
eclipse

#eclipse

Table of Contents

About 1

Chapter 1: Getting started with eclipse 2

Remarks 2

Versions 2

Examples 2

Installation and Setup 3

Install Marketplace in Eclipse 4

Useful Keyboard Shortcuts 5

Manage Files and Projects 5

Editor Window 5

Navigate in Editor 5

Edit Text 5

Search and Replace 6

Move a block of code 6

Creating and Running a Java HelloWorld Program 6

Create a new Java project 6

Create a new Java class 8

Run your Java class 10

Importing Existing Projects 10

Chapter 2: Configuring Eclipse 13

Examples 13

Increasing maximum heap memory for Eclipse 13

Specifying the JVM 13

How to configure the font size of views in Eclipse on Linux 14

Chapter 3: Create a new workspace in Eclipse 17

Examples 17

How to create a workspace 17

Chapter 4: Debugging Java programs in Eclipse 18

Examples 18

Evaluating expressions within a debugging session 18

Remote debugging of a Java application 20

Chapter 5: Eclipse Shortcuts 22

Introduction 22

Examples 22

Comment/Uncomment code 22

Open Resouce Dialog 22

To get a println 22

Generate Getters and Setters 22

Refactor Highlighted Text 22

Format xml 22

Chapter 6: How Eclipse Remote Debugging works behind the scenes 23

Examples 23

How does Eclipse Remote Debugging work behind the scences 23

Chapter 7: Remote Debugging in Eclipse 24

Examples 24

Configure Eclipse Remote Debugging for an application 24

Chapter 8: Setting up Eclipse for C++ 26

Examples 26

Linux + CMake ("Unix Makefiles" generator) + Qt (optional) 26

Qt (optional) 26

Workspace 26

Attaching Sources to the Project 26

CMake generator 26

Build 27

Re-running CMake (to re-generate the makefiles) 27

Chapter 9: Tomcat deployment procedure 28

Examples 28

Procedure when nothing else helps 28

Credits 29

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: eclipse

It is an unofficial and free eclipse ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official eclipse.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/eclipse
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with eclipse

Remarks

This section provides an overview of what eclipse is, and why a developer might want to use it.

It should also mention any large subjects within eclipse, and link out to the related topics. Since
the Documentation for eclipse is new, you may need to create initial versions of those related
topics.

Versions

Version Name Release Date

3.0 2004-06-21

3.1 2005-06-28

3.2 Callisto 2006-06-30

3.3 Europa 2007-06-29

3.4 Ganymede 2008-06-25

3.5 Galileo 2009-06-24

3.6 Helios 2010-06-23

3.7 Indigo 2011-06-22

3.8 and 4.2 Juno 2012-06-27

4.3 Kepler 2013-06-26

4.4 Luna 2014-06-25

4.5 Mars 2015-06-24

4.6 Neon 2016-06-22

4.7 Oxygen 2017-06-28

4.8 Photon (Planned) 2018-06-01

Examples

https://riptutorial.com/ 2

Installation and Setup

To install Eclipse, go to the Eclipse Downloads Web page where there is usually a direct link to
download the latest version of Eclipse. Starting Eclipse Mars (version 4.5), an installer can be
downloaded which guides you through the installation procedure, as opposed to downloading the
whole installation as a compressed file (this option is still available, however). There are also links
to download old Eclipse packages.

Eclipse comes in several different packages that target different users as shown in the below
screenshot from the installer. For instance, the Eclipse IDE for Java Developers contains basic
tools that support developing, debugging and building Java applications, as well as basic support
for version control such as a plugin that allows versioning projects using Git, while the Eclipse for
Android Developers provides an environment for creating Android applications.

Once a package is selected, the next page allows the user to select the installation directory,
along with other options. The following screenshot illustrates the procedure on a Windows

https://riptutorial.com/ 3

https://eclipse.org/downloads/
http://i.stack.imgur.com/ev5D7.png

machine.

Clicking the Install button will start the installation of the Eclipse package into that directory.

