
.net-core

#.net-core

Table of Contents

About 1

Chapter 1: Getting started with .net-core 2

Remarks 2

Composition 2

Versions 2

.NET Core 2

Examples 3

Installation or Setup 3

Building a Hello World Sample Application 3

Installation from a binary archive 4

Chapter 2: .NET Core command line interface 6

Examples 6

Create .NET Core "Hello World" console project 6

Publish and run a .NET Core project 6

Scaffolding other project types 6

C# Templates 7

F# Templates 7

Scaffolding projects in other languages 7

Creating a NuGet package 7

Running automated tests 7

Chapter 3: .NET Core with Docker 9

Remarks 9

Examples 9

Dockerfile sample 9

Chapter 4: Building libraries with .NET Core 10

Examples 10

Targeting .NET Standard 10

Targeting both .NET Standard and .NET Framework 4.x 10

Producing a NuGet package for a library 10

Platform-specific dependencies 10

Adding a project reference to a library 11

Chapter 5: Components and Versioning in .NET Core 12

Introduction 12

Remarks 12

Components 12

Components in .NET Core installations 12

Examples 13

Identifying Versions 13

Selecting Versions 14

Chapter 6: Getting started with appsetting.json 15

Remarks 15

Examples 15

Simple configuration 15

Using configuration object for settings 15

Chapter 7: Installing .NET Core on Linux 17

Examples 17

Generic installation for Linux distributions 17

Chapter 8: The global.json 18

Remarks 18

Examples 18

Schema 18

Chapter 9: Understanding System.Runtime vs. mscorlib 19

Remarks 19

Examples 19

Popular Error: Misleading NuGet the wrong way 19

Popular Error: Add a NuGet package which was not made for netstandard / netcoreapp (System 20

Popular Error: Misunderstanding the outcome 20

Popular Error: Accidently adding a mscorlib library as a dependencies to a netstandard/net 21

Credits 23

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: -net-core

It is an unofficial and free .net-core ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official .net-core.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/dot-net-core
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with .net-core

Remarks

.NET Core is a general purpose development platform maintained by Microsoft and the .NET
community on GitHub.

The following characteristics best define .NET Core:

Flexible deployment: Can be included in your app or installed side-by-side user- or machine-
wide.

•

Cross-platform: Runs on Windows, macOS and Linux; can be ported to other OSes. The
supported Operating Systems (OS), CPUs and application scenarios will grow over time,
provided by Microsoft, other companies, and individuals. .NET can also be used in device,
cloud, and embedded/IoT scenarios.

•

Command-line tools: All product scenarios can be exercised at the command-line.•
Compatible: .NET Core is compatible with .NET Framework, Xamarin and Mono, via the
.NET Standard Library.

•

Open source: The .NET Core platform is open source, using MIT and Apache 2 licenses.
Documentation is licensed under CC-BY. .NET Core is a .NET Foundation project.

•

Supported by Microsoft: .NET Core is supported by Microsoft, per .NET Core Support•

Composition

.NET Core is composed of the following parts:

A .NET runtime which provides a type system, assembly loading, a garbage collector,
native interop, and other basic services.

•

A set of framework libraries which provide primitive data types, app composition types,
and fundamental utilities.

•

A set of SDK tools and language compilers that enable the base developer experience,
available in the .NET Core SDK.

•

The 'dotnet' app host which launches .NET Core apps. The app host selects and hosts the
runtime, provides an assembly loading policy, and launches the app. The same host is also
used to launch SDK tools in a similar fashion.

•

(Source: official documentation.)

Versions

.NET Core

https://riptutorial.com/ 2

https://docs.microsoft.com/en-us/dotnet/articles/core/index

Version Release Date

1.0 2016-06-27

1.1.1 2017-03-07

Examples

Installation or Setup

Install .NET Core on macOS 10.11+, after install homebrew:

brew update
brew install openssl
mkdir -p /usr/local/lib
ln -s /usr/local/opt/openssl/lib/libcrypto.1.0.0.dylib /usr/local/lib/
ln -s /usr/local/opt/openssl/lib/libssl.1.0.0.dylib /usr/local/lib/

Install .NET Core SDK from https://go.microsoft.com/fwlink/?LinkID=835011

Official Microsoft .NET Core page with installation guides for Windows, Linux, Mac and Docker

Detailed instructions on getting .net-core set up or installed.

