" LEARNING
NET Framework

Free unaffiliated eBook created from
Stack Overflow contributors.

Table of Contents

A OUL . . 1
Chapter 1: Getting started with .NET Framework.......................... ., 2
RIS . .. 2
Y] £ 2
N E T 2
COMPACE FramMEWOTK. e 3
MICIO FIamMEWOTK.o et e 3
= 10] 0] [3
Hello WOrld in CHt. ..ot e e e e e e e s 3
Hello World in Visual Basic NET et ettt et e e e e e e 4
Hello WWOrId I F . e et e e e e e e e e e e 4
HEello WOIIA IN CHH/CLL. . ..o e e e e e e e e e e e e e e 4
Hello World in PowerShell.o e e e e e 4
Hello World in NemerIe.o e e e e 4
HEllo WO iN OXYQENE. . ..ottt e e e e e e e e e e e e e e e e 5

[L= 10 T4 o ¢ o T 0T = o o 5
Hello World in Python (IronPython) e e e e 5

[1= [o VAT Lo g o T o T | 5
Chapter 2: INET COre.o 7
I OAU G ON . .. 7
RIS . ..o 7

E XA S . ..o 7
BaSIC CONSO e AP . . ettt et 7
Chapter 3: ACTONYM GIOSSANY 9
= 1] 0] [T 9
INEt Related ACIONYMIS. . ..ttt et e e e 9
Chapter 4: AD O .NET ... 10
I OAU G ON . . 10
RIS . .. 10

Executing SQL statements as a COMMANG.ttt e et e e ettt 10

Best Practices - EXecuting Sl Statements. 11
Best practice for working With ADO.NET ... 12
Using common interfaces to abstract away vendor specific Classes. ... 13
Chapter 5: CL R ... 14
E XM S . .o 14
An introduction to Common Language RUNTIME. e et 14
Chapter 6: Code CONMIaCES. 15
RIS . .o 15

E XMl . .o 15

g =70t o oo 10} L= 15
POSICONAILIONS et et e e e 15
CONLraCES fOr INTEITACESttt e e e e e e e e e e e 16
Installing and Enabling Code CoNtractS.o.iii ettt e e e e 16
Chapter 7: ColleCtions. 19
RIS . ..o 19
EX APl . .. 19
Creating an initialized List With CUSIOM TYPES.ottt ettt 19
QUEBUE . . . e 20
SHACK . e 22
Using COolleCtion INIHIAlIZEIS. e e e e e 23
Chapter 8: CUSIOM TYPES 25
RIS . .. 25

E XM S . .o 25
SHUCE D NIt ON . . . o 25
Structs inherit from System.ValueType, are value types, and live on the stack. Whenvalue 25
Class DefiNitiON. ettt e 26
Classes inherit from System.Object, are reference types, and live on the heap. When refere............. 26
ENUM DefiNitiON . . . 26

An enum is a special type of class. The enum keyword tells the compiler that this classin................ 26
Chapter 9: DateTime ParsiNgooooiii 29

EX APl . .. 29

P arSE EXACTo 29

LI = LT 30

Ty P IS EEXAC. . . .o 32
Chapter 10: Dependency INJECHION 33
REMIAIKS . . 33
= 10] 0] (1 34
Dependency Injection - SImple eXample. 34
How Dependency Injection Makes Unit TeSting EaSIer.o.ieiii e 35
Why We Use Dependency Injection Containers (I0C CONtaiNers).ouiiuiininei i 36
Chapter 11: DICHONANIESo 39
E XM S . .o 39
Enumerating @ DiCtiONAIY oo e e 39
Initializing a Dictionary with a Collection Initializer. e 39
AdAING 10 @ DICHONAIYttt e e e 40
Getting avalue from a diCtiONArY e e e 40
Make a Dictionary with Case-INSENSIVIVE KEYS. e 41
ConcurrentDictionary (from .NET 4.0)ot e e e e e e e e 41
Creating an INSTANCE.o e 41
AddiNG OF UPAating.o e 41
GRtING VaAIUEo 42
Getting or AddiNg @ VAIUE. 42
IEnumerable to Dictionary ([NET 3.5o e e e e e 42
Removing from @ DiCtONAIY e e e e e e e 42
CoNtAINSKEY (TKY) . . . ettt e e e e e e e 43
DICHIONAIY 10 LISt . . .ottt ettt e e 44
ConcurrentDictionary augmented with Lazy'l reduces duplicated computation.......................cooviiiin... 44
IO M . L 44
SOIULION . L. 44
Chapter 12: Encryption / Cryptography 46
RIS . . 46
EX APl . . . 46

RijNdaelManaged. 46

Encrypt and decrypt data USing AES (IN CH) . ..o it a7

Create a Key from a Password / Random SALT (In CH) . ..ot e e 50
Encryption and Decryption using Cryptography (AES)ooiii i e e 52
Chapter 13: EXCePLIONS 54
REMIAIKS . . 54
= 11] 0] (S T 54
CatChing A@n EXCEPHION. et 54
Using a finally DIOCK. o e e e e 55
Catching and rethrowing caught @XCePLIONS.ttt et e e 55
EXCEPON FI OIS . .. o e e e 56
Rethrowing an exception within a catch blOCK. e 57
Throwing an exception from a different method while preserving its information................................... 57
Chapter 14: EXPresSiON TrEES 59
REMIAIKS . . 59

E XM S . ..o 59
Simple Expression Tree Generated by the C# Compiler. e 59
building a predicate of form field == value. 60
Expression for retrieving a static field. 60
INVOCAtIONEXPrESSION ClaSS. ottt e e e e e e e e e e e e 61
Chapter 15: File INpUt/OULPUL. ... 64
P A A B S . 64
RIS . 64

0 €= 0 1] 0] 5 64
VB WIBAIITEXE. . oottt e e e e e e e e e e e e e 64

VB SITEAMWIITE . . .o oottt e ettt e e e e e e e e e 64

(0% 201 1 1= =10 041 =T 64

(0% - VT 1 Y 1=) 64

Gt LB EXIS S) . . oottt e e e e e 65
Chapter 16: ForEach........... ... 66
RIS . . 66
EX APl . .. 66

Calling amethod on an ObjJeCt in @ liSt. i e e e 66

Extension method for IENUMErable. 66

Chapter 17: Garbage ColleCtion............... ... 68
o0 0T o o 68
RIS . . 68
B XM S . ..o 68

A basic example of (garbage) CollECtioN. i 68
Live objects and dead objects - the basiCS. 69
Multiple dead ODJECESo 70
WEEK REIEIENCES. . . .o e e e e e e e e 70
DIiSpoSe() VS. fINAlIZEIS. e 71
Proper disposal and finalization Of ObjJeCtS. o i 72

Chapter 18: Globalization in ASP.NET MVC using Smart internationalization for ASP.NET 74
RIS . 74
EX APl . .. 74

Basic configuration @and SEIUD. ottt 74

Chapter 19: HTTP Clients. 76
RIS . . 76
EX APl . .. 76

Reading GET response as string using System.Net.HttpWebRequest.................... .. 76
Reading GET response as string using System.Net.WebClient........... i 76
Reading GET response as string using System.Net.HttpClient............ i 77
Sending a POST request with a string payload using System.Net.HttpWebRequest.............................. 77
Sending a POST request with a string payload using System.Net.WebClient...............o ... 77
Sending a POST request with a string payload using System.Net.HttpClient...................................... 78
Basic HTTP downloader using System.Net.Http.HttpClient. e 78

Chapter 20: HTTP SEIVEIS ... 80

= 1] 0] (= 80
Basic read-only HTTP file server (HUPLISIENEN). o e 80
Basic read-only HTTP file server (ASP.NET COIE)ttt e e e 82

Chapter 21: JIT COMPIlEr. ... 84

o0 T 1o o 84

EX Al . .. 84

IL COMPIIAtION SAMPIE . ..ot e 84
Chapter 22: JSON in .NET with Newtonsoft.Json............................ i, 87
I OdUCTION. . e 87
BN S . ..o 87
Serialize 0bJeCt INTO JSON e e 87
Deserialize an object from JSON 1eXt. o e e e 87
Chapter 23: JSON Serialization.................o 88
RIS . . 88

B BIMIDIES. . oeee 88
Deserialization using System.Web.Script.Serialization.JavaScriptSerializer................. ... 88
Deserialization UsiNg JSON. INE T e e e e e e 88
Serialization USING JSON.NET e e 89
Serialization-Deserialization using NeWtoNSOft.JSON.o i e e 89
DYNAMIC DINAING . ..o 90
Serialization using Json.NET with JsonSerializerSettings. e 90
Chapter 24: LINQ 92
I OdUCTION. . e 92
1= 3 U 92
RIS . . 99
Lazy EVaAlUALION. ... 99
TOAITAY() OF TOLISH) 2. . oot e e e e 100

E XAl S . .. 100
Y= 1= Tor A (0= o) S 100
WWhEre (FIEr) . o e e e e 100
O BY . . e 101
OrderBYDeSCENAING.ottt ettt e e e et e 101
CONEAINS . et 101
(o =T o 102
1= =T =T o P 102
CONCAL. . .. 102

LS. . 103
LastOrDEfaUIL. e e 103
SINGIEOIDEfaUIL. 104
FIrstOrDefaUIt. . .o 104
N 0P 104
AL 105
SelectMany (flat MaP) 105
SUIM . e e 106
S e 106
T . 107
SEQUENCEEQUAL.t 107
RV IS . . 107
(O 1/ = 107
Y= 107
YT o 108
AV BT AGE . .o 108
ZiD 108
DISHINCL. . oottt 109
Gl U BY . e e e e e e e 109
TODICHONAIY . . .ottt e e e e 110
L0 7o) o PP 111
0 2 £ = 1P 111
LI] 111
COUNT . 111
B M BN AL . 112
ElementAtOrDefaull.o 112
SR E . .. 112
TAKEWW NIl . .. 112
D AU I E MDY . . . 112
Aggregate (fOl0) 113
JLIC0] 0T (U o OO 113

L7 1 116

[0 01728 117
TN BY . . . 117
RGO . . o e e 117

=1 O 11 =T G T o 117

RO DAL, . .. e 118
Chapter 25: Managed Extensibility Framework....................... .. 119
REMIAIKS . . 119
= 1] 0] [J 119
EXPOrting @ TYPE (BaSIC) . ..ottt e e e e 119
IMPOITING (BaSIC) . ..ottt e e e e e e e e e 120
CONNECHING (BASIC) . .. e ettt ettt e e e e e e e e e 120
Chapter 26: Memory Mmanagement. 122
REMIAIKS . . 122
= 1] 0] [T 122
Unmanaged RESOUICES.ottt et et e e e e e e e e e 122
Use SafeHandle when wrapping unmanaged rESOUICES. ittt et 123
Chapter 27: NetWOrKiNg 124
REMIAIKS . . 124
B S . ..o 124
Basic TCP chat (TcpListener, TcpClient, NetWOrkStream). e 124
Basic SNTP client (UdpClEnt)t e e e e e e e e e e 125
Chapter 28: NuGet packaging System................... .. 127
RIS . 127
= 101110 5 127
Installing the NUGet Package Manager.oouir ittt e ettt 127
Managing Packages through the Ul. e 128
Managing Packages through the CONSOle. e 129
UpPdating @ PACKAGE. . . .ottt ettt et e 129
Uninstalling @ PacKage.o e e 130

Uninstalling a package from one projectin a solution......... i 130

Installing a specific version of a package. ... 130

Adding a package source feed (MyGet, KlondiKe, €Ct).o 130
Using different (local) Nuget package sources using Ul. e 130
uninstall a specific Version of PaCKage.oo. it 132
Chapter 29: Parallel processing using .Net framework................................. 133
I OTUCTION. e e 133
= 1] 0] [J 133
Parallel EXIENSIONS.t e e 133
Chapter 30: Platform INVOKe 134
)Y 1= ¥ G 134
= 1] 0] [T 134
Calling a WIN32 dll TUNCHION.ottt e e 134
USING WINAOWS AP L. . e et e e e e e 134
MarShalling ArTaYS.ot ettt e e e 134
MarShaling StrUCES. ... oottt e e e e 135
Marshaling UNIONS. ettt e e e e e e e e e e 137
Chapter 31: Process and Thread affinity setting........................ . 138
P A A B S . o 138
REMIAIKS . .. 138
= 1] 0] [J 138
Get process affinity MasK. e 138

Set process affinity MasK. 139
Chapter 32: Reading and writing Zipfiles.................... 140
o0 T 1o o 140
REMIAIKS . .. 140
= 1] 0] [T 140
LIStING ZIP CONTENTS.ottt e e e et e e e e e 140
Extracting files from ZIP filles. 141
Updating @ ZIP fille. . ..o 141
Chapter 33: ReadOnlyCollections.............. ... 143
RIS . 143

ReadOnlyCollections vs ImmutableCollection.............. 143

EX Al . .. 143

Creating @ ReadOnlyCollECtioN. e e 143
USING the CONSIIUCTOT. oo e e e e 143
USING LINQ . oo 143
N O . 144

Updating @ ReadONnlyCollECHION.ot 144

Warning: Elements in a ReadOnlyCollection are not inherently read-only.. 144

Chapter 34: RefleCtion........ ... 146
= 1] 0] (= 146

What 1S AN ASSEIMDIY 2 . . e 146

How to create an object of T using Reflection. 146

Creating Object and setting properties using reflection. e 147

Getting an attribute of an enum with reflection (and caching it)............... .. i 147

Compare two objects With refleCtion. 147

Chapter 35: Regular Expressions (System.Text.RegularExpressions)................................. 149
[T 11] o [T U 149

Check if pattern matChes INPUL. o e e e e e 149

PaSSING OPiONS. . ..ot e 149

Simple Match and replace. 149

MaAtCH INEO GrOUPS. . . oottt e e e e e e e e e e e 149

Remove non alphanumeric characters from String......... ... i e 150

FiNd all MatChes. . ..o 150

USINg ..o 150
GO . 150
OU DU . 150
Chapter 36: Serial POIS. 151

= 1] 0] [J 151

BaSIC OPEIAtION. . ..ottt 151

List available port Names. 151

ASYNCNIONOUS FEAT.ttt et et ettt e e e e e e e e e e e e e 151

SYNChronouUS teXt ECHO SEIVICE. e e e e e e e e 151

ASYNCNIONOUS MESSAJE FECEIVET\ttt ettt ettt et e e e e e e e e e e e e 152

Chapter 37: SettiNgS 155

= 10] 0] [155
AppSettings from ConfigurationSettings in NET L.X.t e 155

D=7 0] (=Tor= (=T I U LT Vo [155
Reading AppSettings from ConfigurationManager in NET 2.0and later...............t 155
Introduction to strongly-typed application and user settings support from Visual Studio.......................... 156
Reading strongly-typed settings from custom section of configurationfile.............. 157
UNEI the COVIS. ... e e e 158
Chapter 38: SpeechRecognitionEngine class to recognize speech..................................... 160
)Y 1= ¥ G 160

P Al A OIS 160
REMIAIKS . . 161
= 1] 0] [T 161
Asynchronously recognizing speech for free text dictation. ... 161
Asynchronously recognizing speech based on a restricted set of phrases............... i, 161
Chapter 39: Stack and Heap 162
REMIAIKS . . 162
= 101 0] [162
ValUE LY PES 1N USE. . .ottt et e e e e et e e e 162
REIEIEBNCE YOS N USE . .. ottt e e e e ettt e e e e e 163
Chapter 40: StiNgGS o 165
REMIAIKS . . 165
= 10] 0] [T 166
CouNnt diStINCE CRAIACTEIS.ottt e e e 166
COUNE CNAKACTEIS. . .ottt e e e e e e e e 166
Count OCCUITENCES Of @ CRANACTEN.t 167
Split string into fixed length DIOCKS.o 167
Convert string to/from another @NCOING. e 167
EXAMIPIOS: ... 168
Convert a string t0 UT -8, o 168
Convert UTF-8 data to @ StriNg. 168

Change encoding of an existing text file............. ... 168

Object. ToString() virtual Method. o e 168

IMMUEADIIIY Of StNGS . . .ot e e e e e e e e 169

Lol na] o=V g1 oo I3 1110 1S 169
Chapter 41: Synchronization CONtEXS. ... 171
REMIAIKS . . 171
= 1] 0] [J 171
Execute code on the Ul thread after performing background work............. i, 171
Chapter 42: System.DiagnOStiCS. 173
= 1] 0] (= 173

S (o] 111V 1 (o o S 173
RUN Shell COMMANGS. e e 173
Send Command to CMD and Receive OULPUL. e 174
Chapter 43: System.lO 176
= 10] 0] 1 T 176
Reading a text file using StreamReEader i 176
Reading/Writing Data Using System.IO.File. e 176
Serial Ports using System.lO.SerialP OIS, 177
Iterating over connected Serial POMS. ... 177
Instantiating a System.|O.SerialPort ODJECT. ... 177
Reading/Writing data over the SerialPort. ... 177
Chapter 44: System.IO.File Class.................o 179
11 179

P A A B S . 179

E XAl S . .. 179
DElete A file. ... 179
Strip unwanted lines from a texXt file. 180
Converttext file @NCOAING.o e e 181
"Touch" a large amount of files (to update last write time)....... 181
Enumerate files older than a specified amount. 181
Move a File from one location t0 @anOther. e 182

Il MOV . 182

Chapter 45: System.Net.Mail........... ... 184

REMATKS . . 184

EX APl . .. 184
Y= T =TT oY= To [184
Mail WIth AtTACNMENT. . .. e e e 185

Chapter 46: System.Reflection.Emit namespace........................ 186

E XAl . . . 186

Creating an assembly dynamicCally. o 186
Chapter 47: System.Runtime.Caching.MemoryCache (ObjectCache)................................. 189

[1 11] o [T U 189
AddINg TEM 10 CaChe (SeU) e e e e e 189
System.Runtime.Caching.MemoryCache (ObjectCache)........... ..o e 189

Chapter 48: Task Parallel Library (TPL)............. 191

REMIAIKS . . 191

PUrPOSE ANA USE CaSeS 191

= 1011 5 191
Basic producer-consumer loop (BlockingCollection).t 191
Task: basic instantiation and Walt. 192
Task: WaitAll and variable Capturing.o e e e e 192
TASK: WA ANY . . ettt e 193
Task: handling exceptions (USING WaL).oiiii e e e e 193
Task: handling exceptions (without using Waiit). e 194
Task: cancelling using CancellatioNTOKEN. e e e 194
TaSK N BN ANY . . 195
TaSK NN AL 195
Parallel NVOKeE. o 196
Parallel.FOrEaCh. 196
Parallel FOr . . . 196
Flowing execution context With ASYNCLOCAL. e 197
Parallel.FOrEach in VB.INET e e 197
Task: REtUINING @ VAIUE. e e e e e e e e e e e 198

Chapter 49: Task Parallel Library (TPL) API OVeIVIEWS ..ot 199

REMATKS . . o 199

EX Al . .. 199

Perform work in response to a button click and update the Ul.............. i i, 199
Chapter 50: Threading........ ... 200
EX AL . .. 200
Accessing form controls from otherthreads. ... 200
Chapter 51: TPL Dataflow. ... 202
REMIAIKS . . 202
Libraries Used in EXampPles 202
Difference between Post and SENdASYNC............ ... 202
= 1] 0] [J 202
Posting to an ActionBlock and waiting for completion........... ... i 202
Linking blocks to create a Pipeling. o i 202
Synchronous Producer/Consumer with BUufferBIOCK. 203
Asynchronous Producer Consumer With A Bounded BufferBlock.................... i, 204
Chapter 52: Unit testing...............o 205
EX APl . . 205
Adding MSTest unit testing project to an existing SOIUtION. e 205
Creating a sample test MethOd. o e 205
Chapter 53: Upload file and POST datatowebserver.............................. .. 206
E APl . .. 206
Upload file With WEDREQUESE. e e e e 206
Chapter 54: Using Progress and IProgress.ttt 208
E XAl S . . . 208
SIMPIE PrOgresSs FEPOMINGottt et e e et e e e e 208
USING P OGS . . .ottt et e e e e e e 208
Chapter 55: VB FOIMS ... 210
= 1] 0] [T 210
Hello World in VB.NET FOMMIS.t et 210

FOr BEOINNEIS. . .ottt et e e 210
L0 0 0 ES I 0= T 211

Chapter 56: Work with SHAL IN CH, 214

I OUCTI ON . ..o e e 214

EX APl . .. 214
#Generate SHAL checksum of a file fUNCHION. oo 214
Chapter 57: Work With SHAL IN CH 215
o0 T o o 215
B S . ..o 215
#Generate SHAL checksum of afile. oo 215
#Generate hash Of @ 1eXt. o e 215
Chapter 58: Write to and read from StdErrstream.......................o i 216
= 1011 5 216
Write to standard error output USING CONSOIE. oo e e 216
Read from standard error of Child PrOCESS.t e 216
Chapter 59: XmlSerializer. 217
R MK . .. 217

B AL S . .. 217
SeNaliZe OB 217
DESEraliZe OB 217
Behaviour: Map Element Nname 10 Property.o e e e 217
Behaviour: Map array name to property (XIMIAITAY)ot 217
Formatting: Custom DateTime fOrmat.o i e e e e 218
Efficiently building multiple serializers with derived types specified dynamically.................................. 218
WHEre W CamIE frOM . .. e e e 218
WAL CAN WE 00 e e e 218
DoiNg it effiCIENtlY 219
What's IN the OULDUL. e e e e e e 221

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: -net-framework

It is an unofficial and free .NET Framework ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official .NET
Framework.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/

http://riptutorial.com/ebook/dot-net-framework
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

C_hapter 1: Getting started with .NET
Framework

Remarks

The .NET Framework is a set of libraries and a runtime, originally designed by Microsoft. All .NET
programs compile to a bytecode called Microsoft Intermediate Language (MSIL). The MSIL is run
by the Common Language Runtime (CLR).

Below you can find several examples of "Hello World" in various languages that support the .NET
Framework. "Hello World" is a program that displays "Hello World" on the display device. It's used
for illustrating the basic syntax for constructing a working program. It can also be used as a sanity
test to make sure that a language's compiler, development environment, and runtime environment
are all working correctly.

List of languages supported by .NET

Versions

NET
1.0 2002-02-13
1.1 2003-04-24
2.0 2005-11-07
3.0 2006-11-06
3.5 2007-11-19

3.55P1 2008-08-11

4.0 2010-04-12

4.5 2012-08-15

45.1 2013-10-17

452 2014-05-05

4.6 2015-07-20

4.6.1 2015-11-17

https://riptutorial.com/

https://en.wikipedia.org/wiki/List_of_CLI_languages
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_1.0
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_1.1
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_2.0
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_3.0
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_3.5
https://en.wikipedia.org/wiki/.NET_Framework_version_history#Service_Pack_1
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_4
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_4.5
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_4.5.1
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_4.5.2
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_4.6
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_4.6.1

Version | Release Date

4.6.2 2016-08-02

4.7 2017-04-05

Compact Framework

Version | Release Date

1.0 2000-01-01
2.0 2005-10-01
3.5 2007-11-19
3.7 2009-01-01
3.9 2013-06-01

Micro Framework

Version | Release Date

4.2 2011-10-04

4.3 2012-12-04

4.4 2015-10-20
Examples

Hello World in C#

using System;

class Program

{
// The Main() function is the first function to be executed in a program
static void Main ()

{
// Write the string "Hello World to the standard out
Console.WriteLine ("Hello World");

console.WriteLine has several overloads. In this case, the string "Hello World" is the parameter,
and it will output the "Hello World" to the standard out stream during execution. Other overloads

https://riptutorial.com/

https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_4.6.2
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_4.7

may call the .1ostring Of the argument before writing to the stream. See the .NET Framework
Documentation for more information.

Live Demo in Action at .NET Fiddle

Introduction to C#

Hello World in Visual Basic .NET

Imports System

Module Program
Public Sub Main ()
Console.WriteLine ("Hello World")
End Sub
End Module

Live Demo in Action at .NET Fiddle

Introduction to Visual Basic .NET

Hello World in F#

open System

[<EntryPoint>]

let main argv =
printfn "Hello World"
0

Live Demo in Action at .NET Fiddle

Introduction to F#

Hello World in C++/CLI

using namespace System;

int main (array<String”>" args)
{

Console: :WriteLine ("Hello World");
}

Hello World in PowerShell
Write—-Host "Hello World"
Introduction to PowerShell

Hello World in Nemerle

https://riptutorial.com/

https://msdn.microsoft.com/en-us/library/system.console.writeline
https://msdn.microsoft.com/en-us/library/system.console.writeline
https://dotnetfiddle.net/S7hjxp
http://www.riptutorial.com/csharp/topic/15/getting-started-with-csharp-language
https://dotnetfiddle.net/dRDZVe
http://www.riptutorial.com/vb-net/topic/352/getting-started-with-visual-basic--net-language
https://dotnetfiddle.net/hDvqwC
http://www.riptutorial.com/fsharp/topic/817/getting-started-with-fsharp
http://www.riptutorial.com/powershell/topic/822/getting-started-with-powershell

System.Console.WriteLine ("Hello World");

Hello World in Oxygene

namespace HelloWorld;
interface

type
App = class
public
class method Main (args: array of String);
end;

implementation

class method App.Main(args: array of String);
begin

Console.WriteLine ('Hello World');
end;

end.

Hello World in Boo

print "Hello World"

Hello World in Python (IronPython)
print "Hello World"

import clr
from System import Console
Console.WritelLine ("Hello World")

Hello World in IL

.class public auto ansi beforefieldinit Program
extends [mscorlib]System.Object

.method public hidebysig static void Main() cil managed
{
.maxstack 8
IL_0000: nop
IL_0001: 1dstr "Hello World"
IL_0006: call void [mscorlib]System.Console::WritelLine (string)
IL_000b: nop
IL_000c: ret

.method public hidebysig specialname rtspecialname
instance void .ctor() cil managed

https://riptutorial.com/

.maxstack 8
IL_0000: 1ldarg.0
IL_0001: call instance void [mscorlib]System.Object::.ctor ()
IL_0006: ret
}

Read Getting started with .NET Framework online: https://riptutorial.com/dot-net/topic/14/getting-
started-with--net-framework

https://riptutorial.com/

https://riptutorial.com/dot-net/topic/14/getting-started-with--net-framework
https://riptutorial.com/dot-net/topic/14/getting-started-with--net-framework

C_hapter 2: .NET Core

Introduction

.NET Core is a general purpose development platform maintained by Microsoft and the .NET
community on GitHub. It is cross-platform, supporting Windows, macOS and Linux, and can be
used in device, cloud, and embedded/loT scenarios.

When you think of .NET Core the following should come to mind (flexible deployment, cross-
platform, command-line tools, open source).

Another great thing is that even if it's open source Microsoft is actively supporting it.

Remarks

By itself, .NET Core includes a single application model -- console apps -- which is useful for tools,
local services and text-based games. Additional application models have been built on top of .NET
Core to extend its functionality, such as:

* ASP.NET Core
* Windows 10 Universal Windows Platform (UWP)
» Xamarin.Forms

Also, .NET Core implements the .NET Standard Library, and therefore supports .NET Standard
Libraries.

The .NET Standard Library is an API spec that describes the consistent set of .NET APIs that
developers can expect in each .NET implementation. .NET implementations need to implement
this spec in order to be considered .NET Standard Library compliant and to support libraries that
target the .NET Standard Library.

Examples
Basic Console App

public class Program
{
public static void Main(string[] args)
{
Console.WriteLine ("\nWhat is your name? ");
var name = Console.ReadLine();
var date = DateTime.Now;
Console.WritelLine ("\nHello, {0}, on {1:d} at {1:t}", name, date);
Console.Write ("\nPress any key to exit...");
Console.ReadKey (true);

https://riptutorial.com/ 7

Read .NET Core online: https://riptutorial.com/dot-net/topic/9059/-net-core

https://riptutorial.com/

https://riptutorial.com/dot-net/topic/9059/-net-core

C_hapter 3: Acronym Glossary

Examples

.Net Related Acronyms

Please note that some terms like JIT and GC are generic enough to apply to many programming
language environments and runtimes.

CLR: Common Language Runtime
IL: Intermediate Language

EE: Execution Engine

JIT: Just-in-time compiler

GC: Garbage Collector

OOM: Out of memory

STA: Single-threaded apartment
MTA: Multi-threaded apartment

Read Acronym Glossary online: https://riptutorial.com/dot-net/topic/10939/acronym-glossary

https://riptutorial.com/

https://riptutorial.com/dot-net/topic/10939/acronym-glossary

Chapter 4: ADO.NET

Introduction

ADO(ActiveX Data Objects).Net is a tool provided by Microsoft which provides access to data
sources such as SQL Server, Oracle, and XML through its components. .Net front-end
applications can retrieve, create, and manipulate data, once they are connected to a data source
through ADO.Net with appropriate privileges.

ADO.Net provides a connection-less architecture. It is a secure approach to interact with a
database, since, the connection doesn't have to be maintained during the entire session.

Remarks

A note on parameterizing SQLS with parameters.addwithvalue! Addwithvalue IS Never a good

starting point. That method relies on inferring the type of the data from what is passed in. With this,

you might end up in a situation where the conversion prevents your query from using an index.

Note that some SQL Server data types, such as char/varchar (Without preceding "n") or date do not

have a corresponding .NET data type. In those cases, »aa with the correct data type should be
used instead.

Examples
Executing SQL statements as a command

// Uses Windows authentication. Replace the Trusted_Connection parameter with
// User Id=...;Password=...; to use SQL Server authentication instead. You may
// want to find the appropriate connection string for your server.

string connectionString =

@"Server=myServer\myInstance;Database=myDataBase; Trusted_Connection=True;"

string sgl = "INSERT INTO myTable (myDateTimeField, myIntField) " +
"VALUES (@someDateTime, @somelInt);";

// Most ADO.NET objects are disposable and, thus, require the using keyword.
using (var connection = new SglConnection (connectionString))
using (var command = new SglCommand(sgl, connection))
{
// Use parameters instead of string concatenation to add user-supplied
// values to avoid SQL injection and formatting issues. Explicitly supply datatype.

// System.Data.SglDbType is an enumeration. See Notel
command.Parameters.Add ("@someDateTime", SglDbType.DateTime) .Value = myDateTimeVariable;
command.Parameters.Add ("@someInt", SglDbType.Int).Value = myInt32Variable;

// Execute the SQL statement. Use ExecuteScalar and ExecuteReader instead
// for query that return results (or see the more specific examples, once

// those have been added) .

connection.Open () ;

https://riptutorial.com/

10

http://stackoverflow.com/q/799584/87698
http://blogs.msmvps.com/jcoehoorn/blog/2014/05/12/can-we-stop-using-addwithvalue-already/
http://blogs.msmvps.com/jcoehoorn/blog/2014/05/12/can-we-stop-using-addwithvalue-already/
http://blogs.msmvps.com/jcoehoorn/blog/2014/05/12/can-we-stop-using-addwithvalue-already/

command.ExecuteNonQuery () ;

Note 1: Please see SqlDbType Enumeration for the MSFT SQL Server-specific variation.

Note 2: Please see MySqlDbType Enumeration for the MySQL-specific variation.

Best Practices - Executing Sql Statements

public void SaveNewEmployee (Employee newEmployee)
{
// best practice - wrap all database connections in a using block so they are always
closed & disposed even in the event of an Exception
// best practice - retrieve the connection string by name from the app.config or
web.config (depending on the application type) (note, this requires an assembly reference to
System.configuration)
using (SglConnection con = new
SglConnection (System.Configuration.ConfigurationManager.ConnectionStrings["MyConnectionName"] .Connectic

// best practice - use column names in your INSERT statement so you are not dependent
on the sgl schema column order
// best practice - always use parameters to avoid sql injection attacks and errors if
malformed text is used like including a single quote which is the sqgl equivalent of escaping
or starting a string (varchar/nvarchar)
// best practice - give your parameters meaningful names Jjust like you do variables in
your code
using (SglCommand sc = new SglCommand ("INSERT INTO employee (FirstName, LastName,
DateOfBirth /*etc*/) VALUES (QfirstName, Q@lastName, @dateOfBirth /*etc*/)", con))
{
// best practice - always specify the database data type of the column you are
using
// best practice - check for valid values in your code and/or use a database
constraint, if inserting NULL then use System.DbNull.Value
sc.Parameters.Add (new SglParameter ("@firstName", SglDbType.VarChar, 200) {Value =
newEmnployee.FirstName ?? (object) System.DBNull.Value}l);
sc.Parameters.Add (new SglParameter ("@lastName", SglDbType.VarChar, 200) {Value =
newEmployee.LastName ?? (object) System.DBNull.Value});

// best practice - always use the correct types when specifying your parameters,
Value is assigned to a DateTime instance and not a string representation of a Date

sc.Parameters.Add (new SglParameter ("@dateOfBirth", SglDbType.Date) { Value =
newEmployee.DateOfBirth });

// best practice - open your connection as late as possible unless you need to
verify that the database connection is valid and wont fail and the proceeding code execution
takes a long time (not the case here)

con.Open () ;

sc.ExecuteNonQuery () ;

// the end of the using block will close and dispose the SglConnection
// best practice - end the using block as soon as possible to release the database
connection

}

// supporting class used as parameter for example
public class Employee

https://riptutorial.com/ 11

https://msdn.microsoft.com/en-us/library/system.data.sqldbtype(v=vs.110).aspx
https://dev.mysql.com/doc/dev/connector-net/html/T_MySql_Data_MySqlClient_MySqlDbType.htm

public string FirstName { get; set; }
public string LastName { get; set; }
public DateTime DateOfBirth { get; set; }

Best practice for working with ADO.NET

* Rule of thumb is to open connection for minimal time. Close the connection explicitly once
your procedure execution is over this will return the connection object back to connection
pool. Default connection pool max size = 100. As connection pooling enhances the
performance of physical connection to SQL Server.Connection Pooling in SQL Server

» Wrap all database connections in a using block so they are always closed & disposed even
in the event of an Exception. See using Statement (C# Reference) for more information on
using statements

» Retrieve the connection strings by name from the app.config or web.config (depending on
the application type)

o This requires an assembly reference to system.configuration
o See Connection Strings and Configuration Files for additional information on how to
structure your configuration file

» Always use parameters for incoming values to

o Avoid sq!l injection attacks

> Avoid errors if malformed text is used like including a single quote which is the sql
equivalent of escaping or starting a string (varchar/nvarchar)

> Letting the database provider reuse query plans (not supported by all database
providers) which increases efficiency

* When working with parameters

> Sqgl parameters type and size mismatch is a common cause of insert/ updated/ select
failure

o Give your Sgl parameters meaningful names just like you do variables in your code

- Specify the database data type of the column you are using, this ensures the wrong
parameter types is not used which could lead to unexpected results

> Validate your incoming parameters before you pass them into the command (as the
saying goes, "garbage in, garbage out"). Validate incoming values as early as possible
in the stack

- Use the correct types when assigning your parameter values, example: do not assign
the string value of a DateTime, instead assign an actual DateTime instance to the
value of the parameter

o Specify the size of string-type parameters. This is because SQL Server can re-use
execution plans if the parameters match in type and size. Use -1 for MAX

- Do not use the method AddWithValue, the main reason is it is very easy to forget to
specify the parameter type or the precision/scale when needed. For additional
information see Can we stop using AddWithValue already?

* When using database connections

> Open the connection as late as possible and close it as soon as possible. This is a
general guideline when working with any external resource

https://riptutorial.com/ 12

https://msdn.microsoft.com/en-us/library/h43ks021(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8xx3tyca(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/yh598w02.aspx
https://msdn.microsoft.com/en-us/library/ms254494(v=vs.110).aspx
https://en.wikipedia.org/wiki/SQL_injection
https://en.wikipedia.org/wiki/Garbage_in,_garbage_out
https://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlparameter.size(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlparametercollection.addwithvalue(v=vs.110).aspx
http://blogs.msmvps.com/jcoehoorn/blog/2014/05/12/can-we-stop-using-addwithvalue-already/

> Never share database connection instances (example: having a singleton host a
shared instance of type sqiconnection). Have your code always create a new database
connection instance when needed and then have the calling code dispose of it and
"throw it away" when it is done. The reason for this is

> Most database providers have some sort of connection pooling so creating new
managed connections is cheap
It eliminates any future errors if the code starts working with multiple threads

Using common interfaces to abstract away vendor specific classes

var providerName = "System.Data.SglClient"; //Oracle.ManagedDataAccess.Client, IBM.Data.DB2
var connectionString = "{your-connection-string}";

//you will probably get the above two values in the ConnectionStringSettings object from
.config file

var factory = DbProviderFactories.GetFactory (providerName) ;

using(var connection = factory.CreateConnection()) { //IDbConnection
connection.ConnectionString = connectionString;
connection.Open () ;

using(var command = connection.CreateCommand()) { //IDbCommand
command.CommandText = "{query}";
using(var reader = command.ExecuteReader()) { //IDataReader
while (reader.Read()) {

Read ADO.NET online: https://riptutorial.com/dot-net/topic/3589/ado-net

https://riptutorial.com/ 13

https://riptutorial.com/dot-net/topic/3589/ado-net

Chapter 5: CLR

Examples

An introduction to Common Language Runtime

The Common Language Runtime (CLR) is a virtual machine environment and part of the .NET
Framework. It contains:

» A portable bytecode language called Common Intermediate Language (abbreviated CIL,
or IL)

A Just-In-Time compiler that generates machine code

A tracing garbage collector that provides automatic memory management

Support for lightweight sub-processes called AppDomains

Security mechanisms through the concepts of verifiable code and trust levels

Code that runs in the CLR is referred to as managed code to distinguish it from code running
outside the CLR (usually native code) which is referred to as unmanaged code. There are various
mechanisms that facilitate interoperability between managed and unmanaged code.

Read CLR online: https://riptutorial.com/dot-net/topic/3942/clr

https://riptutorial.com/ 14

https://riptutorial.com/dot-net/topic/3942/clr

C_hapter 6: Code Contracts

Remarks

Code contracts allow for compile or runtime analysis of pre/post conditions of methods and
invariant conditions for objects. These conditions may be used to ensure callers and return value
match valid states for application processing. Other uses for Code Contracts include
documentation generation.

Examples

Preconditions

Preconditions allows methods to provide minimum required values for input parameters

Example...

void DoWork (string input)
{
Contract.Requires (!string.IsNullOrEmpty (input)) ;

//do work

Static Analysis Result...

string 5 = null;
p.Dolork(s);

CodeContracts: requires is false: !string IsMullOrErmpty(input)

Postconditions

Postconditions ensure that the returned results from a method will match the provided definition.
This provides the caller with a definition of the expected result. Postconditions may allowed for
simplied implmentations as some possible outcomes can be provided by the static analyizer.

Example...

string GetValue ()
{

Contract.Ensures (Contract.Result<string>() != null);

return null;

Static Analyis Result...

https://riptutorial.com/

15

http://i.stack.imgur.com/ZFVU0.png

string GetWalue()

1
Contract.Ensures(Contract.Result<string>() != null);
return null;
¥ CodeContracts: Invoking method 'GetValue' will always lead to an error. If this is wanted, consider adding Contract.Requires(false] to

Contracts for Interfaces

Using Code Contracts it is possible to apply a contract to an interface. This is done by declaring an
abstract class that implments the interfaces. The interface should be tagged with the

contractClassattribute and the contract definition (the abstract class) should be tagged with the
ContractClassForAttribute

C# Example...

[ContractClass (typeof (MyInterfaceContract))]
public interface IMyInterface
{
string DoWork (string input) ;
}
//Never inherit from this contract defintion class
[ContractClassFor (typeof (IMyInterface))]
internal abstract class MyInterfaceContract : IMyInterface
{
private MyInterfaceContract () { }

public string DoWork (string input)

{
Contract.Requires (!string.IsNullOrEmpty (input)) ;
Contract.Ensures (!string.IsNullOrEmpty (Contract.Result<string>()));
throw new NotSupportedException();

}
public class MyInterfaceImplmentation : IMyInterface
{

public string DoWork (string input)

{

return input;

Static Analysis Result...

var m = new MyInterfaceImplmentation();
var ret = m.DoWork(null):

CodeContracts: requires is false: !string.JsMNull OrEmpty(input)

Installing and Enabling Code Contracts

While system.piagnostics.contracts IS included within the .Net Framework. To use Code Contracts
you must install the Visual Studio extensions.

https://riptutorial.com/ 16

http://i.stack.imgur.com/gpCrS.png
https://i.stack.imgur.com/eDxbs.png

Under extensions and Updates search for code contracts then install the code contracts Tools

-

Extensions and Updates

I+ Samples Gallery

I Updates (1)

I Installed Sort by: | Relevance -| code co
4 Online = Code Contracts for .NET Create
. . . Code Contracts are static library methods used from any NET D
4 Visual Studio Gallery program to specify the code’s behavior. Runtime checking and stati... . nl

Search Results Rating:
i Controls MareIr
I Templates Report
I Tools

After the tools are installed you must enable code contracts Within your Project solution. At the
minimum you probably want to enable the static checking (Check after build). If you are

implementing a library that will be used by other solutions you may want to consider also enabling

Runtime Checking.

https://riptutorial.com/ 17

http://i.stack.imgur.com/hTYJ1.png

e R

Application]) - -
Configuration: ’Actlve (Debug) - Platform: ’Actlve (Any CPLU) -
Build
Build Events
Assembly Mode: [Custum Parameter Validation v] Help Documentation
Debu
9 Rurime Checking 15107142
Resources [7] Perform Runtime Contract Checlking | Full Only Public Suface Contracts
Services Custom Rewrter Methods Assert on Contract Failure
Settings B) S AL L
Reference Paths -
Static Checking
signing Undestanding the static check
Perform Static Contract Checking !
Securi
Y Check in background Show sgquigglies Fail build on wamings
Publish Check non-null Check anthmetic Check amay bounds
Code Analysis - Check missing public requires] Check missing public ensures
Check enum writes ap req ap

Check redundant assume Check redundant condtionals

Show ertry assumptions [] Show extemal assumptions

Suggest requires Suggest readonly fields [] Suggest object invarants
Sugogest asserts to contracts Suggest necessary ensures
Imfer requires [Infer invarants for readonty
[Infer ensures Infer ensures for autoproperties
Cache results S0L Server
[] Skip the analysis if cannot connect to cache
low hi
D Ee optimistic on extemal AP
Waming Level:

[Baseline Update

Contract Reference Assembly
| Build - 7] Emit contracts into XML doc file

Advanced
BExtra Contract Librany Paths
BExra Rurtime Checker Options
BExra Static Checker Options

Read Code Contracts online: https://riptutorial.com/dot-net/topic/1937/code-contracts

https://riptutorial.com/ 18

http://i.stack.imgur.com/f4f1Z.png
https://riptutorial.com/dot-net/topic/1937/code-contracts

C_hapter /. Collections

Remarks

There are several kinds of collection:

® Array

® List

® Queue

® SortedList
® Stack

e Dictionary
Examples

Creating an initialized List with Custom Types

public class Model

{
public string Name { get; set; }
public bool? Selected { get; set; }

Here we have a Class with no constructor with two properties: name and a nullable boolean
property seiected. If we wanted to initialize a vist<Mode1>, there are a few different ways to execute
this.

var SelectedEmployees = new List<Model>
{
new Model () {Name = "Iteml", Selected = true},
new Model () {Name = "Item2", Selected = false},
new Model () {Name = "Item3", Selected = false},
new Model () {Name = "Item4"}

}i

Here, we are creating several new instances of our mode1 class, and initializing them with data.
What if we added a constructor?

public class Model
{

public Model (string name, bool? selected = false)
{
Name = name;
selected = Selected;
}
public string Name { get; set; }
public bool? Selected { get; set; }

https://riptutorial.com/ 19

http://www.riptutorial.com/dot-net/topic/45/dictionaries

This allows us to initialize our List a little differently.

var SelectedEmployees =

{
new Model ("Mark",

new Model ("")
}i

new List<Model>

true),
new Model ("Alexis"),

What about a Class where one of the properties is a class itself?

public class Model
{

public string Name { get;
public bool? Selected { get;

public class ExtendedModel

{

set; }
set; }

: Model

public ExtendedModel ()

{
BaseModel =

public Model BaseModel { get;
public DateTime BirthDate { get;

new Model () ;

set; }
set; }

Notice we reverted the constructor on the mode1 class to simplify the example a little bit.

var SelectedWithBirthDate =

{
new ExtendedModel ()
{

BaseModel = new
BirthDate = new

by
new

{
BaseModel = new
BirthDate = new

}i

new List<ExtendedModel>

Model { Name = "Mark", Selected = true},
DateTime (2015, 11, 23)

ExtendedModel ()

Model { Name = "Random"},

DateTime (2015, 11, 23)

Note that we can interchange OUr List<ExtendedModel> WIith collection<ExtendedModel>,

ExtendedModel[], object|[],

Queue

or even simply 7.

There is a collection in .Net used to manage values in a cu-ue that uses the FIFO (first-in first-out)
concept. The basics of queues is the method =qucue (7 icen) which is used to add elements in the
gueue and o=queue () Which is used to get the first element and remove it from the queue. The

generic version can be used like the following code for a queue of strings.

First, add the namespace:

https://riptutorial.com/

https://msdn.microsoft.com/library/system.collections.queue(v=vs.110).aspx
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://msdn.microsoft.com/library/t249c2y7(v=vs.110).aspx
https://msdn.microsoft.com/library/1c8bzx97(v=vs.110).aspx

using System.Collections.Generic;

and use it;

Queue<string> queue = new Queue<string> () ;
queue.Enqueue ("John") ;

queue.Enqueue ("Paul") ;

queue.Enqueue ("George") ;

queue.Enqueue ("Ringo") ;

string dequeueValue;

dequeueValue = queue.Dequeue(); // return John
dequeueValue = queue.Dequeue(); // return Paul
dequeueValue = queue.Dequeue(); // return George
dequeueValue = queue.Dequeue(); // return Ringo

There is a non generic version of the type, which works with objects.

The namespace is:

using System.Collections;

Adn a code sample fo non generic queue:

Queue queue = new Queue () ;

queue.Enqueue ("Hello World"); // string
queue.Enqueue (5); // int

queue.Enqueue (1d); // double

queue.Enqueue (true); // bool

queue .Enqueue (new Product ()); // Product object

object dequeueValue;

dequeueValue = queue.Dequeue(); // return Hello World (string)
dequeueValue = queue.Dequeue(); // return 5 (int)

dequeueValue = queue.Dequeue(); // return 1d (double)
dequeueValue = queue.Dequeue(); // return true (bool)
dequeueValue = queue.Dequeue(); // return Product (Product type)

There is also a method called Peek() which returns the object at the beginning of the queue
without removing it the elements.