If the machine already has Java properly installed, Eclipse should launch fine and no configuration
or setup is usually required. However, it is a good practice to change some configuration options
for Eclipse, for example to specify in which JVM Eclipse should run, and to configure minimum and
maximum memory for that JVM. To do so, a file called eclipse.ini exists in the installation
directory, where this startup configuration is located. This page contains details about how to
configure Eclipse using that file.

Install Marketplace in Eclipse

Few of the eclipse classic versions don't come pre-installed with marketplace, this maybe installed
using the following steps:

https://riptutorial.com/ 4

http://i.stack.imgur.com/oolGV.png
https://wiki.eclipse.org/Eclipse.ini

Goto Help → Install new Software1.
Add new Repository(site specified below)2.
General Purpose Tools → Marketplace Client3.
Click Finish and you are done.4.

Marketplace update sites:

Oxygen - http://download.eclipse.org/releases/oxygen/
Neon - http://download.eclipse.org/releases/neon/
Mars - http://download.eclipse.org/releases/mars/
Luna - http://download.eclipse.org/mpc/luna
Helios - http://download.eclipse.org/releases/helios
Juno - http://download.eclipse.org/releases/juno/

Useful Keyboard Shortcuts

Manage Files and Projects

Ctrl+Shift+R : Open Resource (file, folder or project)•
Ctrl+Shift+S : Save all files•
Ctrl+W : Close current file•
Ctrl+Shift+W : Close all files•

Editor Window

F12 : Jump to Editor Window•
Ctrl+E : Show list of open Editors. Use arrow keys and enter to switch•
Ctrl+Page Down/Up : Switch to next editor / switch to previous editor•
Ctrl+M : Maximize or minimize current Editor Window•

Navigate in Editor

Ctrl+L : Go to line•
Ctrl+Q : Jump to last location edited•
Ctrl+Shift+P : With a bracket selected: jump to the matching closing or opening bracket•
Ctrl+Arrow Down/Up : Scroll Editor without changing cursor position•

Edit Text

Ctrl+D : Delete Line•
Alt+Shift+Y : Wrap selected text (fit text width to screen)•
Alt+Shift+S : Open Source menu options•
Alt+Shift+R : Refactor highlighted word across all files•

https://riptutorial.com/ 5

Ctrl+Alt+Up/Ctrl+Alt+Down : Copy the selected lines to top/down.•

Search and Replace

Ctrl+J : Type a term to search then use Ctrl+J / Ctrl+shift+J to go up/back•
Ctrl+K/Ctrl+Shift+K : Ctrl+H then close find window. Then Find previous / next occurrence
of search term.

•

Move a block of code

Shift+tab : Move to the left•
Alt+Up/Alt+Down : Move to top/down.•

Creating and Running a Java HelloWorld Program

From the tool-bar open the Java Perspective.

Create a new Java project

Right-click into the Package Explorer, and from the menu select New -> Java Project

In the upcoming dialog enter a project name, then click Finish.

https://riptutorial.com/ 6

Now you have the new project in your workspace.

https://riptutorial.com/ 7

Create a new Java class

Right-click on your project, and from the menu select New -> Class.

In the dialog type in the class' name (it should begin with a capital letter), also select the check-
box public static void main(String[] args), then click Finish.

https://riptutorial.com/ 8

Now you have the first Java file in your project. The editor will automatically open this new file.

Within the main method type in some code to print Hello world!.

https://riptutorial.com/ 9

Run your Java class

Right-click on your Java class, and from the menu select Run as -> Java application.

Voila, you see the output of your Java program in the Console.

Importing Existing Projects

In the File menu, choose the 'Import...' option.

https://riptutorial.com/ 10

This opens up the Import dialog box, which asks for the type of project/file you want to import. For
a basic Java project, choose 'Existing Projects into Workspace' from the 'General' folder.

Next, select the directory where the project(s) is located using the 'Browse' button. All projects that
can be imported into Eclipse will show up in the 'Projects:' section. If the project has already been
imported, it will still be displayed but the checkbox will be disabled.

https://riptutorial.com/ 11

https://i.stack.imgur.com/nkee1.jpg
https://i.stack.imgur.com/H5Vu9.jpg
https://i.stack.imgur.com/48L3j.jpg

You can also import projects directly from a compressed file by choosing 'Select archive file' and
then clicking the 'Browse' button.