Building a Hello World Sample Application

Create an empty directory somewhere ...

mkdir HelloWorld
cd HelloWorld

Then use the built in scaffolding technology to create a Hello World sample

dotnet new console -o

This command creates two files:

HelloWorld.csproj describes the project dependencies, settings, and Target Framework•
Program.cs which defines the source code for the main entry point and the console emitting of
"Hello World".

•

If the dotnet new command fails, make sure you have installed .NET Core properly. Open the
Program.cs file in your favorite editor to inspect it:

namespace ConsoleApplication
{
 public class Program
 {
 public static void Main(string[] args)
 {

https://riptutorial.com/ 3

https://github.com/dotnet/core/releases/tag/1.0.0
https://github.com/dotnet/core/releases/tag/1.1.1
https://go.microsoft.com/fwlink/?LinkID=835011
https://www.microsoft.com/net/core

 Console.WriteLine("Hello World!");
 }
 }
}

To restore the project dependencies and the .NET runtime, execute

dotnet restore

To compile the application and execute it, enter

dotnet run

This last command prints "Hello World" to the console.

Installation from a binary archive

Note: These instructions are targeted at .NET Core 1.0.4 & 1.1.1 SDK 1.0.1 and higher.

When using binary archives to install, we recommend the contents be extracted to /opt/dotnet and
a symbolic link created for dotnet. If an earlier release of .NET Core is already installed, the
directory and symbolic link may already

sudo mkdir -p /opt/dotnet
sudo tar zxf [tar.gz filename] -C /opt/dotnet
sudo ln -s /opt/dotnet/dotnet /usr/local/bin

Ubuntu installation

dotnet-host-ubuntu-x64.deb
dotnet-hostfxr-ubuntu-x64.deb
dotnet-sharedframework-ubuntu-x64.deb
dotnet-sdk-ubuntu-x64.1.0.1.deb

Set up package source

The first step is to establish the source feed for the package manager. This is only needed if you
have not previously set up the source or if you are installing on Ubuntu 16.10 for the first time.

Ubuntu 14.04 and Linux Mint 17

Commands

sudo sh -c 'echo "deb [arch=amd64] https://apt-mo.trafficmanager.net/repos/dotnet-release/
trusty main" > /etc/apt/sources.list.d/dotnetdev.list'
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys 417A0893
sudo apt-get update
sudo apt-get install dotnet-dev-1.0.1

Installed packages

https://riptutorial.com/ 4

dotnet-host-ubuntu-x64.1.0.1.deb
dotnet-hostfxr-ubuntu-x64.1.0.1.deb
dotnet-sharedframework-ubuntu-x64.1.1.1.deb
dotnet-sdk-ubuntu-x64.1.0.1.deb

Ubuntu 16.04 and Linux Mint 18

Commands

sudo sh -c 'echo "deb [arch=amd64] https://apt-mo.trafficmanager.net/repos/dotnet-release/
xenial main" > /etc/apt/sources.list.d/dotnetdev.list'
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys 417A0893
sudo apt-get update
sudo apt-get install dotnet-dev-1.0.1

Installed packages

dotnet-host-ubuntu.16.04-x64.1.0.1.deb
dotnet-hostfxr-ubuntu.16.04-x64.1.0.1.deb
dotnet-sharedframework-ubuntu.16.04-x64.1.1.1.deb
dotnet-sdk-ubuntu.16.04-x64.1.0.1.deb

Ubuntu 16.10

Commands

sudo sh -c 'echo "deb [arch=amd64] https://apt-mo.trafficmanager.net/repos/dotnet-release/
yakkety main" > /etc/apt/sources.list.d/dotnetdev.list'
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys 417A0893
sudo apt-get update
sudo apt-get install dotnet-dev-1.0.1

