079573/rvighne
https://riptutorial.com/contributor/3187556/scimonster
https://riptutorial.com/contributor/811/shog9
https://riptutorial.com/contributor/2209007/sumurai8
https://riptutorial.com/contributor/2025923/tushar
https://riptutorial.com/contributor/5384679/bamieh
https://riptutorial.com/contributor/21061/ian
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/2727710/kamoroso94
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/145346/mottie
https://riptutorial.com/contributor/88373/rap
https://riptutorial.com/contributor/741747/the-alpha
https://riptutorial.com/contributor/2701677/thriggle
https://riptutorial.com/contributor/2813224/zer00ne
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/145346/mottie
https://riptutorial.com/contributor/811/shog9
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/145346/mottie
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/2427065/sagar-v
https://riptutorial.com/contributor/2209007/sumurai8
https://riptutorial.com/contributor/3212574/geeksal
https://riptutorial.com/contributor/1798341/henrique-barcelos
https://riptutorial.com/contributor/2417031/maioman
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/1492826/jonas-s
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/1079573/rvighne
https://riptutorial.com/contributor/1919388/blackus
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/3187556/scimonster

	About
	Chapter 1: Getting started with DOM
	Remarks
	Versions
	W3C DOM
	Selectors API Level
	Examples
	Retrieving existing html elements

	Retrieve by id
	Retrieve by tag name
	Retrieve by class
	Retrieve by name
	Getting started
	Wait for DOM to be loaded

	Alternative to DOMContentLoaded
	Use innerHTML
	HTML markup

	DOM element output:
	Chapter 2: Events
	Parameters
	Remarks

	Origin of events
	Instead

	Capturing & Bubbling
	Examples
	Introduction

	Basic Event Listener
	Removing event listeners

	.bind with removeListener
	listen to an event only once
	Waiting for the document to load
	Event Object

	e.stopPropagation();
	e.preventDefault();
	e.target vs e.currentTarget
	Event Bubbling and Capturing

	Real-world use cases
	Event Delegation
	Triggering custom events

	Chapter 3: Manipulating a list of CSS classes
	Examples
	Adding a class
	Removing a class
	Testing for a class

	Chapter 4: Manipulating Attributes
	Remarks
	Examples
	Getting an attribute
	Setting an attribute
	Removing an attribute

	Chapter 5: Manipulating Elements
	Examples
	Cloning elements
	Adding an element
	Replacing an element
	Removing an element
	Append and Prepend methods

	Chapter 6: Retrieving Elements
	Examples
	By ID
	By Class Name
	By Tag Name
	By CSS Selector
	Query Selectors

	querySelector
	querySelectorAll
	Chapter 7: Traversal
	Examples
	Tree walking
	Iterating over nodes

	Chapter 8: Using CSS styles
	Remarks
	Examples
	Reading and changing inline styles

	Inline style
	Reading and changing styles from a stylesheet

	Credits