Once you click 'Finish' the project is now visible in your Project Explorer and ready to use.

Read Getting started with eclipse online: https://riptutorial.com/eclipse/topic/1143/getting-started-
with-eclipse

https://riptutorial.com/ 12

https://i.stack.imgur.com/Y84YS.jpg
https://riptutorial.com/eclipse/topic/1143/getting-started-with-eclipse
https://riptutorial.com/eclipse/topic/1143/getting-started-with-eclipse

Chapter 2: Configuring Eclipse

Examples

Increasing maximum heap memory for Eclipse

To increase the maximum amount of heap memory used Eclipse, edit the eclipse.ini file located
in the Eclipse installation directory.

This file specifies options for the startup of Eclipse, such as which JVM to use, and the options for
the JVM. Specifically, you need to edit the value of the -Xmx JVM option (or create one if it does not
exist).

Below is an example configuration that sets a maximum heap memory of 1 GB (1024m). The
relevant line is -Xmx1024m- this would replace the existing -Xmx* line in your confiugration:

-startup
plugins/org.eclipse.equinox.launcher_1.3.200.v20160318-1642.jar
--launcher.library
C:/Users/user1/.p2/pool/plugins/org.eclipse.equinox.launcher.win32.win32.x86_64_1.1.400.v20160518-
1444
-product
org.eclipse.epp.package.java.product
--launcher.defaultAction
openFile
-showsplash
org.eclipse.platform
--launcher.appendVmargs
-vmargs
-Xms256m
-Xmx1024m

Specifying the JVM

A common issue that users of Eclipse encounter is related to the default system JVM.

A typical situation is a 64 bit Windows which has both 32 and 64 bit versions of Java installed, and
a 32 bit Eclipse. If the 64 bit version of Java is the system default, when Eclipse is launched an
error dialog is shown.

Specifying the JVM explicitly in eclipse.ini will resolve this. The -vm entry should be added directly
above the -vmargs section.

The example below shows how to use a 32 bit JVM on a 64 bit Windows:

-startup
plugins/org.eclipse.equinox.launcher_1.3.200.v20160318-1642.jar
...
-vm
C:/Program Files (x86)/Java/jdk1.7.0_71/bin/javaw.exe

https://riptutorial.com/ 13

-vmargs
-Xms256m
-Xmx1024m

How to configure the font size of views in Eclipse on Linux

Eclipse does not give you the possibility to change the font size of the views like 'Project Explorer'
or 'Servers', which looks ugly on Linux since Eclipse uses the default (desktop) font size. But you
can edit specific configuration files to get the proper font sizes.

To fix this annoying font size, go to
/[YOUR_INST_DIR]/eclipse/plugins/org.eclipse.ui.themes_[LATEST_INSTALLATION]/css and add this
content...

.MPart Tree{
 font-family: Sans;
 font-size: 8px;
}

to the bottom of the following files:

e4_classic_winxp.css
e4_classic_win7.css

BEFORE CHANGE

https://riptutorial.com/ 14

AFTER CHANGE

https://riptutorial.com/ 15

https://i.stack.imgur.com/LlLMk.png
https://i.stack.imgur.com/KhF6b.png

Read Configuring Eclipse online: https://riptutorial.com/eclipse/topic/2112/configuring-eclipse

https://riptutorial.com/ 16

https://i.stack.imgur.com/KEHk0.png
https://i.stack.imgur.com/MzgJl.png
https://riptutorial.com/eclipse/topic/2112/configuring-eclipse

Chapter 3: Create a new workspace in Eclipse

Examples

How to create a workspace

Go to File -> Switch Workspace -> Other... and type in your new workspace name.

Read Create a new workspace in Eclipse online: https://riptutorial.com/eclipse/topic/6345/create-a-
new-workspace-in-eclipse

https://riptutorial.com/ 17

http://i.stack.imgur.com/lZv8t.png
https://riptutorial.com/eclipse/topic/6345/create-a-new-workspace-in-eclipse
https://riptutorial.com/eclipse/topic/6345/create-a-new-workspace-in-eclipse

Chapter 4: Debugging Java programs in
Eclipse

Examples

Evaluating expressions within a debugging session

There are several to evaluate a certain expression when debugging a Java application.