Installed packages

dotnet-hostfxr-ubuntu.16.10-x64.1.0.1.deb
dotnet-host-ubuntu.16.10-x64.1.0.1.deb
dotnet-sharedframework-ubuntu.16.10-x64.1.1.1.deb
dotnet-sdk-ubuntu.16.10-x64.1.0.1.deb

source Official Documentation

Read Getting started with .net-core online: https://riptutorial.com/dot-net-core/topic/1024/getting-
started-with--net-core

https://riptutorial.com/ 5

https://github.com/dotnet/core/blob/master/release-notes/download-archives/1.1.1-download.md
https://riptutorial.com/dot-net-core/topic/1024/getting-started-with--net-core
https://riptutorial.com/dot-net-core/topic/1024/getting-started-with--net-core

Chapter 2: .NET Core command line interface

Examples

Create .NET Core "Hello World" console project

Create a new project.json and example Program.cs:

dotnet new

Restore needed packages:

dotnet restore

Compile and run the example:

dotnet run

Publish and run a .NET Core project

Go to the project.json directory and publish:

dotnet publish

It will print the output directory of the operation, enter the directory and run the published project:

dotnet <project output>.dll

The default folder will be: <project root>/bin/<configuration>/<target framework>/publish

For example: example/bin/Debug/netcoreapp1.0/publish

If you have built the project previously, you can publish using:

dotnet --no-build publish

Important: Make sure you publish the project from the same user who restored the packages or
you might publish it without the required libraries.

You can specify the configuration with the -c <Configuration> option. To publish in Release mode,
use dotnet publish -c Release.

Scaffolding other project types

Using dotnet new will scaffold a new console application. To scaffold other types of projects, use

https://riptutorial.com/ 6

the -t or --type flag:

dotnet new -t web
dotnet restore
dotnet run

The available templates vary by language.

C# Templates

console (default) - A console application.•
web - An ASP.NET Core application.•
lib - A class library.•
xunittest - An xUnit test project.•

F# Templates

console (default) - A console application.•
lib - A class library.•

Scaffolding projects in other languages

By default, dotnet new creates C# projects. You can use the -l or --lang flag to scaffold projects in
other languages:

dotnet new -l f#
dotnet restore
dotnet run

Currently, dotnet new supports C# and F#.

Creating a NuGet package

To create a NuGet package from a project, run this command from a directory that contains
project.json:

dotnet pack

The resulting .nupkg file will be named and versioned according to the properties in project.json. If
there are multiple frameworks targeted in the project file, the package will support all of them.

Running automated tests

Running dotnet test from inside a folder that contains a test project will launch the test runner. The
test runner will discover and run the tests in the project.

To be compatible with dotnet test, the project.json file must contain a testRunner property and a

https://riptutorial.com/ 7

dependency on a compatible test runner package:

{
 "dependencies": {
 "dotnet-test-xunit": "2.2.0-preview2-build1029",
 "Microsoft.NETCore.App": {
 "type": "platform",
 "version": "1.0.0"
 },
 "xunit": "2.1.0"
 },
 "frameworks": {
 "netcoreapp1.0": {
 "imports": ["dotnet", "portable-net45+win8"]
 }
 },
 "testRunner": "xunit"
}

Read .NET Core command line interface online: https://riptutorial.com/dot-net-core/topic/4477/-
net-core-command-line-interface

https://riptutorial.com/ 8

https://riptutorial.com/dot-net-core/topic/4477/-net-core-command-line-interface
https://riptutorial.com/dot-net-core/topic/4477/-net-core-command-line-interface

Chapter 3: .NET Core with Docker

Remarks

Fill with examples of using Docker on .NET Core platform, official base images for .NET Core
application and self-hosted .NET Core app as well

Examples

Dockerfile sample

.NET Core app should be published using dotnet publish

FROM microsoft/dotnet:latest
COPY bin/Debug/netcoreapp1.0/publish/ /root/
EXPOSE 5000
ENTRYPOINT dotnet /root/sampleapp.dll

Read .NET Core with Docker online: https://riptutorial.com/dot-net-core/topic/4224/-net-core-with-
docker

https://riptutorial.com/ 9

https://riptutorial.com/dot-net-core/topic/4224/-net-core-with-docker
https://riptutorial.com/dot-net-core/topic/4224/-net-core-with-docker

Chapter 4: Building libraries with .NET Core

Examples

Targeting .NET Standard

{
 "description": "My awesome library",
 "dependencies": {
 "NETStandard.Library": "1.6.0"
 },
 "frameworks": {
 "netstandard1.3": { }
 }
}

A library that targets netstandard1.3 can be used on any framework that supports .NET Standard
1.3 or later. Choosing a lower .NET Standard version for a library means that more projects can
use it, but less APIs are available.