Queue<int> queue = new Queue<int>();

queue.Enqueue (10) ;

queue.Enqueue (20) ;

queue.Enqueue (40) ;

’

)
)
queue.Enqueue (30) ;
)
queue.Enqueue (50)
foreach (int element in queue)

{

Console.WriteLine (1) ;

The output (without removing):

https://riptutorial.com/

https://msdn.microsoft.com/library/system.collections.queue.peek(v=vs.110).aspx

10
20
30
40
50

Stack

There is a collection in .Net used to manage values in a s:-cx that uses the LIFO (last-in first-out)
concept. The basics of stacks is the method r.<n (v item) which is used to add elements in the
stack and ro» () which is used to get the last element added and remove it from the stack. The
generic version can be used like the following code for a queue of strings.

First, add the namespace:

using System.Collections.Generic;

and use it:

Stack<string> stack = new Stack<string>();
stack.Push ("John");

stack.Push ("Paul");

stack.Push ("George") ;

stack.Push ("Ringo") ;

string value;

value = stack.Pop(); // return Ringo
value = stack.Pop(); // return George
value = stack.Pop(); // return Paul
value = stack.Pop(); // return John

There is a non generic version of the type, which works with objects.

The namespace is:

using System.Collections;

And a code sample of non generic stack:

Stack stack = new Stack();

stack.Push ("Hello World"); // string
stack.Push(5); // int

stack.Push (1d); // double

stack.Push(true); // bool

stack.Push (new Product ()); // Product object

object value;

value = stack.Pop(); // return Product (Product type)
value = stack.Pop(); // return true (bool)

value = stack.Pop(); // return 1d (double)

value = stack.Pop(); // return 5 (int)

value = stack.Pop(); // return Hello World (string)

https://riptutorial.com/ 22

https://msdn.microsoft.com/library/system.collections.stack(v=vs.110).aspx
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://msdn.microsoft.com/library/system.collections.stack.push(v=vs.110).aspx
https://msdn.microsoft.com/library/system.collections.stack.pop(v=vs.110).aspx

There is also a method called Peek() which returns the last element added but without removing it
from the stacxk.

Stack<int> stack = new Stack<int>();
stack.Push(10);
stack.Push (20);

var lastValueAdded = stack.Peek(); // 20

It is possible to iterate on the elements on the stack and it will respect the order of the stack
(LIFO).

Stack<int> stack = new Stack<int>();

stack.Push (10) ;

stack.Push (

stack.Push (
(
(

’
’

’

stack.Push

2
3
4
stack.Push (5

0)
0)
0)
0);

’

foreach (int element in stack)
{

Console.WriteLine (element) ;

The output (without removing):

50
40
30
20
10

Using collection initializers

Some collection types can be initialized at the declaration time. For example, the following
statement creates and initializes the numbers With some integers:

List<int> numbers = new List<int>() {10, 9, 8, 7, 7, 6, 5, 10, 4, 3, 2, 1};

Internally, the C# compiler actually converts this initialization to a series of calls to the Add
method. Consequently, you can use this syntax only for collections that actually support the adqa
method.

The stack<T> and oueue<t> Classes do not support it.

For complex collections such as the pictionary<trey, Tvalue> Class, that take key/value pairs, you
can specify each key/value pair as an anonymous type in the initializer list.

Dictionary<int, string> employee = new Dictionary<int, string> ()
{{44, "John"}, {45, "Bob"}, {47, "James"}, {48, "Franklin"}};

https://riptutorial.com/ 23

https://msdn.microsoft.com/library/system.collections.stack.peek(v=vs.110).aspx

The first item in each pair is the key, and the second is the value.

Read Collections online: https://riptutorial.com/dot-net/topic/30/collections

https://riptutorial.com/

24

https://riptutorial.com/dot-net/topic/30/collections

C_hapter 8. Custom Types

Remarks

Typically a struct is used only when performance is very important. Since value types live on the
stack, they can be accessed much quicker than classes. However, the stack has much less room
than the heap, so structs should be kept small (Microsoft recommends structS take up no more
than 16 bytes).

A ciass IS the most-used type (of these three) in C#, and is generally what you should go with first.

An enum iS used whenever you can have a clearly defined, distinct list of items that only need to be
defined once (at compile time). Enums are helpful to programmers as a lightweight reference to
some value: instead of defining a list of constant variables to compare to, you can use an enum,
and get Intellisense support to make sure you don't accidentally use a wrong value.

Examples

Struct Definition

Structs inherit from System.ValueType, are value types, and
live on the stack. When value types are passed as a
parameter, they are passed by value.

Struct MyStruct
{

public int x;
public int vy;

Passed by value means that the value of the parameter is copied for the method, and any
changes made to the parameter in the method are not reflected outside of the method. For
instance, consider the following code, which calls a method named addnumpers, passing in the
variables a and », which are of type int, which is a Value type.

int a ;
int b 6;

AddNumbers (a, b) ;

public AddNumbers (int x, int y)
{
int z x + y; // z becomes 11

X x + 5; // now we changed x to be 10
+

z X y; // now z becomes 16

https://riptutorial.com/ 25

Even though we added 5 to x inside the method, the value of a remains unchanged, because it's a
Value type, and that means x was a copy of a's value, but not actually a.

Remember, Value types live on the stack, and are passed by value.

Class Definition

Classes inherit from System.Object, are reference types, and
live on the heap. When reference types are passed as a
parameter, they are passed by reference.

public Class MyClass
{

public int a;
public int b;

Passed by reference means that a reference to the parameter is passed to the method, and any
changes to the parameter will be reflected outside of the method when it returns, because the
reference is to the exact same object in memory. Let's use the same example as before, but we'll
"wrap" the intSs in a class first.

MyClass instanceOfMyClass = new MyClass () ;
instanceOfMyClass.a = 5;
6;

instanceOfMyClass.b
AddNumbers (instanceOfMyClass) ;
public AddNumbers (MyClass sample)
{
int z = sample.a + sample.b; // z becomes 11

sample.a = sample.a + 5; // now we changed a to be 10
z = sample.a + sample.b; // now z becomes 16

This time, when we changed sampie.a t0 10, the value of instanceofmyclass.a also changes,
because it was passed by reference. Passed by reference means that a reference (also
sometimes called a pointer) to the object was passed into the method, instead of a copy of the
object itself.

Remember, Reference types live on the heap, and are passed by reference.
Enum Definition
An enum is a special type of class. The ... kKeyword tells the

compiler that this class inherits from the abstract
System.Enum class. Enums are used for distinct lists of

https://riptutorial.com/ 26

items.

public enum MyEnum
{
Monday = 1,
Tuesday,
Wednesday,
/...

You can think of an enum as a convenient way of mapping constants to some underlying value.
The enum defined above declares values for each day of the week, and starts with 1. Tuesday
would then automatically become mapped to 2, wednesday t0 3, etc.

By default, enums use int as the underlying type and start at O, but you can use any of the
fO"OWing integral types: byte, sbyte, short, ushort, int, uint, long, or ulong, and can SpECify
explicit values for any item. If some items are explicitly specified, but some are not, each item after
the last defined one will be incremented by 1.

We would use this example by casting some other value to a MyEnum like so:

MyEnum instance = (MyEnum)3; // the variable named 'instance' gets a
//value of MyEnum.Wednesday, which maps to 3.

int x = 2;

instance (MyEnum) x; // now 'instance' has a value of MyEnum.Tuesday

Another useful, although more complex, type of enum is called r1ags. By decorating an enum with
the ri1ags attribute, you can assign a variable more than one value at a time. Note that when doing
this you must define values explicitly in base 2 representation.

[Flags]

public enum MyEnum

{
Monday = 1,
Tuesday = 2,
Wednesday = 4,
Thursday = 8§,
Friday = 16,
Saturday = 32,
Sunday = 64

Now you can compare more than one value at a time, either using bitwise comparisons or, if you
are using .NET 4.0 or later, the built-in £num.Hasr1ag method.

MyEnum instance = MyEnum.Monday | MyEnum.Thursday; // instance now has a value of
// *both* Monday and Thursday,
// represented by (in binary) 0100.

if (instance.HasFlag (MyEnum.Wednesday))
{

https://riptutorial.com/ 27

// it doesn't, so this block is skipped
}
else if (instance.HasFlag (MyEnum.Thursday))
{

// it does, so this block is executed

}

Since the Enum class is subclassed from system.valuetype, it IS treated as a value type and passed
by value, not by reference. The base object is created on the heap, but when you pass an enum
value into a function call, a copy of the value using the underlying value type of the Enum (typically
System.Int32) is pushed onto the stack. The compiler tracks the association between this value
and the base object that was created on the stack. See ValueType Class (System) (MSDN) for
more information.

Read Custom Types online: https://riptutorial.com/dot-net/topic/57/custom-types

https://riptutorial.com/ 28

https://msdn.microsoft.com/en-us/library/system.valuetype(v=vs.110).aspx
https://riptutorial.com/dot-net/topic/57/custom-types

C_hapter 9: DateTime parsing

Examples
ParseExact

var dateString = "2015-11-24";

var date = DateTime.ParseExact (dateString, "yyyy-MM-dd", null);
Console.WriteLine (date);

11/24/2015 12:00:00 AM

Note that passing cultureinfo.currentculture aS the third parameter is identical to passing nuii.
Or, you can pass a specific culture.

Format Strings

Input string can be in any format that matches the format string

var date = DateTime.ParseExact ("24|201511", "dd|yyyyMM", null);
Console.WriteLine (date);

11/24/2015 12:00:00 AM

Any characters that are not format specifiers are treated as literals

var date = DateTime.ParseExact ("2015(11]24", "yyyy|MM|dd", null);
Console.WriteLine (date);

11/24/2015 12:00:00 AM

Case matters for format specifiers

var date = DateTime.ParseExact ("2015-01-24 11:11:30", "yyyy-mm-dd hh:MM:ss", null);

Console.WriteLine (date) ;

11/24/2015 11:01:30 AM
Note that the month and minute values were parsed into the wrong destinations.

Single-character format strings must be one of the standard formats

var date = DateTime.ParseExact ("11/24/2015", "d", new CultureInfo ("en-US"));
var date = DateTime.ParseExact ("2015-11-24T10:15:45", "s", null);

var date = DateTime.ParseExact ("2015-11-24 10:15:45z", "u", null);
Exceptions

https://riptutorial.com/

29

ArgumentNullException

var date = DateTime.ParseExact (null, "yyyy-MM-dd", null);
var date = DateTime.ParseExact ("2015-11-24", null, null);

FormatException

var date = DateTime.ParseExact ("", "yyyy-MM-dd", null);

var date = DateTime.ParseExact ("2015-11-24", "", null);

var date = DateTime.ParseExact ("2015-0C-24", "yyyy-MM-dd", null);
var date = DateTime.ParseExact ("2015-11-24", "yyyy-Q00-dd", null);

// Single-character format strings must be one of the standard formats
var date = DateTime.ParseExact ("2015-11-24", "g", null);

// Format strings must match the input exactly* (see next section)
var date = DateTime.ParseExact ("2015-11-24", "d", null); // Expects 11/24/2015 or 24/11/2015
for most cultures

Handling multiple possible formats

var date = DateTime.ParseExact ("2015-11-24T10:15:45",

new [] { "s", "t", "u", "yyyy-MM-dd" }, // Will succeed as long as input matches one of
these

CultureInfo.CurrentCulture, DateTimeStyles.None);

Handling culture differences

var dateString = "10/11/2015";
var date = DateTime.ParseExact (dateString, "d", new CultureInfo("en-US"));
Console.WriteLine ("Day: {0}; Month: {1}", date.Day, date.Month);

Day: 11; Month: 10

date = DateTime.ParseExact (dateString, "d", new CultureInfo ("en-GB"));
Console.WritelLine ("Day: {0}; Month: {1}", date.Day, date.Month);

Day: 10; Month: 11
TryParse

This method accepts a string as input, attempts to parse it into a patetime, and returns a Boolean
result indicating success or failure. If the call succeeds, the variable passed as the out parameter
is populated with the parsed result.

If the parse fails, the variable passed as the out parameter is set to the default value,

DateTime.MinValue.

TryParse(string, out DateTime)

DateTime parsedValue;

https://riptutorial.com/ 30

if (DateTime.TryParse ("monkey", out parsedValue))

{

Console.WriteLine ("Apparently, 'monkey' is a date/time value. Who knew?");

This method attempts to parse the input string based on the system regional settings and known
formats such as ISO 8601 and other common formats.

DateTime.TryParse ("11/24/2015 14:28:42", out parsedvValue); // true
DateTime.TryParse ("2015-11-24 14:28:42", out parsedvValue); // true
DateTime.TryParse ("2015-11-24T14:28:42", out parsedvValue); // true

DateTime.TryParse ("Sat, 24 Nov 2015 14:28:42",

out parsedvValue); // true

Since this method does not accept culture info, it uses the system locale. This can lead to

unexpected results.

// System set to en-US culture

bool result = DateTime.TryParse("24/11/2015",

Console.WriteLine (result) ;

False

// System set to en-GB culture

bool result = DateTime.TryParse("11/24/2015",

Console.WriteLine (result);

False

// System set to en-GB culture

bool result = DateTime.TryParse("10/11/2015",

Console.WriteLine (result);

True

out parsedValue);

out parsedValue) ;

out parsedValue);

Note that if you are in the US, you might be surprised that the parsed result is November 10, not

October 11.

TryParse(string, IFormatProvider, DateTimeStyles, out DateTime)

if (DateTime.TryParse (" monkey ", new CultureInfo("en-GB"),

DateTimeStyles.AllowLeadingWhite | DateTimeStyles.AllowTrailingWhite, out parsedValue)

Console.WriteLine ("Apparently, ' monkey

is a date/time value. Who knew?");

Unlike its sibling method, this overload allows a specific culture and style(s) to be specified.
Passing nu11 for the rrormatprovider parameter uses the system culture.

Exceptions

https://riptutorial.com/

31

Note that it is possible for this method to throw an exception under certain conditions. These relate
to the parameters introduced for this overload: 1Formatprovider and pateTimestyles.

® NotSupportedException. IFormatProvider SpeCifieS a neutral culture
* ArgumentException! DateTimeStyles IS NOt @ valid option, or contains incompatible flags such as

AssumeLocal aNd AssumeUniversal.

TryParseExact

This method behaves as a combination of rryparse and parserxact: It allows custom format(s) to be
specified, and returns a Boolean result indicating success or failure rather than throwing an
exception if the parse fails.

TryParseExact(string, string, IFormatProvider, DateTimeStyles, out DateTime)

This overload attempts to parse the input string against a specific format. The input string must
match that format in order to be parsed.

DateTime.TryParseExact ("11242015", "MMddyyyy", null, DateTimeStyles.None, out parsedValue); //
true

TryParseExact(string, string[], IFormatProvider, DateTimeStyles, out DateTime)

This overload attempts to parse the input string against an array of formats. The input string must
match at least one format in order to be parsed.

DateTime.TryParseExact ("11242015", new [] { "yyyy-MM-dd", "MMddyyyy" }, null,
DateTimeStyles.None, out parsedValue); // true

Read DateTime parsing online: https://riptutorial.com/dot-net/topic/58/datetime-parsing

https://riptutorial.com/ 32

https://riptutorial.com/dot-net/topic/58/datetime-parsing

C_hapter 10: Dependency Injection

Remarks

Problems Solved By Dependency Injection

If we didn't use dependency injection, the creeter class might look more like this:

public class ControlFreakGreeter

{
public void Greet ()

{
var greetingProvider = new SqglGreetingProvider (
ConfigurationManager.ConnectionStrings|["myConnectionString"].ConnectionString);
var greeting = greetingProvider.GetGreeting();
Console.Writeline (greeting);

It's a "control freak" because it controls creating the class that provides the greeting, it controls
where the SQL connection string comes from, and it controls the output.

Using dependency injection, the creeter class relinquishes those responsibilities in favor of a
single responsibility, writing a greeting provided to it.

The Dependency Inversion Principle suggests that classes should depend on abstractions (like
interfaces) rather than on other concrete classes. Direct dependencies (coupling) between classes
can make maintenance progressively difficult. Depending on abstractions can reduce that
coupling.

Dependency injection helps us to achieve that dependency inversion because it leads to writing
classes that depend on abstractions. The creeter class "knows" nothing at all of the
implementation details of 1Greetingprovider and rcreetinguriter. It ONly knows that the injected
dependencies implement those interfaces. That means that changes to the concrete classes that
implement 1creetingprovider and 1Greetingnriter Will NOt affect creeter. Neither will replacing them
with entirely different implementations. Only changes to the interfaces will. creeter is decoupled.

controlFreakGreeter IS IMPOSSible to properly unit test. We want to test one small unit of code, but
instead our test would include connecting to SQL and executing a stored procedure. It would also
include testing the console output. Because ControlFreakGreeter does so much it's impossible to
test in isolation from other classes.

Greeter IS €aSY t0 unit test because we can inject mocked implementations of its dependencies
that are easier to execute and verify than calling a stored procedure or reading the output of the
console. It doesn't require a connection string in app.config.

The concrete implementations of 16reetingprovider and 1Greetinguriter Might become more
complex. They, in turn might have their own dependencies which are injected into them. (For

https://riptutorial.com/ 33

https://en.wikipedia.org/wiki/Dependency_inversion_principle

example, we'd inject the SQL connection string into sqlcreetingpProvider.) But that complexity is
"hidden" from other classes which only depend on the interfaces. That makes it easier to modify
one class without a "ripple effect" that requires us to make corresponding changes to other
classes.

Examples

Dependency Injection - Simple example

This class is called creeter. Its responsibility is to output a greeting. It has two dependencies. It
needs something that will give it the greeting to output, and then it needs a way to output that
greeting. Those dependencies are both described as interfaces, 1Greetingprovider and
IGreetingwriter. IN this example, those two dependencies are "injected” into creeter. (Further
explanation following the example.)

public class Greeter

{
private readonly IGreetingProvider _greetingProvider;
private readonly IGreetingWriter _greetingWriter;

public Greeter (IGreetingProvider greetingProvider, IGreetingWriter greetingWriter)
{

_greetingProvider = greetingProvider;

_greetingWriter = greetingWriter;

public void Greet ()

{
var greeting = _greetingProvider.GetGreeting() ;
_greetingWriter.WriteGreeting (greeting) ;

public interface IGreetingProvider
{
string GetGreeting();

public interface IGreetingWriter
{

volid WriteGreeting (string greeting);

The creeting class depends on both 1Greetingprovider and 1Greetingwriter, but it is Nnot responsible
for creating instances of either. Instead it requires them in its constructor. Whatever creates an
instance of creeting Must provide those two dependencies. We can call that "injecting"” the
dependencies.

Because dependencies are provided to the class in its constructor, this is also called "constructor
injection."”

A few common conventions:

https://riptutorial.com/ 34

» The constructor saves the dependencies as private fields. As soon as the class is
instantiated, those dependencies are available to all other non-static methods of the class.

* The private fields are readon1y. Once they are set in the constructor they cannot be changed.
This indicates that those fields should not (and cannot) be modified outside of the
constructor. That further ensures that those dependencies will be available for the lifetime of
the class.

» The dependencies are interfaces. This is not strictly necessary, but is common because it
makes it easier to substitute one implementation of the dependency with another. It also
allows providing a mocked version of the interface for unit testing purposes.

How Dependency Injection Makes Unit Testing Easier

This builds on the previous example of the creeter class which has two dependencies,

IGreetingProvider anCiIGreetingWriter.

The actual implementation of 1creetingprovider might retrieve a string from an API call or a
database. The implementation of 1creetinguriter might display the greeting in the console. But
because creeter has its dependencies injected into its constructor, it's easy to write a unit test that
injects mocked versions of those interfaces. In real life we might use a framework like Mog, but in
this case I'll write those mocked implementations.

public class TestGreetingProvider : IGreetingProvider

{

public const string TestGreeting = "Hello!";

public string GetGreeting()
{

return TestGreeting;

public class TestGreetingWriter : List<string>, IGreetingWriter
{
public void WriteGreeting(string greeting)

{
Add (greeting) ;

[TestClass]
public class GreeterTests
{
[TestMethod]
public void Greeter_WritesGreeting()
{
var greetingProvider = new TestGreetingProvider () ;
var greetingWriter = new TestGreetingWriter();
var greeter = new Greeter (greetingProvider, greetingWriter);
greeter.Greet () ;
Assert.AreEqual (greetingWriter[0], TestGreetingProvider.TestGreeting);

The behavior of 16reetingProvider and 1creetingwriter are not relevant to this test. We want to test

https://riptutorial.com/ 35

http://www.moqthis.com/

that creeter gets a greeting and writes it. The design of creeter (Using dependency injection)
allows us to inject mocked dependencies without any complicated moving parts. All we're testing
is that creeter interacts with those dependencies as we expect it to.

Why We Use Dependency Injection Containers (loC Containers)

Dependency injection means writing classes so that they do not control their dependencies -
instead, their dependencies are provided to them ("injected.")

This is not the same thing as using a dependency injection framework (often called a "Dl
container”, "loC container", or just "container") like Castle Windsor, Autofac, Simplelnjector,
Ninject, Unity, or others.

A container just makes dependency injection easier. For example, suppose you write a number of
classes that rely on dependency injection. One class depends on several interfaces, the classes
that implement those interfaces depend on other interfaces, and so on. Some depend on specific
values. And just for fun, some of those classes implement pisposable and need to be disposed.

Each individual class is well-written and easy to test. But now there's a different problem: Creating
an instance of a class has become much more complicated. Suppose we're creating an instance
of a customerservice Class. It has dependencies and its dependencies have dependencies.
Constructing an instance might look something like this:

public CustomerData GetCustomerData (string customerNumber)
{
var customerApiEndpoint =
ConfigurationManager.AppSettings["customerApi:customerApiEndpoint"];
var logFilePath = ConfigurationManager.AppSettings["logwriter:logFilePath"];
var authConnectionString =
ConfigurationManager.ConnectionStrings|["authorization”].ConnectionString;
using (var logWriter = new LogWriter (logFilePath))
{
using (var customerApiClient = new CustomerApiClient (customerApiEndpoint))
{
var customerService = new CustomerService (
new SqglAuthorizationRepository (authorizationConnectionString, logWriter),
new CustomerDataRepository (customerApiClient, logWriter),
logWriter
)i

// All this just to create an instance of CustomerService!

return customerService.GetCustomerData (string customerNumber) ;

You might wonder, why not put the whole giant construction in a separate function that just returns
customerservice? One reason is that because the dependencies for each class are injected into it,
a class isn't responsible for knowing whether those dependencies are 1pisposable Or disposing
them. It just uses them. So if a we had a cetcustomerservice () function that returned a fully-
constructed customerservice, that class might contain a number of disposable resources and no
way to access or dispose them.

https://riptutorial.com/ 36

And aside from disposing 1pisposable, Who wants to call a series of nested constructors like that,
ever? That's a short example. It could get much, much worse. Again, that doesn't mean that we
wrote the classes the wrong way. The classes might be individually perfect. The challenge is
composing them together.

A dependency injection container simplifies that. It allows us to specify which class or value should
be used to fulfill each dependency. This slightly oversimplified example uses Castle Windsor:

var container = new WindsorContainer ()
container.Register (
Component .For<CustomerService> (),
Component .For<ILogWriter, LogWriter> ()
.DependsOn (Dependency .OnAppSettingsValue ("logFilePath", "logWriter:logFilePath")),
Component .For<IAuthorizationRepository, SglAuthorizationRepository> ()
.DependsOn (Dependency.OnValue (connectionString,
ConfigurationManager.ConnectionStrings["authorization"].ConnectionString)),
Component .For<ICustomerDataProvider, CustomerApiClient> ()
.DependsOn (Dependency.OnAppSettingsValue ("apiEndpoint",
"customerApi:customerApiEndpoint"))
)i

We call this "registering dependencies” or "configuring the container.” Translated, this tells our

WindsorContainer

 If a class requires 1rognriter, Create an instance of Logwriter. Logwriter requires a file path.
Use this value from appsettings.

 If a class requires rauthorizationRepository, Create an instance of sqiauthorizationRepository.
It requires a connection string. Use this value from the connectionstrings Section.

» |If a class requires 1customerbataProvider, Create a customerapiclient and provide the string it
needs from appsettings.

When we request a dependency from the container we call that "resolving” a dependency. It's bad
practice to do that directly using the container, but that's a different story. For demonstration
purposes, we could now do this:

var customerService = container.Resolve<CustomerService>();
var data = customerService.GetCustomerData (customerNumber) ;
container.Release (customerService) ;

The container knows that customerservice depends ON IAuthorizationRepository and
IcustomerDataProvider. It KNOWS what classes it needs to create to fulfill those requirements. Those
classes, in turn, have more dependencies, and the container knows how to fulfill those. It will
create every class it needs to until it can return an instance of customerservice.

If it gets to a point where a class requires a dependency that we haven't registered, like
IDoesSomethingElse, then when we try to resolve customerservice it Will throw a clear exception
telling us that we haven't registered anything to fulfill that requirement.

Each DI framework behaves a little differently, but typically they give us some control over how
certain classes are instantiated. For example, do we want it to create one instance of Loguriter
and provide it to every class that depends on rroguriter, Or do we want it to create a new one

https://riptutorial.com/ 37

every time? Most containers have a way to specify that.

What about classes that implement 1pisposabie? That's why we call

container.Release (customerservice); at the end. Most containers (including Windsor) will step back
through all of the dependencies created and pispose the ones that need disposing. If
CustomerService IS IDisposable It Will dispose that too.

Registering dependencies as seen above might just look like more code to write. But when we
have lots of classes with lots of dependencies then it really pays off. And if we had to write those
same classes without using dependency injection then that same application with lots of classes
would become difficult to maintain and test.

This scratches the surface of why we use dependency injection containers. How we configure our
application to use one (and use it correctly) is not just one topic - it's a number of topics, as the
instructions and examples vary from one container to the next.

Read Dependency Injection online: https://riptutorial.com/dot-net/topic/5085/dependency-injection

https://riptutorial.com/ 38

https://riptutorial.com/dot-net/topic/5085/dependency-injection

C_hapter 11: Dictionaries

Examples

Enumerating a Dictionary
You can enumerate through a Dictionary in one of 3 ways:
Using KeyValue pairs

Dictionary<int, string> dict = new Dictionary<int, string>();
foreach (KeyValuePair<int, string> kvp in dict)

{

Console.WriteLine ("Key : " + kvp.Key.ToString() + ", Value :
}
Using Keys
Dictionary<int, string> dict = new Dictionary<int, string>();

foreach (int key in dict.Keys)
{
Console.WritelLine ("Key : " + key.ToString() + ", Value :

Using Values

Dictionary<int, string> dict = new Dictionary<int, string>();
foreach(string s in dict.Values)
{

Console.WriteLine ("Value : " + s);

Initializing a Dictionary with a Collection Initializer

// Translates to “dict.Add(l, "First") ' etc.
var dict = new Dictionary<int, string> ()
{

{1, "First" },

{ 2, "Second" },

{ 3, "Third" }

}i

// Translates to “dict[l] = "First" etc.
// Works in C# 6.0.
var dict = new Dictionary<int, string> ()
{

[1] = "First",

[2] = "Second",

[3] = "Third"

}i

" + kvp.Value);

" + dict[keyl);

https://riptutorial.com/

39

Adding to a Dictionary

Dictionary<int, string> dict = new Dictionary<int, string>();
dict.Add (1, "First");
dict.Add (2, "Second");

// To safely add items (check to ensure item does not already exist - would throw)
if (!dict.ContainsKey (3))
{

dict.Add (3, "Third");

Alternatively they can be added/set via the an indexer. (An indexer internally looks like a property,
having a get and set, but takes a parameter of any type which is specified between the brackets) :

Dictionary<int, string> dict = new Dictionary<int, string>();
dict[1l] = "First";
dict[2] = "Second";
dict[3] = "Third";

Unlike the aaa method which throws an exception, if a key is already contained in the dictionary,
the indexer just replaces the existing value.

For thread-safe dictionary use concurrentbDictionary<TKey, TValue>:

var dict = new ConcurrentDictionary<int, string>();
dict.AddOrUpdate (1, "First", (oldKey, oldvalue) => "First");

Getting a value from a dictionary

Given this setup code:

var dict = new Dictionary<int, string> ()
{

{ 1, "First" },

{ 2, "Second" },

{ 3, "Third" }

}i

You may want to read the value for the entry with key 1. If key doesn't exist getting a value will
throw xeyNotFoundException, SO YOU may want to first check for that with containsxkey:

if (dict.ContainsKey (1))
Console.WriteLine (dict[1]);

This has one disadvantage: you will search through your dictionary twice (once to check for
existence and one to read the value). For a large dictionary this can impact performance.
Fortunately both operations can be performed together:

string value;
if (dict.TryGetValue(l, out value))

https://riptutorial.com/ 40

Console.WriteLine (value) ;

Make a Dictionary with Case-Insensivitve keys.

var MyDict = new Dictionary<string, T> (StringComparison.InvariantCultureIgnoreCase)

ConcurrentDictionary (from .NET 4.0)

Represents a thread-safe collection of key/value pairs that can be accessed by multiple
threads concurrently.

Creating an instance

Creating an instance works pretty much the same way as with pictionary<trey, Tvalue>, €.0.:

var dict = new ConcurrentDictionary<int, string>();

Adding or Updating

You might be surprised, that there is no raa method, but instead there is addorupdate With 2
overloads:

(1) AddOrUpdate (TKey key, TValue, Func<TKey, TValue, TValue> addValue) - Adds a key/value pair if
the key does not already exist, or updates a key/value pair by using the specified function if the
key already exists.

(2) addorupdate (TKey key, Func<TKey, TValue> addValue, Func<TKey, TValue, TValue>
updatevalueFactory) - Uses the specified functions to add a key/value pair to the if the key does not
already exist, or to update a key/value pair if the key already exists.

Adding or updating a value, no matter what was the value if it was already present for given key

(1):
string addedValue = dict.AddOrUpdate(l, "First", (updateKey, valueOld) => "First");
Adding or updating a value, but now altering the value in update, based on the previous value (1):

string addedValue2 = dict.AddOrUpdate(l, "First", (updateKey, valueOld) => $"{valueOld}
Updated") ;

Using the overload (2) we can also add new value using a factory:

string addedvValue3 = dict.AddOrUpdate(l, (key) => key == 1 ? "First" : "Not First",
(updateKey, valueOld) => $"{valueOld} Updated");

https://riptutorial.com/ 41

Getting value

Getting a value is the same as with the pictionary<Tkey, Tvalue>:

string value = null;
bool success = dict.TryGetValue(l, out wvalue);

Getting or Adding a value

There are two mehod overloads, that will get or add a value in a thread-safe manner.
Get value with key 2, or add value "Second" if the key is not present:

string theValue = dict.GetOrAdd (2, "Second");
Using a factory for adding a value, if value is not present:

string theValue2 = dict.GetOrAdd (2, (key) => key == 2 ? "Second" : "Not Second.");

IEnumerable to Dictionary (= .NET 3.5)
Create a Dictionary<TKey, TValue> from an |[Enumerable<T>:

using System;
using System.Collections.Generic;
using System.Ling;

public class Fruits

{
public int Id { get; set; }
public string Name { get; set; }

var fruits = new([]

new Fruits { Id = 8 , Name = "Apple" },

new Fruits { Id = 3 , Name = "Banana" },

new Fruits { Id = 7 , Name = "Mango" },
}i
// Dictionary<int, string> key value
var dictionary = fruits.ToDictionary(x => x.Id, x => x.Name);

Removing from a Dictionary

Given this setup code:

https://riptutorial.com/

https://msdn.microsoft.com/en-us/library/xfhwa508(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/9eekhta0(v=vs.100).aspx

var dict = new Dictionary<int, string> ()

{

{ 1, "First" },
{ 2, "Second" 1},
{ 3, "Third" }

bi
Use the remove method to remove a key and its associated value.

bool wasRemoved = dict.Remove (2);

Executing this code removes the key 2 and it's value from the dictionary. remove returns a boolean
value indicating whether the specified key was found and removed from the dictionary. If the key
does not exist in the dictionary, nothing is removed from the dictionary, and false is returned (no
exception is thrown).

It's incorrect to try and remove a key by setting the value for the key to nu11.

dict[2] = null; // WRONG WAY TO REMOVE!
This will not remove the key. It will just replace the previous value with a value of nu11.
To remove all keys and values from a dictionary, use the ciear method.

dict.Clear();
After executing ciear the dictionary's count Will be 0, but the internal capacity remains unchanged.
ContainsKey(TKey)
To check if a pictionary has an specifique key, you can call the method containskey (trey) and
provide the key of txey type. The method returns a roo1 value when the key exists on the

dictionary. For sample:

var dictionary = new Dictionary<string, Customer> ()

{

{"F1", new Customer () { FirstName = "Felipe", ... } },
{"C2", new Customer () { FirstName = "Carl", ... } },
{"J7", new Customer () { FirstName = "John", ... } },
{"M5", new Customer () { FirstName = "Mary", ... } 1},

}i
And check if a c2 exists on the Dictionary:

if (dictionary.ContainsKey ("C2"))
{

// exists

The ContainsKey method is available on the generic version victionary<trey, Tvalues-.

https://riptutorial.com/ 43

https://msdn.microsoft.com/library/htszx2dy(v=vs.110).aspx
https://msdn.microsoft.com/library/htszx2dy(v=vs.110).aspx

Dictionary to List
Creating a list of KeyValuePair:

Dictionary<int, int> dictionary = new Dictionary<int, int>();
List<KeyValuePair<int, int>> list = new List<KeyValuePair<int, int>>();
list.AddRange (dictionary);

Creating a list of keys:

Dictionary<int, int> dictionary = new Dictionary<int, int>();
List<int> list = new List<int>();
list.AddRange (dictionary.Keys) ;

Creating a list of values:

Dictionary<int, int> dictionary = new Dictionary<int, int>();
List<int> list = new List<int>();
list.AddRange (dictionary.Values) ;

ConcurrentDictionary augmented with Lazy'l reduces duplicated computation

Problem

ConcurrentDictionary shines when it comes to instantly returning of existing keys from cache,
mostly lock free, and contending on a granular level. But what if the object creation is really
expensive, outweighing the cost of context switching, and some cache misses occur?

If the same key is requested from multiple threads, one of the objects resulting from colliding
operations will be eventually added to the collection, and the others will be thrown away, wasting
the CPU resource to create the object and memory resource to store the object temporarily. Other
resources could be wasted as well. This is really bad.

Solution

We can combine concurrentdictionary<TKey, Tvalue> With Lazy<tvalue>. The idea is that
ConcurrentDictionary GetOrAdd method can only return the value which was actually added to the
collection. The loosing Lazy objects could be wasted in this case too, but that's not much problem,
as the Lazy object itself is relatively unexpensive. The Value property of the losing Lazy is never
requested, because we are smart to only request the Value property of the one actually added to
the collection - the one returned from the GetOrAdd method:

public static class ConcurrentDictionaryExtensions
{
public static TValue GetOrCreatelazy<TKey, TValue> (
this ConcurrentDictionary<TKey, Lazy<TValue>> d,
TKey key,
Func<TKey, TValue> factory)

https://riptutorial.com/ 44

return
d.GetOrAdd (
key,
keyl =>
new Lazy<TValue>(() => factory(keyl),
LazyThreadSafetyMode.ExecutionAndPublication)) .Value;

Caching of XmlSerializer objects can be particularly expensive, and there is a lot of contention at
the application startup too. And there is more to this: if those are custom serializers, there will be a
memory leak too for the rest of the process lifecycle. The only benefit of the ConcurrentDictionary
in this case is that for the rest of the process lifecycle there will be no locks, but application startup

and memory usage would be inacceptable. This is a job for our ConcurrentDictionary, augmented
with Lazy:

private ConcurrentDictionary<Type, Lazy<XmlSerializer>> _serializers =
new ConcurrentDictionary<Type, Lazy<XmlSerializer>>();

public XmlSerializer GetSerialier (Type t)
{

return _serializers.GetOrCreatelazy (t, BuildSerializer);

private XmlSerializer BuildSerializer (Type t)
{

throw new NotImplementedException ("and this is a homework");

Read Dictionaries online: https://riptutorial.com/dot-net/topic/45/dictionaries

https://riptutorial.com/ 45

https://riptutorial.com/dot-net/topic/45/dictionaries

C_hapter 12: Encryption / Cryptography

Remarks

.NET Framework provides implementation of many cryptographic algorithms. They include
basically symmetric algorithms, asymmetric algorithms and hashes.

Examples

RijndaelManaged
Required Namespace: System.Security.Cryptography

private class Encryption {
private const string SecretKey = "topSecretKeyusedforEncryptions";
private const string SecretIv = "secretVectorHere";

public string Encrypt (string data) {
return string.IsNullOrEmpty (data) ? data
Convert.ToBase64String (this.EncryptStringToBytesAes (data, this.GetCryptographyKey (),
this.GetCryptographyIv()));
}

public string Decrypt (string data) {
return string.IsNullOrEmpty (data) ? data
this.DecryptStringFromBytesAes (Convert.FromBase64String(data), this.GetCryptographyKey (),
this.GetCryptographyIv()) ;
}

private byte[] GetCryptographyKey () {
return Encoding.ASCII.GetBytes (SecretKey.Replace('e', '!'"));

private byte[] GetCryptographyIv () {
return Encoding.ASCII.GetBytes (SecretIv.Replace('r', '!"));

private byte[] EncryptStringToBytesAes (string plainText, byte[] key, byte[] iv)
MemoryStream encrypt;
RijndaelManaged aesAlg = null;
try {
aesAlg = new RijndaelManaged {
Key = key,
IV = iv
bi
var encryptor = aesAlg.CreateEncryptor (aesAlg.Key, aesAlg.IV);

encrypt = new MemoryStream() ;
using (var csEncrypt = new CryptoStream(encrypt, encryptor,
CryptoStreamMode.Write)) {
using (var swEncrypt = new StreamWriter (csEncrypt)) {

swEncrypt.Write (plainText) ;

{

https://riptutorial.com/

46

}
} finally {
aesAlg?.Clear();
}

return encrypt.ToArray();

private string DecryptStringFromBytesAes (byte[] cipherText, byte[] key, bytel[] iv)
RijndaelManaged aesAlg = null;
string plaintext;

try {
aesAlg = new RijndaelManaged {
Key = key,
IV = iv

bi
var decryptor = aesAlg.CreateDecryptor (aesAlg.Key, aesAlg.IV);
using (var msDecrypt = new MemoryStream (cipherText)) {
using (var csDecrypt = new CryptoStream(msDecrypt, decryptor,
CryptoStreamMode.Read)) {
using (var srDecrypt = new StreamReader (csDecrypt))
plaintext = srDecrypt.ReadToEnd() ;

}
} finally {
aesAlg?.Clear();
}

return plaintext;

Usage

var textToEncrypt = "hello World";

var encrypted = new Encryption () .Encrypt (textToEncrypt); //-> zBmW+FUxOvdbpOGmI9Ss/vQ==

var decrypted = new Encryption () .Decrypt (encrypted); //-> hello World

Note:

* Rijndael is the predecessor of the standard symmetric cryptographic algorithm AES.

Encrypt and decrypt data using AES (in C#)

using System;
using System.IO;
using System.Security.Cryptography;

namespace Aes_Example

{

class AesExample
{
public static void Main ()
{
try
{

string original = "Here is some data to encrypt!";

{

https://riptutorial.com/

// Create a new instance of the Aes class.
// This generates a new key and initialization vector (IV).
using (Aes myAes = Aes.Create())
{
// Encrypt the string to an array of bytes.
byte[] encrypted = EncryptStringToBytes_Aes (original,
myAes .Key,
myAes.1V);

// Decrypt the bytes to a string.

string roundtrip = DecryptStringFromBytes_Aes (encrypted,
myAes .Key,
myAes.1V);

//Display the original data and the decrypted data.
Console.WriteLine ("Original: {0}", original);
Console.WriteLine ("Round Trip: {0}", roundtrip);

}

catch (Exception e)

{

Console.WriteLine ("Error: {0}", e.Message);

static byte[] EncryptStringToBytes_Aes (string plainText, byte[] Key, byte[] IV)
{
// Check arguments.

if (plainText == null || plainText.Length <= 0)
throw new ArgumentNullException ("plainText");
if (Key == null || Key.Length <= 0)
throw new ArgumentNullException ("Key");
if (IV == null || IV.Length <= 0)

throw new ArgumentNullException ("IV");

byte[] encrypted;

// Create an Aes object with the specified key and IV.
using (Aes aesAlg = Aes.Create())
{

aesAlg.Key = Key;

aesAlg.IV = 1IV;

// Create a decrytor to perform the stream transform.
ICryptoTransform encryptor = aesAlg.CreateEncryptor (aesAlg.Key,
aesAlg.IV);

// Create the streams used for encryption.
using (MemoryStream msEncrypt = new MemoryStream())
{
using (CryptoStream csEncrypt = new CryptoStream(msEncrypt,
encryptor,
CryptoStreamMode.Write))

using (StreamWriter swEncrypt = new StreamWriter (csEncrypt))

{
//Write all data to the stream.
swEncrypt.Write (plainText) ;

https://riptutorial.com/

encrypted = msEncrypt.ToArray () ;

// Return the encrypted bytes from the memory stream.
return encrypted;

static string DecryptStringFromBytes_Aes (byte[] cipherText, byte[] Key, bytel[] IV)
{
// Check arguments.

if (cipherText == null || cipherText.Length <= 0)
throw new ArgumentNullException ("cipherText");
if (Key == null || Key.Length <= 0)
throw new ArgumentNullException ("Key");
if (IV == null || IV.Length <= 0)

throw new ArgumentNullException ("IV");

// Declare the string used to hold the decrypted text.
string plaintext = null;

// Create an Aes object with the specified key and IV.
using (Aes aesAlg = Aes.Create())
{

aesAlg.Key = Key;

aesAlg.IV = 1IV;

// Create a decrytor to perform the stream transform.
ICryptoTransform decryptor = aesAlg.CreateDecryptor (aesAlg.Key,
aesAlg.IV);

// Create the streams used for decryption.
using (MemoryStream msDecrypt = new MemoryStream(cipherText))
{
using (CryptoStream csDecrypt = new CryptoStream(msDecrypt,
decryptor,
CryptoStreamMode.Read))

using (StreamReader srDecrypt = new StreamReader (csDecrypt))

{

// Read the decrypted bytes from the decrypting stream
// and place them in a string.
plaintext = srDecrypt.ReadToEnd() ;

return plaintext;

This example is from MSDN.

It is a console demo application, showing how to encrypt a string by using the standard AES
encryption, and how to decrypt it afterwards.

https://riptutorial.com/

49

https://msdn.microsoft.com/en-us/library/system.security.cryptography.aes(v=vs.110).aspx

(AES = Advanced Encryption Standard, a specification for the encryption of electronic data
established by the U.S. National Institute of Standards and Technology (NIST) in 2001 which is
still the de-facto standard for symmetric encryption)

Notes:

» In areal encryption scenario, you need to choose a proper cipher mode (can be assigned to
the mode property by selecting a value from the ciphermode €numeration). Never use the
cipherMode.ECB (€lectronic codebook mode), since this procuces a weak cypher stream

» To create a good (and not a weak) key, either use a cryptographic random generator or use
the example above (Create a Key from a Password). The recommended KeySize is 256
bit. Supported key sizes are available via the vLegaikeysizes property.

» Toinitialize the initialization vector v, you can use a SALT as shown in the example above (
Random SALT)

» Supported block sizes are available via the supportedsiocksizes property, the block size can
be assigned via the s1ocksize property

Usage: see Main() method.

Create a Key from a Password / Random SALT (in C#)

using System;
using System.Security.Cryptography;
using System.Text;

public class PasswordDerivedBytesExample
{
public static void Main(String[] args)
{
// Get a password from the user.
Console.Writeline ("Enter a password to produce a key:");

byte[] pwd = Encoding.Unicode.GetBytes (Console.ReadLine()) ;
byte[] salt = CreateRandomSalt (7);

// Create a TripleDESCryptoServiceProvider object.
TripleDESCryptoServiceProvider tdes = new TripleDESCryptoServiceProvider () ;

try
{

Console.Writeline ("Creating a key with PasswordDeriveBytes...");

// Create a PasswordDeriveBytes object and then create
// a TripleDES key from the password and salt.
PasswordDeriveBytes pdb = new PasswordDeriveBytes (pwd, salt);

// Create the key and set it to the Key property
// of the TripleDESCryptoServiceProvider object.

tdes.Key = pdb.CryptDeriveKey ("TripleDES", "SHA1l", 192, tdes.IV);

Console.Writeline ("Operation complete.");

https://riptutorial.com/ 50

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

}

catch (Exception e)

{

Console.WriteLine (e.Message) ;

}
finally

{
// Clear the buffers

ClearBytes (pwd) ;
ClearBytes (salt);

// Clear the key.
tdes.Clear () ;

Console.ReadLine () ;

#region Helper methods

/// <summary>
/// Generates a random salt value of the specified length.
/// </summary>
public static byte[] CreateRandomSalt (int length)
{
// Create a buffer
byte[] randBytes;

if (length >= 1)
{
randBytes = new byte[length];
}
else

{

randBytes new byte[l];

// Create a new RNGCryptoServiceProvider.
RNGCryptoServiceProvider rand = new RNGCryptoServiceProvider () ;

// Fill the buffer with random bytes.
rand.GetBytes (randBytes) ;

// return the bytes.
return randBytes;

/// <summary>
/// Clear the bytes in a buffer so they can't later be read from memory.
/// </summary>
public static void ClearBytes (byte[] buffer)
{

// Check arguments.

if (buffer == null)

{

throw new ArgumentNullException ("buffer");

// Set each byte in the buffer to 0.
for (int x = 0; x < buffer.Length; x++)

{

https://riptutorial.com/

buffer[x] = 0;
}

#endregion

This example is taken from MSDN.

It is a console demo, and it shows how to create a secure key based on a user-defined password,

and how to create a random SALT based on the cryptographic random generator.

Notes:

* The built-in function passwordperivesytes Uses the standard PBKDFL1 algorithm to generate a
key from the password. Per default, it uses 100 iterations to generate the key to slow down
brute force attacks. The SALT generated randomly further strenghens the key.

The function cryptperivekey converts the key generated by passwordperivesytes iNnto a key
compatible with the specified encryption algorithm (here "TripleDES") by using the specified
hash algorithm (here "SHA1"). The keysize in this example is 192 bytes, and the initialization
vector IV is taken from the triple-DES crypto provider

Usually, this mechanism is used to protect a stronger random generated key by a password,
which encrypts large amount of data. You can also use it to provide multiple passwords of
different users to give access to the same data (being protected by a different random key).

Unfortunately, cryptperivekey does currently not support AES. See here.

NOTE: As a workaround, you can create a random AES key for encryption of the data to be
protected with AES and store the AES key in a TripleDES-Container which uses the key
generated by cryptperivekey. But that limits the security to TripleDES, does not take
advantage of the larger keysizes of AES and creates a dependency to TripleDES.