1. Manually inspecting an expression

When the program execution is suspended at a certain line (either due to a breakpoint or manually
stepping through the debugger), you can manually evaluate an expression by selecting the
expression in the code, then right-clicking and selecting Inspect as shown in the below
screenshot. Alternatively, do Ctrl+Shift+I after selecting the expression.

2. Watching an expression in the Expressions view

If you want to continuously evaluate an expression, say because it is within in a loop, you can
watch it in the Expressions view. This way its value will be displayed whenever the program is
suspended at each iteration of the loop. To do this, select the desired expression, then right-click
and select Watch. This will open the Expressions view and show the value of the expression
(see below image). You can also manually write the expression in the view.

https://riptutorial.com/ 18

http://i.stack.imgur.com/CCB03.png

3. Using the Display view to evaluate and execute statements

The Display view allows you to write your own expressions, statements or any code in general
that would be evaluated or executed in context with the suspended program code. This can be
useful if you want to evaluate complex expressions without changing your original and restart the
debugging.

To open the Display view, select Window > Show View > Display. Then write your expression or
statements in the view, and select one of the options in the toolbar of the view, for example to
execute the written statements, or display the result of evaluating them in the view as shown in the
below image. The code written in the Display view can also be inspected or executed by selecting
it, then right-clicking and selecting the desired action.

https://riptutorial.com/ 19

http://i.stack.imgur.com/3CbPG.png

Remote debugging of a Java application

n order to debug a remote Java application, it should be launched with some extra arguments to
instruct the JVM to execute it in debug mode. This is done as follows:

java -Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=8000 -jar sampleApp.jar

The above command tells the JVM to start the application sampleApp.jar while having a server
socket listening at port 8000 for a debugger to attach to it. The suspend argument tells whether you
want the JVM to wait until a debugger attaches to the port number before the application
effectively runs.

After launching the remote application with the above parameters, the next step is attach your
Eclipse debugger to the remote application. This is done as follows:

Go to Run > Debug Configurations...1.

In the Debug Configurations dialog (see figure below), select the Remote Java
Application section and click New launch configuration action.

2.

https://riptutorial.com/ 20

http://i.stack.imgur.com/9LK7v.png

Give your debug configuration a name, then select the project that contains the code of your
remote application. Set the hostname or IP address of the remote machine and the port to
which the debugger should attach.

3.

Click Debug. The Eclipse debugger will now attempt to attach to the remote application and
suspend at breakpoints set in the source code.

4.

Read Debugging Java programs in Eclipse online:
https://riptutorial.com/eclipse/topic/4548/debugging-java-programs-in-eclipse

https://riptutorial.com/ 21

http://i.stack.imgur.com/QPNJj.png
https://riptutorial.com/eclipse/topic/4548/debugging-java-programs-in-eclipse

Chapter 5: Eclipse Shortcuts

Introduction

Eclipse has many shortcuts to make your life easier.

Examples

Comment/Uncomment code

To comment or uncomment code select the lines and use Ctrl + Shift + C or Ctrl + Shift + /

Open Resouce Dialog

To access the Open Resource dialog use Ctrl + Shift + R. From here you can start typing a
resource name and it will find all matches in the workspace, this makes it easier to find a file when
you don't know exactly were it is.

To get a println

If you want System.out.println(); but don't want to type the whole thing out you can just type syso
and hit Ctrl + Spacebar. It will type the rest and set the cursor between the parenthesis.

Generate Getters and Setters

Eclipse can generate basic getters and setters for you. Right click in you class file and go to
Source - Generate Getters and Setters (ALT+SHIFT+S). This will open a dialog where you can
choose which fields you would like to have getters and setters generated for.

Refactor Highlighted Text

Renaming a variable or class is usually a tedious task, by searching for all the locations where it is
used. This can be significantly speeded up by highlighting the word, pressing Alt+Shift+R and
then typing the new word. Eclipse will automatically rename the word in every file where it is
called.