Targeting both .NET Standard and .NET Framework 4.x

{
 "description": "My awesome library",
 "dependencies": { },
 "frameworks": {
 "net40": { },
 "netstandard1.3": {
 "dependencies": {
 "NETStandard.Library": "1.6.0"
 }
 }
 }
}

By targeting both net40 and netstandard1.3, the library will work in both .NET 4.0+ projects and
.NET Standard projects. It's important to move the NETStandard.Library dependency into the
netstandard1.3 section so it's only referenced when building for that framework.

Producing a NuGet package for a library

Any project that targets netstandard1.X can be packed into a NuGet package by running:

dotnet pack

The resulting package can be uploaded to NuGet, MyGet, or hosted in a local package source.

Platform-specific dependencies

https://riptutorial.com/ 10

https://www.nuget.org/
https://www.myget.org/
https://docs.nuget.org/create/hosting-your-own-nuget-feeds

You can specify different dependencies for each platforms:

"net45": {
 "frameworkAssemblies": {
 "System.Linq": "4.1.0"
 }
},
"netstandard1.3": {
 "dependencies": {
 "NETStandard.Library": "1.6.0",
 "System.Linq": "4.1.0-rc2"
 }
},
"netstandard1.4": {
 "dependencies": {
 "NETStandard.Library": "1.6.0",
 "System.Linq": "4.1.0"
 }
}

When this project is compiled and packed, each framework target will use a different set of
dependencies:

net45 (projects targeting .NET 4.5+) will use the System.Linq assembly from the GAC.•
netstandard1.3 (.NET Core projects targeting .NET Standard 1.3) will use the
NETStandard.Library version 1.6.0 NuGet package, and the System.Linq prerelease version
4.1.0-rc2 NuGet package.

•

netstandard1.4 will use the same version of NETStandard.Library, but the release 4.1.0 version
of System.Linq.

•

Adding a project reference to a library

If you have multiple libraries in the same solution, you can add local (project) references between
them:

{
 "dependencies": {
 "NETStandard.Library": "1.6.0",
 "MyOtherLibrary": {
 "target": "project"
 }
 },
 "frameworks": {
 "netstandard1.3": { }
 }
}

The target: project property value tells NuGet to look in the current solution for MyOtherLibrary,
instead of in your package sources.

Read Building libraries with .NET Core online: https://riptutorial.com/dot-net-
core/topic/3290/building-libraries-with--net-core

https://riptutorial.com/ 11

https://riptutorial.com/dot-net-core/topic/3290/building-libraries-with--net-core
https://riptutorial.com/dot-net-core/topic/3290/building-libraries-with--net-core

Chapter 5: Components and Versioning in
.NET Core

Introduction

This document covers the different components that make up a .NET Core distribution and how
they are versioned. This document currently covers the 1.x releases.

Remarks

How components in .NET Core are versioned.

Components

.NET Core consists of multiple components that are each versioned independently and can often
be mixed and matched.

Shared Framework. This contains the APIs and the Virtual Machine and other runtime
services needed for running .NET Core applications.

The current .NET Core Virtual Machine is called CoreCLR. This executes the .NET
bytecode by compiling it JIT and provides various runtime services including a garbage
collector. The complete source code for CoreCLR is available at
https://github.com/dotnet/coreclr.

○

The .NET Core standard APIs are implemented in CoreFX. This provides
implementations of all your favourite APIs such as System.Runtime, System.Theading and
so on. The source code for CoreFX is available at https://github.com/dotnet/corefx.

○

•

Host is also called the muxer or driver. This components represents the dotnet command
and is responsible for deciding what happens next. The source for this is available at
https://github.com/dotnet/core-setup.