Usage: See Main() method.

Encryption and Decryption using Cryptography (AES)
Decryption Code

public static string Decrypt (string cipherText)
{
if (cipherText == null)
return null;

byte[] cipherBytes = Convert.FromBase64String (cipherText) ;
using (Aes encryptor = Aes.Create())

{

Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes (CryptKey, new byte[] { 0x49,

0x61, Ox6e, 0x20, Ox4d, 0x65, Ox64, 0x76, 0x65, 0x64, 0x65, 0x76 });
encryptor.Key = pdb.GetBytes (32);
encryptor.IV = pdb.GetBytes (16);

https://riptutorial.com/

52

https://msdn.microsoft.com/en-us/library/system.security.cryptography.passwordderivebytes(v=vs.110).aspx
https://social.msdn.microsoft.com/Forums/vstudio/en-US/61d85001-2eae-4419-b4bf-ce98d46f4d21/passwordderivebytescryptderivekey-derives-an-aes-key-but-gets-object-identifier-oid-is-unknown?forum=netfxbcl

using (MemoryStream ms = new MemoryStream())

{
using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateDecryptor(),
CryptoStreamMode.Write))

{
cs.Write (cipherBytes, 0, cipherBytes.Length);
cs.Close () ;

cipherText = Encoding.Unicode.GetString(ms.ToArray());

return cipherText;

Encryption Code

public static string Encrypt (string cipherText)

{
if (cipherText == null)
return null;

byte[] clearBytes = Encoding.Unicode.GetBytes (cipherText) ;
using (Aes encryptor = Aes.Create())
{
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes (CryptKey, new byte[] { 0x49, 0x76,
0x61, Ox6e, 0x20, Ox4d, 0x65, Ox64, 0x76, 0x65, 0x64, 0x65, 0x76 });
encryptor.Key = pdb.GetBytes (32);
encryptor.IV = pdb.GetBytes (16);

using (MemoryStream ms = new MemoryStream())

{
using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateEncryptor(),
CryptoStreamMode.Write))

{
cs.Write(clearBytes, 0, clearBytes.Length);
cs.Close () ;

cipherText = Convert.ToBase64String(ms.ToArray());

}

return cipherText;

Usage

var textToEncrypt = "TestEncrypt";

var encrypted = Encrypt (textToEncrypt);

var decrypted = Decrypt (encrypted);

Read Encryption / Cryptography online: https://riptutorial.com/dot-net/topic/7615/encryption---
cryptography

https://riptutorial.com/ 53

https://riptutorial.com/dot-net/topic/7615/encryption---cryptography
https://riptutorial.com/dot-net/topic/7615/encryption---cryptography

C_hapter 13: Exceptions

Remarks

Related:

« MSDN: Exceptions and Exception Handling (C# Programming Guide)
« MSDN: Handling and Throwing Exceptions

« MSDN: CA1031: Do not catch general exception types

« MSDN: try-catch (C# Reference)

Examples

Catching an exception

Code can and should throw exceptions in exceptional circumstances. Examples of this include:

» Attempting to read past the end of a stream

* Not having necessary permissions to access a file

» Attempting to perform an invalid operation, such as dividing by zero
» Atimeout occurring when downloading a file from the internet

The caller can handle these exceptions by "catching” them, and should only do so when:

* It can actually resolve the exceptional circumstance or recover appropriately, or;

* |t can provide additional context to the exception that would be useful if the exception needs
to be re-thrown (re-thrown exceptions are caught by exception handlers further up the call
stack)

It should be noted that choosing not to catch an exception is perfectly valid if the intention is for it
to be handled at a higher level.

Catching an exception is done by wrapping the potentially-throwing code ina try { ... } block as
follows, and catching the exceptions it's able to handle in a catch (ExceptionType) { ... } block:

Console.Write ("Please enter a filename: ");
string filename = Console.ReadLine();

Stream fileStream;

try
{

fileStream = File.Open (filename) ;

}
catch (FileNotFoundException)

{

Console.WriteLine ("File '{0}' could not be found.", filename);

}

https://riptutorial.com/ 54

https://msdn.microsoft.com/en-us/library/ms173160.aspx
https://msdn.microsoft.com/en-us/library/5b2yeyab.aspx
https://msdn.microsoft.com/en-us/library/ms182137.aspx
https://msdn.microsoft.com/en-us/library/0yd65esw.aspx
https://msdn.microsoft.com/en-us/library/system.io.endofstreamexception(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.unauthorizedaccessexception(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.dividebyzeroexception(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.webexception.aspx

Using a finally block

The finai1y { ... 1 block of a try-finally Or try-catch-finally Will always execute, regardless of
whether an exception occurred or not (except when a stackoverflowexception has been thrown or
call has been made to Environment .FailFast ()).

It can be utilized to free or clean up resources acquired inthe try { ... } block safely.

Console.Write ("Please enter a filename: ");
string filename = Console.ReadLine();

Stream fileStream = null;

try
{
fileStream = File.Open (filename) ;
}
catch (FileNotFoundException)
{

Console.WriteLine ("File '{0}' could not be found.", filename);
}
finally
{

if (fileStream != null)

{

fileStream.Dispose () ;

Catching and rethrowing caught exceptions

When you want to catch an exception and do something, but you can't continue execution of the
current block of code because of the exception, you may want to rethrow the exception to the next
exception handler in the call stack. There are good ways and bad ways to do this.

private static void AskTheUltimateQuestion ()
{
try
{
var x = 42;

var vy = x / (x — x); // will throw a DivideByZeroException

// IMPORTANT NOTE: the error in following string format IS intentional
// and exists to throw an exception to the FormatException catch, below
Console.Writeline ("The secret to life, the universe, and everything is {1}", vy);
}
catch (DivideByZeroException)
{
// we do not need a reference to the exception
Console.Writeline ("Dividing by zero would destroy the universe.");

// do this to preserve the stack trace:
throw;

}

catch (FormatException ex)

{

https://riptutorial.com/ 55

// only do this if you need to change the type of the Exception to be thrown

// and wrap the inner Exception

// remember that the stack trace of the outer Exception will point to the

// next line

// you'll need to examine the InnerException property to get the stack trace
// to the line that actually started the problem

throw new InvalidOperationException ("Watch your format string indexes.", ex);

}

catch (Exception ex)

{

Console.WriteLine ("Something else horrible happened. The exception: " + ex.Message);

// do not do this,

because the stack trace will be changed to point to

// this location instead of the location where the exception

// was originally thrown:

throw ex;

static void Main ()
{

try

{

AskTheUltimateQuestion () ;

}

catch

{

// choose this kind of catch if you don't need any information about

// the exception that was caught

// this block "eats" all exceptions instead of rethrowing them

You can filter by exception type and even by exception properties (new in C# 6.0, a bit longer
available in VB.NET (citation needed)):

Documentation/C#/new features

Exception Filters

Since C# 6.0 exceptions can be filtered using the when Operator.

This is similar to using a simple it but does not unwind the stack if the condition inside the when is

not met.

Example

try
{
//
}
catch (Exception e) when

{

(e.InnerException

!'= null)

// Any condition can go in here.

https://riptutorial.com/

56

http://www.riptutorial.com/csharp/example/46/exception-filters

7 ooo

The same info can be found in the C# 6.0 Features here: Exception filters
Rethrowing an exception within a catch block

Within a catch block the throw keyword can be used on its own, without specifying an exception
value, to rethrow the exception which was just caught. Rethrowing an exception allows the original
exception to continue up the exception handling chain, preserving its call stack or associated data:

try {...}

catch (Exception ex) {
// Note: the ex variable is *not* used
throw;

}

A common anti-pattern is to instead throw ex, Which has the effect of limiting the next exception
handler's view of the stack trace:

try {...}

catch (Exception ex) ({
// Note: the ex variable is thrown
// future stack traces of the exception will not see prior calls
throw ex;

}

In general using throw ex iSN't desirable, as future exception handlers which inspect the stack trace
will only be able to see calls as far back as throw ex. By omitting the ex variable, and using the
throw Keyword alone the original exception will "bubble-up”.

Throwing an exception from a different method while preserving its
information

Occasionally you'd want to catch an exception and throw it from a different thread or method while
preserving the original exception stack. This can be done with exceptionbispatchinfo:

using System.Runtime.ExceptionServices;

void Main ()
{
ExceptionDispatchInfo capturedException = null;
try
{
throw new Exception();
}
catch (Exception ex)
{
capturedException = ExceptionDispatchInfo.Capture (ex);

}

Foo (capturedException) ;

https://riptutorial.com/ 57

http://www.riptutorial.com/csharp/topic/24/csharp-6-0-features
http://www.riptutorial.com/csharp/topic/24/csharp-6-0-features/46/exception-filters#t=201607211048375185447
http://stackoverflow.com/questions/4065893/about-throw-and-exception-bubbling

void Foo (ExceptionDispatchInfo exceptionDispatchInfo)
{
// Do stuff

if (capturedException != null)
{

// Exception stack trace will show it was thrown from Main() and not from Foo ()
exceptionDispatchInfo.Throw();

Read Exceptions online: https://riptutorial.com/dot-net/topic/33/exceptions

https://riptutorial.com/

58

https://riptutorial.com/dot-net/topic/33/exceptions

C_hapter 14: Expression Trees

Remarks

Expression trees are data structures used to represent code expressions in the .NET Framework.
They can be generated by code and traversed programmatically to translate the code to another
language or execute it. The most popular generator of Expression Trees is the C# compiler itself.
The C# compiler can generate expression trees if a lambda expression is assigned to a variable of
type Expression<Func<...>>. Usually this happens in the context of LINQ. The most popular
consumer is Entity Framework's LINQ provider. It consumes the expression trees given to Entity
Framework and generates equivalent SQL code which is then executed against the database.

Examples

Simple Expression Tree Generated by the C# Compiler
Consider the following C# code

Expression<Func<int, int>> expression = a => a + 1;

Because the C# compiler sees that the lambda expression is assigned to an Expression type
rather than a delegate type it generates an expression tree roughly equivalent to this code

ParameterExpression parameterA = Expression.Parameter (typeof (int), "a");
var expression = (Expression<Func<int, int>>)Expression.Lambda (
Expression.Add (
parameterAi,
Expression.Constant (1)),
parameterA) ;

The root of the tree is the lambda expression which contains a body and a list of parameters. The
lambda has 1 parameter called "a". The body is a single expression of CLR type BinaryExpression
and NodeType of Add. This expression represents addition. It has two subexpressions denoted as
Left and Right. Left is the ParameterExpression for the parameter "a" and Right is a
ConstantExpression with the value 1.

The simplest usage of this expression is printing it:

Console.WritelLine (expression); //prints a => (a + 1)

Which prints the equivalent C# code.

The expression tree can be compiled into a C# delegate and executed by the CLR

Func<int, int> lambda = expression.Compile();
Console.WriteLine (lambda(2)); //prints 3

https://riptutorial.com/ 59

Usually expressions are translated to other languages like SQL, but can be also used to invoke
private, protected and internal members of public or non-public types as alternative to Reflection.

building a predicate of form field == value

To build up an expression like _ => _.rie1d == "vaLue" at runtime.

Given a predicate _ => _.rie1d and a string value "varue", create an expression that tests whether
or not the predicate is true.

The expression is suitable for:

* IQueryable<T>, IEnumerable<T> O test the predicate.
* entity framework or Ling to sor to create a where clause that tests the predicate.

This method will build an appropriate equa1 expression that tests whether or not ric14 equals

"VALUE".

public static Expression<Func<T, bool>> BuildEqualPredicate<T> (
Expression<Func<T, string>> memberAccessor,
string term)

var toString = Expression.Convert (Expression.Constant (term), typeof (string));
Expression expression = Expression.Equal (memberAccessor.Body, toString);
var predicate = Expression.Lambda<Func<T, bool>>(
expression,
memberAccessor.Parameters) ;
return predicate;

The predicate can be used by including the predicate in a where extension method.

var predicate = PredicateExtensions.BuildEqualPredicate<Entity> (
_ => _.Field,
"VALUE") ;

var results = context.Entity.Where (predicate) .ToList () ;

Expression for retrieving a static field
Having example type like this:

public TestClass

{
public static string StaticPublicField = "StaticPublicFieldvalue";

We can retrieve value of StaticPublicField:

var fieldExpr = Expression.Field(null, typeof (TestClass), "StaticPublicField");
var labmda = Expression.Lambda<Func<string>> (fieldExpr) ;

https://riptutorial.com/ 60

It can be then i.e. compiled into a delegate for retrieving field value.

Func<string> retriever = lambda.Compile();
var fieldValue = retriever();

[/lfieldValue result is StaticPublicFieldValue

InvocationExpression Class

InvocationExpression class allows invocation of other lambda expressions that are parts of the

same Expression tree.

You create them with static expression.Invoke method.

Problem We want to get on the items which have "car" in their description. We need to check it for

null before searching for a string inside but we don't want it to be called excessively, as the

computation could be expensive.

using System;
using System.Ling;
using System.Ling.Expressions;

public class Program

{

public static void Main ()

{

var elements = new[] {
new Element { Description = "car" },
new Element Description = "cargo" },
new Element Description = "wheel" },

new Element Description = null },

new Element Description = "Madagascar" 1},

}i

var elementIsInterestingExpression = CreateSearchPredicate (
searchTerm: "car",
whereToSearch: (Element e) => e.Description);

Console.Writeline (elementIsInterestingExpression.ToString());

var elementIsInteresting = elementIsInterestingExpression.Compile () ;
var interestingElements = elements.Where (elementIsInteresting);

foreach (var e in interestingElements)

{

Console.Writeline (e.Description);

var countExpensiveComputations = 0;
Action incCount = () => countExpensiveComputations++;
elements
.Where (
CreateSearchPredicate (
"car",
(Element e) => ExpensivelyComputed (
e, incCount

https://riptutorial.com/

61

https://msdn.microsoft.com/en-us/library/system.linq.expressions.invocationexpression(v=vs.110).aspx

) .Compile ()
)
.Count () ;

Console.WriteLine ("Property extractor is called {0} times.",
countExpensiveComputations) ;

}

private class Element
{

public string Description { get; set; }

private static string ExpensivelyComputed (Element source, Action count)
{
count () ;

return source.Description;

private static Expression<Func<T, bool>> CreateSearchPredicate<T> (
string searchTerm,
Expression<Func<T, string>> whereToSearch)

var extracted = Expression.Parameter (typeof (string), "extracted");

Expression<Func<string, bool>> coalesceNullCheckWithSearch =
Expression.Lambda<Func<string, bool>>(

Expression.AndAlso (

Expression.Not (
Expression.Call (typeof (string), "IsNullOrEmpty", null,
) s
Expression.Call (extracted, "Contains", null,
Expression.Constant (searchTerm))
) s
extracted) ;

var elementParameter = Expression.Parameter (typeof (T), "element");

return Expression.Lambda<Func<T, bool>>(
Expression.Invoke (
coalesceNullCheckWithSearch,
Expression.Invoke (whereToSearch, elementParameter)
) s
elementParameter

)i

Output

element => Invoke (extracted => (Not (IsNullOrEmpty (extracted)) AndAlso
extracted.Contains ("car")), Invoke(e => e.Description, element))

car

cargo

Madagascar

Predicate is called 5 times.

First thing to note is how the actual propery access, wrapped in an Invoke:

extracted)

https://riptutorial.com/

62

Invoke (e => e.Description, element)

, and this is the only part that touches c.pescription, and in place of it, extractea parameter of type
string IS passed to the next one:

(Not (IsNullOrEmpty (extracted)) AndAlso extracted.Contains("car"))

Another important thing to note here is anda1so. It computes only the left part, if the first part returns
false'. It's a common mistake to use the bitwise operator 'And' instead of it, which always
computes both parts, and would fail with a NullReferenceException in this example.

Read Expression Trees online: https://riptutorial.com/dot-net/topic/2657/expression-trees

https://riptutorial.com/ 63

https://riptutorial.com/dot-net/topic/2657/expression-trees

C_hapter 15: File Input/Output

Parameters

string path Path of the file to check. (relative or fully qualified)

Remarks

Returns true if the file exists, false otherwise.

Examples
VB WriteAllText

Imports System.IO

Dim filename As String = "c:\path\to\file.txt"
File.WriteAllText (filename, "Text to write" & vbCrLf)

VB StreamWriter

Dim filename As String = "c:\path\to\file.txt"

If System.IO.File.Exists(filename) Then
Dim writer As New System.IO.StreamWriter (filename)
writer.Write ("Text to write" & vbCrLf) 'Add a newline
writer.close()

End If

C# StreamWriter

using System.Text;
using System.IO;

string filename = "c:\path\to\file.txt";
//'using' structure allows for proper disposal of stream.
using (StreamWriter writer = new StreamWriter (filename"))

{

writer.WriteLine ("Text to Write\n");

C# WriteAllText()

using System.IO;
using System.Text;

https://riptutorial.com/

64

string filename = "c:\path\to\file.txt";
File.writeAllText (filename, "Text to write\n");

C# File.Exists()

using System;
using System.IO;

public class Program

{

public static void Main ()

{
string filePath = "somePath";

if (File.Exists (filePath))
{

Console.WriteLine ("Exists");

}

else

{

Console.WriteLine ("Does not exist");

Can also be used in a ternary operator.

Console.Writeline (File.Exists (pathToFile) ? "Exists" : "Does not exist");

Read File Input/Output online: https://riptutorial.com/dot-net/topic/1376/file-input-output

https://riptutorial.com/

https://riptutorial.com/dot-net/topic/1376/file-input-output

C_hapter 16: ForEach

Remarks

Use it at all?

You might argue that the intention of the .NET framework is that queries do not have any side
effects and the rorrach method is by definition causing a side effect. You might find your code
more maintainable and easier to test if you use a plain foreach instead.

Examples
Calling a method on an object in a list

public class Customer {
public void SendEmail ()

{

// Sending email code here
}
}

List<Customer> customers = new List<Customer>();

customers.Add (new Customer());
customers.Add (new Customer());

customers.ForEach(c => c.SendEmail());

Extension method for IEnumerable

ForEach () IS defined on the rist<T> class, but Nnot ON 1oueryable<T> OF IEnumerable<T>. YOU have two
choices in those cases:

TolList first

The enumeration (or query) will be evaluated, copying the results into a new list or calling the
database. The method is then called on each item.

IEnumerable<Customer> customers = new List<Customer> () ;

customers.ToList () .ForEach(c => c.SendEmail());

This method has obvious memory usage overhead, as an intermediate list is created.
Extension method

Write an extension method:

https://riptutorial.com/ 66

public static void ForEach<T> (this IEnumerable<T> enumeration, Action<T> action)
{
foreach (T item in enumeration)

{

action (item) ;

Use:

IEnumerable<Customer> customers = new List<Customer> () ;

customers.ForEach (c => c.SendEmail ());

Caution: The Framework's LINQ methods have been designed with the intention of being pure,

which means they do not produce side effects. The roreach method's only purpose is to produce
side effects, and deviates from the other methods in this aspect. You may consider just using a

plain roreach lOOp instead.

Read ForEach online: https://riptutorial.com/dot-net/topic/2225/foreach

https://riptutorial.com/

67

https://riptutorial.com/dot-net/topic/2225/foreach

C_hapter 17: Garbage Collection

Introduction

In .Net, objects created with new() are allocated on the managed heap. These objects are never
explicitly finalized by the program that uses them; instead, this process is controlled by the .Net
Garbage Collector.

Some of the examples below are "lab cases" to show the Garbage Collector at work and some
significant details of its behavior, while other focus on how to prepare classes for proper handling
by the Garbage Collector.

Remarks

The Garbage Collector is aimed to lower the program cost in terms of allocated memory, but doing

so has a cost in terms of processing time. In order to achieve a good overall compromise, there

are a number of optimizations that should be taken into consideration while programming with the

Garbage Collector in mind:

« If the Collect() method is to be explicitly invoked (which should not often be the case
anyway), consider using the "optimized" mode which finalizes dead object only when
memory is actually needed

* Instead of invoking the Collect() method, consider using the AddMemoryPressure() and
RemoveMemoryPressure() methods, which trigger a memory collection only if actually
needed

* A memory collection is not guaranteed to finalize all dead objects; instead, the Garbage
Collector manages 3 "generations”, an object sometimes "surviving” from a generation into
the next one

» Several threading models may apply, depending on various factors including setup fine
tuning, resulting in different degrees of interference between the Garbage Collector thread
and the other application thread(s)

Examples

A basic example of (garbage) collection
Given the following class:

public class FinalizableObject

{
public FinalizableObject ()

{

Console.WritelLine ("Instance initialized");

}

~FinalizableObject ()

https://riptutorial.com/

68

Console.WritelLine ("Instance finalized");

A program that creates an instance, even without using it:

new FinalizableObject(); // Object instantiated, ready to be used

Produces the following output:

<namespace>.FinalizableObject initialized

If nothing else happens, the object is not finalized until the program ends (which frees all objects
on the managed heap, finalizing these in the process).

It is possible to force the Garbage Collector to run at a given point, as follows:

new FinalizableObject (); // Object instantiated, ready to be used
GC.Collect ();

Which produces the following result:

<namespace>.FinalizableObject initialized
<namespace>.FinalizableObject finalized

This time, as soon as the Garbage Collector was invoked, the unused (aka "dead") object was
finalized and freed from the managed heap.

Live objects and dead objects - the basics

Rule of thumb: when garbage collection occurs, "live objects" are those still in use, while "dead
objects” are those no longer used (any variable or field referencing them, if any, has gone out of
scope before the collection occurs).

In the following example (for convenience, FinalizableObjectl and FinalizableObject2 are
subclasses of FinalizableObject from the example above and thus inherit the initialization /
finalization message behavior):

var objl = new FinalizableObjectl(); // Finalizablel instance allocated here
var obj2 = new FinalizableObject2(); // Finalizable2 instance allocated here
objl = null; // No more references to the Finalizablel instance

GC.Collect ();

The output will be:

<namespace>.FinalizableObjectl initialized
<namespace>.FinalizableObject2 initialized
<namespace>.FinalizableObjectl finalized

https://riptutorial.com/

69

At the time when the Garbage Collector is invoked, FinalizableObjectl is a dead object and gets

finalized, while FinalizableObject2 is a live object and it is kept on the managed heap.
Multiple dead objects

What if two (or several) otherwise dead objects reference one another? This is shown in the
example below, supposing that OtherObject is a public property of FinalizableObject:

var objl = new FinalizableObjectl();

var obj2 = new FinalizableObject2();

objl.0OtherObject = obj2;

obj2.0therObject = obijl;

objl = null; // Program no longer references Finalizablel instance
obj2 = null; // Program no longer references Finalizable2 instance
// But the two objects still reference each other

GC.Collect () ;

This produces the following output:

<namespace>.FinalizedObjectl initialized
<namespace>.FinalizedObject2 initialized
<namespace>.FinalizedObjectl finalized
<namespace>.FinalizedObject2 finalized

The two objects are finalized and freed from the managed heap despite referencing each other

(because no other reference exists to any of them from an actually live object).
Weak References

Weak references are... references, to other objects (aka "targets”), but "weak" as they do not

prevent those objects from being garbage-collected. In other words, weak references do not count

when the Garbage Collector evaluates objects as "live" or "dead".

The following code:

var weak = new WeakReference<FinalizableObject> (new FinalizableObject());
GC.Collect ();

Produces the output:

<namespace>.FinalizableObject initialized
<namespace>.FinalizableObject finalized

The object is freed from the managed heap despite being referenced by the WeakReference
variable (still in scope when the Garbage collector was invoked).

Consequence #1: at any time, it is unsafe to assume whether a WeakReference target is still
allocated on the managed heap or not.

Consequence #2: whenever a program needs to access the target of a Weakreference, code

https://riptutorial.com/

70

should be provided for both cases, of the target being still allocated or not. The method to access
the target is TryGetTarget:

var target = new object(); // Any object will do as target
var weak = new WeakReference<object> (target); // Create weak reference
target = null; // Drop strong reference to the target

// ... Many things may happen in-between

// Check whether the target is still available
if (weak.TryGetTarget (out target))
{

// Use re—initialized target variable

// To do whatever the target is needed for

// Do something when there is no more target object
// The target variable value should not be used here

The generic version of WeakReference is available since .Net 4.5. All framework versions provide
a non-generic, untyped version that is built in the same way and checked as follows:

var target = new object(); // Any object will do as target
var weak = new WeakReference (target); // Create weak reference
target = null; // Drop strong reference to the target

// ... Many things may happen in-between

// Check whether the target is still available
if (weak.IsAlive)
{

target = weak.Target;

// Use re-initialized target variable
// To do whatever the target is needed for
}

else

{
// Do something when there is no more target object
// The target variable value should not be used here

Dispose() vs. finalizers

Implement Dispose() method (and declare the containing class as IDisposable) as a means to
ensure any memory-heavy resources are freed as soon as the object is no longer used. The
“"catch" is that there is no strong guarantee the the Dispose() method would ever be invoked
(unlike finalizers that always get invoked at the end of the life of the object).

One scenario is a program calling Dispose() on objects it explicitly creates:

private void SomeFunction ()

{

https://riptutorial.com/ 71

// Initialize an object that uses heavy external resources
var disposableObject = new ClassThatImplementsIDisposable();

// ... Use that object

// Dispose as soon as no longer used
disposableObject.Dispose () ;

// ... Do other stuff

// The disposableObject variable gets out of scope here
// The object will be finalized later on (no guarantee when)
// But it no longer holds to the heavy external resource after it was disposed

Another scenario is declaring a class to be instantiated by the framework. In this case the new
class usually inherits a base class, for instance in MVC one creates a controller class as a
subclass of System.Web.Mvc.ControllerBase. When the base class implements IDisposable
interface, this is a good hint that Dispose() would be invoked properly by the framework - but again
there is no strong guarantee.

Thus Dispose() is not a substitute for a finalizer; instead, the two should be used for different
purposes:

» Afinalizer eventually frees resources to avoid memory leaks that would occur otherwise
» Dispose() frees resources (possibly the same ones) as soon as these are no longer needed,
to ease pressure on overall memory allocation.

Proper disposal and finalization of objects

As Dispose() and finalizers are aimed to different purposes, a class managing external memory-
heavy resources should implement both of them. The consequence is writing the class so that it
handles well two possible scenarios:

* When only the finalizer is invoked
* When Dispose() is invoked first and later the finalizer is invoked as well

One solution is writing the cleanup code in such a way that running it once or twice would produce
the same result as running it only once. Feasibility depends on the nature of the cleanup, for
instance:

» Closing an already closed database connection would probably have no effect so it works
» Updating some "usage count" is dangerous and would produce a wrong result when called
twice instead of once.

A safer solution is ensuring by design that the cleanup code is called once and only once whatever
the external context. This can be achieved the "classic way" using a dedicated flag:

public class DisposableFinalizablel: IDisposable

{

private bool disposed = false;

https://riptutorial.com/ 72

~DisposableFinalizablel () { Cleanup(); }
public void Dispose() { Cleanup(); }

private void Cleanup ()
{
if (!disposed)
{
// Actual code to release resources gets here, then
disposed = true;

Alternately, the Garbage Collector provides a specific method SuppressFinalize() that allows
skipping the finalizer after Dispose has been invoked:

public class DisposableFinalizable2 : IDisposable
{
~DisposableFinalizable2 () { Cleanup(); }

public void Dispose ()

{
Cleanup () ;
GC.SuppressFinalize (this);

private void Cleanup ()
{

// Actual code to release resources gets here

Read Garbage Collection online: https://riptutorial.com/dot-net/topic/9636/garbage-collection

https://riptutorial.com/

73

https://riptutorial.com/dot-net/topic/9636/garbage-collection

Chapter 18: Globalization in ASP.NET MVC
using Smart internationalization for ASP.NET

Remarks

Smart internationalization for ASP.NET page

The benefit of this approach is that you don't have to clutter controllers and other classes with
code to look up values from .resx files. You simply surround text in [[[triple brackets.]]] (The
delimiter is configurable.) An uttpmoduie l0OKS for a translation in your .po file to replace the
delimited text. If a translation is found, the uttprodule Substitutes the translation. If no translation is
found, it removes the triple brackets and renders the page with the original untranslated text.

.po files are a standard format for supplying translations for applications, so there are a number of
applications available for editing them. It's easy to send a .po file to a non-technical user so that
they can add translations.

Examples

Basic configuration and setup

1. Add the 118N nuget package to your MVC project.
2. In web.config, add the i18n.1LocalizingModule tO YOUr <httpModules> OF <modules> S€ction.

<!-— IIS 6 ——>
<httpModules>

<add name="il8n.LocalizingModule" type="i118n.LocalizingModule, 1i18n" />
</httpModules>

<!-— IIS 7 ——>
<system.webServer>
<modules>
<add name="il8n.LocalizingModule" type="i118n.LocalizingModule, 1i18n" />
</modules>
</system.webServer>

3. Add a folder named "locale" to the root of your site. Create a subfolder for each culture you
wish to support. For example, /ioccale/fr/.

4. In each culture-specific folder, create a text file named messages.po.

5. For testing purposes, enter the following lines of text in your messages.po file:

#: Translation test
msgid "Hello, world!"
msgstr "Bonjour le monde!"

6. Add a controller to your project which returns some text to translate.

https://riptutorial.com/ 74

https://github.com/turquoiseowl/i18n
https://www.nuget.org/packages/I18N/

using System.Web.Mvc;

namespace Il8nDemo.Controllers
{
public class DefaultController : Controller
{
public ActionResult Index ()
{
// Text inside [[[triple brackets]]] must precisely match
// the msgid in your .po file.
return Content ("[[[Hello, world!]]1");

7. Run your MVC application and browse to the route corresponding to your controller action,
such as http://localhost:[yourportnumber]/default.

Observe that the URL is changed to reflect your default culture, such as
http://localhost:[yourportnumber]/en/default.

8. Replace /en/ in the URL with /¢r/ (or whatever culture you've selected.) The page should
now display the translated version of your text.

9. Change your browser's language setting to prefer your alternate culture and browse to
/default again. Observe that the URL is changed to reflect your alternate culture and the
translated text appears.

10. In web.config, add handlers so that users cannot browse to your 1oca1e folder.

<I—— TIIS 6 ——>
<system.web>
<httpHandlers>
<add path="*" verb="*" type="System.Web.HttpNotFoundHandler"/>
</httpHandlers>
</system.web>

<I—— TIIS 7 ——>
<system.webServer>
<handlers>
<remove name="BlockViewHandler"/>
<add name="BlockViewHandler" path="*" verb="*" preCondition="integratedMode"
type="System.Web.HttpNotFoundHandler" />
</handlers>
</system.webServer>

Read Globalization in ASP.NET MVC using Smart internationalization for ASP.NET online:
https://riptutorial.com/dot-net/topic/5086/globalization-in-asp-net-mvc-using-smart-
internationalization-for-asp-net

https://riptutorial.com/ 75

http://localhost:%5Byourportnumber%5D/default
http://localhost:%5Byourportnumber%5D/en/default
https://riptutorial.com/dot-net/topic/5086/globalization-in-asp-net-mvc-using-smart-internationalization-for-asp-net
https://riptutorial.com/dot-net/topic/5086/globalization-in-asp-net-mvc-using-smart-internationalization-for-asp-net

C_hapter 19: HTTP clients

Remarks

The currently relevant HTTP/1.1 RFCs are:

e 7230: Message Syntax and Routing
e 7231: Semantics and Content

e 7232: Conditional Requests

e 7233: Range Requests

e 7234: Caching

e 7235: Authenticaion

e 7239: Forwarded HTTP Extension

e 7240: Prefer Header for HTTP

There's also the following informational RFCs:

e 7236: Authentication Scheme Registrations
e 7237: Method Registrations

And the experimental RFC:
e 7238: The Hypertext Transfer Protocol Status Code 308 (Permanent Redirect)
Related protocols:

e 4918: HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV)
» 4791: Calendaring Extensions to WebDAV (CalDAV)

Examples
Reading GET response as string using System.Net.HttpWebRequest

string requestUri = "http://www.example.com";
string responseData;

HttpWebRequest request = (HttpWebRequest)WebRequest.Create (parameters.Uri);
WebResponse response = request.GetResponse();

using (StreamReader responseReader = new StreamReader (response.GetResponseStream()))

{

responseData = responseReader.ReadToEnd() ;

}

Reading GET response as string using System.Net.WebClient

string requestUri = "http://www.example.com";
string responseData;

https://riptutorial.com/ 76

https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7235
https://tools.ietf.org/html/rfc7239
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7236
https://tools.ietf.org/html/rfc7237
https://tools.ietf.org/html/rfc7238
https://tools.ietf.org/html/rfc4918
https://tools.ietf.org/html/rfc4791

using (var client = new WebClient ())

{

responseData = client.DownloadString(requestUri);

Reading GET response as string using System.Net.HttpClient

Httpclient IS available through NuGet: Microsoft HTTP Client Libraries.

string requestUri = "http://www.example.com";

string responseData;

using (var client = new HttpClient ())
{
using (var response = client.GetAsync (requestUri) .Result)
{
response.EnsureSuccessStatusCode () ;
responseData = response.Content.ReadAsStringAsync () .Result;

Sending a POST request with a string payload using
System.Net.HttpWebRequest

string requestUri = "http://www.example.com";
string requestBodyString = "Request body string.";
string contentType = "text/plain";

string requestMethod = "POST";

HttpWebRequest request = (HttpWebRequest)WebRequest.Create (requestUri)
{

Method = requestMethod,

ContentType = contentType,
bi

byte[] bytes = Encoding.UTF8.GetBytes (requestBodyString) ;
Stream stream = request.GetRequestStream() ;

stream.Write (bytes, 0, bytes.Length);

stream.Close();

HttpWebResponse response = (HttpWebResponse)request.GetResponse();

Sending a POST request with a string payload using System.Net.WebClient

string requestUri = "http://www.example.com";
string requestBodyString = "Request body string.";
string contentType = "text/plain";

string requestMethod = "POST";

byte[] responseBody;
byte[] requestBodyBytes = Encoding.UTF8.GetBytes (requestBodyString) ;

using (var client = new WebClient ())

{

https://riptutorial.com/

i

https://www.nuget.org/packages/Microsoft.Net.Http/

client .Headers [HttpRequestHeader.ContentType] = contentType;
responseBody = client.UploadData (requestUri, requestMethod, requestBodyBytes);

Sending a POST request with a string payload using System.Net.HttpClient
Httpclient IS available through NuGet: Microsoft HTTP Client Libraries.

string requestUri = "http://www.example.com";
string requestBodyString = "Request body string.";
string contentType = "text/plain";

string requestMethod = "POST";

var request = new HttpRequestMessage
{

RequestUri = requestUri,

Method = requestMethod,
}i

byte[] requestBodyBytes = Encoding.UTF8.GetBytes (requestBodyString) ;
request.Content = new ByteArrayContent (requestBodyBytes) ;

request.Content .Headers.ContentType = new MediaTypeHeaderValue (contentType) ;

HttpResponseMessage result = client.SendAsync (request) .Result;
result.EnsureSuccessStatusCode () ;

Basic HTTP downloader using System.Net.Http.HttpClient

using System;

using System.IO;

using System.Ling;

using System.Net.Http;

using System.Threading.Tasks;

class HttpGet
{
private static async Task DownloadAsync (string fromUrl, string toFile)
{
using (var fileStream = File.OpenWrite (toFile))
{
using (var httpClient = new HttpClient ())
{
Console.Writeline ("Connecting...");
using (var networkStream = await httpClient.GetStreamAsync (fromUrl))
{
Console.Writeline ("Downloading...");
await networkStream.CopyToAsync (fileStream);
await fileStream.FlushAsync();

static void Main(string[] args)
{
try

https://riptutorial.com/

https://www.nuget.org/packages/Microsoft.Net.Http/

Run (args) .Wait () ;
}
catch (Exception ex)

{
if (ex is AggregateException)
ex = ((AggregateException)ex) .Flatten().InnerExceptions.First ();

Console.WriteLine ("--- Error: " +
(ex.InnerException?.Message ?? ex.Message));

}
static async Task Run(string[] args)
{
if (args.Length < 2)
{
Console.WritelLine ("Basic HTTP downloader");
Console.WriteLine () ;
Console.Writeline ("Usage: httpget <url>[<:port>] <file>");
return;

await DownloadAsync (fromUrl: args([0], toFile: args[1l]);

Console.WriteLine ("Done!");

Read HTTP clients online: https://riptutorial.com/dot-net/topic/32/http-clients

https://riptutorial.com/

79

https://riptutorial.com/dot-net/topic/32/http-clients

C_hapter 20: HTTP servers

Examples

Basic read-only HTTP file server (HttpListener)

Notes:
This example must be run in administrative mode.
Only one simultaneous client is supported.

For simplicity, filenames are assumed to be all ASCII (for the filename part in the Content-
Disposition header) and file access errors are not handled.

using System;
using System.IO;
using System.Net;

class HttpFileServer

{
private static HttpListenerResponse response;
private static HttpListener listener;
private static string baseFilesystemPath;

static void Main(string[] args)
{
if (!Httplistener.IsSupported)

{

Console.WritelLine (

"xx* HttpListener requires at least Windows XP SP2 or Windows Server 2003.");

return;

if (args.Length < 2)

{
Console.Writeline ("Basic read-only HTTP file server");
Console.WriteLine () ;
Console.Writeline ("Usage: httpfileserver <base filesystem path> <port>");
Console.WriteLine ("Request format: http://url:port/path/to/file.ext");
return;

baseFilesystemPath = Path.GetFullPath (args[0]);
var port = int.Parse(args([l]);

listener = new HttpListener();
listener.Prefixes.Add ("http://*:" + port + "/");
listener.Start () ;

Console.Writeline ("--- Server stated, base path is: " + baseFilesystemPath);
Console.Writeline ("--- Listening, exit with Ctrl-C");
try

{

ServerLoop () ;

https://riptutorial.com/

80

}

catch (Exception ex)

{
Console.WriteLine (ex);
if (response != null)
{

SendErrorResponse (500, "Internal server error");

static void ServerLoop ()

{

while (true)

{

var context = listener.GetContext ();

var request = context.Request;

response = context.Response;

var fileName = request.RawUrl.Substring(l);

Console.WriteLine (
"-—— Got {0} request for: {1}",
request .HttpMethod, fileName) ;

if (request.HttpMethod.ToUpper () != "GET")

{
SendErrorResponse (405, "Method must be GET");
continue;

var fullFilePath = Path.Combine (baseFilesystemPath, fileName) ;
if(!File.Exists (fullFilePath))
{

SendErrorResponse (404, "File not found");

continue;

Console.Write (" Sending file...");
using (var fileStream = File.OpenRead (fullFilePath))
{
response.ContentType = "application/octet-stream";
response.ContentLength64 = (new FileInfo (fullFilePath)) .Length;
response.AddHeader (
"Content-Disposition",
"Attachment; filename=\"" + Path.GetFileName (fullFilePath) + "\"");
fileStream.CopyTo (response.OutputStreamn) ;

response.OutputStream.Close () ;
response = null;
Console.WriteLine (" Ok!"™);

static void SendErrorResponse (int statusCode, string statusResponse)
{
response.ContentLength64 = O;
response.StatusCode = statusCode;
response.StatusDescription = statusResponse;
response.OutputStream.Close () ;
Console.WriteLine ("*** Sent error: {0} {1}", statusCode, statusResponse);

https://riptutorial.com/

Basic read-only HTTP file server (ASP.NET Core)

1 - Create an empty folder, it will contain the files created in the next steps.

2 - Create a file named project . json With the following content (adjust the port number and
rootDirectory @S appropriate):

"dependencies": {
"Microsoft.AspNet.Server.Kestrel": "1.0.0-rcl-final",
"Microsoft.AspNet.StaticFiles": "1.0.0-rcl-final"
by
"commands": {
"web": "Microsoft.AspNet.Server.Kestrel --server.urls http://localhost:60000"
by
"frameworks": {
"dnxcoreb50": { }
by
"fileServer": {
"rootDirectory": "c:\\users\\username\\Documents"

3 - Create a file named startup.cs with the following code:

using System;

using Microsoft.AspNet.Builder;

using Microsoft.AspNet.FileProviders;
using Microsoft.AspNet.Hosting;

using Microsoft.AspNet.StaticFiles;

using Microsoft.Extensions.Configuration;

public class Startup
{
public void Configure (IApplicationBuilder app)
{
var builder = new ConfigurationBuilder();
builder.AddJsonFile ("project. json");
var config = builder.Build();
var rootDirectory = config["fileServer:rootDirectory"];
Console.Writeline ("File server root directory: " + rootDirectory);

var fileProvider = new PhysicalFileProvider (rootDirectory) ;

var options = new StaticFileOptions();

options.ServeUnknownFileTypes = true;

options.FileProvider = fileProvider;

options.OnPrepareResponse = context =>

{
context.Context.Response.ContentType = "application/octet-stream";
context.Context.Response.Headers.Add (

https://riptutorial.com/

"Content-Disposition",
S"Attachment; filename=\"{context.File.Name}\"");
}i

app.UseStaticFiles (options);

4 - Open a command prompt, navigate to the folder and execute:

dnvm use 1.0.0-rcl-final -r coreclr -p
dnu restore

Note: These commands need to be run only once. Use anvm 1ist to check the actual number of
the latest installed version of the core CLR.

5 - Start the server with: anx web. Files can now be requested at
http://localhost:60000/path/to/file.ext.

For simplicity, filenames are assumed to be all ASCII (for the filename part in the Content-
Disposition header) and file access errors are not handled.

Read HTTP servers online: https://riptutorial.com/dot-net/topic/53/http-servers

https://riptutorial.com/

83

https://riptutorial.com/dot-net/topic/53/http-servers

C_hapter 21: JIT compiler

Introduction

JIT compilation, or just-in-time compilation, is an alternative approach to interpretation of code or
ahead-of-time compilation. JIT compilation is used in the .NET framework. The CLR code (C#, F#,
Visual Basic, etc.) is first compiled into something called Interpreted Language, or IL. This is lower
level code that is closer to machine code, but is not platform specific. Rather, at runtime, this code
is compiled into machine code for the relevant system.

Remarks

Why use JIT compilation?

» Better compatibility: each CLR language needs only one compiler to IL, and this IL can run
on any platform on which it can be converted into machine code.

» Speed: JIT compilation attempts to combine the speed of running ahead-of-time compiled
code, and the flexibility of interpretation (can analyze code that will be executed for potential
optimizations before compiling)

Wikipedia Page for more information on JIT compilation in general:
https://en.wikipedia.org/wiki/Just-in-time_compilation

Examples

IL compilation sample
Simple Hello World Application:

using System;

namespace HelloWorld

{

class Program

{
static void Main(string[] args)

{
Console.WriteLine ("Hello World");

}

Equivalent IL Code (which will be JIT compiled)

// Microsoft (R) .NET Framework IL Disassembler. Version 4.6.1055.0
// Copyright (c) Microsoft Corporation. All rights reserved.

https://riptutorial.com/ 84

https://en.wikipedia.org/wiki/Just-in-time_compilation

// Metadata version: v4.0.30319
.assembly extern mscorlib
{

.publickeytoken = (B7 7A 5C 56 19 34 EQ 89) // .z\V.4..

.ver 4:0:0:0
}

.assembly HelloWorld
{

.custom instance void
[mscorlib]System.Runtime.CompilerServices.CompilationRelaxationsAttribute::.ctor (int32) = (01
00 08 00 00 00 00 00)

.custom instance void

[mscorlib]System.Runtime.CompilerServices.RuntimeCompatibilityAttribute::.ctor() = (01 00 01
00 54 02 16 57 72 61 70 4E 6F 6E 45 78 //T..WrapNonEx
63 65 70 74 69 6F 6E 54 68 72 6F 77 73 01) // ceptionThrows.

// ——— The following custom attribute is added automatically, do not uncomment —-—————-—

// .custom instance void [mscorlib]System.Diagnostics.DebuggableAttribute::.ctor (valuetype
[mscorlib]System.Diagnostics.DebuggableAttribute/DebuggingModes) = (01 00 07 01 00 00 00 00)

.custom instance void [mscorlib]System.Reflection.AssemblyTitleAttribute::.ctor(string) = (
01 00 OA 48 65 6C 6C 6F 57 6F 72 6C 64 00 00) // ...HelloWorld..

.custom instance void
[mscorlib]System.Reflection.AssemblyDescriptionAttribute::.ctor(string) = (01 00 00 00 00)

.custom instance void
[mscorlib]System.Reflection.AssemblyConfigurationAttribute::.ctor (string) = (01 00 00 00 00)

.custom instance void [mscorlib]System.Reflection.AssemblyCompanyAttribute::.ctor(string) =
(01 00 00 00 00)

.custom instance void [mscorlib]System.Reflection.AssemblyProductAttribute::.ctor(string) =
(01 00 OA 48 65 6C 6C 6F 57 6F 72 6C 64 00 00) // ...HelloWorld..

.custom instance void [mscorlib]System.Reflection.AssemblyCopyrightAttribute::.ctor (string)
= (01 00 12 43 6F 70 79 72 69 67 68 74 20 C2 A9 20 // ...Copyright
20 32 30 31 37 00 00) // 2017..

.custom instance void [mscorlib]System.Reflection.AssemblyTrademarkAttribute::.ctor (string)

= (01 00 00 00 0O)
.custom instance void
[mscorlib]System.Runtime.InteropServices.ComVisibleAttribute::.ctor (bool) = (01 00 00 00 00)

.custom instance void [mscorlib]System.Runtime.InteropServices.GuidAttribute::.ctor (string)
= (01 00 24 33 30 38 62 33 64 38 36 2D 34 31 37 32 // ..$308b3d86-4172

2D 34 30 32 32 2D 61 66 63 63 2D 33 66 38 65 33 // -4022-afcc-3f8e3

32 33 33 63 35 62 30 00 00) // 233c5b0. .

.custom instance void
[mscorlib]System.Reflection.AssemblyFileVersionAttribute::.ctor(string) = (01 00 07 31 2E 30
2E 30 2E 30 00 00) // ...1.0.0.0..

.custom instance void
[mscorlib]System.Runtime.Versioning.TargetFrameworkAttribute::.ctor(string) = (01 00 1C 2E 4E
45 54 46 72 61 6D 65 77 6F 72 6B //NETFramework

2C 56 65 72 73 69 6F 6E 3D 76 34 2E 35 2E 32 01 // ,Version=v4.5.2.