Format xml

When you add entries to an xml or copy from other sources, there often tends to be uneven tabs
and spaces around the entries.

When you press Ctrl + Shift + F, you easily align the entire document and remove the extra tabs
as well. Thus the text gets formatted and eventually becomes readable.

Read Eclipse Shortcuts online: https://riptutorial.com/eclipse/topic/9387/eclipse-shortcuts

https://riptutorial.com/ 22

https://riptutorial.com/eclipse/topic/9387/eclipse-shortcuts

Chapter 6: How Eclipse Remote Debugging
works behind the scenes

Examples

How does Eclipse Remote Debugging work behind the scences

Eclipse debugging starts with what is referred to as Agents.

The JVM, which runs the complied .class sources has a feature that allows externally libraries
(written in either Java or C++) to be injected into the JVM, just about runtime. These external
libraries are referred to as Agents and they have the ability to modify the content of the .class files
been run. These Agents have access to functionality of the JVM that is not accessible from within
a regular Java code running inside the JVM and they can be used to do interesting stuff like
injecting and modify the running source code, profiling etc. Tools like JRebel makes use of this
piece of functionality to achieve their magic.

And to pass an Agent Lib to a JVM, you do so via start up arguments, using the

 agentlib:libname[=options] format.

We were actually passing an Agent Lib named jdwp to the JVM running Tomcat. The jdwp is a JVM
specific, optional implementation of the JDWP (Java Debug Wire Protocol) that is used for defining
communication between a debugger and a running JVM. It’s implementation, if present is supplied
as a native library of the JVM as either jdwp.so or jdwp.dll

So what does it do?

In simple terms, the jdwp agent we pass is basically serving the function of being a link between
the JVM instance running an application and a Debugger (which can be located either remote or
local). Since it is an Agent Library, It does have the ability to intercept the running code, create a
bridge between the JVM and a debugger, and have the functionality of a debugger applied on the
JVM. Since in the JVM architecture, the debugging functionality is not found within the JVM itself
but is abstracted away into external tools (that are aptly referred to as debuggers), these tools can
either reside on the local machine running the JVM being debugged or be run from am external
machine. It is this de-coupled, modular architecture that allows us to have a JVM running on a
remote machine and using the JDWP, have a remote debugger be able to communicate with it.
In short, this is how Eclipse debugger works.

Read How Eclipse Remote Debugging works behind the scenes online:
https://riptutorial.com/eclipse/topic/6247/how-eclipse-remote-debugging-works-behind-the-scenes

https://riptutorial.com/ 23

https://riptutorial.com/eclipse/topic/6247/how-eclipse-remote-debugging-works-behind-the-scenes

Chapter 7: Remote Debugging in Eclipse

Examples

Configure Eclipse Remote Debugging for an application

The following are the steps to start an Eclipse remote debugger. This is useful when the
application is not started from a server instance within Eclipse. This feature is really powerful and
can also help debugging code which resides in the test or production environment. Let's have a
look at the settings:

Eclipse Settings:
1.Click the Run Button
2.Select the Debug Configurations
3.Select the “Remote Java Application”
4.New Configuration
a) Name : GatewayPortalProject
b) Project : GatewayPortal-portlet
c) Connection Type: Socket Attach
d) Connection Properties:
i) localhost ii) 8787

For JBoss:

1.Change the /path/toJboss/jboss-eap-6.1/bin/standalone.conf in your vm as follows: Uncomment
the following line by removing the #:

JAVA_OPTS="$JAVA_OPTS -agentlib:jdwp=transport=dt_socket,address=8787,server=y,suspend=n"

For Tomcat :

In catalina.bat file :

Step 1:

CATALINA_OPTS="-Xdebug -Xrunjdwp:transport=dt_socket,address=8000,server=y,suspend=n"

Step 2:

JPDA_OPTS="-agentlib:jdwp=transport=dt_socket,address=8000,server=y,suspend=n"