•

SDK is also sometimes called the CLI. It consists of the various tools (dotnet subcommands)
and their implementations that deal with building code. This includes handling the restoring
of dependencies, compiling code, building binaries, producing packages and publishing
standalone or framework dependent packages. The SDK itself consists of the CLI, which
handles command line operations (at https://github.com/dotnet/cli) and various subprojects
that implement the various operations the CLI needs to do.

•

Components in .NET Core installations

https://riptutorial.com/ 12

https://github.com/dotnet/coreclr
https://github.com/dotnet/corefx
https://github.com/dotnet/core-setup
https://github.com/dotnet/cli)

Various official and unoffical packages, tarballs, zips and installers for .NET Core (including those
available on https://dot.net/core) provide .NET Core in many variants. Two common ones are
SDKs and Runtimes.

Each SDK install or Runtime install contains a number (possibly 0) of hosts, sdk and shared
framework components described above.

.NET Core Runtime contains

1 version of Shared Framework○

1 version of the Host○

•

.NET Core SDK contains

1 or more versions of the Shared Framework (varies depending on the version of the
SDK)

○

1 version of the Host○

1 version of the SDK○

•

Examples

Identifying Versions

Each .NET Core component (SDK, Host and Shared Framework) is versioned independently.

You can find the version for each of them separately.

SDK

You can use the --version option to dotnet to see the SDK version. For example:

$ ~/dotnet-1.1.1/dotnet --version
1.0.0-preview2-1-003176

dotnet --info also shows the SDK version.

•

Host

You can run dotnet by itself without any arguments or options to see the version of the host.

$ ~/dotnet-1.1.1/dotnet

Microsoft .NET Core Shared Framework Host

 Version : 1.1.0
 Build : 362e48a95c86b40cd1f2ef3d08741f7fed897956

Usage: dotnet [common-options] [[options] path-to-application]
...

•

Shared Framework•

https://riptutorial.com/ 13

https://dot.net/core)

There no command currently to display the avaialble shared frameworks. I use ls
/path/to/where/you/installed/dotnet/shared/Microsoft.NETCore.App which relies on internal
implementation details. For example:

$ ls ~/dotnet-1.1.1/shared/Microsoft.NETCore.App/
1.1.1

Selecting Versions

It's possible to have multiple .NET Core SDKs and Runtimes available on disk. You can select the
versions for each separately.

To select the version of the SDK to use, use global.json.

To select the version of the shared framework to use, target the specified framwork in the .csproj
file (or project.json if you are still using that).

Read Components and Versioning in .NET Core online: https://riptutorial.com/dot-net-
core/topic/9592/components-and-versioning-in--net-core

https://riptutorial.com/ 14

https://docs.microsoft.com/en-us/dotnet/articles/core/tools/global-json
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/project-json-to-csproj#frameworks
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/project-json-to-csproj#frameworks
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/project-json-to-csproj#frameworks
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/project-json-to-csproj#frameworks
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/project-json-to-csproj#frameworks
https://riptutorial.com/dot-net-core/topic/9592/components-and-versioning-in--net-core
https://riptutorial.com/dot-net-core/topic/9592/components-and-versioning-in--net-core

Chapter 6: Getting started with
appsetting.json

Remarks

If you need more info, you can go and see official microsoft documentation

Examples

Simple configuration

Add this text to appsettings.json

{
 "key1": "value1",
 "key2": 2,

 "subsectionKey": {
 "suboption1": "subvalue1"
 }
}

Now you can use this configuration in your app, in the way like this

public class Program
{
 static public IConfigurationRoot Configuration { get; set; }
 public static void Main(string[] args = null)
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json");
 Configuration = builder.Build();

 Console.WriteLine($"option1 = {Configuration["key1"]}");
 Console.WriteLine($"option2 = {Configuration["key2"]}");
 Console.WriteLine(
 $"option1 = {Configuration["subsectionKey:suboption1"]}");
 }
}

Using configuration object for settings

Create class like a class below

public class MyOptions
{
 public MyOptions()
 {

https://riptutorial.com/ 15

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration

 // Set default value, if you need it.
 Key1 = "value1_from_ctor";
 }
 public string Key1 { get; set; }
 public int Key2 { get; set; }
}

Then you need to add this code to your Startup class

public class Startup
{
 // Some default code here

 public IConfigurationRoot Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services)
 {
 // Adds services required for using options.
 services.AddOptions();