00 54 OE 14 46 72 61 6D 65 77 6F 72 6B 44 69 73 // .T..FrameworkDis

70 6C 61 79 4E 61 6D 65 14 2E 4E 45 54 20 46 72 // playName..NET Fr

https://riptutorial.com/ 85

61 6D 65 77 6F 72 6B 20 34 2E 35 2E 32) // amework 4.5.2
.hash algorithm 0x00008004
.ver 1:0:0:0
}
.module HelloWorld.exe
// MVID: {2A7E1D59-1272-4B47-85F6-D7E1ED057831}
.imagebase 0x00400000
.file alignment 0x00000200
.stackreserve 0x00100000
.subsystem 0x0003 // WINDOWS_CUI
.corflags 0x00020003 // ILONLY 32BITPREFERRED
// Image base: 0x0000021C70230000

.class private auto ansi beforefieldinit HelloWorld.Program
extends [mscorlib]System.Object

.method private hidebysig static void Main(string[] args) cil managed
{
.entrypoint
// Code size 13 (0xd)
.maxstack 8
IL_0000: nop
IL_0001: 1dstr "Hello World"
IL_0006: call void [mscorlib]System.Console::WriteLine (string)
IL_000b: nop
IL_000c: ret
} // end of method Program::Main

.method public hidebysig specialname rtspecialname
instance void .ctor() cil managed

// Code size 8 (0x8)
.maxstack 8
IL_0000: 1darg.O
IL_0001: call instance void [mscorlib]System.Object::.ctor ()
IL_0006: nop
IL_0007: ret
} // end of method Program::.ctor

} // end of class HelloWorld.Program

Generated with MS ILDASM tool (IL disassembler)

Read JIT compiler online: https://riptutorial.com/dot-net/topic/9222/jit-compiler

https://riptutorial.com/ 86

https://riptutorial.com/dot-net/topic/9222/jit-compiler

Chapter 22: JSON in .NET with

Newtonsoft.Json

Introduction

The NuGet package rewtonsoft.Json has become the defacto standard for using and manipulating

JSON formatted text and objects in .NET. It is a robust tool that is fast, and easy to use.

Examples
Serialize object into JSON

using Newtonsoft.Json;

var obj = new Person

{
Name = "Joe Smith",
Age = 21

bi

var serializedJson = JsonConvert.SerializeObject (obj);
This results in this JSON: {"Name":"Joe Smith","Age":21}

Deserialize an object from JSON text

var json = "{\"Name\":\"Joe Smith\",\"Age\":21}";

var person = JsonConvert.DeserializeObject<Person> (json);

This yields a rerson Object with Name "Joe Smith" and Age 21.

Read JSON in .NET with Newtonsoft.Json online: https://riptutorial.com/dot-net/topic/8746/json-in-

-net-with-newtonsoft-json

https://riptutorial.com/

87

https://riptutorial.com/dot-net/topic/8746/json-in--net-with-newtonsoft-json
https://riptutorial.com/dot-net/topic/8746/json-in--net-with-newtonsoft-json

C_hapter 23. JSON Serialization

Remarks

JavaScriptSerializer vs Json.NET

The savascriprserializer class was introducted in .NET 3.5 and is used internally by .NET's
asynchronous communication layer for AJAX-enabled applications. It can be used to work with
JSON in managed code.

Despite the existence of the savascriptserializer class, Microsoft recommends using the open

source Json.NET library for serialization and deserialization. Json.NET offers better performance

and a friendlier interface for mapping JSON to custom classes (a custom Javascriptconverter
object would be needed to accomplish the same with savascriptserializer).

Examples

Deserialization using System.Web.Script.Serialization.JavaScriptSerializer

The JavaScriptSerializer.Deserialize<T> (input) method attempts to deserialize a string of valid
JSON into an object of the specified type <r>, using the default mappings natively supported by

JavaScriptSerializer.

using System.Collections;
using System.Web.Script.Serialization;

/] ...
string rawJSON = "{\"Name\":\"Fibonacci Sequence\", \"Numbers\":[0, 1, 1, 2, 3, 5, 8, 1311";

JavaScriptSerializer JSS = new JavaScriptSerializer();
Dictionary<string, object> parsedObj = JSS.Deserialize<Dictionary<string, object>>(rawJSON) ;

string name = parsedObj["Name"].toString/();
ArrayList numbers = (ArrayList)parsedObj["Numbers"]

Note: The savascriptserializer Object was introduced in .NET version 3.5

Deserialization using Json.NET

internal class Sequence({
public string Name;
public List<int> Numbers;

}
/) coo

string rawJSON = "{\"Name\":\"Fibonacci Sequence\", \"Numbers\":[0, 1, 1, 2, 3, 5, 8, 13]}";

https://riptutorial.com/

88

https://msdn.microsoft.com/en-us/library/system.web.script.serialization.javascriptserializer(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.script.serialization.javascriptserializer(v=vs.110).aspx
http://www.newtonsoft.com/json
https://msdn.microsoft.com/en-us/library/system.web.script.serialization.javascriptconverter(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.script.serialization.javascriptconverter(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.script.serialization.javascriptconverter(v=vs.110).aspx

Sequence sequence = JsonConvert.DeserializeObject<Sequence> (rawJSON) ;

For more information, refer to the Json.NET official site.

Note: Json.NET supports .NET version 2 and higher.

Serialization using Json.NET

[JsonObject ("person")]

public class Person

{
[JsonProperty ("name")]
public string PersonName { get; set; }
[JsonProperty ("age")]
public int PersonAge { get; set; }
[JsonIgnore]
public string Address { get; set; }

Person person = new Person { PersonName = "Andrius", PersonAge = 99, Address = "Some address"
}i
string rawJdson = JsonConvert.SerializeObject (person);

Console.WritelLine (rawdson); // {"name":"Andrius","age":99}

Notice how properties (and classes) can be decorated with attributes to change their appearance
in resulting json string or to remove them from json string at all (Jsonignore).

More information about Json.NET serialization attributes can be found here.

In C#, public identifiers are written in PascalCase by convention. In JSON, the convention is to use
camelCase for all names. You can use a contract resolver to convert between the two.

using Newtonsoft.Json;
using Newtonsoft.Json.Serialization;

public class Person

{
public string Name { get; set; }
public int Age { get; set; }
[JsonIgnore]
public string Address { get; set; }

public void ToJdson () {
Person person = new Person { Name = "Andrius", Age = 99, Address = "Some address" };
var resolver = new CamelCasePropertyNamesContractResolver();
var settings = new JsonSerializerSettings { ContractResolver = resolver };
string json = JsonConvert.SerializeObject (person, settings);
Console.WriteLine (json); // {"name":"Andrius", "age":99}

Serialization-Deserialization using Newtonsoft.Json

https://riptutorial.com/ 89

http://www.newtonsoft.com/json
http://www.newtonsoft.com/json/help/html/serializationattributes.htm

Unlike the other helpers, this one uses static class helpers to serialize and deserialize, hence it is
a little bit easier than the others to use.

using Newtonsoft.Json;

"{\"Name\":\"Fibonacci Sequence\", \"Numbers\":[0, 1, 1, 2, 3, 5, 8, 13]}";
JsonConvert.DeserializeObject<Dictionary<string, object>>(rawJSON) ;

var rawJSON

var fibo
var rawJSON2

JsonConvert.SerializeObject (fibo) ;

Dynamic binding

Newtonsoft's Json.NET allows you to bind json dynamically (using ExpandoObject / Dynamic
objects) without the need to create the type explicitly.

Serialization

dynamic jsonObject = new ExpandoObiject () ;
jsonObject.Title = "Merchent of Venice";
jsonObject.Author = "William Shakespeare";

Console.Writeline (JsonConvert.SerializeObject (jsonObject));

De-serialization

var rawJson = "{\"Name\":\"Fibonacci Sequence\", \"Numbers\":[0, 1, 1, 2, 3, 5, 8, 13]}";
dynamic parseddson = JObject.Parse (rawdson) ;

Console.WriteLine ("Name: " + parsedJson.Name) ;

Console.WriteLine ("Name: " + parsedJson.Numbers.Length) ;

Notice that the keys in the rawJson object have been turned into member variables in the dynamic
object.

This is useful in cases where an application can accept/ produce varying formats of JSON. It is
however suggested to use an extra level of validation for the Json string or to the dynamic object
generated as a result of serialization/ de-serialization.

Serialization using Json.NET with JsonSerializerSettings

This serializer has some nice features that the default .net json serializer doesn't have, like Null
value handling, you just need to create the gsonserializerSettings :

public static string Serialize (T obj)

{

string result = JsonConvert.SerializeObject (obj, new JsonSerializerSettings {
NullValueHandling = NullValueHandling.Ignore});
return result;

Another serious serializer issue in .net is the self referencing loop. In the case of a student that is
enrolled in a course, its instance has a course property and a course has a collection of students
that means a vrist<student> Which will create a reference loop. You can handle this with

https://riptutorial.com/ 90

JsonSerializerSettings .

public static string Serialize (T obj)

{
new JsonSerializerSettings {

= JsonConvert.SerializeObject (obj,

string result =
ReferenceloopHandling = ReferenceloopHandling.Ignore}) ;

return result;

You can put various serializations option like this:

public static string Serialize (T ob3j)

{

= JsonConvert.SerializeObject (obj, new JsonSerializerSettings {

string result =
NullValueHandling = NullValueHandling.Ignore, ReferenceloopHandling

ReferencelLoopHandling.Ignore}) ;
return result;

Read JSON Serialization online: https://riptutorial.com/dot-net/topic/183/json-serialization

https://riptutorial.com/

91

https://riptutorial.com/dot-net/topic/183/json-serialization

Introduction

LINQ (Language Integrated Query) is an expression that retrieves data from a data source. LINQ
simplifies this situation by offering a consistent model for working with data across various kinds of
data sources and formats. In a LINQ query, you are always working with objects. You use the
same basic coding patterns to query and transform data in XML documents, SQL databases,
ADO.NET Datasets, .NET collections, and any other format for which a provider is available. LINQ
can be used in C# and VB.

Syntax

* public static TSource Aggregate<TSource>(this IEnumerable<TSource> source,
Func<TSource,TSource, TSource> func)

» public static TAccumulate Aggregate<TSource, TAccumulate>(this IEnumerable<TSource>
source, TAccumulate seed, Func<TAccumulate, TSource, TAccumulate> func)

* public static TResult Aggregate<TSource, TAccumulate, TResult>(this
IEnumerable<TSource> source, TAccumulate seed,
Func<TAccumulate, TSource, TAccumulate> func, Func<TAccumulate, TResult>
resultSelector)

 public static Boolean All<TSource>(this IEnumerable<TSource> source,
Func<TSource,Boolean> predicate)

 public static Boolean Any<TSource>(this IEnumerable<TSource> source)

* public static Boolean Any<TSource>(this IEnumerable<TSource> source,
Func<TSource,Boolean> predicate)

* public static IEnumerable<TSource> AsEnumerable<TSource>(this IEnumerable<TSource>
source)

» public static Decimal Average(this IEnumerable<Decimal> source)

* public static Double Average(this IEnumerable<Double> source)

* public static Double Average(this IEnumerable<Int32> source)

* public static Double Average(this IEnumerable<Int64> source)

* public static Nullable<Decimal> Average(this IEnumerable<Nullable<Decimal>> source)

» public static Nullable<Double> Average(this IEnumerable<Nullable<Double>> source)

* public static Nullable<Double> Average(this IEnumerable<Nullable<Int32>> source)

* public static Nullable<Double> Average(this IEnumerable<Nullable<Int64>> source)

* public static Nullable<Single> Average(this IEnumerable<Nullable<Single>> source)

* public static Single Average(this IEnumerable<Single> source)

» public static Decimal Average<TSource>(this IEnumerable<TSource> source,
Func<TSource,Decimal> selector)

» public static Double Average<TSource>(this IEnumerable<TSource> source,
Func<TSource,Double> selector)

* public static Double Average<TSource>(this IEnumerable<TSource> source,
Func<TSource, Int32> selector)

https://riptutorial.com/ 92

public static Double Average<TSource>(this IEnumerable<TSource> source,
Func<TSource, Int64> selector)

public static Nullable<Decimal> Average<TSource>(this IEnumerable<TSource> source,
Func<TSource,Nullable<Decimal>> selector)

public static Nullable<Double> Average<TSource>(this IEnumerable<TSource> source,
Func<TSource,Nullable<Double>> selector)

public static Nullable<Double> Average<TSource>(this IEnumerable<TSource> source,
Func<TSource,Nullable<Int32>> selector)

public static Nullable<Double> Average<TSource>(this IEnumerable<TSource> source,
Func<TSource,Nullable<Int64>> selector)

public static Nullable<Single> Average<TSource>(this IEnumerable<TSource> source,
Func<TSource,Nullable<Single>> selector)

public static Single Average<TSource>(this IEnumerable<TSource> source,
Func<TSource,Single> selector)

public static IEnumerable<TResult> Cast<TResult>(this IEnumerable source)

public static IEnumerable<TSource> Concat<TSource>(this IEnumerable<TSource> first,
IEnumerable<TSource> second)

public static Boolean Contains<TSource>(this IEnumerable<TSource> source, TSource
value)

public static Boolean Contains<TSource>(this IEnumerable<TSource> source, TSource
value, IEqualityComparer<TSource> comparer)

public static Int32 Count<TSource>(this IEnumerable<TSource> source)

public static Int32 Count<TSource>(this IEnumerable<TSource> source,
Func<TSource,Boolean> predicate)

public static IEnumerable<TSource> DefaultifEmpty<TSource>(this IEnumerable<TSource>
source)

public static IEnumerable<TSource> DefaultifEmpty<TSource>(this IEnumerable<TSource>
source, TSource defaultValue)

public static IEnumerable<TSource> Distinct<TSource>(this IEnumerable<TSource> source)
public static IEnumerable<TSource> Distinct<TSource>(this IEnumerable<TSource> source,
IEqualityComparer<TSource> comparer)

public static TSource ElementAt<TSource>(this IEnumerable<TSource> source, Int32 index)
public static TSource ElementAtOrDefault<TSource>(this IEnumerable<TSource> source,
Int32 index)

public static IEnumerable<TResult> Empty<TResult>()

public static IEnumerable<TSource> Except<TSource>(this IEnumerable<TSource> first,
IEnumerable<TSource> second)

public static IEnumerable<TSource> Except<TSource>(this IEnumerable<TSource> first,
IEnumerable<TSource> second, IEqualityComparer<TSource> comparer)

public static TSource First<TSource>(this IEnumerable<TSource> source)

public static TSource First<TSource>(this IEnumerable<TSource> source,
Func<TSource,Boolean> predicate)

public static TSource FirstOrDefault<TSource>(this IEnumerable<TSource> source)

public static TSource FirstOrDefault<TSource>(this IEnumerable<TSource> source,
Func<TSource,Boolean> predicate)

public static IEnumerable<IGrouping<TKey,TSource>> GroupBy<TSource, TKey>(this

https://riptutorial.com/

93

IEnumerable<TSource> source, Func<TSource, TKey> keySelector)

public static IEnumerable<IGrouping<TKey,TSource>> GroupBy<TSource, TKey>(this
IEnumerable<TSource> source, Func<TSource, TKey> keySelector,
IEqualityComparer<TKey> comparer)

public static IEnumerable<IGrouping<TKey, TElement>> GroupBy<TSource, TKey,
TElement>(this IEnumerable<TSource> source, Func<TSource, TKey> keySelector,
Func<TSource, TElement> elementSelector)

public static IEnumerable<IGrouping<TKey, TElement>> GroupBy<TSource, TKey,
TElement>(this IEnumerable<TSource> source, Func<TSource,TKey> keySelector,
Func<TSource,TElement> elementSelector, IEqualityComparer<TKey> comparer)
public static IEnumerable<TResult> GroupBy<TSource, TKey, TResult>(this
IEnumerable<TSource> source, Func<TSource, TKey> keySelector,
Func<TKey,IEnumerable<TSource>, TResult> resultSelector)

public static IEnumerable<TResult> GroupBy<TSource, TKey, TResult>(this
IEnumerable<TSource> source, Func<TSource, TKey> keySelector,
Func<TKey,I[Enumerable<TSource>, TResult> resultSelector, IEqualityComparer<TKey>
comparer)

public static IEnumerable<TResult> GroupBy<TSource, TKey, TElement, TResult>(this
IEnumerable<TSource> source, Func<TSource, TKey> keySelector,

Func<TSource, TElement> elementSelector, Func<TKey,I[Enumerable<TElement>, TResult>
resultSelector)

public static IEnumerable<TResult> GroupBy<TSource, TKey, TElement, TResult>(this
IEnumerable<TSource> source, Func<TSource, TKey> keySelector,
Func<TSource,TElement> elementSelector, Func<TKey,I[Enumerable<TElement>, TResult>
resultSelector, IEqualityComparer<TKey> comparer)

public static IEnumerable<TResult> GroupJoin<TOuter, TInner, TKey, TResult>(this
IEnumerable<TOuter> outer,IEnumerable<TInner> inner, Func<TOuter, TKey>
outerKeySelector, Func<TInner, TKey> innerKeySelector,
Func<TOuter,IEnumerable<TInner>,TResult> resultSelector)

public static IEnumerable<TResult> GroupJoin<TOuter, TInner, TKey, TResult>(this
IEnumerable<TOuter> outer, IEnumerable<TInner> inner, Func<TOuter, TKey>
outerKeySelector, Func<TInner,TKey> innerKeySelector,
Func<TOuter,IEnumerable<TInner>, TResult> resultSelector, IEqualityComparer<TKey>
comparer)

public static IEnumerable<TSource> Intersect<TSource>(this IEnumerable<TSource> first,
IEnumerable<TSource> second)

public static IEnumerable<TSource> Intersect<TSource>(this IEnumerable<TSource> first,
IEnumerable<TSource> second, IEqualityComparer<TSource> comparer)

public static IEnumerable<TResult> Join<TOuter, Tinner, TKey, TResult>(this
IEnumerable<TOuter> outer, IEnumerable<TInner> inner, Func<TOuter, TKey>
outerKeySelector, Func<TInner,TKey> innerKeySelector, Func<TOuter,TInner,TResult>
resultSelector)

public static IEnumerable<TResult> Join<TOuter, Tinner, TKey, TResult>(this
IEnumerable<TOuter> outer, IEnumerable<TInner> inner, Func<TOuter, TKey>
outerKeySelector, Func<TInner, TKey> innerKeySelector, Func<TOuter, TInner, TResult>
resultSelector, IEqualityComparer<TKey> comparer)

https://riptutorial.com/

94

public static TSource Last<TSource>(this IEnumerable<TSource> source)

public static TSource Last<TSource>(this IEnumerable<TSource> source,
Func<TSource,Boolean> predicate)

public static TSource LastOrDefault<TSource>(this IEnumerable<TSource> source)
public static TSource LastOrDefault<TSource>(this IEnumerable<TSource> source,
Func<TSource,Boolean> predicate)

public static Int64 LongCount<TSource>(this IEnumerable<TSource> source)
public static Int64 LongCount<TSource>(this IEnumerable<TSource> source,
Func<TSource,Boolean> predicate)

public static Decimal Max(this IEnumerable<Decimal> source)

public static Double Max(this IEnumerable<Double> source)

public static Int32 Max(this IEnumerable<Int32> source)

public static Int64 Max(this IEnumerable<Int64> source)

public static Nullable<Decimal> Max(this IEnumerable<Nullable<Decimal>> source)
public static Nullable<Double> Max(this IEnumerable<Nullable<Double>> source)
public static Nullable<Int32> Max(this IEnumerable<Nullable<Int32>> source)
public static Nullable<Int64> Max(this IEnumerable<Nullable<Int64>> source)
public static Nullable<Single> Max(this IEnumerable<Nullable<Single>> source)
public static Single Max(this IEnumerable<Single> source)

public static TSource Max<TSource>(this IEnumerable<TSource> source)

public static Decimal Max<TSource>(this IEnumerable<TSource> source,
Func<TSource,Decimal> selector)

public static Double Max<TSource>(this IEnumerable<TSource> source,
Func<TSource,Double> selector)

public static Int32 Max<TSource>(this IEnumerable<TSource> source,
Func<TSource,Int32> selector)

public static Int64 Max<TSource>(this IEnumerable<TSource> source,
Func<TSource,Int64> selector)

public static Nullable<Decimal> Max<TSource>(this IEnumerable<TSource> source,
Func<TSource,Nullable<Decimal>> selector)

public static Nullable<Double> Max<TSource>(this IEnumerable<TSource> source,
Func<TSource,Nullable<Double>> selector)

public static Nullable<Int32> Max<TSource>(this IEnumerable<TSource> source,
Func<TSource,Nullable<Int32>> selector)

public static Nullable<Int64> Max<TSource>(this IEnumerable<TSource> source,
Func<TSource,Nullable<Int64>> selector)

public static Nullable<Single> Max<TSource>(this IEnumerable<TSource> source,
Func<TSource,Nullable<Single>> selector)

public static Single Max<TSource>(this IEnumerable<TSource> source,
Func<TSource,Single> selector)

public static TResult Max<TSource, TResult>(this IEnumerable<TSource> source,
Func<TSource, TResult> selector)

public static Decimal Min(this IEnumerable<Decimal> source)

public static Double Min(this IEnumerable<Double> source)

public static Int32 Min(this IEnumerable<Int32> source)

public static Int64 Min(this IEnumerable<Int64> source)

https://riptutorial.com/

95

* public static Nullable<Decimal> Min(this IEnumerable<Nullable<Decimal>> source)

* public static Nullable<Double> Min(this IEnumerable<Nullable<Double>> source)

» public static Nullable<Int32> Min(this IEnumerable<Nullable<Int32>> source)

» public static Nullable<Int64> Min(this IEnumerable<Nullable<Int64>> source)

* public static Nullable<Single> Min(this IEnumerable<Nullable<Single>> source)

* public static Single Min(this IEnumerable<Single> source)

* public static TSource Min<TSource>(this IEnumerable<TSource> source)

 public static Decimal Min<TSource>(this IEnumerable<TSource> source,
Func<TSource,Decimal> selector)

» public static Double Min<TSource>(this IEnumerable<TSource> source,
Func<TSource,Double> selector)

* public static Int32 Min<TSource>(this IEnumerable<TSource> source, Func<TSource,Int32>
selector)

* public static Int64 Min<TSource>(this IEnumerable<TSource> source, Func<TSource,Int64>
selector)

* public static Nullable<Decimal> Min<TSource>(this IEnumerable<TSource> source,
Func<TSource,Nullable<Decimal>> selector)

» public static Nullable<Double> Min<TSource>(this IEnumerable<TSource> source,
Func<TSource,Nullable<Double>> selector)

* public static Nullable<Int32> Min<TSource>(this IEnumerable<TSource> source,
Func<TSource,Nullable<Int32>> selector)

* public static Nullable<Int64> Min<TSource>(this IEnumerable<TSource> source,
Func<TSource,Nullable<Int64>> selector)

* public static Nullable<Single> Min<TSource>(this IEnumerable<TSource> source,
Func<TSource,Nullable<Single>> selector)

* public static Single Min<TSource>(this IEnumerable<TSource> source,
Func<TSource,Single> selector)

* public static TResult Min<TSource, TResult>(this IEnumerable<TSource> source,
Func<TSource, TResult> selector)

* public static IEnumerable<TResult> OfType<TResult>(this IEnumerable source)

* public static IOrderedEnumerable<TSource> OrderBy<TSource, TKey>(this
IEnumerable<TSource> source, Func<TSource, TKey> keySelector)

» public static IOrderedEnumerable<TSource> OrderBy<TSource, TKey>(this
IEnumerable<TSource> source, Func<TSource, TKey> keySelector, IComparer<TKey>
comparer)

 public static IOrderedEnumerable<TSource> OrderByDescending<TSource, TKey>(this
IEnumerable<TSource> source, Func<TSource, TKey> keySelector)

* public static IOrderedEnumerable<TSource> OrderByDescending<TSource, TKey>(this
IEnumerable<TSource> source, Func<TSource, TKey> keySelector, IComparer<TKey>
comparer)

* public static IEnumerable<Int32> Range(Int32 start, Int32 count)

» public static IEnumerable<TResult> Repeat<TResult>(TResult element, Int32 count)

» public static IEnumerable<TSource> Reverse<TSource>(this IEnumerable<TSource>
source)

» public static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource>
source, Func<TSource, TResult> selector)

https://riptutorial.com/ 96

public static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource>
source, Func<TSource,Int32, TResult> selector)

public static IEnumerable<TResult> SelectMany<TSource, TResult>(this
IEnumerable<TSource> source, Func<TSource,IEnumerable<TResult>> selector)
public static IEnumerable<TResult> SelectMany<TSource, TResult>(this
IEnumerable<TSource> source, Func<TSource,Int32,IEnumerable<TResult>> selector)
public static IEnumerable<TResult> SelectMany<TSource, TCollection, TResult>(this
IEnumerable<TSource> source, Func<TSource,|IEnumerable<TCollection>>
collectionSelector, Func<TSource, TCollection, TResult> resultSelector)

public static IEnumerable<TResult> SelectMany<TSource, TCollection, TResult>(this
IEnumerable<TSource> source, Func<TSource,Int32,IEnumerable<TCollection>>
collectionSelector, Func<TSource, TCollection, TResult> resultSelector)

public static Boolean SequenceEqual<TSource>(this IEnumerable<TSource> first,
IEnumerable<TSource> second)

public static Boolean SequenceEqual<TSource>(this IEnumerable<TSource> first,
IEnumerable<TSource> second, IEqualityComparer<TSource> comparer)

public static TSource Single<TSource>(this IEnumerable<TSource> source)

public static TSource Single<TSource>(this IEnumerable<TSource> source,
Func<TSource,Boolean> predicate)

public static TSource SingleOrDefault<TSource>(this IEnumerable<TSource> source)
public static TSource SingleOrDefault<TSource>(this IEnumerable<TSource> source,
Func<TSource,Boolean> predicate)

public static IEnumerable<TSource> Skip<TSource>(this IEnumerable<TSource> source,
Int32 count)

public static IEnumerable<TSource> SkipWhile<TSource>(this IEnumerable<TSource>
source, Func<TSource,Boolean> predicate)

public static IEnumerable<TSource> SkipWhile<TSource>(this IEnumerable<TSource>
source, Func<TSource,Int32,Boolean> predicate)

public static Decimal Sum(this IEnumerable<Decimal> source)

public static Double Sum(this IEnumerable<Double> source)

public static Int32 Sum(this IEnumerable<Int32> source)

public static Int64 Sum(this IEnumerable<Int64> source)

public static Nullable<Decimal> Sum(this IEnumerable<Nullable<Decimal>> source)
public static Nullable<Double> Sum(this IEnumerable<Nullable<Double>> source)
public static Nullable<Int32> Sum(this IEnumerable<Nullable<Int32>> source)

public static Nullable<Int64> Sum(this IEnumerable<Nullable<Int64>> source)

public static Nullable<Single> Sum(this IEnumerable<Nullable<Single>> source)

public static Single Sum(this IEnumerable<Single> source)

public static Decimal Sum<TSource>(this IEnumerable<TSource> source,
Func<TSource,Decimal> selector)

public static Double Sum<TSource>(this IEnumerable<TSource> source,
Func<TSource,Double> selector)

public static Int32 Sum<TSource>(this IEnumerable<TSource> source,
Func<TSource,Int32> selector)

public static Int64 Sum<TSource>(this IEnumerable<TSource> source,
Func<TSource,Int64> selector)

https://riptutorial.com/ 97

public static Nullable<Decimal> Sum<TSource>(this IEnumerable<TSource> source,
Func<TSource,Nullable<Decimal>> selector)

public static Nullable<Double> Sum<TSource>(this IEnumerable<TSource> source,
Func<TSource,Nullable<Double>> selector)

public static Nullable<Int32> Sum<TSource>(this IEnumerable<TSource> source,
Func<TSource,Nullable<Int32>> selector)

public static Nullable<Int64> Sum<TSource>(this IEnumerable<TSource> source,
Func<TSource,Nullable<Int64>> selector)

public static Nullable<Single> Sum<TSource>(this IEnumerable<TSource> source,
Func<TSource,Nullable<Single>> selector)

public static Single Sum<TSource>(this IEnumerable<TSource> source,
Func<TSource,Single> selector)

public static IEnumerable<TSource> Take<TSource>(this IEnumerable<TSource> source,
Int32 count)

public static IEnumerable<TSource> TakeWhile<TSource>(this IEnumerable<TSource>
source, Func<TSource,Boolean> predicate)

public static IEnumerable<TSource> TakeWhile<TSource>(this IEnumerable<TSource>
source, Func<TSource,Int32,Boolean> predicate)

public static IOrderedEnumerable<TSource> ThenBy<TSource, TKey>(this
IOrderedEnumerable<TSource> source, Func<TSource, TKey> keySelector)

public static IOrderedEnumerable<TSource> ThenBy<TSource, TKey>(this
IOrderedEnumerable<TSource> source, Func<TSource, TKey> keySelector,
IComparer<TKey> comparer)

public static IOrderedEnumerable<TSource> ThenByDescending<TSource, TKey>(this
IOrderedEnumerable<TSource> source, Func<TSource, TKey> keySelector)

public static IOrderedEnumerable<TSource> ThenByDescending<TSource, TKey>(this
IOrderedEnumerable<TSource> source, Func<TSource, TKey> keySelector,
IComparer<TKey> comparer)

public static TSource[] ToArray<TSource>(this IEnumerable<TSource> source)

public static Dictionary<TKey,TSource> ToDictionary<TSource, TKey>(this
IEnumerable<TSource> source, Func<TSource, TKey> keySelector)

public static Dictionary<TKey,TSource> ToDictionary<TSource, TKey>(this
IEnumerable<TSource> source, Func<TSource, TKey> keySelector,
IEqualityComparer<TKey> comparer)

public static Dictionary<TKey, TElement> ToDictionary<TSource, TKey, TElement>(this
IEnumerable<TSource> source, Func<TSource, TKey> keySelector,

Func<TSource, TElement> elementSelector)

public static Dictionary<TKey, TElement> ToDictionary<TSource, TKey, TElement>(this
IEnumerable<TSource> source, Func<TSource, TKey> keySelector,
Func<TSource,TElement> elementSelector, IEqualityComparer<TKey> comparer)
public static List<TSource> ToList<TSource>(this IEnumerable<TSource> source)
public static ILookup<TKey, TSource> ToLookup<TSource, TKey>(this
IEnumerable<TSource> source, Func<TSource, TKey> keySelector)

public static ILookup<TKey, TSource> ToLookup<TSource, TKey>(this
IEnumerable<TSource> source, Func<TSource, TKey> keySelector,
IEqualityComparer<TKey> comparer)

https://riptutorial.com/

98

* public static ILookup<TKey, TElement> ToLookup<TSource, TKey, TElement>(this
IEnumerable<TSource> source, Func<TSource, TKey> keySelector,

Func<TSource, TElement> elementSelector)

» public static ILookup<TKey, TElement> ToLookup<TSource, TKey, TElement>(this
IEnumerable<TSource> source, Func<TSource, TKey> keySelector,
Func<TSource,TElement> elementSelector, IEqualityComparer<TKey> comparer)

* public static IEnumerable<TSource> Union<TSource>(this IEnumerable<TSource> first,
IEnumerable<TSource> second)

* public static IEnumerable<TSource> Union<TSource>(this IEnumerable<TSource> first,
IEnumerable<TSource> second, IEqualityComparer<TSource> comparer)

 public static IEnumerable<TSource> Where<TSource>(this IEnumerable<TSource> source,
Func<TSource,Boolean> predicate)

 public static IEnumerable<TSource> Where<TSource>(this IEnumerable<TSource> source,
Func<TSource,Int32,Boolean> predicate)

 public static IEnumerable<TResult> Zip<TFirst, TSecond, TResult>(this
IEnumerable<TFirst> first, IEnumerable<TSecond> second, Func<TFirst,TSecond, TResult>
resultSelector)

Remarks

e See also LINQ.

The LINQ built-in methods are extension methods for the 1enumerabie<t> interface that live in the
System.Ling.Enumerable Class in the system.core assembly. They are available in .NET Framework
3.5 and later.

LINQ allows for simple modification, transformation, and combination of various 1enumerabieS Using
a query-like or functional syntax.

While the standard LINQ methods can work on any 1enumerable<t>, including the simple arrays and
List<T>S, they can also be used on database objects, where the set of LINQ expressions can be
transformed in many cases to SQL if the data object supports it. See LINQ to SOL.

For the methods that compare objects (such as contains and except), TEquatable<T>.Equals IS USed
if the type T of the collection implements that interface. Otherwise, the standard equa1s and
GetHashcode Of the type (possibly overriden from the default onject implementations) are used.
There are also overloads for these methods that allow to specify a custom 1equalitycomparer<ts.

For the ...orperault methods, default () IS used to generate default values.

Official reference: Enumerable class

Lazy Evaluation

Virtually every query that returns an renumerable<t> IS NOt evaluated immediately; instead, the logic
is delayed until the query is iterated over. One implication is that each time someone iterates over
an 1enumerable<t> Created from one of these queries, e.g., .unere (), the full query logic is repeated.

https://riptutorial.com/ 99

http://www.riptutorial.com/linq/topic/842/getting-started-with-linq
https://msdn.microsoft.com/en-us/library/bb425822.aspx
https://msdn.microsoft.com/en-us/library/system.linq.enumerable(v=vs.110).aspx

If the predicate is long-running, this can be a cause for performance issues.

One simple solution (when you know or can control the approximate size of the resulting
sequence) is to fully buffer the results using .Toarray () OF .ToList ().

.ToDictionary () OI .ToLookup ()

can fulfill the same role. One can also, of course, iterate over the entire sequence and buffer the

elements according to other custom logic.

Toarray () OI Torist () ?

Both .toarray () and .torist () loop through all elements of an 1enumerable<r> SE€qUEnce and save

the results in a collection stored in-memory. Use the following guidelines to determine which to

choose:

e Some APIs may require a T[] Or @ List<T>.

* .Torist () typically runs faster and generates less garbage than .toarray (), because the latter
must copy all the elements into a new fixed-size collection one more time than the former, in

almost every case.

» Elements can be added to or removed from the vist<r> returned by .tovist (), whereas the

T[] returned from .Toarray () remains a fixed size throughout its lifetime. In other words,
List<T> IS mutable, and T is immutable.

e The r] returned from.toarray () Uses less memory than the vist<r> returned from .tovist (),

so if the result is going to be stored for a long time, prefer .toarray (). Calling
List<T>.TrimExcess () Would make the memory difference strictly academic, at the cost of
eliminating the relative speed advantage of .tovnist ().

Examples

Select (map)

Name
Name
Name
Name

var persons = new/]
{
new {Id = 1,
new {Id = 2,
new {Id = 3,
new {Id = 4,

}i

var names = persons.Select (p => p.Name);
Console.WritelLine (string.Join (", ", names.ToArray()));

//Foo,Bar,Fizz,Buzz

This type of function is usually called nap in functional programming languages.

Where (filter)

This method returns an IEnumerable with all the elements that meets the lambda expression

Example

"Foo"},
"Bar"},
"Rizz"},

"Buzz"}

https://riptutorial.com/

100

var personNames = new/|]
{

"FOO", "Bar", "Fizzll, "Buzzll

}i

var namesStartingWithF = personNames.Where (p => p.StartsWith ("F"));
Console.WritelLine (string.Join (", ", namesStartingWithF));

Output:
Foo,Fizz

View Demo

OrderBy

var persons = newl]

{
new {Id = 1, Name = "Foo"},
new {Id = 2, Name = "Bar"},
new {Id = 3, Name = "Fizz"},
new {Id = 4, Name = "Buzz"}

bi
var personsSortedByName = persons.OrderBy(p => p.Name);
Console.Writeline (string.Join (", ", personsSortedByName.Select (p => p.Id).ToArray()));

//2,4,3,1

OrderByDescending

var persons = newl]

{
new {Id = 1, Name = "Foo"},
new {Id = 2, Name = "Bar"},
new {Id = 3, Name = "Fizz"},
new {Id = 4, Name = "Buzz"}

}i
var personsSortedByNameDescending = persons.OrderByDescending (p => p.Name) ;

Console.Writeline (string.Join (", ", personsSortedByNameDescending.Select (p =>
p.Id) .ToArray()));

//1,3,4,2

Contains

var numbers = newl[] {1,2,3,4,5};
Console.WriteLine (numbers.Contains (3)); //True
Console.Writeline (numbers.Contains (34)); //False

https://riptutorial.com/ 101

https://dotnetfiddle.net/nTbZI0

Except

var numbers = new[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
var evenNumbersBetweenSixAndFourteen = new[] { 6, 8, 10, 12 };
var result = numbers.Except (evenNumbersBetweenSixAndFourteen) ;

Console.Writeline (string.Join(",", result));

//1, 2, 3, 4, 5, 7, 9

Intersect

var numbersltolO0 = new([] {1,2,3,4,5,6,7,8,9,10};
var numbersb5tol5 = new[] {5,6,7,8,9,10,11,12,13,14,15};
var numbers5tol0 = numbersltolO.Intersect (numbers5tolb);

Console.Writeline (string.Join(",", numbers5tol0));

//5,6,7,8,9,10

Concat

var numberslto5 = new([] {1, 2, 3, 4, 5};

var numbers4to8 = new([] {4, 5, 6, 7, 8};

var numberslto8 = numberslto5.Concat (numbers4to8) ;

Console.Writeline (string.Join (", ", numberslto8));

//1121314151415161718
Note that duplicates are kept in the result. If this is undesirable, use union instead.

First (find)

var numbers = new([] {1,2,3,4,5};

var firstNumber = numbers.First();
Console.WriteLine (firstNumber); //1

var firstEvenNumber = numbers.First(n => (n & 1) == 0);
Console.WriteLine (firstEvenNumber); //2

The following throws 1tnvalidoperationException With message "Sequence contains no matching
element":

var firstNegativeNumber = numbers.First(n => n < 0);

Single

https://riptutorial.com/ 102

var oneNumber = new[] {5};
var theOnlyNumber = oneNumber.Single();
Console.WriteLine (theOnlyNumber); //5

var numbers = new[] {1,2,3,4,5};

var theOnlyNumberSmallerThanTwo = numbers.Single(n => n < 2);

Console.WriteLine (theOnlyNumberSmallerThanTwo); //1

The following throws tnvalidoperationException SiNce there is more than one element in the

sequence:

var theOnlyNumberInNumbers = numbers.Single () ;
var theOnlyNegativeNumber = numbers.Single(n => n < 0);

Last

var numbers = new[] {1,2,3,4,5};

var lastNumber = numbers.Last ();

Console.WritelLine (lastNumber); //5
var lastEvenNumber = numbers.Last(n => (n & 1) == 0);
Console.WritelLine (lastEvenNumber); //4

The following throws InvalidOperationException.

var lastNegativeNumber = numbers.Last(n => n < 0);

LastOrDefault

var numbers = newl[] {1,2,3,4,5};

var lastNumber = numbers.LastOrDefault ();
Console.WritelLine (lastNumber); //5

var lastEvenNumber = numbers.LastOrDefault(n => (n & 1) ==
Console.WriteLine (lastEvenNumber); //4

var lastNegativeNumber = numbers.LastOrDefault(n => n < 0);
Console.WritelLine (lastNegativeNumber); //0

var words = new[] { "one", "two", "three", "four", "five" };

var lastWord = words.LastOrDefault ();
Console.WriteLine (lastWord); // five

var lastLongWord = words.LastOrDefault (w => w.Length > 4);
Console.WriteLine (lastLongWord); // three

var lastMissingWord = words.LastOrDefault (w => w.Length > 5);

Console.WriteLine (lastMissingWord); // null

https://riptutorial.com/

103

SingleOrDefault

var oneNumber = new[] {5};
var theOnlyNumber = oneNumber.SingleOrDefault () ;
Console.WriteLine (theOnlyNumber) ; //5

var numbers = new([] {1,2,3,4,5};

var theOnlyNumberSmallerThanTwo = numbers.SingleOrDefault(n => n < 2);
Console.WriteLine (theOnlyNumberSmallerThanTwo) ; //1

var theOnlyNegativeNumber = numbers.SingleOrDefault(n => n < 0);
Console.WriteLine (theOnlyNegativeNumber) ; //0

The fO"OWing throws InvalidOperationException.

var theOnlyNumberInNumbers = numbers.SingleOrDefault () ;

FirstOrDefault

var numbers = new[] {1,2,3,4,5};

var firstNumber = numbers.FirstOrDefault ();
Console.WriteLine (firstNumber); //1

var firstEvenNumber = numbers.FirstOrDefault(n => (n & 1) == 0);
Console.WriteLine (firstEvenNumber); //2

var firstNegativeNumber = numbers.FirstOrDefault (n => n < 0);
Console.WriteLine (firstNegativeNumber); //0

var words = new|[] { "one", "two", "three", "four", "five" };

var firstWord = words.FirstOrDefault ();
Console.WriteLine (firstWord); // one

var firstLongWord = words.FirstOrDefault (w => w.Length > 3);
Console.WriteLine (firstLongWord); // three

var firstMissingWord = words.FirstOrDefault (w => w.Length > 5);
Console.WriteLine (firstMissingWord); // null

Any
Returns true if the collection has any elements that meets the condition in the lambda expression:

var numbers = newl[] {1,2,3,4,5};

var isNotEmpty = numbers.Any () ;
Console.WriteLine (isNotEmpty); //True

var anyNumberIsOne = numbers.Any(n => n == 1);
Console.WritelLine (anyNumberIsOne); //True
var anyNumberIsSix = numbers.Any(n => n == 6);

https://riptutorial.com/ 104

Console.WriteLine (anyNumberIsSix); //False

var anyNumberIsOdd = numbers.Any(n => (n & 1) == 1);
Console.WriteLine (anyNumberIsOdd); //True

var anyNumberIsNegative = numbers.Any(n => n < 0);
Console.WriteLine (anyNumberIsNegative); //False

var numbers = newl[] {1,2,3,4,5};
var allNumbersAreOdd = numbers.All(n => (n & 1) == 1);

Console.WriteLine (allNumbersAreOdd); //False

var allNumbersArePositive = numbers.All(n => n > 0);
Console.WritelLine (allNumbersArePositive); //True

Note that the a11 method functions by checking for the first element to evaluate as ra1se according
to the predicate. Therefore, the method will return «rue for any predicate in the case that the set is
empty:

var numbers = new int[0];
var allNumbersArePositive = numbers.All(n => n > 0);
Console.Writeline (allNumbersArePositive); //True

SelectMany (flat map)

rnumerable.select retUrns an output element for every input element. Whereas

mnumerable. selectyany produces a variable number of output elements for each input element. This
means that the output sequence may contain more or fewer elements than were in the input
sequence.

Lambda expressions passed tO Enumerable.select MUSt return a single item. Lambda expressions
passed to enumerable.selectMany MUSt produce a child sequence. This child sequence may contain
a varying number of elements for each element in the input sequence.

Example

class Invoice

{
public int Id { get; set; }

class Customer

{

public Invoice[] Invoices {get;set;}

var customers = newl[] {
new Customer {
Invoices = new[] {
new Invoice {Id=1},

https://riptutorial.com/ 105

https://msdn.microsoft.com/en-us/library/bb548891(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/bb534336(v=vs.100).aspx
http://www.riptutorial.com/csharp/topic/46/lambda-expressions

new Invoice {Id=2},

b
new Customer {
Invoices = new[] {
new Invoice {Id=3},
new Invoice {Id=4},

by
new Customer {
Invoices = new[] {
new Invoice {Id=5},
new Invoice {Id=6},

}i
var allInvoicesFromAllCustomers = customers.SelectMany (c => c.Invoices);

Console.WriteLine (
string.Join(",", allInvoicesFromAllCustomers.Select (i => i.Id).ToArray()));

Output:
1,2,3,4,5,6
View Demo

Enumerable.SelectMany Can also be achieved with a syntax-based query using two consecutive from
clauses:

var allInvoicesFromAllCustomers
= from customer in customers
from invoice in customer.Invoices

select invoice;

Sum
var numbers = new([] {1,2,3,4};
var sumOfAllNumbers = numbers.Sum();

Console.WriteLine (sumOfAllNumbers); //10

var cities = new[] {
new {Population = 1000},
new {Population = 2500},
new {Population = 4000}
bi

var totalPopulation = cities.Sum(c => c.Population);
Console.WriteLine (totalPopulation); //7500

Skip

Skip will enumerate the first N items without returning them. Once item number N+1 is reached,

https://riptutorial.com/ 106

https://dotnetfiddle.net/XKGtBr

Skip starts returning every enumerated item:

var numbers = new[] {1,2,3,4,5};

var allNumbersExceptFirstTwo = numbers.Skip(2);
Console.WritelLine (string.Join (", ", allNumbersExceptFirstTwo.ToArray()));

//3,4,5

Take

This method takes the first n elements from an enumerable.

var numbers = newl[] {1,2,3,4,5};

var threeFirstNumbers = numbers.Take (3);

Console.Writeline (string.Join(",", threeFirstNumbers.ToArray()));
//1,2,3
SequenceEqual

var numbers = newl[] {1,2,3,4,5};

var sameNumbers = new|[] {1,2,3,4,5};

var sameNumbersInDifferentOrder = new[] {5,1,4,2,3};

var equallfSameOrder = numbers.SequenceEqual (sameNumbers) ;
Console.WritelLine (equallfSameOrder); //True

var equalIfDifferentOrder = numbers.SequenceEqual (sameNumbersInDifferentOrder) ;

Console.WritelLine (equallfDifferentOrder); //False

Reverse

var numbers = newl[] {1,2,3,4,5};

var reversed = numbers.Reverse();

Console.Writeline (string.Join (", ", reversed.ToArray()));

//5,4,3,2,1

OfType

var mixed = new object[] {1,"Foo",2,"Bar",3,"Fizz",4,"Buzz"};
var numbers = mixed.OfType<int>();

Console.Writeline (string.Join (", ", numbers.ToArray()));

//1,2,3,4

Max

https://riptutorial.com/ 107

var numbers = new[] {1,2,3,4};

var maxNumber = numbers.Max();
Console.WriteLine (maxNumber); //4

var cities = new[] {
new {Population = 1000},

new {Population = 2500},
new {Population = 4000}
}i
var maxPopulation = cities.Max(c => c.Population);

Console.WriteLine (maxPopulation); //4000

Min

var numbers = new[] {1,2,3,4};

var minNumber = numbers.Min () ;
Console.WriteLine (minNumber); //1

var cities = new[] {
new {Population = 1000},
new {Population = 2500},
new {Population = 4000}
bi

var minPopulation = cities.Min(c => c.Population);
Console.WriteLine (minPopulation); //1000

Average
var numbers = new[] {1,2,3,4};
var averageNumber = numbers.Average();

Console.WriteLine (averageNumber) ;

// 2,5

This method calculates the average of enumerable of numbers.

var cities = new[] {

new {Population = 1000},
2000},
new {Population = 4000}

new {Population
}i

var averagePopulation = cities.Average (c => c.Population);
Console.Writeline (averagePopulation) ;
// 2333,33

This method calculates the average of enumerable using delegated function.
Zip

.NET4.0

https://riptutorial.com/ 108

var tens = new[] {10,20,30,40,50};
var units = new[] {1,2,3,4,5};

var sums = tens.Zip(units, (first, second) => first + second);

Console.WritelLine(string.Join(",", sums));

//11,22,33,44,55

Distinct

var numbers = new[] {1, 1, 2, 2, 3, 3,

4, 4, 5, 5};

var distinctNumbers = numbers.Distinct ();

Console.WritelLine (string.Join (", ", distinctNumbers));

//1,2,3,4,5

GroupBy

var persons = new|[] {

new { Name="Fizz", Job="Developer"},

new

new

bi

{ Name="Buzz", Job="Developer"},
new { Name="Foo", Job="Astronaut"},
{ Name="Bar", Job="Astronaut"},

var groupedByJob = persons.GroupBy(p => p.Job);

foreach (var theGroup in groupedByJob)
{
Console.WriteLine (
"{0} are {1}s",

string.Join (", ", theGroup.Select (g => g.Name) .ToArray()),

theGroup.Key) ;

//Fizz,Buzz are Developers
//Foo,Bar are Astronauts

Group invoices by country, generating a new object with the number of record, total paid, and

average paid

var a = db.Invoices.GroupBy (i => i.Country)

.Select (g => new { Country =

Count =
Total =
Average

If we want only the totals, no group

var a = db.Invoices.GroupBy (i => 1)

Q

.Select (g => new { Count =
Total

Q

g
g

g.Key,

.Count (),

.Sum (i => i.Paid),
g.Average (i => 1i.Paid)

.Count (),
.Sum (i => i.Paid),

)i

https://riptutorial.com/

109

Average = g.Average (i => i.Paid) });
If we need several counts

var a = db.Invoices.GroupBy (g => 1)
.Select (g => new { High = g.Count (i => i.Paid >= 1000),
Low = g.Count (i => i.Paid < 1000),
Sum = g.Sum(i => i.Paid) });

ToDictionary

Returns a new dictionary from the source renunerabie USing the provided keySelector function to
determine keys. Will throw an argunentexception if keySelector is not injective(returns a unique
value for each member of the source collection.) There are overloads which allow one to specify
the value to be stored as well as the key.

var persons = new|[] {
new { Name="Fizz", Id=1},
new Name="Buzz", Id=2},

{
new { Name="Foo", Id=3},
{

new Name="Bar", Id=4},

}i

Specifying just a key selector function will create a pictionary<Tkey, Tval> With txey the return Type
of the key selector, Tva1 the original object Type, and the original object as the stored value.

var personsById = persons.ToDictionary(p => p.Id);
// personsById is a Dictionary<int,object>

Console.WritelLine (personsById[1l].Name); //Fizz
Console.WriteLine (personsById[2] .Name); //Buzz

Specifying a value selector function as well will create a pictionary<tkey, Tval> With tkey Still the
return type of the key selector, but Tva1 now the return type of the value selector function, and the
returned value as the stored value.

var namesById = persons.ToDictionary(p => p.Id, p => p.Name);
//namesById is a Dictionary<int, string>

Console.WriteLine (namesById[3]); //Foo
Console.WriteLine (namesById[4]); //Bar

As stated above, the keys returned by the key selector must be unique. The following will throw an
exception.

var persons = newl[] {
new { Name="Fizz", Id=1},
new Name="Buzz", Id=2},

new Name="Bar", Id=4},

{

new { Name="Foo", Id=3},
{
{ Name="Oops", Id=4}

new

https://riptutorial.com/ 110

}i

var willThrowException = persons.ToDictionary(p => p.Id)

If a unique key can not be given for the source collection, consider using ToLookup instead. On
the surface, ToLookup behaves similarly to ToDictionary, however, in the resulting Lookup each

key is paired with a collection of values with matching keys.