Step 3: Run Tomcat from command prompt like below:

catalina.sh jpda start

Then you need to set breakpoints in the Java classes you desire to debug.

https://riptutorial.com/ 24

Read Remote Debugging in Eclipse online: https://riptutorial.com/eclipse/topic/3502/remote-
debugging-in-eclipse

https://riptutorial.com/ 25

https://riptutorial.com/eclipse/topic/3502/remote-debugging-in-eclipse
https://riptutorial.com/eclipse/topic/3502/remote-debugging-in-eclipse

Chapter 8: Setting up Eclipse for C++

Examples

Linux + CMake ("Unix Makefiles" generator) + Qt (optional)

You should have a plain CMake project myproject, and we are going to make an Eclipse
workspace outside of it:

 myproject/
 .git/
 CMakeLists.txt
 src/
 main.cpp
 workspace/
 myproject/
 Release/
 Debug/

Qt (optional)

Get latest Eclipse CDT and then install the Qt package in it through "Help -> Install New
Software".

•

Workspace

Create an empty "workspace" directory alongside your CMake project source directory.•
Launch Eclipse and switch to that "workspace" directory.•
Create a C++ project (for Qt with Eclipse older than Neon: create "Qt Makefile Project" and
then delete *.pro file, makefile and main.cpp from it)

•

Attaching Sources to the Project

Go to Project Properties -> Paths and Symbols -> Source Location -> Link Folder.•
Check "Advanced" and link the source folder of CMake project like that: ../../myproject/src/
. It works because the workspace is just outside the CMake project directory.

•

CMake generator

Create Release folder in the project.•
Go to "Make Target" view (Ctrl+3 and then type "Make Target" if it's hard to find). "Make
Target" view looks similarly to project view.

•

Right click on the "Release" folder and then click "New...".
Uncheck "Same as target name".○

Uncheck "Use builder settings".○

•

https://riptutorial.com/ 26

Type in "Release" into "Target name" field.○

Leave "Make target" empty.○

Set "Build command" to something like cmake ../../../myproject/.○

Click ok.○

Double click on this "Release" make target that was just created in the Release folder. That
will run cmake generation.

•

Build

Go to Project Properties and create a "Release" configuration.•
Make "Release" configuration active.•
For "Release" configuration uncheck "Generate Makefiles automatically".•
Set Build directory to "Release".•
Enable parallel build.•

Now, you can build the project from Eclipse with a usual Ctrl+b "Build".

Re-running CMake (to re-generate the makefiles)

Remove everything from the "Release" directory.•
Go to "Make Target" view.•
Double-click on the "Release" target.•

Read Setting up Eclipse for C++ online: https://riptutorial.com/eclipse/topic/7028/setting-up-
eclipse-for-cplusplus

https://riptutorial.com/ 27

https://riptutorial.com/eclipse/topic/7028/setting-up-eclipse-for-cplusplus
https://riptutorial.com/eclipse/topic/7028/setting-up-eclipse-for-cplusplus

Chapter 9: Tomcat deployment procedure

Examples

Procedure when nothing else helps

Once a while concecuent deploys to internal tomcat start giving constant error, without any clear
cause (Listener start or ClassNotFoundException). When nothing seems to cure it, this procedure
saves the world:

1 delete Servers folder

2 restart Eclipse

3 create new server, add project and start

Works like charm and is not so lengthy.

If from some reason this fails, my original lengthy procedure (where the other is a short cut that
should do the same) is here:

1 stop server

2 project -> clean

3 project build (I had automatic build disabled)

4 delete server

5 delete Servers folder

6 restart Eclipse

7 create new server, add project and start.

With this seven step thing problems with deploy never come out of your code and control.

Note:

You dont't need else than page refresh if all goes smoothly. This procedure is done once per error
message to be sure you get rid of the unclear error, if your code looks ok and you kind of did
nothing to receive the error. The error is either containing word ClassNotFoundException or
ListenerStart, depending on environment in use. Note also that this does not cure
ClassNotFoundExceptions caused by missing libraries in a project.