 // Register the IConfiguration instance which MyOptions binds against.
 services.Configure<MyOptions>(Configuration);

 }
}

Then you could use it in your controllers in a way like presented below

public class TestController : Controller
{
 private readonly MyOptions _optionsAccessor;

 public TestController (IOptions<MyOptions> optionsAccessor)
 {
 _optionsAccessor = optionsAccessor.Value;
 }

 public IActionResult Index()
 {
 var key1 = _optionsAccessor.Key1 ;
 var key2 = _optionsAccessor.Key1 ;
 return Content($"option1 = {key1}, option2 = {key2}");
 }
}

Read Getting started with appsetting.json online: https://riptutorial.com/dot-net-
core/topic/9057/getting-started-with-appsetting-json

https://riptutorial.com/ 16

https://riptutorial.com/dot-net-core/topic/9057/getting-started-with-appsetting-json
https://riptutorial.com/dot-net-core/topic/9057/getting-started-with-appsetting-json

Chapter 7: Installing .NET Core on Linux

Examples

Generic installation for Linux distributions

If you have one of the supported Linux distributions, you can follow the steps on the .NET Core
website: https://www.microsoft.com/net

If you have an unsupported distribution:

Download the .NET Core SDK from the links, picking the distribution closer to the used one.

https://www.microsoft.com/net/download

If you have support for deb packages, you can install Ubuntu/Debian packages.

If you have support for yum packages, you can install Fedora packages.

Make sure your system has at least:

llvm-3.7.1-r3
libunwind-1.1-r1
icu-57.1
lttng-ust-2.8.1
openssl-1.0.2h-r2
curl-7.49.0

Read Installing .NET Core on Linux online: https://riptutorial.com/dot-net-core/topic/3354/installing-
-net-core-on-linux

https://riptutorial.com/ 17

https://www.microsoft.com/net
https://www.microsoft.com/net/download
https://riptutorial.com/dot-net-core/topic/3354/installing--net-core-on-linux
https://riptutorial.com/dot-net-core/topic/3354/installing--net-core-on-linux

Chapter 8: The global.json

Remarks

The global.json file is extremely powerful and unique to .NET Core and ASP.NET Core applications.

Examples

Schema

Schema store:

{
 "title": "JSON schema for the ASP.NET global configuration files",
 "$schema": "http://json-schema.org/draft-04/schema#",

 "type": "object",
 "additionalProperties": true,
 "required": ["projects"],

 "properties": {
 "projects": {
 "type": "array",
 "description": "A list of project folders relative to this file.",
 "items": {
 "type": "string"
 }
 },
 "packages": {
 "type": "string",
 "description": "The location to store packages"
 },
 "sdk": {
 "type": "object",
 "description": "Specify information about the SDK.",
 "properties": {
 "version": {
 "type": "string",
 "description": "The version of the SDK to use."
 },
 "architecture": {
 "enum": ["x64", "x86"],
 "description": "Specify which processor architecture to target."
 },
 "runtime": {
 "enum": ["clr", "coreclr"],
 "description": "Chose which runtime to target."
 }
 }
 }
 }
}

Read The global.json online: https://riptutorial.com/dot-net-core/topic/1569/the-global-json

https://riptutorial.com/ 18

https://ievangelist.github.io/blog/the-global-json/
http://json.schemastore.org/global
https://riptutorial.com/dot-net-core/topic/1569/the-global-json

Chapter 9: Understanding System.Runtime
vs. mscorlib

Remarks

Every .NET library and programming language utilize a set of elementary data types like
System.Int32, System.Object, System.Type or System.Uri. These data types form the base of all other
structures including all custom written .NET libraries. All these types are hosted in a base library,
which is either mscorlib or System.Runtime.

The libraries which can be used with .NET Core are based on System.Runtime core library while for
the .NET Framework (the Windows component) they are based on mscorlib. This essential
difference lead to...

the incompatibility of older libraries since they expect a type System.Object, mscorlib while a
.NET Core library would expect System.Object, System.Runtime.