Union

var numberslto5 = new[] {1,2,3,4,5};

var numbers4to8 = new[] {4,5,6,7,8};

var numberslto8 = numberslto5.Union (numbers4to8);
Console.WritelLine (string.Join (", ", numberslto8));

//1,2,3,4,5,6,7,8

Note that duplicates are removed from the result. If this is undesirable, use concat instead.

ToArray

var numbers = new[] {1,2,3,4,5,6,7,8,9,10};
var someNumbers = numbers.Where(n => n < 6);

Console.Writeline (someNumbers.GetType () .Name) ;
//WhereArrayIterator 1

var someNumbersArray = someNumbers.ToArray();

Console.Writeline (someNumbersArray.GetType () .Name) ;
//Int32][]

ToList

var numbers = new[] {1,2,3,4,5,6,7,8,9,10};
var someNumbers = numbers.Where(n => n < 6);

Console.WriteLine (someNumbers.GetType () .Name) ;
//WhereArraylterator 1

var someNumbersList = someNumbers.ToList ();
Console.WritelLine (
someNumbersList.GetType () .Name + " - " +

someNumbersList.GetType () .GetGenericArguments () [0] .Name) ;
//List’1 - Int32

Count

IEnumerable<int> numbers = newl[] {1,2,3,4,5,6,7,8,9,10};

https://riptutorial.com/

111

var numbersCount = numbers.Count () ;
Console.WritelLine (numbersCount); //10

var evenNumbersCount = numbers.Count(n => (n & 1) == 0);
Console.WriteLine (evenNumbersCount); //5

ElementAt

var names = new|[] {"Foo","Bar","Fizz","Buzz"};

var thirdName = names.ElementAt (2);
Console.WritelLine (thirdName); //Fizz

//The following throws ArgumentOutOfRangeException

var minusOnethName = names.ElementAt (-1);
var fifthName = names.ElementAt (4);

ElementAtOrDefault

var names = new|[] {"Foo","Bar","Fizz","Buzz"};

var thirdName = names.ElementAtOrDefault (2);
Console.WritelLine (thirdName); //Fizz

var minusOnethName = names.ElementAtOrDefault (-1);
Console.WriteLine (minusOnethName); //null

var fifthName = names.ElementAtOrDefault (4);
Console.WriteLine (fifthName); //null

SkipWhile

var numbers = new[] {2,4,6,8,1,3,5,7};
var oddNumbers = numbers.SkipWhile(n => (n & 1) == 0);
Console.Writeline (string.Join(",", oddNumbers.ToArray()));

//1,3,5,7

TakeWhile

var numbers = new[] {2,4,6,1,3,5,7,8};

var evenNumbers = numbers.TakeWhile(n => (n & 1) == 0);
Console.Writeline (string.Join (", ", evenNumbers.ToArray()));
//2,4,6

DefaultifEmpty

https://riptutorial.com/ 112

var numbers = new[] {2,4,6,8,1,3,5,7};

var numbersOrDefault = numbers.DefaultIfEmpty();
Console.WriteLine (numbers.SequenceEqual (numbersOrDefault)); //True

var noNumbers = new int[0];

var noNumbersOrDefault = noNumbers.DefaultIfEmpty () ;
Console.WriteLine (noNumbersOrDefault.Count()); //1
Console.WriteLine (noNumbersOrDefault.Single()); //0

var noNumbersOrExplicitDefault = noNumbers.DefaultIfEmpty (34);

Console.WriteLine (noNumbersOrExplicitDefault.Count ()); //1
Console.WriteLine (noNumbersOrExplicitDefault.Single()); //34

Aggregate (fold)

Generating a new object in each step:

var elements = new[] {1,2,3,4,5};
var commaSeparatedElements = elements.Aggregate (
seed: "",

func: (aggregate, element) => $"{aggregate}{element},");

Console.Writeline (commaSeparatedElements) ; //1,2,3,4,5,

Using the same object in all steps:

var commaSeparatedElements2 = elements.Aggregate (

seed: new StringBuilder(),

func: (seed, element) => seed.Append($"{element},"));
Console.WriteLine (commaSeparatedElements2.ToString()); //1,2,3,4,5,

Using a result selector:

var commaSeparatedElements3 = elements.Aggregate (
seed: new StringBuilder(),
func: (seed, element) => seed.Append($"{element},"),
resultSelector: (seed) => seed.ToString());
Console.WritelLine (commaSeparatedElements3); //1,2,3,4,5,

If a seed is omitted, the first element becomes the seed:

var seedAndElements = elements.Select (n=>n.ToString());
var commaSeparatedElements4 = seedAndElements.Aggregate (
func: (aggregate, element) => $"{aggregate}{element},");

Console.WriteLine (commaSeparatedElementsd4); //12,3,4,5,

ToLookup

https://riptutorial.com/ 113

var persons = newl[] {
new { Name="Fizz", Job="Developer"},
new { Name="Buzz", Job="Developer"},
new { Name="Foo", Job="Astronaut"},
new { Name="Bar", Job="Astronaut"},

bi
var groupedByJob = persons.ToLookup(p => p.Job);

foreach (var theGroup in groupedByJob)
{
Console.WriteLine (
"{0} are {1l}s",
string.Join(",", theGroup.Select (g => g.Name)
theGroup.Key) ;

//Fizz,Buzz are Developers
//Foo,Bar are Astronauts

Join

class Developer

{
public int Id { get; set; }
public string Name { get; set; }

class Project

{
public int DeveloperId { get; set; }
public string Name { get; set; }

var developers = new[] {
new Developer ({
Id = 1,
Name = "Foobuzz"
s

new Developer ({

Id = 2,
Name = "Barfizz"
}
i
var projects = new[] {

new Project {

DeveloperId = 1,

Name = "Hello World 3D"
s
new Project ({

DeveloperId = 1,

Name = "Super Fizzbuzz Maker"
s
new Project ({

DeveloperId = 2,

Name = "Citizen Kane - The action game"
s

new Project {

.ToArray()),

https://riptutorial.com/

114

DeveloperId = 2,
Name = "Pro Pong 2016"

}i

var denormalized = developers.Join (
inner: projects,
outerKeySelector: dev => dev.Id,
innerKeySelector: proj => proj.Developerld,
resultSelector:
(dev, proj) => new {
ProjectName = proj.Name,
DeveloperName = dev.Name}) ;

foreach (var item in denormalized)
{

Console.WriteLine ("{0} by {1}", item.ProjectName, item.DeveloperName) ;

//Hello World 3D by Foobuzz

//Super Fizzbuzz Maker by Foobuzz

//Citizen Kane - The action game by Barfizz
//Pro Pong 2016 by Barfizz

GroupJoin

class Developer

{
public int Id { get; set; }
public string Name { get; set; }

class Project

{
public int DeveloperId { get; set; }
public string Name { get; set; }

var developers = new[] {
new Developer ({
Id = 1,
Name = "Foobuzz"
s

new Developer ({

Id = 2,
Name = "Barfizz"
}
i
var projects = new[] {

new Project {
DeveloperId = 1,
Name = "Hello World 3D"
}y
new Project {
DeveloperId = 1,
Name = "Super Fizzbuzz Maker"
}y

new Project {

https://riptutorial.com/ 115

DeveloperId = 2,

Name = "Citizen Kane - The action game"
by
new Project {

DeveloperId = 2,

Name = "Pro Pong 2016"

}i

var grouped = developers.GroupJdoin (
inner: projects,
outerKeySelector: dev => dev.Id,
innerKeySelector: proj => proj.Developerld,

resultSelector:
(dev, projs) => new {
DeveloperName = dev.Name,

ProjectNames = projs.Select (p => p.Name) .ToArray () });

foreach (var item in grouped)
{
Console.WriteLine (
"{0}'s projects: {1}",
item.DeveloperNamne,
string.Join (", ", item.ProjectNames));

//Foobuzz's projects: Hello World 3D, Super Fizzbuzz Maker

//Barfizz's projects: Citizen Kane - The action game, Pro Pong 2016

Cast

cast IS different from the other methods of enumerabie in that it is an extension method for
TEnumerable, NOt fOr TEnumerable<T>. Thus it can be used to convert instances of the former into

instances of the later.

This does not compile since arraynist does not implement 1enumerable<T>:

var numbers = new ArraylList () {1,2,3,4,5};
Console.WriteLine (numbers.First ());

This works as expected:

var numbers = new ArrayList () {1,2,3,4,5};
Console.WritelLine (numbers.Cast<int> () .First());

//1

cast does not perform conversion casts. The following compiles but throws 1nvaiidcastException at

runtime:
var numbers = new int[] {1,2,3,4,5};
decimal [] numbersAsDecimal = numbers.Cast<decimal> () .ToArray();

The proper way to perform a converting cast to a collection is as follows:

var numbers= new int[] {1,2,3,4,5};

https://riptutorial.com/

116

decimal[] numbersAsDecimal = numbers.Select (n => (decimal)n) .ToArray();

Empty
To create an empty IEnumerable of int:

IEnumerable<int> emptyList = Enumerable.Empty<int>();

This empty IEnumerable is cached for each Type T, so that:

Enumerable.Empty<decimal> () == Enumerable.Empty<decimal>(); // This is True
Enumerable.Empty<int> () == Enumerable.Empty<decimal> () ; // This is False
ThenBy

ThenBy Can only be used after a ordersy clause allowing to order using multiple criteria

var persons = newl]

{
new {Id = 1, Name = "Foo", Order = 1},
new {Id = 1, Name = "FooTwo", Order = 2},
new {Id = 2, Name = "Bar", Order = 2},
new {Id = 2, Name = "BarTwo", Order = 1},
new {Id = 3, Name = "Fizz", Order = 2},
new {Id = 3, Name = "FizzTwo", Order = 1},

}i
var personsSortedByName = persons.OrderBy(p => p.Id).ThenBy(p => p.Order);
Console.Writeline (string.Join (", ", personsSortedByName.Select (p => p.Name)));

//This will display :
//Foo,FooTwo, BarTwo,Bar,FizzTwo,Fizz

Range

The two parameters to range are the first number and the count of elements to produce (not the

last number).

// prints 1,2,3,4,5,6,7,8,9,10
Console.WritelLine (string.Join (", ", Enumerable.Range(l, 10)));

// prints 10,11,12,13,14
Console.WritelLine (string.Join (", ", Enumerable.Range (10, 5)));

Left Outer Join

class Person

{
public string FirstName { get; set; }
public string LastName { get; set; }

https://riptutorial.com/

117

class Pet

{
public string Name { get; set; }
public Person Owner { get; set; }

public static void Main(string[] args)

{

var magnus = new Person { FirstName = "Magnus", LastName = "Hedlund" };
var terry = new Person { FirstName = "Terry", LastName = "Adams" };

var barley = new Pet { Name = "Barley", Owner = terry };

var people = new[] { magnus, terry };

var pets = new[] { barley };

var query =
from person in people
join pet in pets on person equals pet.Owner into gj
from subpet in gj.DefaultIfEmpty ()
select new
{
person.FirstName,
PetName = subpet?.Name ?? "-" // Use - if he has no pet
bi

foreach (var p in query)
Console.WritelLine ($"{p.FirstName}: {p.PetName}");

Repeat

Enumerable.Repeat generates a sequence of a repeated value. In this example it generates "Hello" 4
times.

var repeats = Enumerable.Repeat ("Hello", 4);

foreach (var item in repeats)
{

Console.WriteLine (item) ;

/* output:
Hello
Hello
Hello
Hello

x/

Read LINQ online: https://riptutorial.com/dot-net/topic/34/ling

https://riptutorial.com/ 118

https://riptutorial.com/dot-net/topic/34/linq

C_hapter 25: Managed Extensibility
Framework

Remarks

One of MEF's big advantages over other technologies that support the inversion-of-control pattern
is that it supports resolving dependencies that are not known at design-time, without needing
much (if any) configuration.

All examples require a reference to the System.ComponentModel.Composition assembly.

Also, all the (Basic) examples use these as their sample business objects:

using System.Collections.ObjectModel;

namespace Demo
{
public sealed class User
{
public User (int id, string name)
{
this.Id = id;
this.Name = name;

public int Id { get; }
public string Name { get; }
public override string ToString() => $"User[Id: {this.Id}, Name={this.Name}]";

public interface IUserProvider

{
ReadOnlyCollection<User> GetAllUsers();

Examples
Exporting a Type (Basic)

using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.ComponentModel.Composition;

namespace Demo
{
[Export (typeof (IUserProvider))]
public sealed class UserProvider : IUserProvider

{
public ReadOnlyCollection<User> GetAllUsers ()

{

https://riptutorial.com/ 119

return new List<User>
{
new User (0, "admin"),
new User
} .AsReadOnly

, "Samantha"),

r

(0

new User (1, "Dennis"),
(2
0)

This could be defined virtually anywhere; all that matters is that the application knows where to
look for it (via the ComposablePartCatalogs it creates).

Importing (Basic)

using System;
using System.ComponentModel.Composition;

namespace Demo
{
public sealed class UserWriter
{
[Import (typeof (IUserProvider))]
private IUserProvider userProvider;

public void PrintAllUsers ()

{
foreach (User user in this.userProvider.GetAllUsers())
{

Console.WriteLine (user) ;

This is a type that has a dependency on an tuserprovider, Which could be defined anywhere. Like
the previous example, all that matters is that the application knows where to look for the matching
export (via the ComposablePartCatalogs it creates).

Connecting (Basic)
See the other (Basic) examples above.

using System.ComponentModel.Composition;

using System.ComponentModel.Composition.Hosting;

namespace Demo
{
public static class Program
{
public static void Main ()

{

using (var catalog = new ApplicationCatalog())
using (var exportProvider = new CatalogExportProvider (catalog))
using (var container = new CompositionContainer (exportProvider))

https://riptutorial.com/ 120

exportProvider.SourceProvider = container;
UserWriter writer = new UserWriter();

// at this point, writer's userProvider field is null
container.ComposeParts (writer);

// now, it should be non-null (or an exception will be thrown) .
writer.PrintAllUsers () ;

As long as something in the application's assembly search path has

[Export (typeof (IUserProvider))], Userniriter'S cOrresponding import will be satisfied and the users
will be printed.

Other types of catalogs (e.g., pirectorycatalog) can be used instead of (or in addition to)
applicationCatalog, t0 I00K in other places for exports that satisfy the imports.

Read Managed Extensibility Framework online: https://riptutorial.com/dot-net/topic/62/managed-
extensibility-framework

https://riptutorial.com/ 121

https://riptutorial.com/dot-net/topic/62/managed-extensibility-framework
https://riptutorial.com/dot-net/topic/62/managed-extensibility-framework

C_hapter 26: Memory management

Remarks

Performance-critical applications in managed .NET applications can be severely impacted by the
GC. When the GC runs, all other threads are suspended until it completes. For this reason, it is
recommended to carefully evaluate the GC processes and determine how to minimize when it
runs.

Examples

Unmanaged Resources

When we talk about the GC and the "heap", we're really talking about what's called the managed
heap. Objects on the managed heap can access resources not on the managed heap, for
example, when writing to or reading from a file. Unexpected behavior can occur when, a file is
opened for reading and then an exception occurs, preventing the file handle from closing as it
normally would. For this reason, .NET requires that unmanaged resources implement the
Ipisposable INterface. This interface has a single method called pispose With no parameters:

public interface IDisposable

{
Dispose () ;

}

When handling unmanaged resources, you should make sure that they are properly disposed. You
can do this by explicitly calling pispose () in a fina11y block, or with a using Statement.

StreamReader sr;
string textFromFile;
string filename = "SomeFile.txt";
try
{
sr = new StreamReader (filename) ;
textFromFile = sr.ReadToEnd();
}
finally
{
if (sr != null) sr.Dispose();

}
or

string textFromFile;
string filename = "SomeFile.txt";

using (StreamReader sr = new Streamreader (filename))

{
textFromFile = sr.ReadToEnd();

https://riptutorial.com/ 122

The latter is the preferred method, and is automatically expanded to the former during compilation.
Use SafeHandle when wrapping unmanaged resources

When writing wrappers for unmanaged resources, you should subclass sarenandie rather than
trying to implement 1pisposable and a finalizer yourself. Your safenandie subclass should be as
small and simple as possible to minimize the chance of a handle leak. This likely means that your
SafeHandle implementation would an internal implementation detail of a class which wraps it to
provide a usable API. This class ensures that, even if a program leaks your sarenandie instance,
your unmanaged handle is released.

using System.Runtime.InteropServices;

class MyHandle : SafeHandle

{
public override bool IsInvalid => handle == IntPtr.Zero;
public MyHandle() : base(IntPtr.Zero, true)
{1}

public MyHandle (int length) : this()
{

SetHandle (Marshal.AllocHGlobal (length));
}

protected override bool ReleaseHandle ()
{

Marshal .FreeHGlobal (handle) ;

return true;

Disclaimer: This example is an attempt to show how to guard a managed resource with safetandie
which implements 1pisposabie for you and configures finalizers appropriately. It is very contrived
and likely pointless to allocate a chunk of memory in this manner.

Read Memory management online: https://riptutorial.com/dot-net/topic/59/memory-management

https://riptutorial.com/ 123

https://riptutorial.com/dot-net/topic/59/memory-management

C_hapter 27: Networking

Remarks

See also: HTTP Clients

Examples

Basic TCP chat (TcpListener, TcpClient, NetworkStream)

using System;

using System.IO;

using System.Net;

using System.Net.Sockets;
using System.Text;

class TcpChat
{
static void Main(string[] args)
{
if (args.Length == 0)
{
Console.WriteLine ("Basic TCP chat");
Console.WriteLine () ;
Console.WritelLine ("Usage:");
Console.Writeline ("tcpchat server <port>");

Console.WritelLine ("tcpchat client <url> <port>");

return;

try

Run (args) ;
}
catch (IOException)
{

Console.WriteLine ("-—— Connection lost");

}

catch (SocketException ex)

{

Console.WritelLine ("--—- Can't connect: " + ex.Message);

static void Run(string[] args)

{
TcpClient client;
NetworkStream stream;
byte[] buffer = new byte[256];
var encoding = Encoding.ASCII;

if (args[0].StartsWith("s", StringComparison.InvariantCultureIgnoreCase))

{
var port = int.Parse(args([l]);
var listener = new TcpListener (IPAddress.Any,

https://riptutorial.com/

124

http://www.riptutorial.com/dot-net/topic/32/http-clients

listener.Start ();

Console.WriteLine ("-—- Waiting for a connection..

client

)

= listener.AcceptTcpClient ();

}
else
{
var hostName = args[l];
var port = int.Parse(args([2]);

client = new TcpClient ();

client.Connect (hostName, port);
}
stream = client.GetStream();
Console.WriteLine ("-—— Connected. Start typing!

while (true)
{
if (Console.KeyAvailable)
{
var lineToSend =
var bytesToSend =
stream.Write (bytesToSend, O,
stream.Flush{();

(stream.DataAvailable)

var receivedBytesCount =
var receivedString =
Console.Write (receivedString);

Basic SNTP client (UdpClient)
See RFC 2030 for details on the SNTP protocol.

using System;

using System.Globalization;
using System.Ling;
using System.Net;
using System.Net.Sockets;
class

{

SntpClient

const int SntpPort = 123;
static DateTime BaseDate = new DateTime (1900,

static void Main(string[]

{

args)

if (args.Length == 0) {
Console
Console.WriteLine () ;

Console.Writeline ("Usage: sntpclient

Console.WriteLine () ;
Console.WritelLine ("<local timezone>:

UTCc") ;

stream.Read (buffer, 0,
encoding.GetString (buffer, 0,

(exit with Ctrl-C)");

Console.ReadLine () ;
encoding.GetBytes (lineToSend + "\r\n");
bytesToSend.Length) ;

buffer.Length);
receivedBytesCount) ;

1, 1);

.WritelLine ("Simple SNTP client");

<sntp server url> [<local timezone>]");

a number between -12 and 12 as hours from

https://riptutorial.com/

125

http://tools.ietf.org/html/rfc2030

Console.WriteLine (" (append .5 for an extra half an hour)");
return;

double localTimeZoneInHours = 0;
if (args.Length > 1)
localTimeZoneInHours = double.Parse(args[l], CulturelInfo.InvariantCulture);

var udpClient = new UdpClient ();
udpClient.Client.ReceiveTimeout = 5000;

var sntpRequest = new byte[48];
sntpRequest [0] = 0x23; //LI=0 (no warning), VN=4, Mode=3 (client)

udpClient.Send (
dgram: sntpRequest,
bytes: sntpRequest.Length,
hostname: args([O0],
port: SntpPort);

byte[] sntpResponse;
try
{
IPEndPoint remoteEndpoint = null;
sntpResponse = udpClient.Receive (ref remoteEndpoint);
}
catch (SocketException)
{
Console.WriteLine ("*** No response received from the server");
return;

uint numberOfSeconds;
if (BitConverter.IsLittleEndian)
numberOfSeconds = BitConverter.ToUInt32 (
sntpResponse.Skip (40) .Take (4) .Reverse () .ToArray ()
,0);
else
numberOfSeconds = BitConverter.ToUInt32 (sntpResponse, 40);

var date = BaseDate.AddSeconds (numberOfSeconds) .AddHours (localTimeZoneInHours) ;
Console.WriteLine (
S$"Current date in server: {date:yyyy-MM-dd HH:mm:ss}

UTC{localTimeZoneInHours:+0.#;-0.#; .}");
}

Read Networking online: https://riptutorial.com/dot-net/topic/35/networking

https://riptutorial.com/ 126

https://riptutorial.com/dot-net/topic/35/networking

C_hapter 28: NuGet packaging system

Remarks

NuGet.org:

NuGet is the package manager for the Microsoft development platform including .NET.
The NuGet client tools provide the ability to produce and consume packages. The
NuGet Gallery is the central package repository used by all package authors and
consumers.

Images in examples courtesy of NuGet.org.

Examples

Installing the NuGet Package Manager

In order to be able to manage your projects’ packages, you need the NuGet Package Manager.
This is a Visual Studio Extension, explained in the official docs: Installing and Updating NuGet
Client.

Starting with Visual Studio 2012, NuGet is included in every edition, and can be used from: Tools -
> NuGet Package Manager -> Package Manager Console.

You do so through the Tools menu of Visual Studio, clicking Extensions and Updates:

https://riptutorial.com/ 127

https://www.nuget.org/
https://www.nuget.org/
https://docs.nuget.org/consume/installing-nuget
https://docs.nuget.org/consume/installing-nuget

Extensions and Updates

I Installed Sort by:

4 Cnline

I+ Visual Studio Gallery
I+ Samples Gallery

I Updates

10 i

» 8 g

Most Popular =

MNuGet Package Manager

A collection of tools to automate the

Download

process of downloading, installing, upgrad...

AnkhSVN - Subversion Support / SCC Provider

Ankh5VM open source (free) Subversion SourceControl
Prowvider,

Visual Studio 2012 Color Theme Editor

Allows users to create and edit Visual Studio themes.

Themes can customize colors used for menus, toolbars, tab...

Web Essentials 2012

Adds many useful features to Visual Studio for web
developers,

Productivity Power Tools 2012
A =set of extensions to Visual Studio 2012 Professional (and

1 2 3 4 5 »

Search Visual Studio

Created by: Micros
Version: 2.5.40416.C
Downloads: 309929
Rating: & & & & *
Mere Information

Report Extension to

This installs both the GUI:

» Available through clicking "Manage NuGet Packages..." on a project or its References folder

And the Package Manager Console:

» Tools -> NuGet Package Manager -> Package Manager Console.

Managing Packages through the Ul

When you right-click a project (or its References folder), you can click the "Manage NuGet

Packages..." option. This shows the Package Manager Dialog.

https://riptutorial.com/

128

http://i.stack.imgur.com/zTzgp.png
https://docs.nuget.org/consume/package-manager-dialog

MuGet.Docs - Manage NuGet Packages

Installed packages

COnline

All

Microsoft and .MET

Updates

|5ta|;:lle Only v| Sort I;:l},r:|f'-.-'1|:|st Downloads v|
e EntityFramework
NE Entity Framework is Microsoft's ——

recommended data access technology for n...

Json.NET
Jeon. MET is a pepular high-performance JS0M framework
for MET

jQuery
jQuery is a new kind of JavaScript Library.
JCQuery is a fast and concise JavaScript Library that simplifies...

WebGrease
Web Grease is a suite of tools for optimizing javascript, css files
and irmages.

Microsoft ASENET MVC
This package contains the runtime assemnblies for ASP.MET

Search Cnline (Ctrl

Created by: Micre
Id: EntityFramewc
Version: £.1.1

Last Published: &/
Downloads: S604:
License

View License
Project Informatic
Report Abuse

Description:
Entity Framework

recommended da
new applications.

Tags: Microsoft EF
ADCNET

Dependencies:

MVC. Mo Depender

. Bootstrap
B Sleek, intuitive, and powerful mobile first front-end framework
for faster and easier web development.

o _ Microsoft HTTP Client Libraries

Each package is licensed to you by its This package provides a programming interface for modern

owner. Microsoft is not responsible HTTP/REST based applications.

for, nor does it grant any licenses to, -

third-party packages. 1 2 3 4 35

Managing Packages through the console

Click the menus Tools -> NuGet Package Manager -> Package Manager Console to show the
console in your IDE. Official documentation here.

Here you can issue, amongst others, instal1-package cOmmands which installs the entered
package into the currently selected "Default project":

Install-Package Elmah

You can also provide the project to install the package to, overriding the selected project in the
"Default project” dropdown:

Install-Package Elmah -ProjectName MyFirstWebsite

Updating a package

https://riptutorial.com/ 129

http://i.stack.imgur.com/Fi0Uq.png
https://docs.nuget.org/consume/package-manager-console-powershell-reference

To update a package use the following command:

PM> Update-Package EntityFramework

where EntityFramework is the name of the package to be updated. Note that update will run for all

projects, and so is different from install-package EntityFramework Which would install to "Default

project” only.
You can also specify a single project explicitly:
PM> Update-Package EntityFramework —-ProjectName MyFirstWebsite

Uninstalling a package

PM> Uninstall-Package EntityFramework

Uninstalling a package from one project in a solution

PM> Uninstall-Package -ProjectName MyProjectB EntityFramework

Installing a specific version of a package

PM> Install-Package EntityFramework -Version 6.1.2

Adding a package source feed (MyGet, Klondike, ect)
nuget sources add -name feedname —-source http://sourcefeedurl

Using different (local) Nuget package sources using Ul

It is common for company to set up it's own nuget server for distribution of packages across
different teams.

1. Go to Solution Explorer and click right Mouse button then choose vanage NuGet packages for

Solution

https://riptutorial.com/

130

Opt Solution Explorer
@ 5=

. e Ay
= Build Solution Ctrl+5hift+B

Rebuild Solution
Clean Solution
Run Code Analysis on Solution Alt+F11
Batch Build...
Configuration Mananer
B Manage NuGet Packages for Solution...

[Enable NuGet Fackaye nesiure

2. In window that opens click on settings

b Installed packages Include Prerelease

4 Online

Address searck
All

nuget.org
Microsoft and .MET

Ajax Control

Build Ajax app
controls in the
b Updates
Microsoft Aja
JavaScript and
applications tt

Amplifyls
Amplify)5isa
web applicatio

ANTLRwv3

AMother Tool
that provides

‘Microsoft.Asp

ASP.NET Web
This package g

g g ¢ J d d J

Each package is licensed to you by its
owner. Microsoft is not responsible ASP.MET Web
for, nor does it grant any licenses to,

third-parh:nackages,

3. Click on + in top right corner then add name and url that points to your local nuget server.

https://riptutorial.com/ 131

http://i.stack.imgur.com/PhB3d.png
http://i.stack.imgur.com/8vKM6.png

Search Options (Ctrl+E) P pvailable package sources:

Environment
Projects and Solutions

Source Control
TEHI Editor http'.-'r.-"

0O,
Database Tools 7| nuget.org

F# Tools https:/fwww.nuget.crg/api/v2/
HTML Designer
Light5peed
MuGet Package Manager

General
|
Office Tools

Oracle Developer Tools

Debugging
Performance Tools

b =7 7T 7 v 7 T T T T T

ReSharper

50QL Server Tools
Text Templating Machine-wide package sources:

Web Performance Test Tools Microsoft and NET

Windaws Forms Designer https://www.nuget.org/api/v2/curated-feeds/microsoftdotnet/
Workflow Designer

o v v v

)

uninstall a specific version of package
PM> uninstall-Package EntityFramework —-Version 6.1.2

Read NuGet packaging system online: https://riptutorial.com/dot-net/topic/43/nuget-packaging-
system

https://riptutorial.com/ 132

http://i.stack.imgur.com/h85QG.png
https://riptutorial.com/dot-net/topic/43/nuget-packaging-system
https://riptutorial.com/dot-net/topic/43/nuget-packaging-system

C_hapter 29: Parallel processing using .Net
framework

Introduction

This Topic is about Multi core programming using Task Parallel Library with .NET framework. The
task parallel library allows you to write code which is human readable and adjusts itself with the
number of Cores available. So you can be sure that your software would auto-upgrade itself with
the upgrading environment.

Examples

Parallel Extensions

Parallel extensions have been introduced along with the Task Parallel Library to achieve data
Parallelism. Data parallelism refers to scenarios in which the same operation is performed
concurrently (that is, in parallel) on elements in a source collection or array. The .NET provides
new constructs to achieve data parallelism by using Parallel.For and Parallel.Foreach constructs.

//Sequential version

foreach (var item in sourcecollection) {

Process (item) ;

}

// Parallel equivalent

Parallel.foreach (sourcecollection, item => Process (item)) ;

The above mentioned Parallel.ForEach construct utilizes the multiple cores and thus enhances the
performance in the same fashion.

Read Parallel processing using .Net framework online: https://riptutorial.com/dot-
net/topic/8085/parallel-processing-using--net-framework

https://riptutorial.com/ 133

https://riptutorial.com/dot-net/topic/8085/parallel-processing-using--net-framework
https://riptutorial.com/dot-net/topic/8085/parallel-processing-using--net-framework

C_hapter 30: Platform Invoke

Syntax

» [Dllimport("Example.dll")] static extern void SetText(string inString);
[Dllimport("Example.dll")] static extern void GetText(StringBuilder outString);
[MarshalAs(UnmanagedType.ByValTStr, SizeConst = 32)] string text;
[MarshalAs(UnmanagedType.ByValArray, SizeConst = 128)] byte[] byteArr;
[StructLayout(LayoutKind.Sequential)] public struct PERSON {...}
[StructLayout(LayoutKind.Explicit)] public struct MarshaledUnion { [FieldOffset(0)]... }

Examples
Calling a Win32 dll function

using System.Runtime.InteropServices;

class PInvokeExample

{

[Dl1lImport ("user32.dl1l", CharSet = CharSet.Auto)]

public static extern uint MessageBox (IntPtr hWnd, String text, String caption, int
options);

public static void test ()
{

MessageBox (IntPtr.Zero, "Hello!", "Message", 0);

}

Declare a function as static extern Stting p11Importattribute With itS vaiue property set to .dll
name. Don't forget to use system.Runtime.InteropServices N@amespace. Then call it as an regular
static method.

The Platform Invocation Services will take care of loading the .dll and finding the desired finction.
The P/Invoke in most simple cases will also marshal parameters and return value to and from the
dll (i.e. convert from .NET datatypes to Win32 ones and vice versa).

Using Windows API

Use pinvoke.net.

Before declaring an extern Windows API function in your code, consider looking for it on
pinvoke.net. They most likely already have a suitable declaration with all supporting types and
good examples.

Marshalling arrays

https://riptutorial.com/ 134

http://pinvoke.net/
http://pinvoke.net/

Arrays of simple type

[DllImport ("Example.dl1l")]
static extern void SetArray (

[MarshalAs (UnmanagedType.LPArray, SizeConst = 128)]
byte[] data);

Arrays of string

[Dl1lImport ("Example.dll")]
static extern void SetStrArray(string[] textLines);

Marshaling structs

Simple struct

C++ signature:

typedef struct _PERSON
{

int age;

char name[32];
} PERSON, *LP_PERSON;

void GetSpouse (PERSON person, LP_PERSON spouse);
C# definition

[StructLayout (LayoutKind. Sequential, CharSet = CharSet.Ansi)]
public struct PERSON

{
public int age;
[MarshalAs (UnmanagedType.ByValTStr, SizeConst = 32)]
public string name;

[DllImport ("family.dll", CharSet = CharSet.Auto)]
public static extern bool GetSpouse (PERSON person, ref PERSON spouse) ;

Struct with unknown size array fields. Passing in

C++ signature

typedef struct
{
int length;
int *data;
} VECTOR;

void SetVector (VECTOR &vector);

When passed from managed to unmanaged code, this

https://riptutorial.com/ 135

The aata array should be defined as IntPtr and memory should be explicitly allocated with
Marshal.AllocHGlobal () (and freed with varshal . Freesciobal () aﬁerwordS):

[StructLayout (LayoutKind.Sequential)]
public struct VECTOR : IDisposable

{
int length;
IntPtr dataBuf;

public int[] data
{

set

{
FreeDataBuf () ;
if (value != null && value.Length > 0)
{
dataBuf = Marshal.AllocHGlobal (value.Length * Marshal.SizeOf (value[0]));
Marshal.Copy (value, 0, dataBuf, value.Length);
length = value.Length;

t
void FreeDataBuf ()

{
if (dataBuf != IntPtr.Zero)

{
Marshal.FreeHGlobal (dataBuf) ;
dataBuf = IntPtr.Zero;

}

public void Dispose ()

{
FreeDataBuf () ;

[D1lImport ("vectors.dll")]
public static extern void SetVector ([In]ref VECTOR vector);

Struct with unknown size array fields. Receiving

C++ signature:

typedef struct
{

char *name;
} USER;

bool GetCurrentUser (USER *user);

When such data is passed out of unmanaged code and memory is allocated by the unmanaged
functions, the managed caller should receive it into an nterc variable and convert the buffer to a
managed array. In case of strings there is a convenient viarshai.ptrrostringansi () method:

[StructLayout (LayoutKind.Sequential)]
public struct USER
{

https://riptutorial.com/ 136

https://msdn.microsoft.com/en-us/library/system.runtime.interopservices.marshal.allochglobal(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.interopservices.marshal.freehglobal(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/7b620dhe(v=vs.110).aspx

IntPtr nameBuffer;
public string name { get { return Marshal.PtrToStringAnsi (nameBuffer); } }

[DllImport ("users.dll")]
public static extern bool GetCurrentUser (out USER user) ;

Marshaling unions

Value-type fields only

C++ declaration

typedef union
{
char c;
int i;
} CharOriInt;

C#t declaration

[StructLayout (LayoutKind.Explicit)]
public struct CharOrInt
{

[FieldOffset (0)]

public byte c;

[FieldOffset (0)]

public int 1i;

Mixing value-type and reference fields

Overlapping a reference value with a value type one is not allowed so you cannot simply use the
= o3+ will not compile for

h] hnl]
T T

d0E £ £ 0N 4 &
SOTT t{o—=¢ 7

typedef union

{
char text[128];
int 1i;

} TextOrInt;

and generally you would have to employ custom marshaling. However, in particular cases like this
simpler technics may be used:

[StructLayout (LayoutKind.Sequential)]
public struct TextOrInt

{
[MarshalAs (UnmanagedType.ByValArray, SizeConst = 128)]

public byte[] text;
public int i1 { get { return BitConverter.ToInt32 (text, 0); } }

Read Platform Invoke online: https://riptutorial.com/dot-net/topic/1643/platform-invoke

https://riptutorial.com/ 137

https://riptutorial.com/dot-net/topic/1643/platform-invoke

C_hapter 31: Process and Thread affinity

setting

Parameters

integer that describes the set of processors on which the process is allowed to
run. For example, on a 8 processor system if you want your process to be
executed only on processors 3 and 4 than you choose affinity like this :

affinity
00001100 which equals 12

Remarks

The processor affinity of a thread is the set of processors it has a relationship to. In other words,

those it can be scheduled to run on.

Processor affinity represents each processor as a bit. Bit O represents processor one, bit 1

represents processor two, and so on.

Examples

Get process affinity mask

public static int GetProcessAffinityMask (string processName = null)

{

Process myProcess = GetProcessByName (ref processName) ;

int processorAffinity = (int)myProcess.ProcessorAffinity;
Console.WriteLine ("Process {0} Affinity Mask is : {1}", processName,
FormatAffinity (processorAffinity));

return processorAffinity;

public static Process GetProcessByName (ref string processName)
{
Process myProcess;
if (string.IsNullOrEmpty (processName))
{
myProcess = Process.GetCurrentProcess();
processName = myProcess.ProcessName;
}
else
{
Process|[] processList = Process.GetProcessesByName (processName) ;
myProcess = processList[0];

https://riptutorial.com/

138

return myProcess;

private static string FormatAffinity (int affinity)
{

return Convert.ToString(affinity, 2).PadLeft (Environment.ProcessorCount, '0');

Example of usage :

private static void Main (string[] args)

{
GetProcessAffinityMask () ;

Console.ReadKey () ;

}
// Output:
// Process Test.vshost Affinity Mask is : 11111111

Set process affinity mask

public static void SetProcessAffinityMask (int affinity, string processName = null)

{

Process myProcess = GetProcessByName (ref processName) ;

Console.Writeline ("Process {0} Old Affinity Mask is : {1}", processName,
FormatAffinity ((int)myProcess.ProcessorAffinity));

myProcess.ProcessorAffinity = new IntPtr(affinity);
Console.Writeline ("Process {0} New Affinity Mask is : {1}", processName,
FormatAffinity ((int)myProcess.ProcessorAffinity));

}
Example of usage :

private static void Main(string[] args)

{
int newAffinity = Convert.ToInt32("10101010", 2);

SetProcessAffinityMask (newAffinity);

Console.ReadKey () ;

}

// Output

// Process Test.vshost 0ld Affinity Mask is : 11111111
// Process Test.vshost New Affinity Mask is : 10101010

Read Process and Thread affinity setting online: https://riptutorial.com/dot-net/topic/4431/process-
and-thread-affinity-setting

https://riptutorial.com/ 139

https://riptutorial.com/dot-net/topic/4431/process-and-thread-affinity-setting
https://riptutorial.com/dot-net/topic/4431/process-and-thread-affinity-setting

C_hapter 32: Reading and writing Zip files

Introduction

The ZipFile class lives in the System.lO.Compression namespace. It can be used to read from,

and write to Zip files.

Remarks

* You can also use a MemoryStream instead of a FileStream.

» Exceptions

The stream has already been closed, or the capabilities of
ArgumentException the stream does not match the mode (eg: trying to write to
a read only stream)

ArgumentNullException input stream is null
ArgumentOutOfRangeException mode has an invalid value

InvalidDataException See list below

When a InvalidDataException is thrown, it can have 3 causes:

» The contents of the stream could not be interpreted as a zip archive
» mode is Update and an entry is missing from the archive or is corrupt and cannot be read
* mode is Update and an entry is too large to fit into memory

All information has been taken from this MSDN page

Examples

Listing ZIP contents
This snippet will list all the filenames of a zip archive. The filenames are relative to the zip root.

using (FileStream fs = new FileStream("archive.zip", FileMode.Open))
using (ZipArchive archive = new ZipArchive (fs, ZipArchiveMode.Read))
{
for (int 1 = 0; i < archive.Entries.Count; i++)
{
Console.WriteLine ($"{i}: {archive.Entries[i]}");

}

https://riptutorial.com/

140

https://msdn.microsoft.com/en-us/library/system.io.compression.ziparchive(v=vs.110).aspx

Extracting files from ZIP files
Extracting all the files into a directory is very easy:

using (FileStream fs = new FileStream("archive.zip", FileMode.Open))
using (ZipArchive archive = new ZipArchive (fs, ZipArchiveMode.Read))

{

archive.ExtractToDirectory (AppDomain.CurrentDomain.BaseDirectory) ;

When the file already exists, a System.lO.IOException will be thrown.

Extracting specific files:

using (FileStream fs = new FileStream("archive.zip", FileMode.Open))
using (ZipArchive archive = new ZipArchive (fs, ZipArchiveMode.Read))

{
// Get a root entry file
archive.GetEntry ("test.txt") .ExtractToFile ("test_extracted_getentries.txt", true);

// Enter a path if you want to extract files from a subdirectory
archive.GetEntry ("sub/subtest.txt") .ExtractToFile ("test_sub.txt", true);

// You can also use the Entries property to find files
archive.Entries.FirstOrDefault (f => f.Name ==
"test.txt")?.ExtractToFile ("test_extracted_ling.txt", true);

// This will throw a System.ArgumentNullException because the file cannot be found
archive.GetEntry ("nonexistingfile.txt") .ExtractToFile ("fail.txt", true);

Any of these methods will produce the same result.

Updating a ZIP file
To update a ZIP file, the file has to be opened with ZipArchiveMode.Update instead.

using (FileStream fs = new FileStream("archive.zip", FileMode.Open))
using (ZipArchive archive = new ZipArchive (fs, ZipArchiveMode.Update))

{
// Add file to root
archive.CreateEntryFromFile ("test.txt", "test.txt");

// Add file to subfolder
archive.CreateEntryFromFile ("test.txt", "symbols/test.txt");

There is also the option to write directly to a file within the archive:

var entry = archive.CreateEntry("createentry.txt");
using (var writer = new StreamWriter (entry.Open()))

{

writer.WriteLine ("Test line");

https://riptutorial.com/ 141

Read Reading and writing Zip files online: https://riptutorial.com/dot-net/topic/9943/reading-and-
writing-zip-files

https://riptutorial.com/ 142

https://riptutorial.com/dot-net/topic/9943/reading-and-writing-zip-files
https://riptutorial.com/dot-net/topic/9943/reading-and-writing-zip-files

C_hapter 33: ReadOnlyCollections

Remarks

A readonlycollection provides a read-only view to an existing collection (the 'source collection’).

Items are not directly added to or removed from a readoniycoliection. INStead, they are added and
removed from the source collection and the readoniycoliection Will reflect these changes to the
source.

The number and order of elements inside a readoniycollection Cannot be modified, but the
properties of the elements can be and the methods can be called, assuming they are in scope.

Use a readonlycollection When you want to allow external code to view your collection without
being able to modify it, but still be able to modify the collection yourself.

See Also

® ObservableCollection<T>

® ReadOnlyObservableCollection<T>

ReadOnlyCollections vs ImmutableCollection

A Readonlycollection differs from an rmmutablecollection in that you cannot edit an
ImmutableCollection ONCE YyOU created it - it will always contain »n elements, and they cannot be
replaced or reordered. A readonlycoliection, ON the other hand, cannot be edited directly, but
elements can still be added/removed/reordered using the source collection.

Examples

Creating a ReadOnlyCollection

Using the Constructor

A readonlycollection IS created by passing an existing rList object into the constructor:

var grocerylList = new List<string> { "Apple", "Banana" };
var readOnlyGroceryList = new ReadOnlyCollection<string> (grocerylList) ;

Additionaly, LINQ provides an asreadonly () extension method for 1rist objects:

var readOnlyVersion = groceryList.AsReadOnly () ;

https://riptutorial.com/ 143

Note

Typically, you want to maintain the source collection privately and allow public access to the

ReadonlyCollection. While you could create a readoniycoliection from an in-line list, you would be

unable to modify the collection after you created it.

var readOnlyGroceryList = new List<string> {"Apple", "Banana"}.AsReadOnly();
// Great, but you will not be able to update the grocery list because
// you do not have a reference to the source list anymore!