Read Tomcat deployment procedure online: https://riptutorial.com/eclipse/topic/6092/tomcat-
deployment-procedure

https://riptutorial.com/ 28

https://riptutorial.com/eclipse/topic/6092/tomcat-deployment-procedure
https://riptutorial.com/eclipse/topic/6092/tomcat-deployment-procedure

Credits

S.
No

Chapters Contributors

1
Getting started with
eclipse

Aaron Vigal, Ala Eddine JEBALI, Aleksandr M, Ani Menon,
Community, Latsuj, manouti, Ray, Thomas Fritsch

2 Configuring Eclipse Bevor, manouti, mecsco, romeara

3
Create a new
workspace in Eclipse

rajah9

4
Debugging Java
programs in Eclipse

manouti

5 Eclipse Shortcuts Latsuj, Ray, Srishti Sinha, user7491506, Yurii COjocari

6
How Eclipse Remote
Debugging works
behind the scenes

Pritam Banerjee

7
Remote Debugging
in Eclipse

Pritam Banerjee

8
Setting up Eclipse for
C++

Velkan

9
Tomcat deployment
procedure

mico

https://riptutorial.com/ 29

https://riptutorial.com/contributor/4044861/aaron-vigal
https://riptutorial.com/contributor/1343790/ala-eddine-jebali
https://riptutorial.com/contributor/1700321/aleksandr-m
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2947573/latsuj
https://riptutorial.com/contributor/1064245/manouti
https://riptutorial.com/contributor/4887159/ray
https://riptutorial.com/contributor/7248342/thomas-fritsch
https://riptutorial.com/contributor/319773/bevor
https://riptutorial.com/contributor/1064245/manouti
https://riptutorial.com/contributor/194566/mecsco
https://riptutorial.com/contributor/1128981/romeara
https://riptutorial.com/contributor/509840/rajah9
https://riptutorial.com/contributor/1064245/manouti
https://riptutorial.com/contributor/2947573/latsuj
https://riptutorial.com/contributor/4887159/ray
https://riptutorial.com/contributor/5488850/srishti-sinha
https://riptutorial.com/contributor/7491506/user7491506
https://riptutorial.com/contributor/7964104/yurii-cojocari
https://riptutorial.com/contributor/1475228/pritam-banerjee
https://riptutorial.com/contributor/1475228/pritam-banerjee
https://riptutorial.com/contributor/4742108/velkan
https://riptutorial.com/contributor/549910/mico

	About
	Chapter 1: Getting started with eclipse
	Remarks
	Versions
	Examples
	Installation and Setup
	Install Marketplace in Eclipse
	Useful Keyboard Shortcuts

	Manage Files and Projects
	Editor Window
	Navigate in Editor
	Edit Text
	Search and Replace
	Move a block of code
	Creating and Running a Java HelloWorld Program
	Create a new Java project
	Create a new Java class
	Run your Java class
	Importing Existing Projects

	Chapter 2: Configuring Eclipse
	Examples
	Increasing maximum heap memory for Eclipse
	Specifying the JVM
	How to configure the font size of views in Eclipse on Linux

	Chapter 3: Create a new workspace in Eclipse
	Examples
	How to create a workspace

	Chapter 4: Debugging Java programs in Eclipse
	Examples
	Evaluating expressions within a debugging session
	Remote debugging of a Java application

	Chapter 5: Eclipse Shortcuts
	Introduction
	Examples
	Comment/Uncomment code
	Open Resouce Dialog
	To get a println
	Generate Getters and Setters
	Refactor Highlighted Text
	Format xml

	Chapter 6: How Eclipse Remote Debugging works behind the scenes
	Examples
	How does Eclipse Remote Debugging work behind the scences

	Chapter 7: Remote Debugging in Eclipse
	Examples
	Configure Eclipse Remote Debugging for an application

	Chapter 8: Setting up Eclipse for C++
	Examples
	Linux + CMake ("Unix Makefiles" generator) + Qt (optional)

	Qt (optional)
	Workspace
	Attaching Sources to the Project
	CMake generator
	Build
	Re-running CMake (to re-generate the makefiles)

	Chapter 9: Tomcat deployment procedure
	Examples
	Procedure when nothing else helps

	Credits