•

a type forwarding facade library called System.Runtime to the mscorlib in the .NET Framework
. This library is otherwise (nearly) empty but enables the usage of System.Runtime based PCL
libraries on the .NET Framework.

•

a type forwarding mscorlib to the System.Runtime in a future version of .NET Core.•
the introduction of the portable class library concept (PCL) and as a second generation the
netstandard as a method of unification between the two core libraries.

•

AND out of that, countless questions on Stack Overflow.

Examples

Popular Error: Misleading NuGet the wrong way

.NET Core project.json supports NuGet importing (a.k.a. lying according to this SO answer). It is
impossible to include a mscorlib based library due to an import statement.

{
 "version": "1.0.0-*",

 "dependencies": {
 "Microsoft.AspNet.Identity.EntityFramework": "2.2.1",
 "NETStandard.Library": "1.6.0"
 },

 "frameworks": {
 "netstandard1.6": {
 "imports": [
 "net461"
]
 }
 }

https://riptutorial.com/ 19

http://stackoverflow.com/a/38688430/2410379

}

Imports only work with portable class libraries (which are System.Runtime based) or deprecated
target framework monikers which are also System.Runtime based (e.g. dotnet or dnxcore)

Popular Error: Add a NuGet package which was not made for netstandard /
netcoreapp (System.Runtime)

In the example project.json below, an assembly Microsoft.AspNet.Identity.EntityFramework was
added which is mscorlib based.

{
 "version": "1.0.0-*",

 "dependencies": {
 "Microsoft.AspNet.Identity.EntityFramework": "2.2.1",
 "NETStandard.Library": "1.6.0"
 },

 "frameworks": {
 "netstandard1.6": { }
 }
}

The author of the assembly Microsoft.AspNet.Identity.EntityFramework has not ported the NuGet
package yet to netstandard (they actually did it, they just renamed the package as well
Microsoft.AspNetCore.Identity.EntityFrameworkCore ;))

If you encounter a package you need and is not yet on netstandard, please contact the author and
- if possible - help porting it.

Popular Error: Misunderstanding the outcome

Targeting multiple frameworks with project.json is simple. However the result are two different
compilations. Take the following example:

{
 "version": "1.0.0-*",

 "dependencies": {
 "NETStandard.Library": "1.6.0",
 "System.Collections.Immutable": "1.2.0"
 },

 "frameworks": {
 "netstandard1.3": { },
 "net451": { }
 }
}

The compilation process for the project.json file will lead to two resulting artifacts:

https://riptutorial.com/ 20

One compiled dll for the System.Runtime based netstandard world which can be used on .NET
Core, .NET Framework (via type forwarders) and Xamarin products (via type forwarders).
This dll has references to System.Runtime and System.Collections.Immutable.

•

Another compiled dll directly for the mscorlib based .NET Framework. This dll will have
references to mscorlib and System.Collection.Immutable.

•

However, it is important to understand that the netstandard1.0 based System.Collections.Immutable
will utilize different System.Runtime implementations for each build dll at runtime. The System.Runtime
which comes with .NET Core does not have any assembly dependencies on its own (since it
implements the core library). The System.Runtime used for with the .NET Framework has references
(for the type forwarders) to the .NET Framework assemblies mscorlib, System.Core, System and
System.ComponentModel.Composition.

Popular Error: Accidently adding a mscorlib library as a dependencies to a
netstandard/netcoreapp

Another popular error is the referring of packages which does not satisfy all framework on the
global scope when multiple frameworks are targeted.

{
 "version": "1.0.0-*",

 "dependencies": {
 "NETStandard.Library": "1.6.0",
 "Microsoft.AspNet.Identity.EntityFramework": "2.2.1"
 },

 "frameworks": {
 "netstandard1.3": { },
 "net451": { }
 }
}

The (meta) library NETStandard.Library works fine in this example, since it targets both
netstandard1.3 and net451. However the library Microsoft.AspNet.Identity.EntityFramework does
only target the .NET Framework net and mscorlib and therefore cannot be used for a netstandard
output.

Either search for a library (version) which cover both frameworks or add the library in the
conditional dependencies below the framework.