If you find yourself doing this, you may want to consider using another data structure, such as an

ImmutableCollection.

Updating a ReadOnlyCollection

A readonlycollection CaNNOt be edited directly. Instead, the source collection is updated and the

rReadonlyCollection WIll reflect these changes. This is the key feature of the readoniycolilection.

var grocerylList = new List<string> { "Apple", "Banana" };
var readOnlyGroceryList = new ReadOnlyCollection<string> (groceryList);
var itemCount = readOnlyGroceryList.Count; // There are currently 2 items
//readOnlyGroceryList.Add ("Candy") ; // Compiler Error — Items cannot be added to a
ReadOnlyCollection object
groceryList.Add ("Vitamins") ; // ..but they can be added to the original
collection
itemCount = readOnlyGroceryList.Count; // Now there are 3 items
var lastItem = readOnlyGroceryList.Last (); // The last item on the read only list is now
"Vitamins"

View Demo

Warning: Elements in a ReadOnlyCollection are not inherently read-only

If the source collection is of a type that is not immutable, elements accessed through a
ReadOnlyCollection CaAN be modified.

public class Item

{
public string Name { get; set; }
public decimal Price { get; set; 1}

public static void FillOrder ()
{
// An order is generated
var order = new List<Item>
{

new Item { Name = "Apple", Price = 0.50m },

https://riptutorial.com/

144

https://dotnetfiddle.net/C8qQrS

new Item { Name = "Banana", Price = 0.75m },
new Item { Name = "Vitamins", Price = 5.50m }

bi

// The current sub total is $6.75
var subTotal = order.Sum(item => item.Price);

// Let the customer preview their order
var customerPreview = new ReadOnlyCollection<Item> (order);

// The customer can't add or remove items, but they can change
// the price of an item, even though it is a ReadOnlyCollection

customerPreview.Last () .Price = 0.25m;

// The sub total is now only $1.50!
subTotal = order.Sum(item => item.Price);

View Demo

Read ReadOnlyCollections online: https://riptutorial.com/dot-net/topic/6906/readonlycollections

https://riptutorial.com/ 145

https://dotnetfiddle.net/fXE66F
https://riptutorial.com/dot-net/topic/6906/readonlycollections

C_hapter 34:. Reflection

Examples

What is an Assembly?

Assemblies are the building block of any Common Language Runtime (CLR) application. Every
type you define, together with its methods, properties and their bytecode, is compiled and
packaged inside an Assembly.

using System.Reflection;

Assembly assembly = this.GetType () .Assembly;

Assemblies are self-documenting: they do not only contain types, methods and their IL code, but
also the Metadata necessary to inspect and consume them, both at compile and runtime:

Assembly assembly = Assembly.GetExecutingAssembly () ;
foreach (var type in assembly.GetTypes())

{
Console.WriteLine (type.FullName) ;

}
Assemblies have names which describes their full, unique identity:

Console.WritelLine (typeof (int) .Assembly.FullName) ;
// Will print: "mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"

If this name includes a pub1ickeyToken, it IS called a strong name. Strong-naming an assembly is
the process of creating a signature by using the private key that corresponds to the public key
distributed with the assembly. This signature is added to the Assembly manifest, which contains
the names and hashes of all the files that make up the assembly, and its pub1ickeyToken becomes
part of the name. Assemblies that have the same strong name should be identical; strong names
are used in versioning and to prevent assembly conflicts.

How to create an object of T using Reflection

Using the default constructor

T variable = Activator.CreatelInstance (typeof (T));

Using parameterized constructor

T variable = Activator.CreatelInstance (typeof(T), argl, arg2);

https://riptutorial.com/ 146

https://en.wikipedia.org/wiki/Common_Language_Runtime

Creating Object and setting properties using reflection
Lets say we have a class c1assy that has property Propertua

public class Classy
{
public string Propertua {get; set;}

t0 set propertua using reflection:

var typeOfClassy = typeof (Classy);

var classy = new Classy();

var prop = typeOfClassy.GetProperty ("Propertua");
prop.SetValue (classy, "Value");

Getting an attribute of an enum with reflection (and caching it)

Attributes can be useful for denoting metadata on enums. Getting the value of this can be slow, so

it is important to cache results.

private static Dictionary<object, object> attributeCache = new Dictionary<object,

object>();

public static T GetAttribute<T, V> (this V value)
where T : Attribute
where V : struct

object temp;

// Try to get the value from the static cache.
if (attributeCache.TryGetValue (value, out temp))
{
return (T) temp;
}
else
{
// Get the type of the struct passed in.
Type type = value.GetType();
FieldInfo fieldInfo = type.GetField(value.ToString());

// Get the custom attributes of the type desired found on the struct.

T[] attribs = (T[])fieldInfo.GetCustomAttributes (typeof (T),

// Return the first if there was a match.
var result = attribs.Length > 0 ? attribs[0] : null;

// Cache the result so future checks won't need reflection.
attributeCache.Add (value, result);

return result;

Compare two objects with reflection

https://riptutorial.com/

147

public class Equatable

{
public string fieldl;

public override bool Equals (object obj)

{
if (ReferenceEquals (null, obj)) return false;
if (ReferenceEquals (this, obj)) return true;

var type = obj.GetType () ;
if (GetType() != type)
return false;

var fields = type.GetFields (BindingFlags.Instance | BindingFlags.NonPublic |
BindingFlags.Public);
foreach (var field in fields)
if (field.GetValue (this) != field.GetValue (obj))
return false;

return true;

public override int GetHashCode ()
{
var accumulator = 0;
var fields = GetType () .GetFields (BindingFlags.Instance | BindingFlags.NonPublic |
BindingFlags.Public);
foreach (var field in fields)

accumulator = unchecked ((accumulator * 937)
field.GetValue (this) .GetHashCode()) ;

return accumulator;

Note: this example do a field based comparasion (ignore static fields and properties) for simplicity

Read Reflection online: https://riptutorial.com/dot-net/topic/44/reflection

https://riptutorial.com/ 148

https://riptutorial.com/dot-net/topic/44/reflection

C_hapter 35: Reqgular Expressions
(System.Text.RegularExpressions)

Examples

Check if pattern matches input

public bool Check ()

{

string input = "Hello World!";
string pattern = @"H.1l. W.rld!";

// true

return Regex.IsMatch (input, pattern);

Passing Options

public bool Check ()

{

string input = "Hello World!";
string pattern = @"H.1ll. W.rld!";

// true
return Regex.IsMatch (input, pattern,

Simple match and replace

public string Check ()

{

string input = "Hello World!";
string pattern = @"W.rld";

// Hello Stack Overflow!
return Regex.Replace (input, pattern,

Match into groups

public string Check ()

{

string input = "Hello World!";

RegexOptions.IgnoreCase

"Stack Overflow");

string pattern = @"H.1l. (?<Subject>W.rld)!";

Match match = Regex.Match (input, pattern);

// World

return match.Groups["Subject"] .Value;

| RegexOptions.Singleline);

https://riptutorial.com/

149

Remove non alphanumeric characters from string

public string Remove ()
{
string input = "Hello./!";

return Regex.Replace (input, "["a-zA-Z0-9]", "");

Find all matches

Using

using System.Text.RegularExpressions;

Ed e

static void Main(string[] args)

{
string input = "Carrot Banana Apple Cherry Clementine Grape";
// Find words that start with uppercase 'C'
string pattern = @"\bC\w*\b";

MatchCollection matches = Regex.Matches (input, pattern);
foreach (Match m in matches)
Console.WritelLine (m.Value);

Output

Carrot
Cherry
Clementine

Read Regular Expressions (System.Text.RegularExpressions) online: https://riptutorial.com/dot-
net/topic/6944/regular-expressions--system-text-regularexpressions-

https://riptutorial.com/ 150

https://riptutorial.com/dot-net/topic/6944/regular-expressions--system-text-regularexpressions-
https://riptutorial.com/dot-net/topic/6944/regular-expressions--system-text-regularexpressions-

C_hapter 36: Serial Ports

Examples
Basic operation

var serialPort = new SerialPort ("COM1", 9600, Parity.Even, 8, StopBits.One);
serialPort.Open () ;

serialPort.WriteLine ("Test data");

string response = serialPort.ReadLine();

Console.Writeline (response) ;

serialPort.Close();

List available port names

string[] portNames = SerialPort.GetPortNames () ;

Asynchronous read

void SetupAsyncRead (SerialPort serialPort)
{
serialPort.DataReceived += (sender, e) => {
byte[] buffer = new byte[4096];
switch (e.EventType)
{
case SerialData.Chars:
var port = (SerialPort)sender;
int bytesToRead = port.BytesToRead;
if (bytesToRead > buffer.Length)
Array.Resize (ref buffer, bytesToRead);
int bytesRead = port.Read(buffer, 0, bytesToRead);
// Process the read buffer here
//
break;
case SerialData.Eof:
// Terminate the service here
//

break;

i
Synchronous text echo service

using System.IO.Ports;

namespace TextEchoService
{
class Program
{
static void Main(string[] args)

{

https://riptutorial.com/

151

var serialPort = new SerialPort ("COM1", 9600, Parity.Even, 8, StopBits.One);

serialPort.Open () ;

string message = "";
while (message != "quit")
{
message = serialPort.ReadLine();

serialPort.WriteLine (message);

}

serialPort.Close();

Asynchronous message receiver

using
using
using
using
using

System;
System.Collections.Generic;
System.IO.Ports;
System.Text;
System.Threading;

namespace AsyncReceiver

{

class Program

{

const byte STX = 0x02;
const byte ETX 0x03;
const byte ACK = 0x06;
const byte NAK = 0x15;
static ManualResetEvent terminateService = new ManualResetEvent (false);

static readonly object eventLock = new object();
static List<byte> unprocessedBuffer = null;

static void Main(string[] args)
{

try

{

var serialPort = new SerialPort ("COM11l", 9600, Parity.Even, 8, StopBits

serialPort.DataReceived += DataReceivedHandler;
serialPort.ErrorReceived += ErrorReceivedHandler;
serialPort.Open();
terminateService.WaitOne () ;
serialPort.Close();
}
catch (Exception e)
{
Console.WriteLine ("Exception occurred: {0}", e.Message);
}
Console.ReadKey () ;

static void DataReceivedHandler (object sender, SerialDataReceivedEventArgs
{
lock (eventLock)
{
byte[] buffer = new byte[4096];
switch (e.EventType)
{

case SerialData.Chars:

e)

.One) ;

https://riptutorial.com/

152

var port = (SerialPort)sender;
int bytesToRead = port.BytesToRead;
if (bytesToRead > buffer.Length)
Array.Resize (ref buffer, bytesToRead);
int bytesRead = port.Read(buffer, 0, bytesToRead);
ProcessBuffer (buffer, bytesRead);
break;
case SerialData.Eof:
terminateService.Set () ;
break;

}
static void ErrorReceivedHandler (object sender, SerialErrorReceivedEventArgs e)
{
lock (eventLock)
if (e.EventType == SerialError.TXFull)
{
Console.WriteLine ("Error: TXFull. Can't handle this!");
terminateService.Set () ;
}
else
{
Console.WriteLine ("Error: {0}. Resetting everything", e.EventType);
var port = (SerialPort)sender;
port.DiscardInBuffer () ;
port.DiscardOutBuffer () ;
unprocessedBuffer = null;
port.Write (new byte[] { NAK }, 0, 1);

static void ProcessBuffer (byte[] buffer, int length)
{
List<byte> message = unprocessedBuffer;
for (int i = 0; i < length; i++)
if (buffer[i] == ETX)
{
if (message !'= null)
{
Console.WriteLine ("MessageReceived: {0}",
Encoding.ASCII.GetString (message.ToArray()));
message = null;

}
else if (buffer[i] == STX)
message = null;
else if (message !'= null)
message.Add (buffer[il]);
unprocessedBuffer = message;

This program waits for messages enclosed in stx and erx bytes and outputs the text coming
between them. Everything else is discarded. On write buffer overflow it stops. On other errors it
reset input and output buffers and waits for further messages.

The code illustrates:

https://riptutorial.com/ 153

Asynchronous serial port reading (See serialport.DataReceived USAge).
Serial port error processing (see serialport.ErrorReceived USAge).
Non-text message-based protocol implementation.
Partial message reading.
o The serialport.DataReceived €VENt May happen earlier than entire message (up to eTx)
comes. The entire message may also not be available in the input buffer

(SerialPort.Read(..., ..., port.BytesToRead) reads only a part of the message). In this
case we stash the received part (unprocessedBurfer) and carry on waiting for further
data.

Dealing with several messages coming in one go.

o The serialport.DataReceived €VeNt may happen only after several messages have been
sent by the other end.

Read Serial Ports online: https://riptutorial.com/dot-net/topic/5366/serial-ports

https://riptutorial.com/ 154

https://riptutorial.com/dot-net/topic/5366/serial-ports

C_hapter 37:. Settings

Examples
AppSettings from ConfigurationSettings in .NET 1.x

Deprecated usage

The ConfigurationSettings class was the original way to retrieve settings for an assembly in .NET
1.0 and 1.1. It has been superseded by the ConfigurationManager class and the
WebConfigurationManager class.

If you have two keys with the same name in the appsettings Section of the configuration file, the
last one is used.

app.config

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<appSettings>
<add key="keyName" value="anything, as a string"/>
<add key="keyNames" value="123"/>
<add key="keyNames" value="234"/>
</appSettings>
</configuration>

Program.cs

using System;
using System.Configuration;
using System.Diagnostics;

namespace ConsoleApplicationl

{

class Program

{

static void Main ()

{
string keyValue = ConfigurationSettings.AppSettings|["keyName"];
Debug.Assert ("anything, as a string".Equals (keyValue)) ;

string twoKeys = ConfigurationSettings.AppSettings|["keyNames"];
Debug.Assert ("234" .Equals (twoKeys)) ;

Console.ReadKey () ;

Reading AppSettings from ConfigurationManager in .NET 2.0 and later

https://riptutorial.com/ 155

https://msdn.microsoft.com/en-us/library/system.configuration.configurationsettings.aspx
https://msdn.microsoft.com/en-us/library/system.configuration.configurationmanager.aspx
https://msdn.microsoft.com/en-us/library/system.web.configuration.webconfigurationmanager.aspx

The ConfigurationManager class supports the appsettings property, which allows you to continue
reading settings from the appsettings Section of a configuration file the same way as .NET 1.x
supported.

app.config

<?xml version="1.0" encoding="utf-8"7?>
<configuration>
<appSettings>
<add key="keyName" value="anything, as a string"/>
<add key="keyNames" value="123"/>
<add key="keyNames" value="234"/>
</appSettings>
</configuration>

Program.cs

using System;
using System.Configuration;

using System.Diagnostics;

namespace ConsoleApplicationl

{

class Program

{

static void Main ()

{
string keyValue = ConfigurationManager.AppSettings|["keyName"];

Debug.Assert ("anything, as a string".Equals (keyValue)) ;

var twoKeys = ConfigurationManager.AppSettings["keyNames"];
Debug.Assert ("234" .Equals (twoKeys)) ;

Console.ReadKey () ;

Introduction to strongly-typed application and user settings support from
Visual Studio

Visual Studio helps manage user and application settings. Using this approach has these benefits
over using the appsettings Section of the configuration file.

1. Settings can be made strongly typed. Any type which can be serialized can be used for a
settings value.

2. Application settings can be easily separated from user settings. Application settings are
stored in a single configuration file: web.config for Web sites and Web applications, and
app.config, renamed as assembly.exe.config, where assembly is the name of the
executable. User settings (not used by Web projects) are stored in @ user.contig file in the
user's Application Data folder (which varies with the operating system version).

https://riptutorial.com/ 156

https://msdn.microsoft.com/en-us/library/system.configuration.configurationmanager.aspx

3. Application settings from class libraries can be combined into a single configuration file
without risk of name collisions, since each class library can have its own custom settings
section.

In most project types, the Project Properties Designer has a Settings tab which is the starting point
for creating custom application and user settings. Initially, the Settings tab will be blank, with a
single link to create a default settings file. Clicking the link results in these changes:

1. If a configuration file (app.config OF web.config) does not exist for the project, one will be
created.

2. The Settings tab will be replaced with a grid control which enables you to create, edit, and
delete individual settings entries.

3. In Solution Explorer, a settings.settings item is added under the Properties special folder.
Opening this item will open the Settings tab.

4. A new file with a new partial class is added under the properties folder in the project folder.
This new file is named Settings.Designer._ (.CS, .Vb, etc.), and the class is named Settings.
The class is code-generated, so it should not be edited, but the class is a partial class, so
you can extend the class by putting additional members in a separate file. Furthermore, the
class is implemented using the Singleton Pattern, exposing the singleton instance with the
property named pefault.

As you add each new entry to the Settings tab, Visual Studio does these two things:

1. Saves the setting in the configuration file, in a custom configuration section designed to be
managed by the Settings class.

2. Creates a new member in the Settings class to read, write, and present the setting in the
specific type selected from the Settings tab.

Reading strongly-typed settings from custom section of configuration file

Starting from a new Settings class and custom configuration section:

https://riptutorial.com/ 157

https://msdn.microsoft.com/en-us/library/z2f953x9.aspx
https://msdn.microsoft.com/en-us/library/a65txexh.aspx

Application Synchronize €» View Code Access Modifier: Internal

Build

Build Events Application sethings allow you to store and retrieve property settings and other information for
your application dynamically. For example, the application can save a user's color preferences,

Debug then retrieve them the next time it runs. Learn more about application settings...

Resources

Services Mame Type Scope Value

Reference Paths
Signing
Security
Publish

Code Analysis

Add an application setting named ExampleTimeout, using the time System.Timespan, and set the
value to 1 minute:

Mame Type Scope Value
s ExarmnpleTimeout | System.TimeSpan ~ | Application |~ 00:01§00

L S o

Save the Project Properties, which saves the Settings tab entries, as well as re-generates the
custom Settings class and updates the project configuration file.

Use the setting from code (C#):

Program.cs

using System;
using System.Diagnostics;
using ConsoleApplicationl.Properties;

namespace ConsoleApplicationl
{

class Program
{
static void Main ()
{
TimeSpan exampleTimeout = Settings.Default.ExampleTimeout;
Debug.Assert (TimeSpan.FromMinutes (1) .Equals (exampleTimeout)) ;

Console.ReadKey () ;

Under the covers

https://riptutorial.com/ 158

http://i.stack.imgur.com/ccuKH.png
http://i.stack.imgur.com/bVMK4.png

Look in the project configuration file to see how the application setting entry has been created:

app.config (Visual Studio updates this automatically)

<?xml version="1.0" encoding="utf-8"7?>
<configuration>
<configSections>
<sectionGroup name="applicationSettings"
type="System.Configuration.ApplicationSettingsGroup, System, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" >
<section name="ConsoleApplicationl.Properties.Settings"
type="System.Configuration.ClientSettingsSection, System, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" requirePermission="false" />
</sectionGroup>
</configSections>
<appSettings />
<applicationSettings>
<ConsoleApplicationl.Properties.Settings>
<setting name="ExampleTimeout" serializeAs="String">
<value>00:01:00</value>
</setting>
</ConsoleApplicationl.Properties.Settings>
</applicationSettings>
</configuration>

Notice that the appsettings section is not used. The applicationsettings Section contains a custom
namespace-qualified section that has a setting element for each entry. The type of the value is not
stored in the configuration file; it is only known by the settings class.

Look in the settings class to see how it uses the configurationManager class to read this custom
section.

Settings.designer.cs (for C# projects)

[global::System.Configuration.ApplicationScopedSettingAttribute ()]
[global::System.Diagnostics.DebuggerNonUserCodeAttribute ()]
[global::System.Configuration.DefaultSettingValueAttribute ("00:01:00")]
public global::System.TimeSpan ExampleTimeout {

get {
return ((global::System.TimeSpan) (this["ExampleTimeout"]));

Notice that a pefaultsettingvalueattribute Was created to stored the value entered in the Settings
tab of the Project Properties Designer. If the entry is missing from the configuration file, this default
value is used instead.

Read Settings online: https://riptutorial.com/dot-net/topic/54/settings

https://riptutorial.com/ 159

https://riptutorial.com/dot-net/topic/54/settings

Syntax

» SpeechRecognitionEngine()

» SpeechRecognitionEngine.LoadGrammar(Grammar grammar)

» SpeechRecognitionEngine.SetinputToDefaultAudioDevice()

» SpeechRecognitionEngine.RecognizeAsync(RecognizeMode mode)

» GrammarBuilder()

» GrammarBuilder.Append(Choices choices)
» Choices(params string[] choices)
» Grammar(GrammarBuilder builder)

Parameters

LoadGrammar: Parameters | Details

grammar

RecognizeAsync.

Parameters

mode

GrammarBuilder.Append.

Parameters

choices

Choices CONStructor:
Parameters

choices

Grammar CONStructor:
Parameter

builder

The grammar to load. For example, a pictationcrammar Object to
allow free text dictation.

Details

The recognizemode for the current recognition: singie for just one
recognition, muitipie to allow multiple.

Details

Appends some choices to the grammar builder. This means that,
when the user inputs speech, the recognizer can follow different
"branches" from a grammar.

Details

An array of choices for the grammar builder. See

GrammarBuilder.Append.

Details

The grammarBuilder tO CONStruct a crammar from.

https://riptutorial.com/

160

Remarks

TO use speechrecognitionEngine, your Windows version needs to have speech recognition enabled.

You have to add a reference to system.speech.d11 before you can use the speech classes.

Examples
Asynchronously recognizing speech for free text dictation

using System.Speech.Recognition;
//

SpeechRecognitionEngine recognitionkEngine = new SpeechRecognitionEngine();
recognitionEngine.LoadGrammar (new DictationGrammar());
recognitionEngine.SpeechRecognized += delegate (object sender, SpeechRecognizedEventArgs e)
{
Console.WriteLine ("You said: {0}", e.Result.Text);
}i
recognitionEngine.SetInputToDefaultAudioDevice () ;
recognitionEngine.RecognizeAsync (RecognizeMode.Multiple) ;

Asynchronously recognizing speech based on a restricted set of phrases

SpeechRecognitionEngine recognitionkEngine = new SpeechRecognitionEngine () ;
GrammarBuilder builder = new GrammarBuilder();
builder.Append(new Choices ("I am", "You are", "He is", "She is", "We are", "They are"));
builder.Append(new Choices ("friendly", "unfriendly"));
recognitionEngine.LoadGrammar (new Grammar (builder));
recognitionEngine.SpeechRecognized += delegate (object sender, SpeechRecognizedEventArgs e)
{
Console.WriteLine ("You said: {0}", e.Result.Text);
bi
recognitionEngine.SetInputToDefaultAudioDevice () ;
recognitionEngine.RecognizeAsync (RecognizeMode.Multiple) ;

Read SpeechRecognitionEngine class to recognize speech online: https://riptutorial.com/dot-
net/topic/69/speechrecognitionengine-class-to-recognize-speech

https://riptutorial.com/

161

https://riptutorial.com/dot-net/topic/69/speechrecognitionengine-class-to-recognize-speech
https://riptutorial.com/dot-net/topic/69/speechrecognitionengine-class-to-recognize-speech

C_hapter 39: Stack and Heap

Remarks

It's worth noting that on declaring a reference type, its initial value will be nu11. This is because it
does not yet point to a location in memory, and is a perfectly valid state.
However, with the exception of nullable types, value types must typically always have a value.

Examples

Value types in use

Value types simply contain a value.

All value types are derived from the System.ValueType class, and this includes most of the built in
types.

When creating a new value type, the an area of memory called the stack is used.

The stack will grow accordingly, by the size the declared type. So for example, an int will always
be allocated 32 bits of memory on the stack. When the value type is no longer in scope, the space
on the stack will be deallocated.

The code below demonstrates a value type being assigned to a new variable. A struct is being
used as a convenient way to create a custom value type (the System.ValueType class cannot be
otherwise extended).

The important thing to understand is that when assigning a value type, the value itself copied to
the new variable, meaning we have two distinct instances of the object, that cannot affect each
other.

struct PersonAsValueType
{

public string Name;

}

class Program

{

static void Main ()
{
PersonAsValueType personi;

personA.Name = "Bob";

var personB = personi;

personA.Name = "Linda";
Console.WritelLine (// Outputs 'False' - because
object.ReferenceEquals (// personA and personB are referencing
personi, // different areas of memory

https://riptutorial.com/ 162

https://msdn.microsoft.com/en-us/library/system.valuetype.aspx

personB)) ;

Console.WriteLine (personA.Name); // Outputs 'Linda'
Console.WriteLine (personB.Name); // Outputs 'Bob'

Reference types in use

Reference types are comprised of both a reference to a memory area, and a value stored within
that area.
This is analogous to pointers in C/C++.

All reference types are stored on what is known as the heap.

The heap is simply a managed area of memory where objects are stored. When a new object is
instantiated, a part of the heap will be allocated for use by that object, and a reference to that
location of the heap will be returned. The heap is managed and maintained by the garbage
collector, and does not allow for manual intervention.

In addition to the memory space required for the instance itself, additional space is required to
store the reference itself, along with additional temporary information required by the .NET CLR.

The code below demonstrates a reference type being assigned to a new variable. In this instance,
we are using a class, all classes are reference types (even if static).

When a reference type is assigned to another variable, it is the reference to the object that is
copied over, not the value itself. This is an important distinction between value types and
reference types.

The implications of this are that we now have two references to the same object.
Any changes to the values within that object will be reflected by both variables.

class PersonAsReferenceType

{

public string Name;

class Program

{

static void Main ()
{
PersonAsReferenceType personi;

personA = new PersonAsReferenceType { Name = "Bob" };

var personB = personi;

personA.Name = "Linda";
Console.WriteLine (// Outputs 'True' - because
object.ReferenceEquals (// personA and personB are referencing
personi, // the *same* memory location
personB)) ;

https://riptutorial.com/ 163

Console.WriteLine (personA.Name); // Outputs 'Linda'
Console.WriteLine (personB.Name); // Outputs 'Linda'

Read Stack and Heap online: https://riptutorial.com/dot-net/topic/9358/stack-and-heap

https://riptutorial.com/ 164

https://riptutorial.com/dot-net/topic/9358/stack-and-heap

C_hapter 40: Strings

Remarks

In .NET strings system.string are sequence of characters system.char, €ach character is an UTF-
16 encoded code-unit. This distinction is important because spoken language definition of
character and .NET (and many other languages) definition of character are different.

One character, which should be correctly called grapheme, it's displayed as a glyph and it is
defined by one or more Unicode code-points. Each code-point is then encoded in a sequence of
code-units. Now it should be clear why a single systen.char does not always represent a
grapheme, let's see in real world how they're different:

* One grapheme, because of combining characters, may result in two or more code-points: »
is composed by two code-points: U+0061 LATIN SMALL LETTER A and U+0300
COMBINING GRAVE ACCENT. This is the most common mistake because " ".1ength == 2
while you may expect 1.

» There are duplicated characters, for example a may be a single code-point U+00EO LATIN
SMALL LETTER A WITH GRAVE or two code-points as explained above. Obviously they
must compare the same: "\uooeo" == "\u0061\u0300" (€ven if "\u00e0".Length !=
"\u0061\u0300".Length). ThiS iS possible because of string normalization performed by
String.Normalize () method.

* An Unicode sequence may contain a composed or decomposed sequence, for example
character 1 U+D55C HAN CHARACTER may be a single code-point (encoded as a single
code-unit in UTF-16) or a decomposed sequence of its syllables 0, 1 and o. They must be
compared equal.

* One code-point may be encoded to more than one code-units: character o U+2008A HAN
CHARACTER is encoded as two system.char ("\udg40\udc8a™) even if it is just one code-point:
UTF-16 encoding is not fixed size! This is a source of countless bugs (also serious security
bugs), if for example your application applies a maximum length and blindly truncates string
at that then you may create an invalid string.

» Some languages have digraph and trigraphs, for example in Czech cn is a standalone letter
(after n and before i then when ordering a list of strings you will have fyzika before chemie.

There are much more issues about text handling, see for example How can | perform a Unicode
aware character by character comparison? for a broader introduction and more links to related
arguments.

In general when dealing with international text you may use this simple function to enumerate text
elements in a string (avoiding to break Unicode surrogates and encoding):

public static class StringExtensions

{

public static IEnumerable<string> EnumerateCharacters(this string s)

{
if (s == null)
return Enumerable.Empty<string>();

https://riptutorial.com/ 165

https://en.wikipedia.org/wiki/Grapheme
https://en.wikipedia.org/wiki/Glyph
https://en.wikipedia.org/wiki/Code_point
https://en.wikipedia.org/wiki/Character_encoding#Code_unit
https://en.wikipedia.org/wiki/Combining_character
https://en.wikipedia.org/wiki/Digraph_(orthography)
http://stackoverflow.com/q/27229589/1207195
http://stackoverflow.com/q/27229589/1207195

var enumerator = StringInfo.GetTextElementEnumerator (s.Normalize());
while (enumerator.MoveNext ())
yield return (string)enumerator.Value;

Examples

Count distinct characters

If you need to count distinct characters then, for the reasons explained in Remarks section, you
can't simply use rength property because it's the length of the array of system.char Which are not
characters but code-units (not Unicode code-points nor graphemes). If, for example, you simply
write text.pistinct () .Count () YOU Will get incorrect results, correct code:

int distinctCharactersCount = text.EnumerateCharacters () .Count () ;

One step further is to count occurrences of each character, if performance aren't an issue you
may simply do it like this (in this example regardless of case):

var frequencies = text.EnumerateCharacters ()
.GroupBy (x => x, StringComparer.CurrentCulturelIgnoreCase)
.Select (x => new { Character = x.Key, Count = x.Count () };

Count characters

If you need to count characters then, for the reasons explained in Remarks section, you can't
simply use Length property because it's the length of the array of system.char Which are not
characters but code-units (not Unicode code-points nor graphemes). Correct code is then:

int length = text.EnumerateCharacters () .Count ();

A small optimization may rewrite enumeratecharacters () €xtension method specifically for this
purpose:

public static class StringExtensions
{
public static int CountCharacters(this string text)
{
if (String.IsNullOrEmpty (text))

return 0;

int count = 0;
var enumerator = StringInfo.GetTextElementEnumerator (text) ;
while (enumerator.MoveNext ())

++count;

return count;

https://riptutorial.com/ 166

Count occurrences of a character

Because of the reasons explained in Remarks section you can't simply do this (unless you want to
count occurrences of a specific code-unit):

int count = text.Count(x => x == ch);

You need a more complex function:

public static int CountOccurrencesOf (this string text, string character)

{
return text.EnumerateCharacters ()
.Count (x => String.Equals(x, character, StringComparer.CurrentCulture));

Note that string comparison (in contrast to character comparison which is culture invariant) must
always be performed according to rules to a specific culture.

Split string into fixed length blocks

We cannot break a string into arbitrary points (because a system.char may not be valid alone
because it's a combining character or part of a surrogate) then code must take that into account
(note that with length | mean the number of graphemes not the number of code-units):

public static IEnumerable<string> Split (this string value, int desiredLength)
{
var characters = StringInfo.GetTextElementEnumerator (value);
while (characters.MoveNext ())
yield return String.Concat (Take (characters, desiredLength));

private static IEnumerable<string> Take (TextElementEnumerator enumerator, int count)
{

for (int i = 0; i < count; ++1i)

{

yield return (string)enumerator.Current;

if (!'enumerator.MoveNext ())
yield break;

Convert string to/from another encoding

NET strings contain systen.char (UTF-16 code-units). If you want to save (or manage) text with
another encoding you have to work with an array of system.Byte.

Conversions are performed by classes derived from system.Text.Encoder @Nd system.Text .Decoder
which, together, can convert to/from another encoding (from a byte X encoded array byte(] t0o an
UTF-16 encoded system.string and vice-versa).

https://riptutorial.com/ 167

Because the encoder/decoder usually works very close to each other they're grouped together in a
class derived from system.Text .Encoding, derived classes offer conversions to/from popular
encodings (UTF-8, UTF-16 and so on).

Examples:

Convert a string to UTF-8

byte[] data = Encoding.UTF8.GetBytes ("This is my text");

Convert UTF-8 data to a string

var text = Encoding.UTF8.GetString(data);

Change encoding of an existing text file

This code will read content of an UTF-8 encoded text file and save it back encoded as UTF-16.
Note that this code is not optimal if file is big because it will read all its content into memaory:

var content = File.ReadAllText (path, Encoding.UTF8);
File.WriteAllText (content, Encoding.UTF16);

Object.ToString() virtual method

Everything in .NET is an object, hence every type has tostring () method defined in opject class
which can be overridden. Default implementation of this method just returns the name of the type:

public class Foo
{
}

var foo = new Foo();
Console.WriteLine (foo); // outputs Foo

Tostring () IS Implicitly called when concatinating value with a string:

public class Foo

{
public override string ToString()

{

return "I am Foo";
t
t

var foo = new Foo();

https://riptutorial.com/ 168

https://msdn.microsoft.com/en-us/library/system.object.tostring(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx

Console.WriteLine ("I am bar and "+foo);// outputs I am bar and I am Foo

The result of this method is also extensively used by debugging tools. If, for some reason, you do
not want to override this method, but want to customize how debugger shows the value of your
type, use DebuggerDisplay Attribute (MSDN):

// [DebuggerDisplay ("Person = FN {FirstName}, LN {LastName}")]
[DebuggerDisplay ("Person = FN {"+nameof (Person.FirstName)+"}, LN
{"+nameof (Person.LastName)+"}")]

public class Person

{
public string FirstName { get; set; }
public string LastName { get; set;}
77 ooo

Immutability of strings

Strings are immutable. You just cannot change existing string. Any operation on the string crates a
new instance of the string having new value. It means that if you need to replace a single
character in a very long string, memory will be allocated for a new value.

string veryLongString = ...
// memory is allocated
string newString = veryLongString.Remove (0,1); // removes first character of the string.

If you need to perform many operations with string value, use stringsuilder class which is
designed for efficient strings manipulation:

var sb = new StringBuilder (someInitialString);
foreach(var str in manyManyStrings)

{
sb.Append (str) ;

t
var finalString = sb.ToString();

Comparing strings
Despite string IS a reference type == operator compares string values rather than references.

As you may know string IS just an array of characters. But if you think that strings equality check
and comparison is made character by character, you are mistaken. This operation is culture
specific (see Remarks below): some character sequences can be treated as equal depending on
the culture.

Think twice before short circuiting equality check by comparing rength properties of two strings!

Use overloads of string.Equals method which accept additional stringcomparison enumeration
value, if you need to change default behavior.

https://riptutorial.com/ 169

http://www.riptutorial.com/csharp/example/4689/debuggerdisplay-attribute
https://msdn.microsoft.com/en-us/library/system.diagnostics.debuggerdisplayattribute(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.text.stringbuilder(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.globalization.cultureinfo.currentculture(v=vs.110).aspx
https://msdn.microsoft.com/library/system.string.length(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/t4411bks(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.stringcomparison(v=vs.110).aspx

Read Strings online: https://riptutorial.com/dot-net/topic/2227/strings

https://riptutorial.com/ 170

https://riptutorial.com/dot-net/topic/2227/strings

C_hapter 41: Synchronization Contexts

Remarks

A Synchronization Context is an abstraction that allows consuming to code to pass units of work to
a scheduler, without requiring awareness of how the work will be scheduled.

Synchronization contexts are traditionally used to ensure that code is run on a specific thread. In
WPF and Winforms applications, a synchronizationcontext representing the Ul thread is provided
by the presentation framework. In this way synchronizationcontext can be thought of as a
producer-consumer pattern for delegates. A worker thread will produce executable code (the
delegate) and queue it or consumption by the Ul message loop.

The Task Parallel Library provides features for automatically capturing and using synchronization
contexts.

Examples

Execute code on the Ul thread after performing background work

This example shows how to update a Ul component from a background thread by using a

SynchronizationContext

void Button_Click (object sender, EventArgs args)
{
SynchronizationContext context = SynchronizationContext.Current;
Task.Run(() =>
{
for(int i = 0; i < 10; i++)
{
Thread.Sleep (500); //simulate work being done
context .Post (ShowProgress, "Work complete on item " + 1);

}

void UpdateCallback (object state)

{
// UI can be safely updated as this method is only called from the UI thread

this.MyTextBox.Text = state as string;

In this example, if you tried to directly update myrextpox.Text inside the ror loop, you would get a
threading error. By posting the updatecaliback action to the synchronizationcontext, the text box is
updated on the same thread as the rest of the UL.

In practice, progress updates should be performed using an instance of system.progress<t>. The
default implementation system.progress<t> automatically captures the synchronisation context it is
created on.

https://riptutorial.com/ 171

Read Synchronization Contexts online: https://riptutorial.com/dot-net/topic/5407/synchronization-
contexts

https://riptutorial.com/ 172

https://riptutorial.com/dot-net/topic/5407/synchronization-contexts
https://riptutorial.com/dot-net/topic/5407/synchronization-contexts

C_hapter 42. System.Diagnostics

Examples

Stopwatch
This example shows how stopwatch can be used to benchmark a block of code.

using System;
using System.Diagnostics;

public class Benchmark : IDisposable

{

private Stopwatch sw;

public Benchmark ()

{
sw = Stopwatch.StartNew() ;

public void Dispose ()

{
sw.Stop () ;
Console.Writeline (sw.Elapsed);

public class Program

{

public static void Main ()

{

using (var bench = new Benchmark())

{
Console.WriteLine ("Hello World");

Run shell commands

string strCmdText = "/C copy /b Imagel.]jpg + Archive.rar Image2.jpg";
System.Diagnostics.Process.Start ("CMD.exe", strCmdText) ;

This is to hide the cmd window.

System.Diagnostics.Process process = new System.Diagnostics.Process();
System.Diagnostics.ProcessStartInfo startInfo = new System.Diagnostics.ProcessStartInfo();
startInfo.WindowStyle = System.Diagnostics.ProcessWindowStyle.Hidden;

startInfo.FileName = "cmd.exe";
startInfo.Arguments = "/C copy /b Imagel.]jpg + Archive.rar Image2.jpg";
process.StartInfo = startInfo;

process.Start () ;

https://riptutorial.com/ 173

Send Command to CMD and Receive Output

This method allows a command t0 be sent to cnd.exe, and returns the standard output (including
standard error) as a string:

private static string SendCommand (string command)
{
var cmdOut = string.Empty;

var startInfo = new ProcessStartInfo ("cmd", command)

WorkingDirectory = @"C:\Windows\System32", // Directory to make the call from

WindowStyle = ProcessWindowStyle.Hidden, // Hide the window
UseShellExecute = false, // Do not use the 0S shell to start the
process

CreateNoWindow = true, // Start the process in a new window
RedirectStandardOutput = true, // This is required to get STDOUT
RedirectStandardError = true // This is required to get STDERR

}i

var p = new Process {StartInfo = startInfo};

p.Start ();

.OutputDataReceived += (x, y) => cmdOut += y.Data;
.ErrorDataReceived += (x, y) => cmdOut += y.Data;
.BeginOutputReadLine () ;

.BeginErrorReadLine () ;

WaitForExit ();

return cmdOut;

'O T 'O 'O T

Usage

var servername = "SVR-01.domain.co.za";
var currentUsers = SendCommand ($"/C QUERY USER /SERVER: {servername}")

Output

string currentUsers = "USERNAME SESSIONNAME ID STATE IDLE TIME LOGON
TIME Joe.Bloggs ica-cgp#0 2 Active 24692+13:29 25/07/2016 07:50 Jim.McFlannegan
ica-cgp#1 3 Active . 25/07/2016 08:33 Andy.McAnderson ica-cgp#2 4 Active .
25/07/2016 08:54 John.Smith ica-cgp#4 5 Active 14 25/07/2016 08:57 Bob.Bobbington
ica-cgp#5 6 Active 24692+13:29 25/07/2016 09:05 Tim.Tom ica-cgp#6 7 Active .
25/07/2016 09:08 Bob.Joges ica-cgp#7 8 Active 24692+13:29 25/07/2016 09:13"

On some occasions, access to the server in question may be restricted to certain users. If you
have the login credentials for this user, then it is possible to send queries with this method:

private static string SendCommand (string command)

{
var cmdOut = string.Empty;

https://riptutorial.com/ 174

var startInfo = new ProcessStartInfo ("cmd", command)

{

WorkingDirectory = @"C:\Windows\System32",

WindowStyle = ProcessWindowStyle.Hidden,

// This does not actually work in

conjunction with "runas" - the console window will still appear!

UseShellExecute = false,
CreateNoWindow = true,

RedirectStandardOutput = true,

RedirectStandardError = true,

Verb = "runas",
Domain = "domanl.co.za",
UserName = "administrator",

Password = GetPassword()
}i

var p = new Process {StartInfo
p.Start ();

.OutputDataReceived += (x, V)
.BeginOutputReadLine () ;
.BeginErrorReadLine () ;

WaitForExit ();
return cmdOut;

' T 'O T T

Getting the password:

static SecureString GetPassword()
{
var plainText = "passwordl23";
var ss = new SecureString();
foreach (char c¢ in plainText)
{
ss.AppendChar (c) ;

return ss;

Notes

= startInfo};

=> cmdOut += y.Data;

.ErrorDataReceived += (x, y) => cmdOut += y.Data;

Both of the above methods will return a concatenation of STDOUT and STDERR, as

OutputDataReceived @Nd Errorbatareceived are both appending to the same variable - cmdout.

Read System.Diagnostics online: https://riptutorial.com/dot-net/topic/3143/system-diagnostics

https://riptutorial.com/

175

https://riptutorial.com/dot-net/topic/3143/system-diagnostics

C_hapter 43: System.lO

Examples

Reading a text file using StreamReader

string fullOrRelativePath = "testfile.txt";
string fileData;

using (var reader = new StreamReader (fullOrRelativePath))
{
fileData = reader.ReadToEnd() ;

Note that this streamreader constructor overload does some auto encoding detection, which may or
may not conform to the actual encoding used in the file.

Please note that there are some convenience methods that read all text from file available on the
System.T0.File Class, namely rile.readal1Text (path) @nd File.ReadAllLines (path).

Reading/Writing Data Using System.lO.File
First, let's see three different ways of extracting data from a file.

string fileText = File.ReadAllText (file);
string[] fileLines = File.ReadAllLines (file);
byte[] fileBytes = File.ReadAllBytes (file);

* On the first line, we read all the data in the file as a string.

* On the second line, we read the data in the file into a string-array. Each line in the file
becomes an element in the array.

* On the third we read the bytes from the file.

Next, let's see three different methods of appending data to a file. If the file you specify doesn't
exist, each method will automatically create the file before attempting to append the data to it.

File.AppendAllText (file, "Here is some data that is\nappended to the file.");
File.AppendAllLines (file, new string[2] { "Here is some data that is", "appended to the
file." });
using (StreamWriter stream = File.AppendText (file))
{
stream.WriteLine ("Here is some data that is");
stream.Write ("appended to the file.");

* On the first line we simply add a string to the end of the specified file.
* On the second line we add each element of the array onto a new line in the file.

https://riptutorial.com/ 176

//#file-encodings

 Finally on the third line we use riie.appendrext t0 Open up a streamwriter which will append
whatever data is written to it.

And lastly, let's see three different methods of writing data to a file. The difference between
appending and writing being that writing over-writes the data in the file while appending adds to
the data in the file. If the file you specify doesn't exist, each method will automatically create the
file before attempting to write the data to it.

File.WriteAllText (file, "here is some data\nin this file.");
File.WriteAlllLines (file, new string[2] { "here is some data", "in this file" });
File.WriteAllBytes (file, new byte[2] { 0, 255 });

» The first line writes a string to the file.
» The second line writes each string in the array on it's own line in the file.
» And the third line allows you to write a byte array to the file.

Serial Ports using System.lO.SerialPorts

Iterating over connected serial ports

using System.IO.Ports;
string[] ports = SerialPort.GetPortNames () ;
for (int 1 = 0; i < ports.Length; i++)
{
Console.WriteLine (ports[i]);

}

Instantiating a System.lO.SerialPort object

using System.IO.Ports;
SerialPort port = new SerialPort();

SerialPort port = new SerialPort ("COM 1"); ;
SerialPort port = new SerialPort ("COM 1", 9600);

NOTE: Those are just three of the seven overloads of the constructor for the SerialPort type.

Reading/Writing data over the SerialPort

The simplest way is to use the serialport.read and serialport.write Methods. However you can
also retrieve a systen.10.strean Object which you can use to stream data over the SerialPort. To do

thiS, USE SerialPort.BaseStream.

Reading

int length = port.BytesToRead;

https://riptutorial.com/ 177

//Note that you can swap out a byte-array for a char—-array if you prefer.
byte[] buffer = new byte[length];
port.Read (buffer, 0, length);

You can also read all data available:
string curData = port.ReadExisting();
Or simply read to the first newline encountered in the incoming data:
string line = port.ReadLine () ;
Writing
The easiest way to write data over the SerialPort is:
port.Write ("here is some text to be sent over the serial port.");
However you can also send data over like this when needed:

//Note that you can swap out the byte-array with a char-array if you so choose.
byte[] data = new byte[l] { 255 };
port.Write (data, 0, data.Length);

Read System.lO online: https://riptutorial.com/dot-net/topic/5259/system-io

https://riptutorial.com/ 178

https://riptutorial.com/dot-net/topic/5259/system-io

C_hapter 44. System.lO.File class

Syntax

* string source;
* string destination;

Parameters

source The file that is to be moved to another location.

The directory in which you would like to move source to (this variable should
also contain the name (and file extension) of the file.

destination

Examples

Delete a file
To delete a file (if you have required permissions) is as simple as:

File.Delete (path);

However many things may go wrong:

You do not have required permissions (unauthorizedaccessException IS thrown).

File may be in use by someone else (1oexception IS thrown).

File cannot be deleted because of low level error or media is read-only (1oexception IS
thrown).

File does not exist anymore (1oexception iS thrown).

Note that last point (file does not exist) is usually circumvented with a code snippet like this:

if (File.Exists (path))
File.Delete (path);

However it's not an atomic operation and file may be delete by someone else between the call to
rile.Exists() and before rile.pelete (). Right approach to handle 1/0O operation requires exception
handling (assuming an alternative course of actions may be taken when operation fails):

if (File.Exists (path))
{

try

{

https://riptutorial.com/ 179

File.Delete (path);
}

catch (IOException exception)

{
if (!File.Exists (path))
return; // Someone else deleted this file

// Something went wrong...

}

catch (UnauthorizedAccessException exception)

{

// I do not have required permissions

Note that this I/O errors sometimes are transitory (file in use, for example) and if a network
connection is involved then it may automatically recover without any action from our side. It's then
common to retry an 1/O operation few times with a small delay between each attempt:

public static void Delete(string path)

{
if (!File.Exists (path))
return;

for (int i=1; ; ++i)
{
try
{
File.Delete (path);
return;

t
catch (IOException e)

{
if (!File.Exists (path))
return;

if (i == NumberOfAttempts)
throw;

Thread.Sleep (DelayBetweenEachAttempt) ;

// You may handle UnauthorizedAccessException but this issue
// will probably won't be fixed in few seconds...

private const int NumberOfAttempts = 3;
private const int DelayBetweenEachAttempt = 1000; // ms

Note: in Windows environment file will not be really deleted when you call this function, if someone
else open the file using rileshare.nelete then file can be deleted but it will effectively happen only
when owner will close the file.

Strip unwanted lines from a text file

To change a text file is not easy because its content must be moved around. For small files

https://riptutorial.com/ 180

easiest method is to read its content in memory and then write back modified text.

In this example we read all lines from a file and drop all blank lines then we write back to original
path:

File.WriteAllLines (path,
File.ReadAllLines (path) .Where(x => !String.IsNullOrWhiteSpace (x)));

If file is too big to load it in memory and output path is different from input path:

File.WriteAllLines (outputPath,
File.ReadLines (inputPath) .Where (x => !String.IsNullOrWhiteSpace (x)));

Convert text file encoding

Text is saved encoded (see also Strings topic) then sometimes you may need to change its
encoding, this example assumes (for simplicity) that file is not too big and it can be entirely read in
memory:

public static void ConvertEncoding(string path, Encoding from, Encoding to)

{
File.WriteAllText (path, File.ReadAllText (path, from), to);
}

When performing conversions do not forget that file may contain BOM (Byte Order Mark), to better
understand how it's managed refer to Encoding.UTF8.GetString doesn't take into account the
Preamble/BOM.

"Touch" alarge amount of files (to update last write time)

This example updates last write time of a huge number of files (using
System.IO.Directory.EnumerateFiles instead of System.IO.Directory.GetFiles ()). Optionally you can
specify a search pattern (default is »+. == and eventually search through a directory tree (not only

the specified directory):

public static void Touch (string path,

string searchPattern = "*_ *",
SearchOptions options = SearchOptions.None)
{
var now = DateTime.Now;

foreach (var filePath in Directory.EnumerateFiles (path, searchPattern, options))

{
File.SetLastWriteTime (filePath, now);
t

Enumerate files older than a specified amount

This snippet is an helper function to enumerate all files older than a specified age, it's useful - for

https://riptutorial.com/ 181

http://www.riptutorial.com/dot-net/topic/2227/strings
http://stackoverflow.com/q/11701341/1207195
http://stackoverflow.com/q/11701341/1207195

example - when you have to delete old log files or old cached data.

static IEnumerable<string> EnumerateAllFilesOlderThan (
TimeSpan maximumAge,
string path,
string searchPattern = "*.*",
SearchOption options = SearchOption.TopDirectoryOnly)

DateTime oldestWriteTime = DateTime.Now — maximumAge;

return Directory.EnumerateFiles (path, searchPattern, options)
.Where (x => Directory.GetLastWriteTime (x) < oldestWriteTime);

Used like this:

var oldFiles = EnumerateAllFilesOlderThan (TimeSpan.FromDays (7), @"c:\log", "*.log");

Few things to note:

e Searchis performed using Directory.EnumerateFiles () instead of Directory.GetFiles ().
Enumeration is alive then you won't need to wait until all file system entries have been
fetched.

* We're checking for last write time but you may use creation time or last access time (for
example to delete unused cached files, note that access time may be disabled).

» Granularity isn't uniform for all those properties (write time, access time, creation time),
check MSDN for details about this.

Move a File from one location to another

File.Move

In order to move a file from one location to another, one simple line of code can achieve this:

File.Move (@"C:\TemporaryFile.txt", @"C:\TemporaryFiles\TemporaryFile.txt");

However, there are many things that could go wrong with this simple operation. For instance, what
if the user running your program does not have a Drive that is labelled 'C'? What if they did - but
they decided to rename it to 'B', or 'M'?

What if the Source file (the file in which you would like to move) has been moved without your
knowing - or what if it simply doesn't exist.

This can be circumvented by first checking to see whether the source file does exist:

string source = Q"C:\TemporaryFile.txt", destination = Q"C:\TemporaryFiles\TemporaryFile.txt";
if(File.Exists ("C:\TemporaryFile.txt"))
{

File.Move (source, destination);

https://riptutorial.com/ 182

This will ensure that at that very moment, the file does exist, and can be moved to another
location. There may be times where a simple call to ri1e.Exists won't be enough. If it isn't, check
again, convey to the user that the operation failed - or handle the exception.

A rileNotFoundException IS NOt the only exception you are likely to encounter.

See below for possible exceptions:

IOException

ArgumentNullException

ArgumentException

UnauthorizedAccessException

PathTooLongException

DirectoryNotFoundException

NotSupportedException

The file already exists or the source file could not be found.
The value of the Source and/or Destination parameters is null.

The value of the Source and/or Destination parameters are
empty, or contain invalid characters.

You do not have the required permissions in order to perform
this action.

The Source, Destination or specified path(s) exceed the
maximum length. On Windows, a Path's length must be less
than 248 characters, while File names must be less than 260
characters.

The specified directory could not be found.

The Source or Destination paths or file names are in an invalid
format.

https://riptutorial.com/dot-net/topic/5395/system-io-file-class

https://riptutorial.com/

183

https://riptutorial.com/dot-net/topic/5395/system-io-file-class

C_hapter 45: System.Net.Mail

Remarks

It is important to Dispose a System.Net.MailMessage because every single attachment contains a

Stream and these Streams need to be freed as soon as possible. The using statement ensures
that the Disposable object is Disposed also in case of Exceptions

Examples

MailMessage

Here is the example of creating of mail message with attachments. After creating we send this
message with the help of smtpciient class. Default 25 port is used here.

public class clsMail
{
private static bool SendMail (string mailfrom, List<string>replytos, List<string> mailtos,
List<string> mailccs, List<string> mailbccs, string body, string subject, List<string>
Attachment)
{
try
{
using (MailMessage MyMail = new MailMessage())
{
MyMail .From = new MailAddress (mailfrom);
foreach (string mailto in mailtos)
MyMail.To.Add (mailto) ;

if (replytos != null && replytos.Any())
{
foreach (string replyto in replytos)
MyMail .ReplyToList.Add (replyto);

if (mailccs != null && mailccs.Any())
{
foreach (string mailcc in mailccs)
MyMail.CC.Add (mailcc) ;

if (mailbccs != null && mailbccs.Any ())
{
foreach (string mailbcc in mailbcces)
MyMail .Bcc.Add (mailbcc) ;

MyMail.Subject = subject;
MyMail.IsBodyHtml = true;

MyMail.Body = body;

MyMail .Priority = MailPriority.Normal;

if (Attachment != null && Attachment.Any())

https://riptutorial.com/

184

System.Net.Mail.Attachment attachment;
foreach (var item in Attachment)

{

attachment = new System.Net.Mail.Attachment (item) ;
MyMail.Attachments.Add (attachment) ;

SmtpClient smtpMailObj = new SmtpClient ();

smtpMailObj.Host = "your host";

smtpMailObj.Port = 25;

smtpMailObj.Credentials = new System.Net.NetworkCredential ("uid", "pwd");

smtpMailObj.Send (MyMail) ;

return true;

}

catch

{

return false;

Mail with Attachment

MailMessage represents mail message which can be sent further using sntpciient class. Several
attachments (files) can be added to mail message.
using System.Net.Mail;
using (MailMessage myMail = new MailMessage())
{
Attachment attachment = new Attachment (path);

myMail.Attachments.Add (attachment) ;

// further processing to send the mail message

Read System.Net.Mail online: https://riptutorial.com/dot-net/topic/7440/system-net-mail

https://riptutorial.com/ 185

https://riptutorial.com/dot-net/topic/7440/system-net-mail

C_hapter 46: System.Reflection.Emit

namespace

Examples

Creating an assembly dynamically

using System;

using System.Reflection;

using System.Reflection.Emit;

class DemoAssemblyBuilder

{

public static void Main ()

{
//
//
//
//
//
//
//
//
/*

An assembly consists of one or more modules, each of which
contains zero or more types. This code creates a single-module
assembly, the most common case. The module contains one type,
named "MyDynamicType", that has a private field, a property
that gets and sets the private field, constructors that
initialize the private field, and a method that multiplies

a user-supplied number by the private field value and returns
the result. In C# the type might look like this:

public class MyDynamicType

{

}
*/

private int m_number;

public MyDynamicType () : this (42) {}
public MyDynamicType (int initNumber)
{

m_number = initNumber;

public int Number

{
get { return m_number; }
set { m_number = value; }

public int MyMethod(int multiplier)
{

return m_number * multiplier;

AssemblyName aName = new AssemblyName ("DynamicAssemblyExample") ;

AssemblyBuilder ab

AppDomain.CurrentDomain.DefineDynamicAssembly (
aName,
AssemblyBuilderAccess.RunAndSave) ;

// For a single-module assembly, the module name is usually
// the assembly name plus an extension.

https://riptutorial.com/

186

ModuleBuilder mb =
ab.DefineDynamicModule (aName.Name, aName.Name + ".d1l1l");

TypeBuilder tb = mb.DefineType (
"MyDynamicType",
TypeAttributes.Public);

// Add a private field of type int (Int32).
FieldBuilder fbNumber = tb.DefineField(
"m_number",
typeof (int),
FieldAttributes.Private);

// Next, we make a simple sealed method.
MethodBuilder mbMyMethod = tb.DefineMethod (
"MyMethod",
MethodAttributes.Public,
typeof (int),
new([] { typeof (int) });

ILGenerator il = mbMyMethod.GetILGenerator () ;
il.Emit (OpCodes.Ldarg_0); // Load this - always the first argument of any instance

method

il.Emit (OpCodes.Ldfld, fbNumber) ;

il.Emit (OpCodes.Ldarg_1); // Load the integer argument

il.Emit (OpCodes.Mul); // Multiply the two numbers with no overflow checking

il.Emit (OpCodes.Ret); // Return

// Next, we build the property. This involves building the property itself, as well as
the

// getter and setter methods.

PropertyBuilder pbNumber = tb.DefineProperty (
"Number", // Name
PropertyAttributes.None,
typeof (int), // Type of the property
new Type[0]); // Types of indices, if any

MethodBuilder mbSetNumber = tb.DefineMethod (
"set_Number", // Name - setters are set_Property by convention
// Setter is a special method and we don't want it to appear to callers from C#
MethodAttributes.PrivateScope | MethodAttributes.HideBySig |
MethodAttributes.Public | MethodAttributes.SpecialName,
typeof (void), // Setters don't return a value
new[] { typeof(int) }); // We have a single argument of type System.Int32

// To generate the body of the method, we'll need an IL generator

il = mbSetNumber.GetILGenerator () ;

il.Emit (OpCodes.Ldarg_0); // Load this

il.Emit (OpCodes.Ldarg_1); // Load the new value

il.Emit (OpCodes.Stfld, fbNumber); // Save the new value to this.m_number
il.Emit (OpCodes.Ret); // Return

// Finally, link the method to the setter of our property
pbNumber.SetSetMethod (mbSetNumber) ;

MethodBuilder mbGetNumber = tb.DefineMethod (
"get_Number",
MethodAttributes.PrivateScope | MethodAttributes.HideBySig |
MethodAttributes.Public | MethodAttributes.SpecialName,
typeof (int),
new Type[0]);

https://riptutorial.com/ 187

il = mbGetNumber.GetILGenerator () ;

il.Emit (OpCodes.Ldarg_0); // Load this

il.Emit (OpCodes.Ldfld, fbNumber); // Load the value of this.m_number
il.Emit (OpCodes.Ret); // Return the value

pbNumber.SetGetMethod (mbGetNumber) ;

// Finally, we add the two constructors.

// Constructor needs to call the constructor of the parent class, or another
constructor in the same class

ConstructorBuilder intConstructor = tb.DefineConstructor (

MethodAttributes.Public, CallingConventions.Standard | CallingConventions.HasThis,

new[] { typeof (int) 1});

il = intConstructor.GetILGenerator () ;

il.Emit (OpCodes.Ldarg_0); // this

il.Emit (OpCodes.Call, typeof (object) .GetConstructor (new Type[0])); // call parent's
constructor

il.Emit (OpCodes.Ldarg_0); // this

il.Emit (OpCodes.Ldarg_1); // our int argument

il.Emit (OpCodes.Stfld, fbNumber); // store argument in this.m_number

il.Emit (OpCodes.Ret) ;

var parameterlessConstructor = tb.DefineConstructor (
MethodAttributes.Public, CallingConventions.Standard | CallingConventions.HasThis,

new Type[0]);

il = parameterlessConstructor.GetILGenerator();

il.Emit (OpCodes.Ldarg_0); // this

il.Emit (OpCodes.Ldc_TI4_S, (byte)42); // load 42 as an integer constant

il.Emit (OpCodes.Call, intConstructor); // call this(42)

il.Emit (OpCodes.Ret) ;

// And make sure the type is created
Type ourType = tb.CreateType();

// The types from the assembly can be used directly using reflection, or we can save
the assembly to use as a reference

object ourInstance = Activator.CreateInstance (ourType);

Console.WritelLine (ourType.GetProperty ("Number") .GetValue (ourInstance)); // 42

// Save the assembly for use elsewhere. This is very useful for debugging - you can
use e.g. ILSpy to look at the equivalent IL/C# code.

ab.Save (@"DynamicAssemblyExample.dll") ;

// Using newly created type

var myDynamicType = tb.CreateType();

var myDynamicTypeInstance = Activator.CreatelInstance (myDynamicType) ;

Console.WritelLine (myDynamicTypelInstance.GetType()); // MyDynamicType
var numberField = myDynamicType.GetField ("m_number", BindingFlags.NonPublic |
BindingFlags.Instance) ;

numberField.SetValue (myDynamicTypeInstance, 10);

Console.WriteLine (numberField.GetValue (myDynamicTypeInstance)); // 10

Read System.Reflection.Emit namespace online: https://riptutorial.com/dot-net/topic/74/system-
reflection-emit-namespace

https://riptutorial.com/ 188

https://riptutorial.com/dot-net/topic/74/system-reflection-emit-namespace
https://riptutorial.com/dot-net/topic/74/system-reflection-emit-namespace

C_hapter 47
System.Runtime.Caching.MemoryCache
(ObjectCache)

Examples

Adding Item to Cache (Set)

Set function inserts a cache entry into the cache by using a Cacheltem instance to supply the key
and value for the cache entry.

This function Overrides ObjectCache.Set (Cacheltem, CacheltemPolicy)

private static bool SetToCache ()

{

string key = "Cache_Key";
string value = "Cache_Value";

//Get a reference to the default MemoryCache instance.
var cacheContainer = MemoryCache.Default;

var policy = new CacheItemPolicy ()
{
AbsoluteExpiration = DateTimeOffset.Now.AddMinutes (DEFAULT_CACHE_EXPIRATION_MINUTES)
}i
var itemToCache = new Cacheltem(key, value); //Value is of type object.
cacheContainer.Set (itemToCache, policy);

System.Runtime.Caching.MemoryCache (ObjectCache)

This function gets existing item form cache, and if the item don't exist in cache, it will fetch item
based on the valueFetchFactory function.

public static TValue GetExistingOrAdd<TValue> (string key, double minutesForExpiration,

Func<TValue> valueFetchFactory)

{
try
{
//The Lazy class provides Lazy initialization which will evaluate
//the valueFetchFactory only if item is not in the cache.
var newValue = new Lazy<TValue> (valueFetchFactory);

//Setup the cache policy if item will be saved back to cache.
CacheItemPolicy policy = new CacheItemPolicy ()
{

AbsoluteExpiration = DateTimeOffset.Now.AddMinutes (minutesForExpiration)

}i

//returns existing item form cache or add the new value if it does not exist.

https://riptutorial.com/ 189

var cachedItem = _cacheContainer.AddOrGetExisting(key, newValue, policy) as
Lazy<TValue>;

return (cachedItem ?? newValue) .Value;

}

catch (Exception excep)

{
return default (TValue) ;

Read System.Runtime.Caching.MemoryCache (ObjectCache) online: https://riptutorial.com/dot-
net/topic/76/system-runtime-caching-memorycache--objectcache-

https://riptutorial.com/ 190

https://riptutorial.com/dot-net/topic/76/system-runtime-caching-memorycache--objectcache-
https://riptutorial.com/dot-net/topic/76/system-runtime-caching-memorycache--objectcache-

C_hapter 48: Task Parallel Library (TPL)

Remarks

P_urpose And Use Cases

The purpose of the Task Parallel Library is to simplify the process of writing and maintaining
multithreaded and parallel code.

Some Use Cases*:

Keeping a Ul responsive by running background work on separate task

Distributing workload

Allowing a client application to send and receive requests at the same time (rest, TCP/UDP,
ect)

Reading and/or writing multiple files at once

*Code should be considered on a case by case basis for multithreading. For example, if a loop
only has a few iterations or only does a small amount of the work, the overhead for parallelism
may outweigh the benefits.

TPL with .Net 3.5

The TPL is also available for .Net 3.5 included in a NuGet package, it is called Task Parallel
Library.

Examples

Basic producer-consumer loop (BlockingCollection)

var collection = new BlockingCollection<int>(5);
var random = new Random/() ;

var producerTask = Task.Run(() => {
for(int item=1l; item<=10; item++)
{
collection.Add (item) ;
Console.WriteLine ("Produced: " + item);
Thread.Sleep (random.Next (10,1000)) ;

}
collection.CompleteAdding () ;
Console.WritelLine ("Producer completed!");

}) i

It is worth noting that if you do not call co11ection.completeadding () ;, yOu are able to keep adding
to the collection even if your consumer task is running. Just call co11ection.completeadding(); When
you are sure there are no more additions. This functionality can be used to make a Multiple

https://riptutorial.com/ 191

Producer to a Single Consumer pattern where you have multiple sources feeding items into the
BlockingCollection and a single consumer pulling items out and doing something with them. If your
BlockingCollection is empty before you call complete adding, the Enumerable from
collection.GetConsumingEnumerable () Will block until a new item is added to the collection or
BlockingCollection.CompleteAdding(); is called and the queue is empty.

var consumerTask = Task.Run(() => {
foreach(var item in collection.GetConsumingEnumerable ())

{
Console.WriteLine ("Consumed: " + item);

Thread.Sleep (random.Next (10,1000)) ;
}

Console.WritelLine ("Consumer completed!");

}) i
Task.WaitAll (producerTask, consumerTask);

Console.Writeline ("Everything completed!");

Task: basic instantiation and Wait
A task can be created by directly instantiating the Task class...

var task = new Task (() =>

{
Console.WriteLine ("Task code starting...");
Thread.Sleep (2000) ;
Console.WriteLine("...task code ending!");

)i

Console.WriteLine ("Starting task...");
task.Start ();

task.Wait () ;

Console.WriteLine ("Task completed!");

...0r by using the static task.run method:

Console.WritelLine ("Starting task...");
var task = Task.Run(() =>

{

Console.Writeline ("Task code starting...");
Thread.Sleep (2000) ;
Console.WritelLine ("...task code ending!");

}) i
task.Wait ();
Console.WritelLine ("Task completed!");

Note that only in the first case it is necessary to explicitly invoke start.

Task: WaitAll and variable capturing

var tasks = Enumerable.Range(l, 5).Select(n => new Task<int>(() =>

{

Console.WriteLine ("I'm task " + n);

https://riptutorial.com/ 192

return n;
})) .ToArray () ;

foreach (var task in tasks) task.Start();
Task.WaitAll (tasks);

foreach (var task in tasks)
Console.WriteLine (task.Result);

Task: WaitAny

var allTasks = Enumerable.Range(l, 5).Select(n => new Task<int> (()

var pendingTasks = allTasks.ToArray();

foreach (var task in allTasks) task.Start();

while (pendingTasks.Length > 0)
{

var finishedTask = pendingTasks[Task.WaitAny (pendingTasks)];
Console.WriteLine ("Task {0} finished", finishedTask.Result);
pendingTasks = pendingTasks.Except (new[] {finishedTask}) .ToArray();

Task.WaitAll (allTasks);

=> n)) .ToArray () ;

Note: The final waita11 iS necessary becasue waitany does not cause exceptions to be observed.

Task: handling exceptions (using Wait)

var taskl = Task.Run(() =>

Console.WritelLine ("Task 1 code starting...");

throw new Exception ("Oh no, exception from task 1!!");

var task2 = Task.Run(() =>

Console.WritelLine ("Task 2 code starting...");

throw new Exception ("Oh no, exception from task 2!!");
}) i
Console.Writeline ("Starting tasks...");

try

{
Task.WaitAll (taskl, task2);

}

catch (AggregateException ex)

{
Console.WriteLine ("Task (s) failed!");
foreach(var inner in ex.InnerExceptions)

Console.Writeline (inner.Message) ;

Console.WriteLine ("Task 1 status is: " + taskl.Status);
Console.WriteLine ("Task 2 status is: " + task2.Status);

//Faulted
//Faulted

https://riptutorial.com/

193

Task: handling exceptions (without using Wait)
var taskl = Task.Run(() =>

Console.WritelLine ("Task 1 code starting...");
throw new Exception ("Oh no, exception from task 1!!");

var task2 = Task.Run(() =>

Console.WritelLine ("Task 2 code starting...");

throw new Exception ("Oh no, exception from task 2!!");
)i
var tasks = new[] {taskl, task2};
Console.Writeline ("Starting tasks...");

while (tasks.All (task => !task.IsCompleted));

foreach (var task in tasks)
{
if (task.IsFaulted)
Console.WritelLine ("Task failed: " +
task.Exception.InnerExceptions.First () .Message);

Console.WriteLine ("Task 1 status is: " + taskl.Status); //Faulted
Console.WriteLine ("Task 2 status is: " + task2.Status); //Faulted

Task: cancelling using CancellationToken

var cancellationTokenSource = new CancellationTokenSource () ;
var cancellationToken = cancellationTokenSource.Token;

var task = new Task ((state) =>
{

int i = 1;

var myCancellationToken = (CancellationToken)state;

while (true)

{
Console.Write ("{0} ", i++);
Thread.Sleep (1000) ;
myCancellationToken.ThrowIfCancellationRequested() ;

by
cancellationToken: cancellationToken,
state: cancellationToken) ;

Console.Writeline ("Counting to infinity. Press any key to cancell!");
task.Start () ;
Console.ReadKey () ;

cancellationTokenSource.Cancel () ;
try
{

task.Wait () ;

}
catch (AggregateException ex)

https://riptutorial.com/ 194

ex.Handle (inner => inner is OperationCanceledException) ;

Console.WriteLine ($"{Environment.NewLine}You have cancelled! Task status is: {task.Status}");
//Canceled

As an alternative to tThrowIfcancellationRequested, the cancellation request can be detected with
IsCancellationRequested and a OperationCanceledException Can be thrown manually:

//New task delegate
int i = 1;
var myCancellationToken = (CancellationToken)state;
while (!myCancellationToken.IsCancellationRequested)
{

Console.Write ("{0} ", i++);

Thread.Sleep (1000) ;
}

Console.WriteLine ($" {Environment .NewLine}Ouch, I have been cancelled!!");
throw new OperationCanceledException (myCancellationToken) ;

Note how the cancellation token is passed to the task constructor in the cancellationToken
parameter. This is needed so that the task transitions to the canceied State, not to the rauitea State,
when throwIfcancellationRequested IS iNvoked. Also, for the same reason, the cancellation token is
explicitly supplied in the constructor of operationcanceledexception iN the second case.

Task.WhenAny

var random = new Random() ;
IEnumerable<Task<int>> tasks = Enumerable.Range(l, 5).Select(n => Task.Run(async () =>
{

Console.WriteLine ("I'm task " + n);

await Task.Delay (random.Next (10,1000)) ;
return n;

P

Task<Task<int>> whenAnyTask = Task.WhenAny (tasks);
Task<int> completedTask = await whenAnyTask;
Console.Writeline ("The winner is: task " + await completedTask);

await Task.WhenAll (tasks);
Console.WriteLine ("All tasks finished!");

Task.WhenAll
var random = new Random() ;
IEnumerable<Task<int>> tasks = Enumerable.Range(l, 5).Select(n => Task.Run(() =>
{
Console.WriteLine ("I'm task " + n);

return n;

1))

Task<int []> task = Task.WhenAll (tasks);

int[] results = await task;

https://riptutorial.com/ 195

Console.WritelLine (string.Join (", ", results.Select(n => n.ToString())));
// Output: 1,2,3,4,5

Parallel.Invoke

var actions = Enumerable.Range(l, 10).Select (n => new Action(() =>
{

Console.WriteLine ("I'm task " + n);

if((n & 1) == 0)

throw new Exception ("Exception from task " + n);
})) .ToArray () ;

Parallel.Invoke (actions);
}
catch (AggregateException ex)
{
foreach (var inner in ex.InnerExceptions)
Console.WriteLine ("Task failed: " + inner.Message);

Parallel.ForEach

This example uses parallel.roreach to calculate the sum of the numbers between 1 and 10000 by
using multiple threads. To achieve thread-safety, interiocked.add is used to sum the numbers.

using System.Threading;

int Fool()
{
int total = 0;
var numbers = Enumerable.Range(l, 10000) .ToList ();
Parallel.ForEach (numbers,
() => 0, // initial value,
(num, state, localSum) => num + localSum,
localSum => Interlocked.Add(ref total, localSum));
return total; // total = 50005000

Parallel.For

This example uses raraliel.ror to calculate the sum of the numbers between 1 and 10000 by
using multiple threads. To achieve thread-safety, interiocked.add is used to sum the numbers.

using System.Threading;

int Foo ()
{
int total = 0;
Parallel.For (1, 10001,
() => 0, // initial value,
(num, state, localSum) => num + localSum,

https://riptutorial.com/ 196

localSum => Interlocked.Add(ref total, localSum));
return total; // total = 50005000

Flowing execution context with AsyncLocal

When you need to pass some data from the parent task to its children tasks, so it logically flows
with the execution, use asyncLocal class:

void Main ()

{
AsyncLocal<string> user = new AsyncLocal<string>();
user.Value = "initial user";

// this does not affect other tasks - values are local relative to the branches of

execution flow

Task.Run(() => user.Value = "user from another task");
var taskl = Task.Run(() =>
{
Console.WriteLine (user.Value); // outputs "initial user"
Task.Run(() =>
{
// outputs "initial user" - value has flown from main method to this task without

being changed
Console.WriteLine (user.Value) ;

}) .Wait () ;
user.Value = "user from taskl";
Task.Run(() =>
{
// outputs "user from taskl" - value has flown from main method to taskl

// than value was changed and flown to this task.
Console.WriteLine (user.Value) ;
}) .Wait () ;
1)

taskl.Wait () ;

// ouputs "initial user" - changes do not propagate back upstream the execution flow
Console.WriteLine (user.Value) ;

Note: As can be seen from the example above asynrocal.value has copy on read Semantic, but if
you flow some reference type and change its properties you will affect other tasks. Hence, best
practice with asyncrocal iS to use value types or immutable types.

Parallel.ForEach in VB.NET

For Each row As DataRow In FooDataTable.Rows
Me.RowsToProcess.Add (row)
Next

Dim myOptions As ParallelOptions = New ParallelOptions()
myOptions.MaxDegreeOfParallelism = environment.processorcount

https://riptutorial.com/ 197

https://msdn.microsoft.com/en-us/library/dn906268(v=vs.110).aspx

Parallel.ForEach (RowsToProcess, myOptions, Sub(currentRow, state)
ProcessRowParallel (currentRow, state)

End Sub)

Task: Returning a value

Task that return a value has return type of Task< Tresuit > Where TResult is the type of value that
needs to be returned. You can query the outcome of a Task by its Result property.

Task<int> t = Task.Run(() =>
{

int sum = 0;

for(int i = 0; i < 500; i++)
sum += 1i;

return sum;
)i

Console.WriteLine (t.Result); // Outuput 124750
If the Task execute asynchronously than awaiting the Task returns it's result.

public async Task DoSomeWork ()

{
WebClient client = new WebClient ();
// Because the task is awaited, result of the task is assigned to response
string response = await client.DownloadStringTaskAsync ("http://somedomain.com");

Read Task Parallel Library (TPL) online: https://riptutorial.com/dot-net/topic/55/task-parallel-library-
tp|

https://riptutorial.com/ 198

https://riptutorial.com/dot-net/topic/55/task-parallel-library--tpl-
https://riptutorial.com/dot-net/topic/55/task-parallel-library--tpl-

C_hapter 49: Task Parallel Library (TPL) API
Overviews

Remarks

The Task Parallel Library is set of public types and APIs that dramatically simplify the process of
adding parallelism and concurrency to an application. .Net. TPL was introduced in .Net 4 and is
the recommended way to write multi threaded and parallel code.

TPL takes care of work scheduling, thread affinity, cancellation support, state management, and
load balancing so that the programmer can focus on solving problems rather than spending time
on common low level details.

Examples

Perform work in response to a button click and update the Ul

This example demonstrates how you can respond to a button click by performing some work on a
worker thread and then update the user interface to indicate completion

void MyButton_OnClick (object sender, EventArgs args)
{
Task.Run(() => // Schedule work using the thread pool
{
System.Threading.Thread.Sleep (5000); // Sleep for 5 seconds to simulate work.
})

.ContinueWith(p => // this continuation contains the 'update' code to run on the UI thread

{

this.TextBlock_ResultText.Text = "The work completed at " + DateTime.Now.ToString()
bo
TaskScheduler.FromCurrentSynchronizationContext ()); // make sure the update is run on the
UI thread.

}

Read Task Parallel Library (TPL) APl Overviews online: https://riptutorial.com/dot-
net/topic/5164/task-parallel-library--tpl--api-overviews

https://riptutorial.com/ 199

https://riptutorial.com/dot-net/topic/5164/task-parallel-library--tpl--api-overviews
https://riptutorial.com/dot-net/topic/5164/task-parallel-library--tpl--api-overviews

C_hapter 50: Threading

Examples

Accessing form controls from other threads

If you want to change an attribute of a control such as a textbox or label from another thread than
the GUI thread that created the control, you will have to invoke it or else you might get an error
message stating:

"Cross-thread operation not valid: Control 'control_name' accessed from a thread other
than the thread it was created on."

Using this example code on a system.windows.forms form will cast an exception with that
message:

private void button4_Click (object sender, EventArgs e)

{
Thread thread = new Thread (updatetextbox) ;

thread.Start ();

private void updatetextbox ()

{
textBoxl.Text = "updated"; // Throws exception

Instead when you want to change a textbox's text from within a thread that doesn't own it use
Control.Invoke or Control.Begininvoke. You can also use Control.InvokeRequired to check if
invoking the control is necessary.

private void updatetextbox ()
{
if (textBoxl.InvokeRequired)
textBoxl.BeginInvoke ((Action) (() => textBoxl.Text = "updated"));
else
textBoxl.Text = "updated";

If you need to do this often, you can write an extension for invokeable objects to reduce the
amount of code necessary to make this check:

public static class Extensions
{
public static void BeginInvokeIfRequired(this ISynchronizeInvoke obj, Action action)
{
if (obj.InvokeRequired)
obj.BeginInvoke (action, new object[0]);
else
action () ;

https://riptutorial.com/ 200

And updating the textbox from any thread becomes a bit simpler:

private void updatetextbox ()

{
textBoxl.BeginInvokeIfRequired(() => textBoxl.Text = "updated");
}

Be aware that Control.Begininvoke as used in this example is asynchronous, meaning that code
coming after a call to Control.Begininvoke can be run immedeately after, whether or not the
passed delegate has been executed yet.

If you need to be sure that textBox1 is updated before continuing, use Control.Invoke instead,
which will block the calling thread until your delegate has been executed. Do note that this
approach can slow your code down significantly if you make many invoke calls and note that it will
deadlock your application if your GUI thread is waiting for the calling thread to complete or release
a held resource.

Read Threading online: https://riptutorial.com/dot-net/topic/3098/threading

https://riptutorial.com/ 201

https://riptutorial.com/dot-net/topic/3098/threading

Chapter 51: TPL Dataflow

Remarks

Libraries Used in Examples

System.Threading.Tasks.Dataflow
System.Threading.Tasks
System.Net .Http

System.Net

Difference between Post and SendAsync

To add items to a block you can either use post Or sendasync.

rost Will try to add the item synchronously and return a boo1 saying whether it succeeded or not. It
may not succeed when, for example, a block has reached its soundedcapcity and has no more
room for new items yet. sendasync 0n the other hand will return an uncompleted rask<boo1> that you
can await. That task will complete in the future with a true result when the block cleared its internal
gueue and can accept more items or with a raise result if it's declining permanently (e.g. as a
result of cancellation).

Examples
Posting to an ActionBlock and waiting for completion

// Create a block with an asynchronous action

var block = new ActionBlock<string>(async hostName =>

{
IPAddress|[] ipAddresses = await Dns.GetHostAddressesAsync (hostName) ;
Console.WriteLine (ipAddresses|[0]);

1)
block.Post ("google.com"); // Post items to the block's InputQueue for processing
block.Post ("reddit.com") ;

block.Post ("stackoverflow.com") ;

block.Complete(); // Tell the block to complete and stop accepting new items
await block.Completion; // Asynchronously wait until all items completed processingu

Linking blocks to create a pipeline

var httpClient = new HttpClient ();

https://riptutorial.com/ 202

// Create a block the accepts a uri and returns its contents as a string
var downloaderBlock = new TransformBlock<string, string>(
async uri => await httpClient.GetStringAsync (uri));

// Create a block that accepts the content and prints it to the console
var printerBlock = new ActionBlock<string> (
contents => Console.WriteLine (contents));

// Make the downloaderBlock complete the printerBlock when its completed.
var dataflowLinkOptions = new DataflowLinkOptions {PropagateCompletion = true};

// Link the block to create a pipeline
downloaderBlock.LinkTo (printerBlock, dataflowLinkOptions) ;

// Post urls to the first block which will pass their contents to the second one.
downloaderBlock.Post ("http://youtube.com") ;
downloaderBlock.Post ("http://github.com") ;
downloaderBlock.Post ("http://twitter.com");

downloaderBlock.Complete(); // Completion will propagate to printerBlock
await printerBlock.Completion; // Only need to wait for the last block in the pipeline

Synchronous Producer/Consumer with BufferBlock

public class Producer
{
private static Random random = new Random((int)DateTime.UtcNow.Ticks);
//produce the value that will be posted to buffer block
public double Produce ()
{
var value = random.NextDouble ();
Console.WritelLine ($"Producing value: {value}l");
return value;

public class Consumer
{
//consume the value that will be received from buffer block
public void Consume (double value) => Console.WriteLine ($"Consuming value: {value}");

class Program
{
private static BufferBlock<double> buffer = new BufferBlock<double> () ;
static void Main (string[] args)
{
//start a task that will every 1 second post a value from the producer to buffer block
var producerTask = Task.Run(async () =>
{
var producer = new Producer();
while (true)
{
buffer.Post (producer.Produce());
await Task.Delay (1000);

}) i
//start a task that will recieve values from bufferblock and consume it
var consumerTask = Task.Run(() =>

https://riptutorial.com/ 203

var consumer = new Consumer () ;
while (true)
{

consumer.Consume (buffer.Receive ());
1)

Task.WaitAll (new[] { producerTask, consumerTask });

Asynchronous Producer Consumer With A Bounded BufferBlock

var bufferBlock = new BufferBlock<int> (new DataflowBlockOptions
{

BoundedCapacity = 1000
1)

var cancellationToken = new CancellationTokenSource (TimeSpan.FromSeconds (10)) .Token;
var producerTask = Task.Run (async () =>

var random = new Random/() ;

while (!cancellationToken.IsCancellationRequested)

{

var value = random.Next ();
await bufferBlock.SendAsync (value, cancellationToken);

var consumerTask = Task.Run (async () =>
while (await bufferBlock.OutputAvailableAsync())
{
var value = bufferBlock.Receive();
Console.WriteLine (value) ;

}) i

await Task.WhenAll (producerTask, consumerTask);

Read TPL Dataflow online: https://riptutorial.com/dot-net/topic/784/tpl-dataflow

https://riptutorial.com/

204

https://riptutorial.com/dot-net/topic/784/tpl-dataflow

C_hapter 52: Unit testing

Examples

Adding MSTest unit testing project to an existing solution

Right click on the solution, Add new project

From the Test section, select an Unit Test Project

Pick a name for the assembly - if you are testing project roo, the name can be roo.Tests
Add a reference to the tested project in the unit test project references

Creating a sample test method

MSTest (the default testing framework) requires you to have your test classes decorated by a
[TestClass] attribute, and the test methods with a [Testmethod attribute, and to be public.

[TestClass]
public class FizzBuzzFixture
{

[TestMethod]

public void Testl ()

{

//arrange

var solver = new FizzBuzzSolver();
//act

var result = solver.FizzBuzz (1l);
//assert

Assert.AreEqual ("1", result);

Read Unit testing online: https://riptutorial.com/dot-net/topic/5365/unit-testing

https://riptutorial.com/ 205

https://riptutorial.com/dot-net/topic/5365/unit-testing

C_hapter 53: Upload file and POST data to
webserver

Examples

Upload file with WebRequest

To send a file and form data in single request, content should have multipart/form-data type.

using
using
using
using
using

System
System

System.
System.

System

;
.Collections.Generic;
I0;

Net;
.Threading.Tasks;

public async Task<string> UploadFile(string url, string filename,

Dictionary<string, object> postData)

var request = WebRequest.CreateHttp (url);

var boundary = $"{Guid.NewGuid() :N}"; // boundary will separate each parameter
request.ContentType = $"multipart/form-data; {nameof (boundary) }={boundary}";
request .Method = "POST";

us
us

{

us
us

{

Usage:

ing (v
ing (v

fore

awai

awai
usin

awai

ar requestStream = request.GetRequestStream())
ar writer = new StreamWriter (requestStream))

ach (var data in postData)

await writer.WriteAsync(// put all POST data into request
S"\r\n--{boundary}\r\nContent-Disposition: " +
$S"form—-data; name=\"{data.Key}\"\r\n\r\n{data.vValue}l");

t writer.WriteAsync(// file header
S"\r\n--{boundary}\r\nContent-Disposition: " +
S"form-data; name=\"File\"; filename=\"{Path.GetFileName (filename) }\"\r\n" +

"Content-Type: application/octet—-stream\r\n\r\n");
t writer.FlushAsync();
g (var fileStream = File.OpenRead(filename))

await fileStream.CopyToAsync (requestStream);

t writer.WriteAsync ($"\r\n-—{boundary}-—-\r\n");

ing (var response = (HttpWebResponse) await request.GetResponseAsync())

ing (var responseStream = response.GetResponseStream())

if |

usin

responseStream == null)

return string.Empty;

g (var reader = new StreamReader (responseStream))
return await reader.ReadToEndAsync () ;

https://riptutorial.com/

206

https://tools.ietf.org/html/rfc2388

var response = await uploader.UploadFile ("< YOUR URL >", "< PATH TO YOUR FILE >",
new Dictionary<string, object>
{
{"Comment", "test"},
{"Modified", DateTime.Now }

}) i

Read Upload file and POST data to webserver online: https://riptutorial.com/dot-
net/topic/10845/upload-file-and-post-data-to-webserver

https://riptutorial.com/ 207

https://riptutorial.com/dot-net/topic/10845/upload-file-and-post-data-to-webserver
https://riptutorial.com/dot-net/topic/10845/upload-file-and-post-data-to-webserver

C_hapter 54: Using Progress and IProgress

Examples

Simple Progress reporting

Tprogress<T> Can be used to report progress of some procedure to another procedure. This
example shows how you can create a basic method that reports its progress.

void Main ()
{
IProgress<int> p = new Progress<int> (progress =>
{
Console.WritelLine ("Running Step: {0}", progress);
1)
LongJdob (p) ;
}

public void LongJob (IProgress<int> progress)
{

var max = 10;

for (int i = 0; 1 < max; i++)

progress.Report (i) ;

Output:

Running Step:
Running Step:
Running Step:
Running Step:
Running Step:
Running Step:
Running Step:
Running Step:
Running Step:

H N W 00 J o U W O

Running Step:

Note that when you this code runs, you may see numbers be output out of order. This is because
the rprogress<T>.Rreport () Method is run asynchronously, and is therefore not as suitable for
situations where the progress must be reported in order.

Using IProgress
It's important to note that the system.progress<t> class does not have the report () method available
on it. This method was implemented explicitly from the 1progress<t> interface, and therefore must

be called on a progress<t> When it's cast to an rprogress<T>.

var pl = new Progress<int>();

https://riptutorial.com/ 208

pl.Report (1); //compiler error, Progress does not contain method 'Report'

IProgress<int> p2 = new Progress<int>();
p2.Report (2); //works

var p3 = new Progress<int>();
((IProgress<int>)p3) .Report (3); //works

Read Using Progress and IProgress online: https://riptutorial.com/dot-net/topic/5628/using-
progress-t--and-iprogress-t-

https://riptutorial.com/ 209

https://riptutorial.com/dot-net/topic/5628/using-progress-t--and-iprogress-t-
https://riptutorial.com/dot-net/topic/5628/using-progress-t--and-iprogress-t-

C_hapter 25: VB Forms

Examples

Hello World in VB.NET Forms
To show a message box when the form has been shown:

Public Class Forml
Private Sub Forml_Shown (sender As Object, e As EventArgs) Handles MyBase.Shown

MessageBox.Show ("Hello, World!")
End Sub

End Class
To show a message box before the form has been shown:

Public Class Forml
Private Sub Forml_Load(sender As Object, e As EventArgs) Handles MyBase.Load
MessageBox.Show ("Hello, World!")

End Sub
End Class

Load() will be called first, and only once, when the form first loads. Show() will be called every time
the user launches the form. Activate() will be called every time the user makes the form active.

Load() will execute before Show() is called, but be warned: calling msgBox() in show can cause
that msgBox() to execute before Load() is finished. It is generally a bad idea to depend on
event ordering between Load(), Show(), and similar.

For Beginners
Some things all beginners should know / do that will help them have a good start with VB .Net:

Set the following Options:

'can be permanently set
' Tools / Options / Projects and Soluntions / VB Defaults

Option Strict On
Option Explicit On
Option Infer Off
Public Class Forml
End Class

Use &, not + for string concatenation. Strings should be studied in some detail as they are widely
used.

Spend some time understanding Value and Reference Types.

Never use Application.DoEvents. Pay attention to the 'Caution’. When you reach a point where this

https://riptutorial.com/ 210

https://msdn.microsoft.com/en-us/library/te2585xw.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/system.string(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/t63sy5hs.aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.application.doevents%28v=vs.110%29.aspx?f=255&MSPPError=-2147217396

seems like something you must use, ask.

The documentation is your friend.

Forms Timer

The Windows.Forms.Timer component can be used to provide the user information that is not
time critical. Create a form with one button, one label, and a Timer component.

For example it could be used to show the user the time of day periodically.

'can be permanently set

' Tools / Options / Projects and Soluntions / VB Defaults
Option Strict On

Option Explicit On

Option Infer Off

Public Class Forml

Private Sub Buttonl_Click (sender As Object, e As EventArgs) Handles Buttonl.Click
Buttonl.Enabled = False
Timerl.Interval = 60 * 1000 'one minute intervals
'start timer
Timerl.Start ()
Labell.Text = DateTime.Now.ToLongTimeString
End Sub

Private Sub Timerl_Tick (sender As Object, e As EventArgs) Handles Timerl.Tick
Labell.Text = DateTime.Now.ToLongTimeString
End Sub
End Class

But this timer is not suited for timing. An example would be using it for a countdown. In this
example we will simulate a countdown to three minutes. This may very well be one of the most
boringly important examples here.

'can be permanently set

' Tools / Options / Projects and Soluntions / VB Defaults
Option Strict On

Option Explicit On

Option Infer Off

Public Class Forml

Private Sub Buttonl_Click (sender As Object, e As EventArgs) Handles Buttonl.Click
Buttonl.Enabled = False
ctSecs = 0 'clear count
Timerl.Interval = 1000 'one second in ms.
'start timers
stpw.Reset ()
stpw.Start ()
Timerl.Start ()
End Sub

Dim stpw As New Stopwatch
Dim ctSecs As Integer

https://riptutorial.com/

211

https://social.msdn.microsoft.com/Search/en-US?query=vb%20.net&emptyWatermark=true&searchButtonTooltip=Search%20MSDN&ac=2
https://msdn.microsoft.com/en-us/library/system.windows.forms.timer(v=vs.110).aspx

Private Sub Timerl_ Tick (sender As Object, e As EventArgs) Handles Timerl.Tick
ctSecs += 1
If ctSecs = 180 Then 'about 2.5 seconds off on my PC!
'stop timing
stpw.Stop ()
Timerl.Stop ()
'show actual elapsed time
'Is it near 1807?
Labell.Text = stpw.Elapsed.TotalSeconds.ToString("nl")
End If
End Sub
End Class

After buttonl is clicked, about three minutes pass and labell shows the results. Does labell show
1807? Probably not. On my machine it showed 182.5!

The reason for the discrepancy is in the documentation, "The Windows Forms Timer component is
single-threaded, and is limited to an accuracy of 55 milliseconds.” This is why it shouldn't be used
for timing.

By using the timer and stopwatch a little differently we can obtain better results.

'can be permanently set

' Tools / Options / Projects and Soluntions / VB Defaults
Option Strict On

Option Explicit On

Option Infer Off

Public Class Forml
Private Sub Buttonl_Click (sender As Object, e As EventArgs) Handles Buttonl.Click

Buttonl.Enabled = False
Timerl.Interval = 100 'one tenth of a second in ms.