{
 "version": "1.0.0-*",

 "dependencies": {
 "NETStandard.Library": "1.6.0"
 },

 "frameworks": {
 "netstandard1.3": { },
 "net451": {
 "dependencies": {

https://riptutorial.com/ 21

 "Microsoft.AspNet.Identity.EntityFramework": "2.2.1",
 }
 }
 }
}

In this case, the library can only be used in conditional #ifdef blocks for the net451 build.

Read Understanding System.Runtime vs. mscorlib online: https://riptutorial.com/dot-net-
core/topic/5994/understanding-system-runtime-vs--mscorlib

https://riptutorial.com/ 22

https://riptutorial.com/dot-net-core/topic/5994/understanding-system-runtime-vs--mscorlib
https://riptutorial.com/dot-net-core/topic/5994/understanding-system-runtime-vs--mscorlib

Credits

S.
No

Chapters Contributors

1
Getting started with
.net-core

4444, alvaro, Community, Eidolon, gbellmann, hmnzr, jnovo,
Max Cheetham, Ming Tong, Thomas

2
.NET Core command
line interface

Nate Barbettini, Stefano d'Antonio

3
.NET Core with
Docker

hmnzr

4
Building libraries with
.NET Core

Chris Forbes, hmnzr, Nate Barbettini

5
Components and
Versioning in .NET
Core

omajid

6
Getting started with
appsetting.json

Egorikas

7
Installing .NET Core
on Linux

Stefano d'Antonio

8 The global.json David Pine

9
Understanding
System.Runtime vs.
mscorlib

David Pine, Thomas

https://riptutorial.com/ 23

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/1861742/alvaro
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3064195/eidolon
https://riptutorial.com/contributor/3465108/gbellmann
https://riptutorial.com/contributor/907844/hmnzr
https://riptutorial.com/contributor/3042204/jnovo
https://riptutorial.com/contributor/6834849/max-cheetham
https://riptutorial.com/contributor/2346318/ming-tong
https://riptutorial.com/contributor/2952453/thomas
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/1262354/stefano-d-antonio
https://riptutorial.com/contributor/907844/hmnzr
https://riptutorial.com/contributor/3384033/chris-forbes
https://riptutorial.com/contributor/907844/hmnzr
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/3561275/omajid
https://riptutorial.com/contributor/3793672/egorikas
https://riptutorial.com/contributor/1262354/stefano-d-antonio
https://riptutorial.com/contributor/2410379/david-pine
https://riptutorial.com/contributor/2410379/david-pine
https://riptutorial.com/contributor/2952453/thomas

	About
	Chapter 1: Getting started with .net-core
	Remarks
	Composition
	Versions
	.NET Core
	Examples
	Installation or Setup
	Building a Hello World Sample Application
	Installation from a binary archive

	Chapter 2: .NET Core command line interface
	Examples
	Create .NET Core "Hello World" console project
	Publish and run a .NET Core project
	Scaffolding other project types

	C# Templates
	F# Templates
	Scaffolding projects in other languages
	Creating a NuGet package
	Running automated tests

	Chapter 3: .NET Core with Docker
	Remarks
	Examples
	Dockerfile sample

	Chapter 4: Building libraries with .NET Core
	Examples
	Targeting .NET Standard
	Targeting both .NET Standard and .NET Framework 4.x
	Producing a NuGet package for a library
	Platform-specific dependencies
	Adding a project reference to a library

	Chapter 5: Components and Versioning in .NET Core
	Introduction
	Remarks

	Components
	Components in .NET Core installations
	Examples
	Identifying Versions
	Selecting Versions

	Chapter 6: Getting started with appsetting.json
	Remarks
	Examples
	Simple configuration
	Using configuration object for settings

	Chapter 7: Installing .NET Core on Linux
	Examples
	Generic installation for Linux distributions

	Chapter 8: The global.json
	Remarks
	Examples
	Schema

	Chapter 9: Understanding System.Runtime vs. mscorlib
	Remarks
	Examples
	Popular Error: Misleading NuGet the wrong way
	Popular Error: Add a NuGet package which was not made for netstandard / netcoreapp (System.Runtime)
	Popular Error: Misunderstanding the outcome
	Popular Error: Accidently adding a mscorlib library as a dependencies to a netstandard/netcoreapp

	Credits