'start timers

stpw.Reset ()

stpw.Start ()

Timerl.Start ()
End Sub

Dim stpw As New Stopwatch
Dim threeMinutes As TimeSpan = TimeSpan.FromMinutes (3)

Private Sub Timerl_Tick (sender As Object, e As EventArgs) Handles Timerl.Tick
If stpw.Elapsed >= threeMinutes Then '0.1 off on my PC!
'stop timing
stpw.Stop ()
Timerl.Stop ()
'show actual elapsed time
'how close?
Labell.Text = stpw.Elapsed.TotalSeconds.ToString("nl")
End If
End Sub
End Class

There are other timers that can be used as needed. This search should help in that regard.

https://riptutorial.com/ 212

https://social.msdn.microsoft.com/Search/en-US?query=vb%20.net%20windows%20timers&emptyWatermark=true&searchButtonTooltip=Search%20MSDN&ac=5#refinementChanges=117&pageNumber=1&showMore=false

Read VB Forms online: https://riptutorial.com/dot-net/topic/2197/vb-forms

https://riptutorial.com/ 213

https://riptutorial.com/dot-net/topic/2197/vb-forms

Chapter 56: Work with SHA1 in C#

Introduction

in this project you see how to work with SHA1 cryptographic hash function. for example get hash
from string and how to crack SHA1 hash. source on git hub:
https://github.com/mahdiabasi/SHA1Tool

Examples

#Generate SHA1 checksum of a file function
First you add System.Security.Cryptography and System.lO to your project

public string GetShalHash (string filePath)

{
using (FileStream fs = File.OpenRead (filePath))

{
SHA1 sha = new SHAlManaged() ;
return BitConverter.ToString(sha.ComputeHash (fs));

Read Work with SHAL in C# online: https://riptutorial.com/dot-net/topic/9457/work-with-shal-in-
csharp

https://riptutorial.com/ 214

https://github.com/mahdiabasi/SHA1Tool
https://riptutorial.com/dot-net/topic/9457/work-with-sha1-in-csharp
https://riptutorial.com/dot-net/topic/9457/work-with-sha1-in-csharp

Chapter 57: Work with SHA1 in C#

Introduction

in this project you see how to work with SHA1 cryptographic hash function. for example get hash
from string and how to crack SHA1 hash.

source compelete on github: https://github.com/mahdiabasi/SHA1Tool

Examples

#Generate SHA1 checksum of afile
first you add System.Security.Cryptography namespace to your project

public string GetShalHash(string filePath)

{
using (FileStream fs = File.OpenRead(filePath))

{
SHA1 sha = new SHAlManaged() ;
return BitConverter.ToString(sha.ComputeHash (fs));

#Generate hash of a text

public static string TextToHash (string text)
{

var sh = SHAl.Create();

var hash = new StringBuilder();

byte[] bytes = Encoding.UTF8.GetBytes (text);

byte[] b = sh.ComputeHash (bytes);

foreach (byte a in b)

{
var h = a.ToString ("x2");
hash.Append (h) ;

}

return hash.ToString() ;

Read Work with SHAL in C# online: https://riptutorial.com/dot-net/topic/9458/work-with-shal-in-
csharp

https://riptutorial.com/ 215

https://github.com/mahdiabasi/SHA1Tool
https://riptutorial.com/dot-net/topic/9458/work-with-sha1-in-csharp
https://riptutorial.com/dot-net/topic/9458/work-with-sha1-in-csharp

C_hapter 58: Write to and read from StdErr
stream

Examples
Write to standard error output using Console

var sourceFileName = "NonExistingFile";
try
{
System.IO.File.Copy (sourceFileName, "DestinationFile");
}
catch (Exception e)
{
var stdErr = Console.Error;
stdErr.WriteLine ($"Failed to copy '{sourceFileName}': {e.Message}");

Read from standard error of child process

var errors = new System.Text.StringBuilder();
var process = new Process
{
StartInfo = new ProcessStartInfo
{
RedirectStandardError = true,
FileName = "xcopy.exe",
Arguments = "\"NonExistingFile\" \"DestinationFile\"",
UseShellExecute = false
by

}i

process.ErrorDataReceived += (s, e) => errors.AppendLine (e.Data);
process.Start () ;

process.BeginErrorReadLine () ;

process.WaitForExit () ;

if (errors.Length > 0) // something went wrong
System.Console.Error.WriteLine ($"Child process error: \r\n {errors}");

Read Write to and read from StdErr stream online: https://riptutorial.com/dot-net/topic/10779/write-

to-and-read-from-stderr-stream

https://riptutorial.com/

216

https://riptutorial.com/dot-net/topic/10779/write-to-and-read-from-stderr-stream
https://riptutorial.com/dot-net/topic/10779/write-to-and-read-from-stderr-stream

C_hapter 59: XmlSerializer

Remarks

Do not use the xm1serializer t0 parse arur. For this, special libraries are available like the HTML
Agility Pack

Examples

Serialize object

public void SerializeFoo(string fileName, Foo foo)
{
var serializer = new XmlSerializer (typeof (Foo));
using (var stream = File.Open(fileName, FileMode.Create))
{
serializer.Serialize (stream, foo);

}

Deserialize object

public Foo DeserializeFoo (string fileName)
{
var serializer = new XmlSerializer (typeof (Foo));
using (var stream = File.OpenRead (fileName))
{
return (Foo)serializer.Deserialize (stream);

}

Behaviour: Map Element name to Property

<Foo>
<Dog/>
</Foo>

public class Foo
{
// Using XmlElement
[XmlElement (Name="Dog")]
public Animal Cat { get; set; }

Behaviour: Map array name to property (XmlArray)

https://riptutorial.com/ 217

https://htmlagilitypack.codeplex.com
https://htmlagilitypack.codeplex.com

<Store>
<Articles>
<Product/>
<Product/>
</Articles>
</Store>

public class Store

{
[XmlArray ("Articles")]
public List<Product> Products {get; set; }

Formatting: Custom DateTime format

public class Dog

{
private const string _birthStringFormat = "yyyy-MM-dd";

[XmlIgnore]
public DateTime Birth {get; set;}

[XmlElement (ElementName="Birth")]
public string BirthString
{
get { return Birth.ToString(_birthStringFormat); }
set { Birth = DateTime.ParseExact (value, _birthStringFormat,
CulturelInfo.InvariantCulture); }

}

Efficiently building multiple serializers with derived types specified
dynamically

Where we came from

Sometimes we can't provide all of the required metadata needed for the XmlSerializer framework
in attribute. Suppose we have a base class of serialized objects, and some of the derived classes
are unknown to the base class. We can't place an attribute for all of the classes which are not
know at the design time of the base type. We could have another team developing some of the
derived classes.

What can we do

We can uUSe new xmlserializer (type, knownTypes), but that would be a O(N”2) operation for N
serializers, at least to discover all of the types supplied in arguments:

// Beware of the N”2 in terms of the number of types.
var allSerializers = allTypes.Select (t => new XmlSerializer(t, allTypes));

https://riptutorial.com/ 218

var serializerDictionary = Enumerable.Range (0, allTypes.Length)
.ToDictionary (i => allTypes[i], 1 => allSerializers([i])

In this example, the the Base type is not aware of it's derived types, which is normal in OOP.
Doing it efficiently

Luckily, there is a method which addresses this particular problem - supplying known types for
multiple serializers efficiently:

System.Xml.Serialization.XmlSerializer.FromTypes Method (Typel])

The FromTypes method allows you to efficiently create an array of XmlSerializer
objects for processing an array of Type objects.

var allSerializers = XmlSerializer.FromTypes (allTypes) ;
var serializerDictionary = Enumerable.Range (0, allTypes.Length)
.ToDictionary (i => allTypes[i], 1 => allSerializers[i]);

Here is a complete code sample:

using System;

using System.Collections.Generic;
using System.Xml.Serialization;
using System.Ling;

using System.Ling;

public class Program
{

public class Container

{

public Base Base { get; set; }

public class Base
{
public int JustSomePropInBase { get; set; }

public class Derived : Base
{

public int JustSomePropInDerived { get; set; }

public void Main ()
{
var sampleObject = new Container { Base = new Derived() };
var allTypes = new[] { typeof (Container), typeof (Base), typeof (Derived) };

Console.WritelLine ("Trying to serialize without a derived class metadata:");
SetupSerializers (allTypes.Except (new[] { typeof (Derived) }).ToArray());

try

{

Serialize (sampleObject) ;

https://riptutorial.com/ 219

https://msdn.microsoft.com/en-us/library/system.xml.serialization.xmlserializer.fromtypes(v=vs.110).aspx#Anchor_1

catch (InvalidOperationException e)

{
Console.WriteLine () ;
Console.WriteLine ("This error was anticipated,");
Console.WriteLine ("we have not supplied a derived class.");
Console.WriteLine (e);

}

Console.WriteLine ("Now trying to serialize with all of the type information:");

SetupSerializers (allTypes);

Serialize (sampleObject) ;

Console.WriteLine () ;

Console.WriteLine ("Slides down well this time!");

static void Serialize<T>(T o)

{

serializerDictionary[typeof (T)].Serialize (Console.Out, 0);

private static Dictionary<Type, XmlSerializer> serializerDictionary;

static void SetupSerializers (Typel[] allTypes)
{
var allSerializers = XmlSerializer.FromTypes (allTypes) ;
serializerDictionary = Enumerable.Range (0, allTypes.Length)
.ToDictionary (i => allTypes[i], 1 => allSerializers[i]);

Output:

Trying to serialize without a derived class metadata:
<?xml version="1.0" encoding="utf-16"?>
<Container xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
This error was anticipated,
we have not supplied a derived class.
System.InvalidOperationException: There was an error generating the XML document. —-——->
System.InvalidOperationException: The type ProgramtDerived was not expected. Use the
XmlInclude or SoapInclude attribute to specify types that are not known statically.

at Microsoft.Xml.Serialization.GeneratedAssembly.XmlSerializationWriterl.Write2_Base (String
n, String ns, Base o, Boolean isNullable, Boolean needType)

at
Microsoft.Xml.Serialization.GeneratedAssembly.XmlSerializationWriterl.Write3_Container (String
n, String ns, Container o, Boolean isNullable, Boolean needType)

at
Microsoft.Xml.Serialization.GeneratedAssembly.XmlSerializationWriterl.Writed4_Container (Object
o)

at System.Xml.Serialization.XmlSerializer.Serialize (XmlWriter xmlWriter, Object o,
XmlSerializerNamespaces namespaces, String encodingStyle, String id)

—-—— End of inner exception stack trace ——-

at System.Xml.Serialization.XmlSerializer.Serialize (XmlWriter xmlWriter, Object o,
XmlSerializerNamespaces namespaces, String encodingStyle, String id)

at System.Xml.Serialization.XmlSerializer.Serialize (XmlWriter xmlWriter, Object o,
XmlSerializerNamespaces namespaces, String encodingStyle)

at System.Xml.Serialization.XmlSerializer.Serialize (XmlWriter xmlWriter, Object o,
XmlSerializerNamespaces namespaces)

at Program.Serialize[T] (T o)

at Program.Main ()
Now trying to serialize with all of the type information:

https://riptutorial.com/ 220

<?xml version="1.0" encoding="utf-16"?>
<Container xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Base xsi:type="Derived">
<JustSomePropInBase>0</JustSomePropInBase>
<JustSomePropInDerived>0</JustSomePropInDerived>
</Base>
</Container>
Slides down well this time!

What's in the output

This error message recommends what we tried to avoid (or what we can not do in some
scenarios) - referencing derived types from base class:

Use the XmlInclude or SoapInclude attribute to specify types that are not known statically.

This is how we get our derived class in the XML:

<Base xsi:type="Derived">

Base CoOrresponds to the property type declared in the container type, and perived being the type of
the instance actually supplied.

Here is a working example fiddle

Read XmlSerializer online: https://riptutorial.com/dot-net/topic/31/xmlserializer

https://riptutorial.com/ 221

https://dotnetfiddle.net/hufepI
https://riptutorial.com/dot-net/topic/31/xmlserializer

Credits

Chapters

1

Getting started with .NET Framework

2 .NET Core

3 Acronym Glossary

4 ADO.NET

5 CLR

6 Code Contracts

7 Collections

8 Custom Types
9 DateTime parsing

10 Dependency Injection

11 Dictionaries

Contributors

Adriano Repetti, Alan McBee, alel0ander,
Andrew Jens, Andrew Morton, Andrey
Shchekin, Community, Daniel A. White,
Ehsan Sajjad, harriyott, hillary.fraley, lan,
James Thorpe, Jamie Rees, Joel Martinez,
Kevin Montrose, Lirrik, MarcinJuraszek,
matteeyah, naveen, Nicholas Sizer, Pawet
Izdebski, Peter, Peter Gordon, Peter
Hommel, PSN, Richard Lander, Rion
Williams, Robert Columbia, RubberDuck,
SeeuD1, Serg Rogovtsev, Squidward,
Stephen Leppik, Steven Doggart, svick,
loleaz ayl qoq

Mihail Stancescu
Tanveer Badar

Akshay Anand, Andrew Morton, Daniel A.
White, DavidG, Drew, elmer007, Hamid,
Harjot, Heinzi, Igor, user2321864

Gajendra, starbeamrainbowlabs, Theodoros
Chatzigiannakis

JJS, Matthew Whited, RamenChef

Alan McBee, Aman Sharma, Anik Saha,
Daniel A. White, demonplus, Felipe Oriani,
harriyott, lan, Mark C., Ravi A., Virtlink

Alan McBee, DrewJordan, matteeyah
GalacticCowboy, John
Phil Thomas, Scott Hannen

Adriano Repetti, Bjgrn-Roger Kringsja,
Daniel Plaisted, Darrel Lee, Felipe Oriani,
George Duckett, George Polevoy, hatchet,
Hogan, lan, LegionMammal978, Luke Bearl,
Olivier Jacot-Descombes, RamenChef,

https://riptutorial.com/

222

https://riptutorial.com/contributor/1207195/adriano-repetti
https://riptutorial.com/contributor/100596/alan-mcbee
https://riptutorial.com/contributor/1560126/ale10ander
https://riptutorial.com/contributor/520691/andrew-jens
https://riptutorial.com/contributor/1115360/andrew-morton
https://riptutorial.com/contributor/39068/andrey-shchekin
https://riptutorial.com/contributor/39068/andrey-shchekin
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/23528/daniel-a--white
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/5744/harriyott
https://riptutorial.com/contributor/6628786/hillary-fraley
https://riptutorial.com/contributor/21061/ian
https://riptutorial.com/contributor/791010/james-thorpe
https://riptutorial.com/contributor/3329836/jamie-rees
https://riptutorial.com/contributor/5416/joel-martinez
https://riptutorial.com/contributor/80572/kevin-montrose
https://riptutorial.com/contributor/2444665/lirrik
https://riptutorial.com/contributor/1163867/marcinjuraszek
https://riptutorial.com/contributor/1139722/matteeyah
https://riptutorial.com/contributor/17447/naveen
https://riptutorial.com/contributor/242311/nicholas-sizer
https://riptutorial.com/contributor/5943243/pawel-izdebski
https://riptutorial.com/contributor/5943243/pawel-izdebski
https://riptutorial.com/contributor/5943243/pawel-izdebski
https://riptutorial.com/contributor/58553/peter
https://riptutorial.com/contributor/1476989/peter-gordon
https://riptutorial.com/contributor/1071090/peter-hommel
https://riptutorial.com/contributor/1071090/peter-hommel
https://riptutorial.com/contributor/4161385/psn
https://riptutorial.com/contributor/1148751/richard-lander
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/3198973/rubberduck
https://riptutorial.com/contributor/3288649/seeud1
https://riptutorial.com/contributor/1105881/serg-rogovtsev
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/1359668/steven-doggart
https://riptutorial.com/contributor/41071/svick
https://riptutorial.com/contributor/3696113/-ol--z-----qoq
https://riptutorial.com/contributor/3164614/mihail-stancescu
https://riptutorial.com/contributor/59081/tanveer-badar
https://riptutorial.com/contributor/2797802/akshay-anand
https://riptutorial.com/contributor/1115360/andrew-morton
https://riptutorial.com/contributor/23528/daniel-a--white
https://riptutorial.com/contributor/23528/daniel-a--white
https://riptutorial.com/contributor/1663001/davidg
https://riptutorial.com/contributor/1816093/drew
https://riptutorial.com/contributor/5687262/elmer007
https://riptutorial.com/contributor/4230715/hamid
https://riptutorial.com/contributor/7003682/harjot
https://riptutorial.com/contributor/87698/heinzi
https://riptutorial.com/contributor/1260204/igor
https://riptutorial.com/contributor/2321864/user2321864
https://riptutorial.com/contributor/1590988/gajendra
https://riptutorial.com/contributor/1460422/starbeamrainbowlabs
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis
https://riptutorial.com/contributor/1892179/theodoros-chatzigiannakis
https://riptutorial.com/contributor/26877/jjs
https://riptutorial.com/contributor/89586/matthew-whited
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/100596/alan-mcbee
https://riptutorial.com/contributor/5777678/aman-sharma
https://riptutorial.com/contributor/3127813/anik-saha
https://riptutorial.com/contributor/23528/daniel-a--white
https://riptutorial.com/contributor/462639/demonplus
https://riptutorial.com/contributor/316799/felipe-oriani
https://riptutorial.com/contributor/5744/harriyott
https://riptutorial.com/contributor/21061/ian
https://riptutorial.com/contributor/2679750/mark-c-
https://riptutorial.com/contributor/4087436/ravi-a-
https://riptutorial.com/contributor/146622/virtlink
https://riptutorial.com/contributor/100596/alan-mcbee
https://riptutorial.com/contributor/3845456/drewjordan
https://riptutorial.com/contributor/1139722/matteeyah
https://riptutorial.com/contributor/29638/galacticcowboy
https://riptutorial.com/contributor/525539/john
https://riptutorial.com/contributor/6026377/phil-thomas
https://riptutorial.com/contributor/5101046/scott-hannen
https://riptutorial.com/contributor/1207195/adriano-repetti
https://riptutorial.com/contributor/1842065/bjorn-roger-kringsja
https://riptutorial.com/contributor/1509/daniel-plaisted
https://riptutorial.com/contributor/307968/darrel-lee
https://riptutorial.com/contributor/316799/felipe-oriani
https://riptutorial.com/contributor/593627/george-duckett
https://riptutorial.com/contributor/177317/george-polevoy
https://riptutorial.com/contributor/834261/hatchet
https://riptutorial.com/contributor/215752/hogan
https://riptutorial.com/contributor/21061/ian
https://riptutorial.com/contributor/3225276/legionmammal978
https://riptutorial.com/contributor/615752/luke-bearl
https://riptutorial.com/contributor/880990/olivier-jacot-descombes
https://riptutorial.com/contributor/6392939/ramenchef

12 Encryption / Cryptography

13 Exceptions

14 Expression Trees

15 File Input/Output

16 ForEach
17 Garbage Collection

Globalization in ASP.NET MVC using

L Smart internationalization for ASP.NET

19 HTTP clients
20 HTTP servers
21 JIT compiler

22 JSON in .NET with Newtonsoft.Json

23 JSON Serialization

24 LINQ

Ringil, Robert Columbia, Stephen Byrne, the
berserker, Tomas Hubelbauer

Alexander Mandt, Daniel A. White,
demonplus, Jagadisha B S, lokusking, Matt

Adi Lester, Akshay Anand, Alan McBee,
Alfred Myers, Arvin Baccay, BananaStt,
CodeCaster, Dave R., Kritner, Mafii, Matt,
Rob, Sean, starbeamrainbowlabs, STW,
Yousef Al-Mulla

Akshay Anand, George Polevoy, Jim,
n.podbielski, Pavel Mayorov, RamenChef,
Stephen Leppik, Stilgar, wangengzheng

alelOander, Alexander Mandt, Ingenioushax,
Nitram

Dr Rob Lang, just.ru, Lucas Trzesniewski

avat

Scott Hannen

CodeCaster, Konamiman, MuiBienCarlota
Devon Burriss, Konamiman

Krikor Ailanjian

DLeh

Akshay Anand, Andrius, Eric, hasan, M22an,
PedroSouki, Thriggle, Tolga Evcimen

A. Raza, Adil Mammadov, Akshay Anand,
Alexander V., Benjamin Hodgson,
Blachshma, Bradley Grainger, Bruno Garcia,
Carlos Mufioz, CodeCaster, dbasnett, DoNot
, dotctor, Eduardo Molteni, Ehsan Sajjad,
GalacticCowboy, H. Pauwelyn, Haney,
J3soon, jbtule, jnovo, Joe Amenta, Kilazur,
Konamiman, MarcinJuraszek, Mark Hurd,
McKay, Mellow, Mert Gulsoy, Mike Stortz,
Mr.Mindor, Nate Barbettini, Pavel Voronin,
Ruben Steins, Salvador Rubio Martinez,
Sammi, Sergio Dominguez, Sidewinder94

https://riptutorial.com/

223

https://riptutorial.com/contributor/4882032/ringil
https://riptutorial.com/contributor/6471538/robert-columbia
https://riptutorial.com/contributor/1362136/stephen-byrne
https://riptutorial.com/contributor/24839/the-berserker
https://riptutorial.com/contributor/24839/the-berserker
https://riptutorial.com/contributor/2715716/tomas-hubelbauer
https://riptutorial.com/contributor/4896211/alexander-mandt
https://riptutorial.com/contributor/23528/daniel-a--white
https://riptutorial.com/contributor/462639/demonplus
https://riptutorial.com/contributor/1645454/jagadisha-b-s
https://riptutorial.com/contributor/4558029/lokusking
https://riptutorial.com/contributor/1016343/matt
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/2797802/akshay-anand
https://riptutorial.com/contributor/100596/alan-mcbee
https://riptutorial.com/contributor/151249/alfred-myers
https://riptutorial.com/contributor/54544/arvin-baccay
https://riptutorial.com/contributor/6619191/bananasft
https://riptutorial.com/contributor/266143/codecaster
https://riptutorial.com/contributor/42841/dave-r-
https://riptutorial.com/contributor/2312877/kritner
https://riptutorial.com/contributor/5962841/mafii
https://riptutorial.com/contributor/1016343/matt
https://riptutorial.com/contributor/563532/rob
https://riptutorial.com/contributor/26095/sean
https://riptutorial.com/contributor/1460422/starbeamrainbowlabs
https://riptutorial.com/contributor/60724/stw
https://riptutorial.com/contributor/4615322/yousef-al-mulla
https://riptutorial.com/contributor/2797802/akshay-anand
https://riptutorial.com/contributor/177317/george-polevoy
https://riptutorial.com/contributor/231821/jim
https://riptutorial.com/contributor/1458122/n-podbielski
https://riptutorial.com/contributor/4340086/pavel-mayorov
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/122507/stilgar
https://riptutorial.com/contributor/6733949/wangengzheng
https://riptutorial.com/contributor/1560126/ale10ander
https://riptutorial.com/contributor/4896211/alexander-mandt
https://riptutorial.com/contributor/6177689/ingenioushax
https://riptutorial.com/contributor/1312793/nitram
https://riptutorial.com/contributor/328730/dr-rob-lang
https://riptutorial.com/contributor/1859889/just-ru
https://riptutorial.com/contributor/3764814/lucas-trzesniewski
https://riptutorial.com/contributor/5012730/avat
https://riptutorial.com/contributor/5101046/scott-hannen
https://riptutorial.com/contributor/266143/codecaster
https://riptutorial.com/contributor/4574/konamiman
https://riptutorial.com/contributor/231977/muibiencarlota
https://riptutorial.com/contributor/2613363/devon-burriss
https://riptutorial.com/contributor/4574/konamiman
https://riptutorial.com/contributor/1615769/krikor-ailanjian
https://riptutorial.com/contributor/526704/dleh
https://riptutorial.com/contributor/2797802/akshay-anand
https://riptutorial.com/contributor/4590959/andrius
https://riptutorial.com/contributor/2132357/eric
https://riptutorial.com/contributor/3089009/hasan
https://riptutorial.com/contributor/3131696/m22an
https://riptutorial.com/contributor/4166211/pedrosouki
https://riptutorial.com/contributor/2701677/thriggle
https://riptutorial.com/contributor/1469980/tolga-evcimen
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/1380428/adil-mammadov
https://riptutorial.com/contributor/2797802/akshay-anand
https://riptutorial.com/contributor/444110/alexander-v-
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/1379664/blachshma
https://riptutorial.com/contributor/23633/bradley-grainger
https://riptutorial.com/contributor/1977143/bruno-garcia
https://riptutorial.com/contributor/186133/carlos-munoz
https://riptutorial.com/contributor/266143/codecaster
https://riptutorial.com/contributor/66532/dbasnett
https://riptutorial.com/contributor/1764853/donot
https://riptutorial.com/contributor/3970411/dotctor
https://riptutorial.com/contributor/2385/eduardo-molteni
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/29638/galacticcowboy
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/2420979/haney
https://riptutorial.com/contributor/3917161/j3soon
https://riptutorial.com/contributor/637783/jbtule
https://riptutorial.com/contributor/3042204/jnovo
https://riptutorial.com/contributor/1083771/joe-amenta
https://riptutorial.com/contributor/3283203/kilazur
https://riptutorial.com/contributor/4574/konamiman
https://riptutorial.com/contributor/1163867/marcinjuraszek
https://riptutorial.com/contributor/256431/mark-hurd
https://riptutorial.com/contributor/8384/mckay
https://riptutorial.com/contributor/3125553/mellow
https://riptutorial.com/contributor/745049/mert-gulsoy
https://riptutorial.com/contributor/360644/mike-stortz
https://riptutorial.com/contributor/391656/mr-mindor
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/921054/pavel-voronin
https://riptutorial.com/contributor/1280810/ruben-steins
https://riptutorial.com/contributor/5571927/salvador-rubio-martinez
https://riptutorial.com/contributor/628418/sammi
https://riptutorial.com/contributor/5575747/sergio-dominguez
https://riptutorial.com/contributor/2245256/sidewinder94

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Managed Extensibility Framework
Memory management

Networking

NuGet packaging system

Parallel processing using .Net
framework

Platform Invoke
Process and Thread affinity setting
Reading and writing Zip files

ReadOnlyCollections

Reflection

Regular Expressions
(System.Text.RegularExpressions)

Serial Ports
Settings

SpeechRecognitionEngine class to
recognize speech

Stack and Heap

Strings

Synchronization Contexts

System.Diagnostics

System.1O

Joe Amenta, Kirk Broadhurst, RamenChef
Big Fan, binki, DrewJordan
Konamiman

Andrey Shchekin, Anik Saha, Ashtonian,
CodeCaster, Daniel A. White, Matas
Vaitkevicius, Ozair Kafray

Y ahfoufi

Dmitry Egorov, Imran Ali Khan
MSE, RamenChef

Arxae

tehDorf

Aleks Andreev, Bjgrn-Roger Kringsja,
demonplus, Jean-Baptiste Noblot, Jigar, JJP
, Kirk Broadhurst, Lorenzo Dematté, Matas
Vaitkevicius, NetSquirrel, Pavel Mayorov,
Peter, smdrager, Terry, user1304444, void

BrunoLM, Denuath, Matt dc, tehDorf

Dmitry Egorov

Alan McBee
ProgramFOX, RamenChef

Hywel Rees

Adriano Repetti, Alexander Mandt, Matt,
Pavel Voronin, RamenChef

DLeh, Gusdor

Adi Lester, Bassie, Fredou, Ogglas, Ondrej
Storc, RamenChef

CodeCaster, Daniel A. White, demonplus,
Filip Fracz, RoyalPotato

https://riptutorial.com/

224

https://riptutorial.com/contributor/1083771/joe-amenta
https://riptutorial.com/contributor/146077/kirk-broadhurst
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6632777/big-fan
https://riptutorial.com/contributor/429091/binki
https://riptutorial.com/contributor/3845456/drewjordan
https://riptutorial.com/contributor/4574/konamiman
https://riptutorial.com/contributor/39068/andrey-shchekin
https://riptutorial.com/contributor/3127813/anik-saha
https://riptutorial.com/contributor/3780629/ashtonian
https://riptutorial.com/contributor/266143/codecaster
https://riptutorial.com/contributor/23528/daniel-a--white
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/365188/ozair-kafray
https://riptutorial.com/contributor/7085170/yahfoufi
https://riptutorial.com/contributor/4295017/dmitry-egorov
https://riptutorial.com/contributor/2723943/imran-ali-khan
https://riptutorial.com/contributor/3008260/mse
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1249449/arxae
https://riptutorial.com/contributor/892536/tehdorf
https://riptutorial.com/contributor/4685428/aleks-andreev
https://riptutorial.com/contributor/1842065/bjorn-roger-kringsja
https://riptutorial.com/contributor/462639/demonplus
https://riptutorial.com/contributor/2090610/jean-baptiste-noblot
https://riptutorial.com/contributor/2837810/jigar
https://riptutorial.com/contributor/655426/jjp
https://riptutorial.com/contributor/146077/kirk-broadhurst
https://riptutorial.com/contributor/863564/lorenzo-dematte
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/413215/netsquirrel
https://riptutorial.com/contributor/4340086/pavel-mayorov
https://riptutorial.com/contributor/83528/peter
https://riptutorial.com/contributor/356550/smdrager
https://riptutorial.com/contributor/4746686/terry
https://riptutorial.com/contributor/1304444/user1304444
https://riptutorial.com/contributor/1029287/void
https://riptutorial.com/contributor/340760/brunolm
https://riptutorial.com/contributor/3699612/denuath
https://riptutorial.com/contributor/5543849/matt-dc
https://riptutorial.com/contributor/892536/tehdorf
https://riptutorial.com/contributor/4295017/dmitry-egorov
https://riptutorial.com/contributor/100596/alan-mcbee
https://riptutorial.com/contributor/2619912/programfox
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3521193/hywel-rees
https://riptutorial.com/contributor/1207195/adriano-repetti
https://riptutorial.com/contributor/4896211/alexander-mandt
https://riptutorial.com/contributor/1016343/matt
https://riptutorial.com/contributor/921054/pavel-voronin
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/526704/dleh
https://riptutorial.com/contributor/286976/gusdor
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/4671754/bassie
https://riptutorial.com/contributor/40868/fredou
https://riptutorial.com/contributor/3850405/ogglas
https://riptutorial.com/contributor/5186881/ondrej-storc
https://riptutorial.com/contributor/5186881/ondrej-storc
https://riptutorial.com/contributor/5186881/ondrej-storc
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/266143/codecaster
https://riptutorial.com/contributor/23528/daniel-a--white
https://riptutorial.com/contributor/462639/demonplus
https://riptutorial.com/contributor/21704/filip-fracz
https://riptutorial.com/contributor/21704/filip-fracz
https://riptutorial.com/contributor/5981756/royalpotato

44 System.lO.File class

45 System.Net.Mail

46 System.Reflection.Emit namespace

System.Runtime.Caching.MemoryCache

4t (ObjectCache)

48 Task Parallel Library (TPL)

Task Parallel Library (TPL) API

49 .
Overviews

50 Threading

51 TPL Dataflow

52 Unit testing

53 Upload file and POST data to webserver
54 Using Progress and IProgress

55 VB Forms

56 Work with SHAL in C#

57 Write to and read from StdErr stream

58 XmlSerializer

Adriano Repetti, delete me
demonplus, Steve, vicky

Luaan, NikolayKondratyev, RamenChef,
toddmo

Guanxi, RamenChef

Adi Lester, Aman Sharma, Andrew, i3arnon,
Jacobr365, JamyRyals, Konamiman,
Mathias Miller, Mert Gulsoy, Mikhail
Filimonov, Pavel Mayorov, Pavel Voronin,
RamenChef, Thomas Bledsoe, TorbenJ

Gusdor, Jacobr365

Behzad, Matrtijn Pieters, Mellow

i3arnon, Jacobr365, Nikola.Lukovic,
RamenChef

Axarydax

Aleks Andreev

DLeh

alelOander, dbasnett
mahdi abasi

Aleks Andreev

Aphelion, George Polevoy, RamenChef,
Rowland Shaw, Thomas Levesque, void,
Yogi

https://riptutorial.com/

225

https://riptutorial.com/contributor/1207195/adriano-repetti
https://riptutorial.com/contributor/6123921/delete-me
https://riptutorial.com/contributor/462639/demonplus
https://riptutorial.com/contributor/1197518/steve
https://riptutorial.com/contributor/1805776/vicky
https://riptutorial.com/contributor/3032289/luaan
https://riptutorial.com/contributor/4182275/nikolaykondratyev
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1045881/toddmo
https://riptutorial.com/contributor/1938828/guanxi
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/5777678/aman-sharma
https://riptutorial.com/contributor/239394/andrew
https://riptutorial.com/contributor/885318/i3arnon
https://riptutorial.com/contributor/3874053/jacobr365
https://riptutorial.com/contributor/1604229/jamyryals
https://riptutorial.com/contributor/4574/konamiman
https://riptutorial.com/contributor/3835956/mathias-muller
https://riptutorial.com/contributor/745049/mert-gulsoy
https://riptutorial.com/contributor/2812283/mikhail-filimonov
https://riptutorial.com/contributor/2812283/mikhail-filimonov
https://riptutorial.com/contributor/4340086/pavel-mayorov
https://riptutorial.com/contributor/921054/pavel-voronin
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5548042/thomas-bledsoe
https://riptutorial.com/contributor/1223253/torbenj
https://riptutorial.com/contributor/286976/gusdor
https://riptutorial.com/contributor/3874053/jacobr365
https://riptutorial.com/contributor/3355825/behzad
https://riptutorial.com/contributor/100297/martijn-pieters
https://riptutorial.com/contributor/3125553/mellow
https://riptutorial.com/contributor/885318/i3arnon
https://riptutorial.com/contributor/3874053/jacobr365
https://riptutorial.com/contributor/3248293/nikola-lukovic
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/72746/axarydax
https://riptutorial.com/contributor/4685428/aleks-andreev
https://riptutorial.com/contributor/526704/dleh
https://riptutorial.com/contributor/1560126/ale10ander
https://riptutorial.com/contributor/66532/dbasnett
https://riptutorial.com/contributor/7722915/mahdi-abasi
https://riptutorial.com/contributor/4685428/aleks-andreev
https://riptutorial.com/contributor/296526/aphelion
https://riptutorial.com/contributor/177317/george-polevoy
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/50447/rowland-shaw
https://riptutorial.com/contributor/98713/thomas-levesque
https://riptutorial.com/contributor/1029287/void
https://riptutorial.com/contributor/4984854/yogi

	About
	Chapter 1: Getting started with .NET Framework
	Remarks
	Versions
	.NET
	Compact Framework
	Micro Framework
	Examples
	Hello World in C#
	Hello World in Visual Basic .NET
	Hello World in F#
	Hello World in C++/CLI
	Hello World in PowerShell
	Hello World in Nemerle
	Hello World in Oxygene
	Hello World in Boo
	Hello World in Python (IronPython)
	Hello World in IL

	Chapter 2: .NET Core
	Introduction
	Remarks
	Examples
	Basic Console App

	Chapter 3: Acronym Glossary
	Examples
	.Net Related Acronyms

	Chapter 4: ADO.NET
	Introduction
	Remarks
	Examples
	Executing SQL statements as a command
	Best Practices - Executing Sql Statements

	Best practice for working with ADO.NET
	Using common interfaces to abstract away vendor specific classes

	Chapter 5: CLR
	Examples
	An introduction to Common Language Runtime

	Chapter 6: Code Contracts
	Remarks
	Examples
	Preconditions
	Postconditions
	Contracts for Interfaces
	Installing and Enabling Code Contracts

	Chapter 7: Collections
	Remarks
	Examples
	Creating an initialized List with Custom Types
	Queue
	Stack
	Using collection initializers

	Chapter 8: Custom Types
	Remarks
	Examples
	Struct Definition

	Structs inherit from System.ValueType, are value types, and live on the stack. When value types are passed as a parameter, they are passed by value.
	Class Definition

	Classes inherit from System.Object, are reference types, and live on the heap. When reference types are passed as a parameter, they are passed by reference.
	Enum Definition

	An enum is a special type of class. The enum keyword tells the compiler that this class inherits from the abstract System.Enum class. Enums are used for distinct lists of items.

	Chapter 9: DateTime parsing
	Examples
	ParseExact
	TryParse
	TryParseExact

	Chapter 10: Dependency Injection
	Remarks
	Examples
	Dependency Injection - Simple example
	How Dependency Injection Makes Unit Testing Easier
	Why We Use Dependency Injection Containers (IoC Containers)

	Chapter 11: Dictionaries
	Examples
	Enumerating a Dictionary
	Initializing a Dictionary with a Collection Initializer
	Adding to a Dictionary
	Getting a value from a dictionary
	Make a Dictionary with Case-Insensivitve keys.
	ConcurrentDictionary (from .NET 4.0)

	Creating an instance
	Adding or Updating
	Getting value
	Getting or Adding a value
	IEnumerable to Dictionary (≥ .NET 3.5)
	Removing from a Dictionary
	ContainsKey(TKey)
	Dictionary to List
	ConcurrentDictionary augmented with Lazy'1 reduces duplicated computation

	Problem
	Solution

	Chapter 12: Encryption / Cryptography
	Remarks
	Examples
	RijndaelManaged
	Encrypt and decrypt data using AES (in C#)
	Create a Key from a Password / Random SALT (in C#)
	Encryption and Decryption using Cryptography (AES)

	Chapter 13: Exceptions
	Remarks
	Examples
	Catching an exception
	Using a finally block
	Catching and rethrowing caught exceptions
	Exception Filters
	Rethrowing an exception within a catch block
	Throwing an exception from a different method while preserving its information

	Chapter 14: Expression Trees
	Remarks
	Examples
	Simple Expression Tree Generated by the C# Compiler
	building a predicate of form field == value
	Expression for retrieving a static field
	InvocationExpression Class

	Chapter 15: File Input/Output
	Parameters
	Remarks
	Examples
	VB WriteAllText
	VB StreamWriter
	C# StreamWriter
	C# WriteAllText()
	C# File.Exists()

	Chapter 16: ForEach
	Remarks
	Examples
	Calling a method on an object in a list
	Extension method for IEnumerable

	Chapter 17: Garbage Collection
	Introduction
	Remarks
	Examples
	A basic example of (garbage) collection
	Live objects and dead objects - the basics
	Multiple dead objects
	Weak References
	Dispose() vs. finalizers
	Proper disposal and finalization of objects

	Chapter 18: Globalization in ASP.NET MVC using Smart internationalization for ASP.NET
	Remarks
	Examples
	Basic configuration and setup

	Chapter 19: HTTP clients
	Remarks
	Examples
	Reading GET response as string using System.Net.HttpWebRequest
	Reading GET response as string using System.Net.WebClient
	Reading GET response as string using System.Net.HttpClient
	Sending a POST request with a string payload using System.Net.HttpWebRequest
	Sending a POST request with a string payload using System.Net.WebClient
	Sending a POST request with a string payload using System.Net.HttpClient
	Basic HTTP downloader using System.Net.Http.HttpClient

	Chapter 20: HTTP servers
	Examples
	Basic read-only HTTP file server (HttpListener)
	Basic read-only HTTP file server (ASP.NET Core)

	Chapter 21: JIT compiler
	Introduction
	Remarks
	Examples
	IL compilation sample

	Chapter 22: JSON in .NET with Newtonsoft.Json
	Introduction
	Examples
	Serialize object into JSON
	Deserialize an object from JSON text

	Chapter 23: JSON Serialization
	Remarks
	Examples
	Deserialization using System.Web.Script.Serialization.JavaScriptSerializer
	Deserialization using Json.NET
	Serialization using Json.NET
	Serialization-Deserialization using Newtonsoft.Json
	Dynamic binding
	Serialization using Json.NET with JsonSerializerSettings

	Chapter 24: LINQ
	Introduction
	Syntax
	Remarks
	Lazy Evaluation
	ToArray() or ToList()?
	Examples
	Select (map)
	Where (filter)
	OrderBy
	OrderByDescending
	Contains
	Except
	Intersect
	Concat
	First (find)
	Single
	Last
	LastOrDefault
	SingleOrDefault
	FirstOrDefault
	Any
	All
	SelectMany (flat map)
	Sum
	Skip
	Take
	SequenceEqual
	Reverse
	OfType
	Max
	Min
	Average
	Zip
	Distinct
	GroupBy
	ToDictionary
	Union
	ToArray
	ToList
	Count
	ElementAt
	ElementAtOrDefault
	SkipWhile
	TakeWhile
	DefaultIfEmpty
	Aggregate (fold)
	ToLookup
	Join
	GroupJoin
	Cast
	Empty
	ThenBy
	Range
	Left Outer Join
	Repeat

	Chapter 25: Managed Extensibility Framework
	Remarks
	Examples
	Exporting a Type (Basic)
	Importing (Basic)
	Connecting (Basic)

	Chapter 26: Memory management
	Remarks
	Examples
	Unmanaged Resources
	Use SafeHandle when wrapping unmanaged resources

	Chapter 27: Networking
	Remarks
	Examples
	Basic TCP chat (TcpListener, TcpClient, NetworkStream)
	Basic SNTP client (UdpClient)

	Chapter 28: NuGet packaging system
	Remarks
	Examples
	Installing the NuGet Package Manager
	Managing Packages through the UI
	Managing Packages through the console
	Updating a package
	Uninstalling a package
	Uninstalling a package from one project in a solution
	Installing a specific version of a package
	Adding a package source feed (MyGet, Klondike, ect)
	Using different (local) Nuget package sources using UI
	uninstall a specific version of package

	Chapter 29: Parallel processing using .Net framework
	Introduction
	Examples
	Parallel Extensions

	Chapter 30: Platform Invoke
	Syntax
	Examples
	Calling a Win32 dll function
	Using Windows API
	Marshalling arrays
	Marshaling structs
	Marshaling unions

	Chapter 31: Process and Thread affinity setting
	Parameters
	Remarks
	Examples
	Get process affinity mask
	Set process affinity mask

	Chapter 32: Reading and writing Zip files
	Introduction
	Remarks
	Examples
	Listing ZIP contents
	Extracting files from ZIP files
	Updating a ZIP file

	Chapter 33: ReadOnlyCollections
	Remarks
	ReadOnlyCollections vs ImmutableCollection
	Examples
	Creating a ReadOnlyCollection

	Using the Constructor
	Using LINQ
	Note
	Updating a ReadOnlyCollection
	Warning: Elements in a ReadOnlyCollection are not inherently read-only

	Chapter 34: Reflection
	Examples
	What is an Assembly?
	How to create an object of T using Reflection
	Creating Object and setting properties using reflection
	Getting an attribute of an enum with reflection (and caching it)
	Compare two objects with reflection

	Chapter 35: Regular Expressions (System.Text.RegularExpressions)
	Examples
	Check if pattern matches input
	Passing Options
	Simple match and replace
	Match into groups
	Remove non alphanumeric characters from string
	Find all matches

	Using
	Code
	Output
	Chapter 36: Serial Ports
	Examples
	Basic operation
	List available port names
	Asynchronous read
	Synchronous text echo service
	Asynchronous message receiver

	Chapter 37: Settings
	Examples
	AppSettings from ConfigurationSettings in .NET 1.x
	Deprecated usage
	Reading AppSettings from ConfigurationManager in .NET 2.0 and later
	Introduction to strongly-typed application and user settings support from Visual Studio
	Reading strongly-typed settings from custom section of configuration file

	Under the covers

	Chapter 38: SpeechRecognitionEngine class to recognize speech
	Syntax
	Parameters
	Remarks
	Examples
	Asynchronously recognizing speech for free text dictation
	Asynchronously recognizing speech based on a restricted set of phrases

	Chapter 39: Stack and Heap
	Remarks
	Examples
	Value types in use
	Reference types in use

	Chapter 40: Strings
	Remarks
	Examples
	Count distinct characters
	Count characters
	Count occurrences of a character
	Split string into fixed length blocks
	Convert string to/from another encoding

	Examples:
	Convert a string to UTF-8
	Convert UTF-8 data to a string
	Change encoding of an existing text file
	Object.ToString() virtual method
	Immutability of strings
	Сomparing strings

	Chapter 41: Synchronization Contexts
	Remarks
	Examples
	Execute code on the UI thread after performing background work

	Chapter 42: System.Diagnostics
	Examples
	Stopwatch
	Run shell commands
	Send Command to CMD and Receive Output

	Chapter 43: System.IO
	Examples
	Reading a text file using StreamReader
	Reading/Writing Data Using System.IO.File
	Serial Ports using System.IO.SerialPorts

	Iterating over connected serial ports
	Instantiating a System.IO.SerialPort object
	Reading/Writing data over the SerialPort

	Chapter 44: System.IO.File class
	Syntax
	Parameters
	Examples
	Delete a file
	Strip unwanted lines from a text file
	Convert text file encoding
	"Touch" a large amount of files (to update last write time)
	Enumerate files older than a specified amount
	Move a File from one location to another

	File.Move
	Chapter 45: System.Net.Mail
	Remarks
	Examples
	MailMessage
	Mail with Attachment

	Chapter 46: System.Reflection.Emit namespace
	Examples
	Creating an assembly dynamically

	Chapter 47: System.Runtime.Caching.MemoryCache (ObjectCache)
	Examples
	Adding Item to Cache (Set)
	System.Runtime.Caching.MemoryCache (ObjectCache)

	Chapter 48: Task Parallel Library (TPL)
	Remarks

	Purpose And Use Cases
	Examples
	Basic producer-consumer loop (BlockingCollection)
	Task: basic instantiation and Wait
	Task: WaitAll and variable capturing
	Task: WaitAny
	Task: handling exceptions (using Wait)
	Task: handling exceptions (without using Wait)
	Task: cancelling using CancellationToken
	Task.WhenAny
	Task.WhenAll
	Parallel.Invoke
	Parallel.ForEach
	Parallel.For
	Flowing execution context with AsyncLocal
	Parallel.ForEach in VB.NET
	Task: Returning a value

	Chapter 49: Task Parallel Library (TPL) API Overviews
	Remarks
	Examples
	Perform work in response to a button click and update the UI

	Chapter 50: Threading
	Examples
	Accessing form controls from other threads

	Chapter 51: TPL Dataflow
	Remarks

	Libraries Used in Examples
	Difference between Post and SendAsync
	Examples
	Posting to an ActionBlock and waiting for completion
	Linking blocks to create a pipeline
	Synchronous Producer/Consumer with BufferBlock
	Asynchronous Producer Consumer With A Bounded BufferBlock

	Chapter 52: Unit testing
	Examples
	Adding MSTest unit testing project to an existing solution
	Creating a sample test method

	Chapter 53: Upload file and POST data to webserver
	Examples
	Upload file with WebRequest

	Chapter 54: Using Progress and IProgress
	Examples
	Simple Progress reporting
	Using IProgress

	Chapter 55: VB Forms
	Examples
	Hello World in VB.NET Forms
	For Beginners
	Forms Timer

	Chapter 56: Work with SHA1 in C#
	Introduction
	Examples
	#Generate SHA1 checksum of a file function

	Chapter 57: Work with SHA1 in C#
	Introduction
	Examples
	#Generate SHA1 checksum of a file
	#Generate hash of a text

	Chapter 58: Write to and read from StdErr stream
	Examples
	Write to standard error output using Console
	Read from standard error of child process

	Chapter 59: XmlSerializer
	Remarks
	Examples
	Serialize object
	Deserialize object
	Behaviour: Map Element name to Property
	Behaviour: Map array name to property (XmlArray)
	Formatting: Custom DateTime format
	Efficiently building multiple serializers with derived types specified dynamically

	Where we came from
	What can we do
	Doing it efficiently
	What's in the output

	Credits

